
Chapter 6
Sensitivity Analysis of Delay Differential
Equations

6.1 Introduction

Delay differential equations can be used to model many problems in biosciences and
are parameterized by meaningful constant parameters p or/and variable parameters
(e.g., control functions) u(t). It is often desirable to have information about the effect
on the solution of the dynamic system of perturbing the initial data, control functions,
time-lags, and other parameters appearing in the model. The main purpose of this
chapter is to derive a general theory for the sensitivity analysis of mathematical
models that contain time-lags. In this chapter, we use adjoint equations and direct
methods to estimate the sensitivity functions when the parameters that appear in the
model are not only constants but also variables of time. To illustrate the results, the
methodology is applied numerically to an example of a delay differential model.

Many studies in the sensitivity analysis of models without delay have been done
(see, e.g., [1–4]); however, there are few results on sensitivity analysis for time-
lag systems. A knowledge of how the state variable can vary with respect to small
variations in the initial data, parameters (or constant lags) appearing in themodel, and
the control functions can yield insights into the behavior of themodel and can actually
assist the modeling process. Sensitivity analysis may provide some guidelines for
the reduction of complex models by indicating those variables and parameters that
determine the essential behavior of the system and, hence, must be retained in any
simpler model. For example, if it can be seen that a particular parameter has no effect
on the solution, it may be possible to eliminate it, at some stages, from the modeling
process.

In this chapter, we evaluate sensitivity functionals of DDEs with constant and
variable parameters. We estimate general sensitivity coefficients for the constant
parameters appearing in the model, and functional derivative sensitivity coefficients
for variable coefficients such as initial and control functions. We utilize variational
method in Sect. 6.3 and direct method in Sect. 6.4. In the variational approach, the
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sensitivity coefficients are calculated based on the introduction of adjoint variables to
solve state and adjoint equations. The directmethods are based on consideration of all
parameters as constants and then the sensitivity coefficients are estimated by solving
a variational system simultaneously with the original system.We also investigate the
sensitivity of the best estimates to small noise in the data/observations in Sect. 6.5.

6.2 Sensitivity Functions

Let us consider a class of systems modeled by DDEs of the form [5]

y′(t) = f(t, y(t), y(t − τ),u(t),u(t − σ),p), 0 ≤ t ≤ T, (6.1a)

y(t) = �(t,p), t ∈ [−τ, 0), y(0) = y0 ∈ R
n (6.1b)

u(t) = �(t), t ∈ [−σ, 0), u(0) = u0 ∈ R
m, (6.1c)

where the vector function f in the right-hand side is sufficiently smooth with respect
to each of arguments; and y(t) ∈ R

n , y(t − τ) ∈ R
n′
, u(t) ∈ R

m , u(t − σ) ∈ R
m ′
,

p ∈ R
r , and τ ∈ R

r ′
and σ ∈ R

r ′′
are positive constant lags (r ′, r

′′ ≤ r , n′ ≤ n,
m ′ ≤ m). �(t) and �(t) are given continuous functions. We note that u(t) in (6.1a)
can be viewed as a control variable, defined on [−σ, T ], which gives a minimum to
the objective functional

J (u) = F0(y(T )) +
∫ T

0
F1(t, y(t), y(t − τ),u(t),u(t − σ),p)dt, (6.2)

where F0 and F1 are continuous functionals.
We also note that the systemmodel involves both lags in the state variable y(t) and

the control variable u(t). In this chapter, we estimate the sensitivity functions for the
system (6.1a)–(6.1c) rather than the computational aspects of optimal control prob-
lems. (For the computational treatment of time-delayed optimal control problems,
refer to the monograph by Kolmanovskii et al. [6].)

To examine the effect of parameter uncertainty on a model, it is necessary to test
the sensitivity of the predicted model responses to numerical values of the parame-
ters. In this manner, possible deficiencies in the model can be revealed if, e.g., small
changes in a parameter from its nominal value result in large, improbable changes
in patterns of model prediction. Equally, sensitivity analysis can indicate the most
informative data points for a specific parameter. We start our analysis with the defi-
nitions of sensitivity functions of a dynamic system, including constant and variable
parameters, as follows:

Definition 6.1 For the given DDEs (6.1a)–(6.1c):

1. The sensitivity functions, when the parameters are constants, are defined by the
partial derivatives
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Si j (t) = ∂yi (t)

∂α j
, (6.3)

where α j represent the parameters p j , the constant lags τ j , or the initial values
y j (0). Then, the total variation in yi (t) due to small variations in the parameters
α j is such that

δyi (t) =
∑
j

∂yi (t)

∂α j
δα j + O(|α|2). (6.4)

Thus, Eq. (6.3) estimates the sensitivity of the state variable to small variations
in parameters α j .

2. The functional derivative sensitivity coefficients, when the parameters are func-
tions of time, are defined by

βi j (t, t
∗) = ∂yi (t∗)

∂u j (t)
, t < t∗. (6.5)

Then, the total variation in yi (t∗) due to any perturbation in the parameters u j (t)
is denoted by δyi (t∗), such that

δyi (t
∗) =

∫ t∗

0

∂yi (t∗)
∂u j (t)

δu j (t)dt, t < t∗. (6.6)

Thus, the functional derivative sensitivity density function
∂yi (t∗)
∂u j (t)

measures the

sensitivity of yi (t) at location t∗ to variation in u j (t) at any location t < t∗. It is
then noted that the sensitivity density functions inherently contain and provide
more information than the sensitivity coefficients.

6.2.1 Adjoint Equations

Adjoint equations have been used by Marchuk [7, 8] to study sensitivity analysis
of non-linear functionals J (y) depending on the solution of the delay differential
models:

y′(t) = f(t, y(t), y(t − τ),p), t ≥ t0; y(t) = ψ(t,p), t ∈ [t0 − τ, t0]. (6.7)

He considered the quadratic functional and its first-order variation caused by pertur-
bations of the basic parameter set p (where y ≡ y(t,p))
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J (y) =
T∫

0

〈y, y〉dt, δ J (y) = 2

T∫

0

〈y, δy〉dt = 2
∑
i

T∫

0

〈y, si (t,p)δpi 〉dt,

where si (t,p) is a solution of the sensitivity equation

A(y(t,p),p)si (t,p) = ∂f
∂pi

, t ≥ 0, si (t,p) = ∂ψ

∂pi
, t ∈ [−τ, 0]. (6.8)

The operator A ≡ d

dt
− ∂f(t)

∂y
− ∂f(t + τ)

∂yτ

Dτ , where f(t) denotes the value of f

at time t , yτ = y(t − τ), and Dτ is a backward shift operator. The linear operator
A in (6.8) acts on some Hilbert space H with domain D(A). Given A, the adjoint
operator A∗ can be introduced satisfying the Lagrange identity 〈A(y,p)s,w〉 =
〈s,A∗(y,p)w〉, where 〈·, ·〉 is an inner product in H, s ∈ D(A), w ∈ D(A∗). Using
the solution w(t) of the adjoint problem

A∗(y,p)w(t) ≡ −dw(t)

dt
− ∂fT (t)

∂y
w(t) − ∂fT (t + τ)

∂yτ

w(t + τ) = y(t,p),

0 ≤ t ≤ T, w(t) = 0, t ∈ [T, T + τ ] (6.9)

enables one to estimate the first-order variation of J (y), due to perturbations of the
parameters pi , via the following formula:

δ J (y) =
r∑

i=1

2

T∫

0

〈
w,

∂f
∂pi

δpi

〉
dt =

r∑
i=1

∂ J

∂pi
δpi , (6.10)

where
∂ J

∂pi
≡ 2

T∫

0

〈
w,

∂f
∂pi

〉
dt is the gradient of the functional with respect to the

parameters.
To estimate the sensitivity of the functional J (y) to variations in all parameters

appearing in the model (6.7), we need to solve this system model together with the
adjoint problem (6.9). In the next section, we extend the use of adjoint equations to
investigate the sensitivity analysis for a more general system (6.1a)–(6.1c), including
constant and variable parameters.

6.3 Variational Approach

In this section, we use adjoint equations to formulate systematically formulae for
the sensitivities of the state variable to small variations in the initial data, delays,
parameters, and the control function appearing in the model. Then, the main object
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here is to derive equations for the sensitivity coefficients
∂yi (t)

∂α j
and the sensitivity

density functions
∂yi (t∗)
∂u j (t)

.

Theorem 6.1 If W(t) is an n-dimensional adjoint function that satisfies the differ-
ential equation

W′(t) ≡ dW(t)

dt
= −∂fT (t)

∂y
W(t) − ∂fT (t + τ)

∂yτ

W(t + τ), t ≤ t∗,

W(t) = 0, t > t∗; W(t∗) = [0, . . . , 0, 1i th, 0 . . . , 0]T ,

(6.11)

then

1. The sensitivity coefficients for the DDEs (6.1a)–(6.1c) can be expressed by the
formulae

∂yi (t∗)
∂y0

= W(0), (6.12a)

∂yi (t∗)
∂p

=
∫ t∗

0
WT (t)

∂f
∂p

dt, t ≤ t∗, (6.12b)

∂yi (t∗)
∂τ

= −
∫ t∗−τ

−τ

WT (t + τ)
∂f(t + τ)

∂yτ

y′(t)dt, (6.12c)

∂yi (t∗)
∂σ

= −
∫ t∗−σ

−σ

WT (t + σ)
∂f(t + σ)

∂uσ

u′(t)dt. (6.12d)

2. The functional derivative sensitivity coefficients can also be expressed by

∂yi (t∗)
∂�(t)

= ∂fT (t + τ)

∂y
W(t + τ), t ∈ [−τ, 0) (6.13a)

∂yi (t∗)
∂�(t)

= ∂fT (t + σ)

∂uσ

W(t + σ), t ∈ [−σ, 0) (6.13b)

∂yi (t∗)
∂u(t)

= ∂fT

∂u
W(t) + ∂fT (t + σ)

∂uσ

W(t + σ), t ∈ (0, t∗]. (6.13c)

Proof For simplicity in Eq. (6.1a), we write

f(t, y, yτ ,u,uσ ,p) = f(t, y(t), y(t − τ),u(t),u(t − σ),p).

Small variations in the initial data, control, and system parameters cause a perturba-
tion in the system state in (6.1a)–(6.1c). Then, small variations δ�, δ�, δy0, δu, δp,
δτ , and δσ result in a variation δy that satisfies (for first order) the equation
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δy′(t) = ∂f
∂y

δy(t) + ∂f
∂yτ

δy(t − τ) + ∂f
∂u

δu(t) + ∂f
∂uσ

δu(t − σ) + ∂f
∂p

δp +
∂f
∂y

∂y(t − τ)

∂τ
δτ + ∂f

∂u
∂u(t − σ)

∂σ
δσ, (6.14a)

δy(t) = δ�(t), t ∈ [−τ, 0); δy(0) = δy0 ∈ R
n, (6.14b)

δu(t) = δ�(t), t ∈ [−σ, 0). (6.14c)

If we multiply both sides of (6.14a) by WT (t) (the transpose of the function W(t))
and integrate both sides with respect to t over the interval [0, t∗], we obtain

WT (t∗)δy(t∗) − WT (0)δy(0) −
∫ t∗

0
W′T (t)δy(t)dt =

∫ t∗

0
WT (t)

[
∂f
∂y

δy(t) + ∂f
∂yτ

δy(t − τ)

]
dt +

∫ t∗

0
WT (t)

[
∂f
∂u

δu(t) + ∂f
∂uσ

δu(t − σ)

]
dt +

∫ t∗

0
WT (t)

[
∂f
∂p

δp + ∂f
∂yτ

∂y(t − τ)

∂τ
δτ + ∂f

∂uσ

∂u(t − σ)

∂σ
δσ

]
dt.(6.15)

Equation (6.15), after some manipulations, can be rewritten in the form

WT (t∗)δy(t∗) − WT (0)δy(0) =
∫ 0

−τ
WT (t + τ)

∂f(t + τ)

∂yτ
δ�(t)dt

+
∫ t∗−τ

0

[
W′(t) + ∂fT

∂y
W(t) + ∂fT (t + τ)

∂yτ
W(t + τ)

]T

δy(t)dt

+
∫ t∗

t∗−τ

[
W′(t) + ∂f

∂y
W(t)

]T
δy(t)dt +

∫ 0

−σ
WT (t + σ)

∂f(t + σ)

∂uσ
δ�(t)dt

+
∫ t∗−σ

0

[
WT (t)

∂f
∂u

+ WT (t + σ)
∂f(t + σ)

∂uσ

]
δu(t)dt +

∫ t∗

t∗−σ
WT (t)

∂f
∂u

δu(t)dt

+
∫ t∗

0
WT (t)

∂f
∂p

δpdt −
∫ t∗−τ

−τ
WT (t + τ)

∂f(t + τ)

∂yτ
y′(t)δτdt

−
∫ t∗−σ

−σ
WT (t + σ)

∂f(t + σ)

∂uσ
u′(t)δσdt, t ≤ t∗. (6.16)

Under the assumptions given in (6.11), the above equation takes the form
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δyi (t
∗) = WT (0)δy(0) +

∫ 0

−τ

WT (t + τ)
∂f(t + τ)

∂yτ

δ�(t)dt

+
∫ 0

−σ

WT (t + σ)
∂f(t + σ)

∂uσ

δ�(t)dt

+
∫ t∗

0

[
WT (t)

∂f
∂u

+ WT (t + σ)
∂f(t + σ)

∂uσ

]
δu(t)dt

+
∫ t∗

0
WT (t)

∂f
∂p

δpdt −
∫ t∗−τ

−τ

WT (t + τ)
∂f(t + τ)

∂yτ

y′(t)δτdt

−
∫ t∗−σ

−σ

WT (t + σ)
∂f(t + σ)

∂uσ

u′(t)δσdt, t ≤ t∗; (6.17)

or

δyi (t
∗) = WT (0)δy(0) +

∫ t∗

0
WT (t)

∂f
∂p

δpdt

−
∫ t∗−τ

−τ
WT (t + τ)

∂f(t + τ)

∂yτ
y′(t)δτdt −

∫ t∗−σ

−σ
WT (t + σ)

∂f(t + σ)

∂uσ
u′(t)δσdt

+
∫ 0

−τ
WT (t + τ)

∂f(t + τ)

∂yτ
δ�(t)dt +

∫ 0

−τ
WT (t + σ)

∂f(t + σ)

∂uσ
δ�(t)dt

+
∫ t∗

0

[
WT (t)

∂f
∂u

+ WT (t + σ)
∂f(t + σ)

∂uσ

]
δu(t)dt, t ≤ t∗. (6.18)

Functional derivative sensitivity coefficients, for constant parameters, are equivalent
to the partial derivative sensitivity coefficients defined by (6.3). When δy(0) → 0,
δp → 0, δτ → 0, and δσ → 0, we, respectively, obtain the sensitivity coefficients
(6.12a)–(6.12d) from the first four terms of Eq. (6.18). Then, the first part of Theo-
rem6.1 is proved.

From the definition of the functional derivative sensitivity coefficients in (6.6),
we then obtain the formulae (6.13a)–(6.13c) from the last three terms of Eq. (6.18).
Thus, the second part of Theorem6.1 is proved.

6.4 Direct Approach

If we take all the parameters appearing in the system model (6.1a)–(6.1c) to be
constants, then sensitivity analysis, in this case, may just entail finding the partial
derivatives of the solution with respect to each parameter.

We denote by S(t) the n × ñ matrix S(t, α) of the sensitivity functions

S(t) ≡ S(t, α) :=
[∂yi (t, α)

∂α j

]
i=1,··· ,n
j=1,··· ,ñ

, ñ = r + r ′.
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If we introduce the notation

{
∂

∂α

}T

, the matrix of sensitivity functions takes the

form

S(t, α) ≡
{ ∂

∂α

}T
y(t, α) ∈ R

n×ñ . (6.19)

Its i th column is

Si (t, α) =
[
∂yi (t, α)

∂α1
,
∂yi (t, α)

∂α2
, . . . ,

∂yi (t, α)

∂αñ

]T

.

Thus, Si (t, α) is a vector whose components denote the sensitivity of the solution
yi (t, α) of the model to small variations in the parameters α j , j = 1, 2, . . . , ñ.

Theorem 6.2 S(t) satisfies the DDE:

S′(t) = J(t)S(t) + Jτ (t)S(t − τ) + B(t), t ≥ 0, (6.20)

where

J(t) := ∂

∂y
f(t, y, yτ ,u,uσ ;p) ∈ R

n×n (6.21a)

Jτ (t) := ∂

∂yτ

f(t, y, yτ ,u,uσ ;p) ∈ R
n×r ′ ; (6.21b)

B(t) := ∂

∂α
f(t, y, yτ ,u,uσ ;p) ∈ R

n×ñ . (6.21c)

Proof Assuming appropriate differentiability of y(t, α) with respect to α, we have

y(t, α + δα) = y(t, α) +
ñ∑
j=1

∂y(t, α)

∂α j
δα j + O(‖δα‖2), or, using (6.19),

δy(t, α) = S(t, α)δα + O(‖δα‖2).

Thus, the n × ñ matrix S(t, α) may be regarded as the local sensitivity of the
solution y(t, α) to small variations in α. (The term local refers to the fact that these
sensitivities describe the system around a given set of values for the parameters α.)

By differentiating equations (6.1a)–(6.1b) with respect to the vector of parameters
α, we obtain the variational system
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S′(t, α) = ∂f
∂y

(t, y, yτ ,u,uσ ;p)S(t, α) + ∂f
∂yτ

(t, y, yτ ,u,uσ ;p)S(t − τ, α)

+ ∂f
∂α

(t, y, yτ ,u,uσ ;p) t ≥ 0,

S′(t, α) = ∂�(t, α)

∂α
, t ≤ 0.

Our result is as follows. �

To estimate the sensitivity functions S(t), we must solve the n × ñ sensitivity
Eq. (6.20) together with the original system (6.1a)–(6.1c). We should mention here
that solving such systems can be a difficult and costly numerical problem when the
number of states and parameters is large, or when the sensitivities must be computed
repeatedly.

Remark 6.1 We apply the direct method to the linear DDE model:

y′(t, α) = p1y(t, α) + p2y(t − τ, α) + p3u(t), t ≥ 0
y(t, α) = ψ(t, α), t ≤ 0,

(6.22)

as an example. Here α = [p1, p2, p3, τ ]T . The equations for S(t) cannot be solved
in isolation; they require the solution y(t). We obtain, in the present model, a system
of neutral delay differential equations (NDDEs) expressed as

x′(t, α) = Ax(t, α) + Bx(t − τ, α) + Cx′(t − τ, α) + D(t), t > 0,
x(t, α) = �(t, α), t ∈ [−τ, 0], (6.23)

where

A =
⎡
⎢⎣

p1 0 0 0 0
1 p1 0 0 0
0 0 p1 0 0
0 0 0 p1 0
0 0 0 0 p1

⎤
⎥⎦ , B =

⎡
⎢⎣

p2 0 0 0 0
0 p2 0 0 0
1 0 p2 0 0
0 0 0 p2 0
0 0 0 0 p2

⎤
⎥⎦ , C =

⎡
⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −p2

⎤
⎥⎦ ,

D(t) =
⎡
⎢⎣

p3u(t)
0
0

u(t)
0

⎤
⎥⎦ , x(t, α) =

⎡
⎢⎣

y(t, p)

sp1 (t, α)

sp2 (t, α)

sp3 (t, α)

sτ (t, α)

⎤
⎥⎦ , and �(t, α) =

⎡
⎢⎢⎣

ψ(t, α)
∂

∂p1
ψ(t, α)

∂
∂p2

ψ(t, α)

∂
∂p3

ψ(t, α)

∂
∂τ

ψ(t, α)

⎤
⎥⎥⎦ .

Here, sαi ≡ ∂y(t, α)

∂αi
, and some terms

∂

∂αi
ψ(t, α) are non-vanishing in the case

where the initial function ψ depends non-trivially upon p1, p2, p3, and τ .
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6.5 Sensitivity of Optimum Parameter p̂ to Data

To compute ∂p̂
∂Y j

, the sensitivity of the parameter estimate p̂ to the observed data Y j ,
assume that the unweighted objective function

�(p) ≡ �(p,Y) :=
∑
i

[
y(ti ,p) − Yi

]2
(6.24)

is smooth as a function of p in the neighborhood of the optimal parameter p̂. Then
we have

∂

∂pk
�(p,Y) = 2

∑
i

[
y(ti ,p) − Yi

]∂y(ti ,p)

∂pk
, (6.25)

∂2

∂pl∂pk
�(p,Y) = 2

∑
i

∂y(ti , p)

∂pl

∂y(ti , p)

∂pk
+ 2

∑
i

[
y(ti , p) − Yi

]∂2y(ti ,p)

∂pl∂pk
. (6.26)

To minimize the objective function (6.24), the right-hand side of Eq. (6.25) vanishes
at p = p̂ (where p̂ ≡ p̂(Y)); therefore,

∑
i

[y(ti , p̂(Y))Yi ]sk(ti , p̂(Y)) = 0. (6.27)

Now, the left-hand side of Eq. (6.27) is a function of p̂ and Y; differentiating both
sides with respect to Y j yields, for k = 1, . . . , L ,

N∑
i=1

L∑
l=1

[
sk(ti , p̂)sl(ti , p̂) + [

y(ti , p̂) − Yi
]
rlk(ti , p̂)

] ∂ p̂l
∂Y j

= sk(t j , p̂). (6.28)

If we assume that y(ti , p̂) is close to the observed value Yi , so that the second term
in the left-hand side of Eq. (6.28) can be neglected, then the above system can be
approximated by

N∑
i=1

L∑
l=1

sk(ti , p̂)sl(ti , p̂)
∂ p̂l
∂Y j

≈ sk(t j , p̂), k = 1, . . . , L ,

or

N∑
i=1

sk(ti , p̂)
( L∑

l=1

sl(ti , p̂)
∂pl
∂Y j

)
≈ sk(t j , p̂), k = 1, . . . , L . (6.29)
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This equation can be written in a compact form:

[ N∑
i=1

s(ti , p̂)sT(ti , p̂)
] ∂p̂
∂b f Y j

≈ s(t j , p̂). (6.30)

Then, the sensitivity of the best-fit parameter estimate p̂ to observations Y j ( j =
1, 2, . . . , N ) can be estimated by

∂p̂
∂Y j

≈
[
B(̂p)

]−1
s(t j , p̂), (6.31)

where s is L × 1 vector andB(̂p) :=
[ ∑N

i=1 s(ti , p̂)sT (ti , p̂)
]
is a L × L nonsingular

matrix.
A desirable property of themodel is that the sensitivity of the parameter estimate to

the observation ∂p̂
∂Y j

should be small tominimize the effect of observation noise on the
parameter estimate. Equation (6.31) suggests that increasing s(t, p̂) (the sensitivity
of the state variable with respect to the unknown parameter) decreases the sensitivity
of the parameter estimation to observation.

6.5.1 Standard Deviation of Parameter Estimates

We can use the sensitivity coefficients (si , i = 1, . . . , L) to determine the covariance
matrix [ςi j ] of the estimates as follows [9]:

⎡
⎢⎢⎢⎢⎣

ς11 ς12 . . . ς1L

ς21 ς22 . . . ς2L

ς31 ς32 . . . ς3L

.. .. . . . ..

ςR1 ςR2 . . . ςLL

⎤
⎥⎥⎥⎥⎦ = 2

�(̂p)

N − L

[
H (̂p)

]−1
,

where (N − L) is the number of degrees of freedom and H (̂p) is the Hessian matrix
of the objective function �(̂p). Using the notation ∂

∂p and ∂
∂pT , the Hessian matrix

can be written in the form

H (̂p) =
[

∂2

∂p∂pT
�(̂p)

]
.

This matrix can be approximated, in terms of (6.26) and using the sensitivity coeffi-
cients, as

H (̂p) ≈ H̃ (̂p) := 2

[
N∑

k=1

si (tk, p̂)s j (tk, p̂)

]

i, j=1,...,L

.
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Hence, the standard deviations for the parameter estimates are the quantities σi ≡
σ( p̂i ) = √

ςi i (i = 1, . . . , L).

6.5.2 Non-linearity and Indications of Bias

We remarked earlier that percentage bias in the values of the parameter estimates is a
good indicator of the quantitative effect of non-linearity [10]. To examine the biases
in the values of the parameter estimates due to the non-linearity of the parameters,
we proceed as follows:

(1) Perturb the obtained solution of the model corresponding to the best-fit param-
eters p̂ with normally distributed random errors of zero mean and variance (see
[9]):

s2 = �(̂p)

N − L
.

(2) Find new best-fit parameters p̃ to the perturbed data from (1).
(3) Repeat this process a large number of times (500, or preferably 1000 times) to

generate a statistically significant estimate of the mean value of p̃.
(4) If the relative biases satisfy the relation

‖̂p − mean{̃p}‖ < 0.01‖̂p‖,

then the effect of non-linearity is not regarded as significant and the experimenter
can have confidence in the parameter estimates and their standard deviations.

In other words, if the LS estimator of a non-linear regression model is only
slightly biased (the relative biases <1%) with a distribution close to that of a normal
distribution and with a variance only slightly in excess of the minimum variance
bound, it seems reasonable to consider the estimator as behaving close to a linear
regression model. If, on the other hand, the LS estimator has a large non-linear bias,
with a distribution far from normal and variance greatly in excess of the minimum
variance bound, the non-linear regression model might be far from a linear model
in its behavior. For more details about the non-linearity effect and issues related to
parameter estimations, refer to [9–12].

6.6 Numerical Results

In this section, we apply the results obtained in the above sections, to an example of
linear DDE:
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y′(t) = p1y(t) + p2y(t − τ) + p3, t ≥ 0,
y(t) = ψ(t), t ∈ [−τ, 0]. (6.32)

Wehave chosen thismodel because it hasmany applications in cell-growth dynamics,
as the behavior of its solution (for particular parameters) is consistent with the step-
like growth pattern; see [12]. A knowledge of how the solution can vary with respect
to small changes in the initial data or the parameters can yield insights into the
behavior of the model and can assist the modeling process. The observation interval
is often divided into subintervals, each of which could be informative about a specific
parameter. Knowledge of these intervals is not only important for understanding the
role of the model but also for an enhanced experiment design for estimating selected
parameters. Thus, sensitivity functions can allow one to qualitatively assess which
data points have the most effect on a particular parameter.

According the above analysis, we wish to find (analytically and numerically)

the sensitivity density function
∂y(t∗)
∂ψ(t)

(where t ≤ t∗) and the sensitivity coefficients

∂y(t)

∂α
. The sensitivity coefficients (for constant parameters) can be obtained by using

both variational and direct methods. However, the functional derivative sensitivity
coefficients can only be computed by using the variational method.

• First, we apply the variational approach.
In (6.32), α = [p1, p2, p3, τ ]T and the control is chosen to be u(t) = p3 = 1. The
adjoint equation for this case is

W ′(t) = −p1W (t) − p2W (t + τ), t ≤ t∗,
W (t) = 0, t > t∗; W (t∗) = 1.

(6.33)

The analytical solution of the adjoint Eq. (6.33) is as follows:

(1) 0 < t∗ ≤ τ

W (t) = e−p1(t−t∗), t ≤ t∗, (6.34)

(2) τ < t∗ ≤ 2τ

W (t) =
{
e−p1(t−t∗) − p2(t − t∗ + τ)e−p1(t−t∗+τ), 0 < t ≤ t∗ − τ,

e−p1(t−t∗), t∗ − τ < t ≤ t∗. (6.35)

(Here, W (t + τ) = 0 for t∗ − τ < t ≤ t∗ and W (t + τ) = e−p1(t−t∗+τ) for 0 <

t ≤ t∗ − τ .)

The solution of the DDE (6.32), with an initial function ψ(t) = 0 with t ≤ 0, is

y(t) =
{

ξ(ep1t − 1), 0 < t ≤ τ,

ξ 2 p2 − ξ + ξep1t + ξp2(t − τ − ξ)ep1(t−τ), τ < t ≤ 2τ,
(6.36)
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where ξ = 1

p1
.

Thus, the functional derivative sensitivity density function to the initial function,
by using (6.13a), becomes

(1) 0 < t∗ ≤ τ

∂y(t∗)
∂ψ(t)

= p2W (t + τ) =
{
p2e−p1(t−t∗+τ), −τ < t ≤ t∗ − τ,

0, t∗ − τ < t ≤ 0.
(6.37)

(2) τ < t∗ ≤ 2τ

∂y(t∗)

∂ψ(t)
=

⎧⎨
⎩

p2e
−p1(t−t∗+τ) − p22(t − t∗ + 2τ)e−p1(t−t∗+2τ), −τ < t ≤ t∗ − 2τ,

p2e
−p1(t−t∗+τ), t∗ − 2τ < t ≤ 0.

(6.38)

On the other hand, the sensitivity functional to the control variable u(t), as depicted
in (6.13c), becomes

∂y(t∗)
∂u(t)

= W (t). (6.39)

The sensitivity function of y(t) to the constant parameter p1, by using (6.12b),
takes the form

∂y(t∗)
∂p1

=
∫ t∗

0
W (t)

∂ f

∂p1
dt =

{
ξ 2 + ξ(t∗ − ξ)ep1t

∗
, 0 < t∗ ≤ τ,

I1 + I2, τ < t∗ ≤ 2τ,
(6.40)

where

I1 =
∫ t∗−τ

0
W (t)

∂ f

∂p1
dt

= ξ(t∗ − τ)ep1t
∗ + ξ 2(ep1τ − ep1t

∗
) + 1

2
ξp2(t

∗ − τ)2ep1(t
∗−τ)

−ξ 2 p2(t
∗ − τ)ep1(t

∗−τ) − ξ 3 p2(1 − ep1(t
∗−τ)), (6.41)

and

I2 =
∫ t∗

t∗−τ

W (t)
∂ f

∂p1
dt = I1 + ξ 2 + ξ(t∗ − ξ)ep1t

∗
. (6.42)

The sensitivity of y(t) to the parameter p3 is given by
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∂y(t∗)
∂p3

=
∫ t∗

0
W (t)

∂ f

∂p3
dt (6.43)

=
{

ξ(ep1t
∗ − 1), 0 < t∗ ≤ τ

ξ 2 p2 − ξ + ξep1t
∗ + ξp2(t∗ − τ − ξ)ep1(t

∗−τ), τ < t∗ ≤ 2τ
(6.44)

It is clear that
∂y(t∗)
∂p3

= y(t∗), as it is satisfying Eq. (6.32).

By using (6.12c), we obtain the sensitivity coefficient of y(t) to the constant
parameter τ as

∂y(t∗)
∂τ

= −
∫ t∗−τ

−τ

W (t + τ)
∂ f (t + τ)

∂yτ

y′(t)dt

=
{
0, 0 < t∗ ≤ τ,

−p2(t∗ − τ)ep1(t
∗−τ), τ < t∗ ≤ 2τ,

(6.45)

Numerical results using the variational approach are presented in Figs. 6.1, 6.2, 6.3,
6.4, 6.5, and 6.6. Figure6.1 plots the analytical solution of DDE (6.32) in the interval
[0,2τ ]. Figures6.2 and 6.3 show the sensitivity of the state variable to the initial

function
∂y(t∗)
∂ψ(t)

(t < t∗) as a function of t for (i) 0 < t∗ ≤ τ and (i i) τ < t∗ ≤ 2τ ,

respectively. For case (i),
∂y(t∗)
∂ψ(t)

is positive and increases monotonically in the

interval [−τ, t∗ − τ ] and attains maximum value at t = t∗ − τ and vanishes for

t∗ − τ < t ≤ 0. In case (i i),
∂y(t∗)
∂ψ(t)

monotonically increases and then decreases to

attain the minimum at t = t∗ − 2τ . We note that t = t∗ − 2τ is the time when the
initial data stops to affect the state delay in the system dynamic. The functional

Fig. 6.1 Analytical solution
of DDE (6.32) in the interval
0 ≤ t ≤ 2τ with p1 = −2,
p2 = 4, and p3 = 1

2ττ0
t 

y(t) 

y(t) 
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t*− τ −τ 0

∂y(t*)/∂ψ(t) 

p2W(t+τ) 

Fig. 6.2 Functional derivative sensitivity density function ∂y(t∗)
∂ψ(t) , (6.37), when 0 < t∗ ≤ τ

−τ t*−2τ 0

∂y(t*)/∂ψ(t) 

p2W(t+τ) 

Fig. 6.3 Functional derivative sensitivity density function ∂y(t∗)
∂ψ(t) , (6.38), when τ < t∗ ≤ 2τ

derivative sensitivity density function
∂y(t∗)
∂u(t)

is shown in Fig. 6.4 as a function of t

for t∗ = 2τ .

Figure6.5 shows the plot of the sensitivity coefficient
∂y(t)

∂p1
. We note that

∂y(t)

∂p1
is positive and increases as t increases. Figure6.6 shows the sensitivity of the state



6.6 Numerical Results 119

0 τ 2τ
t 

W(t) 

∂y(t*)/∂u(t) 

Fig. 6.4 Functional derivative sensitivity density function ∂y(t∗)
∂u(t) , (6.39), for t

∗ = 2τ

2ττ0

∂y(t)/∂p
1

∂y(t)/∂p
1

t 

Fig. 6.5 Sensitivity function ∂y(t)
∂p1

, (6.40)

variable to lag τ ,
∂y(t)

∂τ
. We note that

∂y(t)

∂τ
is negative and, as expected, y(t) is very

sensitive to changes in τ in the time interval τ < t ≤ 2τ and is insensitive to changes
in the constant lag τ in the time interval [0, τ ]. The plots have a kink at t = τ as a
result of existence of the delay in the system state.

• Secondly, if we apply the direct approach in the example being considered
(6.32), we can simply use the results obtained in Remark6.1 to obtain a variational
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2ττ0

∂y(t)/∂τ

Fig. 6.6 Sensitivity function ∂y(t)
∂τ

, (6.45)

system of NDDEs in the unknown functions of the sensitivity coefficients. We solve
this system numerically, as discussed in the previous section, using Archi code [13]
together with the original equations. The numerical results are displayed in Fig. 6.7.
We note that this approach provides the same results provided by the variational
approach.

6.7 Concluding Remarks

In this chapter, we have investigated the sensitivity of model solutions by perturbing
the parameters appearing in delay differential systems, using variational and direct
approaches. The theory is applied to a linear DDE. Either of the two approaches is
capable, in principle, of providing the same information concerning the system. It
has been shown that adjoint equations need to be solved to estimate the sensitivity
coefficients via the variational approach. In models consisting of parameters that are
varying or temporally varying, the functional derivative sensitivity coefficients can
only be computed via the variational method. The direct method is based only on
considering all parameters as constants (those independent of time or location) and
then the sensitivity coefficients are estimated by solving a variational system simul-
taneously with the original system. The variational approach can provide a rigorous
sensitivitymeasure that gives a precise interpretation of the results because sensitivity
density functions contain more information than the sensitivity coefficients.
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Fig. 6.7 Numerical results for (6.32). The first graph (from left to right, up to down) plots the
numerical solution. The second shows the sensitivity function ∂y(t)

∂p1
, the third ∂y(t)

∂p2
, and the fourth

∂y(t)
∂τ

We have discussed how sensitivity analysis can be used to evaluate which param-
eters have a significant effect on uncertainty. Sensitivity functions of the solution
y(t) for the given DDE model are shown in Figs. 6.2, 6.3, 6.4, 6.5, and 6.6 (by
using the variational approach), and in Fig. 6.7 (by using the direct method). These
functions are useful in simulation studies for assessing the sensitivity of the solu-
tions with respect to assigned model parameters. We have seen how the sensitivity
functions enable one to assess the relevant time intervals for the identification of spe-
cific parameters and improve the understanding of the role played by specific model
parameters in describing experimental data. We noted, e.g., from Figs. 6.6 and 6.7,
that the experimental points in the subinterval [τ ,2τ ] are informative data points for
the estimation of parameter τ , while the state variable is insensitive to a change in the
constant parameter τ through the time interval [0, τ ]. The oscillation accompanied
by the sensitivity of y(t) to τ (in Fig. 6.7) indicates that the solution is sensitive to
changes in the parameter τ , and this parameter plays an important role in the model.

In the next chapter, we extend the analysis to study stochastic delay differential
equations (SDDEs) which play a prominent role in many application areas including
biology, epidemiology, and population dynamics. SDDEs mostly can offer a more
sophisticated insight through physical phenomena than their deterministic counter-
parts do.
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