
Chapter 7
Stochastic Delay Differential Equations

7.1 Introduction

Real biological systems are always exposed to influences that are not completely
understood or not feasible to model explicitly, and therefore, there is an increasing
need to extend the deterministic models to models that embrace more complex vari-
ations in the dynamics. A way of modeling these elements is by including stochastic
influences or noise. A natural extension of a deterministic differential equations
model is a system of stochastic differential equations (SDEs), where relevant param-
eters are modeled as suitable stochastic processes, or stochastic processes are added
to the driving system equations. Therefore, stochastic delay differential equations
(SDDEs) are crucial in ecology, epidemiology, and many other fields. SDDEs are
also considered as a generalization of both deterministic delay differential equations
(DDEs) and stochastic ordinary differential equations (SODEs). Some basic con-
cepts about stochastic differential equations are discussed in [1–3]. The fundamental
theory of existence and uniqueness of the solution of SDDEs has been studied by
Mao [4] and Mohammed [5]. Some stability properties of numerical schemes of
SDDEs are also studied in [6–8].

An important characteristic of environmental noise is its spectrum,whichdescribes
variance as a sum of sinusoidal waves of different frequencies. The spectrum of fre-
quencies in noise is particularly important to the dynamics and persistence of systems
[9]. However, Brownian motion with normally distributed errors is commonly used
in the continuous differential models of dynamical systems. In this monograph, we
consider white noise type. In white noise, the variance is the same at all frequencies.
Therefore, this is the most thoroughly studied and applied form of noise. The reason
for this is that, it is a simple and easily articulated model for noise. From an obser-
vational perspective, the random effect of Brownian motion is more visualized with
normally distributed errors [1, 6].

In the literature, many numerical schemes for SDDEs have been investigated,
such as Euler-type schemes [10, 11], drift-implicit Euler scheme [12, 13], Milstein

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
F. A. Rihan, Delay Differential Equations and Applications to Biology,
Forum for Interdisciplinary Mathematics,
https://doi.org/10.1007/978-981-16-0626-7_7

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0626-7_7&domain=pdf
https://doi.org/10.1007/978-981-16-0626-7_7


124 7 Stochastic Delay Differential Equations

schemes [14, 15], split-step schemes [16, 17], andmultistep schemes [18]. The exten-
sion of numerical approaches for SODEs to SDDEs is non-trivial, particularly since
the time-delays may induce instabilities in the basic SDDEs, while their correspond-
ing SODEs are stable [12]. In addition, the presence of time-delays influences the
convergence order and computational complexity of the numerical schemes [19]. In
general, there is no analytical closed-form solution of the models considered in this
dissertation, and we usually require numerical techniques to investigate the models
quantitatively.

In this chapter, we briefly study qualitative features of SDDEs (see Sects. 7.2 and
7.3). We also introduce some numerical schemes for their approximate solutions.We
investigate local and global errors; convergence and consistency of the scheme. We
discuss strong discrete time approximations of solutions of non-autonomous SDDEs,
including Euler and Taylor schemes and implicit schemes. The proposed schemes
converge in a strong sense. The mean-square stability of the Milstein scheme is also
discussed; see Sects. 7.4 and 7.5.

7.1.1 Preliminaries

Definition 7.1 ([20]) Let (Ω,A,P) be a probability space with a filtration {At }t≥0.
A one-dimensional (standard) Brownian motion is a real-valued continuous {At }-
adapted process {Wt }t≥0 satisfying the following properties:

1. W (0) = 0 a.s. (with probability 1).
2. For 0 ≤ s < t ≤ T , the random variable given by the increment W (t) − W (s)

is normally distributed with mean zero and variance t − s; equivalently,W (t) −
W (s) ∼ √

t − sN (0, 1), where N (0, 1) denotes a normally distributed random
variable with zero mean and unit variance.

3. For 0 ≤ s < t < u < v ≤ T , the increments W (t) − W (s) and W (v) − W (u)

are independent.

Example 7.1 Let us consider the Hutchinson equation

dy(t)

dt
= r y(t)

(
1 − y(t − τ)

K

)
. (7.1)

Here, r > 0 is the intrinsic growth rate, K > 0 is the carrying capacity of the popu-
lation, and time-delay τ is considered as hatching time. We can add a small random
perturbation σdW , usually referred to as the noise term in Eq. (7.1), which then
becomes

dy(t) =
[
r y(t)

(
1 − y(t − τ)

K

)]
dt + σdW. (7.2)

In Eq. (7.2), the noise term does not include the dependent variable y, and hence,
the equation is referred to as an SDDE with additive noise. However, it may be
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more natural to consider our extension from the Hutchinson equation by looking
at the proportionate population change dy(t)

y(t) and adding our stochastic term to this
quantity. This gives us

dy(t)

y(t)
=

[(
1 − y(t − τ)

K

)]
dt. (7.3)

Therefore, Eq. (7.3) becomes

dy(t)

y(t)
=

[
r
(
1 − y(t − τ)

K

)]
dt + σdW. (7.4)

Multiplying by y(t) gives us the following SDDE with multiplicative noise:

dy =
[
r
(
1 − y(t − τ)

K

)
y(t)

]
dt + σ y(t)dW. (7.5)

This implies a more natural procedure, and we will only consider equations with
multiplicative noise in this thesis. Figure7.1 shows the effect of environmental fluc-
tuations on a Hutchinson equation, such that r = 0.15 and k = 1. The figures at the
top show simulation results for τ = 5.6, which indicates that the population attains
its steady state value of 1 regardless of the external noise. Hence, it fluctuates within
the interval [0.95,1.15] as σ 2 = 0.01 (top-left), and as the intensities of white noise
increases to σ 2 = 0.05, it fluctuates within [0.65,1.5] (top-right). When the magni-
tude of time-delay is increased to a threshold value τ = 11 (periodic oscillations) and
taking σ 2 = 0.01, the stochastic fluctuations disappears (bottom-left). As σ 2 = 0.05,
we observe abrupt oscillation in population (bottom-right).

Remark 7.1 An important fact about the impact of environmental noise is that, it
can suppress a potential population explosion [21]; see Fig. 7.2.

To illustrate this phenomenon, let us consider DDE with pure delay

dy

dt
= μ1y(t − τ). (7.6)

Equation (7.6) with multiplicative noise takes the form

dy = μ1y(t − τ)dt + σ y(t)dW. (7.7)

As μ1 > 0, the solution of (7.6) increases exponentially to infinity as t → ∞. How-
ever, Fig. 7.2 shows the effect of environmental fluctuations on (7.6), withμ1 = 0.06,
τ = 0.4, and σ 2 = 0.16.
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Fig. 7.1 Numerical simulations of deterministic Hutchinson DDE (7.1) and its corresponding
SDDE (7.5) when r = 0.15 and k = 1
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Fig. 7.2 How environmental Brownian noise suppresses explosions in population dynamics,
described by dy = μ1y(t − τ)dt + σ y(t)dW and its corresponding deterministic Eq. (7.6)
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7.2 Existence and Uniqueness of Solutions for SDDEs

Let us considerd-dimensional SDDEswith r -dimensional standardWiener processes
on the filtered probability space (Ω,A,At0 ,P). Therefore, we have equations of the
form

dy(t) = f(t, y(t), y(t − τ))︸ ︷︷ ︸
drift coefficient

dt +
r∑
j=1

g j (t, y(t), y(t − τ))

︸ ︷︷ ︸
diffusion coefficient

dW j (t), t ∈ [0, T ],

y(t) = ψ(t), t ∈ [−τ, 0].
(7.8)

With one fixed delay τ , where ψ(t) is an At0 -measurable C([−τ, 0],Rd)-valued
random variable. The drift coefficient f : [0, T ] × R

d × R
d → R

d and the diffusion
coefficient g j : [0, T ] × R

d × R
d → R

d , j = 1, 2, . . . , r are d-dimensional. Equa-
tion (7.8) can be formulated as

y(t) = y(0) +
∫ t

0
f(s, y(s), y(s − τ))ds +

r∑
j=1

∫ t

0
g(s, y(s), y(s − τ))dW j (s),

(7.9)
for t ∈ [0, T ] and with y(t) = ψ(t) for t ∈ [−τ, 0].
Definition 7.2 (Strong solution) A d-dimensional stochastic process y = {y(t) :
[−τ, T ]} is called a strong solution of (7.8), if it has the following properties:

• {y(t)} is measurable, sample continuous process and (At )0≤t≤T -adapted;
• Equations (7.8) and (7.9) hold for every t ∈ [0, T ] almost definitely.

Definition 7.3 (Path-wise unique solution) Let the set X denote some class of
stochastic processes that solve (7.8). If any twoprocesses y(i)={y(i)(t), t ∈ [−τ, T ]},
i = 1, 2 from X with the same initial functions have the same path on [0, T ], almost
definitely, i.e.,

P( sup
0≤t≤T

|y(1)(t) − y(2)(t)| > 0) = 0, (7.10)

then the solution of (7.8) is path-wise unique within X.
Herein, we formulate the Lipschitz condition (L1) and growth condition (L2) to

guarantee the existence of a unique solution of (7.8). Assuming that |.| denotes the
Euclidian norm, we have

(L1) Lipschitz condition: There exists a constant K ∈ (0,∞), such that

|f(t, x1, y1) − f(t, x2, y2)|+|g1(t, x1, y1) − g1(t, x2, y2) + · · · +
|gr (t, x1, y1) − gr (t, x2, y2)| ≤ K (|x2 − x1| + |y2 − y1|),

for t ∈ [0, T ] and x1, x2, y1, y2 ∈ R
d .
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(L2) Growth condition: There exists a constant G ∈ (0,∞), such that

|f(t, x, y)|2 + |g1(t, x, y)|2 + · · · + |gr (t, x, y)|2 ≤ G(1 + |x |2 + |y|2),

for t ∈ [0, T ] and x, y ∈ R
d .

Let C = C([−τ, 0],Rd) be the Banach space of all d-dimensional continuous func-
tions η on [−τ, 0] equipped with the sup-norm ‖η‖C = sups∈[−τ,0] |η(s)|. For every
function ξ |[−τ, T ] → R

d and every t ∈ [0, T ], so that

ξt = {at (s) := ξ(t + s), s ∈ [−τ, 0]},

a function defined on [−τ, 0], the segment of ξ at t. In the same manner, the
segment-valued function t → ξt for t ∈ [0, T ] is obtained. Additionally, we denote
L2(Ω,C,A0), the set of Rd -valued continuous processes η = {η(s), s ∈ [−τ, 0]}
with η(s) being A0-measurable for all s ∈ [−τ, 0] and

E‖η‖2C = E sup
s∈[−τ,0]

|η(s)|2 < ∞. (7.11)

Note that the initial function ψ can be considered as a square integrable C =
C([−τ, 0],Rd)-valued random variable on (Ω,A0,P). Hence, the above assump-
tions lead to the following theorem:

Theorem 7.1 ([11]) Assume that (L1) and (L2) hold, and ψ be in L2(Ω,C,A0).
Then the SDDE (7.8), with initial segment ψ , has a path-wise unique strong solution
y = {y(t), t ∈ [−τ, T ]} in L2(Ω,C,A0). Moreover

E sup
t∈[−τ,t]

|y(t)|2 < ∞, (7.12)

and for each t ∈ [0, T ], the segmentyt = {y(t + s), s ∈ [−τ, 0]} is aC([−τ, 0],Rd)-
valued process having continuous paths. Additionally, if we have E‖ψ‖2kC < ∞ for
some k ≥ 1, then

E‖yt‖2kC = E sup
s∈[−τ,0]

|y(t + s)|2k < ∞ (7.13)

and
E‖yt‖2kC ≤ Ck[1 + E‖ψ‖2kC ]. (7.14)

For the proof of the above theorem, refer to [5].
Consider W (t) to be a one-dimensional Wiener process, an autonomous scalar

stochastic delay differential equation of the form

dy(t) = f (y(t), y(t − τ))dt + g(y(t), y(t − τ))dW (t), t ∈ [0, T ],
y(t) = ψ(t), t ∈ [−τ, 0]. (7.15)
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Equation (7.15) can be formulated as

y(t) = y(0) +
∫ t

0
f (y(s), y(s − τ))ds +

∫ t

0
g(y(s), y(s − τ))dW (s), (7.16)

for t ∈ [0, T ] and with y(t) = ψ(t) for t ∈ [−τ, 0]. The second integral in (7.16) is
a stochastic integral in the Itô sense. If it is taken as a Stratonovich integral, we will
use notation of the form

∫ t
0 g(s, y(s)) ◦ dW (s). Let us consider f : R × R → R,

g : R × R → R, and ψ : [−τ, 0] → R. Now, we introduce the following theorem
for Eq. (7.15) [10, 22]:

Theorem 7.2 Problem (7.15) has a unique strong solution, provided that the uniform
Lipschitz condition and a linear growth bound are satisfied for both f and g.

Example 7.2 Consider the stochastic delay differential equation

dy(t) = μ1y(t − τ)dt + σdW (t), t ≥ 0,

y(t) = t + 1, t ∈ [−τ, 0]. (7.17)

Assume thatμ1 = −1 and τ = 1; we can easily verify the conditions of Theorem7.2.
Thus, we solve (7.17) using Itô’s formula in the interval [0,1], so that

y1(t) = y(0) −
∫ t

0
sds +

∫ t

0
σdW (s) = 1 − t2

2
+ σW (t).

In the interval [1, 2], we have

y2(t) = y(1) + σW (1) +
∫ t

1
(−1 + (s − 1)2

2
+ σW (s − 1))ds +

∫ t

1
σdW (s)

= (t − 1)3

6
− t + 3

2
+

∫ t

1
σW (s − 1)ds + σW (t).

Similarly, in the interval [2, 3], the solution is

y3(t) = −1

3
−

∫ t

2

( (t − 2)3

6
− t + 5

2

)
ds +

∫ 2

1
σW (s − 1)ds + σW (2)

+
∫ t

2

∫ s1−1

1
σW (s − 1)dsds1 +

∫ t

2
σW (s − 1)ds +

∫ t

2
σdW (s)

= 8

3
− (t − 2)4

24
+ t2

2
− 5

2
t +

∫ 2

1
σW (s − 1)ds +

∫ t

2

∫ s1−1

1
σW (s − 1)dsds1

+
∫ t

2
σW (s − 1)ds + σW (t).
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Note that
∫ t
0 σdW (s) is a martingale. Hence, E

( ∫ t
0 σdW (s)

)
= 0. To find the mean

function of y(t), we can take the expectation of the solutions on their intervals as
follows:

E(y(t)) =

⎧⎪⎨
⎪⎩
1 − t2

2 , t ∈ [0, 1];
(t−1)3

6 − t + 3
2 , t ∈ [1, 2];

8
3 − (t−2)4

24 + t2

2 − 5
2 t, t ∈ [2, 3].

Numerical methods for SDDEs are currently being actively studied and developed.
Hence, they should be used carefully for deterministicDDEs and StochasticOrdinary
Differential Equations (SODEs).

7.3 Stability Criteria for SDDEs

There are at least three different types of stability for SDDEs [6]. Consider the
following scalar SDDE with W (t) being a one-dimensional Wiener process:

dy(t) = f (t, y(t), y(t − τ))dt + g(t, y(t), y(t − τ))dW (t), t ∈ [0, T ],
y(t) = ψ(t), t ∈ [−τ, 0]. (7.18)

Hence, Eq. (7.18) can be formulated as

y(t) = y(0) +
∫ t

0
f (s, y(s), y(s − τ))ds +

∫ t

0
g(s, y(s), y(s − τ))dW (s).

(7.19)
We are supposed to be concerned with the main ideas of the pth mean stability of the
trivial solution of Eq. (7.19) with respect to perturbations in ψ(.) (for 1 ≤ p < ∞),
and also with mean-square stability when p = 2.

Definition 7.4 ([23]) For some p > 0, the trivial solution of the SDDE (7.19) is
called

• Locally stable in the pth mean, if for each ε > 0, there exists a δ ≥ 0 such that
E(|y(t; t0, ψ)|p) < ε whenever t ≥ t0 and E(supt∈[t0−τ,t0] |ψ(t)|p) < δ;

• Locally asymptotically stable in the pth mean if it is stable in the pth mean
and if there exists a δ ≥ 0 such that whenever E(supt∈[t0−τ,t0]|ψ(t)|p ) < δ, then
E(|y(t; t0, ψ)|p) → 0 for t → ∞;

• Locally exponentially stable in the pth mean if it is stable in the pth mean and
if there exists a δ ≥ 0 such that whenever E(supt∈[t0−τ,t0]|ψ(t)|p ) < δ, there exists
some finite constant C and a u∗ > 0 such that
E(|y(t; t0, ψ)|p) ≤ CE(sups∈[t0−τ,t0] |ψ(s)|p)exp(−u∗(t − t0)) (t0 ≤ t < ∞).
If δ is arbitrarily large, then the stability in the above, in each case, is global rather
than local.
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A different approach to stability for SDDEs, that of stochastic stability or stability
in probability, is as follows:

• The trivial solution of theSDDE(7.19) is termed stochastically stable in probability
if for each e ∈ (0, 1) and ε > 0, there exists a δ ≡ δ(e, ε) ≥ 0, such that

P(|y(t; t0, ψ)| ≤ ε for all t ≥ t0) ≥ 1 − e,

whenever t ≥ t0 and supt∈[t0−τ,t0] |ψ(t)|p < δ with probability 1.

Certain stability conditions for SDDEs can be stated in terms of Lyapunov func-
tionals, similar to the theorems for DDEs. Now, we present the Lyapunov theory
approach for SDDEs. Let us consider a more general type for (7.8) with one delay.
Thus, an Itô type SDDE is given by

dy(t) = f(t, yt )dt + g(t, yt )dW (t), t ≥ t0,

yt (θ) = y(t + θ), −τ ≤ θ ≤ 0,

f(t, 0) ≡ 0, yt0 = ψ.

(7.20)

Define yt ∈ Cn by yt (θ) = y(t + θ) for θ ∈ [−τ, 0], where ψ ∈ Cn , such that when
we consider the existence and uniqueness of solutions, without loss of generality, the
solution yt = 0 is an equilibrium.

Theorem 7.3 ([24]) Suppose there is a continuous functional V : [t0,∞] × C
[−τ, 0] → R such that for any solution of (7.20), where yt (θ) = y(t + θ) such that
−τ ≤ θ ≤ 0, the following inequalities hold, such that Ci i = 1, 2, 3 are positive
constants:

V (t, yt ) ≥C1|y(t)|2
EV (t, yt ) ≤ C2 sup

−τ≤θ≤0
E|y(t + θ)|2, (7.21)

for arbitrary t ≥ t0, s ≥ t

E[V (s, ys) − V (t, yt )] ≤ −C3

∫ s

t
E|y(h)|2dh. (7.22)

Then, the trivial solution of (7.20) is asymptotically mean-square stable.

Example 7.3 Consider an SDDE of the form

dy(t) = −μ1y(t − τ)dt + μ2y(t)dW (t), t > t0, (7.23)

where μ1, μ2 are positive constants. Sufficient conditions for asymptotic mean-
square stability of (7.23) are

0 < μ1τ < 1, μ1(1 − μ1τ) >
μ2
2

2
.
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To prove this, consider the functional

V (ψ) =
[
ψ(0) − μ1

∫ 0

−τ

ψ(θ)dθ
]2 + μ2

1

∫ 0

−τ

ds
∫ 0

s
ψ2(θ)dθ. (7.24)

Using Itô formula, we obtain

dV (yt ) = 2
[
y(t) − μ1

∫ t

t−τ

y(θ)dθ
]
(dy(t) − μ1y(t)dt + μ1y(t − τ)dt)

+
[
μ2
2y

2(t) + μ2
1τ y

2(t) − μ2
1

∫ t

t−τ

y2(θ)dθ
]
dt,

= 2
[
y(t) − μ1

∫ t

t−τ

y(θ)dθ
]
(μ2y(t)dW (t) − μ1y(t)dt)

+
[
μ2
2y

2(t) + μ2
1τ y

2(t) − μ2
1

∫ t

t−τ

y2(θ)dθ
]
dt.

Note that

2μ2
1y(t)

∫ t

t−τ

y(θ)dθ ≤ μ2
1

[
τ y2(t) +

∫ t

t−τ

y2(θ)dθ
]
.

Hence

dV (yt ) ≤ 2μ2

[
y(t) − μ1

∫ t

t−τ

y(θ)dθ
]
y(t)dW (t) − [2μ1(1 − μ2τ) − μ2

2]y2(t).
(7.25)

Integration of both parts of (7.25) from s ∈ [t0, t] to t , and then taking the expectation
yields

E[V (yt ) − V (ys)] ≤ −[2μ1(1 − μ1τ) − μ2
2]

∫ t

s
Ey2(h)dh. (7.26)

From inequality (7.26), we have

EV (yt ) ≤ EV (yt0), t ≥ t0. (7.27)

Therefore,

E

[
y(t) − μ1

∫ t

t−τ

y(θ)dθ
]2 ≤ EV (yt0),

∫ ∞

t0

Ey2(s)ds < ∞. (7.28)

Inequalities (7.28) and condition μ1τ < 1 imply mean-square stability, since

sup
t≥t0

Ey2(t) ≤ C1 sup
−τ≤θ≤0

Eψ2(θ). (7.29)



7.3 Stability Criteria for SDDEs 133

Therefore, asymptotic mean-square stability is implied based on inequalities (7.28)
and the fact that limt→∞ Ey2(t) = 0.

Next, we introduce a numerical scheme for an autonomous SDDE.

7.4 Numerical Scheme for Autonomous SDDEs

Given a scalar autonomous SDDE of the form

dy(t) = f (y(t), y(t − τ))dt + g(y(t), y(t − τ))dW (t), t ∈ [0, T ],
y(t) = ψ(t), t ∈ [−τ, 0]. (7.30)

which can be formulated as

y(t) = y(0) +
∫ t

0
f (y(s), y(s − τ))ds +

∫ t

0
g(y(s), y(s − τ))dW (s), (7.31)

for t ∈ [0, T ] and with y(t) = ψ(t) for t ∈ [−τ, 0]. The second integral in (7.31) is
a stochastic integral in the Itô sense.

We define mesh points with a uniform step on the interval [0, T ], so that h =
T/N , tn = nh, where n = 0, . . . , N . We also assume that, for the given h, there
is a corresponding integer m, where the time-delay can be expressed in terms of
the stepsize as τ = mh. For all indices n − m ≤ 0, we have ỹn−m := ψ(tn − τ);
otherwise, the numerical approximation of (7.30) takes the form

ỹn+1 = ỹn + φ(h, ỹn, ỹn−m, Iφ), n = 0, . . . , N − 1. (7.32)

The increment function φ(h, ỹn, ỹn−m, Iφ) : R × R → R includes a finite number
of multiple Itô-integrals (see [25, 26]) of the form

I( j1,..., jl ),h =
∫ t+h

t

∫ sl

t
. . .

∫ s2

t
dW j1(s1) . . . dW jl−1(sl−1)dW

jl (sl),

where ji ∈ {0, 1} and dW 0(t) = dt , and with t = tn for (7.32), we denote Iφ the
collection of Itô-integrals required to compute the increment function φ.

To guarantee the existence of the numerical solution, some assumptions should be
given to the increment function φ of (7.32: Suppose that there exist positive constants
V1, V2, andV3, such that for all κ, κ

′
, ω, ω

′ ∈ R, we have

∣∣∣E(
φ(h, κ, ω, Iφ) − φ(h, κ

′
, ω

′
, Iφ)

)∣∣∣ ≤ V1h(|κ − κ
′ | + |ω − ω

′ |),
E

(
|φ(h, κ, ω, Iφ) − φ(h, κ

′
, ω

′
, Iφ)|2

)
≤ V2h

(
|κ − κ

′ |2 + |ω − ω
′ |2

)
,

(7.33)
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and
E

(
|φ(h, κ, ω, Iφ)|2

)
≤ V3h

(
1 + |κ|2 + |ω|2

)
. (7.34)

Lemma 7.1 ([10]) If the increment functionφ in Eq. (7.32) satisfies condition (7.34),
then E|ỹn|2 < ∞ for all n ≤ N.

Let y(tn+1) be the exact solution of (7.30) at mesh point tn+1. ỹn+1 is the value of the
approximate solution given by (7.32), and ỹ(tn+1) is the solution of (7.32) after just
one step, so that

ỹ(tn+1) = y(tn) + φ(h, y(tn), y(tn − τ), Iφ).

Definition 7.5 (Local and global errors) The local error that occurs in one step of
the above approximation {ỹn} is the sequence of random variables

δn+1 = y(tn+1) − ỹ(tn+1), n = 0, . . . , N − 1. (7.35)

However, the global error is the amount of error that occurs in the use of a numerical
approximation to solve a problem, which is the sequence of random variables

εn := y(tn) − ỹn, n = 1, . . . , N . (7.36)

Note that εn is Atn -measurable since both y(tn) and ỹn are Atn -measurable random

variable, such that
(
E|εn|2

)1/2
is the L2-norm of (7.36).

7.4.1 Convergence and Consistency

Definition 7.6 Assume that

δn+1 = y(tn+1) − ỹ(tn+1), n = 0, . . . , N − 1. (7.37)

The numerical scheme (7.32) is said to be consistent with order p1 in the mean and
with order p2 in the mean square if, with

p2 ≥ 1

2
and p1 ≥ p2 + 1

2
, (7.38)

the estimates
max

0≤n≤N−1
|E(δn+1)| ≤ Chp1 as h → 0, (7.39)

and
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max
0≤n≤N−1

(
|E(δn+1)|2

)1/2 ≤ Chp2 as h → 0, (7.40)

hold, where constant C does not depend on h, but may depend on T , and on the
initial data.

Therefore, we can now introduce the basic theorem about the convergence of method
(7.32).

Theorem 7.4 ([10]) Assume that the conditions of Theorem 7.1 are satisfied. Sup-
pose that the method defined by Eq. (7.32) is consistent with order p1 in the mean
and order p2 in the mean-square sense, such that p1, p2 fulfilling (7.38), and the
increment function φ on Eq. (7.32) satisfies the estimates (7.33). Then, the approxi-
mation (7.32) for Eq. (7.30) is convergent inL2 (as h → 0 with τ/h ∈ N) with order
p = p2 − 1/2. That is, convergent is in the mean-square sense, such that

max
0≤n≤N−1

(
|E(δn+1)|2

)1/2 ≤ Chp as h → 0, (7.41)

Theorem 7.5 ([10]) If the increment function φ of the approximation (7.32) satisfies
the estimates (7.33), then the one-step method (7.32) is zero stable in the quadratic
mean-square sense.

Next, we extend our analysis to non-autonomous system of SDDEs (7.8).

7.5 Numerical Schemes for Non-autonomous SDDE

There are some specific discrete time approximations for (7.8). The simplest scheme,
which is defined by stochastic difference equation, is represented by Euler approxi-
mation as

ỹn+1 = ỹn + f(tn, ỹn, ỹn−m)h +
r∑
j=1

g j (tn, ỹn, ỹn−m)�W j
n , (7.42)

where ỹ = {ỹ(t), t ∈ [−τ, T ]} is right continuous with left-hand limits, a discrete
time approximation with stepsize h, such that for each n ∈ {1, . . . , N }. The random
variable ỹ(tn) isAtn -measurable and ỹ(tn+1) can be expressed as a function of ỹ(t−m),
ỹ(t−m+1),…, ỹ(tn), discretization time tn , and a finite number of Atn+1 -measurable
random variable. With �W j

n = W j (tn+1) − W j (tn), for n = 0, 1, . . . , N − 1 and
j = 0, 1, . . . , r. By more general assumptions, we can check that Euler approxima-
tion strongly converges with order 1/2 [11].
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7.5.1 Taylor Approximation

For stochastic differential equations, it is common that by application of theWagner-
Platen stochastic Taylor expansion [27], we can construct discrete time approxi-
mations that converge with a given order of strong convergence, which involve in
each time step certain multiple integrals. For the general multi-dimensional case
d, r = 1, 2, . . . the order-one strong Taylor approximation has the form

ỹn+1 = ỹn + f(tn, ỹn, ỹn−m)h +
r∑
j=1

g j (tn, ỹn, ỹn−m)�W j
n

+
r∑

j1, j2=1

d∑
i=1

gi, j1 (tn, ỹn, ỹn−m)
∂

∂ ỹin
gi, j2 (tn, ỹn, ỹn−m)

∫ tn+1

tn

∫ s1

tn
dW j1 (s2)dW

j2 (s1)

+
r∑

j1, j2=1

d∑
i1=1

gi, j1 (tn−m , ỹn−m , ỹn−2m)
∂

∂ ỹin−m

gi, j2 (tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn
dW j1 (s2 − τ)dW j2 (s1),

(7.43)
for n = 0, 1, . . . , N − 1, i = 1, 2, . . . , d. One can check that approximation (7.43)
converges under suitable assumptions with strong-order-one Taylor approximation
[11]. In the one-dimensional case, when τ = 0, scheme (7.43) coincides with the
well-knownMilstein Scheme for SDEs. However, the time-delay in (7.43) generates
an extra term, which describes a double Wiener integral that integrates an earlier
segment of the Wiener path with respect to the actual Wiener path.

7.5.2 Implicit Strong Approximations

In practice, explicit schemes not only have smaller computational costs, but also have
lower accuracy compared to implicit methods. It is sometimes recommended to use
implicit schemes to have numerically stable approximate solutions for SDDEs, as in
the case of stiff problem1

For the general multi-dimensional case (7.8), the family of implicit Euler approx-
imations are

ỹn+1 = ỹn + [θ f(tn+1, ỹn+1, ỹn−m+1) + (1 − θ)f(tn, ỹn, ỹn−m)]h +
r∑
j=1

g j (tn, ỹn, ỹn−m)�W j
n ,

(7.44)
for n = 0, 1, . . . , N − 1, such that θ ∈ [0, 1] stands for the degree of implicitness.
If θ = 0, we have the explicit Euler approximation (7.42). For θ = 1, we obtain the

1 A stiff problem is defined as that in which the global accuracy of the numerical solution is
determined by stability rather than local error, and implicit methods are more appropriate for it.
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fully implicit Euler approximation. The approximation (7.44) converges with strong
order 1\2 [13].

In the same manner, we can establish an order-one strong implicit Taylor approx-
imation with

ỹn+1 = ỹn + [θ f(tn+1, ỹn+1, ỹn−m+1) + (1 − θ)f(tn, ỹn, ỹn−m)]h +
r∑
j=1

g j (tn, ỹn, ỹn−m)�W j
n

+
r∑

j1, j2=1

d∑
i=1

gi, j1 (tn, ỹn, ỹn−m)
∂

∂ ỹin
gi, j2 (tn, ỹn, ỹn−m)

∫ tn+1

tn

∫ s1

tn
dW j1 (s2)dW

j2 (s1)

+
r∑

j1, j2=1

d∑
i=1

gi, j1 (tn−m , ỹn−m , ỹn−2m)
∂

∂ ỹin−m

gi, j2 (tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn
dW j1 (s2 − τ)dW j2 (s1),

(7.45)
Next, we will discuss in detail the mean-square stability of Milstein method since
we have used this scheme in the numerical simulations for SDDEs models.

7.6 Milstein Scheme for SDDEs

In this section, we introduce the Milstein scheme for SDDEs and show that the
numerical method is mean-square stable under suitable conditions.

Given the one-dimensional version of (7.8), r = d = 1, of the following form:

dy(t) = f (t, y(t), y(t − τ))dt + g(t, y(t), y(t − τ))dW, t ∈ [0, T ],
y(t) = ψ(t), t ∈ [−τ, 0]. (7.46)

The order one strong Taylor approximation for (7.46) the one-dimensional case is
defined by

ỹn+1 = ỹn + f (tn, ỹn, ỹn−m)

∫ tn+1

tn

ds1 + g(tn, ỹn, ỹn−m)

∫ tn+1

tn

dW (s1)

+ g(tn, ỹn, ỹn−m)
∂

∂ ỹn
g(tn, ỹn, ỹn−m)

∫ tn+1

tn

∫ s1

tn

dW (s2)dW (s1)

+ g(tn−m, ỹn−m, ỹn−2m)
∂

∂ ỹn−m
g(tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn

dW (s2 − τ)dW (s1).

(7.47)
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Once we have the Taylor approximation, we can construct the Milstein scheme for
(7.46)

ỹn+1 = ỹn + h f (tn, ỹn, ỹn−m) + g(tn, ỹn, ỹn−m)�Wn + 1

2
g(tn, ỹn, ỹn−m)g′(tn, ỹn, ỹn−m)[(�Wn)

2 − h]

+ g(tn−m , ỹn−m , ỹn−2m)
∂

∂ ỹn−m
g(tn, ỹn, ỹn−m)I,

(7.48)
where I = ∫ tn+1

tn

∫ s1
tn
dW (s2 − τ)dW (s1).

7.6.1 Convergence and Mean-Square Stability of the Milstein
Scheme

Consider the linear scalar SDDE of the form

dy(t) = [ρ0y(t) + ρ1y(t − τ)]dt + [ρ2y(t) + ρ3y(t − τ)]dW (t), t ∈ [0, T ],
y(t) = ψ(t), t ∈ [−τ, 0],

(7.49)
where ρ0, ρ1, ρ2, ρ3 ∈ R, W (t) is a one-dimensional standard Wiener process,
and ψ(t) is continuous and bounded function with E[‖ψ‖2] < ∞, where ‖ψ‖ =
sup−τ≤t≤0 |ψ(t)|.
Theorem 7.6 ([11]) Suppose that

ρ0 < −|ρ1| − (|ρ2| + |ρ3|)2
2

, (7.50)

then the solution of (7.49) satisfies limt→∞ E[|y(t)|2] = 0, i.e., the solution is mean-
square stable.

Using order one strong Taylor approximation formula to the linear one delay system
(7.49), we have

yn+1 =yn + h(ρ0yn + ρ1yn−m) + (ρ2yn + ρ3yn−m)�Wn

+ ρ3(ρ2yn−m + ρ3yn−2m)I1 + ρ2(ρ2yn + ρ3yn−m)I2,
(7.51)

where yn is an approximation to y(tn), such that I1 = ∫ tn+1

tn

∫ s
tn
dW (t − τ)dW (s),

I2 = ∫ tn+1

tn

∫ s
tn
dW (t)dW (s). The convergence order of (7.51) can be obtained by

Theorem 10.2 in [11], since the coefficients of (7.51) satisfy the Lipschitz condition
and growth condition. Thus, the Milstein scheme (7.51) is strongly convergent of
order 1.

Theorem 7.7 The Milstein scheme (7.51) is mean-square stable, if condition (7.50)
is satisfied [28].
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Proof By reorganizing the terms of (7.51), we get

yn+1 =(1 + ρ0h + ρ2�Wn)yn + (ρ1h + ρ3�Wn)yn−m + ρ3(ρ2yn−m + ρ3yn−2m)I1
+ ρ2(ρ2yn + ρ3yn−m)I2.

(7.52)
Squaring both sides of (7.52), it follows from 2ab ≤ a2 + b2 (∀a, b ∈ R), we have

y2n+1 ≤(1 + ρ1h + ρ2�Wn)
2y2n + (ρ1h + ρ3�Wn)

2y2n−m + ρ2
2 [(ρ2

2 + |ρ2ρ3|)y2n + (ρ2
3 + |ρ2ρ3|)y2n−m ]I 22

+ ρ2
3 [(ρ2

2 + |ρ2ρ3|)y2n−m + (ρ2
3 + |ρ2ρ3|)y2n−2m ]I 21 + |1 + ρ0h||ρ1|h(y2n + y2n−m)

+ |ρ2ρ3|�W 2
n (y2n + y2n−m) + 2[(1 + ρ0h)ρ3 + ρ1ρ2h]�Wn yn yn−m

+ 2ρ2ρ3(ρ2yn + ρ3yn−m)(ρ2yn−m + ρ3yn−2m)I1 I2

+ 2ρ2(1 + ρ0h + ρ2�n)(ρ2yn + ρ3yn−m)yn I2

+ 2ρ3(1 + ρ0h + ρ2�n)(ρ2yn−m + ρ3yn−2m)yn I1

+ 2ρ2(ρ1h + ρ3�Wn)(ρ2yn + ρ3yn−m)yn−m I2

+ 2ρ3(ρ1h + ρ3�Wn)(ρ2yn−m + ρ3yn−2m)yn−m I1
(7.53)

Assume that xn = E[y2n ], then take expectation for both sides of (7.53), which yields
the following:

xn+1 ≤ A1xn + A2xn−m + A3xn−2m, (7.54)

where

A1 = (1 + ρ0h)2 + ρ2
2h + |1 + ρ0h||ρ1|h + |ρ2ρ3|h + h2

2
ρ2
2 (ρ

2
2 + |ρ2ρ3|),

A2 = ρ2
1h

2 + ρ2
3h + |1 + ρ0h||ρ1|h + |ρ2ρ3|h + h2

2
ρ2
2 (ρ

2
3 + |ρ2ρ3|)

+ h2

2
ρ2
3 (ρ

2
2 + |ρ2ρ3|), A3 = h2

2
ρ2
3 (ρ

2
2 + |ρ2ρ3|).

(7.55)
Therefore

(1 + ρ0h)2 + ρ2
1h

2 + (ρ2
2 + ρ2

3 + 2|ρ2ρ3|)h + 2|1 + ρ0h||ρ1|h
+ h2

2
(ρ2

2 + ρ2
3 )(|ρ2| + |ρ3|)2 < 1.

(7.56)

Consider

h1 = −[2ρ0 + 2|ρ1| + (|ρ2| + |ρ3|)2]
(|ρ0| + |ρ1|)2 + 1

2 (ρ
2
2 + ρ2

3 )(|ρ2| + |ρ3|)2
> 0,

h2 =min{ 1

|ρ0| ,
−[2ρ0 + 2|ρ1| + (|ρ2| + |ρ3|)2]

(|ρ0| + |ρ1|)2 + 1
2 (ρ

2
2 + ρ2

3 )(|ρ2| + |ρ3|)2
} > 0,

(7.57)

• If h ∈ (0, h1), inequality (7.56) holds;
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• If h ∈ (0, h2), then 1 + ρ0h > 0 (wider range of stable stepsize values) and
inequality (7.56) holds;

• Let h0 = max{h1, h2}; thus, the Milstein scheme is MS-stable whenever h ∈
(0, h0).

�

7.7 Concluding Remarks

In this chapter, we have briefly introduced some features of SDDEs. We have also
discussed some numerical schemes for SDDEs. Convergence and consistency of such
schemes have been investigated as well. The mean-square stability of the Milstein
scheme has been discussed and the obtained result shows that the method preserves
the stability property of a class of linear scalar SDDEs. In thismonograph,we adopted
the above discussed Milstein scheme for solving different examples and models of
SDDEs; See Appendix C.
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