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1.1	 �Artificial Intelligence

To understand the concept of artificial intelligence (AI) and how it is being used in 
applications today, we first need to understand the concept of intelligence. The term 
intelligence is derived from the Latin noun ‘intellēctus’ or verb ‘intelligere’, which 
means to comprehend or perceive. This concept is however abstract and is better 
understood with examples of different types of intelligence and how humans dis-
play them.

	1.	 Visual-spatial: physical environment characteristics (architects when designing a 
building according to terrain and surroundings, navigating a boat in water).

	2.	 Kinaesthetic: body movements (technical skill and precision of a ballerina, sur-
geons or athletes).

	3.	 Creative: novel thought, typically expressed in art, music and writing 
(imagination-driven authors, painters and musicians).

	4.	 Interpersonal: interaction with others (interviewers, shopkeepers, businessmen).
	5.	 Intrapersonal: self-realisation (meditation, goal planning, self-preservation).
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	6.	 Linguistic: manipulation of words for communication (day-to-day 
communication).

	7.	 Logical-mathematical: calculations, identifying patterns, analysing relationships 
(logic, puzzles, computing numbers).

From this classification, it is easy to understand what AI today is capable of and 
where we may be heading in the future. The simulation potential of logical-
mathematical intelligence is the maximum and early development in AI almost 
exclusively focused on this domain. Robotics aims to mimic the kinaesthetic intel-
ligence while sensor-driven (LiDAR scanners in self driven cars) applications lever-
age on visual-spatial intelligence. Chatbots are trying to mimic linguistic and 
interpersonal intelligence while the creative and intrapersonal intelligence are 
domains with limited to no simulation potential. Utility of algorithms has been 
explored to create music and draw art, but this is mainly driven by logical-
mathematical intelligence.

When we understand what an algorithm can and cannot do, that is when we can 
maximise the utility of the algorithm. Thus, it is imperative to stay away from over-
optimistic predictions and avoid false promises to increase the acceptability of algo-
rithms and their potential widespread use. Some algorithms that have achieved this 
level of acceptance are the ‘search engine’ algorithms that offer personalised search 
results, spam filters in email clients, recommendations in applications like Netflix or 
Amazon and computational photography algorithms on mobile devices. Algorithms 
that have been developed for use in hospitals however are yet to see such levels of 
acceptance. This has been due to the inherent nature of patient–physician relation-
ship, potential regulatory hurdles and multiple types of bias that confound these 
algorithms. However, with FDA approvals being given to 64 algorithms (SaMD: 
software as medical device) over the last 3 years, we can expect widespread avail-
ability of these options for clinicians in the future [1, 2]. Currently for ophthalmol-
ogy only the IDx-DR has been approved as an autonomous AI diagnostic system for 
diabetic retinopathy [3–5].

1.2	 �The Past and What We Can Learn from It

The earliest examples of humans trying to build intelligent devices were the abacus 
like devices namely the nepohualtzintzin (Aztecs), suanpan (Chinese) or the soro-
ban (Japan) [6]. These devices though based on simple concepts, reduced the time 
required for mathematical computations. This concept of reducing time and effort 
for repetitive computational tasks remains one of the driving concepts behind algo-
rithm development.

The Antikythera mechanism was another ancient computing device that was 
probably used to track dates of important events, predict eclipses and even planetary 
motions [7]. Ramon Llull’s Ars Magna was another device that used simple paper-
based rotating concentric circle to generate combinations of new words and ideas. It 
was a rudimentary step towards generating a logical system to produce knowledge 
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[8]. Examples of such systems also exist in fictional literature like the book-writing 
engine in the city of Lagado in Gulliver’s Travels. Attempts to create a similar algo-
rithm include the RACTER program which generated text for the first computer 
authored book titled ‘The Policeman’s Beard is Half Constructed’ in 1983 [9].

Perhaps one of the most significant inventions in primitive computing was the 
Difference Engine, proposed by Charles Babbage in 1822 [10]. In addition to this 
engine, Babbage also wanted to create the Analytical Engine which could be pro-
grammed using punch cards and had separate areas for number storage and compu-
tation. Ada Lovelace, the daughter of English poet, Lord Byron, gave the 
specifications for designing a program for this Engine. She is now considered by 
many as the first computer programmer [11].

Currently we know that data is stored in computers as a series of binary 1 s and 
0 s called bits. Eight bits make up one byte. The fundamentals of this concept were 
published in a book, titled, ‘An Investigation into the Laws of Thought, on Which 
Are Founded the Mathematical Theories of Logic and Probabilities’, by George 
Boole in 1854 [12]. He wanted to reduce logic to simple algebra involving only 0 
and 1, with three simple operations: and, or and not. Boolean algebra, which is 
named after him, is one of the foundations of this digital age.

Over the next few decades, there were incremental improvements in algorithms 
for applications like optical character recognition (OCR), handwriting recognition 
(HWR) and speech synthesis. The next breakthrough was the 1943 paper ‘A Logical 
Calculus of the Ideas Immanent in Nervous Activity’ by Warren McCulloch and 
Walter Pitts [13]. In this paper, they described the basic mathematical model of the 
biological neuron. This formed the basis for the development of artificial neural 
networks (ANN) and deep learning (DL).

ENIAC, short for Electronic Numerical Integrator and Computer, was unveiled 
in 1946 and represented the pinnacle of specialised electronic, reprogrammable, 
digital computers built to solve a range of computing problems [14]. This started the 
race for development of powerful computer hardware for specialised operations by 
different countries. However, by today’s standards even the Apollo Space Mission 
Guidance Computer (AGC) only had 64 KB memory and operated at 0.043 MHz, 
when compared to today’s smartphones running with GHz speed processors (A14 
chips in iPhones and iPads run at 3.0GHz and thus clock 70,000 times faster) shows 
how far we have come in terms of computing power due to the development of 
semiconductor technology [15, 16].

The term, ‘artificial intelligence’ (AI) was coined by John McCarthy at the 
Dartmouth conference for experts in this field in 1956 [17]. The expectations from 
this conference were extremely high despite limited computing power and hardware 
at that time. Inability to meet the hype generated by this conference, thus led to the 
AI winters of 1974–1980 and 1987–1993 [18].

Meanwhile during this time interesting developments were taking place in the 
backdrop, like:

•	 Rosenblatt concept of the perceptron [19] (1957).
•	 Arthur Lee Samuel’s concept of machine learning [20] (1959).
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•	 ELIZA: The program that could respond to text input simulating a conversation 
[21] (1964).

•	 Early deep learning using supervised multilayer perceptrons (1965).
•	 MYCIN: Rule-based expert system to identify sepsis and to recommend antibiot-

ics [22] (1970).
•	 Fuzzy logic and its applications in automation [23] (1965–1974).
•	 Lighthill Report (criticised the utter failure of artificial intelligence in achieving 

its ‘grandiose objectives’) that triggered the first AI winter [24] (1973).
•	 Joseph Weizenbaum’s early idea of ethics in AI, suggestion that AI should not be 

used as substitutes for humans in jobs requiring compassion, interpersonal 
respect, love, empathy and care [25] (1976).

•	 Expert system boom driven by LISP machines; however, LISP was soon 
overtaken by IBM/Apple with more powerful and cheaper consumer desk-
top computers, this led to collapse of the demand for expert systems [26] 
(1980–1987).

•	 Alex Waibel’s Time Delay Neural Network (TDNN) which was the first convo-
lutional network [27] (1987).

•	 Moravec’s paradox: Tasks simple for humans like walking, talking, face/voice 
recognition are difficult for AI while humanly complex computational tasks 
involving mathematics and logic are simple [28] (1988).

•	 Yan LeCun developed system to recognise handwritten ZIP codes [29] (1989).
•	 Chinook (checkers playing algorithm) vs Marion Tinsley [30] (1994).
•	 IBM Deep Blue (chess playing algorithm) vs Garry Kasparov [31] (1997).
•	 Logistello (othello playing algorithm) vs Takeshi Murakami [32] (1997).
•	 Oh and Jung demonstrated power of graphical processing units (GPUs) for net-

work training [33] (2004).
•	 ImageNet database [34] (2009).
•	 IBM DeepQA-based Watson winning the quiz show Jeopardy [35] (2011).
•	 Google DeepMind AlphaGo (based on ANN and Monte Carlo tree search algo-

rithm defecting Lee Sedol) and AlphaGo Zero (trained by self-play without using 
previous data) which subsequently defected AlphaGo [36] (2017).

•	 Adversarial patches and perturbations [37, 38] (2018).
•	 Stanford death predictor [39] (2019).

Perhaps the most important developments that renewed interest in the field of AI 
and allowed widespread access over the last decade are the availability of large 
amounts of data and increased computational power at cheaper costs using modali-
ties like graphical processing units (GPUs). ImageNet has especially been used to 
train popular models like the AlexNet [40], VGG16 [41], Inception modules [42] 
and the currently used ResNet [43].

Other datasets are also available for applications like music, facial recognition, 
text and speech processing [44]. As AI is a rapidly evolving field, today new inno-
vations also happen with the same pace. However, understanding the history of AI 
is vital in predicting how it may affect the future. In further sections, we discuss 
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why AI has become so popular today and how it may help in optimising patient 
care by evolving into an effective decision support system.

1.3	 �Why Should a Clinician Bother About AI?

A quick PubMed search shows how the number of articles published in the field of 
AI has grown to 112,594 results with 35,140 (31.2%) being published since 2018 
[45]. Another insight comes from the Gartner Hype Index that monitors and predicts 
how a technology will evolve over time [46]. Machine learning (ML) was at the 
peak of inflated expectation indicating impact of publicity and expectations in 2016, 
DL at the same peak in 2018. These peaks also translate to the increase in applica-
tions that were developed using these technologies in this time. PubMed search 
shows a total of 49, 721 results till 2020 for ML, with 3885 results in 2016, 5217 in 
2017 and 8169 in 2018. The last 2 years have seen 24,230 results which is 48.73% 
of total results [47]. Similarly, for DL, PubMed search shows 18,082 results till 
2020 with 3020 results in 2018, 5401  in 2019 and 7383  in 2020 [48]. The last 
2 years represent 70.7% of the total results. These numbers show how these tech-
nologies are being increasingly tried and tested for use in medicine.

Due to the lack of special training for understanding or evaluating these applica-
tions or their underlying concepts, a lot of effort has been recently initiated to make 
the clinicians more aware and sensitised about the use of AI in providing patient 
care [49–51]. In the next section, we describe a checklist approach to reading an AI 
paper with emphasis on evidence assessment and evaluation of future potential for 
translation to clinical use. We believe that this approach can help in better under-
standing of the scientific merit of the publication and its potential impact on care 
delivery practice patterns.

1.4	 �How to Read an Artificial Intelligence Paper?

Jaeschke et al. provided a framework to evaluate diagnostic tests in clinical medi-
cine [52]. We have expanded the same framework to include relevant information 
about AI-based algorithms. We will initially describe the framework and then pro-
vide example of using the framework [53, 54]. The framework is as follows:

•	 Step 1: Evaluate if the study results are valid.
Primary Guide
–– Was there an independent, blind comparison with a reference standard?
–– Did the patient sample include an appropriate spectrum of patients to whom 

the diagnostic test will be applied in clinical practice?
For AI-based algorithms these can be adapted as:

Are the datasets appropriate and described in sufficient detail?
Was the gold standard for algorithm training appropriate and reliable?
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Secondary Guide
–– Did the results of the test being evaluated influence the decision to perform 

the reference standard?
–– Were the methods for performing the test described in sufficient detail to per-

mit replication?
For AI-based algorithms these can be adapted as:

Is the methodology of algorithm development described in sufficient detail 
to allow replication?
Are the algorithm/datasets used available for external validation?

•	 Step 2: Evaluate the presented results.
–– Are likelihood ratios for the test results presented or data necessary for their 

calculation provided?
For AI-based algorithms these can be adapted as:

Are adequate and appropriate performance metrics reported? [50].
•	 Step 3: Evaluate the utility of results in providing care for your patients.

–– Will the reproducibility of the test result and its interpretation be satisfactory 
in my setting?

–– Are the results applicable to my patient?
–– Will the results change my management?
–– Will the patients be better off because of the test?

For AI-based algorithms these can be adapted as:
Are the findings of the algorithm explainable? Does the algorithm exhibit 
generalisability (can it be easily adapted for a different machine input or 
population)? Was the original algorithm performance too optimistic?
Has the algorithm been validated in my local population?
Is there any independent comparison of the algorithm with existing stan-
dard of care? Is there a cost-effectiveness analysis for rationale of algo-
rithm use?
Will there be a significant impact on patient well-being after algorithm 
deployment? Is there an attempt to measure this impact?

Table 1.1 shows how this framework can be used to evaluate an artificial intelli-
gence paper.
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Table 1.1  Framework for evaluation of artificial intelligence papers in medicine (adopted from 
Jaeschke et al.) [52]

Paper Title: Clinically applicable deep learning for diagnosis and referral in retinal disease 
[53].
Purpose: Develop an artificial intelligence-based patient triage system using 3D OCT data
Step 1: Evaluate if the study results are valid
• �Was there an 

independent, blind 
comparison with a 
reference standard?

Are the datasets 
appropriate and 
described in sufficient 
detail?

The authors describe in detail the training 
set for OCT (Topcon) segmentation (877 
scans), validation set for segmentation 
(224 scans), training set for classification 
(14,884 scans), validation set for 
classification (993 scans) and the testing 
set for comparison of algorithm (997 
random scans) with standard of care

• �Did the patient 
sample include an 
appropriate 
spectrum of patients 
to whom the 
diagnostic test will 
be applied in clinical 
practice?

Was the reference 
standard for algorithm 
training/testing 
appropriate and reliable?

The data for training the segmentation 
algorithm was manually segmented by 
trained ophthalmologists, reviewed and 
edited by senior ophthalmologists. The 
training set for classification used labels 
from automatic note search and trained 
ophthalmologists/optometrists reviewed 
the scans. The validation set for 
classification was graded by three junior 
graders, while for the test set, the referral 
gold standard was from full patient 
clinical records to determine the diagnosis 
and referral path considering subsequently 
obtained information. The algorithm 
performance was compared to four 
medical retina consultant 
ophthalmologists and four specialist 
optometrists

• �Did the results of the 
test being evaluated 
influence the 
decision to perform 
the reference 
standard?

Did the results of the 
algorithm influence the 
decision to perform the 
reference standard?

No, the referral gold standard was 
retrospective data based on full clinical 
records of patients undergoing current 
standard of care

• �Were the methods 
for performing the 
test described in 
sufficient detail to 
permit replication?

Is the methodology of 
algorithm development 
described in sufficient 
detail to allow 
replication? Are the 
algorithm/datasets used 
available for external 
validation?

The authors describe the algorithm (U-net 
architecture) in detail but mention that the 
data is not available in the public domain 
and may be available on request subject to 
local and national ethical approvals. In a 
subsequent paper, the authors mention 
about releasing the segmentation 
algorithm and dataset in the public 
domain for validation [54]

(continued)
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Table 1.1  (continued)

Step 2: Evaluate the presented results
• �Are likelihood ratios 

for the test results 
presented or data 
necessary for their 
calculation 
provided?

Are adequate and 
appropriate performance 
metrics reported? [50]

The authors report ROC curves, confusion 
matrices, total error rates and impact of 
additional information (OCT alone, 
OCT + fundus + full case summary) on 
expert referral decisions. The algorithm 
had an AUC of 99.21 and error rate of 
5.5% (55/997)

Step 3: Evaluate the utility of results in providing care for your patients
• �Will the 

reproducibility of 
the test result and its 
interpretation be 
satisfactory in my 
setting?

Are the findings of the 
algorithm explainable? 
Does the algorithm 
exhibit generalisability? 
Was the original 
algorithm performance 
too optimistic?

The authors report data for generalising 
using of the algorithm using another OCT 
device. (Spectralis), though initially the 
algorithm performs poorly and has error 
rate of 46.6% for referral decisions, 
retraining of the segmentation algorithm 
improves the AUC to 99.93 and reduces 
error rate to 3.4% (4/116). This shows that 
the algorithm is flexible and adaptable to 
a different machine. The authors also 
report results in a third OCT machine 
(Cirrus 5000) where initial error rate of 
16.4% was reduced to 9.8% after 
retraining the segmentation algorithm
The developers of the algorithm also tried 
to incorporate elements of explainable 
artificial intelligence by providing a 
segmentation maps with highlighted 
retinal structure, pathology, artefacts and 
predicted diagnostic probabilities and 
referral suggestions. However, in the 
videos provided as supplementary 
material, the automatic segmentation is 
not always accurate

• �Are the results 
applicable to my 
patient?

Has the algorithm been 
validated in my local 
population?

No, the results are from the patient 
population at Moorfields eye hospital, 
London, United Kingdom. It will need 
further validation in different ethnic 
populations and research settings before it 
can be applicable to your patients

• �Will the results 
change my 
management?

Is there any independent 
comparison of the 
algorithm with existing 
standard of care? Is there 
a cost effectiveness 
analysis for rationale of 
algorithm use?

The algorithm was compared to 4 medical 
retina consultant ophthalmologists and 4 
specialist optometrists. The algorithm 
performed as well or outperformed the 
experts. There was no attempt however to 
assess the cost effectiveness of the 
algorithm as compared to standard of care

• �Will the patients be 
better off because of 
the test?

Will there be a significant 
impact on patient 
well-being after 
algorithm deployment? Is 
there an attempt to 
measure this impact?

The algorithm has potential to be 
deployed as a clinician decision support 
tool but immediate impact on patient 
well-being cannot be assessed. No attempt 
was made by the authors to measure this 
impact in the real world
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1.5	 �Conclusion

We have exciting times ahead of us, due to the immense potential of AI as a clinical 
decision support tool. However potential ethical and legal issues of liability man-
agement, reduction in clinical skills due to excessive algorithm use, inappropriate 
data representation especially for minorities, lack of personal privacy, ‘biomarkup’ 
due to excessive testing and inadequate understanding of algorithm results (AI 
black box) can hamper the deployment and acceptance of these AI algorithms [55–
59]. Humans are intelligent, flexible and tenacious but are also liable to make mis-
takes. The embarrassing inability of Apple HealthKit to track menstrual cycles 
while tracking innocuous parameters for health monitoring like weight, height, 
inhaler use, alcohol content, blood sugar, sodium intake is just one example of this 
oversight [60]. Inherently the algorithms are unbiased but the bias from data used 
for training and the developers inherent bias can ultimately create complex ethical 
problems. An attitude of critical evaluation by all stakeholders before adoption of 
any new technology will thus help to separate the real from the hype. IBM Watson 
is an excellent example of how AI struggles with real-world medicine, messy hos-
pital records and the expectations of industry, hospitals, physicians and patients 
[61]. We must keep in mind that our primary goal is always providing our patients 
the ‘best’ standard of care available. The affordability, availability and widespread 
social impact of the ‘model of care’ should also be considered while making this 
critical decision.
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