
Chapter 11
Fractional-Order Delay Differential
Equations with Predator-Prey Systems

11.1 Introduction

Mathematical models using differential equations with integer order have proved
valuable in understanding the dynamics of biological systems. However, most bio-
logical, physical, and engineering systems have long-range temporal memory [1–4]
and/or long-range space interactions [5–7]. Modeling such systems using fractional-
order differential equations is more advantageous than classical integer-order math-
ematical modeling, in which the effects of existence of time memory or long-range
space interactions are neglected.Moreover, the fractional-order derivative is related to
thewhole space for a physical process, whereas the integer-order derivative describes
the local properties of a certain position. Accordingly, the subject of fractional calcu-
lus (i.e., calculus of integral and derivatives of arbitrary order) has gained popularity
and importance, mainly due to its demonstrated applications in numerous diverse
and widespread fields of science and engineering. It has been successfully applied to
system biology [3, 8–11], physics [12–15], chemistry and biochemistry [16], hydrol-
ogy [17, 18], engineering [19, 20], medicine [21–23], and finance [24]. Examples of
fractional-order systems in modeling and control can be found in [25–27]. In most
cases, the fractional-order differential equations (FODEs) models seem more con-
sistent with the real phenomena than integer-order models. This is because fractional
derivatives and integrals enable the description of the memory and hereditary prop-
erties inherent in various materials and processes that exist within most biological
systems.

Inmost biological systems time-lags or -delays exist intrinsically, such as predator-
prey (PP) systems, where the predator needs time to mature [28–32]. Considerable
attention has been given to study and investigate the different types of PPmodels due
to their universal existence and importance. However, most such models have been
either studied using integer-order equations with delays or using fractional order
without delays [33, 34]. In this work, we combine the fractional-order with the delay
terms in the model to describe the complex systems of PP interactions with memory
effects. We also study the stability properties of such models.
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In [28], the authors addressed the existence and global stability of a periodic solu-
tion for a discrete PP system with the functional response and predator cannibalism,
whereas a global analysis of Holling type II PP model with a constant prey refuge is
presented in [30]. In [32], a Holling-Tanner PP model with time-delay is considered.
By regarding the delay as the bifurcation parameter, the local asymptotic stability of
the positive equilibrium is investigated. In [31], a delayed stage-structured PP model
with non-monotone functional responses is proposed. It is assumed that immature
individuals and mature individuals of the predator are divided by a fixed age and that
immature predators do not have the ability to attack prey. In [29], the main feature
is that the authors introduce time-delay and pulse into the PP (natural enemy-pest)
model with age structure, exhibit a new modeling method that is applied to investi-
gate impulsive DDEs, and give some reasonable suggestions for pest management.
Next, we present fractional-order with time-delay in the system that allows greater
degrees of freedom in the model and in describing systems with long-time memory,
such as PP dynamics.

Despite these various applications of fractional calculus, there are some impor-
tant challenges, such as numerical approximation and the physical interpretation,
for the fractional derivative. Fractional differential equations are integro-differential
equations and their numerical solution requires large computer memory and long
runs of numerical simulations; this makes it very difficult to investigate the general
properties of fractional dynamical systems. As a consequence, accurate approxima-
tion and a suitable numerical technique play an important role in identifying the
solution behavior of such fractional equations and in exploring their applications
(see, e.g., [35–37] and the references therein). Recently, an increasing number of
investigators have been studying the qualitative properties and numerical solutions
of fractional-order biological models [38, 39].

Motivated by the above, in this chapter, we suggest a fractional-order PP model
with a feeding rate of delayed saturated form for the prey population. We study the
qualitative behavior of the model using local and global stability of the equilibrium
points and present conditions in the time-delay τ in which the model is stable. Hopf
bifurcation analysis is also addressed and the results of simulation scenarios are
presented. We also present suitable implicit schemes for the numerical treatments of
such types of fractional-order delay differential equations (FODDEs). The organiza-
tion of this chapter is as follows. In Sect. 11.2, we describe the model. In Sects. 11.3
and 11.4, we present local and global stability of equilibrium states, respectively.
In Sect. 11.5, we provide an unconditional stable numerical method for FODDEs
along with some numerical examples. Section11.6 provides a brief discussion and
concluding remarks about the obtained results.

11.1.1 Preliminaries

The are different definitions of fractional order are Riemann-Liouville, Grunwald-
Letnikov,Weyle,Marchaud, Jumarie,Hadamard, andCaputo sense. TheCaputo frac-
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tional operator provides flexibility to the physical, biological models to attain the dif-
ferent considerable dynamical behaviors and chance to know the better understand-
ing for the model dynamics Moreover, the Caputo fractional-order system allows the
local initial values to be included in a proper way, well understandable features of
physical situations, frequently applied to tackle real-world problems.

Definition 11.1 ([40]) Caputo derivative of fractional-order α for a function f (t) is
defined by

Dα f (t) = 1

�(n − α)

∫ t

0
(t − τ)n−α−1 f n(τ )dτ, (11.1)

where n − 1 < α < n ∈ Z
+, �(·) is the Gamma function.

The Laplace transform of Caputo fractional-order derivative is defined as follows:

L{Dα f (t); s} = sαF (s) −
n−1∑
i=1

sα−i−1 f (i)(0) (11.2)

where F (s) = L{ f (t)}. In particular, when f (i)(0) = 0, i = 1, 2, . . . , n − 1, then
L{Dα f (t); s} = sαF (s).

Remark 11.1 For 0 < α ≤ 1, the fractional-order derivative defined based on
Caputo sense (see Definition11.1), the memory effects in dynamical systems is
described by using a convolution integral with power-lawmemory kernel. The mem-
ory kernel (time correlation function) decaying rate depends on fractional order α.
The lower value of α corresponds to more slowly decaying long memory (time-
correlation functions). Then, α → 1, the influence of memory decreases.

For given the following m-dimensional fractional-order system

Dα1x1(t) = a11x1(t − τ11) + a12x2(t − τ12) + · · · + a1mxm(t − τ1m)

Dα2x2(t) = a21x1(t − τ21) + a22x2(t − τ22) + · · · + a2mxm(t − τ2m)

...

Dαm xm(t) = am1x1(t − τm1) + am2x2(t − τm2) + · · · + ammxm(t − τmm)

(11.3)

where 0 < αi < 1 (i = 1, 2, . . . ,m). The smooth initial conditions xi (t) =
ψi (t), t ∈ [−max

i, j
τi j , 0] , i, j = 1, 2, . . . ,m. The state variables x(t), x(t − τi j ) ∈

R. Taking Laplace transform for both sides of (11.3), yields
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sα1 X1(s) − sα1−1ψ1(0) = a11e
−sτ11

(
X1(s) +

∫ 0

−τ11

e−stψ1(t)dt

)
+ a12e

−sτ12

(
X2(s)

+
∫ 0

−τ12

e−stψ2(t)dt

)
+ · · · + a1me

−sτ1m

(
Xm (s) +

∫ 0

−τ1m

e−stψm (t)dt

)

sα2 X2(s) − sα2−1ψ2(0) = a21e
−sτ21

(
X1(s) +

∫ 0

−τ21

e−stψ1(t)dt

)
+ a22e

−sτ22

(
X2(s)

+
∫ 0

−τ22

e−stψ2(t)dt

)
+ · · · + a2me

−sτ2m

(
Xm (s) +

∫ 0

−τ2m

e−stψm (t)dt

)

.

.

.

sαm Xm (s) − sαm−1ψm (0) = am1e
−sτm1

(
X1(s) +

∫ 0

−τm1

e−stψ1(t)dt

)
+ am2e

−sτm2

(
X2(s)

+
∫ 0

−τm2

e−stψ2(t)dt

)
+ · · · + amme

−sτmm

(
Xm (s) +

∫ 0

−τmm

e−stψm (t)dt

)

(11.4)

where Xi (s) is the Laplace transform of xi (t). This system can be written in a matrix
form

�(s) ·

⎡
⎢⎢⎢⎣

X1(s)
X2(s)

...

Xm(s)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1(s)
b2(s)

...

bm(s)

⎤
⎥⎥⎥⎦ . (11.5)

We call �(s) a characteristic matrix of the system

�(s) =

⎡
⎢⎢⎢⎣

sα1 − a11e−sτ11 −a12e−sτ12 . . . −a1me−sτ1m

−a21e−sτ21 sα2 − a22e−sτ22 . . . −a2me−sτ2m

...
...

. . .
...

−am1e−sτm1 −am2e−sτm2 . . . sαm − amme−sτmm

⎤
⎥⎥⎥⎦ (11.6)

and

b1(s) =sα1−1ψ1(0) + a11e
−sτ11

∫ 0

−τ11
e−stψ1(t)dt + a12e

−sτ12
∫ 0

−τ12
e−stψ2(t)dt

+ · · · + a1me−sτ1m
∫ 0

−τ1m
e−stψm (t)dt

b2(s) =sα2−1ψ2(0) + a21e
−sτ21

∫ 0

−τ21
e−stψ1(t)dt + a22e

−sτ22
∫ 0

−τ22
e−stψ2(t)dt

+ · · · + a2me−sτ2m
∫ 0

−τ2m
e−stψm (t)dt

.

.

.

bm (s) =sαm−1ψm (0) + am1e
−sτm1

∫ 0

−τm1
e−stψ1(t)dt + am2e

−sτm2
∫ 0

−τm2
e−stψ2(t)dt

+ · · · + amme−sτmm
∫ 0

−τmm
e−stψm (t)dt.
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Remark 11.2 Zero solution of system (11.3) is Lyapunov asymptotically stable if
all the roots of det(�(s)) = 0 have negative real parts.

11.2 Fractional Delayed Predator-Prey Model

Lotka [41] in 1925 andVolterra [42] in 1926 introduced the first PPmodel. After that,
many more complicated but realistic PP models, with various forms of “functional
responses,” have been formulated by ecologists and mathematicians. One of the
most popular PP models was introduced by Freedman [43] in 1980, which has the

Michaelis-Menten type orHolling type-II functional response
βx(t)y(t)

1 + σ x(t)
, where x(t)

and y(t) are the population densities of the prey and predator, respectively. β (units:
1/time) is the feeding rate, or the maximal predator per-capita consumption rate, i.e.,
the maximum number of preys that can be eaten by a predator in each time unit,
while σ (units: 1/prey) is a positive constant that describes the effects of capture rate.

The prey host population is assumed to have logistic growth r x(t)

(
1 − x(t)

K

)
with

carrying capacity K (in a closed community) and a specific growth rate constant r .
Then, the interactions between prey and predator with time-delay τ in the saturation
term takes the form

Dx(t) = r x(t)

(
1 − x(t)

K

)
− βx(t)y(t − τ)

1 + σ x(t)
,

Dy(t) = βx(t)y(t − τ)

1 + σ x(t)
− ay(t),

(11.7)

where τ is regarded as reaction time of the predations and a is a positive real number.
In system (11.7), it is assumed that each individual predator has the same ability to
feed on prey.

In this chapter, we extend the derivatives of (11.7) to an arbitrary order to investi-
gate the combination of both fractional-order formulation and time-delay in the same
model. Therefore, the model becomes

Dαx(t) = r x(t)

(
1 − x(t)

K

)
− βx(t)y(t − τ)

1 + σ x(t)

Dα y(t) = βx(t)y(t − τ)

1 + σ x(t)
− ay(t), 0 < α ≤ 1, t ≥ 0

(11.8)

with initial conditions x(0) > 0 and y(t) = ψ(t) > 0 when t ∈ [−τ, 0], where ψ(t)
is a smooth function. Next, we study the impact of the fractional-order and time-delay
τ in the dynamics of the model.

By choosing the delay τ as a bifurcation parameter, when it crosses some critical
values τ ∗, a Hopf bifurcation about the stability of interior equilibrium in (11.8) can
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occur, as we shall discuss in the next section. The fractional order grants the model
a greater degree of freedom and consistency with real interactions due to its ability
to provide an exact description of the non-linear phenomena.

11.3 Local Stability Analysis and Hopf Bifurcation

Consider the fractional-order systems of the form

Dαx(t) = f1(x, y), Dα y(t) = f2(x, y), α ∈ (0, 1],
x(0) = x0, y(0) = y0

(11.9)

with an equilibrium point (xe, ye). Therefore,

Lemma 11.1 The equilibrium point (xe, ye) of the fractional differential system
(11.9) is locally asymptotically stable if and only if all eigenvalues λi of the Jacobian
matrix

J =
(

∂ f1/∂x ∂ f1/∂y
∂ f2/∂x ∂ f2/∂y

)
,

evaluated at the equilibrium point (xe, ye), satisfy the condition that |arg(λi )| >
απ

2
[44] (see Fig.11.1).

Since it is known that systems with memory are typically more stable than their
memoryless counterparts, we expect that “fractional-order differential equations
are, at least, as stable as their integer-order counterpart.”

Fig. 11.1 Stability region of
the fractional-order system
(11.9) when 0 < α ≤ 1
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The equilibria of (11.8) are the points of intersections at which Dαx(t) = 0 and
Dα y(t) = 0. Thus, we arrive at the following proposition: For the model system
(11.8), there always exist trivial equilibriumE0 = (0, 0) and semi-trivial equilibrium
E1 = (K , 0). However, if the threshold parameter

R0 = K [β − σa]
a

> 1, (11.10)

there also exists an interior equilibrium E+ = (x∗, y∗), where

E+ = (x∗, y∗) =
(

a

β − σa
,
r x∗2

Ka
(R0 − 1)

)
. (11.11)

11.3.1 Trivial and Semi-trivial Equilibria and Their
Stabilities

The theorem matrix of the linearized system of model (11.8) is

J =
⎛
⎜⎝
r − 2r x∗

K
− βy∗

(1 + σ x∗)2
− βx∗

1 + σ x∗ e
−λτ

βy∗

(1 + σ x∗)2
βx∗

1 + σ x∗ e
−λτ − a

⎞
⎟⎠ (11.12)

Using (11.12), the characteristic equation1 at the trivial equilibrium pointE0 = (0, 0)
reduces to

(λα − r)(λα + a) = 0. (11.13)

Clearly, Eq. (11.13) has a positive root λα = r (0 < α ≤ 1). Then, the trivial equi-
librium E0 of system (11.8) is always unstable (saddle point). However, at the semi-
trivial equilibrium E1 = (K , 0), the Jacobian matrix (11.12) reduces to

Jsemi-trivial =
⎛
⎜⎝

−r − βK

1 + σK
e−λτ

0
βK

1 + σK
e−λτ − a

⎞
⎟⎠ (11.14)

with characteristic equation

(λα + r)

(
λα + a

[
1 − R0 + σK

1 + σK
e−λτ

])
= 0. (11.15)

1 We may note that the characteristic equation of a system with delay has infinite roots.
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It is obvious from Eq. (11.15) that the two roots are real and negative ifR0 < 1 (when
τ = 0) and the equilibrium E1 is then asymptotically stable. In case of τ > 0, we
assume that the root of (11.15) λ = ξ i must satisfy

ξ 2α = a2
[R0 + σK

1 + σK
− 1

]
< 0.

Then, when R0 < 1, there are no positive real roots ξ . Hence, according to Lemma
11.1, we can get the following theorem to indicate the stability of E1:

Theorem 11.1 IfR0 is defined by (11.10), then semi-trivial equilibriumE1 = (K , 0)
of system (11.8) is asymptotically stable when R0 < 1 (for all values of τ > 0),
unstable when R0 > 1, and linearly neutrally stable if R0 = 1.

11.3.2 Interior Equilibrium and Its Stability

Here, we investigate the linear stability of (11.8) at the interior equilibrium E+ =
(x∗, y∗) defined in (11.11). x∗ = a

β − σa
=⇒ βx∗

1 + σ x∗ = a, and y∗ = r x∗2

Ka
(R0 −

1) =⇒ βy∗

1 + σ x∗ = r

(
1 − 1

R0

)
.We also haveR0 = K

x∗ . Therefore, the correspond-

ing Jacobian matrix at the interior equilibrium E+ can be easily expressed in terms
of the reproduction number R0, as follows:

Jinterior =
⎛
⎝η11 −ae−λτ

r

1 + σ x∗
(
1 − 1

R0

)
ae−λτ − a

⎞
⎠ , (11.16)

whereη11 = r
(
1 − 2

R0

) − r

1 + σ x∗
(
1 − 1

R0

)
. The characteristic equation of (11.16)

for the interior equilibrium is

λ2α + λα

[
− r

(
1 − 2

R0

)
+ a(1 − e−λτ )

+ r

1 + σ x∗

(
1 − 1

R0

)]
+ a

[
− r

(
1 − 2

R0

)
(1 − e−λτ )

+ r

1 + σ x∗

(
1 − 1

R0

)]
= 0. (11.17)

We need to find the necessary and sufficient condition for every root of the charac-
teristic Eq. (11.17) having negative real part. Introducing
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�1 = r

(
1 − 2

R0

)
, �2 = r

1 + σ x∗

(
1 − 1

R0

)
, �3 = a. (11.18)

Then, the characteristic Equation (11.17) can be rewritten in the form

λ2α + λα(−�1 + �2 + �3) + �3(−�1 + �2) + e−λτ (−�3λ + �1�3) = 0.

For simplicity, let us also assume that

A1 = (−�1 + �2 + �3), A2 = �3(−�1 + �2),

A3 = �3, A4 = �1�3.
(11.19)

Then, Eq. (11.19) takes the form

λ2α + A1λ
α + A2 + e−λτ (−A3λ + A4) = 0. (11.20)

We establish the existence of the parameter value τ ∗ for which the equilibrium
solution undergoes two simultaneous Hopf bifurcations.

Theorem 11.2 Assume that Rc = 2 + 1/(1 + 2σ x∗). Then,

(1) the interior equilibriumE+ of system (11.8) is feasible and locally asymptotically
stable for all τ ≥ 0 if 1 < R0 ≤ Rc holds;

(2) if R0 > Rc > 1, then there exist τ ∗ > 0, such that τ ∈ [0, τ ∗) the interior equi-
librium E+ is asymptotically stable, and unstable when τ > τ ∗. When τ = τ ∗,
the characteristic equation (11.20) has a pair of purely imaginary roots ±iξα

0
with

ξ 2α
0 = 1

2
(2A2 + A2

3 − A2
1) + 1

2

√
(2A2 + A2

3 − A2
1)

2 − 4(A2
2 − A2

4),

and

τ ∗ = 1

ξ̄0
arccos

(
(A4 + A1A3)ξ

2
0 − A2A4

A2
3ξ

2
0 + A2

4

)
+ 2 jαπ

ξα
0

,

where A1, A2, A3 and A4 are defined in (11.19).

Proof If λ = ξ i is a root of (11.19). After substitution and separation of the real and
imaginary parts, we have

−ξ 2α + �3(−�1 + �2) = ξα�3 sin ξτ − �1�3 cos ξτ,

ξα(−�1 + �2 + �3) = �1�3 sin ξτ + ξ�3 cos ξτ,
(11.21)

which are equivalent to

−ξ 2α + A2 = ξαA3 sin ξτ − A4 cos ξτ,

ξαA1 = A4 sin ξτ + ξ A3 cos ξτ.
(11.22)
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Squaring and adding both equations yields

ξ 4α + ξ 2α(−�1 + �2)
2 + �2�

2
3(−2�1 + �2) = 0, (11.23)

which is equivalent to

ξ 4α − (2A2 + A2
3 − A2

1)ξ
2α + (A2

2 − A2
4) = 0. (11.24)

Equation (11.23) can also be re-written in the form

ξ 4α + ξ 2α[�2
1 + �2(−2�1 + �2)] + �2�

2
3(−2�1 + �2) = 0. (11.25)

Therefore, if−2�1 + �2 ≥ 0 (whenR0 > 1), then there is no positive real ξ satisfying
(11.23). According to the definitions given in (11.18), the inequality−2�1 + �2 ≥ 0,
which is equivalent toR0 ≤ 2 + 1/(1 + 2σ x∗) so that all the roots (λ = ξi ) of (11.17)
are negative.

However, if −2�1 + �2 < 0, then (11.25) has one and only one positive root
denoted by ξ0, and the characteristic equation (11.20) has a pair of purely imaginary
roots±iξ0. Let λ(τ) = σ(τ) + iξ(τ ) be the eigenvalue of (11.20), such that σ(τ ∗) =
0 and ξ(τ ∗) = ξ0. From (11.22), we have

τ ∗ = 1

ξ̄ α
0

arccos

(
(A4 + A1A3)ξ

2
0 − A2A4

A2
3ξ

2
0 + A2

4

)
+ 2 jαπ

ξα
0

(11.26)

and from (11.24)

ξ 2α
0 = 1

2
(2A2 + A2

3 − A2
1) + 1

2

√
(2A2 + A2

3 − A2
1)

2 − 4(A2
2 − A2

4) < 0.

Hence, according to Lemma 11.1, the interior equilibrium E+ of system (11.8) is
locally asymptotically stable with 0 < α ≤ 1. The proof is, thus, complete. �

11.4 Global Stability Analysis

In this section, we extend the analysis to study the global stability conditions [45,
46] for the fractional-order delay differential system. To study the global stability of
the equilibrium points of (11.8), we linearize the system into the form

Dαx(t) = m1x(t) + m2y(t − τ)

Dα y(t) = n1x(t) + n2y(t) + n3y(t − τ)
0 < α ≤ 1. (11.27)

where
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m1 = r − 2x∗

K
− βy∗

1 + σ x∗ + σβx∗y∗

(1 + σ x∗)2
,

m2 = − βx∗

1 + σ x∗ , n1 = βy∗

1 + σ x∗ − σβx∗y∗

(1 + σ x∗)2
,

n2 = −a, n3 = βx∗

1 + σ x∗ .

If the linear fractional differential equation has non-zero equilibrium point, we can
shift equilibrium point to the origin. Put x̄(t) = x(t) − x∗, ȳ(t) = y(t) − y∗, then
the Eqs. (11.27) become

Dα x̄(t) = m1 x̄(t) + m2 ȳ(t − τ)

Dα ȳ(t) = n1 x̄(t) + n2 ȳ(t) + n3 ȳ(t − τ)
0 < α ≤ 1. (11.28)

To study the stability of system (11.8), we take a Laplace transform [47] on both
sides of (11.28). Then, we have

sαX1(s) = m1X1(s) + sα−1ϕ1(0)

+ m2e
−sτ

(
X2(s) +

∫ 0

−τ

e−stϕ2(t)dt

)

sαX2(s) = n1X1(s) + n2X2(s) + sα−1ϕ2(0)

+ n3e
−sτ

(
X2(s) +

∫ 0

−τ

e−stϕ2(t)dt

)
.

(11.29)

Here, it should bementioned that the initial values x̄(t) = ϕ1(t) and ȳ(t) = ϕ2(t)with
t ∈ [−τ, 0]. Additionally, X1(s) and X2(s) are Laplace transforms of x̄(t) and ȳ(t)
with X1(s) = L(x̄(t)) and X2(s) = L(ȳ(t)). The system (11.29) can be rewritten as
follows:

�(s)

(
X1(s)
X2(s)

)
=

(
k1(s)
k2(s)

)
(11.30)

in which

�(s) =
(
sα − m1 −m2e−sτ

−n1 sα − n2 − n3e−sτ

)

and

k1(s) = sα−1ϕ1(0) + m2e−sτ
∫ 0
−τ

e−stϕ2(t)dt

k2(s) = sα−1ϕ2(0) + n3e−sτ
∫ 0
−τ

e−stϕ2(t)dt.



222 11 Fractional-Order Delay Differential Equations with Predator-Prey Systems

�(s) is considered as characteristic matrix of system (11.8) and det�(s) as its
characteristic polynomial. Therefore, the distribution of the eigenvalues of the char-
acteristic polynomial determines the stability of the system (11.8). In other words,
if all roots of the characteristic equation have negative parts, then the equilibrium of
the above fractional-order PP system is Lyapunov globally asymptotical stable if the
equilibrium exists [45]. If we multiply both sides of (11.30) by s, we have

�(s)

(
sX1(s)
sX2(s)

)
=

(
sk1(s)
sk2(s)

)
(11.31)

Therefore, if all roots of the transcendental equation det�(s) = 0 lie in the open
left complex plane, i.e., Re(s) < 0, then we consider (11.31) in Re(s) ≥ 0. In this
restricted area, system (11.31) has a unique solution (sX1(s), sX2(s)), so that

lim
s→0,Re(s)≥o

sXi (s) = 0, i = 1, 2.

From the assumption of all roots of the characteristic equation det�(s) = 0 and the
final-value theorem of the Laplace transform [47], we get

lim
t→+∞ x̄(t) ≡ lim

s→0,Re(s)≥0
sX1(s) = 0,

and lim
t→+∞ ȳ(t) ≡ lim

s→0,Re(s)≥0
sX2(s) = 0.

It implies that the zero solution of the fractional-order PP system isLyapunovglobally
asymptotically stable. Therefore, we arrive at the following result:

Theorem 11.3 If all the roots of the characteristic equation det�(s) = 0 have neg-
ative real parts, then the positive equilibrium points (x∗, y∗) of system (11.8) is
Lyapunov globally asymptotically stable.

11.5 Implicit Euler’s Scheme for FODDEs

Sincemost FODEs do not have exact analytical solutions, approximation and numer-
ical techniques must be used. In addition, most of the resulting biological systems are
stiff.2 The stiffness often appears due to the differences in speed between the fastest
and slowest components of the solutions and due to stability constraints. In addition,
the state variables of these types of models are very sensitive to small perturbations
(or changes) in the parameters that occur in the model. Therefore, efficient use of a
reliable numerical method for dealing with stiff problems is necessary.

Consider the following FODDEs:

2 One definition of stiffness is that the global accuracy of the numerical solution is determined by
stability rather than local error and implicit methods are more appropriate for it.
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Dα y(t) = f (t, y(t), y(t − τ)), t ∈ J = [0, T ],
y(t) =ψ(t), t ∈ [−τ, 0], 0 < α ≤ 1.

(11.32)

Here y(t) = [y1(t), y2(t), . . . , yn(t)]T , f : J × R
n × R

n → R
n satisfies the Lips-

chitz condition, and there exists a positive constant K > 0 such that

‖ f (t, y(t), y(t − τ)) − f (t, x(t), x(t − τ))‖
≤ K {‖y(t) − x(t)‖ + ‖y(t − τ) − x(t − τ)‖}. (11.33)

Theorem 11.4 Problem (11.32) has a unique solution provided that the Lipschitz

condition (11.33) is satisfied and M̄ = 2KTα

�(α + 1)
< 1.

Proof We can apply a fractional integral operator to the differential equation (11.32)
and incorporate the initial conditions, thus converting the equation into the equivalent
equation

y(t) = ψ(0) + 1

�(α)

∫ t

0
(t − s)α−1 f (s, y(s), y(s − τ))ds, (11.34)

which is also a Volterra equation of the second kind. Define the operator L :
C(J,Rn) → C(J,Rn), such that

Ly(t) = ψ(0) + 1

�(α)

∫ t

0
(t − s)α−1 f (s, y(s), y(s − τ))ds. (11.35)

Then, we have

‖Ly(t) − Lx(t)‖
≤ 1

�(α)

∫ t

0
(t − s)α−1 × ‖ f (s, y(s), y(s − τ)) − f (s, x(s), x(s − τ))‖ds

≤ K

�(α)

∫ t

0
(t − s)α−1{‖y(s) − x(s)‖ + ‖y(s − τ) − x(s − τ)‖}ds

≤ K

�(α)

∫ t

0
(t − s)α−1

{
sup
s∈J

‖y(s) − x(s)‖ + sup
s∈[−τ,0]

‖y(s) − x(s)‖ + sup
s∈J

‖y(s) − x(s)‖
}
ds

≤ 2K

�(α)

∫ t

0
(t − s)α−1 sup

s∈J
‖y(s) − x(s)‖ds

≤ 2K

�(α + 1)
‖y − x‖Tα.

Therefore, we obtain

‖Ly(t) − Lx(t)‖ ≤ M̄‖y − x‖.
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Using Banach contraction principle [48], we can deduce that L has a unique fixed
point; this implies that our problem has a unique solution. �

Several numerical methods have been proposed to solve fractional-order differ-
ential equations (FODEs) [36, 49]. The predictor-corrector algorithm is an efficient
and powerful technique for solving FODEs, which is a generalization of the Adams-
Bashforth-Moulton method. The modification of the Adams-Bashforth-Moulton
algorithm is proposed by Diethelm [50] to approximate the fractional-order deriva-
tive (See Appendix B). However, the converted Volterra integral equation (11.34)
has a weakly singular kernel, such that regularization is not necessary anymore. It
appears that there exists only a very small number of software packages for non-linear
Volterra equations. In our case, the kernel may not be continuous and, therefore, the
classical numerical algorithms for the integral part of (11.34) are unable to handle the
solution of Equation (11.32). Therefore, we implement the implicit Euler’s scheme
to approximate the fractional-order derivative.

Given the delay fractional-order model (11.32) and mesh points T = {t0, t1,
. . . , tN }, such that t0 = 0 and tN = T with stepsize h = τ/m. If ψ(t) is a con-
tinuous function, then the solution y(t) for 0 ≤ t ≤ τ (τ is bounded) satisfies the
fractional-order ordinary differential equation

Dα y′(t) = f (t, y(t), ψ(t − τ)), 0 ≤ t ≤ τ,

y(0) = ψ(0) 0 < α ≤ 1.
(11.36)

This equation has a unique solution, where f satisfies Lipschitz conditions and the
solution of (11.36) on [0, τ ] coincides with the solution of (11.32) on [0, τ ]. Once
the solution y is known on [0, τ ], we can repeat the same procedure, starting with
the solution on [0, τ ], to find the solution for τ ≤ t ≤ 2τ , etc. This procedure is
called method of steps,3 and yields a unique defined solution of the resulting system
of FODDEs (11.32), given the initial function ψ(t) on [0, τ ]. Therefore, FODDEs
(11.32) can be numerically solved by a step-by-step fractional-order ODE integrator
provided that the solution is known up to the current integration point.

Next, we will approximate the fractional derivative by a simple quadrature for-
mula, using the Caputo fractional derivative (11.1) of order α, 0 < α ≤ 1, and using
implicit Euler’s approximation as follows (see [37]):

Dα∗ xi (tn) = 1

�(1 − α)

∫ t

0

dxi (s)

ds
(tn − s)−αds

≈ 1

�(1 − α)

n∑
j=1

∫ jh

( j−1)h

[
x j
i − x j−1

i

h
+ O(h)

]
(nh − s)−αds

= 1

(1 − α)�(1 − α)

n∑
j=1

{[
x j
i − x j−1

i

h
+ O(h)

]
× [

(n − j + 1)1−α − (n − j)1−α
]}

h1−α

3 Method of steps is not universal, as it cannot be applied with time-varying delays, which vanish
in some points.
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= 1

(1 − α)�(1 − α)

1

hα

n∑
j=1

[
x j
i − x j−1

i

]
× [

(n − j + 1)1−α − (n − j)1−α
]

+ 1

(1 − α)�(1 − α)

n∑
j=1

[
x j
i − x j−1

i

]
× [

(n − j + 1)1−α − (n − j)1−α
]
O(h2−α).

Setting

G(α, h) = 1

(1 − α)�(1 − α)

1

hα
,

and ωα
j = j1−α − ( j − 1)1−α, (where ωα

1 = 1),
(11.37)

then the first-order approximation method for the computation of Caputo’s fractional
derivative is given by the expression

Dα
∗ xi (tn) = G(α, h)

n∑
j=1

ωα
j

(
xn− j+1
i − xn− j

i

)
+ O(h). (11.38)

From the analysis and numerical approximation, we also arrive at the following
proposition:

Proposition 11.1 The presence of a fractional differential order in a differential
equation can lead to a notable increase in the complexity of the observed behavior,
and the solution continuously depends on all previous states.

11.5.1 Stability and Convergence of Implicit Scheme for
FODDEs

In this section, we prove that the fractional-order implicit difference approximation
(11.38) is unconditionally stable. It then follows that the numerical solution converges
to the exact solution as h → 0. To study the stability of the numerical method, let us
consider a test problem of a linear scalar fractional differential equation

Dα
∗ u(t) = ρ0u(t) + ρ1u(t − τ), t ≥ 0, 0 < α ≤ 1

u(t) = ψ(t), t ∈ [−τ, 0], u(0) = u0
(11.39)

such that ρ0 < 0, |ρ1| < ρ0 and ψ(t) is a continuous and bounded function.

Theorem 11.5 The fully implicit numerical approximation (11.38), to test problem
(11.39) for all t ≥ 0, is consistent and unconditionally stable.

Proof We assume that τ = mh and the approximate solution of (11.39) is of the
form u(tn) ≈ Un ≡ ζn , and u(tn − τ) ≈ ζn−m ; then, the Eq. (11.39) can be reduced
to
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(
1 − ρ0

Gα,h

)
ζn = ζn−1 +

n∑
j=2

ω
(α)
j

(
ζn− j − ζn− j+1

) + ρ1ζn−m/Gα,h, n ≥ m (11.40)

and

(
1 − ρ0

Gα,h

)
ζn = ζn−1 +

n∑
j=2

ω
(α)
j

(
ζn− j − ζn− j+1

)

+ρ1ψ(tn−m)/Gα,h , n = 2, . . .m.

(11.41)

Therefore,

ζn =
ζn−1 +

n∑
j=2

ω
(α)
j

(
ζn− j − ζn− j+1

) + ρ1ζn−m/Gα,h

(
1 − ρ0

Gα,h

) , n ≥ 2. (11.42)

Since
(
1 − ρ0

Gα,h

) ≥ 1 for all Gα,h , then

ζ1 ≤ ζ0, (11.43)

ζn ≤ ζn−1 +
n∑
j=2

ω
(α)
j

(
ζn− j − ζn− j+1

)
, n ≥ 2. (11.44)

Thus, for n = 2, the above inequality implies

ζ2 ≤ ζ1 + ω
(α)
2

(
ζ0 − ζ1

)
.

Using the relation (11.43) and the positivity of the coefficients ω2, we get

ζ2 ≤ ζ1.

Repeating the process, we have from (11.44)

ζn ≤ ζn−1 +
n∑
j=2

ω
(α)
j

(
ζn− j − ζn− j+1

) ≤ ζn−1,

since each term in the summation is negative. Thus, ζn ≤ ζn−1 ≤ ζn−2 ≤ · · · ≤ ζ0.
With the assumption that ζn = |Un| ≤ ζ0 = |U 0|, which entails ‖Un‖ ≤ ‖ψ(t0)‖
and we have stability. �

Of course, this numerical technique can be used both for linear and for non-linear
problems, and it may be extended to multi-term FODDEs as well.
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11.5.2 Numerical Simulations

In this subsection, to verify the effectiveness of the obtained results, some numeri-
cal simulations for the fractional-order PP system (11.8) have been conducted. All
the differential equations are solved using the method proposed in this chapter. In
all numerical runs, the solution has been approximated using the parameter values
given in the captions of the figures. Figures11.2, 11.3 and 11.4 show the numerical
simulations of model (11.8), with different values of the model parameters given
in the corresponding captions. According to the obtained analysis, Fig. 11.2 shows
that the numerical simulations of the model, for particular values of the parameters,
admit limit cycles, whereas Fig. 11.3 shows that periodic solutions arise due to Hopf
bifurcation. When the reproduction number R0 < 1, the semi-trivial equilibrium is
stable (see Fig. 11.4); however, whenR0 > 1, the semi-trivial equilibrium is unstable
and interior equilibrium exists. The interior equilibrium is stable if 1 < R0 ≤ Rc and
a sustained periodic solution is obtained when R0 > Rc.

It has been seen that the fractional derivative damps the oscillation behavior of
the model (see Figs. 11.5, 11.6, 11.7 and 11.8).

Remark 11.3 For α ∈ (0, 1] the fractional order is defined by Caputo sense (11.1)
so that introducing a convolution integral with a power-law memory kernel is useful
to describe memory effects in dynamical systems. The decay rate of the memory
kernel (a time correlation function) depends on α. A lower value of α corresponds
to more slowly decaying time-correlation functions (long memory) [51]. Therefore,
as α → 1, the influence of memory decreases. Therefore, in the above figures, we
observe that the phase portrait gets stretched as the order of the derivative is reduced.
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Fig. 11.2 Solution of PPmodel (11.8)when r = 0.8, k = 5, σ = 0.01,β = 0.5; a = 0.3, andR0 >

Rc > 1 with time-lag τ = 0.1 < τ ∗ (top) and τ = τ ∗ = 0.86 (bottom), which display periodic
outbreak of the disease due to a Hopf bifurcation when τ = τ ∗
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Fig. 11.3 Solution of PP model (11.8), when r = 0.2, k = 5, σ = 0.01, β = 0.2; a = 0.2, and
R0 = 4.7 > Rc = 3with time-lag τ = 0.01 < τ ∗ (top) and τ = 12 (bottom),whichdisplayperiodic
outbreak of the disease due to a Hopf bifurcation when τ = τ ∗
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Fig. 11.4 Solution of delayed PP model (11.8). We have asymptotically stable semi-trivial equi-
librium E1 = (K , 0) when R0 < 1, with r = 0.2, K = 5, σ = 0.01, β = 0.2, a = 1; and τ = 1

11.6 Concluding Remarks

In this chapter, we have introduced a fractional-order PP model with time-delay in
the response function.We have also studied local stability and global stability behav-
iors of all the feasible equilibrium states of the system. It has been found that Hopf
bifurcation occurs when the delay passes through a sequence of critical values τ ∗,
with fractional order 0 < α ≤ 1. We derived the conditions in terms of the threshold
parameter R0, which guarantees the asymptotic stability of the semi-trivial and inte-
rior equilibria.WhenR0 < 1, the semi-trivial equilibriumE1 is asymptotically stable
for all values of τ > 0 and unstable when R0 > 1. If all roots of the characteristic
equation have negative parts, then the zero solution of the fractional-order delay PP
system is Lyapunov globally asymptotical stable. If R0 > Rc > 1, then there exists
τ ∗ > 0 such that τ ∈ [0, τ ∗) the interior equilibrium E+ is asymptotically stable, and
unstable when τ > τ ∗.
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Fig. 11.5 Solution of PP model (11.8) when r = 0.2, k = 5, σ = 0.01, β = 0.2; a = 0.2, and
R0 = 4.7 > Rc = 3with time-lag τ = 0.01 < τ ∗ (top) and τ = 12 (bottom),whichdisplayperiodic
outbreak of the disease due to a Hopf bifurcation when τ = τ ∗
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Fig. 11.6 The behavior of the PP model (11.8) with different fractional-order 0 < α ≤ 1, with the
same parameter values of Fig. 11.5. The fractional derivative damps the oscillation behavior
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Fig. 11.7 The behavior of the PP model (11.8) with different initial conditions τ = 0.2 < τ ∗. The
fractional derivative damps the oscillation behavior
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Fig. 11.8 The behavior of the PP model (11.8) with different initial conditions and τ = 1 > τ ∗.
The fractional derivative damps the oscillation behavior

We also introduced a suitable numerical method based on an implicit scheme
for FODDEs. The numerical simulations demonstrate the accuracy and efficiency of
the numerical scheme. Fractional-order models with time-delay are consistent with
the dynamics of real PP interactions. We have seen from the numerical simulations
that the fractional derivative improves the stability of the solutions and sometimes
dampens the oscillation behavior of the solutions.

In the next chapter, we extend the analysis to investigate the dynamics of HCV
infection using FODDEs.
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