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Delay differential equations (DDEs) are
differential equations having retarded
arguments. They arise in many realistic
models of problems in science, engineering,
and medicine, where there is a time lag or
after-effect. Numerical techniques for such
problems may be regarded as extensions of
dense-output methods for ordinary
differential equations (ODEs), but scalar
DDEs are inherently infinite dimensional
with a richer structure than their ODE
counterparts.

Christopher T. H. Baker

Retarded differential equations, Journal of
Computational and Applied Mathematics 125
(2000) 309–335.



Preface

Delay differential equations (DDEs) or functional differential equations arise in
models representing biological phenomena when the time-delays occurring in these
phenomena are considered. Mathematical modeling using such DDEs is widely
applied for performing analysis and predictions in various areas of life sciences,
such as population dynamics, epidemiology, immunology, physiology, and neural
networks. The memory or time-delays in these models are related to the duration of
certain hidden processes, such as the stages of a life cycle, the time between the start
of a cell infection and the production of new viruses, the infection period, and the
immune period. In ordinary differential equations (ODEs), the unknown state and its
derivatives are evaluated at the same time instant. In DDEs, however, the evolution of
the system at a certain time instant depends on the past history/memory. Introduction
of such time-delays in a differential model significantly improves the dynamics of the
model and increases the complexity of the system. Therefore, studying qualitative
and quantitative behaviors of such class of differential equations is essential.

Here, parts of the theory of differential equations and functional differential equa-
tions are discussed that can or have been applied to modeling biological systems.
Models with fractional-order derivatives and models with environmental noise
(stochastic models) are also investigated. This book is different from other books
on this topic; this is because both qualitative and quantitative features of DDEs
and their applications in biosciences are studied herein. This book covers various
important topics related to DDEs, including numerical methods, stability, inverse
problems, parameter estimations, sensitivity analysis, optimal control, and biolog-
ical systems with memory (time-delays). This book is useful to a wide range of
mathematicians and specialists in the fields of mathematical biology, mathemat-
ical modeling, life sciences, immunology, and infectious diseases. Thus, it can be
recommended as a textbook for graduate and postgraduate students, bridging the gap
between mathematics and various areas of bioscience research.
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viii Preface

In this monograph, we discuss a wide range of DDEs with integer- and fractional-
order derivatives and show how they have a richer mathematical framework for
the analysis of dynamical systems (compared with differential equations without
memory). This monograph consists of two parts, organized into 13 chapters. Part
I (Chaps. 1–7) is devoted to the study of the qualitative and quantitative features
of DDEs, whereas Part II (Chaps. 8–13) discusses certain applications of DDEs
in biosciences. Chapter I provides a brief introduction and discusses the qualitative
features ofDDEs. InChapter II, we study numerical solutions andmethods forDDEs.
In Chapter III, we investigate stability concepts of the numerical schemes of DDEs.
Chapter IV provides unconditionally stable numerical schemes for integro-DDEs,
which are suitable for stiff and non-stiff problems. In Chapter V, we explore the
inverse problem with DDEs as well as parameter estimation and parameter identifi-
ably of DDEs. In Chapter VI, we estimate sensitivity functions and analysis of DDEs
to evaluate how the state variable can varywith respect to small variations in the initial
data and parameters (or constant lags) appearing in the model. Chapter VII discusses
certain features of stochastic delay differential equations (SDDEs), andwe also study
some efficient numerical schemes for SDDEs. Chapter VIII shows how DDEs have,
prospectively, more interesting dynamics for epidemics and infectious diseases. In
Chapter IX, we study DDEs with tumor-immune interaction in presence of external
treatment and optimal control. In Chapter X, we investigate DDEs for ecological
and predator-prey systems. In Chapter XI, we explore fractional-order DDEs for
predator-prey systems. In Chapter XII, we study the dynamics of Hepatitis C viral
infection through fractional-order DDEs. In Chapter XIII, we study stochastic delay
differential equations for the spread of COVID-19. In the last chapter, we discuss
some current challenges related to numerical solutions and mathematical modeling
with DDEs.

January 2021 Fathalla A. Rihan
Helwan University

Cairo, Egypt

United Arab Emirates University, Al-Ain, Abu
Dhabi, United Arab Emirates
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Part I
Qualitative and Quantitative Features of

Delay Differential Equations

Delay differential equations (DDEs) are also referred to as time-delay systems, sys-
tems with after-effect, memory, time-delay, hereditary systems, equations with devi-
ating argument, or differential-difference equations. They belong to the class of
functional differential equations that are infinite-dimensional, as opposed to ordi-
nary differential equations (ODEs).

Recently, this class of differential equations has received considerable attention
from researchers because the introduction of memory terms in a differential model
significantly increases its complexity. Therefore, studying qualitative and quantita-
tive behavior, numerical treatment of such models, parameter estimation, and sensi-
tivity and stability analyses of delay integro-differential equations as well as stochas-
tic delay differential equations (SDDEs) are essential. In this part (Chaps. 1–7), we
will study the qualitative and quantitative features of DDEs, which have not been
adequately investigated in the literature until now.

http://dx.doi.org/10.1007/978-981-16-0626-7_1
http://dx.doi.org/10.1007/978-981-16-0626-7_7


Chapter 1
Qualitative Features of Delay Differential
Equations

1.1 Introduction

Ordinary and partial differential equations have long played an important role in
bioscience, and they are considered to continue to serve as indispensable tools in
future investigations as well. However, they frequently provide only a first approx-
imation of the systems under consideration. More realistic models need to include
some of the past states of these systems as well; that is, a real system needs to be
modeled using differential equations with time-delays (or time-lags). Delay models
formulated in mathematical biology include several types of functional differential
equations, such as delay differential equations (DDEs), neutral delay differential
equations (NDDEs), integro-differential equations, and retarded partial differential
equations (RPDEs). Recently, stochastic delay differential equations (SDDEs) have
attracted significant attention from researchers.

To create more realistic mathematical models for problems with time-lag or after-
effect, we need to consider using retarded functional differential equations (RFDEs)
in place of ordinary differential equations (ODEs), such as

y′(t) = f

(
t, y(t), y(α(t, y(t))),

∫ t

−∞
K(t, s, y(t), y(s))ds

)
, t ≥ t0, (1.1)

where α(t, y(t)) ≤ t and y(t) = ψ(t), t ≤ t0. Such retarded equations form a class
of equations that is, in some sense, between ODEs and time-dependent partial differ-
ential equations (PDEs), and they generate infinite-dimensional dynamical systems.
RFDEs (1.1), where the integral term is absent, are usually called delay differential
equations (DDEs) and they assume forms such as

y′(t) = f (t, y(t), y(α(t, y(t)))) , α(t, y(t)) ≤ t. (1.2)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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Neutral delay differential equations (NDDEs) are defined by equations of the form

y′(t) = f
(
t, y(t), y(α(t, y(t))), y′(β(t, y(t)))

)
, (1.3)

where α(t, y(t)), β(t, y(t)) ≤ t . The introduction of the “lagging” or “retarded”
arguments α(t, y(t)), β(t, y(t)) is to reflect an “after-effect”; e.g., the gestation
period in population modeling.

Mathematical modeling of several real-life phenomena in bioscience requires
“differential equations” that depend partially on the past history rather than only
the current state. Such examples occur in population dynamics (taking into account
the gestation and the maturation time), infectious diseases (accounting for the incu-
bation periods), physiological and pharmaceutical kinetics (modeling, for example,
hematopoiesis and respiration, where the delays are, respectively, due to cell matu-
ration and blood transport between the lung and brain, etc.), chemical and enzyme
kinetics (such as mixing reactants), biological immune response (in which the anti-
body production by the B-cell population depends on the antigenic stimulation at
an earlier time), navigational control of ships and aircraft (with large and short lags,
respectively), and more general control problems. An early use of DDEs was to
describe technical devices such as control circuits. In that context, the delay is a
measurable physical quantity; e.g., the time that the signal travels to the controlled
object, the reaction time, and the time that the signal takes to return. Similarly, there
are parallels in the reaction of the body to pain, for example. Refer to [1–11] for
further examples of DDEs in biomathematics.

In many applications in the field of life sciences, a time-delay is introduced when
there are certain hidden variables and processes that are not well understood but are
known to cause a time-lag [12]. Thus, a delay may, in fact, represent a reaction chain
or a transport process. We shall see later that the mathematical properties of DDEs
justify such approximations. A well-known example is Cheyne-Stokes respiration
(or periodic breathing), discovered in the nineteenth century, wherein some people
show periodic oscillations of breathing frequency under constant conditions [13, 14].
This strange phenomenon is due to a delay caused by cardiac insufficiency in the
physiological circuit controlling carbon dioxide levels in the blood.

Time-delays occur naturally in biological systems, e.g., in a chemostat (a lab-
oratory device for controlling the supply of nutrients to a growing cell population
[15]). The use of ODEs to model a chemostat carries the implication that changes
occur instantaneously. This is a potential deficiency of the ODE model. There are
two sources of delays in the chemostat model: (i) delays due to the possibility that
the organism stores the nutrients (so that the “free” nutrient concentration does not
reflect the nutrients available for growth) and (ii) delays due to the cell cycle; see
[16–18].

When delays are introduced in first-order non-linear differential equations, or in
discrete difference equations, erratic solutions can appear (such a chaotic behavior
is also observed in nature); see [19, 20] and Fig. 1.1.

Among the classical references for DDEs are the books by Bellman and Cooke
[21] and Elsgol’ts and Norkin [22]. These are rich sources for analytical techniques
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and understanding the many interesting examples. Kolmanovskii et al. [23, 24] gave
a rigorous treatment for a wide range of problems. The monographs of Hale [25] and
Hale and Verduyn Lunel [26] are standard sources for understanding the theory of
delay equations. Another important monograph is by Diekmann et al. [27]. Kuang
[28] and Banks [29] pay particular attention to problems in population dynamics,
wherein the former looked at neutral equations. Gopalsamy [30] andGyöri and Ladas
[31] addressed the question of oscillations in DDEs. Early books by Cushing [32],
Driver [33], Halanay [34], MacDonald [18, 35], May [20], and Waltman [36] have
been very stimulating for the development of the field.

Our concern in this chapter is with the qualitative features of DDEs.We show that
DDEs have a richer mathematical framework for the analysis of biosystem dynamics
compared with ODEs. First, we start from simple real-life problems and formulate
them in terms of DDEs; see Sect. 1.2. We then briefly study the stability of delay
models described by linear and non-linear DDEs, and the conditions that ensure
stable behavior; see Sects. 1.3, 1.4 and 1.5.

1.2 Delay Models in Population Dynamics

In this section,we briefly discuss some simplemathematicalmodelswith time-delays
of population dynamics. Naturally, the growth of a population subject to maturation
delay is modeled by using either a discrete delay or a delay continuously distributed
over the population. The use of a discrete delay might be seen as a rough approx-
imation in modeling the delay distribution over a large population size. However,
it is much more realistic to assume the delay being continuously distributed by a
continuous distribution function, with a mean delay equal to the discrete delay.

1.2.1 Logistic Equation with Discrete Delay

Let y(t) be the population of a certain species that is independent of other species.
The simple model of exponential growth is

y′(t) = λy(t) (λ > 0). (1.4)

From the hypothesis that the growth rate will decrease with increasing population
y(t) due to lack of resources (food and space), one arrives instead at the deterministic
model of Verhulst (1845)

y′(t) = r y(t)

(
1 − y(t)

K

)
, (1.5)
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where λ in (1.4) is replaced by r

(
1 − y(t)

K

)
, with K representing the level of

food availability. The derivative of y is determined by the current value of y(t). All
solutions of this equation, with initial value y(0) > 0, tend asymptotically to K as
t → ∞.

If we now assume that the growth rate depends on the population of the preceding
generation and take into account the hatching and maturation periods, then the above
equation is replaced by a delay equation. Hutchinson (1948) [37] was one of the
first to introduce a delay in a biological model. He modified the classical logistic
equation (1.5) into the form

y′(t) = r y(t)

(
1 − y(t − τ)

K

)
. (1.6)

Here, the derivative depends on y(t) and the earlier state y(t − τ),where the lag τ > 0
represents the maturation time of individuals in the population. The non-negative
parameters r and K are known as the intrinsic growth rate and the environmental
carrying capacity, respectively.

Now, we illustrate how the presence of a delay in a differential equation can
lead to a notable increase in the complexity of the observed behavior (stable steady
states may be destabilized and consequently large amplitude oscillations can occur
[38].) Consider a delayed logistic equation (1.6), which can be changed (by putting
Ky(t) = y(tτ), α� = bτ ) into the form

dy(t)

dt
= α�y(t)[1 − y(t − 1)]. (1.7)

It is observed that the qualitative picture (Fig. 1.1) of the solution set of Eq. (1.7) is
significantly dependent upon the delay parameter τ and upon the initial function. For
“large” values of τ , the equation possesses undamped oscillatory solutions; whereas
for small values of τ , the equation behaves like an ODE. For 0 < α� < π/2, x = 1
is a stable steady state; but for α� > π/2, chaotic behavior and periodic solution can
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Fig. 1.1 Solutions of DDE y′(t) = α�y(t)[1 − y(t − 1)]: a for differing α�, b for differing initial
functions ψ(t) for t ≤ 0



1.2 Delay Models in Population Dynamics 7

arise [39]. For a small α� − π/2, Morris [40] proved that the period is approximately
p ∼ 4 + 16(α� − π/2)[π(3π − 2]. We note from Fig. 1.1a that the stable periodic
solution of (1.7) rapidly acquires a spiky form as α� increases; see Fowler [38]. The
numerical solution at α� = 3.5 consists of a series of well-separated pulses. This
simple example illustrates many of the complexities that arise with delays and has
the advantage that results may be easily and explicitly worked out.

1.2.2 Logistic Equation with Distributed Delay

Although Hutchinson’s approach leading to Eq. (1.6) is quite useful to explain the
appearance of sustained oscillations in a single-species populationwithout any preda-
tory interaction of other species, the underlying argument is somewhat questionable.
Wemay ask: How can it be that the present change in population size depends exactly
on the population size of time τ units earlier? The question has led people to consider
integro-differential equations [41]

y′(t) = r y(t)

(
1 − 1

K

∫ t

t−τ

y(s)G(t − s)ds

)
, t ≥ t0. (1.8)

Here, the derivative depends on y(t) and all the previous states after the initial
moment t0. The delay is continuously distributed and the problem is said to have a
fixed time-lag (or finite-memory) and a bounded retardation because the difference
between t and t − τ is fixed and bounded.

MacDonald [35] used the integro-differential equation

y′(t) = r y(t)

{
1 − y(t)

K
−

∫ t

0
y(s)G(t − s)ds

}
, (1.9)

for parasite population growth that completes its life cycle within the same host and
does not kill the host. (Immunological resistance by the host depends on exposure to
the parasite population.) The delay here is continuously distributed and the problem
is said to have an unbounded time-lag because the difference between 0 and t is
unbounded. The initial time (t = 0) represents the start of the experiment or the time
at which the naive host ingests the parasite. Here, it is possible to adopt the simple
memory function G(t) = constant .

1.2.3 Delayed Lotka-Volterra System

Many mathematical studies using delay models to study ecology are built upon
various generalizations of Volterra’s integro-differential system with infinite delays,
which are motivated by the characteristic nature of predator-prey dynamics, such as
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x ′(t) = b1x(t)
(
1 − c11x(t) − c12

∫ t
−∞ y(s)k1(t − s)ds

)
,

y′(t) = b2y(t)
(
−1 + c21

∫ t
−∞ x(s)k2(t − s)ds

)
,

(1.10)

where the variables x(t), y(t) represent the populations of the prey and the predator,
and the parameters specifying the birth and interaction rates are non-negative1 (see
[32]).

In studying a similar interaction for predator-prey models, Wanggersky and Cun-
ningham (1975) have used equations such as

x ′(t) = ax(t)
(
m−x(t)

m

)
− bx(t)y(t),

y′(t) = −cy(t) + dx(t − τ)y(t − τ).
(1.11)

More general delayed predator-prey models take the form

x ′(t) = x(t)F(t, xt , yt ),
y′(t) = y(t)G(t, xt , yt ),

(1.12)

where xt (θ) = x(t + θ), yt (θ) = y(t + θ) for θ ≤ 0, and F , G satisfy appropriate
conditions (namely, ∂F/∂xt ≤ 0, ∂F/∂yt < 0; ∂G/∂xt > 0, and ∂G/∂yt ≤ 0), and
(1.12) has positive solutions.

A question of great importance is how does the qualitative behavior depends on
the form and magnitude of the delays? In other words, are discrete and continuous
delays equivalent from the perspective of the qualitative dynamical properties of the
model? The paper by [12] examines certain aspects of this question.

In the next two sections, we discuss the stability of different types of DDEs.

1.3 Stability of DDEs

Time-delay is, in many cases, a source of instability. However, for some systems, the
presence of delay can have a stabilizing effect. In the well-known example

y′′(t) + y(t) − y(t − τ) = 0, (1.13)

the system is unstable for τ = 1, but it is asymptotically stable when τ = 1. The
approximation y′(t) ≈ [y(t) − y(t − τ)]/τ explains the damping effect. The stabil-
ity analysis and robust control of time-delay systems are, therefore, of theoretical
and practical importance.

In the following subsections, we present a brief summary of some theories and
analysis about the stability of linear and non-linear DDEs. We should first mention

1 There are multiple variations of these equations, including forms with differing limits of integra-
tion.
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the physical and mathematical interpretations of local and global stability. Local
stability of an equilibrium point means that if you put the system somewhere near the
point, then it will move itself to the equilibrium point in some time. However, global
stabilitymeans that the system will come to the equilibrium point from any possible
starting point (i.e., there is no “nearby” condition). Moreover, in local asymptotic
stability, the solutions of the systemmust approach an equilibrium point under initial
conditions close to the equilibrium point. Whereas in global asymptotic stability, the
solutions must approach an equilibrium point under all initial conditions.

1.3.1 Stability of Linear Constant Coefficient DDEs

Consider a simple delay model of population growth given by the following linear
DDE:

y′(t) = λy(t) + μy(t − τ), t ≥ t0,
y(t0) = ψ(t), t ≤ t0.

(1.14)

One of the fundamental methods for finding the solution of (1.14) is to build up the
solution as a sum of simple exponential terms. Assuming the solution to be of the
form y(t) = cest (where c, and s are constants), it will be a solution of (1.14) if and
only if s is a zero of the transcendental function

h(s) = s − λ − μe−sτ . (1.15)

(The equation h(s) = 0 is called the characteristic equation of (1.14), and sr is the
characteristic root if it is a zero of this equation.) Bellman and Cooke [21] observed
that the roots sr of (1.15) are infinite in number and complex conjugate and that all
lie in the left half-plane Re(s) < c, for some constant c.

Here,we summarize the necessary and sufficient conditions for the “asymptotical”
stability of the linear DDEs (1.14). Driver [33], in the following theorem, provided
the conditions for DDE (1.14) to be stable:

Theorem 1.1 A necessary and sufficient condition for all continuous solutions of
(1.14) to approach zero as t → ∞ is that all the characteristic roots have negative
real parts.

The following results impose conditions on λ and μ in (1.15) for the roots of
h(s) = 0 to have negative real parts (Re(s) < 0):

• When λ and μ are complex. This case is also considered by Barwell [42] and he
proved that: A sufficient condition that all the roots of (1.15) have negative real
parts is

|μ| ≤ −Re(λ). (1.16)
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• When λ and μ are real, all roots of equation (1.15) have negative real parts if and
only if (i) λ < 1, (i i) λ < −μ

√
ζ 2 + λ2, where ζ is the root of ζ = λ tan(ζ τ )

such that 0 < ζτ < π (if λ = 0, take ζ = 1
2π/τ ); see Bellman and Cooke [21].

• When λ = 0 andμ is complex. This case has been considered by Barwell [42], and
the result is: For μ = reiφ , a sufficient condition that all the roots of (1.15) have
negative real parts is (i) Re(μ) < 0 ( 12π < φ < 3

2π), (i i) 0 < rτ < min( 32π −
φ, φ − 1

2π).

1.3.2 Asymptotical Stability Region for Linear DDEs

To find the asymptotical stability region [24] (which depends on the lag term τ ),
suppose, without any loss of generality, that τ = 1 in (1.14). We search for (λ, μ)

values for which the first solution s crosses the imaginary axis (Re(s) = 0), i.e.,
s = iθ for θ real. If we insert this into (1.15), we obtain

λ = −μ for θ = 0 (s real),

λ = iθ − μe−iθ for θ 	= 0.

By separating the real and imaginary parts,we getλ = θ cos θ

sin θ
, μ = − θ

sin θ
valid for

all real λ and μ. Thus, the stability region of y′(t) = λy(t) + μy(t − 1) is bounded
by μ = −λ and the parametrized curve λ = θcot (θ), μ = −θ/sin(θ); see Fig. 1.2.

A smaller subset of the stability region, which has been classically consid-
ered in [42], is given by the set of pairs (λ, μ) such that the solution y(t) of
(1.14) asymptotically vanishes independently of the lag τ (in the (λ, μ)-plane:

 = {

(λ, μ) ∈ R
2| λ + |μ| < 0

}
).

We next extend this analysis to linear neutral DDEs.

1.3.3 Stability of Linear NDDEs

Consider a linear neutral delay differential equation of the form

y′(t) = λy(t) + μy(t − τ) + νy′(t − τ), t ≥ t0,
y(t0) = ψ(t), t ≤ t0.

(1.17)

We summarize the necessary and sufficient conditions for the stability of linear
NDDEs (1.17) as follows:

Theorem 1.2 Every solution (of the form y(t) = cest ) of (1.17) tends to zero as
t → ∞ if all roots of the characteristic equation
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Analytical Stability Region for DDE: y’(t)= λ y(t)+μ y(t−1)

λ

μ

(1,−1)

↑  ( θ .cot( θ ) , − θ /sin( θ ) )

←  μ  = − λ

 Stability Region

Fig. 1.2 Asymptotical stability region in (λ, μ)-plane when solvingDDE: y′(t) = λy(t) + μy(t −
1), t ≥ 0

s = λ + μe−τ s + νse−τ s (1.18)

have negative real parts and are bounded away from the imaginary axis.

Bellen et al. [43] gave a sufficient condition for the stability of the test equation (1.17)
in the following theorem.

Theorem 1.3 A sufficient condition for all the roots of (1.18) to have negative real
parts is

|λν̄ − μ̄| + |λν + μ| < −2Re(λ).

(λ, μ, and ν are complex parameters.)

Remark 1.1 If λ, μ, and ν are real, then the condition |λν̄ − μ̄| + |λν + μ| <

−2Re(λ) is equivalent to the condition |μ| < −λ and |ν| < 1. If λ and μ are com-
plex and ν = 0, then the hypothesis of Theorem 1.2 reduces to |μ| < −Re(λ), which
gives a sufficient condition for the stability of the test equation (1.14).

1.3.4 Asymptotic Stability Region for Linear NDDEs

Suppose that τ = 1 in Eq. (1.17). We need to search for the stability regions in terms
of parameters (λ,μ) for which the first solution s of (1.18) crosses the imaginary
axis (Re(s) = 0), i.e., s = iθ for θ real. By separating the real and imaginary parts,
we obtain
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↓

ν  = −0.5
↑

Fig. 1.3 Asymptotical stability regions when solving NDDE: y′(t) = λy(t) + μy(t − 1) +
νy′(t − 1), t ≥ 0

μ = −θ

sin(θ)
+ θν cot(θ) for θ 	= 0; (1.19)

λ = −μ cos(θ) − θν sin(θ) for θ 	= 0. (1.20)

The stability regions for the NDDE (1.17) in the space of parameters (λ, μ) for
ν = −0.9,−0.5, 0.5, 0.9 are shown in Fig. 1.3. Equation (1.17) is always unstable
for |ν| > 1; see [24].

1.4 Stability of Non-linear DDEs and Contractivity
Conditions

Consider a more general, non-linear DDE with a fixed time-lag τ

y′(t) = f (t, y(t), y(t − τ)), t ≥ t0,
y(t) = ψ(t), t ≤ t0,

(1.21)

where y ∈ [t0,∞] → C
n , f : [t0,∞) × C

n × C
n → C

n andψ ∈ [t0 − τ, t0] → C
n .

We wish to examine the effect that a small change in the initial conditions has on a
solution. Thus, we consider another system, defined by the same function f (t, y, x)
of (1.21) but with another initial condition:
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z′(t) = f (t, z(t), z(t − τ)), t ≥ t0,
z(t) = φ(t), t ≤ t0.

(1.22)

In the sense of Lyapunov [24], the stability of the solution of (1.21) is defined by the
following definition:

Definition 1.1 If there exists a norm on C
n such that for every t ≥ t0, the solution

of (1.21) is said to be

(1) stable (with respect to perturbing the initial function), if for each ε > 0 there
exists δ = δ(ε, t0) such that ‖y(t) − z(t)‖ ≤ ε when ‖ψ(t) − φ(t)‖ ≤ δ;

(2) asymptotically stable, if it is stable and ‖y(t) − z(t)‖ → 0 as t → ∞;
(3) uniformly asymptotically stable, if under condition (i i) the number δ = δ(ε) is

independent of t0;
(4) globally uniformly asymptotically stable, if δ can be an arbitrarily large, finite

number;
(5) ξ -exponentially stable, if it is asymptotically stable and, given t0, there exists a

finite constant K such that ‖y(t) − z(t)‖ ≤ Ke−ξ(t−t0),

where y(t) and z(t) are solutions of (1.21) and (1.22), respectively, and ψ(t) and
φ(t) are distinct and continuous functions.

Definition 1.2 The problem (1.21) is contractive (with respect to perturbing the
initial function) if for every t ≥ t0:

‖y(t) − z(t)‖ ≤ max
t≤t0

‖ψ(t) − φ(t)‖

holds.

Corollary 1.1 The zero solution of (1.21) is stable if there exists a norm on Cn such
that for every t ≥ t0:

‖y(t)‖ ≤ max
t≤t0

‖ψ(t)‖.

The following theorem provides sufficient conditions for the contractivity of (1.21)
(in the sense described above):

Theorem 1.4 (Contractivity Condition [44]) For a given inner product
〈
., .

〉
in C

n

and the corresponding norm ‖.‖, let σ(t) and γ (t) be continuous functions such that

σ(t) ≥ sup
z,y1 ,y2∈Cn

y1 	=y2

Re
〈
( f (t, y1, z) − f (t, y2, z), y1 − y2)

〉
‖y1 − y2‖2 (1.23)

and

γ (t) ≥ sup
y,z1 ,z2∈Cn

z1 	=z2

‖ f (t, y, z1) − f (t, y, z2)‖
‖z1 − z2‖ . (1.24)
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If

σ(t) + γ (t) ≤ 0, for every t ≥ t0, (1.25)

then it holds that

‖y(t) − z(t)‖ ≤ max
x≤to

‖ψ(x) − φ(x)‖, t ≥ t0. (1.26)

Corollary 1.2 Suppose that f (t, y(t), y(t − τ)) = λy(t) + μy(t − τ), as in
Eq. (1.14). Then, σ(t) = Re(λ) and γ (t) = |μ|. In this case, if Re(λ) ≤ −|μ|, using
theorem (1.4) we get |y(t)| ≤ max

t≤t0
|ψ(t)| for every t ≥ t0.

To prove Theorem 1.4, the following theorems are needed:

Theorem 1.5 Consider the initial value problems of the form

y′(t) = λ(t)y(t) + g(t), t ≥ t0,
y(t0) = y0,

(1.27)

with y, λ, g : [t0,+∞) → C and Re(λ(t)) < 0 for every t ≥ t0. Then, the solution
y(t) of the initial value problem (1.27) is such that:

|y(t)| ≤ max

{
|y0|; max

t0≤x≤t
|g(x)/(−Re(λ(x)))|

}
.

Proof Define A(t) := ∫ t
t0

λ(x)dx ; we note that Re(A(t)) < 0 for every t ≥ t0. The
solution of (1.27) is

y(t) = y0e
A(t) + eA(t)

∫ t

t0

e−A(x)g(x)dx .

We have that

|
∫ t

t0
e−Re(A(x))g(x)dx | = |

∫ t

t0

[
−Re(λ(x))e−Re(A(x))g(x)/(−Re(λ(x)))

]
dx |

≤ max
t0≤x≤t

{|g(x)/(−Re(λ(x)))|} |
∫ t

t0
−Re(λ(x))e−Re(A(x))dx |,

and ∫ t

t0

−Re(λ(x))e−ReA(x))dx = e−Re(A(t)) − 1.

Therefore,
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|
∫ t

t0

e−Re(A(x))g(x)dx | ≤ max
t0≤x≤t

{g(x)/(−Re(λ(x)))} |e−Re(A(t)) − 1|.

Hence:

|y(t)| ≤ eRe(A(t))|y0| + (1 − eRe(A(t))) max
t0≤x≤t

|g(x)/(−Re(λ(x))|,

and so, for every t ≥ t0:

|y(t)| ≤ max

{
|y0|; max

t0≤x≤t
|g(x)/(−Re(λ(x)))|

}
.

Theorem 1.6 Consider, two initial value problems,

y′(t) = f (t, y(t), u(t)), t ≥ t0,
y(t0) = y0,

(1.28)

and

z′(t) = f (t, z(t), v(t)), t ≥ t0,
z(t0) = z0,

(1.29)

with f : [t0,+∞) × C
n × C

n → C
n and y, z, u, v: [t0,+∞) → C

n, and y0 	= z0.
Assume there exists an inner product

〈
., .

〉
onCn such that (1.25) holds (‖x‖ = 〈

x, x
〉

for every x ∈ C
n). Then, for every t ≥ t0 :

‖y(t) − z(t)‖ ≤ max

{
‖y0 − z0‖; max

t0≤x≤t
{γ (x)‖u(x) − v(x)‖/(−σ(x)))}

}
.

Proof We have

1

2

d

dt
‖y(t) − z(t)‖2 = Re

〈
y′(t) − z′(t), y(t) − z(t)

〉

= Re
〈
f (t, y(t), u(t)) − f (t, z(t), v(t)), y(t) − z(t)

〉

= Re
〈
f (t, y(t), u(t)) − f (t, y(t), v(t)), y(t) − z(t)

〉+
Re

〈
f (t, y(t), v(t)) − f (t, z(t), v(t)), y(t) − z(t)

〉
.

It follows from the definitions of σ(t) and γ (t) and from Schwartz inequality that

1

2

d

dt
‖y(t) − z(t)‖2 ≤ ‖ f (t, y(t), u(t)) − f (t, y(t), v(t))‖‖y(t) − z(t)‖ + σ(t)‖y(t) − z(t)‖2

≤ γ (t)‖u(t) − v(t)‖‖y(t) − z(t)‖ + σ(t)‖y(t) − z(t)‖2.
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Define
Y (t) := ‖y(t) − z(t)‖.

Note that Y (t) > 0 for every t > t0 because we assume that the function f is such
that (1.28) has a unique solution y(t) for every initial condition y(t0) = y0.
Then,

1

2

d

dt
‖y(t) − z(t)‖2 = ‖y(t) − z(t)‖ d

dt
‖y(t) − z(t)‖ = Y (t)Y ′(t),

so we have
Y (t)Y ′(t) ≤ σ(t)Y 2(t) + γ (t)‖u(t) − v(t)‖Y (t),

and hence
Y ′(t) ≤ σ(t)Y (t) + γ (t)‖u(t) − v(t)‖.

Define g(t) := γ (t)‖u(t) − v(t)‖; Therefore,

Y ′(t) ≤ σ(t)Y (t) + g(t),

and, by Theorem 1.5, for t ≥ t0:

Y (t) ≤ max

{
Y0; max

t0≤x≤t
g(x)/(−σ(x))

}
,

i.e.,

‖y(t) − z(t)‖ ≤ max

{
‖y0 − z0‖; max

t0≤x≤t
{γ (x)‖u(x) − v(x)‖/(−σ(x)))}

}
.

Proof Theorem 1.4. From Theorem 1.6 we know that, for every t ≥ t0, the solutions
y(t) and z(t) of (1.21) and (1.22), respectively, are such that

‖y(t) − z(t)‖ ≤ max
{‖ψ(t0) − φ(t0)‖;maxt0≤x≤t γ (x)‖y(x − τ) − z(x − τ)‖/(−σ(x))

}
.

Assume that γ (t) ≤ −σ(t) and τ > 0 for every t ≥ t0; therefore:

‖y(t) − z(t)‖ ≤ max

{
‖ψ(t0) − φ(t0)‖; max

t0≤x≤t
‖y(x − τ) − z(x − τ)‖

}
,

i.e.,
‖y(t) − z(t)‖ ≤ max

t≤t0
{‖ψ(t) − φ(t)‖} .

Therefore, the DDE (1.21) is stable if conditions (1.23)–(1.25) are satisfied. �

Next, we will study global stability using Lyapunov functionals.
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1.5 Stability of DDEs in Lyapunov Method

Lyapunov functions are an essential tool in the stability analysis of dynamical sys-
tems, both in theory and applications.As in systemswithout delay, an efficientmethod
for stability analysis of DDEs is the Lyapunov method. For DDEs, there exist two
main Lyapunov methods: the Krasovskii method of Lyapunov functionals [45] and
the Razumikhin method of Lyapunov functions [46, 47]. The two Lyapunov meth-
ods for linear DDEs result in linear matrix inequalities (LMIs) conditions. The LMI
approach to analysis and design of DDEs provides constructive finite-dimensional
conditions, despite significant model uncertainties [48].

Consider a simple DDE of the form

y′(t) = f (t, y(t − τ)), t ≥ t0, (1.30)

where f : R × C[−τ, 0] → R
n is continuous in both arguments and is locally Lip-

schitz continuous in the second argument. We assume that f (t, 0) = 0, which guar-
antees that (1.30) possesses a trivial solution y(t) = 0. The system is uniformly
asymptotically stable if its trivial solution is uniformly asymptotically stable.

The core concept of Lyapunov stability theory is to construct a functional V (y(t))
(total energy stored in a system) to be defined and its derivative along the trajectories
of the system.

Definition 1.3 Let V : Rn → R be a Lyapunov function if

(i) V (y(t)) ≥ 0 with equality if and only if y = 0, and
(ii) d

dt V (y(t)) ≤ 0.

Theorem 1.7 (Lyapunov’s Second Theorem on R) If there exists a Lyapunov func-
tion V , then y = 0 is Lyapunov stable. Furthermore, if V (y(t)) < 0, then equilibrium
y = 0 is asymptotically stable.

Given a DDE of the form:

y′(t) = f (y(t), y(t − τ)), f (0, 0) = 0,

where f (., .) is locally Lipschitz in its arguments. Let us assume that V (t) = y2(t),
which is a typical Lyapunov function for n = 1. Then, we have along the system:

V ′(t) = 2y(t)y′(t) = 2y(t) f (y(t), y(t − τ)).

For the feasibility of inequality V ′(t) ≤ 0, we need to ensure that y(t) f (y(t), y(t −
τ)) ≤ 0 for all sufficiently small |y(t)| and |y(t − τ)|. This essentially restricts the
class of equations considered. For example, y′(t) = −y(t)y2(t − τ) is stable based
on the above arguments.
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1.5.1 Lyapunov-Krasovskii Sense

Let V : R × C[−τ, 0] → R be a continuous functional, and let ys(t, φ) be the solu-
tion of (1.30) at time s ≥ t with the initial condition yt = φ(t). We define the right
upper derivative V̇ (t, φ) along (1.30) as follows:

V̇ (t, φ) = lim sup
�t→0+

1

�t
[V (t + �t, yt+�t (t, φ) − V (t, φ)].

Intuitively, a non-positive (̇t, φ) indicates that yt does not grow with t , meaning that
the system under consideration is stable.

Theorem 1.8 (Lyapunov-Krasovskii Theorem, Gu et al. [49]) Suppose that f : R ×
C[−τ, 0] → R

n maps R× (bounded sets) in C[−τ, 0] into bounded sets of Rn and
that u; v;w : R+ → R+ are continuous nondecreasing functions, u(s) and v(s) are
positive for s > 0, and u(0) = v(0) = 0. The trivial solution of (1.30) is uniformly
stable if there exists a continuous functional V : R × C[−τ, 0] → R

+, which is
positive-definite, i.e.,

u(|φ(0)|) ≤ V (t, φ) ≤ v(|φ(0)|), (1.31)

and such that its derivative along (1.30) is non-positive in the sense that

V̇ (t, φ) ≤ −w(‖φ‖C). (1.32)

If w(s) > 0 for s > 0, then the trivial solution is uniformly asymptotically stable. If
in addition lim

s→∞ u(s) = ∞, then it is globally uniformly asymptotically stable.

1.5.2 Lyapunov-Razumikhin Sense

In Razumikhin approach, the derivative V along the solution y(t) of (1.30) of a
differentiable function V : R × R

n → R+ is defined as follows:

V̇ (t, y(t)) = d

dt
V (t, y(t)) = ∂V (t, y(t)

∂t
+ ∂V (t, y(t))

∂y
f (t, yt ). (1.33)

Theorem 1.9 (Lyapunov-Razumikhin Theorem, Gu et al. [49]) Suppose that f :
R × C[−τ, 0] → R

n maps R× (bounded sets) in C[−τ, 0] into bounded sets of
R

n and that u; v;w : R+ → R+ are continuous nondecreasing functions, u(s) and
v(s) are positive for s > 0, and u(0) = v(0) = 0, v is strictly increasing. The trivial
solution of (1.30) is uniformly stable if there exists a continuous functional V :
R × C[−τ, 0] → R

+, which is positive-definite, i.e.,
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u(|y|) ≤ V (t, y) ≤ v(|y|), (1.34)

and the derivative along (1.30) satisfies

V̇ (t, y(t)) ≤ −w(|y(t)|), i f V (t + θ, y(t + θ) < V (t, y(t)), f or θ ∈ [0, τ ]. (1.35)

If, in addition, w(s) > 0 for s > 0, and there exists a continuous nondecreasing
function ρ(s) > 0, for s > 0, such that condition (1.35) is strengthened to

V̇ (t, y(t)) ≤ −w(|y(t)|), i f V (t + θ, y(t + θ) < ρ(V (t, y(t))), f or θ ∈ [0, τ ], (1.36)

then the trivial solution is uniformly asymptotically stable. If in addition lim
s→∞ u(s) =

∞, then it is globally uniformly asymptotically stable.

1.5.3 Stability of Linear Systems with Discrete Delays

Given the linearized system

ẏ(t) = Ay(t) + By(t − τ(t)), y(t) = φ(t), t ∈ [−τM , 0], (1.37)

τ(t) ∈ [0, τ ] is abounded. A simple Lyapunov-Krasovskii functional for the above
system has the form

V (t, y(t)) = yT (t)Py(t) +
∫ t

t−τ(t)
y(s)Qy(s)ds,

where P > 0 and Q > 0 are n × n matrices. Clearly V satisfies the positivity condi-
tion V (t, y(t)) ≥ β|y(t)2, for β > 0. Then, differentiating V along the system, we
have

V̇ (t, y(t)) = 2yT (t)Pẋ(t) + yT (t)Qy(t) − (1 − τ̇ )yT (t − τ)Qy(t − τ).

If we further substitute ẏ(t), the right-hand side of theDDEs system,with τ̇ ≤ d ≤ 1,
we arrive at

V̇ (t, (y(t)) ≤ yT (t)yT (t − τ)W

[
y(t)
y(t − τ)

]
≤ −ε|y(t)|2, for ε > 0, if

[
AT P + PA + Q PB
BT A −(1 − d)Q

]
< 0. (1.38)

The linear matrix inequality (LMI) (1.38) does not depend on τ and it is, therefore,
delay-independent (but delay-derivative dependent). The feasibility of LMI (1.38) is
a sufficient condition for the delay-independent asymptotic stability of systems with
slowly varying delays; see [49].
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However, delay-independent conditions cannot be applied for the stabilization of
unstable plants through a feedback with delay. For such systems, delay-dependent
conditions are then needed. Now, we derive stability conditions by applying Razu-
mikhin’s approach and using the Lyapunov function:

V (t, y(t)) = yT (t)Py(t)

with P > 0 that satisfies the positivity condition (1.34). Consider the derivative of V
along (1.37).Wewill apply theLyapunov-Razumikhin theoremwithρ(s) = ρ̄.s > 1,
where the constant ρ̄ > 1. Whenever Razumikhin’s condition:

ρ̄yT (t)Py(t) − yT (t − τ(t))Py(t − τ(t)) > 0

holds for ρ̄ε + 1, with ε > 0. We then conclude that, for any q > 0, there exists
α > 0 such that

V̇ (t, y(t)) =2yT (t)P[Ay(t) + A1y(t − τ(T ))]
≤2yT (t)P[Ay(t) + A1y(t − τ)]+

q[ρ̄yT (t)Py(t) − yT (t − τ(t))Py(t − τ(t))] ≤ −α|y(t)|2
(1.39)

if
[
AT P + PA + qP PB
BT P −qP

]
< 0. (1.40)

TheMLI (1.40) does not depend on τ . Therefore, the feasibility of (1.40) is sufficient
for delay-independent uniform asymptotic stability for systems with fast-varying
delays (without any constraints on the delay-derivatives); see [49].

1.6 Concluding Remarks

In this chapter, we have provided a general introduction on DDEs and examined
the stability of delay models described by linear and non-linear DDEs along with
conditions that ensure local and global asymptotic stable behavior. Next, we will
study approximation solutions and numerical schemes of DDEs.Wewill also discuss
how the Runge-Kutta methods, which are so popular for ODEs, can be extended to
DDEs.
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Chapter 2
Numerical Solutions of Delay Differential
Equations

Inmany application areas, one finds evolutionary problemswith an after-effectwhose
numerical solution is based on the use of an integrator for ODEs combined with a
suitable continuous extension. Our aim in this chapter is to survey numerical methods
for solving DDEs and NDDEs based on modified ODE formulae. Special emphasis
is given to continuous Runge-Kutta methods that have been used by the author.
We describe, in brief, the theory of accuracy and some issues related to numerical
solutions of DDEs and NDDEs.

Many real-life phenomena can be modeled by initial value problems (IVPs) for
ODEs of the type

y′(t) = f (t, y(t)), t ≥ t0,
y(t0) = y0,

(2.1)

where the function y(t) represents some physical quantity that evolves in time.
We noted earlier that tomake themodelmore consistent with real-life phenomena,

it is sometimes necessary to modify the right-hand side of Eq. (2.1) to include the
dependence of the derivative y′ not only on y at the current value t but also at some
past value t − τ . The lag τ , which is always non-negative, may be just a constant
(constant lag; τ = const.), a function of t (variable lag; τ = τ(t)), or even a function
of t and y itself (state-dependent lag; τ = τ(t, y(t))) according to the complexity
of the phenomenon being modeled. In some cases, Eq. (2.1) would be changed to a
DDE of the form

y′(t) = f (t, y(t), y(t − τ)), t ≥ t0,
y(t) = ψ(t), t ≤ t0.

(2.2)

A clear difference between Eqs. (2.1) and (2.2) is that the solution of the latter is
determined by an initial function ψ(t) rather than by a simple initial value y0 as
in the former. Consequently (even if the functions f (t, y, z), τ (t), and ψ(t) are
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C∞-continuous), if the solution y(t) is not smoothly linked to the initial function
ψ(t) at the initial point t0, jumps can arise in the derivatives of y(t). (To be precise,
this occurs if ψ ′(t0) �= f (t0, y(t0), ψ(t0 − τ)).) Such jumps spread forward along
the integration interval. More precisely, a set of discontinuity points is generated,
whose location is determined by the delayed argument t − τ . We shall discuss this
further in Sect. 2.1.

In most real-life situations, the number of instances where an exact solution can
be found by analytical means is very limited. Thus, there is continued interest in the
numerical treatment of DDEs and several schemes have been developed in this regard
(using ideas embodied in schemes for ODEs). The choice of numerical techniques
for the treatment of the DDEs and NDDEs depends mainly on the construction of
densely defined continuous extensions. The ODE literature contains examples of
continuous RK formulae that incorporate an inbuilt method to generate dense output.
Such formulae are generated by the continuous RK triple (c,A,bT (θ)) featured in
Sect. 2.4.3.

Fourth-order Runge-Kutta methods and two-point Hermite interpolation polyno-
mials have been used by Neves [1] for DDEs, and algorithms based on fourth- and
seventh-order Runge-Kutta-Fehlberg methods together with Hermite interpolation
polynomials have been presented by Oberle and Pesch [2]. Thompson [3] has devel-
oped numerical methods that are based on a continuously embedded Runge-Kutta
method of Sarafyan [4]. An algorithm based on a prediction-correction mode of a
one-step collocation method at k Gaussian points has been constructed by Bellen
and Zennaro [5].

An explicit Runge-Kutta method has been proposed by Paul and Baker [6]. This
method is based on the successful Dormand and Prince fifth-order Runge-Kutta
method for ODEs by Shampine [7] and a fifth-order Hermite interpolant [2].

In general, in addition to the usual consistency and stability requirements for ODE
numerical schemes, the numerical treatment of DDEs has to account for two other
difficulties: firstly, the approximation of the delayed term and, secondly, any jump
discontinuities in the various derivatives of the solution.

In this chapter, the emphasis is on general concepts and results rather than details
and proofs. We shall describe, briefly, some basic features of one-step continuous
extensions of Runge-Kutta methods and their application to DDEs (2.2). Propagation
and location of discontinuities arising in the solution of DDEs are discussed in
Sect. 2.1. In Sect. 2.2, themethod of steps for solving DDEs is discussed. In Sect. 2.3,
we provide an existence and uniqueness theory for the solution of DDEs. A general
strategy for the numerical solution of the DDEs, using θ -methods and Runge-Kutta
methods is discussed in Sect. 2.4. More general classes of DDEs are considered in
Sect. 2.5. Finally, software aspects are discussed in Sect. 2.7.
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2.1 Propagation and Location of Discontinuities in DDEs

In this section,weconsiderDDEsof the type (2.2),where f : [t0, T ] × R × R −→ R

is uniformly Lipschitz continuous in the last two variables and the lag τ is either
constant or variable but not state dependent. Moreover, if it is variable, we shall
assume, for simplicity, that the delayed argument t − τ(t) is a strictly increasing
function and τ(t) ≥ τ ∗ for all t ∈ [t0, T ].
Definition 2.1 A point ξ is called a (point of) derivative jump discontinuity of the
solution y(t) of (2.2) if y(t) or some derivative of y(t) has a jump discontinuity at
t = ξ .

A set of derivative jump discontinuities is propagated from an initial point, which
generally is the point t = t0. This set forms the so-called primary discontinuities of
y(t). If ξ is a point of discontinuity of either ψ or f (e.g., if ψ is discontinuous for
t ∈ [−τ, t0]), then ξ can generate a set of secondary discontinuities in the various
derivatives of y(t).

The propagation of discontinuities is intimately related to the lag function and the
inter-component coupling in systems of DDEs. For example, from the DDE

y′(t) = y(t − τ), (t ≥ 0) y(t) = 1 f or t ∈ [−τ, 0],

we can see that y′+(0) = y(−τ) = 1 while y′−(0) = 0; therefore, a jump occurs
in y′(t) at t = 0, and this jump propagates to the points t = τ, 2τ, 3τ, . . . . Since
y(n+1)
± (t) = y

′
±(t − nτ), a jump in y′(t) at t = 0 propagates to one in y′′(t) at t = τ

(y
′′
+(τ ) �= y

′′
−(τ )) and then to one in y

′′′
(t) at t = 2τ . Hence, y(t) becomes smoother

as t increases; see [8, 9].
For a scalar equation with a variable lag, we can show, quite simply, how disconti-

nuities propagate. Consider Eq. (2.2), where the value y′−(t0) = f (t0, y(t0), ψ(t0 −
τ(t0))) may differ from the value ψ ′−(t0); in this case, y′(t) undergoes a jump as
the argument traverses the point ξ0 = t0. Suppose that at a subsequent value of the
argument (say, t = ξ1) the delay function t − τ(t) traverses the point ξ0; then, the
jump in the derivative y′(t) at ξ0 is transmitted through the DDE to produce a discon-
tinuity in one of the derivatives of y(t) at ξ1. The precise propagation mechanism
is determined by the dependency of y′(t) on lag functions, but it may be noted that,
for the propagation to occur, ξ0 − τ(t) must undergo a change of sign at the point
t = ξ1 (see [10]). Having introduced a discontinuity at ξ1, this discontinuity can itself
propagate discontinuities to subsequent points. Moreover, ifψ(t) has discontinuities
at the initial interval, then the discontinuities will propagate in the same manner as
the discontinuity at t0.

In general, the discontinuity points ξk can be detected recursively by solving the
recurrence:

ξk − τ(ξk) = ξk−1, k ≥ 1, (2.3)
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where ξ0 = t0.
Because of the hypotheses made, an increasing sequence {ξk}k≥0 can be deter-

mined a priori by using (2.3). In this manner, a sequence of intervals [ξk, ξk−1]
is also defined. Moreover, every pair of consecutive discontinuity points satisfies
ξk − ξk−1 ≥ τ ∗. The above hypotheses yield the existence and uniqueness of the
solution quite easily. In fact, this can be proved solely by using induction on the
intervals [ξk−1, ξk] and the well-known existence and uniqueness theorem for ODEs
(2.1) under the hypotheses of uniform Lipschitz continuity of the right-hand side.

2.2 Method of Steps for DDEs

A solution of (2.2) with fixed time-lag τ on the whole interval [t0, t0 + T ] can
be obtained using the method of steps (or the method of successive integra-
tions) [10], i.e., by consecutive continuation from one interval to another (from
[t0 + (n − 1)τ, t0 + nτ ] to [t0 + nτ, t0 + (n + 1)τ ]). This approach could be adapted
for numerical methods, but it would generally fail in certain kinds of DDEs and may
prove to be too expensive.

To simplify the discussion, we confine ourselves to a scalar equation with a con-
stant lag τ . Define ξk = t0 + kτ . On the interval [ξ0, ξ1], the DDE (2.2) has the
form

y′(t) = f (t, y(t), ψ(t − τ)), ξ0 ≤ t ≤ ξ1,

y(t0) = ψ(t0),
(2.4)

and it is solved bymeans of a standardmethod for ODEs. If we assume, by induction,
to have solved theDDEup to the defined discontinuity point ξk−1, thenwe can rewrite
the DDE up to the next discontinuity point ξk as the following system of ODEs:

y′
i (t) = f (t − (k − i)τ, yi (t), yi−1(t)), ξk−1 ≤ t ≤ ξk,

yi (ξi−1) = y(ξi−1), i = 1, 2, . . . , k,
(2.5)

where we have set y0(t) = ψ(t − kτ) and yi (t) = y(t − (k − i)τ ) (i = 1, . . . , k).
As we have already computed approximations to the initial values yi (ξi−1) (i =
1, . . . , k), we can solve the system via a chosen method for ODEs to obtain an
approximation in the current interval [ξk−1, ξk]. In this manner, we are obliged to
solve a system of ever-growing dimension and, in principle, to recompute the same
pieces of solution related to the previous intervals many times. On the other hand, the
reduction to a system of ODEs avoids the typical complications due to the presence
of the delayed argument.

This method allows us the opportunity to simultaneously determine the solution
y(t) on several finite intervals and to prove the “existence” and “uniqueness” of the
solution in a neighborhood of the point (t0, ψ(t0)) (if ψ and f are continuous in the
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range of the variables and if function f , of Eq. (2.4), satisfies the Lipschitz condition
on the second argument).

Example 2.1 Consider:

y′(t) = 6y(t − 1), y = t for 0 ≤ t ≤ 1.

We determine y(t) for 1 ≤ t ≤ 3.

Applying the method of steps, we obtain

y′(t) = 6(t − 1), 1 ≤ t ≤ 2, y(1) = 1;

integrating, we get
y(t) = 3(t − 1)2 + 1.

For 2 ≤ t ≤ 3,
y′(t) = 6

[
3(t − 2)2 + 1

]
, y(2) = 4.

Therefore,
y(t) = 6(t − 2)3 + 6t − 8.

Example 2.2 Applying the method of steps for

y′(t) = ay(t − τ), t ≥ t0,

y(t) = c, t0 − τ ≤ t ≤ t0,

(c and τ are constants, and τ > 0), we obtain

y(t) = c

[
t−t0

τ

]
+1

∑

n=0

an (t − t0 − (n − 1)τ )n

n! , t ≥ t0,

where [t] is the integer part of t .

We note that even if the functions ψ and f have continuous derivatives of all orders,
the solution of the DDEs will have a primary discontinuity (which comes from the
initial point t0) of the kth order derivatives at the point t0 + (k − 1)τ , but the lower
derivatives will be continuous at this point.

The above analysis is based upon a constant lag τ , and it can be readily extended
to certain instances of a “non-constant” lag. However, this direct implementation
of the method of steps suffers from a limitation inherent in the analysis technique:
when a vanishing lag occurs (τ(t∗) = 0), the method encounters a natural barrier at
t∗, beyond which the solution cannot proceed; see Sect. 2.5.3.
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2.3 Existence and Uniqueness Solution of DDEs

The theory of existence and uniqueness of solutions to (2.2) does not present sub-
stantial additional difficulties with respect to the ordinary case (2.1). In this section,
we briefly present general concepts, rather than details and proofs, of the existence
and uniqueness theory for DDEs.

As already shown in Sect. 2.2, if we apply the method of steps, a DDE can be
reduced to anODE equationwithout a delay argument to whichwemay apply known
existence and uniqueness theorems for the solution of the initial value problem.

If we consider the DDE (2.2), and apply the method of steps, we obtain Eq. (2.4);
consequently, (2.2) has a solution if f andψ are continuous and this solution is unique
near t0 if function f (t, y, z) satisfies a Lipschitz condition in its second argument,
y(t), for t near t0, for z near ψ(t − τ(t0)), and y near y0.

For a more general, state-dependent equation, τ = τ(t, y(t)), the first step gives

y′(t) = f (t, y(t), ψ(t − τ(t, y(t)))), ξ0 ≤ t ≤ ξ1,

y(t0) = ψ(t0).
(2.6)

If the functions f, ψ, and τ are continuous, then a solution exists; if, in addition in
(2.6), the right-hand side F(t, y(t)) ≡ f (t, y(t), ψ(t − τ(t, y(t)))) satisfies a Lips-
chitz condition with respect to y(t), then the solution is unique. (For this it suffices

that |∂ f

∂y
|, |∂ f (t, y, z)

∂z
|, |ψ ′(t)|; |τ ′

y(t, y)| be bounded in a neighborhood of the

initial values; see [11].)

2.4 Numerical Approach for DDEs

In this section, we briefly describe the theory of Runge-Kutta methods for DDEs
(2.2). The discussion will be extended to more general classes of DDEs (such as
vanishing lag and state-dependent DDEs) in Sect. 2.5.

2.4.1 General Approach

One general approach to the solution of DDEs is based upon the following strategy:

1. Choose a discrete numerical method for solving ODEs;
2. Choose an interpolant ŷ(t) (such as a continuous extension, or a Hermite inter-

polant) to estimate the numerical solution ỹ(t) at non-mesh points. Then, the
delayed term y(t − τ) can be computed at each step;

3. Compute the discontinuity points {ξk} (one after the other) defined by the recur-
rence relation (2.3) and, in each interval [ξk−i , ξk], use the chosen numerical
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ODE method to approximate the solution of the ODE

w′(t) = f (t, w(t), ŷ(t − τ)), ξk−1 ≤ t ≤ ξk,

w(ξk−1) = ŷ(ξk−1).
(2.7)

The first two steps of this proceduremay alternatively be replaced by the direct choice
of a continuous numerical method for ODEs (discrete and continuous numerical
methods mean the approximation of the solution is on the discrete set of points or in
the whole interval of integration, respectively).

With regard to stage (3), we may instead seek a method such that the stepsize
is determined by the DDE solver (rather than exclusively by the position of the
{ξi }). Suppose ŷ(t) has been computed by advancing from the initial point t0: the
approximate solution values, {ỹn}, have been computed on the mesh points, then
the solutions at non-mesh points ŷ(t) can be computed for t0 ≤ t ≤ tn using some
approximation formula, and for t < t0 by evaluation of the initial function. The next
step in the numerical solution consists of choosing a stepsize hn such that the solution
on the interval (tn, tn+1) contains no discontinuities, or only “small” discontinuities,
in its sufficiently low-order derivatives, and then solving

w′(t) = f (t, w(t), ŷ(t − τ)), tn ≤ t ≤ tn+1,

w(tn) = ŷ(tn).
(2.8)

In the case of constant lag τ , calculating the numerical solution is straightforward,
provided that hn ≤ τ . For cases where τ is small relative to the choice of stepsize,
or for state-dependent delays in which we find that τ(t∗, ŷ(t∗)) < 0 at some points
t∗, it seems there is a need to evaluate ŷ(t) with arguments exceeding the subinterval
endpoint tn+1 and, possibly, even exceeding tn+2; see Sect. 2.5.

Given a “discrete” numerical solution, defined on a mesh {ti }, there are several
methods of extending it to a function of a continuous variable, e.g., by Lagrange
interpolation, Hermite interpolation, or by a continuous extension formula provided
by the method itself. The order of the accuracy is determined by the error in the
interpolation polynomial and the error in mesh-value {ỹ(ti )}.

A large variety of ODEmethods (includingmethods based on explicit and implicit
LM methods, explicit and implicit RK methods, collocation formulae, and linear
multi-stage multi-value formulae; see [12]) can be adapted to DDEs. The use of such
methods involves adaptation of the formulae for unequal meshsizes, choice of the
iterative method for implicit formulae, variation of the choice of the formulae to
adapt to error control, local stability, etc.

For the theory of the numerical methods for ODEs, refer to books by Butcher [13],
Hairer, Nørsett and Wanner [14] and Hairer and Wanner [15], and Lambert [16]. Let
us start our analysis with �-methods for DDEs, and later with RK methods.
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2.4.2 �-Methods for DDEs

We describe a class of methods for DDEs based upon the �-methods for ODEs with
linear interpolation, which have the following form:

ỹn+1 = ỹn + hn+1
[
(1 − �) f (tn, ỹn, ŷ(tn − τ)) + � f (tn+1, ỹn+1, ŷ(tn+1 − τ))

];
ŷ(tn + shn+1) = ỹn + shn+1

[
(1 − �) f (tn, ỹn, ŷ(tn − τ))

+ � f (tn+1, ỹn+1, ŷ(tn+1 − τ))
]
, 0 ≤ s ≤ 1,

where � is a parameter belonging to [0, 1]. Observe that, for � = 0, they reduce
to the so-called forward (explicit) Euler method, whereas, for � = 1, they reduce
to backward (or implicit) Euler method (which are both 1 − stage RK methods).
The order of the �-methods is always 1 but for � = 1

2 , which corresponds to the
trapezium rule method, the order is 2.

We take, by way of example, the simplest linear DDE:

y′(t) = λy(t) + μy(t − 1), 0 < t ≤ T .

Suppose that τ = 1 = (m + θ)h, m ∈ Z+, and θ ∈ [0, 1). Then, with constant step-
size h and ỹn = y(tn), we have (using linear interpolation)

ỹ(tn − 1) := ỹ(tn−m − θh) ≈ θ ỹn−m−1 + (1 − θ)ỹn−m .

For � = 0 (the forward Euler method), we have the recurrence:

ỹn+1 = (1 + λ

m + θ
)ỹn + μ

m + θ

[
θ ỹn−m−1 + (1 − θ)ỹn−m

]
.

If � = 1 (the backward Euler method), the recurrence becomes

(1 − λ

m + θ
)ỹn+1 = ỹn + μ

m + θ

[
θ ỹn−m + (1 − θ)ỹn−m+1

]
.

For the trapezium method, � = 1
2 , we have

(1 − λ

2(m + θ)
)ỹn+1 = (1 + λ

2(m + θ)
)ỹn + μ

2(m + θ)

[
(1 − θ)ỹn−m+1 + ỹn−m + θ ỹn−m−1

]
.

In the rest of this section, we extend the analysis from �-methods to the RK
methods for DDEs.



2.4 Numerical Approach for DDEs 31

2.4.3 Continuous One-Step Runge-Kutta Methods for ODE

To modify a class of RK methods for DDEs, we must consider their application to
ODEs.

A ν-stage Runge-Kutta method for the solution of ODE (2.1) for a given mesh

 = {t0 < t1 · · · < tN = T }, is defined by

Y i
n+1 = ỹn + hn+1

ν∑

j=1

ai j f (t j
n+1, Y j

n+1), i = 1, . . . , ν, (2.9)

ỹn+1 = ỹn + hn+1

ν∑

i=1

bi f (t i
n+1, Y i

n+1), (2.10)

where
c1 a11 a12 . . . a1ν

c2 a21 a22 . . . a2ν
...

...
...

...

cν aν1 aν2 . . . aνν

b1 b2 . . . bν

≡ c A
bT ,

ci =
ν∑

j=1

ai j , (i = 1, . . . , ν), t i
n+1 = tn + ci hn+1 and hn+1 = tn+1 − tn.

The values {ci } are called abscissae and, for many common methods, they belong to
[0, 1].

The computational complexity of the method is determined mainly by the number
ν of stages and by the form of the coefficient matrix A = [ai j ], (i, j = 1, . . . , ν). It
is well known that when thematrixA is lower triangular with zero diagonal elements,
the formula is called formally explicit and the computational cost (per-step) is lower,
whereaswhen thematrixA is full, themethod is called implicit and the computational
cost (per-step) is higher. However, we may be able to take fewer steps by using an
implicit method.

We need to impose some additional requirements into the ODE solver to be able
to solve DDEs. For example, we need the dense output of the solution to obtain an
approximant ŷ(t) to the numerical solution ỹn at non-meshpoints.

The one-step interpolants are constructed step-by-step by making use of infor-
mation from the underlying step [tn, tn+1], possibly by including some additional
stages. On the other hand, multistep interpolants can also be used to determine the
approximation at the underlying step, using information from more than one step. A
continuous extension ŷ(t + θhn+1) of the numerical solution ỹn , in each subinterval
determined by the mesh points, can be used to get dense output. Later in this section,
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we show that Hermite interpolation, in specific cases, can take the form of continuous
extension with support points tn + ri hn+1 with, e.g., ri = {0, 1

2 , 1}, in the underlying
step [tn, tn+1].
Definition 2.2 (Continuous Extension) The continuous extension ŷ(t + θhn+1) of
the numerical solution ỹn in (2.9)–(2.10) is defined, in each subinterval determined
by the mesh 
, by a one-step continuous quadrature rule of the form

ŷ(tn + θhn+1) = ỹn + hn+1

s∑

i=1

bi (θ) f (t i
n+1, Y i

n+1), 0 ≤ θ ≤ 1, (2.11)

where

Y i
n+1 = ỹn + hn+1

s∑

j=1

ai j f (t i
n+1, Y i

n+1) ≈ y(t i
n+1), i = 1, . . . , ν, . . . , s. (2.12)

The terms bi (θ)′s are polynomials, and the number of stages involved is s ≥ ν. To
assure the continuity of the interpolant, i.e.,

ŷ(tn) = ỹn and ŷ(tn+1) = ỹn+1, (2.13)

and the polynomials bi (θ) satisfy bi (0) = 0 and bi (1) = bi , i = 1, 2, . . . , s.

Formulae (2.11)–(2.12) produce a continuous RK method, whereas, in contrast, the
set (2.9)–(2.10) is called a discrete RK method.

To orient the reader, we introduce, e.g., a continuous trapezium rule:

c A
θ bT (θ)

≡
0 0
1 1

2
1
2

θ θ(1 − 1
2θ) 1

2θ
2
, θ ≥ 0. (2.14)

Definition 2.3 (Local Order) The RK method (2.9)–(2.10) has (nodal or discrete)
order p if p is the largest integer such that, for all C p-continuous right-hand side
functions f (t, y(t)) in (2.1) and for all mesh points,

‖zn+1(tn+1) − ỹn+1‖ = O(h p+1
n+1 ), (2.15)

where zn+1(t) is the local solution to the local problem

z′
n+1(t) = f (t, zn+1(t)), t ≥ tn,

zn+1(tn) = ỹn.
(2.16)

Definition 2.4 (Continuous Local Order) The one-step interpolant (2.11) has uni-
form order q if q is the largest integer such that
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max
tn≤t≤tn+1

‖zn+1(t) − ŷ(t)‖ = O(hq+1
n+1). (2.17)

The uniform order q of the interpolant, which clearly does not exceed p, is also the
uniform order of the continuous RK method (2.11)–(2.12), such that

∑

i

bi (θ)cs
i = θ s+1

s + 1
f or s = 0 . . . , q − 1.

Remark 2.1 A necessary condition for the RK method (2.9)–(2.10) to actually per-
form with order p is that the right-hand side function f (t, y) in (2.16) must be
sufficiently smooth, namely, at least C p-continuous.

The additional (s − ν) stages in the continuous extension formula (2.11) are assumed
to raise its order q to order p (or at least p − 1) of the discrete RK methods (2.9)–
(2.10). On the other hand, in some applications (e.g., in case of solving NDDEs), we
may need to differentiate the continuous extension formula, and then the uniform
order can be less than p − 1. In that case, the interpolant must satisfy certain asymp-
totic orthogonality conditions (2.20) which define the so-called Natural Continuous
Extension (NCEs) for ODE RK methods, introduced by Zennaro [17].

Definition 2.5 (Natural Continuous Extension) The RK method (2.9)–(2.10) of
order p has an NCE ŷ(t) of degree d if there exist ν polynomials bi (θ), i = 1 . . . , ν,
of degree ≤ d, such that for the function defined by (2.11) (with s = ν), condition
(2.13) holds and

max
tn≤t≤tn+1

‖zn+1(t) − ŷ(t)‖ = O(hd+1
n+1), (2.18)

max
tn≤t≤tn+1

‖z′
n+1(t) − ŷ′(t)‖ = O(hd

n+1), (2.19)

‖
∫ tn+1

tn

G(t)
[
z′

n+1(t) − ŷ′(t)
]

dt‖ = O(h p+1
n+1 ), (2.20)

for every sufficiently smooth function G(t), where zn+1(t) is the local solution to
(2.16).

Theorem 2.1 (Error in Derivatives) [18] Given an NCE ŷ(t), then condition (2.19)
implies the following error bounds for higher derivatives of the NCEs:

max
tn≤t≤tn+1

‖z(k)
n+1(t) − ŷ(k)(t)‖ = O(hd−k+1

n+1 ), k = 2, 3, . . . , d, (2.21)

and, clearly, ŷ(k) ≡ 0 for k ≥ d + 1.
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It has also been proved in [18] that every RK formula has at least an NCE of minimal

degree
[

p+1
2

]
, where [x] is the integer part of x.

In the underlying step [tn, tn+1], it is quite common to approximate y(t) at t = tn +
θhn+1, using the formulae based on Hermite interpolation, because the derivatives of
ỹ(t) at the integration points are known. Moreover, it is possible to prove that more
specific Hermite-type interpolant for an explicit RK method with abscissae {ci } can,
in some cases, take the form of continuous extension; see [7] and [19]. The Hermite
approximation H(t), with support points tn + ri hn+1 with ri ∈ [0, 1] and derivative
function F̃(t) ≡ f (t, y(t)), can be expressed in the form:

H(tn + θhn+1) =
∑

i

pi (θ)ỹ(tn + ri hn+1) + hn+1

∑

i

qi (θ)F̃(tn + ri hn+1),

(2.22)

where the solution value ỹ(tn + ri hn+1) (with abscissae {ci }) takes the form:

ỹ(tn + ri hn+1) = ỹn + hn+1

∑

j

ai j F̃(tn + c j hn+1).

Thus (with
∑

i pi (θ) = 1), Eq. (2.22) can be rewritten in the form

H(tn + θhn+1) = ỹn + hn+1

∑

i

pi (θ)
∑

j

ai j F̃(t + c j hn+1) + hn+1

∑

i

qi (θ)F̃(tn + ri hn+1).

It should also be noted that the interpolation order and, thereby, the number of support
points have to be adapted to the order of the numerical method; we shall discuss this
further in Sect. 2.7.4 and in Appendix A.

In the following subsection, we illustrate one of the main applications of inter-
polants to DDEs.

2.4.4 Runge-Kutta Method for DDEs

Given a mesh 
 = {t0 < t1 · · · < tN = T }, the numerical methods we consider for
solution of DDEs (2.2) are obtained by applying the continuous RK method (2.11)–
(2.12) to the ODE (2.7) in the interval [tn, tn+1]. They have the form

Y i
n+1 = ỹn + hn+1

s∑

j=1

ai j f (t j
n+1, Y j

n+1, ŷ(t j
n+1 − τ)), i = 1, . . . , s, (2.23)

ŷ(tn + θhn+1) = ỹn + hn+1

s∑

i=1

bi (θ) f (t i
n+1, Y i

n+1, ŷ(t j
n+1 − τ)), 0 ≤ θ ≤ 1.

(2.24)
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If the lag τ is a function of t , it must be evaluated at the relevant points t j
n+1. For t ≤ t0,

we define ŷ(t) = ψ(t). Furthermore, we assume, for simplicity, that the abscissae ci

lie in [0, 1], i = 1, . . . , s.
Thismethod is called theRKmethod forDDEs. The pair formed by the underlying

discrete RK method (2.9)–(2.10) and by the underlying interpolant (2.11) is called
the underlying continuous RK method for the DDE.

Clearly, it would be desirable for the nodal order p of the underlying discrete
RK method to be inherited by the RK method for DDEs. Therefore, in view of
Remark 2.1, it is necessary to include at least the first p discontinuity points ξk in
mesh 
. Moreover, the interpolant (2.24) should have a uniform order of accuracy
of at least p − 1.

In fact, an adaptive ODE solver is implemented in a variable stepsize mode. In
such an approach, it is not possible to predict a priori where the retarded term ŷ(t − τ)

will be computed at each step, and a uniform high order accuracy is consequently
required. The following theorem gives the order of the convergence of the numerical
method for DDEs.

Theorem 2.2 (Order of Convergence of DDE Methods) [18] If the RK method for
DDEs (2.23)–(2.24) is applied to (2.2) with a mesh 
 that includes the discontinuity
points ξk , if the underlying discrete RK method has nodal order p and if the underlying
interpolant has order q ≥ p − 1, then the continuous numerical solution ŷ(t) is such
that

max
t0≤t≤T

‖y(t) − ŷ(t)‖ = O(h p),

where
h = max

1≤n≤N
hn.

The variable stepsize strategy is adopted to ensure, as much as possible, the propor-
tionality of the global error to a given tolerance and to minimize the computational
cost. We may do this by estimating the local error of the advancing method via
another higher order method (of order p + 1).

It is easy to prove (in the underlying step [tn, tn+1]) that the local problem

z′
n+1(t) = f (t, zn+1(t), ŷ(t − τ)), tn ≤ t ≤ tn+1,

zn+1(tn) = ỹn.
(2.25)

(which is actually solved numerically) is a perturbation of the smooth problem

ž′
n+1(t) = f (t, žn+1(t),̂̌yn+1(t − τ)), tn ≤ t ≤ tn+1,

žn+1(tn) = ˜̌yn,
(2.26)

where ̂̌yn+1(t − τ) is a suitable delayed local solution that satisfies

max
tn≤t≤tn+1

‖̂y̌n+1(t − τ) − ŷ(t − τ)‖ = O(hq+1),
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where q is the uniform order of accuracy of the interpolant ŷ(t). This implies that

‖žn+1(tn+1) − zn+1(tn+1)‖ = O(hq+2).

Now, given a discrete RK method, let w̃n+1 and ˜̌wn+1 be the numerical solutions
of (2.25) and (2.26), respectively. Since the numerical solution depends on the data,
we also have

‖˜̌wn+1 − w̃n+1‖ = O(hq+2).

Therefore, in view of Remark 2.1, it is easy to prove that, in order to preserve the
order p of the advancing method, q ≥ p is required for successful implementation
of the higher order method used to estimate the local error; see [5].

If the solution of DDE does not change its behavior significantly along the inte-
gration interval, a less robust ODE code may be successfully implemented, which
does not perform the stepsize selection at each step. In this case, even a constant
stepsize might prove to be a reasonable choice.

Corollary 2.1 (Order of Convergence of NCE) If an RK method of order p for
solving DDEs (2.23)–(2.24) is applied to (2.2) with a constrained mesh 
 and the
underlying interpolant is NCE of degree d, then continuous numerical solution ŷ(t)
is such that

max
t0≤t≤T

‖y(t) − ŷ(t)‖ = O(hd ′
), (2.27)

where d ′ = min{d + 1, p}.
Observe that, if d ≥ p − 1, then we (naturally) again find the result stated by Theo-
rem 2.2.

2.5 More General Classes of DDEs

In this section, we consider more general DDEs of the form (2.2) but of neutral type
as well as DDEs that are not subject to the restrictions on the lag τ imposed in the
above sections, such as state-dependent DDEs. We also consider the possibilities
(i) τ(t) < h, (i i) τ(t) → 0 as t → t∗ (with small or vanishing lag DDEs). In these
cases, the lag term t i

n+1 − τ(t i
n+1) > tn for some t i

n+1, and when we are at the stage
of finding an approximation ỹ(t) for t ∈ [tn, tn++1], no approximation to y(t i

n+1 −
τ(t i

n+1)) is available. Of course, if one relaxes these assumptions, there is a risk of
explicit equations becoming implicit. In this case, one can get an accumulation of
discontinuity points and then the method of steps would fail for certain DDEs.
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2.5.1 Neutral Delay Differential Equations (NDDEs)

Definition 2.6 If f in (2.2) contains a derivative component with deviation τ , the
DDE is called neutral delay differential equation (NDDE) and may take the form

y′(t) = f (t, y(t), y(t − τ), y′(t − τ)), t ≥ t0,
y(t) = ψ(t), t ≤ t0.

(2.28)

If the twohypotheses of positivity andmonotonicity of the delayed argument hold (for
constant or variable lag with τ(t) ≥ τ ∗), then it is easily seen that the existence and
uniqueness of the solution are guaranteed if the right-hand side function f (t, y, x, w)

is sufficiently smooth. Moreover, the problem of the location of the discontinuity
points is clearly unchanged. Nevertheless, the presence of the neutral term y′(t − τ)

prevents the smoothing of the solution at the discontinuity points ξk as the index k
increases.

From a numerical perspective, one can use the derivative of the interpolant (or
another type of approximation) to approximate the derivative of the delayed term.
Formulae (2.23)–(2.24) can be modified to be suitable for NDDEs as follows:

Y i
n+1 = ỹn + hn+1

s∑

j=1

ai j f (t j
n+1, Y j

n+1, ŷ(t j
n+1 − τ), φ(t j

n+1 − τ)), i = 1, . . . , s,

ŷ(tn + θhn+1) = ỹn + hn+1

s∑

i=1

bi (θ) f (t i
n+1, Y i

n+1, ŷ(t j
n+1 − τ), φ(t j

n+1 − τ)), 0 ≤ θ ≤ 1,

where φ(t − τ) is an approximation to y′(t − τ), possibly being φ(t) = ŷ′(t). Of
course, for t ≤ t0 we define ŷ(t) = ψ(t) and φ(t) = ψ ′(t).

We should note that we may create a problem by using the derivative of the
interpolant ŷ′(t) because we lose one order accuracy whenever we differentiate the
interpolant.

If the delayed argument t − τ(t) does not satisfy the hypotheses of positivity and
monotonicity, then we have problems for the location of the discontinuity points ξk

as the index increases; the eventual accumulation of discontinuity points is a serious
problem for the maintenance of the order of the accuracy of the numerical methods.
Moreover, the existence and uniqueness of the solution is no longer such a trivial
matter and, in general, may not be guaranteed. For numerical and theoretical analysis
of NDDEs, we may refer to [20].

2.5.2 Equations with State-Dependent Lags

Definition 2.7 A DDE is state dependent if the lag τ is dependent on the solution
y(t); then, τ ≡ τ(t, y(t)). The DDE (2.2) then takes the form:
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y′(t) = f (t, y(t), y(t − τ(t, y(t)), t ≥ t0,
y(t) = ψ(t), t ≤ t0.

(2.29)

The difficulty in such a situation is that the locations of the jump discontinuities
(which are characterized as the zeros of switching non-linear functions) depend on the
(unknown) solution y(t). Consequently, it is not possible to locate the discontinuity
points a priori without any knowledge of the solution; see [21] and [8]. The difficulty
of detecting the discontinuity points a priori makes the numerical solution of (2.29)
a rather complicated task because it becomes very hard to include the discontinuity
points in mesh 
, which is important for accuracy requirements.

Consider, in somemore detail, the case of strictly positive lag τ(t, y(t)) ≥ τ ∗ > 0.
It is convenient to choose the stepsize hn+1 ≤ τ ∗, as the delayed term is previously
known. A first adaptation of RK formulae (2.23)–(2.24) is

Y i
n+1 = ỹn + hn+1

s∑

j=1

ai j f (t j
n+1, Y j

n+1, ŷ(t j
n+1 − τ(t j

n+1, Y j
n+1))), i = 1, . . . , s,

ŷ(tn + θhn+1) = ỹn + hn+1

s∑

i=1

bi (θ) f (t i
n+1, Y i

n+1, ŷ(t j
n+1 − τ(t i

n+1, Y i
n+1))), 0 ≤ θ ≤ 1.

Along with the above RK formulae, to approximate the discontinuity points, we
can use a root-finding routine (see Sect. 2.7.2) to solve in sequence the equation:

ξk − τ(ξk, ŷ(ξk)) = ξk−1, k ≥ 1, (2.30)

making use of the already computed continuous (extrapolation) approximation ŷ(t)
to the solution y(t). However, apart from the possible non-uniqueness of the solution,
in case the delayed argument t − τ(t, ŷ(t)) is notmonotonic, there is another problem
to face: whenever we have a solved Eq. (2.30) and have found the approximation to
the next discontinuity point ξk , we have necessarily already passed such a point ξk

with our numerical integration. Therefore, unless it has been accidentally included
in mesh 
, a loss of accuracy has possibly occurred. To overcome this difficulty,
more sophisticated strategies are necessary; see Willé and Baker [22].

Sometimes, in real-life applications, we may find DDEs or NDDEs with several
delays. In this case, there are no particular additional difficulties with respect to (2.2)
and (2.28). If all the lags are of the same type, the existence and uniqueness theorem
as well as stability results can be easily modified to the more general situation; see
[21].
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2.5.3 Equation with a Small or Vanishing Lag

Consider DDE (2.2), where the lag τ(t) is variable and may vanish for some t ∈
[t0, T ]. Of course, τ(t) small is also a problem.

Definition 2.8 A DDE has vanishing lag τ(t), or a singular DDE, at point t∗ if the
lag satisfies τ(t∗) = 0 (such that τ(t) > 0 for all t �= t∗).

To illustrate the previous definition, consider the simple initial value delay differential
equations (IVDDEs):

y′(t) = y(t − |t − 1|)) (t ≥ 0),
y(0) = ψ(0).

(2.31)

Since τ(t) = |t − 1|, this is a varying-lag and the point at which the lag vanishes is
{t∗} = {1}.

Under the assumptions of positivity and monotonicity of the delayed argument
t − τ(t), and for vanishing lag, there is one main problem for the numerical treat-
ment of (2.2). We illustrate this problem through DDE (2.31): as the integration
proceeds toward t∗, the discontinuity points become increasingly closer (they are
at 0, 1

2 ,
3
4 ,

15
16 ,

31
32 , . . . ) so that, at some points, the distance between each two suc-

cessive points becomes smaller than the stepsize used by the numerical method.
If [tn, tn+1] is the underlying step of integration, an approximation ŷ(t − τ(t)) of
the delayed part y(t − τ(t)) is already known only in the first part of the step
and unknown in the rest of the step (with reference to RK method for DDEs
(2.23)–(2.24), some of the quantities ŷ(t j

i+1 − τ(t j
i+1)) might be unknown and

should be computed together with the stage values Y i
n+1). Thus, if we assume that

0 ≤ c1 ≤ c2 ≤ · · · ≤ cs ≤ 1 and ifwe define c0 = 0 and the integer r , 0 ≤ r ≤ s − 1,
such that tr

n+1 − τ(tr
n+1) ≤ tn < tr+1

n+1 − τ(tr+1
n+1), then (2.23)–(2.24) could be modi-

fied into (see [23])

Y i
n+1 = ỹn + hn+1

r∑

j=1

ai j f (y j
n+1, Y j

n+1, ŷ(t j
n+1 − τ(t j

n+1))) (2.32)

+ hn+1

s∑

j=r+1

ai j f (t j
n+1, Y j

n+1, Z j
n+1), i = 1, . . . , s,

Zi
n+1 = ỹn + hn+1

r∑

j=1

b j (θ
i
n+1) f (t j

n+1, Y j
n+1, ŷ(t j

n+1 − τ(t j
n+1))) (2.33)

+ hn+1

s∑

j=r+1

b j (θ
i
n+1) f (t j

n+1, Y j
n+1, Z j

n+1), i = r + 1, . . . , s,
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ŷ(tn + θhn+1) = ỹn + hn+1

r∑

i=1

bi (θ) f (t i
n+1, Y i

n+1, ŷ(t i
n+1 − τ(t j

n+1))) (2.34)

+ hn+1

s∑

i=r+1

bi (θ) f (t i
n+1, Y i

n+1, Zi
n+1), 0 ≤ θ ≤ 1.

Here:

θ i
n+1 = t i

n+1 − τ(t i
n+1) − tn

hn+1
, i = r + 1, . . . , s,

and the unknown quantities Zi
n+1 = ŷ(t i

n+1 − τ(t i
n+1)) play the role of additional

stage values related to the delayed term. Clearly, even if the underlying RK method
(2.9)–(2.10) is explicit, the resulting method (2.32)–(2.33)–(2.34) is implicit in the
additional stage values Zi

n+1.
Another problem, wherein one or more (or even infinitely many) discontinuity

points ξk may lie inside the underlying step [tn, tn+1], can also arise. This may break-
down the order p of the accuracy of the method.

In some cases, the lag τ(t) vanishes already at t0 and it is strictly positive later.
Thus, no discontinuity points are spread ahead and the solution y(t) is determined
solely by the initial value at t0. In this situation we have problems only in the first
step of integration.

In case the retarded argument t − τ(t) is not monotone, the situation will become
more difficult. The difference from the monotone case consists of the possible non-
uniqueness of the solution of (2.3). Moreover, if the lag vanishes for some t∗, then
we also have the phenomenon of the accumulation of discontinuity points. Thus, a
priori control of the location of the discontinuity points becomes very difficult.

From the numerical point of view, it is quite clear that a constrained mesh strategy
is almost always not possible, and the method of steps would fail for all kinds of
DDEs with vanishing lag. For a deeper analysis for DDEs of this type, refer to Rihan
[10] and Paul and Baker [6].

2.6 Stiffness Problems

Initial value problems (IVPs) with strongly decreasing and increasing solution com-
ponents are called stiff, which exist in many real-life and bioscience problems [24].
Usually, a DDE is considered stiff when it contains processes of widely different
time scale. From a computational perspective, stiffness implies that while solving
numerically the corresponding IVP using a givenmethodwith assigned tolerance, the
stepsize is restricted by stability requirements rather than accuracy demands. In [25],
a DDE is classified as a stiff equation when certain implicit methods perform better
than explicit ones. Reliable and suitable numerical schemes for treating stiff DDEs
include implicit, singly implicit RK methods, and [26], mono-implicit RK methods
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[27]. Moreover, a suitable routine is necessary to decide whether a given problem
should be treated as stiff or as non-stiff. This routine is considered as an automatic
stiffness detection and stepsize control for the two different algorithms: one of them
to treat the stiff part and the other one for non-stiff part; see [28].

Example 2.3 Consider a singularly perturbed DDE, which is considered as a stiff
problem,

εy′(t, ε) = λy(t, ε) + μy(t − τ, ε), t ≥ 0, y(t, ε) = ψ(t), t ∈ [−τ, 0]. (2.35)

Suppose that the initial function ψ(t) is smooth and λ < 0. Using method of steps,
when ψ(t) = c yields

y(t, ε) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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R2
[μ

ε

( μ

2ε
(t − 2τ)2 − R1(t − 2τ)

) + R2
1

]
e

λ
ε
(t−2τ) − cR3

1 , 2τ < t ≤ 3τ,

R2e
λ
ε

t + R2
[μ

ε
(t − τ) − R1

]
e

λ
ε
(t−τ)+

R2
[μ

ε

( μ

2ε
(t − 2τ)2 − R1(t − 2τ)

) + R2
1

]
e

λ
ε
(t−2τ)+

R2

{μ

ε

[ μ

2ε

( μ

3ε
(t − 3τ)3 − R1(t − 3τ)2

) + R2
1(t − 3τ)

] − R3
1

}
e

λ
ε
(t−3τ)+

cR4
1 , 3τ < t ≤ 4τ,

.

.

.
.
.
.

R2e
λ
ε

t + R2R

1e

λ
ε
(t−τ) + R2R


2e
λ
ε
(t−2τ) + R2R


3e
λ
ε
(t−3τ)+

R2R

4e

λ
ε
(t−4τ) + · · · + R2R


(n−1)e
λ
ε
(t−(n−1)τ ) + (−1)ncRn

1 , (n − 1)τ < t ≤ nτ

(2.36)

where, for λ < 0, R1 = μ

λ
, R2 = c(1 + R1), and

R

n = (μ

ε

)n 1

n! (t − nτ)n − (μ

ε

)(n−1) R1

(n − 1)! (t − nτ)(n−1) + (μ

ε

)(n−2) R2
1

(n − 2)! (t − nτ)(n−2) +
· · · + (−1)n Rn

1 .

When ε is very small, then the difference equation

y(t, 0) = −μ

λ
y(t − τ, 0), t > 0, y(t, 0) = c, t ∈ [−τ, 0] (2.37)

has the solution y(t, 0) =
(
−μ

λ

)n
c for t ∈ [(n − 1)τ, nτ ], n = 1, 2, 3, . . . , which

is ascending if |μ| > |λ|, and descending if |μ| < |λ|.
We notice from (2.36) at t = kτ, k = 0, 1, 2, . . . that



42 2 Numerical Solutions of Delay Differential Equations

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

Time

Y
(t

,ε
)

ε=0.1
ε=0.05
ε=0.02
ε=0.001ε=0

Fig. 2.1 Exact solutions y(t, ε) of DDE εy′(t, ε) = λy(t, ε) + μy(t − τ, ε), t ≥ 0; y(t, ε) = 1
when t ≤ 0 for different values of ε compared with the degenerate solution y(t, 0)

lim
t→(kτ)−

(
lim
ε→0

y(t, ε)

)
�= lim

ε→0

(
lim

t→(kτ)+
y(t, ε)

)
. (2.38)

Suchnon-uniformbehavior usually occurs andpropagates at t = nτ (n = 0, 1, 2, . . . )
whenever the initial function ψ(t) is not smooth at the initial points.

Therefore, the degenerate solution y(t, 0) of (2.37) provides a very close approx-
imation to y(t, ε) for sufficiently small ε > 0. We also note from (2.36) and (2.37)
that limε→0 y(t, ε) = y(t, 0) only when λ < 0 and ψ(t) = c (any constant). How-
ever, if λ > 0 lim

ε→0
y(t, ε) = y(t, 0) if and only if λ = −μ. The true solution y(t, ε)

does not possess discontinuities for t > 0 and may smooth out, while the degenerate
Eq. (2.37) only possesses a piecewise continuous solution. However, the true solu-
tion y(t, ε) shows a boundary layer at the right side of each interval that gives rise
to large derivatives (in the time) of the solution for small ε.

Figure 2.1 shows the exact solution of the stiff problem (2.35) compared with the
solution of the degenerated equation,; while Fig. 2.2 displays the numerical solutions
by using explicit and implicit schemes. The plots have a kink at t = nτ (n = 1, 2, . . . )
because of the existence of the time-delay term.

In Chap. 4, we provide a subclass of implicit Runge-Kutta (IRK), called Mono-
Implicit Runge-Kutta (MIRK) method for stiff DDEs and Volterra delay integro-
differential equations. These schemes combine the accuracy of implicit method and
efficient implementation. The schemes have been developed to reduce the compu-
tational cost of the fully implicit method, and they are efficient for both stiff and
non-stiff initial value problems.
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Fig. 2.2 Numerical simulations of DDE: εy′(t) = λy(t) + μy(t − τ), t ≥ 0; y(t) = 1 f or t ≤ 0,
using explicit scheme (left) of order 2 and implicit scheme (right) for the same order, with τ = 1 =
mh; λ = −1, μ = −0.5, m = 25. when ε = 0.05 and 0.02, respectively

2.7 Software Aspects

For numerical proposes, DDEs are replaced by ODEs along with an appropriate
interpolation scheme to approximate y(t − τ). Then, software codes cannot be taken
over from the theory of ODEs without any change. Stepsize must be adjusted to
control the growth of the global error through local error estimates. Software codes
should also be able to determine the location of the derivative jump discontinuities.
In addition, numerical schemes must handle some details about the types of output
desired, stiffness, etc.

2.7.1 Discretization Error

Software code must be able to approximate the desired solution values with rea-
sonable accuracy. Since the exact solution is generally not known and cannot be
calculated, the discretization error is usually estimated or bounded. There are two
measures of the discretization error: (1) global error, and (2) local error.
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Global error is the difference between the computed solution and the true solution
determined by the original data at t0, i.e.,

e(t) = y(t) − ỹh(t).

Here y(t) is the exact solution of (2.2), and ỹh is any numerical approximation of
y(t). Error estimates for (2.2) are then given by

‖y(t) − ỹh(t)‖ ≤ C. [|E1(h)| + |E2(h)|] ,

where E1(h) is the norm of the local error of the integration method, E2(h) is the
norm of the interpolation error, and C is a constant. Consequently, if

E1(h) = O(h p) and E2(h) = O(hq), then

‖y(t) − ỹh(t)‖ = O(hmin(p,q)). (2.39)

The orders p and q depend on how the primary discontinuities are treated; see [29].
Local error in ODEs is the error that would be produced in one step if the previous

values were exact and if there were no roundoff errors. A local error consists of
the local integration error and the local approximation (interpolation) error. More
precisely, let ỹn(t) be the function of (2.2) so that the local error is then defined to
be

dn = zn+1 − ỹh(tn+1),

where z is the local solution of

z(t) = f (t, z(t), û(t − τ)), t ≥ t0,

z(t) = ψ(t), t ≤ t0,

where û is the numerical solution computed in advance. For further illustration, we
consider local error of the form

‖dn‖ = O(h p+1) + O(hq+1), (2.40)

where O(h p+1) is the local error of the RK method of order p, and O(hq+1) is the
local approximation error.
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2.7.2 Location of Jump Discontinuities

Consider the more general recurrence Eq. (2.30) and define α(t, y(t)) := t −
τ(t, y(t)), then we have a switching function:

g(t) = α(t, y(t)) − Z , (2.41)

where Z ∈ {ξk} is the location of the previous jump. The derivative jump disconti-
nuities are the zeros of the non-linear switching function (2.41). We now describe
the switching function method to determine the derivative jump discontinuities in
the following algorithm:

Algorithm ([8]) The switching function algorithm finds the next derivative jump
discontinuity that is used as a next grid point. If tn+1 is the most recent grid point,
ỹn+1 is a numerical approximation to y(tn+1), and ξh is a numerical approximation
to an exact previous derivative jump discontinuity, then the algorithm is as follows:

1. If [α(tn, ỹn) − ξh] × [α(tn+1, ỹn+1) − ξh] > 0, then proceed to the next jump
integration step.

2. If [α(tn, ỹn) − ξh] × [α(tn+1, ỹn+1) − ξh] ≤ 0, then there is a derivative jump
discontinuity in [tn, tn+1]. To locate this jump:

2.1 Construct an interpolation polynomial gh(t) from q + 1 previous values
of the discrete switching function:

gh(ti ) = α(ti , yi ) − ξh, i = n − q, . . . , n.

2.2 Use the bisection method to find the zero ξh of this polynomial in the
extrapolated interval (tn, tn+1) and take ξh as an approximation to the exact
root z of the continuous switching function α(t, y(t)) − ξ .

2.3 Take tn+1 = ξh as the next grid point.


�

2.7.3 Stepsize Control

Using an RK formula pair provides a practical way to estimate local error of a
numerical method and to control the stepsize.

If ˜̂yn and ỹn denote the numerical approximations of the (p + 1)th- and the pth-
order formulae, respectively, then the difference E ST = ‖̃ŷn − ỹn‖ estimates the
local error of the integration process.

The strategy adapted for the stepsize control is to bind the local discretization
error by a tolerance (T O L) per unit step. If ‖.‖ is the maximum norm, hold is the
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most recent stepsize, hnew is the next step to be taken, and hmin is the minimum step
allowed by the routine, then the stepsize control algorithm1 is as follows:

Algorithm This algorithm controls the stepsize for the Runge-Kutta (5,4) formulae.
After each integration step:

1. Compute the estimate E ST per unit step, i.e., ‖̃ŷn − ỹn‖,
2. If E ST ≤ T O L, then

f actor = min{1.5, 0.9 ∗ (T O L/E ST )1/5},
hnew = hold ∗ f actor ,
n = n + 1,
go to start.

3. If T O L < E ST , then
If the number of successive failures is less than three, then
f actor = min{1.5, 0.9 ∗ (T O L/E ST )1/5},
hnew = hold ∗ f actor ,
if hnew < hmin user must increase T O L to continue
else
go to start.
If the number of successive failures is greater than or equal to three, then if
hold ∗ 0.5 > hmin, then
hnew = hold ∗ 0.5,
go to start
if hold ∗ 0.5 ≤ hmin, user must increase T O L to continue.


�

2.7.4 Interpolation to ỹ(t)

The value y(t − τ), of y(t) at the delay t − τ (with all cases of the time-lag τ ) can be
computed from the dense output of the solution ŷ(t) using the continuous extension
process. The one-step interpolant can be constructed step-by-step by utilizing infor-
mation from the underlying step [tn, tn+1], possibly by including some additional
stages. One can use Hermite interpolation [2], where the interpolant polynomial
passes through the numerical solution ỹ(t), as well as its derivatives agree with ỹ′(t)
at the support points, tn + ri hn+1, ri ∈ [0, 1]. A three-point2 Hermite interpolation
polynomial of degree ‘five’ can be considered to make the formula (2.39) of the same
order as the (5,4) Runge-Kutta pair formulae (see Appendix A).

1Restrictions are imposed on the rate at which the stepsize is allowed to decrease and increase: In
Archi code, the stepsize is not allowed to increase if an accepted step was immediately proceeded
by a rejected step.
2The best choice of fixed Hermite support points ri is {0, 1

2 , 1}. We may require extra RK stages to
get ỹn+1/2 at t = tn + 1

2 hn+1; see [7].
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2.7.5 DDE Solvers and Available Software

From a modeler’s viewpoint, two historical periods in the production of numerical
codes for delay equations can be distinguished. During the first period, a number of
experimental codes were developed by modelers or numerical analysts. The second
period can be characterized by the availability of more sophisticated DDE solvers.
The major problems that the designers of such codes try to accommodate are auto-
matic location or tracking of the discontinuities in the solution or its derivatives,
efficient handling of any “stiffness” (if possible), dense output requirements, control
strategy for the local and global error underlying the stepsize selection, the cost and
consistency of interpolation technique for evaluating delayed terms.

The earliest, simple numerical methods for DDEs (2.2) utilized the Euler or
classical fourth-order RK methodswith a constant stepsize, supplementedwith linear
interpolation schemes for the retarded terms. Such adaptations provided minimally
effective means for solving models numerically: they had no error control, used
fixed stepsize, and had problems coping with “stiffness.” Numerical analysts are
now able to cite published algorithms for the numerical solution of DDEs. Several
packages and software are available for the numerical integration and/or the study
of bifurcations in DDEs. The following is a short list of available software:

– Archi (Paul [30]) simulates a large class of functional differential equations.
– DDE23 (Shampine, S. Thompson [31]) simulates retarded differential equations
with several fixed discrete delays.

– RADAR5 (Guglielmi,Hairer [32]) simulates stiff problems, including differential-
algebraic and neutral delay equations with constant or state-dependent (eventually
vanishing) delay.

– DKLAG6 (Thompson [33]) simulates retarded and neutral differential equations
with state-dependent delays.

– MIDDE (Rihan, et al. [27]) simulates stiff and non-stiff delay differential equations
andVolterra delay integro-differential equations usingmono-implicit RKmethods.

– BIFDD (Hassard [34]) (Fortran 77) allows normal form analysis of Hopf bifurca-
tions of differential equations with several fixed discrete delays.

– DDE-BIFTOOL (Engelborghs [35]) (MATLAB) allows computation and stability
analysis of steady-state solutions, their fold and Hopf bifurcations, and periodic
solutions of differential equations with several fixed discrete delays.

2.8 Concluding Remarks

We have discussed how formulae for ODEs can be adapted to solve various types of
DDEs. Next, we describe some concepts of the stability of various schemes for linear
and non-linear delay differential models and sufficient conditions for contractivity
of the solutions.
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Chapter 3
Stability Concepts of Numerical
Solutions of Delay Differential Equations

3.1 Introduction

In this chapter, we discuss the stability properties of the numerical methods described
in the previous chapter. In particular, we derive the stability regions of the solutions
(Sect. 3.2). Sufficient conditions for the contractivity of the solutions are also dis-
cussed (Sect. 3.3).

The classical stability analysis of a differential equation with constant coefficients
requires testing a characteristic polynomial to see if all its roots have a negative real
part. Polynomials with this property are commonly termed Hurwitz polynomials
and they correspond to stable systems. From the numerical analysis perspective, the
stability of a difference equation (which may come from the approximation of a
differential equation) is governed by an associated characteristic polynomial. The
solutions of a difference equation decay to zero as the index tends to infinity if all
the roots of the characteristic polynomial are (absolute value) smaller than unity.
Polynomials of this type are termed Schur polynomials. It is quite possible that the
difference equation may be unstable even though the differential equation is stable.
In any case, it is important to know the stability properties of both the differential
and the difference equations.

3.2 Stability of Numerical Methods for DDEs

In this section,we briefly describe the theory of stability of the step-by-step numerical
methods of DDEs that have been discussed in Chap. 2. A special emphasis is given
to stability regions and contractivity concepts of Runge-Kutta (RK) methods for
DDEs and NDDEs. There are many concepts of stability of DDEs, which are based
on different test equations (see, e.g., [1–4]). Equation (1.21) can be solved by a
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step-by-step ODE integrator provided that the solution is unknown up to the current
integration point. We need the dense output of the continuous ODE integrator for the
standard initial value problem:

y′(t) = f (t, y(t)), t ≥ t0,
y(t0) = y0.

(3.1)

(The discontinuity points ξi of the DDE (1.21) can be recursively detected by solving
ξi − τ(ξi ) = ξi−1, ξ0 = t0.)

The standard form of the RK method for the initial value problem (3.1) is

Y i
n+1 = ỹn + hn+1

ν
∑

j=1

ai j f (t
j
n+1,Y

j
n+1), i = 1, . . . , ν, (3.2)

ỹn+1 = ỹn + hn+1

ν
∑

i=1

bi f (t
i
n+1,Y

i
n+1), (3.3)

where

t in+1 = tn + ci hn+1,
c A
b

, ci =
ν

∑

j=1

ai j , i = 1, . . . , ν, and hn+1 = tn+1 − tn.

The abscissae ci for most common methods belong to [0, 1].
We recall that the continuous extension ŷ(t + θhn+1) of a numerical solution ỹn

is defined, in each subinterval determined by mesh �, by a one-step continuous
quadrature rule of the form

ŷ(tn + θhn+1) = ỹn + hn+1

s
∑

i=1

bi (θ) f (t in+1,Y
i
n+1), 0 ≤ θ ≤ 1, (3.4)

where

Y i
n+1 = ỹn + hn+1

s
∑

j=1

ai j f (t
j
n+1,Y

j
n+1), i = 1, . . . , ν, . . . , s. (3.5)

The polynomials bi (θ) satisfy bi (0) = 0 and bi (1) = bi , i = 1, 2, . . . , s.
The standard adaptation of a continuous RK method to DDE (1.21) has the form

Y i
n+1 = ỹn + hn+1

s
∑

j=1

ai j f (t
j
n+1,Y

j
n+1, ŷ(t

j
n+1 − τ)), i = 1, . . . , s, (3.6)
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ŷ(tn + θhn+1) = ỹn + hn+1

s
∑

i=1

bi (θ) f (t in+1,Y
i
n+1, ŷ(t

j
n+1 − τ)), 0 ≤ θ ≤ 1.

(3.7)

3.2.1 Stability Regions for DDEs: P-stability and GP-stability

Consider a simple delay model of the form

y′(t) = λy(t) + μy(t − τ), t ≥ t0,
y(t0) = ψ(t), t ≤ t0.

(3.8)

We start our analysis with some definitions of stability based on the simplest test
equations (3.8), with “constant” delay, which leads to the concepts of P-stability and
GP-stability (defined by Barwell [5]) as a generalization of the concept of A-stability
of ODEs.

Definition 3.1 [5] The P-stability region of a numerical step-by-step method for the
linear DDE (3.8) is the set SP of the pairs of complex (α, β), α = hλ, β = hμ,

such that the discrete solution {ỹn}n≥0 of (3.8) is uniformly bounded for all constant
lags τ and all initial functions ψ(t) and for any constant stepsize h > 0 under the
constraint

h = τ/m, m ∈ N. (3.9)

A sufficient condition of P-stability is given in the following definition:

Definition 3.2 A numerical step-by-step method for DDEs is P-stable if

SP ⊇ {

(α, β) ∈ C
2 | Re(α) + |β| < 0

}

.

If we drop the restriction (3.9), then we obtain the definition of GP-stability:

Definition 3.3 A numerical method for linear DDEs (3.8) is called GP-stable if
{ỹn}n≥0 of (3.8) is uniformly bounded for all constant lag τ , for all initial functions
ψ(t), and for any constant stepsize h > 0.

It is obvious that SGP ⊆ SP ; thus, GP-stable is P-stable as well. Furthermore,
the P-stable method for DDEs is A-stable for ODEs.

To study the stability of the RK method for DDEs such as (3.8) with constant lag
τ , we consider two cases here:
• (i) When we do not require a separate continuous extension formulae to approx-
imate the retarded term y(t − τ). In this case, under condition (3.9) (i.e., τ = mh),
when ỹ(nh + ci h − τ) is required, it is possible to refer to it as the previous internal
stage value ỹn−m such that ci ∈ [0, 1]. Let us, for simplicity, use K ′s formulae of the
RK method for solving DDEs:
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K i
n+1 = f (tn + cnh, ỹn + h

s
∑

j=1

ai j K
j
n+1, ỹn−m+1), i = 1, . . . , s,

ỹn+1 = ỹn + h
s

∑

i=1

bi K
i
n+1. (3.10)

Applying this method for Eq. (3.8), we get the recurrence form

ỹn+1 = [1 + λhbT (I − λhA)−1e]̃yn + μhbT (I − λhA)−1ỹn−m, (3.11)

in which ỹn−m is a vector consisting of “back-values” ỹ(nh + ci h − τ). Equation
(3.11) can be written in the form

ỹn+1 = r(λh)ỹn + μhbT S̃yn−m, (3.12)

where r(z) := 1 + zbTSe, S ≡ S(λh) = (I − λhA)−1, and e = [1, . . . 1]T ∈ R
s .

Corollary 3.1 The improvedEulermethod forEq. (3.8), definedbyb = [1/2, 1/2]T ,

A =
[

0 0
1 0

]

, with τ = mh gives

ỹn+1 =
(

1 + α + α2

2

)

ỹn + β

2
ỹn−m+1 + β(1 + α)

2
ỹn−m, (3.13)

which is asymptotically stable, provided that all the roots of the characteristic equa-
tion

ξm+1 −
(

1 + α + α2

2

)

ξm − β

2
ξ − β

2
(1 + α) = 0

are in the unit circle, where α = λh and β = μh.

Corollary 3.2 If we drop condition (3.9) and suppose that τ = (m + θ)h, m ∈
N and θ ∈ [0, 1), then Eq. (3.11) (with the linear interpolation ỹ(tn−m − θh) =
θyn−m−1 + (1 − θ)yn−m) takes the form:

ỹn+1 =
[

1 + λτ

m + θ
bT

(

I − λτ

m + θ
A
)−1

]

ỹn +

μτ

m + θ
bT

(

I − λτ

m + θ
A
)−1

[

θ ỹn−m−1 + (1 − θ )̃yn−m
]

. (3.14)

By way of example, the explicit Euler method for the simple DDE,

y′(t) = λy(t) + μy(t − 1), t ≥ 0, (3.15)

gives (τ = 1 = (m + θ)h)
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ỹn+1 =
{

1 + λ

m + θ

}

ỹn + μ

m + θ

{

θ ỹn−m−1 + (1 − θ)ỹn−m

}

.

Then, stability conditions can be determined from the characteristic equation

ξm+2 −
(

1 + λ

m + θ

)

ξm+1 − μ(1 − θ)

m + θ
ξ − μθ

m + θ
= 0,

whereas the characteristic equation (with α = λh, β = μh, and h = τ/(m + θ))
due to application of implicit Euler method into (3.15) is

ξm+1 − 1

1 − α
ξm − β(1 + θ)

1 − α
ξ − θβ

1 − α
= 0.

The characteristic equation arising from the application of the improvedEulermethod
for solving (3.15) is

ξm+1 −
(

1 + α + α2

2

)

ξm + β

2
ξ 2 − β

2
(1 − αθ)ξ − β

2
(1 + α)(1 + θ) = 0.

Applying the trapezium rule to (3.15) produces the characteristic equation

(

1 − α

2

)

ξm+2 −
(

1 + α

2

)

ξm+1 − β

2
(1 − θ)ξ 2 − β

2
ξ − β

2
θ = 0.

In practice, derivation of the stability regions of the DDEs, depending on lag τ ,
is very useful. Graphs in Figs. 3.1, 3.3, 3.4, and 3.5 show the stability regions of the
DDEs (3.15), with stepsize h = τ/(m + θ), in the (λ, μ)-plane for different methods
(such as explicit, implicit, and improved Euler methods as well as the trapezium rule
method), using the boundary locus technique [6]. The degree of sensitivity to θ can
also be noted from the samegraphs.On the other hand, Fig. 3.2 illustrates the behavior
of the solutions of the DDE (3.15) using explicit and implicit Euler methods.
• (i i) When relying on the internal stage values to approximate the retarded term
y(t − τ). In this case, under the condition (3.9), we use the natural continuous
extension NCE for the approximation of the retarded part ỹ(nh + ci h − τ) :=
ŷ(tn−m + ci h):

ŷ(tn−m + ci h) = ỹn−m + h
s

∑

j=1

b j (ci )K
j
n−m+1, 0 ≤ ci ≤ 1. (3.16)

By putting bi j = b j (ci ), we get the s × s matrix B = {bi j } and we can conclude that
the RK method for DDEs, applied to the test problem (3.8) with constant stepsize h
satisfying the constrain (3.9), is
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Fig. 3.1 Stability regions in the (λ, μ)-plane for the explicit Euler method when solving y′(t) =
λy(t) + μy(t − 1) with h = 1/(m + θ)

K i
n+1 = λ

⎛

⎝ỹn + h
s

∑

j=1

ai j K
j
n+1

⎞

⎠ + μ

⎛

⎝ỹn−m + h
s

∑

j=1

bi j K
j
n−m+1

⎞

⎠ , i = 1, . . . , s,

ỹn+1 = ỹn + h
s

∑

i=1

bi K
i
n+1. (3.17)

Put Ki = [K 1
i , . . . , K

s
i ]T ; hence, (3.17) takes the form

Kn+1 = λ (ỹne + hAKn+1) + μ (ỹn−me + hBKn−m+1) ,

ỹn+1 = ỹn + hbTKn+1.
(3.18)

Then, by putting �n = [̃yn, hKT
n ]T , this pair of equations can be reduced to the

following recurrence relation with constant coefficients for the sequences of (s + 1)-
dimensional vectors:

�n+1 = P(α)�n + βQ(α)�n−m+1 + βR(α)�n−m, (3.19)
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Fig. 3.2 Numerical solutions of DDE y′(t) = λy(t) + μy(t − 1), t ≥ 0; y(t) = 1 f or t ≤ 0 and
with τ = 1 = (m + θ)h; λ = −40, μ = −20

where

P(α) =
⎡

⎣

r(α) 0

αSe O

⎤

⎦, Q(α) =
⎡

⎣

0 bTSB

O SB

⎤

⎦, R(α) =
⎡

⎣

bTSe 0

Se O

⎤

⎦,

B = [b j (ci )]si, j=1, e = [1, . . . 1]T ∈ R
s and O is the zero matrix ∈ R

s×s .
The asymptotic behavior of the solution of (3.19) is determined by the roots ξ of

its characteristic equation:

det[ξm+1I − ξmP(α) − ξβQ(α) − βR(α)] = 0. (3.20)

For stability of (3.19), we require the zeros {ξi } of (3.20) to satisfy the Neumann
root condition (|ξi | ≤ 1).

3.2.2 Stability Regions for Linear NDDEs

The above analysis of the stability of the numerical method can be extended to the
NDDE (1.17).
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Fig. 3.3 Stability regions in the (λ, μ)-plane for the implicit Euler method when solving the DDE
y′(t) = λy(t) + μy(t − 1) with h = 1/(m + θ)

Let α = λh, β = μh, and γ = νh, where {ỹn}n≥0 denotes the discrete solution
obtained from application of RK method to the NDDE (1.17) with τ = mh for some
m ∈ N. We now introduce the following definition:

Definition 3.4 Suppose τ = mh for somem ∈ N. RKmethod forNDDE (1.17)with
stepsize h is said to be stable for given (α, β, γ ) if {ỹn}n≥0 is uniformly bounded.
The region of stability of (1.17) is the set of all values (α, β, γ ) for which (1.17) is
stable. The method is said to be NP-stable if the region of stability contains the set:

SN P ⊇ {

(α, β, γ ) : |αγ̄ − β̄| + |αγ + β| < −2Re(α)
}

.

Applying the RK method for the test equation (1.17), with constant stepsize h satis-
fying the constraint (3.9), gives
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Fig. 3.4 Stability regions in the (λ, μ)-plane for the trapezium method when solving the DDE
y′(t) = λy(t) + μy(t − 1) with h = 1/(m + θ)

K i
n+1 = λ

(

ỹn + h
s

∑

j=1

ai j K
j
n+1

)

+ μ
(

ỹn−m + h
s

∑

j=1

bi j K
j
n−m+1

)

+ ν
(

h
s

∑

j=1

ci j K
j
n−m+1

)

,

ỹn+1 = ỹn + h
s

∑

i=1

bi K
i
n+1. (3.21)

Using the notation of the above section, (3.21) takes the form

Kn+1 = λ (ỹne + hAKn+1) + μ (ỹn−me + hBKn−m+1) + ν (hCKn−m+1) ,

ỹn+1 = ỹn + hbTKn+1,

(3.22)

where C := {ci j } = [b′
j (ci )]si, j=1. Then, these equations can be reduced to the recur-

rence:

�n+1 = P�n + Q�n−m+1 + βR�n−m, (3.23)

where
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Fig. 3.5 Stability regions on the (λ, μ)-plane for the improved Euler method when solving the
DDE y′(t) = λy(t) + μy(t − 1) with h = 1/(m + θ)

P =
⎡

⎣

r(α) 0

αSe O

⎤

⎦, Q =
⎡

⎣

0 bTS(βB + γC)

O S(βB + γC)

⎤

⎦, R =
⎡

⎣

bTSe 0

Se O

⎤

⎦.

Then, the asymptotic behavior of the solution of (3.23) is determined by the roots
ξ of its characteristic equation:

det[ξm+1I − ξmP − ξQ − βR] = 0. (3.24)

Regions of stability can be computed using the boundary locus (or grid-search)
technique, where one seeks the loci on which the characteristic polynomial (3.24)
has a zero of modulus unity. Such a region can be obtained in the (λ,μ)-plane for
each parameter ν of the test equation (1.17). Graphs in Figs. 3.6 and 3.7 show the
stability regions for the Euler method applied to the test equation (1.17).
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3.3 Contractivity Concepts and GPN-Stability

The linear test DDEs (3.8) with variable coefficients

y′(t) = λ(t)y(t) + μ(t)y(t − τ), t ≥ t0,
y(t) = ψ(t), t ≤ t0

(3.25)

lead to the concepts of PN -stability andGPN -stability. Recall the definition of σ(t)
and γ (t) defined by (1.23) and (1.24). Here, σ(t) = Re(λ(t)), γ (t) = |μ(t)|. Hence,
by Theorem 1.4, the solution of (3.25) is bounded by ψ(t) (|y(t)| ≤ max

t≤t0
|ψ(t)|),

provided that, for every t ≥ t0,

|μ(t)| ≤ −Re(λ(t)). (3.26)

Definition 3.5 A numerical method for DDEs is said to be PN-stable (see [7], [8],
and [3]) if the discrete numerical solution ỹk of (3.25) under the condition (3.26) is
such that

|̃yk | ≤ max
t≤t0

|ψ(t)|, (3.27)

for all constant lags τ , k ≥ 0, and under the constraint (3.9).

Definition 3.6 [8] A numerical method for DDEs is said to be GPN-stable if under
condition (3.26) the numerical solution of (3.25) satisfies (3.27) for every k ≥ 0 and
for every stepsize h > 0.

Torelli [4] gave a sufficient condition for GPN-stability by using the contractivity
properties of the ODE solver and for interpolant with respect to the test equation:

y′(t) = λ(t)y(t) + g(t), y(t0) = y0, (3.28)

whenever

Re(λ(t)) < 0, for t ≥ t0. (3.29)

Assume that the functions λ(t) and g(t) are such that Eq. (3.28) has a unique solution
of the form:

y(t) = eA(t)y0 + eA(t)
∫ t

t0

e−A(x)g(x)dx,

where A(t) = ∫ t
t0

λ(x)dx .
One can see from Theorem 1.5 that the contractivity property of the ODE (3.28)

with respect to y0 and g(t) is
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|y(t)| ≤ max

{

|y0|; max
t0≤x≤t

|g(x)|
−Re(λ(x))

}

, for t ≥ t0. (3.30)

With regard to the numerical methods for (3.28), we need the following definitions
of ANg-stability, for the numerical method and interpolant, respectively.

Definition 3.7 [4] An RKmethod (3.2)–(3.3) is said to be ANg-stable if for all coef-
ficients λ(t) satisfying (3.29), the numerical solution ỹn of the ODE (3.28) satisfies

|̃yn+1| ≤ max

{

|̃yn|; max
1≤i≤ν

|g(tn + ci h)|
−Re(λ(tn + ci h))

}

, (3.31)

for every stepsize h > 0 and for every function g.

Definition 3.8 [4] Consider an ANg-stable RK method for the test problem (3.28).
An interpolant ŷ defined by (3.4) is said to be an ANg-stable interpolant to the RK
method if there exists a constant M ≥ 1 such that

max
0≤θ≤1

|̂y(tn + θh)| ≤ M max

{

|̃yn|; max
1≤i≤ν

|g(tn + ci h)|
−Re(λ(tn + ci h))

}

, (3.32)

for every n ≥ 0 such that condition (3.29) holds for every g.

Remark 3.1 One can observe that a linear interpolant related to an ANg-stable RK
method is an ANg-stable interpolant with M = 1.

A sufficient condition for GPN-stability is given by the following theorem [4]:

Theorem 3.1 If we apply an ANg-stable RK method together with an ANg-stable
interpolant to the DDE (3.25), then the numerical approximation ỹk at the point tk
is such that |̃yk | ≤ max

t0−τ≤t≤t0
|ψ(t)| for k ≥ 0, for every τ , for every ψ , and for every

step stepsize h > 0 such that

M |μ(t)| ≤ −Re(λ(t))

for every t ≥ t0, where M is the constant in (3.32).

This means that an RKmethod for DDE is GPN-stable if both the RKmethod (3.2)–
(3.3) and the interpolant (3.4) are ANg-stable.

To translate the stability properties of the continuous RK method (3.6)–(3.7) for
DDEs with respect to the test problem (3.25) in terms of the coefficients, we must
obtain the necessary and sufficient condition of the underlying continuousRKmethod
for its ANg stability. Applying the RK method (3.4)–(3.5) to the test equation (3.28)
under condition (3.29) yields
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Y i
n+1 = ỹn + hn+1

s
∑

j=1

ai j
(

λ(t jn+1)Y
j
n+1 + g(t jn+1)

)

, i = 1, . . . , s,

ŷ(tn + θhn+1) = ỹn + hn+1

s
∑

i=1

bi (θ)
(

λ(t in+1)Y
i
n+1 + g(t in+1)

)

, 0 ≤ θ ≤ 1.

We put for every i ∈ {1, . . . , s}:

ai = λ(t in+1), zi = hai ; gi = g(t in+1),

φi = gi
−Re(ai )

(hence, hgi = −Re(zi )φi ),

Y i = Y i
n+1.

Note that Re(zi ) < 0 for every i because Re(λ(t)) < 0 for every t ≥ t0. With this
notation, we can write

Y i = ỹn +
s

∑

j=1

ai j z jY
j +

s
∑

j=1

ai j hg j , i = 1, . . . , s,

ŷ(tn + θhn+1) = ỹn +
s

∑

i=1

bi (θ)ziY
i +

s
∑

i=1

bi (θ)zi gi , 0 ≤ θ ≤ 1.

Define the s × s matrix Z = diag(z1, . . . , zs) and the vectors Y = (Y 1, . . . ,Y s)T ,
g = (g1, . . . , gs)T , and� = (φ1, . . . , φs)

T , so that the RKmethod takes the compact
form

Y = (I − ZA)−1e ỹn − (I − ZA)−1ARe(Z)�,

ŷ(tn + θhn+1) = ỹn + b(θ)TZY − b(θ)T Re(Z)�.

Then, the numerical approximation is

ŷ(tn + θhn+1) = (1 + b(θ)T (I − ZA)−1Ze)ỹn − b(θ)T (I − ZA)−1Re(Z)�,

(3.33)

where I is the identity matrix and e is the unity s−vector.
The contractivity conditions of the numerical solution of DDEs have been given

by Torelli [4] in the following theorem:

Theorem 3.2 Assume that Eq. (3.25) satisfies (3.26). If the RK method (3.6)–(3.7)
for DDEs satisfies the following conditions:

(1) If (I − ZA) is nonsingular, and

|1 + b(θ)T (I − ZA)−1Ze| + ‖b(θ)T (I − ZA)−1Re(Z)‖1 ≤ 1 (3.34)
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Table 3.1 Important stability concepts in the literature

Test equation Conditions Type of
stability

ODE concept

y′(t) = λy(t) + μy(t − τ), τ/h ∈ N P-stability A-stability

|μ| < −Re(λ) arbitrary h GP-stability

y′(t) = λy(t) + μy(t − τ) + νy′(t − τ), τ/h ∈ N NP-stability –

|λν̄ − μ̄| + |λν + μ| < −Re(λ) arbitrary h NGP-stability

y′(t) = λ(t)y(t) + μ(t)y(t − τ), τ/h ∈ N PN-stability AN-stability

|μ(t)| < −Re(λ(t)) arbitrary h GPN-stability

y′(t) = f (t, y(t), y(t − τ)), τ/h ∈ N RN-stability BN-stability

subject to (3.38)–(3.40) arbitrary h GRN-stability

for every Z, and all θ ∈ [0, 1], then
(2) max0≤θ≤1 |̂y(tn + θhn+1) ≤ maxt≤t0 |ψ(t)| holds for all n and all ψ ,

where ‖x‖1 = ∑s
i=1 |xi | for any s−dimensional row-vector x .

From the above, we can say that a GPN-stable method is also PN-stable and
that a PN-stable method is AN-stable for ODEs. We also note that PN-stability and
GPN-stability are stronger concepts than P-stability and GP-stability because they
are based on a more general test equation, to the same extent that AN-stability is a
stronger stability concept than A-stability for ODEs; see Table 3.1 for a summary of
numerical stability of DDEs.

Amore extensive stability analysis of numerical methods based on amore general
non-linear test problem (1.21) is considered in the next section.

3.3.1 Contractivity Concepts and GRN-Stability

Now, we analyze the stability properties of the RK methods for DDEs with respect
to the general non-linear system (1.21) under condition (1.25). This gives rise to
the concepts of RN -stability and GRN -stability [9]. Here, to be more suitable, we
reiterate (1.21) and (1.22):

y′(t) = f (t, y(t), y(t − τ)), t ≥ t0,
y(t) = ψ(t), t ≤ t0,

(3.35)

z′(t) = f (t, z(t), z(t − τ)), t ≥ t0,
z(t) = φ(t), t ≤ t0.

(3.36)
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For the particular case of constant lag τ > 0,Torelli [4] gave the followingdefinitions:

Definition 3.9 A numerical method for DDEs is called RN-stable if, under the con-
dition (1.25), the discrete numerical solutions ỹk and z̃k of (3.35) and (3.36), respec-
tively, satisfy the condition:

‖ỹk − z̃k‖ ≤ max
t≤t0

‖ψ(t) − φ(t)‖, k ≥ 0 (3.37)

for all constant lag τ and every k ≥ 0 and for every stepsize and any constant stepsize
h > 0 under the condition (3.9).

Definition 3.10 A numerical method for DDEs is called GRN-stable if the discrete
numerical solutions {ỹk} and {̃zk} of the pairs of the systems (3.35) and (3.36) satis-
fying (1.25) are such that (3.37) holds, for every k ≥ 0 and for every stepsize h > 0.

The above definitions reflect demands for the discrete numerical solutions to preserve
the contractivity properties of the solution. Bellen and Zennaro [10] introduced the
sufficient conditions for RN -stability and GRN -stability by the contractivity con-
cepts of ODE solvers. Results of Theorem 3.2 can be extended to the non-linear
equation (3.35) for a variable delay and free mesh points. For convenience, we reit-
erate the definitions of σ(t) and γ (t) given by (1.23)–(1.24):

σ(t in+1) ≥ sup
z,y1 ,y2∈Cn

y1 
=y2

Re
〈

( f (t in+1, y1, z) − f (t in+1, y2, z), y1 − y2)
〉

‖y1 − y2‖2 (3.38)

and

γ (t in+1) ≥ sup
y,z1 ,z2∈Cn

z1 
=z2

‖ f (t in+1, y, z1) − f (t in+1, y, z2)‖
‖z1 − z2‖ , (3.39)

under the condition

γ (t) ≤ −σ(t), for all t ≥ t0. (3.40)

Assume that the numerical solution of (3.35) is in the form (3.6)–(3.7), so the solution
of (3.36) takes the form

Zi
n+1 = z̃n + hn+1

s
∑

j=1

ai j f (t
j
n+1, Z

j
n+1, ρ̂(t jn+1 − τ)), i = 1, . . . , s, (3.41)

ρ̂(tn + θhn+1) = z̃n + hn+1

s
∑

i=1

bi (θ) f (t in+1, Z
i
n+1, ρ̂(t jn+1 − τ)), 0 ≤ θ ≤ 1.

(3.42)
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Fig. 3.6 Stability regions in
the space of parameters
(λ,μ, ν) for the explicit
Euler method when solving
the NDDE y′(t) = λy(t) +
μy(t − 1) + νy′(t − 1) with
τ = 1 = mh (m = 25); the
middle bold one is for ν = 0
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The following theorem provides the conditions of contractivity of the RK methods
for DDEs (3.35):

Theorem 3.3 [9] Assume that the function f in (3.35) and (3.36) satisfies the condi-
tion (3.40). If the continuous RK method satisfies the conditions (i) in Theorem 3.2,
then the result for the DDEmethod |̂y(t) − ρ̂(t))| ≤ maxs≤t0 |ψ(s) − φ(s)| holds for
all t ≥ t0, for any integration mesh points and for any pair of functions ψ(t), φ(t).

3.4 Concluding Remarks

In this chapter, we have examined the stability of numerical methods of DDEs.
Specifically, we have derived some stability regions for certain numerical meth-
ods applied to linear constant coefficient DDEs. New results for numerical stability
regions were obtained by choosing τ = (m + θ)h, with θ ∈ [0, 1) and m ∈ N. We
observed interesting stability regions (for various methods) that are sensitive to θ

(Figs. 3.1, 3.3, 3.4, and 3.5). Such a sensitivity is much less pronounced for implicit
formulae. From the graph in Fig. 3.1, it may also be observed that the intercept with
the μ = 0 axis is consistent with results for ODE stability (e.g., in case of explicit
method, λh ∈ (−2, 0)). Implicit formulae give unbounded stability regions which,
form ≥ 5, are the same as the true stability regions. The technique has been extended
to find the stability regions of the solutions of linear NDDEs; see Figs. 1.3, 3.6, and
3.7. We get an unstable area for |ν| > 1.

In the next chapter, we shall introduce a numerical technique for Volterra delay
integro-differential equations.
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Chapter 4
Numerical Solutions of Volterra Delay
Integro-Differential Equations

4.1 Introduction

In this chapter, we introduce a numerical technique for Volterra delay integro-
differential equations. The technique is based on the mono-implicit Runge-Kutta
method and collocation method for the integral part. In the following pages, the
efficiency and stability properties of this technique are examined. Later, numerical
results are presented to demonstrate the effectiveness of the methodology.

The mono-implicit Runge-Kutta (MIRK) method is a subclass of the well-known
family of implicit Runge-Kutta methods [1] and has many applications for the effi-
cient numerical solution of systems of initial and boundary value ODEs. These
methods are suitable for stiff problems (where the global accuracy of the numer-
ical solution is determined by stability rather than local error and implicit methods
are more appropriate; see, e.g., [2]). In [3], the authors adapted MIRK methods for
stiff and non-stiff DDEs and studied the efficiency and stability properties of this
class of methods. In this chapter, we extend the technique to solve Volterra delay
integro-differential equations of the form

y′(t) = f (t, y(t), y(α(t, y(t))),
∫ t

a(t)
g(t, s, y(s))ds), for t ≥ 0,

y(t) = ψ(t), t ≤ 0,
(4.1)

where α(t, y(t)) < t . The integral part in (4.1) introduces continuously distributed
delay. If a(t) = t − τ , with fixed τ > 0, then (4.1) has a fixed time-lag and bounded
retardation since the difference between t − τ and t is fixed and bounded. If a(t) = 0,
then (4.1) has unbounded time-lag since the difference between 0 and t is unbounded.
However, if a(t) → −∞, then (4.1) has infinite time-lag; see [4, 5].

The absence of the integral term in Eq. (4.1) reduces it to the DDE

y′(t) = f (t, y(t), y(α(t, y(t)))), for t ≥ 0,
y(t) = ψ(t), t ≤ 0.

(4.2)
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Here, ifα(t, y(t)) ≡ t − τ , with fixed τ > 0, then Eq. (4.2) has discretely distributed
delay and the time-lag or retardation is bounded. However, if α(t, y(t)) = μt, μ ∈
[0, 1), then Eq. (4.2) has unbounded time-lag.

For simplicity, consider a scalar VDIDE of the form:

y′(t) = f (t, y(t), y(t − τ),

∫ t

a(t)
g(t, s, y(s))ds), for t ≥ 0,

y(t) = ψ(t), t ≤ 0,
(4.3)

with fixed τ > 0 and the integral term in (4.3) introduces either unbounded time-
lag, i.e., a(t) = 0 or bounded time-lag, i.e., a(t) = t − τ . The functions f, g are
assumed to be sufficiently smooth with respect to their arguments, and ψ(t) is an
initial function that is assumed to be continuous. To solve (4.3) numerically, we
not only need an approximation to the solution at the proposed mesh points but
also need to create the solution at the non-mesh points to produce dense output of
the solution in order to approximate the delay term y(t − τ) and the integral term∫ t

a(t)
g(t, s, y(s))ds. The proposed technique is based on continuous mono-implicit

Runge-Kutta (CMIRK) method (see [6]) to treat the differential part, and Boole’s
quadrature rule (see [7]) to treat the integral part.

This chapter is organized as follows: In Sect. 4.2, we briefly discuss the analyt-
ical stability of VDIDEs and review MIRK methods for initial value problems in
Sect. 4.3. In Sect. 4.4, we present the numerical technique and the numerical algo-
rithm for VDIDEs that are based on CMIRK methods of fourth order along with
Boole’s quadrature rule. The numerical stability regions of the underlying methods
are presented in Sect. 4.5. The numerical results are presented in Sect. 4.6, and some
concluding remarks are given in Sect. 4.7.

4.2 Analytical Stability

Consider the test problem of scalar VDIDE of the form

y′(t) = λy(t) + μy(t − τ) + γ

∫ t

t−τ

y(ν)dν , t > 0

y(t) = ψ(t), −τ ≤ t ≤ 0,
(4.4)

where λ,μ andγ are complex and τ > 0 is a constant delay. Looking for solutions
of (4.4) of the form y(t) = exp(st), we are led to the characteristic equation

H(s) ≡ s − λ − μ exp(−τ s) − γ

s
(1 − exp(−τ s)) = 0. (4.5)
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The asymptotic stability of the zero solution to (4.4) is equivalent to the condition
that all the roots of the characteristic equation (4.5) have negative real parts and are
bounded away from the imaginary axis [8].

The analytical stability region Sa of (4.4) is determined by the set of (λ, μ, γ )

values for which all the roots s of (4.5) have negative real parts:

Sa = {(λ, μ, γ ) : Re (s) < 0 ∀ s}.

To find the boundary of the analytical stability region for which Re (s) = 0, we
assume that λ, β, γ ∈ R and s ∈ C is pure complex, i.e., s = iθ ; then, Eq. (4.5)
takes the form

H(iθ) = iθ − λ − μ exp(−iθ τ) − γ

iθ
(1 − exp(−iθτ)) = 0. (4.6)

Separating the real and complex parts of (4.6) and writing μ and γ in terms of λ and
θ , we obtain

Sa(λ, θ) =
{

μ(λ, θ) = λ − θ sin θ τ

(1 − cos θτ)
, γ (λ, θ) = θ(θ cos θ τ − λ sin θ τ)

(1 − cos θ τ)

}
,

(4.7)

for any τ > 0 and θ ∈ (0, 2π). If θ = 0, then relations in (4.7) reduce to the straight
line

μ + τ γ = −λ. (4.8)
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Fig. 4.1 Analytical stability region of VDIDE (4.4) with different values of λ =
−10,−20,−30,−40,−50. The asymptotic stability region getting largerwithmore negative values
of λ
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The graphs of Fig. 4.1 show the analytical stability regions of (4.4) that are determined
by the parametrized curves in (4.7) and the line of (4.8). The asymptotic stability
region becomes wider as λ becomes more negative.

Note that when γ = 0, VDIDE (4.4) coincides with the test DDE

y′(t) = λy(t) + μy(t − τ), t > 0
y(t) = ψ(t), −τ ≤ t ≤ 0,

(4.9)

and the boundary (4.7) of the analytical stability region reduces to

Sa(λ, θ) =
{

μ(λ, θ) = λ − θ sin θ τ

(1 − cos θ τ)
, 0 = (θ cos θ τ − λ sin θ τ)

}
, θ 
= 0

(4.10)

that can be simplified to

Sa(θ) = {
μ(θ) = −θ / sin θ τ, λ(θ) = θ cot θ τ,

}
, θ 
= 0. (4.11)

This equation provides the same bounding below the curve of the analytical stability
region for the DDE (4.9). Equation (4.8) for γ = 0 reduces immediately to the line
μ = −λ, which is the same boundary line of (4.9); see Fig. 4.2.

The necessary conditions imposed on the coefficients to guarantee the asymptotic
stability of (4.4) are given by the following theorem:
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Theorem 4.1 The zero solution of (4.4) is delay-independent asymptotically stable
if and only if the following three conditions are satisfied:

λ + μ + γ τ 
= 0 for any τ ≥ 0,

Re (λ) < 0 & (Re(λ)Re(λγ ) + (Im (γ ))2 < 0, or γ = 0)

m((λ + μ)γ ) = 0&{| μ |2< (Re(λ))2 + 2Re(γ ), or

Im (λ) = 0, | μ |2= (Re (λ))2 + 2Re(γ )}.

(4.12)

When γ = 0, the above conditions are reduced to |μ| < −Re(λ). However, when λ,
μ, and γ are all real and γ 
= 0, these conditions are reduced to λ < 0, γ < 0,
and μ2 ≤ λ2 + 2γ ; see [9] for the proof and more discussions.

4.3 Continuous Mono-Implicit RK Scheme for DDEs

Mono-implicit Runge-Kutta (MIRK) methods are a subclass of the well-known
implicit Runge-Kutta methods and have application in the efficient numerical solu-
tion of systems of initial and boundary value ordinary differential equations; see [6].
MIRK schemes are developed to reduce the computational cost of the fully implicit
method which combines the accuracy of implicit method and efficient implementa-
tion. In this section, we briefly review the MIRK method for initial value problems
(IVPs)

y′(t) = f (t, y(t)), 0 < t ≤ T, y(0) = y0. (4.13)

Given the mesh points � = {0 < t1 < · · · < tN = T } with stepsize hn = tn+1 − tn ,
and yn ≈ y(nhn), one gets

yn+1 = yn + hn

s∑
r=1

brKr
n+1, (4.14)

with stages, defined by

Kr
n+1 = f

⎛
⎝trn , (1 − vr )yn + vr yn+1 + hn

r−1∑
j=1

ar jK j
n+1

⎞
⎠ . (4.15)

Here, Kr
n is the rth stage, br , vr , cr , and ar j are the parameters of the MIRK method

that are defined by the tableau (with 1 ≤ r, j ≤ s):
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c1 v1 0 0 … 0 0
c2 v2 a2,1 0 … 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

cs vs as,1 as,2 … as,s−1 0
b1 b2 b3 … bs

≡
C V A

bT

The abscissae ci ∈ [0, 1] (i = 1, 2, ..., s), bT= [b1, b2, . . . , bs],
s∑

i=1

bi = 1, V=

[v1, v2, ..., vs]T , C= [c1, c2, . . . , cs]T , and A= {ai j }s,s−1
i, j=1. The abscissae cr relate br

and vr by the form cr = vr +
s∑

i=1

ari , and trn = tn + vr hn .

The stability function of this scheme is defined by (see [6])

R(z) = P(z, e–V)

P(z,−V)
, P(z,w) = 1 + zbT (I − zA)−1w,

where w∈ R
s and e= [1, 1, ..., 1]T is s × 1 vector. The MIRK scheme is of order p

(i.e., it has local error of order p + 1) if for the local problem, y′(ti ) = f (ti , y(ti )),
y(ti−1) = yi−1, the numerical solution yn given by solving (4.14) and (4.15) satisfies
|y(tn) − yn| = O(h p+1

n ).
We can then utilize the above scheme to solve the DDE, see [3], by using contin-

uous extension to find the solution at non-mesh points. Given a DDE of the form:

y′(t) = f (t, y(t), y(t − τ)), for t ≥ 0,
y(t) = ψ(t), −τ ≤ t ≤ 0,

(4.16)

where τ > 0 is the delay in time, the function f is assumed to be sufficiently smooth
with respect to its arguments, and ψ(t) is an initial function which is assumed to be
continuous. Applying the s−stages MIRK scheme to (4.16) yields

Kr
n+1 = f

⎛
⎝trn , (1 − vr )yn + vr yn+1 + hn

r−1∑
j=1

ar jK j
n+1, y(t

r
n − τ)

⎞
⎠ . (4.17)

Of course, the complexity of the scheme depends on the coefficients {vr }sr=1,
{ai j }s,i−1

i, j=1, the weights {br }sr=1, and the number of stages s. Due to the nature of
DDEs, the numerical solution obtained by the discrete MIRK scheme at mesh points
is not sufficient as in the earlier described ODE case. The presence of the delay
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term y(trn − τ) in Eq. (4.17) requires the availability of an approximation to the solu-
tion at any point trn − τ that is not always a mesh point. Continuous Mono-Implicit
RK (CMIRK) scheme provides continuous approximate solution u(t) at any point
between the two mesh points tn and tn+1 using the equation

u(tn + ϑhn) = yn + hn

s∗∑
r=1

br (ϑ)Kr
n+1, 0 ≤ ϑ ≤ 1, (4.18)

where s∗ ≥ s is the number of stages for CMIRK scheme, and Kr
n+1, r = 1, ..., s∗

are defined by the same equation (4.17) as in the discrete scheme to reduce extra
computations. br (ϑ), r = 1, . . . , s∗ are polynomials in ϑ , 0 ≤ ϑ ≤ 1, of degree d ≤
p, where p is the order of accuracy of the Runge-Kutta method [10]. The additional
s∗ − s stages in the continuous extension formula (4.18) are assumed to raise its
uniform order to the order of the discrete Runge-Kutta methods.

The parameters of the CMIRK scheme are then defined by the tableau:

c1 v1 0 0 … 0 0
c2 v2 a2,1 0 … 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

cs∗ vs∗ as∗,1 as∗,2 … as∗,s∗−1 0
b1(ϑ) b2(ϑ) b3(ϑ) … bs∗ (ϑ)

≡
C V A

bT (ϑ)

The polynomials br (ϑ) and s∗ are chosen to satisfy some continuity and order
conditions (see [1, 10, 11] formore details). Numerical stability analysis i of CMIRK
schemes for DDEs is discussed in [3]. Next, we extend CMIRK scheme to numeri-
cally solve VDIDEs.

4.4 Numerical Treatment of VDIDEs

To utilize ODEs’ solvers for solving VDIDEs, we should consider the propagation of
derivative jump discontinuities and the dependence of the solution on past conditions.
These two special features coincidewith those ofDDEs, under the assumption that the
integrated function is smooth. The former means that a jump in the first derivative
of the solution at t = 0 can cause a jump in the second derivative at t = τ and a
jump in the third derivative at t = 2τ , and so on, till the nth derivative, which will
have a jump at t = (n − 1)τ . The dependence of the solution on past conditions,

through the delay term y(t − τ) and the integral term
∫ t

a(t)
g(t, s, y(s))ds, requires

the availability of a dense output solution [5].
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4.4.1 CMIRK Scheme for VDIDEs

The MIRK scheme defined by equations (4.14) and (4.17) is extended to solve the
VDIDE (4.3) on the defined mesh � = {0 < t1 < . . . < tn < . . . < ti = T } as fol-
lows:

y(tn + ϑhn) = yn + hn

s∗∑
r=1

br (ϑ)Kr
n+1, 0 ≤ ϑ ≤ 1, (4.19)

with stages

Kr
n+1 = f

⎛
⎝trn , (1 − vr )yn + vr yn+1 + hn

r−1∑
j=1

ar jK j
n+1, y(t

r
n − τ), In

⎞
⎠ . (4.20)

The integral part, In =
∫ trn

a(trn )
g(t, s, y(s))ds, is evaluated numerically using Boole’s

quadrature rule. To find an approximation to the integral In in (4.20), we subdivide
its integration interval as follows:
I f a(t) = t − τ :

In =
∫ tn

tn−τ

g(t, s, y(s))ds +
∫ trn

tn

g(t, s, y(s))ds −
∫ tn−τ+cr hn

tn−τ

g(t, s, y(s))ds.

Whena(t) = 0 :

In =
∫ tn

0
g(t, s, y(s))ds +

∫ trn

tn

g(t, s, y(s))ds.

The fourth-order (s = 5) discrete MIRK scheme is defined by the following tableau:

0 0 0 0 0 0 0
1 1 0 0 0 0 0
1
20

29
4000

361
8000 − 19

8000 0 0 0
19
20

3971
4000

19
8000 − 361

8000 0 0 0
1
2

11
16

1
32

267
608

25
684 − 25

36 0
− 43

228 − 43
228

25
57

25
57

1
2

The discrete solution at themesh points obtained using the discreteMIRK scheme
is insufficient to solve the VDIDEs. A dense output solution is needed at non-mesh
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points as explained earlier, using Eq. (4.18) of the fourth-order CMIRK scheme (see
[3]) (with s∗ = 5), such that

0 0 0 0 0 0 0
1 1 0 0 0 0 0
1
20

29
4000

361
8000 − 19

8000 0 0 0
19
20

3971
4000

19
8000 − 361

8000 0 0 0
1
2

11
16

1
32

267
608

25
684 − 25

36 0
b1(ϑ) b2(ϑ) b3(ϑ) b4(ϑ) b5(ϑ)

where

b1(ϑ) = − 1
228ϑ(1200ϑ3 − 2714ϑ2 + 1785ϑ − 228),

b2(ϑ) = 1
228ϑ

2(1200ϑ2 − 2086ϑ + 843),
b3(ϑ) = 25

171ϑ
2(40ϑ2 − 86ϑ + 49),

b4(ϑ) = − 25
171ϑ

2(40ϑ2 − 74ϑ + 31),
b5(ϑ) = − 1

2ϑ
2(2ϑ − 3).

(4.21)

4.4.2 Numerical Integration Formula and Boole’s
Quadrature Rule

To find an approximation to the definite integral

∫ b

a
z(x)dx (4.22)

with known tabulated data of z(x) at somemesh points a = a1 < a2 < ... < aN = b,
a quadrature rule is needed. A quadrature rule approximates the integral by

∫ b

a
z(x)dx 


N∑
k=1

wk f (ak), (4.23)

wherewk, k = 1, 2, ...N and ak, k = 1, 2, ...N are calledweights and nodes, respec-
tively. Of course, the quadrature rules differ in the choice of weights and nodes.

Newton-Cotes quadrature (NCQ) rules are very popular numerical integration
techniques. In NCQ rules, the nodes are equally spaced. The N−nodes NCQ tech-
nique finds a Lagrange polynomial PN that passes through the N nodes and then the
integral of z(x) is approximated by the integral of PN . NCQ is classified into closed
NCQ, if a1, aN are used, and open NCQ, if a1, aN are not used [12].

Many well-known quadrature rules are NCQ rules, such as the trapezoidal rule
(which is a 2-node closed NCQ), Simpson’s 1

3 rule (which is a 3-node closed NCQ),
Simpson’s 3

8 rule (which is a 4-node closed NCQ), and Boole’s rule (which is a
5-node closed NCQ).
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Boole’s rule is a 5-node closed NCQ that approximates the integral by the fol-
lowing formula:

∫ a5

a1

z(s)ds 
 2

45
h(7z1 + 32z2 + 12z3 + 32z4 + 7z5), (4.24)

where h = ai − ai−1, i = 2, ...5 andwith an error of order h7. If the number of points
used in the evaluation of the integral is greater than 5, then Boole’s rule is applied
repeatedly, which results in the composite Boole’s rule. For example, if we have 9
points, then the composite Boole’s rule takes the form

∫ a9

a1
z(s)ds 
 2

45
h(7z1 + 32z2 + 12z3 + 32z4 + 14z5 + 32z6 + 12z7 + 32z8 + 7z9).

(4.25)

Therefore, the approximation of the integral In in (4.20) is defined by

In =
∫ tn

tn−τ

g(t, s, y(s))ds +
∫ trn

tn

g(t, s, y(s))ds −
∫ tn−τ+cr hn

tn−τ

g(t, s, y(s))ds

for a(t) = t − τ . However, for a(t) = 0,

In =
∫ tn

0
g(t, s, y(s))ds +

∫ trn

tn

g(t, s, y(s))ds.

Each of the above integrals is approximated by applying Boole’s rule (4.24). For
previous intervals, CMIRK scheme provides the solution at any non-mesh point
needed by Boole’s rule. However, for the current mesh, cubic spline interpolation is
used to obtain the solution at any non-mesh point needed by Boole’s rule.

4.4.3 MIDDE Software Aspects

The suggested numerical technique in this work is implemented in a MATLAB code
“MIDDE” which is based on the CMIRK schemes to treat the differential part and
Boole’s quadrature rule to treat the integral part. The code MIDDE is designed to
solve both systems of DDEs and VDIDEs.

The MIDDE code has the following aspects:

• The points of jump discontinuities are located and taken as mesh points.
• The dense output solution is obtained inside the MIDDE code using the CMIRK
method.

• A stepsize control strategy is implemented inside the code to maintain the defect
in the numerical solution within a specified tolerance.
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In the following, we briefly introduce the numerical algorithm and stepsize control
in MIDDE code.

4.4.3.1 Numerical Algorithm and Stepsize Control

The general steps of the numerical algorithm implemented in MIDDE code for solv-
ing VDIDEs (4.3) can be briefly summarized as follows:

1. Derivative jump discontinuity points are located and taken as mesh points. For
each interval [tn, tn+1], the next steps are repeated.

2. The interval is divided into equally spaced points tn = t1, t2, ..., tm, tm+1 = tn+1

with stepsize hn = tn+1 − tn , where τ = mhn . Delay terms y(trn − τ) are calcu-
lated either by ψ(t) in (4.3) (in the first interval), then by CMIRK formula (4.18)
otherwise.

3. Approximations to the solution Y= {yi }m+1
i=1 and the continuous record of the

previous mesh are used by Boole’s rule to evaluate In (see Sect. 4.4.2). Then,
delay terms y(trn − τ) as well as integral terms In and Y are used to calculate
stages {Kr

n+1}sr=1 by (4.20).

4. The residual function is 
(Y), whose nth component 
n = yn+1 − yn − hn

s∑
r=1

brKr
n+1 is evaluated. Then, the system of equations 
(Y)= 0 is solved using

Newton’s iteration.
5. Newton’s iteration is terminated when the numerical solution Y causes 
 (Y) to

bewithin a defined tolerance, otherwiseY is updated and steps 3 − 5 are repeated.
6. The CMIRK scheme is then used to obtain the continuous solution u(t) (4.18).

Then, an estimate to the defect [11] is calculated by

Def ecti = |u′(ti ) − f (ti , u(ti ), u(ti − τ), Ii )|
1 + | f (ti , u(ti ), u(ti − τ), Ii )| . (4.26)

.
7. An adaptive algorithm is used to control the stepsize in order to keep the defect

(4.26) within a specified tolerance. If the defect is not within tolerance, then the
step size is halved and the iteration steps 2−7 are repeated.

4.5 Numerical Stability

In this section, we investigate the numerical stability of the underlying schemes
for the scalar test problem VDIDE (4.4). For simplicity, we assume that τ = mh
is constant and m ∈ I, so we do not need internal stages to estimate y(t − τ) (i.e.,
y(t − τ) = yn−m). The numerical approximations are then given by



80 4 Petri Nets

yn+1 = yn + h
s∑

r=1

brKr
n+1, (4.27)

with stages

Kr
n+1 = λ

⎛
⎝(1 − vr )yn + vr yn+1 + h

r−1∑
j=1

ar jK j
n+1

⎞
⎠ + μ yn−m + γ h

m∑
l=0

wl yn−l .

(4.28)

Combining the two Eqs. (4.27) and (4.28) yields

yn+1 = (1 + αbTSe)yn + βbTSeyn−m + κbTSe
m∑
l=0

wl yn−l , (4.29)

where α = hλ, β = hμ, κ = h2γ , S=[I-α(VbT+A)]−1, and e= (1, 1, ...1)T is
s × 1 vector.

Letting ξ−1 = yn , we get a characteristic equation of the form

1 − (1 + αbTSe)ξ−1 − βbTSeξ−1−m − κbTSe
m∑
l=0

wlξ
−1−l = 0. (4.30)

Put ξ−1 = eiθ in (4.30) and separate real and imaginary parts to have

1 − cos θ = bTSe

(
α cos θ + β cos(m + 1)θ + κ

m∑
l=0

wl cos(l + 1)θ

)
,

− sin θ = bTSe

(
α sin θ + β sin(m + 1)θ + κ

m∑
l=0

wl sin(l + 1)θ

)
.

(4.31)

When θ = 0, these equations reduce to α + β + κ

m∑
l=0

wl = 0 ≡ λ + μ + γ τ = 0,

because Boole’s quadrature rule is exact for constants, i.e.,
∫ t

t−τ

ds = h
m∑
l=0

wl = τ .

This is the same straight line bounding the analytical stability region obtained earlier
in Sect. 4.2.

For θ ∈ (0, 2π), the boundary of the stability region is defined by (4.31). To plot
this curve, we write β, G in terms of α, and after some manipulation, we have
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Fig. 4.3 The left banner shows the numerical stability region (solid curve) with λ = −20 and
m = 128 compared with the boundary of the analytical stability region (dashed curve) for the same
value of λ. The right banner displays the stability regions (when τ/h = m) with λ = −20 and
various values of m = 8; 64; 128. As m increases, the stability region becomes wider

κ = (1/
m∑
l=0

wl sin(m − l)θ)

{
−α sinmθ + sin(m + 1)θ − sinmθ

bTSe

}
,

β = −(1/(sin(m + 1) θ − sin m θ))

{
α sin θ + κ

m∑
l=0

wl(sin(l + 1)θ + sin lθ)

}
.

(4.32)

Since κ and β are even functions of θ , we consider Eq. (4.32) for θ ∈ (0, 2π).
Figure4.3 shows the numerical stability regions for three values ofm=8, 64, and128
and fixed λ = −20. It also shows a comparison of numerical stability region with
analytical stability region for fixed λ = −20 and m = 128. The numerical stability
region becomes bigger as stepsize decreases.

4.6 Numerical Results and Simulations

In this section, we provide some numerical examples of various types of Volterra
delay integro-differential equations [13] to show the effectiveness of the underlying
technique.

Example 4.1 First, we consider a scalar VDIDEwith continuously distributed delay
of the form

y′(t) = y(t − 1) +
∫ t

t−1
y(s)ds, t ≥ 0,

ψ(t) = exp(t), t ≤ 0.
(4.33)

The exact solution of (4.33) is exp(t). With tolerance 10−10, the obtained numerical
solution, using the underlying method, is plotted in Fig. 4.4 and the error function.
The error is of order 10−5 at t f = 10.
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Fig. 4.4 Numerical simulation of VDIDE (4.33) (left) and the error function (right) at the mesh
points
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Fig. 4.5 Numerical solution of VDIDE (4.34) (left) and the error function (right) at the mesh points

Example 4.2 Now, we consider a VDIDE with variable coefficients

y′(t) = −(6 + sin t)y(t) + y(t − π/4) −
∫ t

t−π/4
sin s y(s)ds + 5 exp(cos t), t ≥ 0,

ψ(t) = exp(cos t), t ≤ 0.
(4.34)

The exact solution of (4.34) is y(t) = ecos t . Figure4.5 shows the numerical solution
of (4.34), and corresponding error in the numerical solution which is decaying to
zero, with tolerance 10−10.

Example 4.3 We can also utilize CMIRK scheme to solve the non-linear system of
VDIDEs of the form
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Fig. 4.6 Numerical simulations of VDIDEs (4.35) on the interval [0, 2π ] (left) and the error
function (right) at the mesh points

d

dt

(
y1(t)
y2(t)

)
= −3

(
y1(t)
y2(t)

)
+

(
0 sin t

cos t 0

)(
y1(t − π/4)
y2(t − π/4)

)

+ 1√
2

∫ t

t−π/4

⎛
⎜⎜⎝

(1 + sin2 t)y21 (s)

1 + y21 (s)
(1 + cos2 t)y22 (s)

1 + y22 (s)
+

⎞
⎟⎟⎠ ds+

√
2

16

(
16 sin(t + π/4) − 2 sin 2t + 6 cos 2t − π − 4 + 16

√
2 sin t

16 cos(t + π/4) − 2 sin 2t + 6 cos 2t + π + 4 + 16
√
2 cos t

)
, t ≥ 0,

ψ(t) =
(
sin t
cos t

)
, t ≤ 0,

(4.35)

with both discretely and continuously distributed delays and bounded time-lag. This
system has exact solutions (sin t, cos t). Figure4.6 shows the numerical solution of
(4.35) with tolerance 10−10 and the error components e1 and e2.

Example 4.4 Consider the Lotka-Volterra system of the form

u′(t) = u(t)

(
1 − 0.5 v(t) −

∫ t

0
exp((1.5)(s − t)) v(s)ds

)
, t ≥ 0

v′(t) = −v(t)

(
0.75 − 0.25 u(t) −

∫ t

0
exp((3.5)(s − t)) u(s)ds

)
, t ≥ 0,

u(0) = v(0) = 1.

(4.36)

This system represents predator-prey population dynamics in which u(t) represents
the prey population size while v(t) represents the predator population size. This
system has continuously distributed delay and the time-lag is unbounded. Figure4.7
shows thenumerical solution for (4.36) byusingCMIRKschemewith tolerance10−4.
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Fig. 4.7 Numerical solution
of Lotka-Volterra system
(4.36)
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Fig. 4.8 Numerical
simulation of Lotka-Volterra
system (4.37), with τ = 1
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Now, if we change the lower bound of integration from 0 → (t − τ)where τ > 0
is fixed, then Eq. (4.36) takes the form

u′(t) = u(t)

(
1 − 0.5 v(t) −

∫ t

t−τ

exp((1.5)(s − t)) v(s)ds

)
, t ≥ 0

v′(t) = −v(t)

(
0.75 − 0.25 u(t) −

∫ t

t−τ

exp((3.5)(s − t)) u(s)ds

)
, t ≥ 0,

u(t) = v(t) = 1, t ≤ 0.
(4.37)

The oscillatory behaviors of numerical solution of the Lotka-Volterra system (4.37)
are shown in Fig. 4.8, when τ = 1.



4.7 Concluding Remarks 85

4.7 Concluding Remarks

In this chapter, we have presented an efficient numerical technique for solving
Volterra delay integro-differential equations. The scheme is based on continuous
mono-implicit RK formulae for the differential part and Boole’s quadrature rule for
the integral part. Analytical and numerical stability regions have been deduced. The
numerical simulations show the effectiveness of the underlying numerical technique
for solving various types of VDIDEs and are also suitable for stiff as well as non-stiff
problems.

In the next chapter, we shall produce a numerical view for parameter estimations
with DDEs using a least squares approach.
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Chapter 5
Parameter Estimation with Delay
Differential Equations

5.1 Introduction

Estimation ofmodel parameters is generally performed viaminimization of an objec-
tive function, which represents a selected fitting criterion. It is known that observa-
tions are usually inexact, i.e., contain an uncertainty related to the measurement
errors, random effects, non-linearity effects, and unknown process contribution. If
the data display statistically regular features, then the standard criteria of the optimal
estimation can be applied for parameter identification (e.g., the maximum likelihood
method and Bayesian analysis) [1–3]. The essential points for the correct use of an
approach are the availability of a sufficient amount of data and the stochastic nature
of the data; see [4].

Our aim in this chapter is to estimate the unknown parameters that occur in
delay differential models by using a least squares (LS) approach, combined with
the Runge-Kutta methods (see Chap.2) to evaluate the objective function. Some
related problems associated with parameter estimation in DDEs due to the delay
terms are addressed; see Sects. 5.2–5.5. Numerical results are illustrated by fitting
some numerical models for different patterns of cell growth; see Sect. 5.6.

5.2 Parameter Estimation with DDEs

Consider an N-dimensional system of DDEs with multiple delays in the form

y′(t,p) = f(t, y(t,p), y(t − τ ,p);p), t ∈ [t0, t0 + T ],
y(t,p) = ψ(t;p), t ∈ [t0 − τmin, t0] (τmin = maxi τi )

(5.1)

where y ∈ R
N , p ∈ R

L , and τ ∈ R
Lp , Lp < L . (The initial function as well as the

initial values often contain unknown parameters.)
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The classical LS criterion is commonly utilized for fitting a model to data. If the
difference between the model predictions y(t j ,p) and the observed dataY j specified
at certain points {t j } is expressed via the residuals, then the objective function �(p)

has the following form:

�(p) :=
M∑

j=1

wj
[
F

(
Y j , y(t j ,p)

)]2 =
M∑

j=1

wj
[
Y j − y(t j ,p)

]2
(5.2)

where the positive weights wj are defined by a weighting procedure, M is the
total number of different observation times, and F(.) meets the symmetry condi-
tion F(y(p),Y ) = F(Y, y(p)).

We should mention that some limitations of the LS approach have been observed
in several applications. It is known that non-linear LS fitting can lead to several
local minima, unlike the linear LS case where �(p) has only one minimum. To
confront this problem, a non-linear Chebyshev fitting was suggested by Williams
and Kalogirato [5] to increase the possibility of unique global fits. Moreover, the
functional �(p) possesses different sensitivity: firstly, to the deviation of different
signs of the values of y(ti ,p) from Yi ; secondly, to the choice of measurement units
for y(t,p); thirdly, to the scattering of the absolute values of the observed data; and
fourthly, to non-linearities of the model solutions. For these reasons, other objective
functions are sometimes employed with regard to the nature of particular observation
data, and the parametric non-linearities of the model solutions (see [6]) such as (in
the scalar case)

�(p) =
M∑

j=1

wj

[(
Y j − y(t j ,p)

Y j

)2

+
(
Y j − y(t j ,p)

y(t j ,p)

)2
]

, (5.3)

and

�(p) =
M∑

j=1

wj

[
log

(
Y j

y(t j ,p)

)]2

. (5.4)

5.2.1 Non-linearity of Model Predictions

When the predictions are governed by differential equation models, then the LS
approach (even for models linear in their parameters) generally yields a non-
linear minimization problem. (This non-linearity comes from a combination of the
quadratic transformation [.]2, the ratios scaling function F(.), and the solution func-
tion y(t,p) of the mathematical model formulated as a parameter-dependent differ-
ential system.) The non-linearity of the fitness function �(p) with respect to p can
lead to several local minima. To decrease the non-linearity of �(p), the function F
should be selected with this behavior of y(t,p) in mind.
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To illustrate the above ideas, we consider the simplest case of the linear ODE
model: y′(t) = py(t). Let the model be exactly related to the observed process, and
let p∗ be the “true” parameter, i.e., observations are described by Y (t) = y0ep

∗t . The
solution of the model for a perturbed p value is y0ept (with y(0) = y0). Then, the
classical residual of LS approach leads to the non-linear minimization problem for
p:

�(p) =
M∑

j=1

y20
(
ept j − e p̂t j

)2
,

and the relative distance LS approach results in the problem:

�(p) =
M∑

j=1

(
e(p− p̂)t j

)2
.

Selecting the scaling function F(.) as the logarithm formula (5.4) decreases the
exponential non-linearity of model predictions with respect to p. With this choice,
one arrives at the following minimization problem:

�(p) =
M∑

j=1

(
p − p̂

)2
t2j .

The last formulation is the common linear LS problem corresponding to the linear
ODE model, y′(t) = py(t).

The real situations may become much more complicated due to inexactness of
models, non-linearity of the differential system, noisy observation data, and non-
exponential behavior of the solution. Nevertheless, the LS criterion for relative dis-
tance can be scaled by a logarithmic transformation [7]:

�(p) =
M∑

j=1

wj

[
log

(
Y j

y(t j ,p)

)]2

.

In the next chapter, we estimate the biases in the values of the parameter estimates
due to non-linearity of the parameters, with the LS estimator.

5.3 Computation of Estimates

Many algorithms have been suggested for the iterative techniques forminimization of
a non-linear objective function�(p). The Gauss-Newton iterative algorithm and the
Newton-Raphsonmethods are employed for non-linear least squares. TheLevenberg-
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Marquardt algorithm is an alternativemethod to theGauss-Newtonmethod suggested
by Moré [8]. For more details and references, refer to Bard [1].

5.3.1 Basic Iteration

The methods we consider for minimizing �(p) are iterative in nature. We start with
a given point p1, known as the initial guess, and proceed to generate a sequence of
points p2,p3, . . . . that we hope converge to the point p̂ at which �(̂p) is minimum.
(The computation of pi+1 is called the i th iteration.) In practice, one terminates the
sequence after a finite number k of iterations and one accepts pk as an approximation
to p̂. The vector

σ i = pi+1 − pi (5.5)

is called the i th step. We wish each step to bring us closer to the minimum. Since
we do not know where the minimum is, we cannot test for this condition directly. In
a sense, however, we may consider the i th step to have “improved” our situation if

�i+1 < �i , (5.6)

where� j = �(p j ) ( j = 1, 2, . . . ).We call the i th step acceptable if Eq. (5.6) holds.
An iterative method is acceptable if all the steps of its procedures are acceptable. We
shall only consider acceptable methods.
The methods we consider are based on the following scheme:

1. Set i = 1. An initial guess p1 must be provided.
2. The model solution values {y(t j ,p1)} are obtained numerically.
3. Determine a vector vi (see Theorem 1) in the direction of the proposed i th step.
4. Determine a scalar ρi such that the step

σ i = ρivi

is acceptable. That is, we take

pi+1 = pi + ρivi (5.7)

and require that ρi be chosen so that Eq. (5.6) holds.
5. Test whether the termination criterion

|pi+1, j − pi, j | ≤ ε j ( j = 1, 2, . . . , L),

where pi, j is the j th component of pi . If not, increase i by one and return to step
3. Otherwise, accept pi+1 as the value of p̂.
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5.3.2 Acceptability

Consider the i th iteration of a minimization procedure. Suppose we strike out from
pi along some direction v, generating the ray

p(ρ) ≡ pi + ρv, (ρ ∈ R).

Along this ray, the objective function varies asρ is changed, thus becoming a function
of ρ alone. We designate this function as

�iv(ρ) ≡ �(p(ρ)) = �(pi + ρv),

and its derivative is given by

d�iv/dρ = (∂�/∂p)T (∂p/∂ρ) = (∂�/∂p)T v.

The gradient vector of �(p) is ∂�/∂p := q(p). Denoting the gradient vector evalu-
ated at p = pi by qi , we have

� ′
iv ≡ d�i/dρ|ρ=0 = qT

i v.

In the sequel, we assume qi �= 0.
The quantity� ′

iv is called the directional derivative of� relative to pi . If� ′
iv < 0,

then �(p) decreases in value when one starts moving away from pi in the direction
of v. Therefore, if ρ is a sufficiently small positive number, the step ρv is acceptable.
On the other hand, if � ′

iv ≥ 0, a positive value of ρ for which ρv is an acceptable
step may not exist. We call v an acceptable direction if � ′

iv < 0.

Theorem 1 A direction v is acceptable if and only if there exists a positive definite
matrix R such that vi = −Rqi .

For the proof, see Bard [1].
Therefore, the basic equation of the i th iteration in any gradient method is

pi+1 = pi − ρi Riqi , (5.8)

and various gradient methods differ in the manner of choosing Ri and ρi . If ρi = 1
and Ri = H−1

i (where H := ∂2�(p)/∂p∂pT is the Hessian matrix), then Eq. (5.8)
defines the i th iteration of the Newton (or Newton-Raphson) method.

5.3.3 Convergence

The main aim is that the selected method converges to a true global minimum of
the objective function. Convergence proofs usually require certain assumptions to
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be made concerning the nature of the objective function, and the validity of these
assumptions is difficult to verify for any given problem. A method may converge in
theory and yet may take an excessive number of iterations or require computations
to be carried out with a reasonable number of significant digits.

Suppose �(p) is smooth as a function of p in the neighborhood of the optimal
parameter p̂, and let �i denote the value of �(pi ). If we select (at each iteration) an
acceptable point, then the sequence {�i } ≡ {�0,�1,�2, . . . } is monotone decreas-
ing. If the values of the objective function possess a lower bound, and the sequence
{pi } is bounded, then this sequence must converge to a limit �∞. It follows from the
assumption of continuity of � that �(p∞) = �∞, where p∞ is any limit point of
{pi }. In all practical cases, the sequence {pi } is either unbounded (and has more than
one limit point) or converges to a point p∞. The rate of convergence, however, may
be so slow that the sequence appears non-convergent.

A stationary point of the objective function is one at which q(p) = 0. If pi is
stationary, i.e., qi = 0, then Eq. (5.8) shows that all p j ( j ≥ i) coincide with pi .
Convergence to the true minimum can be guaranteed only if it can be shown that
the objective function has no other stationary points. To obtain a true minimum,
the initial guess of the parameter values should be sufficiently close to the global
minimum. The graphs in Sect. 6 show the stationary points of the objective functions
corresponding to some related cell division examples with experimental data points.
The graphs also show the sensitivity of the objective function �(p) to the variations
of the parameters in the neighborhood of minimum points.

5.4 Discontinuities Associated with Delay

One obvious difficulty with such procedures (from both practical and theoretical
viewpoints) is that solutions of DDEs are not generally differentiable with respect to
the lag τ .1 In addition, some discontinuities can arise and propagate in the solution of
DDE. Such discontinuities, when arising from the initial point t0(p) (and the initial
function ψ(t,p)), may propagate into �(p) via the solution y(t,p) if it has a jump
at one of the data points {ζi }. Let us explain this further.

From the fact that

(
∂�(ti ;p)

∂pl

)

±
= −2

M∑

i=1

[
Y (ti ) − y(ti ;p)

] (
∂y(ti ;p)

∂pl

)

±
, (5.9)

1 τ need not be a parameter but could depend on the parameters.
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(
∂2�(ti ;p)

∂pl∂pm

)

±±
= 2

M∑

i=1

[(
∂y(ti ;p)

∂pl

)

±

(
∂y(ti ;p)

∂pm

)

±

− [
Y (ti ) − y(ti ;p)

] (
∂2y(ti ;p)

∂pl∂pm

)

±±

]
, (5.10)

∂

∂τ
y(ti − τ ;p) = −y′(ti − τ ;p). (5.11)

It is clear from Eqs. (5.9), (5.10), and (5.11) that, unless Y (ti ) = y(ti ;p), jumps can
arise in the first or the second partial derivative of�(p), with respect to pl , if the first
or the second partial derivatives of y(t,p)with respect to pl has a jump at t = ti (one
of the data points). These jumps can propagate into the second derivative of �(p) if
the first derivative of y(t;p), with respect to pl , has a jump at one of the data points
t = ti even when Y (ti ) = y(ti ;p). Jumps can also arise in the derivatives of �(p) if
lag τ is considered as a parameter to be estimated and the derivative of y(t;p) (with
respect to t) has a jump at one of the data points. For further discussion about these
issues, refer to [6].

As a result of the above remarks, we see that parameter estimation in DDEs (5.1)
mainly depends on

• differentiability of the solution y(t;p) of the DDEs with respect to parameter p;
• the existence anduniqueness of the solution y,whichdependson the initial function

ψ and parameter p;
• existence and position of the jump discontinuity points depending on τ ;
• the statistical nature of the observed data points {ti , ,Y (ti )}Mi=1.

One can also establish the connection between jumps in the derivatives of y(t;p)

with respect to t and the partial derivatives (in �(p)) of y(t;p) with respect to some
pl . Let us rewrite the scalar case of (5.1) in the form

y′(t,p) = f (t, y(t,p), y(σ (t),p);p), t ≥ t0,
y(t,p) = ψ(t;p), t ≤ t0,

(5.12)

where σ(t) = t − τ . Differentiating both sides of (5.12) with respect to pl gives the
variational system of the form

d

dt
yl(t;p) = ∂ f

∂y(t,p)
(t, y(t,p), y(σ (t),p);p)

∂y(t,p)

∂pl
+

∂ f

∂y(σ (t),p)
(t, y(t,p), y(σ (t),p);p) y′(σ (t),p)

∂σ (t)

∂pl
+

∂ f

∂pl
(t, y(t,p), y(σ (t),p);p) , (5.13)

yl(t;p) = ψl(t;p), t ≤ t0,
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where yl(t;p) ≡ ∂y(t;p)

∂pl
. Note that Eqs. (5.12) and (5.13) together give a system

of neutral delay differential equations (NDDEs). The jumps in the solution of this
system are clearly intimately related to the jumps in the derivatives y(t,p) with
respect to t in the delay differential system. Such jumps can spread forward along
the integration interval; see Sect. 2.1.

In the case of state-dependent DDEs, the problemmay becomemore complicated.
In this case,Hartung andTuri [9] provided the sufficient conditions of differentiability
of the solutions with respect to the parameters in the following theorem:

Theorem 2 In case of state-dependent DDEs (τ = τ(t, y(t);p)), the derivatives of
�(p) in (5.9)–(5.10) and y′

l (t;p) in (5.13) exist if

A1. f(t,u,v;p) is (i) continuous; (ii) locally Lipschitz continuous in u, v, and p; and
(iii) continuously differentiable with respect to u, v, and p.

A2. τ(t, ψ;p) is (i)continuous; (ii) locally Lipschitz continuous in ψ and p; (iii)
continuously differentiable with respect to t, ψ , and p; and (iv) the derivatives
∂τ
∂t ,

∂τ
∂ψ

, and ∂τ
∂p are locally Lipschitz continuous in ψ and p.

A3. ψ(t;p) is (i) continuous, (ii) locally Lipschitz continuous in p, and (iii) contin-
uously differentiable with respect to t and p.

The following two examples indicate how jumps can arise into the objective function
�(p) and into the system (5.13), via the solution y(t;p).

Example 1 Consider a DDE

y′(t;p) = λy(t − τ) f or t ≥ 0,

y(t,p) = β, t ≤ 0.

In this case, p = [λ, τ, β]T and we note that y(n−1)(t;p) has jumps at nτ n ∈ N.
However, no jumps occur in the partial derivative of �(p) with respect to λ, or β.
If the lag τ is to be estimated, then ∂�/∂τ may have jumps at τ = ti/n.

5.5 Solving the Minimization Problem

The task of parameter estimation is one of minimizing a suitable Objective function
�(p), e.g., one given by (5.2), defined by the unknown parameters and based on the
observed data. In the case of parameter estimation for DDEs, this can include not
only estimating parameters appearing in the DDEs but also estimating the position
of the initial point, the initial function, and the delayed arguments.

For example, consider the problem of estimating the parameters ρ0, ρ1, ρ2, and
τ in the model (5.14). The optimum parameter p̂ ≡ [

ρ̂0, ρ̂1, ρ̂2, τ̂
]T

is taken to be
the value such that

�(̂p) ≤ �(p)
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for all physically meaningful values of p and p̂.
Given a set of experimental data {Y j }Nj=1, the technique for finding the best-fit

parameter values for a given mathematical model and objective function involves

1. Providing an initial guess for the parameter estimates.
2. Solving the model equations at the current values of the parameters to compute

�(p).
3. The parameter values are then adjusted (by using a suitableminimization routine,

such as EO4UPF2 in the NAG library, LMDIF from3 NETLIB, and FMINS in
MATLAB) so as to reduce the value of the objective function.

4. When no further reduction in the value of �(p) is possible, the (local) best-fit
parameter values have been found.

Tofind theglobal best-fit parameter values, the initial estimate of the parameter values
should be sufficiently close to the global minimum. Thus, good starting estimates for
the parameter values can be of great assistance, both in speeding up the minimization
process and finding the global minimum.

5.6 Models and Goodness of Fit for Cell Growth

Asmentioned in the introduction, cell division, as well as cell differentiation and cell
maturation, is not an instantaneous process but takes a finite time to occur. Our aim
here is to demonstrate how a mathematical model of cell growth that incorporated
a time-lag in the cell division phase provides both a qualitatively and quantitatively
better fit to certain reported data than the classical exponential ODE growth model.

The models that we consider here are selected from a hierarchy of NDDEs, the
most complex linear model being

dy

dt
= ρ0y(t) + ρ1y(t − τcell) + ρ2y

′(t − τcell) (t ≥ 0),

y(t) = �(t) (−τcell ≤ t < 0),
(5.14)

where y′(t) is the right-hand derivative of y(t) with respect to t and y(0) = y0 is
given. This equation is a linear NDDE with four scalar parameters ρ0, ρ1, ρ2, and
τcell . An additional parameter β may be introduced to model the fraction of cells
that divide over the first step, so that y(t) = β�(t) for t ∈ [−τcell , 0). One possible
biological interpretation of these parameters is given in Table5.1.

By instantaneous cell growth, we mean that the rate of growth is dependent on the
current cell populations. Similarly, by “delayed” cell growth, we mean that the rate

2 E04UPF is designed tominimize an arbitrary smooth sumof squares function subject to constraints
(which may include simple bounds on the variables, linear constraints, and smooth non-linear
constraints) using a sequential quadratic programming (SQP) method [10].
3 LMDIF is an unconstrained minimization routine (used in Archi-l code [11]) based on the
Levenberg-Marquardt algorithm [8].
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Table 5.1 One possible biological meaning of the parameters in the NDDE (5.14)

Parameter Biological interpretation

τcell > 0 The average cell-division time

ρ0 ≥ 0 The proportionate rate of instantaneous
asynchronous cell growth

ρ1 ≥ 0 The proportionate rate of delayed
asynchronous cell growth

0 ≤ ρ2 ≤ 2 A measure of the proportionate rate of delayed
synchronous cell growth

of growth is dependent on some previous cell population. In the case of idealized
synchronous growth, ρ0 = 0, ρ1 = 0, and ρ2 = 2, the degree of synchronization of
cells in the cell population remains constant. However, it should be noted that the
effects of synchronizing a cell culture are usually only temporary; see [12].

The simplest model based on (5.14) is the exponential growth model:

dy

dt
= ρ0y(t) (t ≥ 0), (5.15)

with y(t) = y0 exp(ρ0t) for t ≥ 0. Another model based on (5.14) is the time-lag
growth model

dy

dt
= ρ1y(t − τcell) (t ≥ 0),

y(t) = �(t) (−τcell ≤ t < 0).
(5.16)

Oneof our aims is to demonstrate thequalitative andquantitativedifferences between
different models based on (5.14). In practice, approximate solutions of (5.14) are
obtained numerically (see Chap.2), and so a hierarchy of that model can be consid-
ered.

Nest, we analyze two different patterns of cell growth to demonstrate the qual-
itative and quantitative differences between various models in our hierarchy. The
qualitative fit is indicated by a graph of the best-fit solution and the experimen-
tal data, while the quantitative fit is indicated by the norm of the residual vector
||Err||2 = √

�(p∗) and the standard deviations of the best-fit parameter values.

5.6.1 Problem 1: Fitting DDEs with Growth of Fission Yeast

We analyze the growth of fission yeast using data that does not exhibit exponential
growth [13]. The data for yeast growth are given in Table5.2 (see [13, Fig. 4f ]). The
features of the model are given in [14] as (i) the cell growth is not exponential, and
(i i) the cells are synchronized at time zero.
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Table 5.2 Data for non-exponential fission yeast growth

Time (hours) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Cells per ml 114 116 114 108 112 107 108 128 169

Time (hours) 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Cells per ml 201 212 214 245 262 297 314 340
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Fig. 5.1 a The best-fit solution of a one-parameter time-lag model to the observed data in Table
5.2. b Local uniqueness of the best fit and the dependence of � values on parameter τ

Table 5.3 Least squares estimates and standard deviations of the parameters for fission yeast growth
models

Exponential Model Time-Lag Model

τcal (hrs) σ (τcal ) ||Err||2 τcell (hrs) σ (τcell ) ρ1 (hr−1) σ (ρ1) β σ(β) ||Err||2
5.44 0.241 113 5.33 0.163 – – – – 86

– – – 5.58 0.054 0.399 0.018 – – 28

– – – 5.45 0.038 0.443 0.014 0.864 0.019 15

The exponential growth model can only provide an estimate of the culture-
doubling time τculture. However, the time-lag growth model (5.16) can provide esti-
mates of the average cell-division time τcell , the fraction β of cells dividing over the
first step, and the rate of commitment of cells ρ1 to cell division (see Table5.3).

It may be noted that the quantitative consistency of the exponential model is worse
than that of the time-lagmodel (asmeasured by ||Err||2). Results in Table5.3 indicate
that, as the number of parameters being estimated in the time-lagmodel increases, the
quantitative consistency of the model with the data improves significantly. However,
the standard deviations (in Table5.3) also indicate that, as the number of parame-
ters being estimated in the time-lag model increases, the accuracy of the parameter
estimates improves. It may also be observed that the values of τculture and τcell for
the three-parameter time-lag model are the same, although their standard deviations
differ by a factor of 6. The qualitative consistency of the models is indicated by the
graphs in Figs. 5.1, 5.2a, and 5.3a., while Figs. 5.1b, 5.2b, and 5.4 show the local



98 5 Parameter Estimation with Delay Differential Equations

0 1 2 3 4 5 6 7 8
100

150

200

250

300

350

Time(hours)

C
el

ls
 p

er
 m

l
 Two parameter time−lag model for Fission Yeast

4
4.5

5
5.5

6

0.2
0.3

0.4
0.5

0.6
1.8
1.9
2

2.1
2.2
2.3
2.4
2.5
2.6

τ

  Min. Obj. Fn. = 1.89 

ρ

Lo
g(

Φ
)

a b

Fig. 5.2 a The best-fit solution of a two-parameter time-lagmodel to the observed data in Table5.2.
b The local uniqueness of the best fit and the dependence of � values on parameter τ/ρ1
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Three parameter time−lag growth model for Fission Yeast 

Fig. 5.3 The best-fit solution of a three-parameter time-lag model to the observed data in Table5.2

uniqueness of the best fit at the concerned range of estimate and dependence of �

on the parameter estimates for time-lag growth models.

5.6.2 Fitting DDEs with Growth of Tetrahymena Pyriformis

Given a general form of linear NDDE (5.14) and experimental data given in Table5.4
of a non-monotone cell growth, provided by the in vitro system of synchronized
Tetrahymena pyriformis cells [15], we demonstrate how the above mathematical
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Fig. 5.4 a → f The local uniqueness of the best fit and the dependence of � values on parameters
τ, ρ1, and β. Each point in the grid was calculated for fixed values of β = 0.5 : 0.1 : 1.

model of cell growth that incorporated a time-lag in the cell-division phase provides
both a qualitative and quantitative consistency with the reality. We adopt the LS
approach to fit the observations to model (5.14) to evaluate the unknown parameters
of the model. We consider here a uniform initial function ψ(t) = 25 for t ∈ [−τ, 0),
and initial value y(0) = 50. The graph of Fig. 5.5 displays model prediction for the
best-fit parameters given in Table5.5. Prescott (1959) [15] measured the generation
times4 of a population of Tetrahymena pyriformis cells under uniform conditions.
The distribution of generation times in the cell population was displayed for a sub-

4 Generation time, which varies from cell to cell, is defined as the age at which a cell divides, where
age is time measured from birth of a cell.
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Table 5.4 Data for growth of a population of ciliates (Tetrahymena pyriformis) (see Fig. 2 in
Prescott (1959))

Time (mins) 0.0 22.2 42.5 59.2 83.3 90.7 98.1 101.8 105.5 109.2 111.1

Cell no. 50 49 49 48 49 53 61 66 71 79 85

Time (mins) 114.8 118.5 122.2 125.9 133.3 138.8 151.8 168.5 181.4 190.7 196.2

Cell no. 90 93 96 99 102 101 100 101 101 102 105

Time (mins) 201.8 205.5 209.2 211.1 214.8 216.6 220.3 222.2 225.5 228.8 232.5

Cell no. 110 115 119 125 132 137 144 150 157 162 170

Time (mins) 235.1 238.8 243.7 248.1 254.8 259.2 266.6 274 279.6 288.8 296.2

Cell no. 175 179 184 187 191 194 197 197 198 200 215

Time (mins) 302.9 312.2 322.2 331.4 339.9 351.8 359 370.3 379.6 388.8 398.1

Cell no. 230 250 275 305 325 350 365 380 395 410 425
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Fig. 5.5 The circles, Yi , represent the data for growth of a population of Y0 = 50 of newborn cells
of Tetrahymena pyriformis. This data represents the multiplication of 25 cells in perfect division
synchrony at first population doubling. The line y(t, p) shows the prediction of the perfect model
that is based on the DDE (5.14), with y(0) = 50, y(t) = 25 for t < 0, and best-fit parameters given
in Table5.5. The initially synchronized cell population becomes desynchronized over time

population of newborn cells at a given time from the synchronized cell population, all
of age zero. Themean generation time τ̃ was 111min, which is close to the estimated
value of the best fit, τ = 96.33; see Table5.5. The parameters are estimated and dis-
played in Table5.5. A MATLAB program and Archi code are utilized to estimate
the parameters and simulate the best-fit solutions. Fitting of the parametric growth
models to the given experimental data is obtained using the a MATLAB program
and Archi code [11].
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Table 5.5 Parameter estimates, STD σ(.), errors of the growth model (5.14) that best fits data of
Table5.4

Parameter estimates for Tetrahymena pyriformis growth model

Model ρ0 ρ1 ρ2 τ ‖Err‖2
Parameters −0.0518 0.1054 – 96.33 34.41

σ(.) 0.0034 0.0082 – 0.0168

5.7 Concluding Remarks

In this chapter, we have discussed some numerical techniques for parameter iden-
tification in DDEs as well as some problems associated with the delay term. We
have seen from the numerical results that a mathematical model of cell growth that
incorporated a time-lag in the cell-division phase provides both a qualitatively and
quantitatively better fit to certain reported data than the classical exponential ODE
growth model.

Additionally, the use of DDE models can give a direct estimate of some relevant
growth parameters of synchronous cultures, such as (i) the cell-division time, (ii) the
fraction of cells that are dividing, (iii) the rate of commitment of cells to cell division,
(iv) the degree of synchronization of cells in the population, and (v) the death rate
of cells. While using ODE models gives an indirect estimate of the culture-doubling
time, τculture = ln(2)/ρ0. Jumps can arise in the derivatives of �(p) due to the delay
terms, especially if the lag τ is considered as a parameter to be estimated.

The question that arises here is the following: How does the parameters’ uncer-
tainty affect themodel predictions? In the next chapter, we shall examine the sensitiv-
ity analysis (the effect of perturbing the optimal parameters and changes due to noisy
data) and estimate the biases in the values of the parameters due to the non-linearity.
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Chapter 6
Sensitivity Analysis of Delay Differential
Equations

6.1 Introduction

Delay differential equations can be used to model many problems in biosciences and
are parameterized by meaningful constant parameters p or/and variable parameters
(e.g., control functions) u(t). It is often desirable to have information about the effect
on the solution of the dynamic system of perturbing the initial data, control functions,
time-lags, and other parameters appearing in the model. The main purpose of this
chapter is to derive a general theory for the sensitivity analysis of mathematical
models that contain time-lags. In this chapter, we use adjoint equations and direct
methods to estimate the sensitivity functions when the parameters that appear in the
model are not only constants but also variables of time. To illustrate the results, the
methodology is applied numerically to an example of a delay differential model.

Many studies in the sensitivity analysis of models without delay have been done
(see, e.g., [1–4]); however, there are few results on sensitivity analysis for time-
lag systems. A knowledge of how the state variable can vary with respect to small
variations in the initial data, parameters (or constant lags) appearing in themodel, and
the control functions can yield insights into the behavior of themodel and can actually
assist the modeling process. Sensitivity analysis may provide some guidelines for
the reduction of complex models by indicating those variables and parameters that
determine the essential behavior of the system and, hence, must be retained in any
simpler model. For example, if it can be seen that a particular parameter has no effect
on the solution, it may be possible to eliminate it, at some stages, from the modeling
process.

In this chapter, we evaluate sensitivity functionals of DDEs with constant and
variable parameters. We estimate general sensitivity coefficients for the constant
parameters appearing in the model, and functional derivative sensitivity coefficients
for variable coefficients such as initial and control functions. We utilize variational
method in Sect. 6.3 and direct method in Sect. 6.4. In the variational approach, the
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sensitivity coefficients are calculated based on the introduction of adjoint variables to
solve state and adjoint equations. The directmethods are based on consideration of all
parameters as constants and then the sensitivity coefficients are estimated by solving
a variational system simultaneously with the original system.We also investigate the
sensitivity of the best estimates to small noise in the data/observations in Sect. 6.5.

6.2 Sensitivity Functions

Let us consider a class of systems modeled by DDEs of the form [5]

y′(t) = f(t, y(t), y(t − τ),u(t),u(t − σ),p), 0 ≤ t ≤ T, (6.1a)

y(t) = �(t,p), t ∈ [−τ, 0), y(0) = y0 ∈ R
n (6.1b)

u(t) = �(t), t ∈ [−σ, 0), u(0) = u0 ∈ R
m, (6.1c)

where the vector function f in the right-hand side is sufficiently smooth with respect
to each of arguments; and y(t) ∈ R

n , y(t − τ) ∈ R
n′
, u(t) ∈ R

m , u(t − σ) ∈ R
m ′
,

p ∈ R
r , and τ ∈ R

r ′
and σ ∈ R

r ′′
are positive constant lags (r ′, r

′′ ≤ r , n′ ≤ n,
m ′ ≤ m). �(t) and �(t) are given continuous functions. We note that u(t) in (6.1a)
can be viewed as a control variable, defined on [−σ, T ], which gives a minimum to
the objective functional

J (u) = F0(y(T )) +
∫ T

0
F1(t, y(t), y(t − τ),u(t),u(t − σ),p)dt, (6.2)

where F0 and F1 are continuous functionals.
We also note that the systemmodel involves both lags in the state variable y(t) and

the control variable u(t). In this chapter, we estimate the sensitivity functions for the
system (6.1a)–(6.1c) rather than the computational aspects of optimal control prob-
lems. (For the computational treatment of time-delayed optimal control problems,
refer to the monograph by Kolmanovskii et al. [6].)

To examine the effect of parameter uncertainty on a model, it is necessary to test
the sensitivity of the predicted model responses to numerical values of the parame-
ters. In this manner, possible deficiencies in the model can be revealed if, e.g., small
changes in a parameter from its nominal value result in large, improbable changes
in patterns of model prediction. Equally, sensitivity analysis can indicate the most
informative data points for a specific parameter. We start our analysis with the defi-
nitions of sensitivity functions of a dynamic system, including constant and variable
parameters, as follows:

Definition 6.1 For the given DDEs (6.1a)–(6.1c):

1. The sensitivity functions, when the parameters are constants, are defined by the
partial derivatives
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Si j (t) = ∂yi (t)

∂α j
, (6.3)

where α j represent the parameters p j , the constant lags τ j , or the initial values
y j (0). Then, the total variation in yi (t) due to small variations in the parameters
α j is such that

δyi (t) =
∑
j

∂yi (t)

∂α j
δα j + O(|α|2). (6.4)

Thus, Eq. (6.3) estimates the sensitivity of the state variable to small variations
in parameters α j .

2. The functional derivative sensitivity coefficients, when the parameters are func-
tions of time, are defined by

βi j (t, t
∗) = ∂yi (t∗)

∂u j (t)
, t < t∗. (6.5)

Then, the total variation in yi (t∗) due to any perturbation in the parameters u j (t)
is denoted by δyi (t∗), such that

δyi (t
∗) =

∫ t∗

0

∂yi (t∗)
∂u j (t)

δu j (t)dt, t < t∗. (6.6)

Thus, the functional derivative sensitivity density function
∂yi (t∗)
∂u j (t)

measures the

sensitivity of yi (t) at location t∗ to variation in u j (t) at any location t < t∗. It is
then noted that the sensitivity density functions inherently contain and provide
more information than the sensitivity coefficients.

6.2.1 Adjoint Equations

Adjoint equations have been used by Marchuk [7, 8] to study sensitivity analysis
of non-linear functionals J (y) depending on the solution of the delay differential
models:

y′(t) = f(t, y(t), y(t − τ),p), t ≥ t0; y(t) = ψ(t,p), t ∈ [t0 − τ, t0]. (6.7)

He considered the quadratic functional and its first-order variation caused by pertur-
bations of the basic parameter set p (where y ≡ y(t,p))
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J (y) =
T∫

0

〈y, y〉dt, δ J (y) = 2

T∫

0

〈y, δy〉dt = 2
∑
i

T∫

0

〈y, si (t,p)δpi 〉dt,

where si (t,p) is a solution of the sensitivity equation

A(y(t,p),p)si (t,p) = ∂f
∂pi

, t ≥ 0, si (t,p) = ∂ψ

∂pi
, t ∈ [−τ, 0]. (6.8)

The operator A ≡ d

dt
− ∂f(t)

∂y
− ∂f(t + τ)

∂yτ

Dτ , where f(t) denotes the value of f

at time t , yτ = y(t − τ), and Dτ is a backward shift operator. The linear operator
A in (6.8) acts on some Hilbert space H with domain D(A). Given A, the adjoint
operator A∗ can be introduced satisfying the Lagrange identity 〈A(y,p)s,w〉 =
〈s,A∗(y,p)w〉, where 〈·, ·〉 is an inner product in H, s ∈ D(A), w ∈ D(A∗). Using
the solution w(t) of the adjoint problem

A∗(y,p)w(t) ≡ −dw(t)

dt
− ∂fT (t)

∂y
w(t) − ∂fT (t + τ)

∂yτ

w(t + τ) = y(t,p),

0 ≤ t ≤ T, w(t) = 0, t ∈ [T, T + τ ] (6.9)

enables one to estimate the first-order variation of J (y), due to perturbations of the
parameters pi , via the following formula:

δ J (y) =
r∑

i=1

2

T∫

0

〈
w,

∂f
∂pi

δpi

〉
dt =

r∑
i=1

∂ J

∂pi
δpi , (6.10)

where
∂ J

∂pi
≡ 2

T∫

0

〈
w,

∂f
∂pi

〉
dt is the gradient of the functional with respect to the

parameters.
To estimate the sensitivity of the functional J (y) to variations in all parameters

appearing in the model (6.7), we need to solve this system model together with the
adjoint problem (6.9). In the next section, we extend the use of adjoint equations to
investigate the sensitivity analysis for a more general system (6.1a)–(6.1c), including
constant and variable parameters.

6.3 Variational Approach

In this section, we use adjoint equations to formulate systematically formulae for
the sensitivities of the state variable to small variations in the initial data, delays,
parameters, and the control function appearing in the model. Then, the main object
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here is to derive equations for the sensitivity coefficients
∂yi (t)

∂α j
and the sensitivity

density functions
∂yi (t∗)
∂u j (t)

.

Theorem 6.1 If W(t) is an n-dimensional adjoint function that satisfies the differ-
ential equation

W′(t) ≡ dW(t)

dt
= −∂fT (t)

∂y
W(t) − ∂fT (t + τ)

∂yτ

W(t + τ), t ≤ t∗,

W(t) = 0, t > t∗; W(t∗) = [0, . . . , 0, 1i th, 0 . . . , 0]T ,

(6.11)

then

1. The sensitivity coefficients for the DDEs (6.1a)–(6.1c) can be expressed by the
formulae

∂yi (t∗)
∂y0

= W(0), (6.12a)

∂yi (t∗)
∂p

=
∫ t∗

0
WT (t)

∂f
∂p

dt, t ≤ t∗, (6.12b)

∂yi (t∗)
∂τ

= −
∫ t∗−τ

−τ

WT (t + τ)
∂f(t + τ)

∂yτ

y′(t)dt, (6.12c)

∂yi (t∗)
∂σ

= −
∫ t∗−σ

−σ

WT (t + σ)
∂f(t + σ)

∂uσ

u′(t)dt. (6.12d)

2. The functional derivative sensitivity coefficients can also be expressed by

∂yi (t∗)
∂�(t)

= ∂fT (t + τ)

∂y
W(t + τ), t ∈ [−τ, 0) (6.13a)

∂yi (t∗)
∂�(t)

= ∂fT (t + σ)

∂uσ

W(t + σ), t ∈ [−σ, 0) (6.13b)

∂yi (t∗)
∂u(t)

= ∂fT

∂u
W(t) + ∂fT (t + σ)

∂uσ

W(t + σ), t ∈ (0, t∗]. (6.13c)

Proof For simplicity in Eq. (6.1a), we write

f(t, y, yτ ,u,uσ ,p) = f(t, y(t), y(t − τ),u(t),u(t − σ),p).

Small variations in the initial data, control, and system parameters cause a perturba-
tion in the system state in (6.1a)–(6.1c). Then, small variations δ�, δ�, δy0, δu, δp,
δτ , and δσ result in a variation δy that satisfies (for first order) the equation
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δy′(t) = ∂f
∂y

δy(t) + ∂f
∂yτ

δy(t − τ) + ∂f
∂u

δu(t) + ∂f
∂uσ

δu(t − σ) + ∂f
∂p

δp +
∂f
∂y

∂y(t − τ)

∂τ
δτ + ∂f

∂u
∂u(t − σ)

∂σ
δσ, (6.14a)

δy(t) = δ�(t), t ∈ [−τ, 0); δy(0) = δy0 ∈ R
n, (6.14b)

δu(t) = δ�(t), t ∈ [−σ, 0). (6.14c)

If we multiply both sides of (6.14a) by WT (t) (the transpose of the function W(t))
and integrate both sides with respect to t over the interval [0, t∗], we obtain

WT (t∗)δy(t∗) − WT (0)δy(0) −
∫ t∗

0
W′T (t)δy(t)dt =

∫ t∗

0
WT (t)

[
∂f
∂y

δy(t) + ∂f
∂yτ

δy(t − τ)

]
dt +

∫ t∗

0
WT (t)

[
∂f
∂u

δu(t) + ∂f
∂uσ

δu(t − σ)

]
dt +

∫ t∗

0
WT (t)

[
∂f
∂p

δp + ∂f
∂yτ

∂y(t − τ)

∂τ
δτ + ∂f

∂uσ

∂u(t − σ)

∂σ
δσ

]
dt.(6.15)

Equation (6.15), after some manipulations, can be rewritten in the form

WT (t∗)δy(t∗) − WT (0)δy(0) =
∫ 0

−τ
WT (t + τ)

∂f(t + τ)

∂yτ
δ�(t)dt

+
∫ t∗−τ

0

[
W′(t) + ∂fT

∂y
W(t) + ∂fT (t + τ)

∂yτ
W(t + τ)

]T

δy(t)dt

+
∫ t∗

t∗−τ

[
W′(t) + ∂f

∂y
W(t)

]T
δy(t)dt +

∫ 0

−σ
WT (t + σ)

∂f(t + σ)

∂uσ
δ�(t)dt

+
∫ t∗−σ

0

[
WT (t)

∂f
∂u

+ WT (t + σ)
∂f(t + σ)

∂uσ

]
δu(t)dt +

∫ t∗

t∗−σ
WT (t)

∂f
∂u

δu(t)dt

+
∫ t∗

0
WT (t)

∂f
∂p

δpdt −
∫ t∗−τ

−τ
WT (t + τ)

∂f(t + τ)

∂yτ
y′(t)δτdt

−
∫ t∗−σ

−σ
WT (t + σ)

∂f(t + σ)

∂uσ
u′(t)δσdt, t ≤ t∗. (6.16)

Under the assumptions given in (6.11), the above equation takes the form
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δyi (t
∗) = WT (0)δy(0) +

∫ 0

−τ

WT (t + τ)
∂f(t + τ)

∂yτ

δ�(t)dt

+
∫ 0

−σ

WT (t + σ)
∂f(t + σ)

∂uσ

δ�(t)dt

+
∫ t∗

0

[
WT (t)

∂f
∂u

+ WT (t + σ)
∂f(t + σ)

∂uσ

]
δu(t)dt

+
∫ t∗

0
WT (t)

∂f
∂p

δpdt −
∫ t∗−τ

−τ

WT (t + τ)
∂f(t + τ)

∂yτ

y′(t)δτdt

−
∫ t∗−σ

−σ

WT (t + σ)
∂f(t + σ)

∂uσ

u′(t)δσdt, t ≤ t∗; (6.17)

or

δyi (t
∗) = WT (0)δy(0) +

∫ t∗

0
WT (t)

∂f
∂p

δpdt

−
∫ t∗−τ

−τ
WT (t + τ)

∂f(t + τ)

∂yτ
y′(t)δτdt −

∫ t∗−σ

−σ
WT (t + σ)

∂f(t + σ)

∂uσ
u′(t)δσdt

+
∫ 0

−τ
WT (t + τ)

∂f(t + τ)

∂yτ
δ�(t)dt +

∫ 0

−τ
WT (t + σ)

∂f(t + σ)

∂uσ
δ�(t)dt

+
∫ t∗

0

[
WT (t)

∂f
∂u

+ WT (t + σ)
∂f(t + σ)

∂uσ

]
δu(t)dt, t ≤ t∗. (6.18)

Functional derivative sensitivity coefficients, for constant parameters, are equivalent
to the partial derivative sensitivity coefficients defined by (6.3). When δy(0) → 0,
δp → 0, δτ → 0, and δσ → 0, we, respectively, obtain the sensitivity coefficients
(6.12a)–(6.12d) from the first four terms of Eq. (6.18). Then, the first part of Theo-
rem6.1 is proved.

From the definition of the functional derivative sensitivity coefficients in (6.6),
we then obtain the formulae (6.13a)–(6.13c) from the last three terms of Eq. (6.18).
Thus, the second part of Theorem6.1 is proved.

6.4 Direct Approach

If we take all the parameters appearing in the system model (6.1a)–(6.1c) to be
constants, then sensitivity analysis, in this case, may just entail finding the partial
derivatives of the solution with respect to each parameter.

We denote by S(t) the n × ñ matrix S(t, α) of the sensitivity functions

S(t) ≡ S(t, α) :=
[∂yi (t, α)

∂α j

]
i=1,··· ,n
j=1,··· ,ñ

, ñ = r + r ′.
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If we introduce the notation

{
∂

∂α

}T

, the matrix of sensitivity functions takes the

form

S(t, α) ≡
{ ∂

∂α

}T
y(t, α) ∈ R

n×ñ . (6.19)

Its i th column is

Si (t, α) =
[
∂yi (t, α)

∂α1
,
∂yi (t, α)

∂α2
, . . . ,

∂yi (t, α)

∂αñ

]T

.

Thus, Si (t, α) is a vector whose components denote the sensitivity of the solution
yi (t, α) of the model to small variations in the parameters α j , j = 1, 2, . . . , ñ.

Theorem 6.2 S(t) satisfies the DDE:

S′(t) = J(t)S(t) + Jτ (t)S(t − τ) + B(t), t ≥ 0, (6.20)

where

J(t) := ∂

∂y
f(t, y, yτ ,u,uσ ;p) ∈ R

n×n (6.21a)

Jτ (t) := ∂

∂yτ

f(t, y, yτ ,u,uσ ;p) ∈ R
n×r ′ ; (6.21b)

B(t) := ∂

∂α
f(t, y, yτ ,u,uσ ;p) ∈ R

n×ñ . (6.21c)

Proof Assuming appropriate differentiability of y(t, α) with respect to α, we have

y(t, α + δα) = y(t, α) +
ñ∑
j=1

∂y(t, α)

∂α j
δα j + O(‖δα‖2), or, using (6.19),

δy(t, α) = S(t, α)δα + O(‖δα‖2).

Thus, the n × ñ matrix S(t, α) may be regarded as the local sensitivity of the
solution y(t, α) to small variations in α. (The term local refers to the fact that these
sensitivities describe the system around a given set of values for the parameters α.)

By differentiating equations (6.1a)–(6.1b) with respect to the vector of parameters
α, we obtain the variational system
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S′(t, α) = ∂f
∂y

(t, y, yτ ,u,uσ ;p)S(t, α) + ∂f
∂yτ

(t, y, yτ ,u,uσ ;p)S(t − τ, α)

+ ∂f
∂α

(t, y, yτ ,u,uσ ;p) t ≥ 0,

S′(t, α) = ∂�(t, α)

∂α
, t ≤ 0.

Our result is as follows. �

To estimate the sensitivity functions S(t), we must solve the n × ñ sensitivity
Eq. (6.20) together with the original system (6.1a)–(6.1c). We should mention here
that solving such systems can be a difficult and costly numerical problem when the
number of states and parameters is large, or when the sensitivities must be computed
repeatedly.

Remark 6.1 We apply the direct method to the linear DDE model:

y′(t, α) = p1y(t, α) + p2y(t − τ, α) + p3u(t), t ≥ 0
y(t, α) = ψ(t, α), t ≤ 0,

(6.22)

as an example. Here α = [p1, p2, p3, τ ]T . The equations for S(t) cannot be solved
in isolation; they require the solution y(t). We obtain, in the present model, a system
of neutral delay differential equations (NDDEs) expressed as

x′(t, α) = Ax(t, α) + Bx(t − τ, α) + Cx′(t − τ, α) + D(t), t > 0,
x(t, α) = �(t, α), t ∈ [−τ, 0], (6.23)

where

A =
⎡
⎢⎣

p1 0 0 0 0
1 p1 0 0 0
0 0 p1 0 0
0 0 0 p1 0
0 0 0 0 p1

⎤
⎥⎦ , B =

⎡
⎢⎣

p2 0 0 0 0
0 p2 0 0 0
1 0 p2 0 0
0 0 0 p2 0
0 0 0 0 p2

⎤
⎥⎦ , C =

⎡
⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −p2

⎤
⎥⎦ ,

D(t) =
⎡
⎢⎣

p3u(t)
0
0

u(t)
0

⎤
⎥⎦ , x(t, α) =

⎡
⎢⎣

y(t, p)

sp1 (t, α)

sp2 (t, α)

sp3 (t, α)

sτ (t, α)

⎤
⎥⎦ , and �(t, α) =

⎡
⎢⎢⎣

ψ(t, α)
∂

∂p1
ψ(t, α)

∂
∂p2

ψ(t, α)

∂
∂p3

ψ(t, α)

∂
∂τ

ψ(t, α)

⎤
⎥⎥⎦ .

Here, sαi ≡ ∂y(t, α)

∂αi
, and some terms

∂

∂αi
ψ(t, α) are non-vanishing in the case

where the initial function ψ depends non-trivially upon p1, p2, p3, and τ .



112 6 Sensitivity Analysis of Delay Differential Equations

6.5 Sensitivity of Optimum Parameter p̂ to Data

To compute ∂p̂
∂Y j

, the sensitivity of the parameter estimate p̂ to the observed data Y j ,
assume that the unweighted objective function

�(p) ≡ �(p,Y) :=
∑
i

[
y(ti ,p) − Yi

]2
(6.24)

is smooth as a function of p in the neighborhood of the optimal parameter p̂. Then
we have

∂

∂pk
�(p,Y) = 2

∑
i

[
y(ti ,p) − Yi

]∂y(ti ,p)

∂pk
, (6.25)

∂2

∂pl∂pk
�(p,Y) = 2

∑
i

∂y(ti , p)

∂pl

∂y(ti , p)

∂pk
+ 2

∑
i

[
y(ti , p) − Yi

]∂2y(ti ,p)

∂pl∂pk
. (6.26)

To minimize the objective function (6.24), the right-hand side of Eq. (6.25) vanishes
at p = p̂ (where p̂ ≡ p̂(Y)); therefore,

∑
i

[y(ti , p̂(Y))Yi ]sk(ti , p̂(Y)) = 0. (6.27)

Now, the left-hand side of Eq. (6.27) is a function of p̂ and Y; differentiating both
sides with respect to Y j yields, for k = 1, . . . , L ,

N∑
i=1

L∑
l=1

[
sk(ti , p̂)sl(ti , p̂) + [

y(ti , p̂) − Yi
]
rlk(ti , p̂)

] ∂ p̂l
∂Y j

= sk(t j , p̂). (6.28)

If we assume that y(ti , p̂) is close to the observed value Yi , so that the second term
in the left-hand side of Eq. (6.28) can be neglected, then the above system can be
approximated by

N∑
i=1

L∑
l=1

sk(ti , p̂)sl(ti , p̂)
∂ p̂l
∂Y j

≈ sk(t j , p̂), k = 1, . . . , L ,

or

N∑
i=1

sk(ti , p̂)
( L∑

l=1

sl(ti , p̂)
∂pl
∂Y j

)
≈ sk(t j , p̂), k = 1, . . . , L . (6.29)
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This equation can be written in a compact form:

[ N∑
i=1

s(ti , p̂)sT(ti , p̂)
] ∂p̂
∂b f Y j

≈ s(t j , p̂). (6.30)

Then, the sensitivity of the best-fit parameter estimate p̂ to observations Y j ( j =
1, 2, . . . , N ) can be estimated by

∂p̂
∂Y j

≈
[
B(̂p)

]−1
s(t j , p̂), (6.31)

where s is L × 1 vector andB(̂p) :=
[ ∑N

i=1 s(ti , p̂)sT (ti , p̂)
]
is a L × L nonsingular

matrix.
A desirable property of themodel is that the sensitivity of the parameter estimate to

the observation ∂p̂
∂Y j

should be small tominimize the effect of observation noise on the
parameter estimate. Equation (6.31) suggests that increasing s(t, p̂) (the sensitivity
of the state variable with respect to the unknown parameter) decreases the sensitivity
of the parameter estimation to observation.

6.5.1 Standard Deviation of Parameter Estimates

We can use the sensitivity coefficients (si , i = 1, . . . , L) to determine the covariance
matrix [ςi j ] of the estimates as follows [9]:

⎡
⎢⎢⎢⎢⎣

ς11 ς12 . . . ς1L

ς21 ς22 . . . ς2L

ς31 ς32 . . . ς3L

.. .. . . . ..

ςR1 ςR2 . . . ςLL

⎤
⎥⎥⎥⎥⎦ = 2

�(̂p)

N − L

[
H (̂p)

]−1
,

where (N − L) is the number of degrees of freedom and H (̂p) is the Hessian matrix
of the objective function �(̂p). Using the notation ∂

∂p and ∂
∂pT , the Hessian matrix

can be written in the form

H (̂p) =
[

∂2

∂p∂pT
�(̂p)

]
.

This matrix can be approximated, in terms of (6.26) and using the sensitivity coeffi-
cients, as

H (̂p) ≈ H̃ (̂p) := 2

[
N∑

k=1

si (tk, p̂)s j (tk, p̂)

]

i, j=1,...,L

.
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Hence, the standard deviations for the parameter estimates are the quantities σi ≡
σ( p̂i ) = √

ςi i (i = 1, . . . , L).

6.5.2 Non-linearity and Indications of Bias

We remarked earlier that percentage bias in the values of the parameter estimates is a
good indicator of the quantitative effect of non-linearity [10]. To examine the biases
in the values of the parameter estimates due to the non-linearity of the parameters,
we proceed as follows:

(1) Perturb the obtained solution of the model corresponding to the best-fit param-
eters p̂ with normally distributed random errors of zero mean and variance (see
[9]):

s2 = �(̂p)

N − L
.

(2) Find new best-fit parameters p̃ to the perturbed data from (1).
(3) Repeat this process a large number of times (500, or preferably 1000 times) to

generate a statistically significant estimate of the mean value of p̃.
(4) If the relative biases satisfy the relation

‖̂p − mean{̃p}‖ < 0.01‖̂p‖,

then the effect of non-linearity is not regarded as significant and the experimenter
can have confidence in the parameter estimates and their standard deviations.

In other words, if the LS estimator of a non-linear regression model is only
slightly biased (the relative biases <1%) with a distribution close to that of a normal
distribution and with a variance only slightly in excess of the minimum variance
bound, it seems reasonable to consider the estimator as behaving close to a linear
regression model. If, on the other hand, the LS estimator has a large non-linear bias,
with a distribution far from normal and variance greatly in excess of the minimum
variance bound, the non-linear regression model might be far from a linear model
in its behavior. For more details about the non-linearity effect and issues related to
parameter estimations, refer to [9–12].

6.6 Numerical Results

In this section, we apply the results obtained in the above sections, to an example of
linear DDE:
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y′(t) = p1y(t) + p2y(t − τ) + p3, t ≥ 0,
y(t) = ψ(t), t ∈ [−τ, 0]. (6.32)

Wehave chosen thismodel because it hasmany applications in cell-growth dynamics,
as the behavior of its solution (for particular parameters) is consistent with the step-
like growth pattern; see [12]. A knowledge of how the solution can vary with respect
to small changes in the initial data or the parameters can yield insights into the
behavior of the model and can assist the modeling process. The observation interval
is often divided into subintervals, each of which could be informative about a specific
parameter. Knowledge of these intervals is not only important for understanding the
role of the model but also for an enhanced experiment design for estimating selected
parameters. Thus, sensitivity functions can allow one to qualitatively assess which
data points have the most effect on a particular parameter.

According the above analysis, we wish to find (analytically and numerically)

the sensitivity density function
∂y(t∗)
∂ψ(t)

(where t ≤ t∗) and the sensitivity coefficients

∂y(t)

∂α
. The sensitivity coefficients (for constant parameters) can be obtained by using

both variational and direct methods. However, the functional derivative sensitivity
coefficients can only be computed by using the variational method.

• First, we apply the variational approach.
In (6.32), α = [p1, p2, p3, τ ]T and the control is chosen to be u(t) = p3 = 1. The
adjoint equation for this case is

W ′(t) = −p1W (t) − p2W (t + τ), t ≤ t∗,
W (t) = 0, t > t∗; W (t∗) = 1.

(6.33)

The analytical solution of the adjoint Eq. (6.33) is as follows:

(1) 0 < t∗ ≤ τ

W (t) = e−p1(t−t∗), t ≤ t∗, (6.34)

(2) τ < t∗ ≤ 2τ

W (t) =
{
e−p1(t−t∗) − p2(t − t∗ + τ)e−p1(t−t∗+τ), 0 < t ≤ t∗ − τ,

e−p1(t−t∗), t∗ − τ < t ≤ t∗. (6.35)

(Here, W (t + τ) = 0 for t∗ − τ < t ≤ t∗ and W (t + τ) = e−p1(t−t∗+τ) for 0 <

t ≤ t∗ − τ .)

The solution of the DDE (6.32), with an initial function ψ(t) = 0 with t ≤ 0, is

y(t) =
{

ξ(ep1t − 1), 0 < t ≤ τ,

ξ 2 p2 − ξ + ξep1t + ξp2(t − τ − ξ)ep1(t−τ), τ < t ≤ 2τ,
(6.36)
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where ξ = 1

p1
.

Thus, the functional derivative sensitivity density function to the initial function,
by using (6.13a), becomes

(1) 0 < t∗ ≤ τ

∂y(t∗)
∂ψ(t)

= p2W (t + τ) =
{
p2e−p1(t−t∗+τ), −τ < t ≤ t∗ − τ,

0, t∗ − τ < t ≤ 0.
(6.37)

(2) τ < t∗ ≤ 2τ

∂y(t∗)

∂ψ(t)
=

⎧⎨
⎩

p2e
−p1(t−t∗+τ) − p22(t − t∗ + 2τ)e−p1(t−t∗+2τ), −τ < t ≤ t∗ − 2τ,

p2e
−p1(t−t∗+τ), t∗ − 2τ < t ≤ 0.

(6.38)

On the other hand, the sensitivity functional to the control variable u(t), as depicted
in (6.13c), becomes

∂y(t∗)
∂u(t)

= W (t). (6.39)

The sensitivity function of y(t) to the constant parameter p1, by using (6.12b),
takes the form

∂y(t∗)
∂p1

=
∫ t∗

0
W (t)

∂ f

∂p1
dt =

{
ξ 2 + ξ(t∗ − ξ)ep1t

∗
, 0 < t∗ ≤ τ,

I1 + I2, τ < t∗ ≤ 2τ,
(6.40)

where

I1 =
∫ t∗−τ

0
W (t)

∂ f

∂p1
dt

= ξ(t∗ − τ)ep1t
∗ + ξ 2(ep1τ − ep1t

∗
) + 1

2
ξp2(t

∗ − τ)2ep1(t
∗−τ)

−ξ 2 p2(t
∗ − τ)ep1(t

∗−τ) − ξ 3 p2(1 − ep1(t
∗−τ)), (6.41)

and

I2 =
∫ t∗

t∗−τ

W (t)
∂ f

∂p1
dt = I1 + ξ 2 + ξ(t∗ − ξ)ep1t

∗
. (6.42)

The sensitivity of y(t) to the parameter p3 is given by
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∂y(t∗)
∂p3

=
∫ t∗

0
W (t)

∂ f

∂p3
dt (6.43)

=
{

ξ(ep1t
∗ − 1), 0 < t∗ ≤ τ

ξ 2 p2 − ξ + ξep1t
∗ + ξp2(t∗ − τ − ξ)ep1(t

∗−τ), τ < t∗ ≤ 2τ
(6.44)

It is clear that
∂y(t∗)
∂p3

= y(t∗), as it is satisfying Eq. (6.32).

By using (6.12c), we obtain the sensitivity coefficient of y(t) to the constant
parameter τ as

∂y(t∗)
∂τ

= −
∫ t∗−τ

−τ

W (t + τ)
∂ f (t + τ)

∂yτ

y′(t)dt

=
{
0, 0 < t∗ ≤ τ,

−p2(t∗ − τ)ep1(t
∗−τ), τ < t∗ ≤ 2τ,

(6.45)

Numerical results using the variational approach are presented in Figs. 6.1, 6.2, 6.3,
6.4, 6.5, and 6.6. Figure6.1 plots the analytical solution of DDE (6.32) in the interval
[0,2τ ]. Figures6.2 and 6.3 show the sensitivity of the state variable to the initial

function
∂y(t∗)
∂ψ(t)

(t < t∗) as a function of t for (i) 0 < t∗ ≤ τ and (i i) τ < t∗ ≤ 2τ ,

respectively. For case (i),
∂y(t∗)
∂ψ(t)

is positive and increases monotonically in the

interval [−τ, t∗ − τ ] and attains maximum value at t = t∗ − τ and vanishes for

t∗ − τ < t ≤ 0. In case (i i),
∂y(t∗)
∂ψ(t)

monotonically increases and then decreases to

attain the minimum at t = t∗ − 2τ . We note that t = t∗ − 2τ is the time when the
initial data stops to affect the state delay in the system dynamic. The functional

Fig. 6.1 Analytical solution
of DDE (6.32) in the interval
0 ≤ t ≤ 2τ with p1 = −2,
p2 = 4, and p3 = 1

2ττ0
t 

y(t) 

y(t) 
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t*− τ −τ 0

∂y(t*)/∂ψ(t) 

p2W(t+τ) 

Fig. 6.2 Functional derivative sensitivity density function ∂y(t∗)
∂ψ(t) , (6.37), when 0 < t∗ ≤ τ

−τ t*−2τ 0

∂y(t*)/∂ψ(t) 

p2W(t+τ) 

Fig. 6.3 Functional derivative sensitivity density function ∂y(t∗)
∂ψ(t) , (6.38), when τ < t∗ ≤ 2τ

derivative sensitivity density function
∂y(t∗)
∂u(t)

is shown in Fig. 6.4 as a function of t

for t∗ = 2τ .

Figure6.5 shows the plot of the sensitivity coefficient
∂y(t)

∂p1
. We note that

∂y(t)

∂p1
is positive and increases as t increases. Figure6.6 shows the sensitivity of the state
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0 τ 2τ
t 

W(t) 

∂y(t*)/∂u(t) 

Fig. 6.4 Functional derivative sensitivity density function ∂y(t∗)
∂u(t) , (6.39), for t

∗ = 2τ

2ττ0

∂y(t)/∂p
1

∂y(t)/∂p
1

t 

Fig. 6.5 Sensitivity function ∂y(t)
∂p1

, (6.40)

variable to lag τ ,
∂y(t)

∂τ
. We note that

∂y(t)

∂τ
is negative and, as expected, y(t) is very

sensitive to changes in τ in the time interval τ < t ≤ 2τ and is insensitive to changes
in the constant lag τ in the time interval [0, τ ]. The plots have a kink at t = τ as a
result of existence of the delay in the system state.

• Secondly, if we apply the direct approach in the example being considered
(6.32), we can simply use the results obtained in Remark6.1 to obtain a variational
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2ττ0

∂y(t)/∂τ

Fig. 6.6 Sensitivity function ∂y(t)
∂τ

, (6.45)

system of NDDEs in the unknown functions of the sensitivity coefficients. We solve
this system numerically, as discussed in the previous section, using Archi code [13]
together with the original equations. The numerical results are displayed in Fig. 6.7.
We note that this approach provides the same results provided by the variational
approach.

6.7 Concluding Remarks

In this chapter, we have investigated the sensitivity of model solutions by perturbing
the parameters appearing in delay differential systems, using variational and direct
approaches. The theory is applied to a linear DDE. Either of the two approaches is
capable, in principle, of providing the same information concerning the system. It
has been shown that adjoint equations need to be solved to estimate the sensitivity
coefficients via the variational approach. In models consisting of parameters that are
varying or temporally varying, the functional derivative sensitivity coefficients can
only be computed via the variational method. The direct method is based only on
considering all parameters as constants (those independent of time or location) and
then the sensitivity coefficients are estimated by solving a variational system simul-
taneously with the original system. The variational approach can provide a rigorous
sensitivitymeasure that gives a precise interpretation of the results because sensitivity
density functions contain more information than the sensitivity coefficients.
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Fig. 6.7 Numerical results for (6.32). The first graph (from left to right, up to down) plots the
numerical solution. The second shows the sensitivity function ∂y(t)

∂p1
, the third ∂y(t)

∂p2
, and the fourth

∂y(t)
∂τ

We have discussed how sensitivity analysis can be used to evaluate which param-
eters have a significant effect on uncertainty. Sensitivity functions of the solution
y(t) for the given DDE model are shown in Figs. 6.2, 6.3, 6.4, 6.5, and 6.6 (by
using the variational approach), and in Fig. 6.7 (by using the direct method). These
functions are useful in simulation studies for assessing the sensitivity of the solu-
tions with respect to assigned model parameters. We have seen how the sensitivity
functions enable one to assess the relevant time intervals for the identification of spe-
cific parameters and improve the understanding of the role played by specific model
parameters in describing experimental data. We noted, e.g., from Figs. 6.6 and 6.7,
that the experimental points in the subinterval [τ ,2τ ] are informative data points for
the estimation of parameter τ , while the state variable is insensitive to a change in the
constant parameter τ through the time interval [0, τ ]. The oscillation accompanied
by the sensitivity of y(t) to τ (in Fig. 6.7) indicates that the solution is sensitive to
changes in the parameter τ , and this parameter plays an important role in the model.

In the next chapter, we extend the analysis to study stochastic delay differential
equations (SDDEs) which play a prominent role in many application areas including
biology, epidemiology, and population dynamics. SDDEs mostly can offer a more
sophisticated insight through physical phenomena than their deterministic counter-
parts do.
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Chapter 7
Stochastic Delay Differential Equations

7.1 Introduction

Real biological systems are always exposed to influences that are not completely
understood or not feasible to model explicitly, and therefore, there is an increasing
need to extend the deterministic models to models that embrace more complex vari-
ations in the dynamics. A way of modeling these elements is by including stochastic
influences or noise. A natural extension of a deterministic differential equations
model is a system of stochastic differential equations (SDEs), where relevant param-
eters are modeled as suitable stochastic processes, or stochastic processes are added
to the driving system equations. Therefore, stochastic delay differential equations
(SDDEs) are crucial in ecology, epidemiology, and many other fields. SDDEs are
also considered as a generalization of both deterministic delay differential equations
(DDEs) and stochastic ordinary differential equations (SODEs). Some basic con-
cepts about stochastic differential equations are discussed in [1–3]. The fundamental
theory of existence and uniqueness of the solution of SDDEs has been studied by
Mao [4] and Mohammed [5]. Some stability properties of numerical schemes of
SDDEs are also studied in [6–8].

An important characteristic of environmental noise is its spectrum,whichdescribes
variance as a sum of sinusoidal waves of different frequencies. The spectrum of fre-
quencies in noise is particularly important to the dynamics and persistence of systems
[9]. However, Brownian motion with normally distributed errors is commonly used
in the continuous differential models of dynamical systems. In this monograph, we
consider white noise type. In white noise, the variance is the same at all frequencies.
Therefore, this is the most thoroughly studied and applied form of noise. The reason
for this is that, it is a simple and easily articulated model for noise. From an obser-
vational perspective, the random effect of Brownian motion is more visualized with
normally distributed errors [1, 6].

In the literature, many numerical schemes for SDDEs have been investigated,
such as Euler-type schemes [10, 11], drift-implicit Euler scheme [12, 13], Milstein
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schemes [14, 15], split-step schemes [16, 17], andmultistep schemes [18]. The exten-
sion of numerical approaches for SODEs to SDDEs is non-trivial, particularly since
the time-delays may induce instabilities in the basic SDDEs, while their correspond-
ing SODEs are stable [12]. In addition, the presence of time-delays influences the
convergence order and computational complexity of the numerical schemes [19]. In
general, there is no analytical closed-form solution of the models considered in this
dissertation, and we usually require numerical techniques to investigate the models
quantitatively.

In this chapter, we briefly study qualitative features of SDDEs (see Sects. 7.2 and
7.3). We also introduce some numerical schemes for their approximate solutions.We
investigate local and global errors; convergence and consistency of the scheme. We
discuss strong discrete time approximations of solutions of non-autonomous SDDEs,
including Euler and Taylor schemes and implicit schemes. The proposed schemes
converge in a strong sense. The mean-square stability of the Milstein scheme is also
discussed; see Sects. 7.4 and 7.5.

7.1.1 Preliminaries

Definition 7.1 ([20]) Let (Ω,A,P) be a probability space with a filtration {At }t≥0.
A one-dimensional (standard) Brownian motion is a real-valued continuous {At }-
adapted process {Wt }t≥0 satisfying the following properties:

1. W (0) = 0 a.s. (with probability 1).
2. For 0 ≤ s < t ≤ T , the random variable given by the increment W (t) − W (s)

is normally distributed with mean zero and variance t − s; equivalently,W (t) −
W (s) ∼ √

t − sN (0, 1), where N (0, 1) denotes a normally distributed random
variable with zero mean and unit variance.

3. For 0 ≤ s < t < u < v ≤ T , the increments W (t) − W (s) and W (v) − W (u)

are independent.

Example 7.1 Let us consider the Hutchinson equation

dy(t)

dt
= r y(t)

(
1 − y(t − τ)

K

)
. (7.1)

Here, r > 0 is the intrinsic growth rate, K > 0 is the carrying capacity of the popu-
lation, and time-delay τ is considered as hatching time. We can add a small random
perturbation σdW , usually referred to as the noise term in Eq. (7.1), which then
becomes

dy(t) =
[
r y(t)

(
1 − y(t − τ)

K

)]
dt + σdW. (7.2)

In Eq. (7.2), the noise term does not include the dependent variable y, and hence,
the equation is referred to as an SDDE with additive noise. However, it may be
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more natural to consider our extension from the Hutchinson equation by looking
at the proportionate population change dy(t)

y(t) and adding our stochastic term to this
quantity. This gives us

dy(t)

y(t)
=

[(
1 − y(t − τ)

K

)]
dt. (7.3)

Therefore, Eq. (7.3) becomes

dy(t)

y(t)
=

[
r
(
1 − y(t − τ)

K

)]
dt + σdW. (7.4)

Multiplying by y(t) gives us the following SDDE with multiplicative noise:

dy =
[
r
(
1 − y(t − τ)

K

)
y(t)

]
dt + σ y(t)dW. (7.5)

This implies a more natural procedure, and we will only consider equations with
multiplicative noise in this thesis. Figure7.1 shows the effect of environmental fluc-
tuations on a Hutchinson equation, such that r = 0.15 and k = 1. The figures at the
top show simulation results for τ = 5.6, which indicates that the population attains
its steady state value of 1 regardless of the external noise. Hence, it fluctuates within
the interval [0.95,1.15] as σ 2 = 0.01 (top-left), and as the intensities of white noise
increases to σ 2 = 0.05, it fluctuates within [0.65,1.5] (top-right). When the magni-
tude of time-delay is increased to a threshold value τ = 11 (periodic oscillations) and
taking σ 2 = 0.01, the stochastic fluctuations disappears (bottom-left). As σ 2 = 0.05,
we observe abrupt oscillation in population (bottom-right).

Remark 7.1 An important fact about the impact of environmental noise is that, it
can suppress a potential population explosion [21]; see Fig. 7.2.

To illustrate this phenomenon, let us consider DDE with pure delay

dy

dt
= μ1y(t − τ). (7.6)

Equation (7.6) with multiplicative noise takes the form

dy = μ1y(t − τ)dt + σ y(t)dW. (7.7)

As μ1 > 0, the solution of (7.6) increases exponentially to infinity as t → ∞. How-
ever, Fig. 7.2 shows the effect of environmental fluctuations on (7.6), withμ1 = 0.06,
τ = 0.4, and σ 2 = 0.16.
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Fig. 7.1 Numerical simulations of deterministic Hutchinson DDE (7.1) and its corresponding
SDDE (7.5) when r = 0.15 and k = 1
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Fig. 7.2 How environmental Brownian noise suppresses explosions in population dynamics,
described by dy = μ1y(t − τ)dt + σ y(t)dW and its corresponding deterministic Eq. (7.6)
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7.2 Existence and Uniqueness of Solutions for SDDEs

Let us considerd-dimensional SDDEswith r -dimensional standardWiener processes
on the filtered probability space (Ω,A,At0 ,P). Therefore, we have equations of the
form

dy(t) = f(t, y(t), y(t − τ))︸ ︷︷ ︸
drift coefficient

dt +
r∑
j=1

g j (t, y(t), y(t − τ))

︸ ︷︷ ︸
diffusion coefficient

dW j (t), t ∈ [0, T ],

y(t) = ψ(t), t ∈ [−τ, 0].
(7.8)

With one fixed delay τ , where ψ(t) is an At0 -measurable C([−τ, 0],Rd)-valued
random variable. The drift coefficient f : [0, T ] × R

d × R
d → R

d and the diffusion
coefficient g j : [0, T ] × R

d × R
d → R

d , j = 1, 2, . . . , r are d-dimensional. Equa-
tion (7.8) can be formulated as

y(t) = y(0) +
∫ t

0
f(s, y(s), y(s − τ))ds +

r∑
j=1

∫ t

0
g(s, y(s), y(s − τ))dW j (s),

(7.9)
for t ∈ [0, T ] and with y(t) = ψ(t) for t ∈ [−τ, 0].
Definition 7.2 (Strong solution) A d-dimensional stochastic process y = {y(t) :
[−τ, T ]} is called a strong solution of (7.8), if it has the following properties:

• {y(t)} is measurable, sample continuous process and (At )0≤t≤T -adapted;
• Equations (7.8) and (7.9) hold for every t ∈ [0, T ] almost definitely.

Definition 7.3 (Path-wise unique solution) Let the set X denote some class of
stochastic processes that solve (7.8). If any twoprocesses y(i)={y(i)(t), t ∈ [−τ, T ]},
i = 1, 2 from X with the same initial functions have the same path on [0, T ], almost
definitely, i.e.,

P( sup
0≤t≤T

|y(1)(t) − y(2)(t)| > 0) = 0, (7.10)

then the solution of (7.8) is path-wise unique within X.
Herein, we formulate the Lipschitz condition (L1) and growth condition (L2) to

guarantee the existence of a unique solution of (7.8). Assuming that |.| denotes the
Euclidian norm, we have

(L1) Lipschitz condition: There exists a constant K ∈ (0,∞), such that

|f(t, x1, y1) − f(t, x2, y2)|+|g1(t, x1, y1) − g1(t, x2, y2) + · · · +
|gr (t, x1, y1) − gr (t, x2, y2)| ≤ K (|x2 − x1| + |y2 − y1|),

for t ∈ [0, T ] and x1, x2, y1, y2 ∈ R
d .
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(L2) Growth condition: There exists a constant G ∈ (0,∞), such that

|f(t, x, y)|2 + |g1(t, x, y)|2 + · · · + |gr (t, x, y)|2 ≤ G(1 + |x |2 + |y|2),

for t ∈ [0, T ] and x, y ∈ R
d .

Let C = C([−τ, 0],Rd) be the Banach space of all d-dimensional continuous func-
tions η on [−τ, 0] equipped with the sup-norm ‖η‖C = sups∈[−τ,0] |η(s)|. For every
function ξ |[−τ, T ] → R

d and every t ∈ [0, T ], so that

ξt = {at (s) := ξ(t + s), s ∈ [−τ, 0]},

a function defined on [−τ, 0], the segment of ξ at t. In the same manner, the
segment-valued function t → ξt for t ∈ [0, T ] is obtained. Additionally, we denote
L2(Ω,C,A0), the set of Rd -valued continuous processes η = {η(s), s ∈ [−τ, 0]}
with η(s) being A0-measurable for all s ∈ [−τ, 0] and

E‖η‖2C = E sup
s∈[−τ,0]

|η(s)|2 < ∞. (7.11)

Note that the initial function ψ can be considered as a square integrable C =
C([−τ, 0],Rd)-valued random variable on (Ω,A0,P). Hence, the above assump-
tions lead to the following theorem:

Theorem 7.1 ([11]) Assume that (L1) and (L2) hold, and ψ be in L2(Ω,C,A0).
Then the SDDE (7.8), with initial segment ψ , has a path-wise unique strong solution
y = {y(t), t ∈ [−τ, T ]} in L2(Ω,C,A0). Moreover

E sup
t∈[−τ,t]

|y(t)|2 < ∞, (7.12)

and for each t ∈ [0, T ], the segmentyt = {y(t + s), s ∈ [−τ, 0]} is aC([−τ, 0],Rd)-
valued process having continuous paths. Additionally, if we have E‖ψ‖2kC < ∞ for
some k ≥ 1, then

E‖yt‖2kC = E sup
s∈[−τ,0]

|y(t + s)|2k < ∞ (7.13)

and
E‖yt‖2kC ≤ Ck[1 + E‖ψ‖2kC ]. (7.14)

For the proof of the above theorem, refer to [5].
Consider W (t) to be a one-dimensional Wiener process, an autonomous scalar

stochastic delay differential equation of the form

dy(t) = f (y(t), y(t − τ))dt + g(y(t), y(t − τ))dW (t), t ∈ [0, T ],
y(t) = ψ(t), t ∈ [−τ, 0]. (7.15)
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Equation (7.15) can be formulated as

y(t) = y(0) +
∫ t

0
f (y(s), y(s − τ))ds +

∫ t

0
g(y(s), y(s − τ))dW (s), (7.16)

for t ∈ [0, T ] and with y(t) = ψ(t) for t ∈ [−τ, 0]. The second integral in (7.16) is
a stochastic integral in the Itô sense. If it is taken as a Stratonovich integral, we will
use notation of the form

∫ t
0 g(s, y(s)) ◦ dW (s). Let us consider f : R × R → R,

g : R × R → R, and ψ : [−τ, 0] → R. Now, we introduce the following theorem
for Eq. (7.15) [10, 22]:

Theorem 7.2 Problem (7.15) has a unique strong solution, provided that the uniform
Lipschitz condition and a linear growth bound are satisfied for both f and g.

Example 7.2 Consider the stochastic delay differential equation

dy(t) = μ1y(t − τ)dt + σdW (t), t ≥ 0,

y(t) = t + 1, t ∈ [−τ, 0]. (7.17)

Assume thatμ1 = −1 and τ = 1; we can easily verify the conditions of Theorem7.2.
Thus, we solve (7.17) using Itô’s formula in the interval [0,1], so that

y1(t) = y(0) −
∫ t

0
sds +

∫ t

0
σdW (s) = 1 − t2

2
+ σW (t).

In the interval [1, 2], we have

y2(t) = y(1) + σW (1) +
∫ t

1
(−1 + (s − 1)2

2
+ σW (s − 1))ds +

∫ t

1
σdW (s)

= (t − 1)3

6
− t + 3

2
+

∫ t

1
σW (s − 1)ds + σW (t).

Similarly, in the interval [2, 3], the solution is

y3(t) = −1

3
−

∫ t

2

( (t − 2)3

6
− t + 5

2

)
ds +

∫ 2

1
σW (s − 1)ds + σW (2)

+
∫ t

2

∫ s1−1

1
σW (s − 1)dsds1 +

∫ t

2
σW (s − 1)ds +

∫ t

2
σdW (s)

= 8

3
− (t − 2)4

24
+ t2

2
− 5

2
t +

∫ 2

1
σW (s − 1)ds +

∫ t

2

∫ s1−1

1
σW (s − 1)dsds1

+
∫ t

2
σW (s − 1)ds + σW (t).
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Note that
∫ t
0 σdW (s) is a martingale. Hence, E

( ∫ t
0 σdW (s)

)
= 0. To find the mean

function of y(t), we can take the expectation of the solutions on their intervals as
follows:

E(y(t)) =

⎧⎪⎨
⎪⎩
1 − t2

2 , t ∈ [0, 1];
(t−1)3

6 − t + 3
2 , t ∈ [1, 2];

8
3 − (t−2)4

24 + t2

2 − 5
2 t, t ∈ [2, 3].

Numerical methods for SDDEs are currently being actively studied and developed.
Hence, they should be used carefully for deterministicDDEs and StochasticOrdinary
Differential Equations (SODEs).

7.3 Stability Criteria for SDDEs

There are at least three different types of stability for SDDEs [6]. Consider the
following scalar SDDE with W (t) being a one-dimensional Wiener process:

dy(t) = f (t, y(t), y(t − τ))dt + g(t, y(t), y(t − τ))dW (t), t ∈ [0, T ],
y(t) = ψ(t), t ∈ [−τ, 0]. (7.18)

Hence, Eq. (7.18) can be formulated as

y(t) = y(0) +
∫ t

0
f (s, y(s), y(s − τ))ds +

∫ t

0
g(s, y(s), y(s − τ))dW (s).

(7.19)
We are supposed to be concerned with the main ideas of the pth mean stability of the
trivial solution of Eq. (7.19) with respect to perturbations in ψ(.) (for 1 ≤ p < ∞),
and also with mean-square stability when p = 2.

Definition 7.4 ([23]) For some p > 0, the trivial solution of the SDDE (7.19) is
called

• Locally stable in the pth mean, if for each ε > 0, there exists a δ ≥ 0 such that
E(|y(t; t0, ψ)|p) < ε whenever t ≥ t0 and E(supt∈[t0−τ,t0] |ψ(t)|p) < δ;

• Locally asymptotically stable in the pth mean if it is stable in the pth mean
and if there exists a δ ≥ 0 such that whenever E(supt∈[t0−τ,t0]|ψ(t)|p ) < δ, then
E(|y(t; t0, ψ)|p) → 0 for t → ∞;

• Locally exponentially stable in the pth mean if it is stable in the pth mean and
if there exists a δ ≥ 0 such that whenever E(supt∈[t0−τ,t0]|ψ(t)|p ) < δ, there exists
some finite constant C and a u∗ > 0 such that
E(|y(t; t0, ψ)|p) ≤ CE(sups∈[t0−τ,t0] |ψ(s)|p)exp(−u∗(t − t0)) (t0 ≤ t < ∞).
If δ is arbitrarily large, then the stability in the above, in each case, is global rather
than local.



7.3 Stability Criteria for SDDEs 131

A different approach to stability for SDDEs, that of stochastic stability or stability
in probability, is as follows:

• The trivial solution of theSDDE(7.19) is termed stochastically stable in probability
if for each e ∈ (0, 1) and ε > 0, there exists a δ ≡ δ(e, ε) ≥ 0, such that

P(|y(t; t0, ψ)| ≤ ε for all t ≥ t0) ≥ 1 − e,

whenever t ≥ t0 and supt∈[t0−τ,t0] |ψ(t)|p < δ with probability 1.

Certain stability conditions for SDDEs can be stated in terms of Lyapunov func-
tionals, similar to the theorems for DDEs. Now, we present the Lyapunov theory
approach for SDDEs. Let us consider a more general type for (7.8) with one delay.
Thus, an Itô type SDDE is given by

dy(t) = f(t, yt )dt + g(t, yt )dW (t), t ≥ t0,

yt (θ) = y(t + θ), −τ ≤ θ ≤ 0,

f(t, 0) ≡ 0, yt0 = ψ.

(7.20)

Define yt ∈ Cn by yt (θ) = y(t + θ) for θ ∈ [−τ, 0], where ψ ∈ Cn , such that when
we consider the existence and uniqueness of solutions, without loss of generality, the
solution yt = 0 is an equilibrium.

Theorem 7.3 ([24]) Suppose there is a continuous functional V : [t0,∞] × C
[−τ, 0] → R such that for any solution of (7.20), where yt (θ) = y(t + θ) such that
−τ ≤ θ ≤ 0, the following inequalities hold, such that Ci i = 1, 2, 3 are positive
constants:

V (t, yt ) ≥C1|y(t)|2
EV (t, yt ) ≤ C2 sup

−τ≤θ≤0
E|y(t + θ)|2, (7.21)

for arbitrary t ≥ t0, s ≥ t

E[V (s, ys) − V (t, yt )] ≤ −C3

∫ s

t
E|y(h)|2dh. (7.22)

Then, the trivial solution of (7.20) is asymptotically mean-square stable.

Example 7.3 Consider an SDDE of the form

dy(t) = −μ1y(t − τ)dt + μ2y(t)dW (t), t > t0, (7.23)

where μ1, μ2 are positive constants. Sufficient conditions for asymptotic mean-
square stability of (7.23) are

0 < μ1τ < 1, μ1(1 − μ1τ) >
μ2
2

2
.
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To prove this, consider the functional

V (ψ) =
[
ψ(0) − μ1

∫ 0

−τ

ψ(θ)dθ
]2 + μ2

1

∫ 0

−τ

ds
∫ 0

s
ψ2(θ)dθ. (7.24)

Using Itô formula, we obtain

dV (yt ) = 2
[
y(t) − μ1

∫ t

t−τ

y(θ)dθ
]
(dy(t) − μ1y(t)dt + μ1y(t − τ)dt)

+
[
μ2
2y

2(t) + μ2
1τ y

2(t) − μ2
1

∫ t

t−τ

y2(θ)dθ
]
dt,

= 2
[
y(t) − μ1

∫ t

t−τ

y(θ)dθ
]
(μ2y(t)dW (t) − μ1y(t)dt)

+
[
μ2
2y

2(t) + μ2
1τ y

2(t) − μ2
1

∫ t

t−τ

y2(θ)dθ
]
dt.

Note that

2μ2
1y(t)

∫ t

t−τ

y(θ)dθ ≤ μ2
1

[
τ y2(t) +

∫ t

t−τ

y2(θ)dθ
]
.

Hence

dV (yt ) ≤ 2μ2

[
y(t) − μ1

∫ t

t−τ

y(θ)dθ
]
y(t)dW (t) − [2μ1(1 − μ2τ) − μ2

2]y2(t).
(7.25)

Integration of both parts of (7.25) from s ∈ [t0, t] to t , and then taking the expectation
yields

E[V (yt ) − V (ys)] ≤ −[2μ1(1 − μ1τ) − μ2
2]

∫ t

s
Ey2(h)dh. (7.26)

From inequality (7.26), we have

EV (yt ) ≤ EV (yt0), t ≥ t0. (7.27)

Therefore,

E

[
y(t) − μ1

∫ t

t−τ

y(θ)dθ
]2 ≤ EV (yt0),

∫ ∞

t0

Ey2(s)ds < ∞. (7.28)

Inequalities (7.28) and condition μ1τ < 1 imply mean-square stability, since

sup
t≥t0

Ey2(t) ≤ C1 sup
−τ≤θ≤0

Eψ2(θ). (7.29)



7.3 Stability Criteria for SDDEs 133

Therefore, asymptotic mean-square stability is implied based on inequalities (7.28)
and the fact that limt→∞ Ey2(t) = 0.

Next, we introduce a numerical scheme for an autonomous SDDE.

7.4 Numerical Scheme for Autonomous SDDEs

Given a scalar autonomous SDDE of the form

dy(t) = f (y(t), y(t − τ))dt + g(y(t), y(t − τ))dW (t), t ∈ [0, T ],
y(t) = ψ(t), t ∈ [−τ, 0]. (7.30)

which can be formulated as

y(t) = y(0) +
∫ t

0
f (y(s), y(s − τ))ds +

∫ t

0
g(y(s), y(s − τ))dW (s), (7.31)

for t ∈ [0, T ] and with y(t) = ψ(t) for t ∈ [−τ, 0]. The second integral in (7.31) is
a stochastic integral in the Itô sense.

We define mesh points with a uniform step on the interval [0, T ], so that h =
T/N , tn = nh, where n = 0, . . . , N . We also assume that, for the given h, there
is a corresponding integer m, where the time-delay can be expressed in terms of
the stepsize as τ = mh. For all indices n − m ≤ 0, we have ỹn−m := ψ(tn − τ);
otherwise, the numerical approximation of (7.30) takes the form

ỹn+1 = ỹn + φ(h, ỹn, ỹn−m, Iφ), n = 0, . . . , N − 1. (7.32)

The increment function φ(h, ỹn, ỹn−m, Iφ) : R × R → R includes a finite number
of multiple Itô-integrals (see [25, 26]) of the form

I( j1,..., jl ),h =
∫ t+h

t

∫ sl

t
. . .

∫ s2

t
dW j1(s1) . . . dW jl−1(sl−1)dW

jl (sl),

where ji ∈ {0, 1} and dW 0(t) = dt , and with t = tn for (7.32), we denote Iφ the
collection of Itô-integrals required to compute the increment function φ.

To guarantee the existence of the numerical solution, some assumptions should be
given to the increment function φ of (7.32: Suppose that there exist positive constants
V1, V2, andV3, such that for all κ, κ

′
, ω, ω

′ ∈ R, we have

∣∣∣E(
φ(h, κ, ω, Iφ) − φ(h, κ

′
, ω

′
, Iφ)

)∣∣∣ ≤ V1h(|κ − κ
′ | + |ω − ω

′ |),
E

(
|φ(h, κ, ω, Iφ) − φ(h, κ

′
, ω

′
, Iφ)|2

)
≤ V2h

(
|κ − κ

′ |2 + |ω − ω
′ |2

)
,

(7.33)
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and
E

(
|φ(h, κ, ω, Iφ)|2

)
≤ V3h

(
1 + |κ|2 + |ω|2

)
. (7.34)

Lemma 7.1 ([10]) If the increment functionφ in Eq. (7.32) satisfies condition (7.34),
then E|ỹn|2 < ∞ for all n ≤ N.

Let y(tn+1) be the exact solution of (7.30) at mesh point tn+1. ỹn+1 is the value of the
approximate solution given by (7.32), and ỹ(tn+1) is the solution of (7.32) after just
one step, so that

ỹ(tn+1) = y(tn) + φ(h, y(tn), y(tn − τ), Iφ).

Definition 7.5 (Local and global errors) The local error that occurs in one step of
the above approximation {ỹn} is the sequence of random variables

δn+1 = y(tn+1) − ỹ(tn+1), n = 0, . . . , N − 1. (7.35)

However, the global error is the amount of error that occurs in the use of a numerical
approximation to solve a problem, which is the sequence of random variables

εn := y(tn) − ỹn, n = 1, . . . , N . (7.36)

Note that εn is Atn -measurable since both y(tn) and ỹn are Atn -measurable random

variable, such that
(
E|εn|2

)1/2
is the L2-norm of (7.36).

7.4.1 Convergence and Consistency

Definition 7.6 Assume that

δn+1 = y(tn+1) − ỹ(tn+1), n = 0, . . . , N − 1. (7.37)

The numerical scheme (7.32) is said to be consistent with order p1 in the mean and
with order p2 in the mean square if, with

p2 ≥ 1

2
and p1 ≥ p2 + 1

2
, (7.38)

the estimates
max

0≤n≤N−1
|E(δn+1)| ≤ Chp1 as h → 0, (7.39)

and
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max
0≤n≤N−1

(
|E(δn+1)|2

)1/2 ≤ Chp2 as h → 0, (7.40)

hold, where constant C does not depend on h, but may depend on T , and on the
initial data.

Therefore, we can now introduce the basic theorem about the convergence of method
(7.32).

Theorem 7.4 ([10]) Assume that the conditions of Theorem 7.1 are satisfied. Sup-
pose that the method defined by Eq. (7.32) is consistent with order p1 in the mean
and order p2 in the mean-square sense, such that p1, p2 fulfilling (7.38), and the
increment function φ on Eq. (7.32) satisfies the estimates (7.33). Then, the approxi-
mation (7.32) for Eq. (7.30) is convergent inL2 (as h → 0 with τ/h ∈ N) with order
p = p2 − 1/2. That is, convergent is in the mean-square sense, such that

max
0≤n≤N−1

(
|E(δn+1)|2

)1/2 ≤ Chp as h → 0, (7.41)

Theorem 7.5 ([10]) If the increment function φ of the approximation (7.32) satisfies
the estimates (7.33), then the one-step method (7.32) is zero stable in the quadratic
mean-square sense.

Next, we extend our analysis to non-autonomous system of SDDEs (7.8).

7.5 Numerical Schemes for Non-autonomous SDDE

There are some specific discrete time approximations for (7.8). The simplest scheme,
which is defined by stochastic difference equation, is represented by Euler approxi-
mation as

ỹn+1 = ỹn + f(tn, ỹn, ỹn−m)h +
r∑
j=1

g j (tn, ỹn, ỹn−m)�W j
n , (7.42)

where ỹ = {ỹ(t), t ∈ [−τ, T ]} is right continuous with left-hand limits, a discrete
time approximation with stepsize h, such that for each n ∈ {1, . . . , N }. The random
variable ỹ(tn) isAtn -measurable and ỹ(tn+1) can be expressed as a function of ỹ(t−m),
ỹ(t−m+1),…, ỹ(tn), discretization time tn , and a finite number of Atn+1 -measurable
random variable. With �W j

n = W j (tn+1) − W j (tn), for n = 0, 1, . . . , N − 1 and
j = 0, 1, . . . , r. By more general assumptions, we can check that Euler approxima-
tion strongly converges with order 1/2 [11].
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7.5.1 Taylor Approximation

For stochastic differential equations, it is common that by application of theWagner-
Platen stochastic Taylor expansion [27], we can construct discrete time approxi-
mations that converge with a given order of strong convergence, which involve in
each time step certain multiple integrals. For the general multi-dimensional case
d, r = 1, 2, . . . the order-one strong Taylor approximation has the form

ỹn+1 = ỹn + f(tn, ỹn, ỹn−m)h +
r∑
j=1

g j (tn, ỹn, ỹn−m)�W j
n

+
r∑

j1, j2=1

d∑
i=1

gi, j1 (tn, ỹn, ỹn−m)
∂

∂ ỹin
gi, j2 (tn, ỹn, ỹn−m)

∫ tn+1

tn

∫ s1

tn
dW j1 (s2)dW

j2 (s1)

+
r∑

j1, j2=1

d∑
i1=1

gi, j1 (tn−m , ỹn−m , ỹn−2m)
∂

∂ ỹin−m

gi, j2 (tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn
dW j1 (s2 − τ)dW j2 (s1),

(7.43)
for n = 0, 1, . . . , N − 1, i = 1, 2, . . . , d. One can check that approximation (7.43)
converges under suitable assumptions with strong-order-one Taylor approximation
[11]. In the one-dimensional case, when τ = 0, scheme (7.43) coincides with the
well-knownMilstein Scheme for SDEs. However, the time-delay in (7.43) generates
an extra term, which describes a double Wiener integral that integrates an earlier
segment of the Wiener path with respect to the actual Wiener path.

7.5.2 Implicit Strong Approximations

In practice, explicit schemes not only have smaller computational costs, but also have
lower accuracy compared to implicit methods. It is sometimes recommended to use
implicit schemes to have numerically stable approximate solutions for SDDEs, as in
the case of stiff problem1

For the general multi-dimensional case (7.8), the family of implicit Euler approx-
imations are

ỹn+1 = ỹn + [θ f(tn+1, ỹn+1, ỹn−m+1) + (1 − θ)f(tn, ỹn, ỹn−m)]h +
r∑
j=1

g j (tn, ỹn, ỹn−m)�W j
n ,

(7.44)
for n = 0, 1, . . . , N − 1, such that θ ∈ [0, 1] stands for the degree of implicitness.
If θ = 0, we have the explicit Euler approximation (7.42). For θ = 1, we obtain the

1 A stiff problem is defined as that in which the global accuracy of the numerical solution is
determined by stability rather than local error, and implicit methods are more appropriate for it.



7.5 Numerical Schemes for Non-autonomous SDDE 137

fully implicit Euler approximation. The approximation (7.44) converges with strong
order 1\2 [13].

In the same manner, we can establish an order-one strong implicit Taylor approx-
imation with

ỹn+1 = ỹn + [θ f(tn+1, ỹn+1, ỹn−m+1) + (1 − θ)f(tn, ỹn, ỹn−m)]h +
r∑
j=1

g j (tn, ỹn, ỹn−m)�W j
n

+
r∑

j1, j2=1

d∑
i=1

gi, j1 (tn, ỹn, ỹn−m)
∂

∂ ỹin
gi, j2 (tn, ỹn, ỹn−m)

∫ tn+1

tn

∫ s1

tn
dW j1 (s2)dW

j2 (s1)

+
r∑

j1, j2=1

d∑
i=1

gi, j1 (tn−m , ỹn−m , ỹn−2m)
∂

∂ ỹin−m

gi, j2 (tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn
dW j1 (s2 − τ)dW j2 (s1),

(7.45)
Next, we will discuss in detail the mean-square stability of Milstein method since
we have used this scheme in the numerical simulations for SDDEs models.

7.6 Milstein Scheme for SDDEs

In this section, we introduce the Milstein scheme for SDDEs and show that the
numerical method is mean-square stable under suitable conditions.

Given the one-dimensional version of (7.8), r = d = 1, of the following form:

dy(t) = f (t, y(t), y(t − τ))dt + g(t, y(t), y(t − τ))dW, t ∈ [0, T ],
y(t) = ψ(t), t ∈ [−τ, 0]. (7.46)

The order one strong Taylor approximation for (7.46) the one-dimensional case is
defined by

ỹn+1 = ỹn + f (tn, ỹn, ỹn−m)

∫ tn+1

tn

ds1 + g(tn, ỹn, ỹn−m)

∫ tn+1

tn

dW (s1)

+ g(tn, ỹn, ỹn−m)
∂

∂ ỹn
g(tn, ỹn, ỹn−m)

∫ tn+1

tn

∫ s1

tn

dW (s2)dW (s1)

+ g(tn−m, ỹn−m, ỹn−2m)
∂

∂ ỹn−m
g(tn, ỹn, ỹn−m)

×
∫ tn+1

tn

∫ s1

tn

dW (s2 − τ)dW (s1).

(7.47)
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Once we have the Taylor approximation, we can construct the Milstein scheme for
(7.46)

ỹn+1 = ỹn + h f (tn, ỹn, ỹn−m) + g(tn, ỹn, ỹn−m)�Wn + 1

2
g(tn, ỹn, ỹn−m)g′(tn, ỹn, ỹn−m)[(�Wn)

2 − h]

+ g(tn−m , ỹn−m , ỹn−2m)
∂

∂ ỹn−m
g(tn, ỹn, ỹn−m)I,

(7.48)
where I = ∫ tn+1

tn

∫ s1
tn
dW (s2 − τ)dW (s1).

7.6.1 Convergence and Mean-Square Stability of the Milstein
Scheme

Consider the linear scalar SDDE of the form

dy(t) = [ρ0y(t) + ρ1y(t − τ)]dt + [ρ2y(t) + ρ3y(t − τ)]dW (t), t ∈ [0, T ],
y(t) = ψ(t), t ∈ [−τ, 0],

(7.49)
where ρ0, ρ1, ρ2, ρ3 ∈ R, W (t) is a one-dimensional standard Wiener process,
and ψ(t) is continuous and bounded function with E[‖ψ‖2] < ∞, where ‖ψ‖ =
sup−τ≤t≤0 |ψ(t)|.
Theorem 7.6 ([11]) Suppose that

ρ0 < −|ρ1| − (|ρ2| + |ρ3|)2
2

, (7.50)

then the solution of (7.49) satisfies limt→∞ E[|y(t)|2] = 0, i.e., the solution is mean-
square stable.

Using order one strong Taylor approximation formula to the linear one delay system
(7.49), we have

yn+1 =yn + h(ρ0yn + ρ1yn−m) + (ρ2yn + ρ3yn−m)�Wn

+ ρ3(ρ2yn−m + ρ3yn−2m)I1 + ρ2(ρ2yn + ρ3yn−m)I2,
(7.51)

where yn is an approximation to y(tn), such that I1 = ∫ tn+1

tn

∫ s
tn
dW (t − τ)dW (s),

I2 = ∫ tn+1

tn

∫ s
tn
dW (t)dW (s). The convergence order of (7.51) can be obtained by

Theorem 10.2 in [11], since the coefficients of (7.51) satisfy the Lipschitz condition
and growth condition. Thus, the Milstein scheme (7.51) is strongly convergent of
order 1.

Theorem 7.7 The Milstein scheme (7.51) is mean-square stable, if condition (7.50)
is satisfied [28].



7.6 Milstein Scheme for SDDEs 139

Proof By reorganizing the terms of (7.51), we get

yn+1 =(1 + ρ0h + ρ2�Wn)yn + (ρ1h + ρ3�Wn)yn−m + ρ3(ρ2yn−m + ρ3yn−2m)I1
+ ρ2(ρ2yn + ρ3yn−m)I2.

(7.52)
Squaring both sides of (7.52), it follows from 2ab ≤ a2 + b2 (∀a, b ∈ R), we have

y2n+1 ≤(1 + ρ1h + ρ2�Wn)
2y2n + (ρ1h + ρ3�Wn)

2y2n−m + ρ2
2 [(ρ2

2 + |ρ2ρ3|)y2n + (ρ2
3 + |ρ2ρ3|)y2n−m ]I 22

+ ρ2
3 [(ρ2

2 + |ρ2ρ3|)y2n−m + (ρ2
3 + |ρ2ρ3|)y2n−2m ]I 21 + |1 + ρ0h||ρ1|h(y2n + y2n−m)

+ |ρ2ρ3|�W 2
n (y2n + y2n−m) + 2[(1 + ρ0h)ρ3 + ρ1ρ2h]�Wn yn yn−m

+ 2ρ2ρ3(ρ2yn + ρ3yn−m)(ρ2yn−m + ρ3yn−2m)I1 I2

+ 2ρ2(1 + ρ0h + ρ2�n)(ρ2yn + ρ3yn−m)yn I2

+ 2ρ3(1 + ρ0h + ρ2�n)(ρ2yn−m + ρ3yn−2m)yn I1

+ 2ρ2(ρ1h + ρ3�Wn)(ρ2yn + ρ3yn−m)yn−m I2

+ 2ρ3(ρ1h + ρ3�Wn)(ρ2yn−m + ρ3yn−2m)yn−m I1
(7.53)

Assume that xn = E[y2n ], then take expectation for both sides of (7.53), which yields
the following:

xn+1 ≤ A1xn + A2xn−m + A3xn−2m, (7.54)

where

A1 = (1 + ρ0h)2 + ρ2
2h + |1 + ρ0h||ρ1|h + |ρ2ρ3|h + h2

2
ρ2
2 (ρ

2
2 + |ρ2ρ3|),

A2 = ρ2
1h

2 + ρ2
3h + |1 + ρ0h||ρ1|h + |ρ2ρ3|h + h2

2
ρ2
2 (ρ

2
3 + |ρ2ρ3|)

+ h2

2
ρ2
3 (ρ

2
2 + |ρ2ρ3|), A3 = h2

2
ρ2
3 (ρ

2
2 + |ρ2ρ3|).

(7.55)
Therefore

(1 + ρ0h)2 + ρ2
1h

2 + (ρ2
2 + ρ2

3 + 2|ρ2ρ3|)h + 2|1 + ρ0h||ρ1|h
+ h2

2
(ρ2

2 + ρ2
3 )(|ρ2| + |ρ3|)2 < 1.

(7.56)

Consider

h1 = −[2ρ0 + 2|ρ1| + (|ρ2| + |ρ3|)2]
(|ρ0| + |ρ1|)2 + 1

2 (ρ
2
2 + ρ2

3 )(|ρ2| + |ρ3|)2
> 0,

h2 =min{ 1

|ρ0| ,
−[2ρ0 + 2|ρ1| + (|ρ2| + |ρ3|)2]

(|ρ0| + |ρ1|)2 + 1
2 (ρ

2
2 + ρ2

3 )(|ρ2| + |ρ3|)2
} > 0,

(7.57)

• If h ∈ (0, h1), inequality (7.56) holds;
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• If h ∈ (0, h2), then 1 + ρ0h > 0 (wider range of stable stepsize values) and
inequality (7.56) holds;

• Let h0 = max{h1, h2}; thus, the Milstein scheme is MS-stable whenever h ∈
(0, h0).

�

7.7 Concluding Remarks

In this chapter, we have briefly introduced some features of SDDEs. We have also
discussed some numerical schemes for SDDEs. Convergence and consistency of such
schemes have been investigated as well. The mean-square stability of the Milstein
scheme has been discussed and the obtained result shows that the method preserves
the stability property of a class of linear scalar SDDEs. In thismonograph,we adopted
the above discussed Milstein scheme for solving different examples and models of
SDDEs; See Appendix C.
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Part II
Applications of Delay Differential

Equations in Biosciences

In this part,we discuss the role ofDDEs inmodeling biological systemswithmemory.
This involves an understanding of the underlying science and qualitative features of
DDEs in dynamical systems. In the following Chaps. (8-13), we discuss a wide
range of DDEs with integer- and fractional-order derivatives in biological systems
and infectious diseases.

This part is important due to the following reasons: (i) many real-life phenomena
involve a delayed, rather than instantaneous, reactionwith a dependence on amemory
of past events; (ii) DDEs are more consistent with real-life phenomena than differ-
ential models with no time-lag; (iii) a single DDE represents an infinite-dimensional
dynamical system; (vi)most biological, physical, and engineering systems have long-
range temporal memory and/or long-range space interactions; and (v) the presence of
memory (time-lag or fractional-order) leads to a notable increase in the complexity
of the observed behavior.

The discussion in the following chapters will help biologists to improve the prop-
erties of models and experimental data. Similarly, these chapters will also prove to
be useful to researchers in the fields of life sciences and medicine (specialists in
immunology and infectious diseases) as well as mathematical modelers (in partic-
ular, mathematical biologists). These chapters cover the theoretical framework of
differential equations with memory as well as their practical applications in bio-
sciences, dynamical systems, medicine, and neural networks. They also bridge the
gap between research in mathematics and that in biosciences.

http://dx.doi.org/10.1007/978-981-16-0626-7_8
http://dx.doi.org/10.1007/978-981-16-0626-7_13


Chapter 8
Delay Differential Equations with
Infectious Diseases

8.1 Introduction

Infectious diseases are among the most prominent threats to mankind. Mathemat-
ical modeling of infectious diseases, by using delay differential equations, has an
important role in the epidemiological aspect of disease control [1, 2]. Mathematical
modeling of infectious diseases has an important role in the epidemiological aspect
of disease control [1]. Several epidemic models, with various characteristics, have
been described and investigated in the literature. Most of these models are based
on the susceptible-infected-removed (SIR) model. Casagrandi et al. [3] introduced
the SIRC model to describe the dynamical behavior of influenza A by inserting a
new compartment, namely, the Cross-Immunity (C) component1 of people who have
recovered after being infected by different strains of the same viral subtype in previ-
ous years. Rihan et al. [4] investigated the qualitative behavior of the fractional-order
SIRCmodel for Salmonella bacterial infection. Recently, in [5], the authors provided
a deterministic SEIR epidemic model of fractional-order to describe the dynamics
of COVID-19. In other descriptions, quarantine state (Q) may be including in the
presence of subjects, such as SIRQ models [6].

Introducing the time-delays or time-lags in the mathematical models may, in fact,
represent a reaction chain or a transport process, gestation times, incubation peri-
ods, transport delays, or can simply lump complicated biological processes together,
accounting only for the time required for these processes to occur. Delays also occur
naturally in a chemostat (a laboratory device for controlling the supply of nutrients
to a growing cell population).

The main concern of the present chapter is to show that DDEs have interesting
dynamics and provide potentiallymore flexible tools formodeling infectious diseases

1Cross-immunity (or cross-reactivity) is a major evolutionary force that affects pathogen diversity
(i.e., it drives viruses and microbes to be as distinct as possible from one another in order to avoid
immunity detection, memory recognition, and clearance).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
F. A. Rihan, Delay Differential Equations and Applications to Biology,
Forum for Interdisciplinary Mathematics,
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among groups or in cell levels. This chapter is organized as follows. We provide
different SIR epidemic models to describe transmission of disease among groups
(Sect. 8.2). We show the impact of time delay in the transmission terms. In Sect. 8.3,
we introduce delay differential models for the dynamics of viral infection in one host
and cell level. Stability of the steady states and existence of Hopf bifurcations due to
time-delays are also discussed. In Sect. 8.4, we discuss DDEs with physiology. Some
numerical simulations are provided to show that DDEs are qualitatively consistent
with dynamic diseases and biological systems with memory.

8.2 Time-Delay in Epidemic Models

Epidemics have always been a great concern of human kind. This concern is now
increased, especially with the spread of new stain of coronavirus COVID-19 [7],
MERS-CoV and SARS-CoV [8], swine flu viruses H1N12 [9] and, H5N1, which
have sparked a deadly outbreak in some countries and spread into other parts of
the world. Mathematical modeling is an essential tool in studying a diverse range of
such diseases. The basic elements for the description of infectious diseases aremainly
based on the Kermack-McKendrick SIR model [10]: S(t) measures the susceptible3

portion of population; I (t) represents infected4; and R(t) denotes the removed5

ones. It is natural to assume that the number of newly infected people per time unit
is proportional to the product S(t)I (t). It is also assumed that the number of newly
removed persons is proportional to the infected ones, and the total population is a
constant N = S + I + R (except death from the disease). The standard SIR epidemic
model is

Ṡ(t) = − βS(t)I (t), İ (t) = βS(t)I (t) − α I (t), Ṙ(t) = α I (t). (8.1)

Here, β is rate of infected individuals per unit time (pairwise rate of infection) and
α is the fraction of the population that leaves the infective class (removal rate of
infectives). The qualitative analysis is displayed as follows: If S(0) < α/β, then
I (t) is a decreasing function that tends to 0, and S(t) is also decreasing and tends to
a constant level greater than 0. However, if S(0) > α/β, S(t) is also decreasing and
tends to a constant level greater than 0, but I (t) will first increase in a time period
(0, T0), then decrease and tends to 0 after T0.

2Influenza viruses are defined by two different protein components, known as antigens, on the
surface of the virus. They are spike-like features called haemagglutinin (H) and neuraminidase (N)
components.
3Susceptible: who are not yet infected
4Infected: who are infected at time t and are able to spread the disease via contact with susceptible
5Removed: who have been infected and then removed from the possibility of being infected again
or spreading (Methods of removal: isolation, immunization, recovery, or death)
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Fig. 8.1 (left) Solution of the SIR model (8.1), which illustrates the spread of an infectious disease
in a population. (right) Solution of model (8.2) with time-delays, displaying the periodic outbreak
of the disease

Define a dimensionless quantity R̄0 = βS(0)
α

that is a threshold quantity. If we
introduce a small number of infectives I (0) into the susceptible population, then an
epidemic will occur if R̄0 > 1. As an example, the solution (with all constants equal
to one) of (8.1) (with initial values S(0) = 5, I (0) = 0.1, R(0) = 0) is plotted in
Fig. 8.1.We note that an epidemic breaks out, everybody finally becomes “removed,”
and nothing further happens.

To prevent an epidemic, we reduce R̄0 = βS(0)

α
and maximize the immunization

by reducing I (0) and transferring S(t) to R(t) (removedones). Suppose that p percent
of the population is successfully immunized; then, S(0) is replaced by (1 − p)S(0)

and then p > 1 − α

βS(0)
. (For a practical study to estimate the epidemiological

parameters, refer to [9, 11]). We note that the occurrence of an epidemic depends
on the number of susceptibles, transmission rate, and recovery rate. In other words,
the initial number of infectives plays no role in whether there is an epidemic. Other
considerations, such as vital dynamics (births and deaths), length of immunity, the
incubation period of the disease, and disease induced mortality can all have large
influences on the course of an outbreak.

8.2.1 Development of SIR Model (8.1)

The nonautonomous phenomenon occurs mainly due to the seasonal variety, which
makes the population behave periodically [12, 13]. To investigate this type of phe-
nomenon in themodel, the coefficients should be periodic functions; then, the system
is called a periodic system. Assume that the immunized people become susceptible
again, say after time τ1 (say, τ1 = 10) (see [14, 15]). If we also introduce an incu-
bation period τ2 between exposure to infection and becoming infected (say, τ2 = 1),
we can arrive at the model
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Ṡ(t) = −βS(t)I (t − τ2) + γ I (t − τ1), t ≥ 0,
İ (t) = βS(t)I (t − τ2) − α I (t), t ≥ 0,
Ṙ(t) = α I (t) − γ I (t − τ1), t ≥ 0.

(8.2)

The solutions of (8.2) are shown (with initial functions [S(t), I (t), R(t)]T =
[5, 0.1, 1]T for t ≤ 0) in Fig. 8.1; we note a periodic outbreak of the disease.

If the model allows for a loss of immunity that causes recovered individuals to
become susceptible again, we may also consider the more general nonautonomous
SIRS epidemic model, with variable periodic coefficients, with distributed delays

Ṡ(t) =�(t) − β(t)S(t)
∫ ∞

0
k(τ )I (t − τ)dτ − μ1(t)S(t) + ξ(t)R(t),

İ (t) =β(t)S(t)
∫ ∞

0
k(τ )I (t − τ)dτ − (μ2(t) + α(t))I (t),

Ṙ(t) =α(t)I (t) − (μ3(t) + ξ(t))R(t).

(8.3)

Here N (t) = S(t) + I (t) + R(t) denotes the total number of the population at time
t . The function �(t) is the growth rate of the population; function β(t) is the daily
contact rate, that is the average number of contacts per day; functions μ1(t), μ2(t),
and μ3(t) are the instantaneous pro capita mortality rates of susceptible, infective,
and recovered population, respectively; functions α(t) and ξ(t) are the instantaneous
pro capita rates of leaving the infection stage and removed stage, respectively. k(τ )

is the fraction of vector population in which the time taken to become infectious is
τ , is assumed to be a nonnegative function on [0,∞) and satisfies

∫ ∞
0 k(τ )dτ = 1

and
∫ ∞
0 τk(τ )dτ < ∞.

8.3 Delay Differential Models with Viral Infection

The interactions between viruses and cells in an infection process can be seen as
an ecological system within the infected host. In past decades, many simple mathe-
matical approaches have been developed to explore the relation between target cells,
infected cells producing viruses, and virus load [16]. The response of an immune
response (IS) cannot be represented correctly without the hereditary phenomena
being considered: cell division, differentiation, etc. (the time needed for immune
cells to divide, mature, or die). Moreover, the healthy cell infected with a virus and
the virus reproduction cell, there is an intracellular time delay between infection of a
cell and production of new virus particles called the latent period. Therefore, DDEs
have a particularly important role to play in understanding the dynamics and track-
ing viral infections and immune populations over time. Many mathematical models
for virus dynamics [17–19] explicitly consider delay terms to represent the needed
time between the infection of a cell and the production of new viruses of human
immunodeficiency virus (HIV) in infected patients.
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Most of the mathematical models of immune response with viral infections are
mainly based on Marchuk’s model [20]

V̇ (t) = (
p1 − p2F(t)

)
V (t),

Ċ(t) = ξ(m)p3F(t − τ)V (t − τ) − p5
(
C(t) − C∗),

Ḟ(t) = p4
(
C(t) − F(t)

) − p8F(t)V (t),
ṁ(t) = p6V (t) − p7m(t),

(8.4)

with t ≥ 0 and ξ(m) is defined by

ξ(m) =
{
1 i f m ≤ 0.1,
(1 − m) 109 i f 0.1 ≤ m ≤ 1.

This model describes the interaction of viruses, V (t); antibodies, F(t); plasma cells,
C(t); and the relative characteristics of the affected organs,m(t), of a person infected
by a viral disease. This model is formulated as a system of four non-linear DDEs:
The first equation describes the change in the number of antigens in an organism
(similar to a Volterra-Lotka predator-prey equation). The second equation describes
the creation of new plasma cells with time-lag due to infection (in the absence of
infection, the second term creates an equilibrium at C(t) = C∗). The third equation
models the balance of the number of antibodies reactingwith antigens: the generation
of antibodies from plasma cells is described by p4C(t), their decrease due to aging is
described by (−p4F(t)), and binding with antigens by (−p8F(t)V (t)). The relative
characteristicm(t) of damaging organism is given by the fourth equation ofwhich the
first term expresses the degree of damage to an organ and the second term describes
the recuperation due to the recovery activity of the organism. Finally, the ξ(m)

represents the fact that the creation of plasma cells slows down when the organism is
infectedby theviral infection.The time-delay τ is incorporated in the functional terms
describing the proliferation and differentiation of lymphocytes, and it represents the
time needed for cells to divide, mature (i.e., express certain genes), or to die.

The model (8.4) has been used to study the relationships between the pathogen
and the host IS parameters determining the stability of various steady states. It can
also be used to understand the basic types of infectious disease dynamics: subclin-
ical, acute with recovery, chronic and lethal, or predicting the results of external
manipulations with the IS. In other words, this model allows us, by changing the
coefficients p1, p2 . . . , p8, to capture all types of behaviors, including stable health,
unstable health, acute form of a disease, chronic form, etc. (see Marchuk [20]). One
of the stationary solutions of (8.4), which describes the healthy state of an organism is

V (t) = 0, C(t) = C∗, F(t) = F∗ = C∗ and m(t) = 0.

Figures 8.2 and 8.3 show the solutions of the model (8.4) (with different parameters)
for τ = 0.5, with the following initial values:

V (0) = 0.5 × 10−6, C(0) = 1, F(0) = 1 and m(0) = 0
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Fig. 8.2 Numerical simulations of model (8.4) for τ = 0.5 and p1 = 2, p2 = 0.8, p3 = 104,
p4 = 0.17, p5 = 0.5, p6 = 10, p7 = 0.12, and p8 = 8.

and with the following initial functions:

V (t) = max(0, 10−6 + t), F(t) = 1, t ≤ 0.

It may also be noted from the graphs that there is either a complete recovery, as in
Fig. 8.2, or periodic outbreak of the disease, as shown in Fig. 8.3.

The above basic model of an infectious disease has only one time-lag. More
sophisticated mathematical models for viral/bacterial infections in lungs or T-cell
division, incorporate about 10 delays; see [21]. Another example of generic time-
lag equations in immunology is provided by Mohler et al. [22], who developed
compartmental models for lymphocyte migration. The delays represent the time that
cells reside in a particular compartment, or the transit times through compartments,
or the duration of inter-compartmental transfer; see [20].

8.3.1 DDEs with HIV Infection of CD4+ T-cells

Herein, we extend the analysis and study the stability and Hopf bifurcation analysis
of a DDEs model of HIV infection of CD4+ T-cells. The model is based on a system
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Fig. 8.3 Simulations of model (8.4) with the same parameters of Fig. 8.2, except for p6 = 300.
The graphs illustrate the periodic outbreak of the disease

of DDEs with a logistic growth term and antiretroviral treatment with a discrete
time-delay, which plays the main role in changing the stability of each steady state.
By fixing the time-delay as a bifurcation parameter, we get a limit cycle bifurcation
about the infected steady state. We study the effect of the time-delay on the stability
of the endemically infected equilibrium.

Let us start the analysis with some basic models of the dynamics of target (unin-
fected) cells and infected CD4+ T-cells by HIV. As a first approximation, the dynam-
ics between HIV and the macrophage population was described by the simplest
model of infection dynamics presented in [23–25]. Denoting uninfected cells by
x(t), infected cells by y(t), and assuming that viruses are transmitted mainly by
cell-to-cell contact, the model is given by

ẋ(t) = � − δ1x(t) − βx(t)y(t),

ẏ(t) = βx(t)y(t) − δ2y(t).
(8.5)
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The target (uninfected) CD4+ T-cells are produced at a rate �, die at a rate δ1, and
become dead at a rate δ2. The basic reproductive ratio of the virus is then given by

R0 = �β

δ1δ2
. If there is no infection or if R0 < 1, there is only trivial equilibrium

(E0 = (�/δ1 , 0)) with no virus-producing cells. In contrast, if R0 > 1, the virus
can establish an infection and the system converges to the equilibrium with both
uninfected cells and infected cells, E1 = (δ2/β , �/δ2 − δ1/β).

However, inmost viral infections, theCTL response plays a crucial part in antiviral
defense by attacking viral infected cells [26, 27]. As the cytotoxic T-lymphocyte
(CTL) immune response is necessary to eliminate or control the viral infection,
we incorporated the antiviral CTL immune response into the basic model (8.5).
Therefore, if we add CTL response, which is denoted by z(t), into model (8.5) (see
[25]), then the extended model becomes

ẋ(t) = � − δ1x(t) − βx(t)y(t),

ẏ(t) = βx(t)y(t) − δ2y(t) − py(t)z(t),

ż(t) = cqy(t)z(t) − hz(t).

(8.6)

Thus, CTLs proliferate in response to antigens at a rate c, die at a rate h, and lyse
infected cells at a rate p. We assume that the CTL pool consists of two populations:
the precursors w(t) and the effectors z(t). In other words, we assume that there are
primary and secondary responses to viral infections. Then, the model (8.6) becomes

ẋ(t) = � − δ1x(t) − βx(t)y(t),

ẏ(t) = βx(t)y(t) − δ2y(t) − py(t)z(t),

ẇ(t) = c(1 − q)y(t)w(t) − bw(t),

ż(t) = cqy(t)w(t) − hz(t).

(8.7)

The infected cells are killed by CTL effector cells at a rate pyz. Upon contact with
antigens, CTLp proliferate at a rate cy(t)w(t) and differentiate into effector cells
CTLe at a rate cqy(t)w(t). CTL precursors die at a rate bw, and effectors die at a
rate hz(t); see Fig. 8.4.

Since the proliferation of CD4+ T-cells is density dependent, i.e., the rate of
proliferation decreases as T-cells increase and reach the carrying capacity. We then
extend the above basic viral infection model to include the density dependent growth
of the CD4+ T-cell population (see [28–30]). It is also known that HIV infection
leads to low levels of CD4+ T-cells via three main mechanisms: direct viral killing
of infected cells, increased rates of apoptosis in infected cells, and killing of infected
CD4+ T-cells by cytotoxic T-lymphocytes [30]. Hence, it is reasonable to include
apoptosis of infected cells. An average of 1010 viral particles are produced by infected
cells per day. Treatment with a single antiviral drug is considered to be ineffective;
hence, a combination of antiviral drugs is needed for the treatment [29]. Therefore,
in the below revised model, we combine the antiretroviral drugs, namely, reverse
transcriptase inhibitor (RTI) and protease inhibitor (PI), to make the model more
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Fig. 8.4 A simplified model of virus-CTL interaction. The virus dynamics are described by the
basic model of Nowark & Bangham [34]. The uninfected target cells are produced at a rate � and
die at a rate δ1x . They become infected by the virus at a rate βxy. The infected cells produce new
virus particles and die at a rate δ2y. When CT L p recognize antigens on the surface of infected
cells, they become activated and expand at a rate cyw, decay at a rate bw, and differentiate into
effector cells at a rate cqwy. The effector cells lyse the infected cells at a rate pyz

realistic (see [31–33]). RTIs can block the infection of target T-cells by infectious
viruses, and PIs cause infected cells to produce noninfectious virus particles. The
modified model takes the form

ẋ(t) = � − δ1x(t) + r
(
1 − x(t) + y(t)

Tmax

)
x(t) − (1 − ε)(1 − η)βx(t)y(t),

ẏ(t) = (1 − ε)(1 − η)βx(t)y(t) − δ2y(t) − e1y(t) − py(t)z(t),

ẇ(t) = cy(t)w(t) − cqy(t)w(t) − bw(t),

ż(t) = cqy(t)w(t) − hz(t).

(8.8)

The first equation of model (8.8) represents the rate of change in the count of healthy
CD4+ T-cells that are produced at rate � and become infected at rate β, with the
mortality being represented by δ1. We assume that the uninfected CD4+ T-cells

proliferate logistically; thus, the growth rate r is multiplied by the term
(
1 − x+y

Tmax

)
and this term approaches zero when the total number of T-cells approaches the
carrying capacity Tmax . The effect of combination of RTI and PI antiviral drugs is
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represented by the term (1 − ε)(1 − η)βxy, where (1 − ε), 0 < ε < 1 represents the
effect of RTI and (1 − η), 0 < η < 1 represents the effect of PI. The second equation
of model (8.8) denotes the rate of change in the count of infected CD4+ T-cells. The
infected CD4+ T-cells decay at a rate δ2, apoptosis rate of infected cells is denoted
by e1, and infected cells are killed by CTL effectors at a rate p. The third equation of
the model denotes the rate of change in the CTLp population. Proliferation rate of the
CTLp is given by c and is proportional to the infected cells y. CTLp die at a rate b and
differentiate into CTL effectors at a rate cq. The last equation of the model represents
the concentration of CTL effectors, which die at a rate h. In reality, the specific IS
is not immediately effective following invasion by a novel pathogen. There may be
an explicit time-delay between infection and immune initiation, and there may be a
gradual build-up in immune efficacy during which the immune response develops,
before reaching maximal specificity to the pathogen ([35–37]). To make the model
(8.8) more realistic, time-delay in the immune response should be included in the
following model:

ẋ(t) =� − (1 − ε)(1 − η)βx(t)y(t) + r
(
1 − x(t) + y(t)

Tmax

)
x(t) − δ1x(t),

ẏ(t) =(1 − ε)(1 − η)βx(t)y(t) − (δ2 + e1)y(t) − py(t)z(t),

ẇ(t) =c(1 − q)y(t − τ)w(t − τ) − bw(t),

ż(t) =cqy(t − τ)w(t − τ) − hz(t).

(8.9)

We start our analysis by presenting some notations that will be used in the sequel.
Let C = C([−τ, 0],R4+) be the Banach space of continuous functions mapping the
interval [−τ, 0] into R

4+, where R4+ = (x, y, w, z). The initial conditions are given
by

x(θ) = ϕ1(θ) ≥ 0, y(θ) = ϕ2(θ) ≥ 0, w(θ) = ϕ3(θ) ≥ 0, z(θ) = ϕ4(θ) ≥ 0, θ ∈ [−τ, 0],

where ϕi (θ) ∈ C1 are smooth functions for all i = 1, 2, 3, 4. From the fundamental
theory of functional differential equations (see [38]), it is easy to see that the solution
(x(t), y(t), w(t), andz(t)) of system (8.9) with the initial conditions as stated above
exist for all t ≥ 0 and are unique. It can be shown that these solutions exist for all
t > 0 and stay nonnegative. In fact, if x(0) > 0, then x(t) > 0 for all t > 0. The same
argument is true for the y, w and v components. Hence, the interior R4+ is invariant
for system (8.9).

8.3.2 Steady States

We can obtain the steady state values by setting ẋ = ẏ = ẇ = ż = 0. The steady
state value of the infection-free steady sate E0 is given by
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Table 8.1 Parameter definitions and estimations used in the underlying model

Parameter Notes Estimated Range Source

� Source of
uninfected CD4+
T-cells

10 0–10 [30]

β Rate of infection 0.1 0.00001 − 0.5 [30]

Tmax Total carrying
capacity

1500 1500 [30]

r Logistic growth
term

0.03 0.03–3 [30]

δ1 Mortality rate of
CD4+ T-cells

0.06 0.007–0.1 [30]

ε Antiretroviral
(RTI) therapy

0.9 [0, 1] See text

δ2 Infected cells
died out naturally

0.3 0.2–1.4 [30]

e1 Apoptosis rate of
infected cells

0.2 0.2 [30]

p Clearance rate of
infected cells

1 0.001–1 [30]

η Protease inhibitor
therapy

0.9 [0, 1] See text

q Rate of
differentiation of
CTLs

0.02 Assumed –

b Death rate of
CTL precursors

0.02 0.005–0.15 [30]

c Proliferation of
CTLs
responsiveness

0.1 0.001–1 [30]

h Mortality rate or
CTL effectors

0.1 0.005–0.15 [30]

E0 =
(
Tmax

2r

(
r − δ1 +

√
(r − δ1)2 + 4r�

Tmax

)
, 0, 0, 0

)
,

while the infected steady state E+ = (x∗, y∗, w∗, z∗) is given by

y∗ = b

c(1 − q)
, w∗ = h(1 − q)z∗

qb
, z∗ = (1 − ε)(1 − η)βx∗ − (δ2 + e1)

p
,

and x∗ is given by the following quadratic equation:

c1x
2 + c2x − c3 = 0,
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where c1 = c(1 − q)r, c2 = Tmaxbβ(1 − ε)(1 − η) + br − c(1 − q)Tmax (r − δ1),

c3 = c(1 − q)�Tmax .

8.3.3 Stability Analysis of Infected Steady State

To study the full dynamics of model (8.8) by using time-delay as a bifurcation
parameter, we need to linearize the model around the steady state E+ and determine
the characteristic equation of the Jacobian matrix. The roots of the characteristic
equation determine the asymptotic stability and existence of Hopf bifurcation for the
model. The characteristic equation of the linearized system is given by

∣∣∣∣∣∣∣∣∣

−A1 y
∗ + r − 2r

Tmax
x∗ − r

Tmax
y∗ − δ1 − λ −A1x

∗ − r
Tmax

x∗ 0 0

A1 y
∗ A1x

∗ − (δ2 + e1) − pz∗ − λ 0 −py∗
0 c(1 − q)e−λτ w∗ c(1 − q)e−λτ y∗ − b − λ 0
0 cqe−λτ w∗ cqe−λτ y∗ −h − λ

∣∣∣∣∣∣∣∣∣
= 0

which is equivalent to the equation

λ4 + p1λ
3 + p2λ

2 + p3λ + p4 + e−λτ (q1λ
3 + q2λ

2 + q3λ + q4) = 0 (8.10)

where A1 = (1 − ε)(1 − η)β, and

p1 = −a1 − a4 − a8 − a11, p2 = a1a8 + a8a11 + a1a11 + a4a8 + a4a11 + a1a4 − a2a3,

p3 = a2a3a8 + a2a3a11 − a1a8a11 − a4a8a11 − a1a4a8 − a1a4a11, p4 = a1a4a8a11 − a2a3a8a11, q1 = −a7,

q2 = a1a7 + a7a11 + a4a7 − a5a9, q3 = a5a8a9 + a1a5a9 + a2a3a7 − a1a7a11 − a4a7a11 − a1a4a7,

q4 = a1a4a7a11 − a1a5a8a9 − a2a3a7a11.

and

a1 = −(1 − ε)(1 − η)βy∗ + r − 2r x∗
Tmax

− ry∗
Tmax

− δ1, a2 = −(1 − ε)(1 − η)βx∗ − r x∗
Tmax

a3 = (1 − ε)(1 − η)βy∗, a4 = (1 − ε)(1 − η)βx∗ − (δ2 + e1) − pz∗, a5 = −py∗

a6 = c(1 − q)w∗ a7 = c(1 − q)y∗, a8 = −b, a9 = cqw∗, a10 = cqy∗ a11 = −h.

Let us consider the following equation:

ϕ(λ, τ ) = λ4 + p1λ
3 + p2λ

2 + p3λ + p4 + (q1λ
3 + q2λ

2 + q3λ + q4)e
−λτ .

For the non-delayed model (say τ = 0), from Eq. (8.10), we have

λ4 + D1λ
3 + D2λ

2 + D3λ + D4 = 0 (8.11)

where
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D1 = p1 + q1, D2 = p2 + q2, D3 = p3 + q3, D4 = p4 + q4.

Lemma 8.1 For τ = 0, the unique non-trivial equilibrium is locally asymptotically
stable, if the real parts of all the roots of Equation (8.11) are negative.

Proof The proof of the above Lemma is based on holding the following condi-
tions: D1 > 0, D3 > 0, D4 > 0 and D1D2D3 > D2

1D4 + D2
3 as proposed by Routh-

Hurwitz criterion. We conclude that equilibrium E+ is locally asymptotically stable,
if and only if, all the roots of the characteristic equation (8.11) have negative real
parts, which depends on the numerical values of parameters that are shown in the
numerical exploration. ��

8.3.4 Existence of Hopf Bifurcation

Here, we study the impact of the time-delay parameter on the stability of HIV infec-
tion of CD4+ T-cells. We deduce the criteria that ensure that the asymptotic stability
of infected steady state E+ for all τ > 0, and arrive at the following theorem:

Theorem 8.1 Necessary and sufficient conditions for the infected equilibrium E+
to be asymptotically stable for all delay τ ≥ 0 are

(1) The real parts of all the roots of ϕ(λ, τ ) = 0 are negative.
(2) For all ω, and τ ≥ 0, ϕ(iω, τ) 	= 0, where i = √−1:

Proof Assume that Lemma 8.1 is true. Now for ω = 0, we have

ϕ(0, τ ) = D4 = p4 + q4 	= 0.

Substituting λ = iω (ω > 0) into Eq. (8.9) and separating the real and imaginary
parts of the equations yields:

(ω4 − p2ω
2 + p4) + (−q2ω

2 + q4) cos(ωτ) + (−q1ω
3 + q3ω) sin(ωτ) =0,

(−p1ω
3 + p3ω) + (−q1ω

3 + q3ω) cos(ωτ) − (−q2ω
2 + q4) sin(ωτ) =0.

(8.12)

After some mathematical manipulations, we obtain the following equations:

cos(ωτ) = (q2 − p1q1)ω6 + (p3q1 − q4 − p2q2 + p1q3)ω4 + (p2q4 + p4q2 − p3q3)ω2 − p4q4
q21ω6 + (q22 − 2q1q3)ω4 + (q23 − 2q2q4)ω2 + q24

,

sin(ωτ) = q1ω7 + (p1q2 − q3 − p2q1)ω5 + (p2q3 + p4q1 − p3q2 − p1q4)ω3 + (p3q4 − p4q3)ω

q21ω6 + (q22 − 2q1q3)ω4 + (q23 − 2q2q4)ω2 + q24
.

(8.13)

Let
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b1 =q2 − p1q1, b2 = p3q1 − q4 − p2q2 + p1q3, b3 = p2q4 + p4q2 − p3q3, b4 = −p4q4,

b5 =q21 , b6 = q22 − 2q1q3, b7 = q23 − 2q2q4, b8 = q24 , b9 = q1, b10 = p1q2 − q3 − p2q1,

b11 =p2q3 + p4q1 − p3q2 − p1q4, b12 = p3q4 − p4q3.

From Eq. (8.12), we have

ω8 + c1ω
6 + c2ω

4 + c3ω
2 + c4 = 0 (8.14)

where

c1 = p21 − 2p2 − q21 , c2 = p22 − 2p1 p3 + 2q1q3 + 2p4 − q22 , c3 = p23 − 2p2 p4 + 2q2q4 − q23 , c4 = p24 − q24 .

Conditions (1) and (2) of Theorem 8.1 hold if and only if Eq. (8.14) has no real
positive root. ��
Let m = ω2; then, Eq. (8.14) takes the form

m4 + c1m
3 + c2m

2 + c3m + c4 = 0. (8.15)

If c4 < 0, then Eq. (8.14) has at least one positive root. In the case when Eq. (8.14)
has four positive roots, we have

ω1 = √
m1, ω2 = √

m2, ω3 = √
m3, ω4 = √

m4.

From Eq. (8.12), we have

τ
( j)
k = 1

ωk

{
arcsin

b9ω7
k + b10ω5

k + b11ω3
k + b12ωk

b5ω6
k + b6ω4

k + b7ω2
k + b8

+ 2 jπ

}
(8.16)

where k = 1, 2, 3, 4 and j = 0, 1, 2, · · · ; we choose τ0 = min(τ ( j)
k ).

To establish Hopf bifurcation at τ = τ0, we need to show that

�
(
dλ

dτ

)
τ=τ0

	= 0.

By differentiating Equation (8.10) with respect to τ , we can get

dλ

dτ
=

λe−λτ
(
q1λ

3 + q2λ
2 + q3λ + q4

)

(4λ3 + 3p1λ2 + 2p2λ + p3) + e−λτ [(3q1λ2 + 2q2λ + q3) − τ(q1λ3 + q2λ2 + q3λ + q4)]
.

It follows that

( dλ

dτ

)−1 = (4λ3 + 3p1λ2 + 2p2λ + p3) + e−λτ [(3q1λ2 + 2q2λ + q3) − τ(q1λ3 + q2λ2 + q3λ + q4)]
λe−λτ

(
q1λ3 + q2λ2 + q3λ + q4

) .

Then, by combining Eq. (8.10), we get
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(dλ

dτ

)−1 = (4λ3 + 3p1λ2 + 2p2λ + p3) + e−λτ (3q1λ2 + 2q2λ + q3)

λe−λτ
(
q1λ3 + q2λ2 + q3λ + q4

) − τ

λ
. (8.17)

Substituting λ = iω0 in Eq. (8.17) (where ω0 > 0 and i = √−1) yields

(
dλ

dτ

)−1
∣∣∣∣∣
τ=τ0

= d1 + id2
d3 + id4

− τ

λ

where

d1 =(p3 − 3p1ω
2
0) + (q3 − 3q1ω

2
0) cos(ω0τ0) + 2q2ω0 sin(ω0τ0),

d2 =(2p2ω0 − 4ω3) + 2q2ω0 cos(ω0τ0) − (q3 − 3q1ω
2
0) sin(ω0τ0),

d3 =(q1ω
4
0 − q3ω

2
0) cos(ω0τ0) + (q4ω0 − q2ω

3
0) sin(ω0τ0),

d4 =(q4ω0 − q2ω
3
0) cos(ω0τ0) − (q1ω

4
0 − q3ω

2
0) sin(ω0τ0).

Thus

R

(
dλ

dτ

)−1
∣∣∣∣∣
τ=τ0

= d1d3 + d2d4
d2
3 + d2

4

.

Notice that

sign
(
R
dλ(t)

dτ

)∣∣∣
τ=τ0

= sign
(
R

(
dλ

dτ

)−1)∣∣∣
τ=τ0

.

By summarizing the above analysis, we arrive at the following theorem:

Theorem 8.2 The infected equilibrium E+ of the system (8.9) is asymptotically
stable for τ ∈ [0, τ0) and it undergoes Hopf bifurcation at τ = τ0.

Weprovide some simulations ofmodel (8.8) to exhibit the impact of discrete time-
delay in themodel.We consider the following parameters values: λ = 10, δ1 = 0.06,
δ2 = 0.3, e1 = 0.2, β = 0.1, p = 1, c = 0.1, b = 0.02, q = 0.02, η ∈ [0, 1], h =
0.1, r = 0.03, ε ∈ [0, 1], Tmax = 1500. According to the given parameter values,
the threshold critical value τ0 = 0.4957 from formula (8.15) exists. The steady state
E+ exists and is asymptotically stable (see Fig. 8.1). We may notice that the solution
converges to the equilibriumE+ with damping oscillations as the value of τ increases.
Once the delay τ crosses the critical value τ0, then the model shows the existence of
Hopf bifurcation, which is depicted in Fig. 8.2. In Fig. 8.3, we consider the efficacy of
antiretroviral treatment, whichmay be responsible for loss of stability, by considering
the effectiveness of treatment ε = 0.9 and fixed time-delay τ = 0.4. The asymptotic
behavior to the infection-free steady state, whenwe consider antiviral treatment (with
ε = 0.9, η = 0.9 and time-delay τ = 15) is shown in Fig. 8.4.
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Fig. 8.5 a–d, each panel shows the time evolution and trajectory ofmodel (8.8)when τ(= 0.4) < τ0
(critical value) and the effect of therapies is considered to be ε = 0.9 and η = 0.2. It shows that the
endemic steady state E+ of the model is asymptotically stable

We have seen that if time-delay exceeds the critical value τ0, model (8.8) under-
goes a Hopf bifurcation. The direction and stability of bifurcating periodic solutions
are deduced in explicit formulae using center manifold and normal forms. We also
presented some numerical simulations to the underlying model to investigate the
obtained results and theory. We have also seen that the antiretroviral treatments help
to increase the level of uninfected CD4+ T-cells. The theoretical results that have
been confirmed by the numerical simulations show that the delayed CTL response
can lead to complex bifurcations and, in particular, the coexistence of multiple stable
periodic solutions. When the time-delay exceeds the critical (threshold) value, we
may get subcritical behavior that leads to a loss of uninfected CD4+T-cells (Figs. 8.5,
8.6, 8.7, 8.8).

8.4 Physiology

The great potential of simple DDEs for capturing complex dynamics observed in
physiological systems was shown in a series of related works by an der Heiden,
Mackey et al. [2, 39]. DDEs were used to model unstable patterns of (i) the human
respiratory system and regulation of blood concentration ofCO2 (periodic breathing
and prediction of low- and large-amplitude oscillations), (ii) the production of blood
cells (periodic and chaotic regimes), and (iii) hormone regulation in the endocrine
system (period-doubling bifurcations and chaotic solutions); see [40].

As an illustrative example, let c(t) be the concentration of cells (the population
species) in the circulating blood. We assume that the cells are lost (i.e., die) at a
rate proportional to their concentration, which is like γ c(t), where the parameter γ
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Fig. 8.6 The numerical simulations of model (8.8) when the time-delay of immune activation
exceeds the critical value, τ = 0.5 > τ0. The endemic steady state E+ of the model undergoes
Hopf Bifurcation, stability switch and periodic solutions appear
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Fig. 8.7 The numerical simulations ofmodel (8.8)when the efficacy rate of antiretroviral treatments
is considered to be low, i.e., ε = 0.2 and η = 0.2. It shows that the endemic steady state E+ of the
model undergoes Hopf bifurcation with oscillatory behavior in solutions even though the delay
value is less than the critical value (τ = 0.4 < τ0)

has dimensions (day)−1. After the reduction in cells in the blood stream, there is an
approximately 6-day delay before the bone marrow releases further cells to replenish
the deficiency (see [2]). We thus assume that the flux λ of cells into the blood stream
depends on the cell concentration at an earlier time, namely, c(t − τ), where τ is the
delay. Such assumptions suggest a model equation of the form

dc(t)

dt
= λc(t − τ) − γ c(t).
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Fig. 8.8 The numerical simulations model (8.8) when the efficacy rate of antiretroviral treatment
is at expected level, ε = 0.9 and η = 0.9, and the delay value exceeds the critical value τ = 15 >

τ0. The solution always lies within the feasible region and the infection-free steady state E0 is
asymptotically stable

Fig. 8.9 (top) The
numerical solution of (8.18)
with parameter values
α = 0.1, γ = 0.1 days−1,

λ = 0.2 days−1, m = 10 and
τ = 6 days; (bottom) The
numerical simulation with
the same parameter values as
in a except an increase in the
delay to τ = 20 days
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Glass & Mackey [41] proposed a possible replacement in the form of the non-linear
DDE:

dc(t)

dt
= λamc(t − τ)

am + cm(t − τ)
− γ c(t), t ≥ 0,

c(t) = α, t ≤ 0,
(8.18)

where λ, a,m, g, τ and α are positive constants. Graphs in Fig. 8.9 show the numer-
ical solutions of (8.18) for two values of delay-time τ . In addition, Fig. 8.10 displays
the graphs of c(t) × c(t − τ) for different values of the parameter m, a sequence of
period doubling leading to a chaotic limit cycle are observed.

It is observed that a chaotic pattern begins around τ = 6, with parameter values
α = 0.1, γ = 0.1 days−1, λ = 0.2 days−1, m = 10. The dynamics give a period
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Fig. 8.10 a to i show the numerical solutions of bifurcating periodic solutions of model (8.18)
with γ = 0.1, λ = 2, a = 1, τ = 20 andm = 7, 8, 9, 10, 11, 12, 15, 17, 20. Note the progression
from a simple periodic solution to a complex chaotic behavior and turn again to a simple periodic,
as indicated in a to i

pattern, but when τ ≥ 10, a chaotic pattern is obtained. According to Hematology
and Beutler (2011), normal human red blood cells have a fixed life span with an
average of 120 days with a very low random destruction rate (corresponding to the
removal of approximately 1% s per day); see [42–44].

8.5 Concluding Remarks

In this chapter, a class of delay differential equation models is developed to consider
the memory impact in the transmission dynamics of these diseases in a population.
We show that DDEs with infectious diseases are consistent with the real phenomena
and rationally reflect the reality.

Including control variables in the model is desirable to determine the best strategy
of treatment, control, and elimination of the infection, which will be considered in
the next chapter. We next examine DDE models with optimal control.
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Chapter 9
Delay Differential Equations of
Tumor-Immune System with Treatment
and Control

9.1 Introduction

In this chapter, we present a delay differential model with optimal control that
describes the interactions of tumor cells (TCs) and immune response cells with
external therapy. The intracellular delay is incorporated into the model to justify the
time required to stimulate the effector cells (ECs). The optimal control variables are
incorporated to identify the best treatment strategy with minimum side effects by
blocking the production of new TCs and keeping the number of normal cells above
75% of its carrying capacity. The existence of the optimal control pair and optimality
system have been established. Pontryagin’s maximum principle is applicable to char-
acterize the optimal controls. The model displays a tumor-free steady state and up to
three coexisting steady states. The numerical results show that the optimal treatment
strategies reduce the tumor cell load and increase the ECs after a few days of ther-
apy. The performance of combination therapy protocol of immuno-chemotherapy is
better than the standard protocol of chemotherapy alone.

Cancer is a major cause of death globally, and it has been considered as one of
the most complicated diseases to be treated clinically. Hence, significant research
efforts are being devoted to understand the interaction between the tumor cells and
the immune system. Indeed, the treatment of cancer is one of the most challenging
problems of modern medicine. Any effective cancer treatment needs to kill cancer
cells in the entire body while simultaneously keeping healthy cells above the mini-
mum level. Chemotherapy is one of the most prominent cancer treatment modalities.
However, it is not always a comprehensive solution for tumor regression. Other
treatment options, including surgery, immunotherapy, and radiation, are often able
to force the cancer into remission; however, better and suitable treatments are needed
[1, 2].

Chemotherapy has been used in combination with immunotherapy to protect the
patient from opportunistic infections as well as fighting the cancer itself [3, 4]. This
is because, chemotherapy treatment kills both cancerous and healthy cells, and there-
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fore, it depletes the patient’s immune system, making the patient prone to dangerous
infections. For this and other reasons, it is desirable to strengthen the immune sys-
tem after a course of chemotherapy. Additionally, however, the ability to recruit the
body’s own defenses to fight the cancer can be a powerful treatment strategy. There-
fore, maintaining a strong immune system, by combining immunotherapy during
chemotherapy, may be essential to successfully fight this disease. However, what is
the most effective way to combine cancer immunotherapy and chemotherapy?

Mathematical models, using ordinary, partial, and delay differential equations,
play an important role in understanding the dynamics and tracking tumor and immune
cell populations over time (see e.g. [5–12]). Kuznetsov et al. [2] modeled the interac-
tions of cytotoxic T lymphocyte (CTL) response and the growth of an immunogenic
tumor. In the contributions of [13–15], the authors take into account the penetra-
tion of tumor cells by the ECs, which simultaneously causes the inactivation of
ECs. Recently, in [16], the authors adopted a predator-prey formulation of the tumor
immunity problem as a battle between immune cells and tumor cells (predators and
prey, respectively). Many mathematical models have been reported that describe the
interaction between tumor cells and immune cells alone, between tumor cells and
normal cells alone, and between tumor cells and chemotherapy treatment alone [17].
We should mention here that the application of the optimal control theory requires
the boundedness of the solutions of the model populations; see also [18].

The objective of this chapter is to adopt a delay differentialmodel, and analyze and
computationally provide an optimal way to combine chemotherapy and immunother-
apy treatment strategies that identify the best treatment strategy that can minimize
tumor load while maximizing the strength of the immune system. We formulate
and analyze a delay differential model describing immune response and tumor cells
under the influence of chemotherapy alone and under the combination of chemother-
apy and immunotherapy. In Sect. 9.2,we describe themodel. In Sect. 9.3,we study the
qualitative behavior of the model without external therapy. In Sect. 9.4, we describe
the optimal control problem governed by DDEs with only a chemotherapy control
variable. The existence of the solution and optimality conditions are discussed in
Sects. 9.5 and 9.6. In Sect. 9.7, we extend the control problem to include a combi-
nation of chemotherapy and immunotherapy treatments with two contrail variables.
Numerical simulations and a conclusion are included in Sects. 9.8 and 9.9.

9.2 Description of the Model

Let us recall Kuznetsov et al.’s model [2], which describes the dynamics of tumor-
immune system interactions by incorporating a system of five ODEs, which we then
reduce into two equations but with time-delays. The model describes the response
of the effector cells (ECs) to the growth of tumor cells (TCs). The penetration of
TCs by ECs, which simultaneously causes the inactivation of ECs, has also been
accounted for. It is assumed that interactions between the ECs and TCs are in vitro,
such that E(t), T (t), C(t), E∗(t), and T ∗(t) denote the local concentrations of ECs,
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TCs, EC-TC conjugates, inactivated ECs, and “lethally hit” TCs, respectively. The
total population of unattacked TCs is Ttot (t) = T (t) + C(t). The rate of binding of
ECs to TCs and the rate of separation of ECs from TCs without damaging them are
denoted by k1 and k−1, respectively. The rate at which EC-TC interact for lysis is
denoted by k2 while the rate at which EC-TC interaction inactivate ECs is denoted
by k3. The model takes the form

dE(t)

dt
=σ + F(C(t), T (t)) − d1E(t) − k1E(t)T (t) + (k−1 + k2)C(t),

dT (t)

dt
=αT (t)(1 − βTtot (t)) − k1E(t)T (t) + (k−1 + k3)C(t),

dC(t)

dt
=k1E(t)T (t) − (k−1 + k2 + k3)C(t),

dE∗(t)
dt

=k3C(t) − d2E
∗(t),

dT ∗(t)
dt

=k2C(t) − d3T
∗(t).

(9.1)

Here, parameter σ represents the normal rate (not increased by the presence of
the tumor) of the flow of adult ECs into the tumor side (region), F (C(t), T (t)) =
F (E(t), T (t)) > 0 (when T (t) > 0) describes the accumulation of ECs in the tumor
side due to the presence of the tumor. d1,d2, andd3 are the coefficients of the processes
of destruction and migration of E, E∗, and T ∗, respectively. The maximal growth of
the tumor is represented by the coefficient α, and β−1 is the environment capacity. If
we assume that dC(t)

dt ≈ 0, then C(t) ≈ K E(t)T (t) where K = k1/(k−1 + k2 + k3),
and the model can be reduced to two equations that describe the behavior of ECs and
TCs only [1, 2]. That leads to the fact that the rate of stimulated accumulation has
some maximum value as TCs get large.

The interaction between TCs and ECs can be regarded as an analog of the
“predator-prey” interaction, where the ECs are the predator and TCs represent the
prey. Thus, the reduced model that describes the interactions between the two popu-
lations, namely TCs T (t) and activated ECs E(t) (such as cytotoxic T-cells or natural
killer cells), is of the form

dE(t)

dt
= σ + F (E(t), T (t)) − μE(t)T (t) − δE(t),

dT (t)

dt
= αT (t) (1 − βT (t)) − nE(t)T (t),

(9.2)

with initial conditions:E(0) = E0, T (0) = T0. The interaction between the ECs and
TCs can reduce the size of both populations with different rates. This is expressed as
−μE(t)T (t) and−nE(t)T (t) to illustrate the interaction between the TCs and ECs.
As a result of this interaction, the immune ECs decrease the population of TCs at a
rate of n. Additionally, TCs infect some of the ECs, and therefore, the population of
uninfected ECs decreases at the rate of μ.
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If one considers T (t) as prey and E(t) as predator, then F (E, T ) may take the

formF (E, T ) = ρE(t)T (t)

η + T (t)
, which is theMichaelis-Menton form. In this term, ρ is

the maximum immune response rate and η is the steepness of the immune response.
The presence of the TCs virtually initiates the proliferation of tumor-specific ECs
to reach a saturation level parallel to the increase in the tumor population. Hence,
the recruitment function should be zero in the absence of the TCs, whereas it should
increase monotonically toward a horizontal asymptote [19]. We also incorporate a
discrete time-delay τ into the model to describe the time needed by the immune
system to develop a suitable response after recognizing the TCs. Accordingly, the
model with discrete time-delay takes the form

dE(t)

dt
= σ + ρE(t − τ)T (t − τ)

η + T (t − τ)
− μE(t − τ)T (t − τ) − δE(t),

dT (t)

dt
= r2T (t) (1 − βT (t)) − nE(t)T (t),

t ≥ 0 (9.3)

with initial functions E(t) = ψ1(t) and E(t) = ψ2(t), for all t ∈ [−τ, 0]. Here, σ

represents the normal rate (not increased by the presence of the tumor) of the flow of
adult ECs into the tumor side (region). The source of the immune cells is considered
to be outside of the system; therefore, it is reasonable to assume a constant influx
rate σ . Furthermore, in the absence of any tumor, the cells will die at a rate δ.
The presence of TCs stimulates the immune response, represented by the positive
non-linear growth term for the immune cells ρE(t − τ)T (t − τ)/(η + T (t − τ)),
where ρ and η are positive constants and τ ≥ 0 is the time-delay that presents the
time needed by the immune system to develop a suitable response after recognizing
the TCs. The saturation term (Michaelis-Menton form) with the E(t) compartment
and logistic term with the T (t) compartment are consoled. Let us first prove the
non-negativity and boundedness solutions of the underlying DDEs model (9.3) (see
[20]).

9.2.1 Non-negativity and Boundedness Solutions of Model
(9.3)

To show that the solutions of model (9.3) are bounded and remain non-negative in
the domain of its application for sufficiently large values of time t , we recall the
following lemma:

Lemma 9.1 (Gronwall’s Lemma [21, p. 9]) Let x, ψ , and χ be real continuous
functions defined in [a, b],χ ≥ 0 for t ∈ [a, b]. We suppose that on [a, b] we have the
inequality x(t) ≤ ψ(t) +

∫ t

a
χ(s)x(s)ds.Then, x(t) ≤ ψ(t) +

∫ T

a
χ(s)ψ(s)e

(∫ t
s χ(ξ)dξ

)
ds in

[a,b].
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Therefore, we arrive at the following proposition:

Proposition 9.1 Let (E, T ) be a solution of the DDE model (9.3); then, E(t) < M1

and T (t) < M2 for all sufficiently large time t, where

M1 =E(0) + σ

δ
exp (δt) +

∫ t

0

[
ρeδ(τ+s)

(
E(0) + σ

δ
eδs

)
exp

(∫ t

s
ρeδ(τ+ξ)dξ

)]
ds, M2

=max

(
1

β
, T (0)

)
.

(9.4)

Proof Let (E, T ) denote the solution of model (9.3). From the second equation of

system (9.3), we have
dT

dt
≤ r2T (t)(1 − βT (t)). Thus, T (t) may be compared with

the solution of

dX

dt
= r2X (t)(1 − βX (t)), with X (0) = T (0)

This proves that T (t) < M2. From the first equation of system (9.3), we obtain

E(t) = exp (−δt)

{
E(0) +

∫ t

0

[
σ + ρE(s − τ)T (s − τ)

η + T (s − τ)
− μE(s − τ)T (s − τ)

]
exp (δs)ds

}
.

To show that E(t) is bounded, we use the generalized Gronwall lemma. Since
T

η + T
< 1 and exp (−δt) ∈ (0, 1], we have

E(t) ≤ E0 + σ

δ
exp (δt) +

∫ t

0
ρE(s − τ) exp (δs)ds.

The generalizedGronwall lemma gives E(t) < M1, whereM1 is uniformly bounded.
It follows that if (E, T ) is a solution of (9.3), then (E, T ) < (M1, M2) for all t . This
shows that the solutions of model (9.3) are uniformly bounded. This completes the
proof. ��

From Eq. (9.2) and solution T (t) = T (0) exp
(∫ t

0 [r2(1 − βT (s)) − E(s)] ds
)
, we

arrive at the following result:

Corollary 9.1 If
ρ

η + T
≥ μ, then the solutions (E, T ) for model (9.3) are non-

negative for any non-negative initial condition. However, if
ρ

η + T
< μ, then there

exist non-negative initial conditions such that E(t) becomes negative in a finite time
interval.
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9.2.2 Model with Chemotherapy

We extend model (9.3) to consider two extra variables: amount of chemotherapy u(t)
and normal cells N (t) (see Fig. 9.1). We also assume a homogeneity of the TCs. The
modified model is

dE(t)

dt
= σ + ρE(t − τ)T (t − τ)

η + T (t − τ)
− μE(t − τ)T (t − τ) − δE(t) − a1(1 − e−u(t))E(t),

dT (t)

dt
= r2T (t)(1 − βT (t)) − nE(t)T (t) − c1N (t)T (t) − a2(1 − e−u)T (t),

dN (t)

dt
= r3N (t)(1 − β2N (t)) − c2T (t)N (t) − a3(1 − e−u)N (t),

du(t)

dt
= v(t) − d1u(t).

(9.5)

We assume that the drug kills all types of cells but that the killing rate differs for each
type of cell. F(u) = ai (1 − e−u) is the fraction of cells killed for a given amount of
drug u(t) at the tumor site. We denote by a1, a2, and a3, the three different response
coefficients. v(t) represents the amount of dose that is injected into the system, while
d1 is the decay rate of the drug once it is injected. In this case, the quantity we will
control directly is not u(t), but v(t). The TCs and normal cells are modeled by a
logistic growth law, with parameters ri representing the growth rate of two types
of cells: i = 2 identifies the parameter associated with the tumor, i = 3 identifies
the parameter associated with the normal tissue, and β and β2 are the reciprocal
carrying capacities of TCs and host cells, respectively. In addition, there are two
terms representing the competition between the tumor and host cells −c1NT and
−c2NT .

Let C = C([−τ, 0],R4) be the Banach space of continuous functions mapping
the interval [−τ, 0] into R

4 with the topology of uniform convergence. It is easy to

Tumor cells T(t) Effector cells E(t)

Normal cells N(t) Chemotherapy u(t)

Attack �

Attack�

Stimulate � Loss �
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�

Attack

�

Attack

�������
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Fig. 9.1 The interaction of TCs, immune cells, and normal cells in the presence of chemotherapy
drug
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show that there exists a unique solution (E(t), T (t), N (t), u(t)) of system (9.5) with
initial data (E0, T0, N0, u0) ∈ C. For biological reasons, we assume that the initial
data of system (9.5) satisfy E0 ≥ 0, T0 ≥ 0, N0 ≥ 0, u0 ≥ 0. For τ = 0, the model
is reduced to the ODE model developed by de Pillis and Radunskaya in [22].

Remark 9.1 We consider the units of the model cells as normalized, so that β2 = 1.

The main objective in developing chemotherapy treatment in system (9.5) is to
reach either tumor-free steady state or coexisting steady state in which the TCs’ size
is small, while the normal cells’ size is close to its normalized carrying capacity. We
next start the analysis by studying the stability of the system when there is no drug
(treatment) input, i.e., u(t) = 0, for all t .

9.3 Drug-Free Steady States and Their Stability

In the absence of chemotherapy (u(t) = 0), the (9.5) model has the following types
of steady states:

• Tumor-free steady state, where the tumor cell population is zero, while the normal
cells survive. This steady state has the form E0 = (σ/δ, 0, 1).

• Dead (lethal) steady state, where the normal cells population is zero, which has
the forms

(1) (σ/δ, 0, 0) in which the normal and tumor cell populations have died off,
(2) ( f (T ∗), T ∗, 0) where the normal cells alone have died off and the TCs have

survived, where

f (T ) = σ(η + T )

μT (η + T ) + δ(η + T ) − ρT
,

and T ∗ is a non-negative solution for

T ∗ + (n/r2β) f (T ∗) − 1/β = 0.

• Coexisting steady state, where both normal and TCs coexist with non-zero pop-
ulations. The steady state is given by E+ = ( f (T ∗), T ∗, g(T ∗)) where g(T ∗) =
1 − (c2/r3)T ∗, and T ∗ is a non-negative solution of

C3T
3 + C2T

2 + C1T + C0 = 0, where (9.6)

C3 = −μr2β + μc1c2/r3,

C2 = −μηr2β + μηc1c2/r3 + μr2 − μc1 − δr2β + δc1c2/r3 + ρr2β − ρc1c2/r3,

C1 = μηr2 − μηc1 − δηr2β + δηc1c2/r3 + δr2 − δc1 − ρr2 + ρc1 − σn,

C0 = δηr2 − δηc1 − σnη.
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Fig. 9.2 The left panel shows the regions of existence of coexisting equilibria of model (9.3)
in (ρ, σ )-plane with parameter values δ = 0.2, η = 0.3, μ = 0.003611, r2 = 1.03, r3 = 1, β =
2 × 10−3, n = 1, c1 = 0.00003, and c2 = 3 × 10−9. The dark blue region (0) represents the case
where there is no equilibria, the light blue regions (1.a, 1.b) represent the case where there is a
unique equilibrium, the orange region (2) represents the case where there are two steady states, and
the brown region (3) represents the case where there are three equilibria. The right panel shows the
null clines of the model, which has up to four steady states: tumor-free steady state “E0”; tumor
dormancy steady state “E+

1 ”; medium concentration tumor steady state “E+
2 ”; and escape tumor

steady state “E+
3 ”

The number of coexisting steady states mainly depends on the parameter values. This
could be zero, one, two, or three of these steady states (see Fig. 9.2). We next study
the stability of the above-mentioned steady states.

9.3.1 Stability of Tumor-Free Steady State

In this subsection, we investigate the parameter ranges for which the tumor-free
steady stateE0 is locally asymptotically stable. The Jacobianmatrix of the linearized
system at the tumor-free steady state is given by

JE0 =
⎛
⎝−δ

ρσ

ηδ
e−λτ − μσ

δ
e−λτ 0

0 r2 − nσ
δ

− c1 0
0 −c2 −r3

⎞
⎠

with the eigenvalues λ1 = −δ < 0, λ2 = r2 − nσ
δ

− c1, and λ3 = −r3 < 0. Hence,
the tumor-free steady state E0 is locally stable if λ2 < 0 if and only if

r2 <
nσ

δ
+ c1, ∀τ ≥ 0.
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This relates r2 (the growth rate of the TCs) to nσ/δ (the resistance coefficient),
which measures how efficiently the immune system competes with the TCs. If this
tumor-free steady state is unstable, then no amount of chemotherapy will be able to
completely eradicate the TCs.

9.3.2 Stability of Lethal Steady States

The same analysis done above shows that the deadly steady state (σ/δ, 0, 0) has the
eigenvalues λ1 = −δ < 0, λ2 = r2 − nσ/δ, and λ3 = r3 > 0; hence it is unstable
saddle point. Whereas the other deadly steady state ( f (T ∗), T ∗, 0) can be either
stable or unstable depending on the model parameters and the value of the time-
delay τ . This can be shown by using Routh Harwatz test and Rouche’s theorem, as
shown in detail in the previous chapters. Since the stability of this steady state is not
needed for the developing treatment therapy, we will not delve into further details
regarding this part.

9.3.3 Stability of Coexisting Steady States

To study the stability of the coexisting steady states, we vary the two parameters
ρ (the immune cell growth rate) and σ (the normal flow rate of immune cells),
by fixing the other parameters: δ = 0.2, η = 0.3, μ = 0.003611, r2 = 1.03, r3 = 1,
β = 2 × 10−3, n = 1, c1 = 0.00003, and c2 = 3 × 10−9. Table 9.1 summarizes the
existence and stability results of the coexisting steady states, as present in different
regions of Fig. 9.2. It shows that the light blue region (1a) represents the “scape” case
where there is a unique stable node steady state with high tumor size, while the light
blue region (1b) represents the case where there is a unique steady state with low
tumor size. It is a stable spiral for τ < τ ∗, while at τ = τ ∗ the limit cycle occurs due
to Hopf bifurcation. Furthermore, the orange region (2) represents the case where
there are two steady states: one is a stable node and the other is an unstable saddle
node. To this end, the brown region (3) represents the case where there are three
steady states: one is a stable node, another is an unstable node, and the last steady
state is a spiral stable for τ < τ ∗, while the limit cycle occurs at τ = τ ∗. Of interest
are the existence and stability of steady states, where a small tumor population size
might coexist with a large number of normal cells. Figure 9.3 presents the phase
space for the cell populations in the case where ρ = 1.4 and σ = 0.1. It shows that
for τ = 0.8, the steady state is asymptotically stable (left), while for τ = 1.2, a limit
cycle is born around the steady state (right). We utilize MIDDE code [23]), which
is suitable for simulating stiff and non-stiff problems, to solve the DDEs model
using mono-implicit RK methods. Figure 9.4 provides the numerical simulations for
σ = 0.182 and δ = 0.545 that belong to “BR” region of Fig. 9.2, where there are
four steady states. We can conclude (see Fig. 9.4 (left)) that for this particular set
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Table 9.1 The stability results for the coexisting steady states by using the functions ρ and σ ,
while fixing the rest of the parameters as mentioned in the text

Region ρ σ Steady state Eigenvalues Stability

in Fig. 9.2 (E∗, T ∗, N∗) λ1, λ2, λ3 for τ ≥ 0

Light blue
(1a)

0.1 0.05 (0.0269, 486.9244,
0.9999)

–0.9509, –1.9105,–1 Stable node

Light blue
(1b)

1.4 0.1 (1.0299, 0.0238,
0.9999)

–1, –0.0486–0.3096i, Stable
spiral for
τ < τ∗,

–0.0486+0.3096i Stable limit
cycles at
τ = τ∗

Orange
(2)

0.2 0.23 (0.1648, 419.9672,
0.9999)

–0.5942, –1, –1.7876 Stable node

(0.8656, 79.7712,
0.99)

0.276, –1, –0.7291 Unstable
saddle node

Brown
(3)

0.6 0.1 (0.0789, 461.688,
0.99)

–0.7137, –1.5050, –1 Stable node

(0.7236, 148.7078,
0.99)

0.4060, –1, –0.8506 Unstable
saddle node

(1.0298, 0.0623, 0.99) –1, –0.0486–0.2922i, Stable
spiral for
τ < τ∗,

–0.0486+0.2922i Stable limit
cycles at
τ = τ∗

of parameters and τ = 0.2, the tumor-free steady state is unstable (saddle node),
while the dormant tumor steady state is spirally stable. The medium tumor state is
unstable, while the highly tumor state is stable. In this case, it is possible that the
tumor will result in either a steady state with dormancy or escape from the immune
system. However, Fig. 9.4 (right) shows that for τ = 0.86, the dormant steady state
is unstable where there is a limit cycle occurring around the dormant steady state
(see Chap. 2), while the escaped tumor steady state remains stable.

Next, we consider chemotherapy treatment (u(t) > 0) in the underlying model
and establish the existence of an optimal control for the model and provide necessary
conditions for optimal control.
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Fig. 9.3 The phase space for the cell population in the case where ρ = 1.4 and σ = 0.1. (left) For
τ = 1, the steady state is asymptotically stable. (right) For τ = 1.2, a limit cycle is born around the
steady state
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Fig. 9.4 The solutions of model (9.3) with the same set of parameters of Fig. 9.2 and with different
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2 are unstable, while both E+
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3 are stable.
(Right) For τ = 0.86, there exists a limit cycle around E+

1 , while the stability of the other steady
states does not change

9.4 Optimal Control Problem Governed by DDEs

Once a suitable model of interacting cell populations is constructed, we then focus on
the design of an efficient treatment protocol, where we employ the tools of optimal
control theory.

Consider the optimal control problem with pure state constraints and control
bounds as follows:

max
x,v

J (x, v) = 
(x(t f )) +
∫ t f

0
L(t, x(t), v(t))dt, (9.7a)

subject to the DDEs
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x ′(t) = f (t, x(t), x(t − τ), v(t)), t ∈ [0, t f ] (9.7b)

x(t) =φ(t), t ∈ [−τ, 0], (9.7c)

with the control constraint

a ≤ v(t) ≤ b t ∈ [0, t f ]. (9.7d)

and state constraint

x(t) ≥ c t ∈ [0, t f ]. (9.7e)

J is called an objective functional and the integrand L(.) is called the Lagrangian of
objective functional. Furthermore, a and b are called the lower and upper bounds.
The function v(t) is called an admissible control, if it fulfills the inequality constraints
(9.7d). The set of all admissible controls is called the admissible set, and we refer to
it as Vad (where “ad” stands for the admissible). The state x(.) enters with a delay
τ as x(t − τ) in the system of the state equations (9.7b), while it is evaluated at
the time t as x(t) in the objective functional (9.7a). The set of all admissible states
Xad , which satisfies the state equations and the state constraint, is called the set of
admissible state.

The goal of chemotherapy is to eradicate the TCs while maintaining adequate
amounts of healthy tissue. From a mathematical point of view, adequate destruction
of TCs might mean forcing the system out of the basin of an unhealthy spiral node,
out of a limit cycle, and into a basin of attraction of a stable tumor-free equilibrium.
Alternatively, if the therapy pushes the system into a limit cycle in which the size
of the tumor is small for a long period of time (as long as the life of the patient, for
example), this could also be considered as a “cure.”

Optimality in treatment might be defined in a variety of ways. Some studies have
been done in which the total amount of drug administered is minimized, or the
number of TCs is minimized. The general goal is to keep the patient healthy while
killing the tumor. Since our model takes into account the toxicity of the drug to all
types of cells, our control problem consists of determining the function v(t) that will
maximize the amount of ECs and minimize the number of tumor cells and the cost
of the control with the constraint that we do not kill too many normal cells. If the
units of cells are normalized, so that the carrying capacity of normal cells is 1, we
then require that the number of normal cells stay above three-fourth of the carrying
capacity. Therefore, our main objective is to optimize the functional

max
v∈Vad

J (v) =
∫ t f

0

(
E(t) − T (t) − Bv

2
[v(t)]2

)
dt (9.8a)

which is subjected to the following underlying DDEs:
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dE(t)

dt
= σ + ρE(t − τ)T (t − τ)

η + T (t − τ)
− μE(t − τ)T (t − τ) − δE(t) − a1(1 − e−u(t))E(t),

(9.8b)
dT (t)

dt
= r2T (t)(1 − βT (t)) − nE(t)T (t) − c1N (t)T (t) − a2(1 − e−u)T (t), (9.8c)

dN (t)

dt
= r3N (t)(1 − β2N (t)) − c2T (t)N (t) − a3(1 − e−u)N (t), (9.8d)

du(t)

dt
= v(t) − d1u(t) (9.8e)

with control constraint

0 ≤ v(t) ≤ vmax < ∞ t ∈ [0, t f ], (9.8f)

and state constraint

k(N ) = N − 0.75 ≥ 0, t ∈ [0, t f ]. (9.8g)

Here, Bv is a weight factor that describes the patient’s acceptance level of chemother-
apy. We choose the control parameter as a class of piecewise continuous func-
tions defined for all t such that 0 ≤ v(t) ≤ vmax < ∞, where v(t) = vmax represents
the maximum chemotherapy, while v(t) = 0 represents the case where there is no
chemotherapy. Thus, we depict the class of admissible controls as

Vad = {
v ∈ L∞([0, t f ],R), | 0 ≤ v(t) ≤ vmax < ∞, ∀t ∈ [0, t f ]

}
.

We next prove the existence of the optimal solution of the underlying system (9.8).

9.5 Existence of Optimal Solution

To prove the existence of the optimal solution of (9.8), we use the results of Fleming
and Rishel [24, Theorem 4.1, p. 68–69] and Lukes [25, Theorem 9.2.1, p. 182].

Theorem 9.1 There exists an optimal solution (x∗, v∗) ∈ W 1,∞([0, t f ],R4) ×
L∞([0, t f ],R) for the optimal control problem (9.8), such that

J (v∗) = max
v∈Vad

J (v) (9.9)

where x∗ = [E∗, T ∗, N ∗, u∗]T if the following conditions are satisfied:

1. The set of admissible state is nonempty.
2. The admissible set Vad is nonempty, convex, and closed.
3. The right-hand side of the state system is bounded by a linear combination of the

state and control variables.
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4. The integrand L(E, T, v) = (
E(t) − T (t) − Bv

2 [v(t)]2) of the objective func-
tional is concave on Vad .

5. There exist constants h2, h3 > 0, and b > 1, such that L(E, T, v) ≤ h2 −
h3 (|v|)b .

Proof To verify the above conditions, we should first prove the existence of the
solution for the system of the state equations (9.8b)–(9.8e). Since ρT (t−τ)

η+T (t−τ)
< ρ,

vmax< ∞ and by neglecting the negative terms in the model, we have

dE(t)

dt
< σ + ρE(t − τ),

dT (t)

dt
< r2T,

dN (t)

dt
< r3N ,

du(t)

dt
< vmax .

(9.10)
System (9.10) can be rewritten in the form

⎛
⎜⎜⎝
E(t)
T (t)
N (t)
u(t)

⎞
⎟⎟⎠

′

<

⎛
⎜⎜⎝
0 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
E(t)
T (t)
N (t)
u(t)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
E(t − τ)

T (t − τ)

N (t − τ)

u(t − τ)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

σ

0
0

vmax

⎞
⎟⎟⎠

where ′ = d/dt . This system is linear in finite time with bounded coefficients. Then,
the solutions of this linear system are uniformly bounded. Therefore, the solution
of the non-linear system (9.8b)–(9.8e) is bounded and exists [25]. Hence, condition
one is satisfied.

Clearly, the second condition is satisfied by the definition of Vad . System (9.8b)–
(9.8e) is bilinear in the control variable v and can be rewritten as

F(t,X(t),X(t − τ), v) = α(t,X) + β(t,X(t − τ)) + σ + v (9.11)

whereX(t) = (E, T, N , u), X(t − τ) = (E(t − τ), T (t − τ), N (t − τ), u(t − τ)),
α and β are the vector valued functions of X(t) and X(t − τ), respectively. Using
that the solutions are bounded, we have

|F(t,X(t),X(t − τ), v)| ≤ |F1X (t)| + |F2X (t − τ)| + |F3| + |F4| ≤ h1|X| + |σ | + |v|,

where h1 depends on the coefficients of the system, and

F1 =

⎛
⎜⎜⎝
0 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 0

⎞
⎟⎟⎠ , F2 =

⎛
⎜⎜⎝

ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , F3 =

⎛
⎜⎜⎝

σ

0
0
0

⎞
⎟⎟⎠ , F4 =

⎛
⎜⎜⎝
0
0
0
v

⎞
⎟⎟⎠ .

We also note that the integrand of J (v) is concave in Vad . Finally,

E(t) − T (t) − Bv/2[v(t)]2 < E − Bv/2[v(t)]2 ≤ h2 − h3|v(t)|2,
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where h2 depends on the upper bounds of E(t) and T (t), and h3 = Bv/2. This
completes the proof. ��

We also conclude that there exists an optimal control variable v∗.

9.6 Optimality Conditions

In this section, we establish the necessary conditions for the optimal solution of
the optimization problem (9.8). We use Pontryagin’s minimum (maximum) princi-
ple derived by Göllmann et al. [26] for the retarded optimal control problem with
mixed control—state constraints. To this end, we define the augmented Hamiltonian
function involving the inequality constraints by

H(t, E, T, Eτ , Tτ , u, v, λ) = E(t) − T (t) − Bv

2
[v(t)]2 + λ1(T )

dE(t)

dt

+ λ2(t)
dT (t)

dt
+ λ3(t)

dN (t)

dt
+ λ4

du(t)

dt
+ γ (t)k(N ),

(9.12)
where

γ (t) =
{
1 if N (t) ≤ 0.75,

0 otherwise

and λi (i = 1, 2, 3, 4) are the adjoint variables satisfy

λ′
1(t) = −∂H

∂E
(t) − χ[0,t f −τ ](t)

∂H
∂Eτ

(t + τ), λ1(t f ) = 0,

λ′
2(t) = −∂H

∂T
(t) − χ[0,t f −τ ](t)

∂H
∂Tτ

(t + τ), λ2(t f ) = 0,

λ′
3(t) = −∂H

∂N
(t), λ3(t f ) = 0,

λ′
4(t) = −∂H

∂u
(t), λ4(t f ) = 0.

(9.13)

Here χ[0,t f −τ ] denotes the indicator function of the interval [0, t f − τ ] and is defined
by

χ[0,t f −τ ] =
{
1 if t ∈ [0, t f − τ ],
0 otherwise.

To minimize the Hamiltonian functional, Pontryagin’s minimum principle [26] is
used. Thus, we arrive at the following theorem:
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Theorem 9.2 Let (x∗, v∗) ∈ W 1,∞([0, t f ],R4) × L∞([0, t f ],R) be the optimal
solutions of (9.8a)–(9.8g), where x∗ = [E∗, T ∗, N ∗, u∗]T . Then, there exist an
adjoint state λ(t) ∈ W 1,∞([0, t f ],R4), defined by (9.13), such that the triple (x∗,
v∗, λ) satisfies the state equation

dE∗(t)
dt

= σ + ρE∗(t − τ)T ∗(t − τ)

η + T ∗(t − τ)
− μE∗(t − τ)T ∗(t − τ) − δE∗(t) − a1(1 − e−u∗

)E∗(t),

dT ∗(t)
dt

= r2T
∗(t)(1 − βT ∗(t)) − μE∗(t)T ∗(t) − c1N

∗(t)T ∗(t) − a2(1 − e−u∗(t))T ∗(t),

dN∗(t)
dt

= r3N
∗(t)(1 − β2N

∗(t)) − c2T
∗(t)N∗(t) − a3(1 − e−u∗(t))N∗(t),

du∗(t)
dt

= v∗(t) − d1u
∗(t),

(9.14)
with the initial conditions

E∗(t) = φ1(t), T ∗(t) = φ2(t), N ∗(t) = φ3(t), u(t) = φ4(t), t ∈ [−τ, 0],
the adjoint state equations

λ′
1(t) = −1 + λ1(t)

[
δ + a1(1 − e−u∗

)
]

+ λ2(t)nT
∗ + λ1(t + τ)χ[0,t f −τ ]

[
μT ∗ − ρT ∗

η + T ∗

]
,

λ′
2(t) = 1 + λ2

[
−r2 + 2r2βT

∗ + nE∗ + c1N
∗ + a2(1 − e−u∗

)
]

+ λ3c2N
∗

+ χ[0,t f −τ ]λ1(t + τ)

[
ρE∗T ∗

(η + T ∗)2
− ρE∗

η + T ∗ + μE∗
]

,

λ′
3(t) = λ2c1T

∗ − λ3

(
r3 − 2r3β2N

∗ − c2T
∗ − a3(1 − e−u∗

)
)

− γ,

λ′
4(t) = −λ1(t)a1e

−u∗
E∗ + λ2(t)a2e

−u∗
T ∗ + λ3(t)a3e

−u∗
N∗ + λ4(t)d1,

(9.15)

with transversality conditions

λi (t f ) = 0, i = 1, 2, 3, 4 (9.16)

and the optimal control

v∗ = min

(
vmax ,

λ4

Bv

)
. (9.17)

Proof The optimal control v∗ can be solved from the optimality condition
∂H
∂v

(t) =
0, i.e., −Bvv + λ4 = 0. By using the handedness of the control set Vad , it is easy to
obtain v∗ in the form of (9.17). ��
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9.7 Immuno-Chemotherapy

Model (9.5) is extended to include an external source of immunotherapy treatment
of the ECs such as ACI. We then add the term w(t)s1 to represent the input rate
of externally administered anti-tumor ECs, where w(t) is the control parameter.
Our goal is to maximize an objective functional J subject to the new model with a
combination of chemotherapy and ACI and constraints on the control and the state

max
v,w∈Wad

J (v,w) =
∫ t f

0

(
E(t) − T (t) −

[
Bv

2
[v(t)]2 + Bw

2
[w(t)]2

])
dt, (9.18a)

subject to DDEs

dE(t)

dt
= σ + ρE(t − τ)T (t − τ)

η + T (t − τ)
− μE(t − τ)T (t − τ) − δE(t) − a1(1 − e−u(t))E(t) + w(t)s1,

(9.18b)
dT (t)

dt
= r2T (t)(1 − βT (t)) − nE(t)T (t) − c1N (t)T (t) − a2(1 − e−u(t))T (t), (9.18c)

dN (t)

dt
= r3N (t)(1 − β2N (t)) − c2T (t)N (t) − a3(1 − e−u(t))N (t), (9.18d)

du(t)

dt
= v(t) − d1u(t) (9.18e)

and control constraints

0 ≤ v(t) ≤ vmax < ∞, 0 ≤ w(t) ≤ wmax < ∞, t ∈ [0, t f ], (9.18f)

and the state constraint

k(N ) = N − 0.75 ≥ 0, t ∈ [0, t f ], (9.18g)

where Bw is aweight factor that describes a patient’s acceptance level of immunother-
apy and the set of all admissible controls Wad is defined by

Wad ={(v,w) : (v,w) piecewise continuous, such that

0 ≤ v(t) ≤ vmax < ∞, 0 ≤ w(t) ≤ wmax < ∞, ∀t ∈ [0, t f ]}.

Similarly, the optimal solution of the optimization problem (9.18) satisfies the
state equations
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dE∗(t)
dt

= σ + ρE∗(t − τ)T ∗(t − τ)

η + T ∗(t − τ)
− μE∗(t − τ)T ∗(t − τ)−

δE∗(t) − a1(1 − e−u∗
)E∗(t) + w∗(t)s1,

dT ∗(t)
dt

= r2T
∗(t)(1 − βT ∗(t)) − μE∗(t)T ∗(t) − c1N

∗(t)T ∗(t) − a2(1 − e−u∗(t))T ∗(t),

dN∗(t)
dt

= r3N
∗(t)(1 − β2N

∗(t)) − c2T
∗(t)N∗(t) − a3(1 − e−u∗(t))N∗(t),

du∗(t)
dt

= v∗(t) − d1u
∗(t),

E∗(t) = φ1(t), T ∗(t) = φ2(t), N∗(t) = φ3(t), u(t) = φ4(t), t ∈ [−τ, 0],

(9.19)

The adjoint state equations are

λ′
1(t) = −1+λ1(t)

[
δ+a1(1−e−u∗(t))

]
+λ2(t)nT

∗(t) + λ1(t + τ)χ[0,t f −τ ]
[
μT ∗(t)− ρT ∗(t)

η + T ∗(t)

]

λ′
2(t) = 1 + λ2

[
−r2 + 2r2βT

∗(t) + nE∗(t) + c1N
∗(t) + a2(1 − e−u∗

)
]

+ λ3c2N
∗(t)

+ χ[0,t f −τ ]λ1(t + τ)

[
ρE∗(t)T ∗(t)

(η + T ∗(t))2
− ρE∗(t)

η + T ∗(t)
+ μE∗(t)

]

λ′
3(t) = λ2c1T

∗(t) − λ3(t)
(
r3 − 2r3β2N

∗(t) − c2T
∗(t) − a3(1 − e−u∗(t))

)
− γ

λ′
4(t) = −λ1(t)a1e

−u∗(t)E∗(t) + λ2(t)a2e
−u∗(t)T ∗(t) + λ3(t)a3e

−u∗(t)N∗(t) + λ4(t)d1,

(9.20)

with transversality conditions λi (t f ) = 0, i = {1, 2, 3, 4} and the minimum condi-
tion

v∗ = min

(
vmax ,

λ4

Bv

)
, w∗ = min

(
wmax ,

λ1s1
Bw

)
. (9.21)

When s1 = 0 (without immunotherapy), the system (9.19)–(9.21) reduces to system
(9.14)–(9.17).

Remark 9.2 In the case of immunotherapy alone (u(t) = 0), the objective functional
becomes

J (w) =
∫ t f

0

(
E(t) − T (t) − Bw

2
[w(t)]2

)
dt . (9.22)

9.8 Numerical Simulations of Optimal Control System

Numerical simulations leading to the approximation of the optimal controls (9.19)–
(9.21) are carried out using the forward Euler method for the state system and back-
ward difference approximation for the adjoint system. We assume a step-size h such
that τ = mh and t f − t0 = nh, where (m, b) ∈ N

2. We define the state, adjoint, and
control variables at the mesh points. An initial guess is given for the controls v and
w, which are then updated continuously until the objective functional satisfies the
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Fig. 9.5 Simulations of the system (9.14)–(9.17) in the stable region before and after the treatment
with control with initial conditions E0 = 0.3, T0 = 300, and N0 = 0.9; the parameter values are
given in the text

conditions. However, there are several major problems to overcome when solving
DDEs. These include stability, stiffness, and discontinuities in the right-hand side of
the equation. Stability and stiffness can be handled by using the correct choice of
implicit solvers [23]. The delay terms can create a whole suite of discontinuities; see
[27, 28].

We choose a different set of parameter values (in stable and unstable regions). In
the current simulations, we vary the three parameters σ , ρ, and τ , and fix the other
parameters:

δ = 0.2, η = 0.3, μ = 0.003611, s1 = 0.3, r2 = 1.03, r3 = 1, β = 2 × 10−3, β2 = 1, n = 1,

c1 = 0.00003, c2 = 0.00000003, a1 = 0.2, a2 = 0.4, a3 = 0.1, d1 = 0.01, B = 100.

We then solve the optimality system to determine the optimal control situation (i.e.,
the drug strategy) and to predict the evolution of the tumor cells, ECs, and normal
cells of each control strategy in 30 days.

Figure 9.5 shows the numerical simulations of the state system before and after
chemotherapy treatment using the optimality system (9.14)–(9.17) when σ = 0.5,
ρ = 0.01, and τ = 1.2 (in the stable region). We note that in the presence of
chemotherapy with optimal control, the effector cell population grows significantly,
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Fig. 9.6 Simulations of the system (9.14)–(9.17) in the unstable region before and after the treat-
ment with control and initial conditions E0 = 1, T0 = 200, and N0 = 0.9; the parameter values are
given in the text

while the tumor cell population decreases and is totally eradicated after 20 days.
In the meantime, the normal cell population remains over 75%. Figure 9.6 shows
the impact of chemotherapy treatment (with optimal control) when we choose the
parameter values in an unstable region (σ = 0.2, ρ = 0.2, and τ = 1.5). The tumor
and ECs populations are oscillating over time in the absence of chemotherapy, while
the presence of treatment helps the immune system keep the growth of the tumor
cells under its control.

Figure 9.7 presents the evolution of system (9.19)–(9.21) in the case of com-
bination of chemotherapy and ACI. The parameter values are chosen to be in the
stable region. We notice that the tumor cell population can be eradicated after day
12, which is faster compared to the results of Fig. 9.5 (when we used the chemother-
apy alone). In other words, the numerical results show that using the combination
immuno-chemotherapy is more effective than using chemotherapy treatment alone.

However, Fig. 9.8 shows the evolution of the system with only immunotherapy
(i.e., without chemotherapy). We can notice from the figure that this case reflects
the best therapeutic strategies for the treatment of tumor, where recovery becomes
faster with a high dosage of immunotherapy and where w(t) can reach a value of
3.5, compared to the combination therapy that only reached 2.
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Fig. 9.7 Simulations of system (9.19)–(9.21), in the stable region, before and after the immuno-
chemotherapy treatments with controls. It shows that the tumor cell population can be eradicated
in day 12
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Fig. 9.8 Simulations of the tumor cells population of system (9.19)–(9.21), before and after
immunotherapy with control. It shows that the tumor cells can be eradicated at day 7 with high
immunotherapy dosage where the control value w(t) reaches to the value of 3.5
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9.9 Concluding Remarks

In this chapter, we have provided a delay differentialmodelwith control variables that
describes the interactions of immune cells, tumor cells, normal cells, and immuno-
chemotherapy treatment with control variables. A Pontryagin-type maximum princi-
ple is derived for retarded optimal control problems with delays in the state variable
when the control system is subject to mixed control state constraints in order to
minimize the cost of treatment, reduce the tumor cell load, and keep the number of
normal cells above 75% of its carrying capacity. We presented an efficient numerical
technique, based on forward difference approximation to the state system and back-
ward difference scheme to the adjoint system, to solve the optimal control problem
and identify the best treatment strategy when we adopt the chemotherapy treatment
alone or a combination of chemo-immunotherapy, with minimum side effects. The
numerical results show and confirm that the optimal treatment strategies reduce the
tumor cell load and increase the population of ECs after a few days of therapy. The
performance of combination therapy protocol was better than the standard protocol
of chemotherapy alone. The numerical simulations show the rationality of the model
presented, which, in some degree, reflects the practical scenario.

In the next chapter, we will study DDEs with ecological systems.
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Chapter 10
Delay Differential Equations of
Ecological Systems with Allee Effect

10.1 Introduction

As it has been seen in previous chapters, delay differential equations exhibit much
more complicated dynamics than ordinary differential equations since a time-delay
could cause a stable equilibrium to become unstable and cause the populations to
fluctuate. In this chapter, we study delay differential equations of prey-predator sys-
tems with the Allee effect. The dynamic relationship between the prey and their
predators has long been and will continue to be one of the dominant themes in
ecology due to its universal existence and importance (see, e.g., [1–4]). This rela-
tionship/interaction between two or more species has been essential in theoretical
ecology since the famous Lotka-Volterra equations [5, 6], which are a system of first-
order, non-linear differential equations that describe the dynamics and interactions
between two or more species of biological systems. Of course, the qualitative prop-
erties of a prey-predator system, such as stability of the steady states, bifurcations
analysis, and oscillation of the solutions usually depends on the system parameters;
see [7].

Suppose that N (t) is the size of prey population and let P(t) be the size of the
predator population at time t , then the Lotka-Volterra model is given by the following
equations:

dN (t)

dt
= N (t)[β1 − γ1 − g1N (t)] − eN (t)P(t),

dP(t)

dt
= P(t)[−γ + eN (t)],

(10.1)
with N (0) > 0 and P(0) > 0. Here, β1 is the per-capita maximum filtering rate, γ1 is
the death rate of the prey N (t), and parameter g1 denotes the strength of intra-specific
competition. The predator death rate and predation rate are, respectively, denoted by
γ and e. In the above model, it is assumed that prey population is subject to logistic
growth rate and the exponential-type functional response. Of course, the response of
predators to different prey densities depends on the feeding behavior of individual
predators. In [8], Holling discussed three different types of functional responses:
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Holling type I (linear), type II, type III, etc. These responses are used to model the
phenomena of predation, which captures the usual properties, e.g., positivity and
increasing; see also [9–11].

Allee effect and time-delays greatly increase the likelihood of local and global
extinction and can produce a rich variety of dynamic effects. But how does the intro-
duction of the Allee effect in the prey growth function change the system dynamics
of prey-predator system? Before we introduce the final model, we provide brief pre-
liminaries about the Allee effect and time-delays in the prey-predator model; see [12,
13]. The Allee effect was firstly reported by the American ecologist Allee [14] when
he asked “what minimal numbers are necessary if a species is to maintain itself in
nature?” Allee, in [14], shows that the growth rate is not always positive for small
densities, and it may not be decreasing as in the logistic model either. In general,
Allee effect mechanisms arise from cooperation or facilitation among individuals
in the species [15]. A population is said to show an Allee effect if the growth rate
per capita is initially an increasing function for the low density. The effect can be
classified into two types: strong and weak. A strong Allee effect takes place when
the population density is less than the specified threshold population considered,
resulting in the species dying out. However, if the population density is greater than
the threshold, the growth rate will remain positive [16]. A weak Allee effect means
that the per-capita growth rate cannot go below zero and remains positive.

Now, we show how an Allee effect can be modeled and how the per-capita growth
rate is affected by a weak Allee effect or a strong Allee effect using simple examples:

dN

dt
= r N2

(
1 − N

K

)
for a weak Allee effect, and

dN

dt
= r N

(
1 − N

K

)(
N

A
− 1

)
for a strong.

Figure 10.1 shows the per-capita growth rate
1

N

dN

dt
of the populationwith strong and

weak Allee effects. The straight line shows the logistic growth, the red curve shows
the weak Allee effect, and the blue curve shows the strong Allee effect. The negative
density dependence at low population sizes is described as a strong Allee effect,
where there exists a threshold population level A, such that for N < A, 1

N
dN
dt < 0

(the species will die out) and for N > A, 1
N

dN
dt > 0, the growth will remain positive

[16]. However, when the growth rate remains positive at low population densities, it
is considered as a weak Allee effect.

Formulti-speciesmodels, there are flexible ways to formulate theAllee effect. For
example, due to difficulties in finding mates when prey population density becomes
low, the Allee effect takes place in prey species. Herein, we propose and incorporate

an additive Allee effect of the form b(N ) ≡ N

α1 + N
in the prey growth function of

model (10.1), which is considered as the probability of finding a mate (see [17]) so
that

dN (t)

dt
= N (t)

[
β1N (t)

α1 + N (t)
− γ1 − gN (t)

]
− eN (t)P(t),

dP(t)

dt
= P(t)[−γ + eN (t)]. (10.2)
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Fig. 10.1 (left) Per-capita growth rate 1
N

dN
dt versus population N (t) with logistic (black dashes),

strong (blue curve), and weak (red curve) Allee effect. (right) Population growth rate dN
dt versus

population N (t). For the strong Allee effect, the y-intercept of the per-capita growth rate is less
than zero at zero density, while in the weak Allee effect, the y-intercept cannot go below zero

The parameterα1 is the strength of theAllee effect,α1 = 1/R, where R is the average
area that can be searched by an individual [18].Wemaynotice that b(0) = 0, b′(N ) >

0 if N ∈ [0,∞), i.e., the Allee effect decreases as density increases. lim
N→∞ b(N ) = 1

means that the Allee effect disappears at high densities. Therefore, the term b(N ) is
considered as a weak Allee effect function in a rectangular hyperbola form, known
as Michaelis-Menten-like function [19].

Usually, the individuals of the prey and predator species pass through various
stages during their entire life span and the morphology involved differs from one
stage to another. Construction of DDE models is a well-known modeling strategy
to take care of the stage-specific activities, which are responsible for significant
changes in the dynamics of interacting populations. In various existing literature,
biological processes such as incubation, gestation, maturation, reaction time, etc.,
are taken care of by introducing relevant time-delay parameters to the models for
prey-predator and other types of interacting populations. Incorporating time-lags
(or time-delays) in biological models makes the systems much more realistic, as it
can destabilize the equilibrium points and give rise to a stable limit cycle, causing
oscillations to grow and enriching the dynamics of themodel. Time-delays have been
actively studied by many authors in prey-predator models and biological systems;
see [19–22].

Thus, it is interesting and important to study the impact of time-delays and the
Allee effect on the dynamics of three-species prey-predator models. In this chapter,
we extend the work of [23] and study the dynamics of a two-prey one-predator
system, where the growth of both prey populations is subject to the Allee effect,
and there exists direct competition between the two-prey species having a common
predator. Two discrete time-delays τ1, τ2 are incorporated into the predator growth
equation to represent the reaction time with each prey. Sensitivity analysis to eval-
uate the uncertainty of the state variables to small changes in the Allee parameters
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is also considered. Model formulation is presented in Sect. 10.2. Local stability and
bifurcation analysis of the steady states are discussed in Section 10.3, and global
asymptotic stability of interior steady state is discussed in Section 10.4. We also uti-
lize sensitivity functions to evaluate the sensitivity (uncertainty) of the state variables
(prey and predator populations) to small changes in the severity Allee parameters
through Section 10.5. Some numerical simulations are presented in Section 10.6,
and we conclude the chapter in Section 10.7.

10.2 Delay Differential Model of Two-Prey One-Predator
System

Many studies have been performed in modeling the dynamics of multi-species prey-
predator systems, including local and global bifurcations and different types of chaos
(see e.g., [23–26]). Sen et al. [23] discussed the Allee effect on the growth function
of two preys, where the predator is generalized. They explained how the Allee effect
can suppress the chaotic dynamics and the route to chaos in prey growth by compar-
ing it with a model without the Allee effect. In [24], the authors studied the dynamics
of a three-species (two preys and one predator) delayed prey-predator model with
cooperation among the preys against predation. The growth rate for preys is thought
to be logistic. Delays are taken only in the growth components for each of the species.
Takeuchi et al. [25] considered two preys with logistic growth rates and an exponen-
tial functional response, where the predator survives on two-prey populations. Their
results showed that the apparent chaotic behavior is a result of the periodic solution
when one of the two preys has greater competitive strength compared to the other.
Song et al. [26] explored the dynamic behavior of a Holling II two-prey one-predator
system by introducing constant periodic releases of predators via periodically spray-
ing a pesticide on the prey. They were then able to show that the system remains
permanent under certain conditions.

Herein, we generalize model (10.2) to multi-species prey-predator system (two-
prey one-predator). The model consists of two teams of preys with densities x(t),
y(t), interacting with one team of predators with density z(t). We also incorporate
the Allee effect in the growth functions of the two-prey populations, and there exists
a direct competition between the two-prey species having a common predator. The
model takes the general form

dx(t)

dt
=x(t)

[
β1x(t)

α1 + x(t)
− γ1 − g1x(t)

]
− αx(t)y(t) − ex(t)z(t)

dy(t)

dt
=y(t)

[
β2y(t)

α2 + y(t)
− γ2 − g2y(t)

]
− βx(t)y(t) − δy(t)z(t)

1 + cy(t)
dz(t)

dt
= − β3z(t) + εex(t − τ1)z(t − τ1) + εδy(t − τ2)z(t − τ2)

1 + cy(t − τ2)

(10.3)

with initial conditions
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Table 10.1 One biological meaning for the parameters of model (10.3)

Parameter Description

α1, α2 Strength of Allee effect

β1, β2 Per-capita maximum filtering rate of population

g1, g2 Strength of intra competition

γ1, γ2 Death rate for preys

α, β Coefficient of competition

e, δ Decrease rate of x(t) and y(t) due to predation by z(t)

β3 Predator death rate

c Magnitude of interference between the second type of prey

ε An equal transformation rate of predator to preys x(t) and y(t)

x(θ) = φ1(θ) > 0, y(θ) = φ2(θ) > 0, z(θ) = φ3(θ) > 0, θ ∈ [−τ, 0], τ = max{τ1, τ2}.
(10.4)

Here, φi (θ) (i = 1, 2, 3) are smooth initial functions. The coefficients α and β repre-
sent the coefficients of competition of two preys x and y in the absence of a predator.
The description of the rest of model parameters along with their symbols is presented
in Table 10.1.

It is reasonable to assume that the death (predation) of preys is instantaneous
when attacked by their predator, but their contribution to the growth of predator
population must be delayed by some time-delay. Therefore, we incorporated two
discrete time-delays τ1 and τ2 in the reaction response functionals in the predator
growth to represent the reaction time. The interaction between the first species of
prey and predator is assumed to be governed by Holling type I. While the interaction
between the second species of prey and predator is assumed to be governed byHolling
type II (cyrtoid functional) δy(t)z(t)/(1 + cy(t)), the response indicates that it is a
hard-to-capture prey compared to the first species; see Fig. 10.2.

To investigate the role of the time-delay and Allee effect on the dynamics of the
system, we first discuss the boundedness and positivity of the solutions of the system
(10.3) with the given positive initial conditions (10.4).

Fig. 10.2 Mathematical
scheme of the three-species
predator prey system (10.3)
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10.2.1 Positivity and Boundedness of the Solution

The positivity of the solutions indicates the existence of the population, while the
boundedness explains the natural control of growth due to the restriction of resources.
We arrive at the following lemma:

Lemma 10.1 Every solution of system (10.3) corresponding to initial conditions
(10.4) defined on [0,∞) remains positive for all t ≥ 0, which satisfies

lim
t→∞ sup(x(t) + y(t)) ≤ κ, lim

t→∞ sup z(t) ≤ N ,

where κ = min{β1, β2} and N > 0.

Proof Model (10.3) can be represented in a matrix form:

U̇ (t) = F(U ) (10.5)

where U = (x, y, z)T ∈ R
3, and

F(U ) =
⎡
⎣ F1(U )

F2(U )

F3(U )

⎤
⎦ =

⎡
⎢⎢⎣

x
(

β1x
α1+x − γ1 − g1x

)
− αxy − exz

y
(

β2 y
α2+y − γ2 − g2y

)
− βxy − δyz

1+cy

−β3z + εex(t − τ1)z(t − τ1) + εδy(t−τ2)z(t−τ2)

1+cy(t−τ2)

⎤
⎥⎥⎦ .

Let R3+ = [0,∞)3, since the right-hand side of system (10.3) is locally Lipschitz
on C : R3+1

+ → R
3, such that Fi (U )|ui (t)=0,U∈R3+ ≥ 0, where u1 = x , u2 = y, and

u3 = z. According to [27], the solutions of (10.5) with initial conditions (10.4) exist
uniquely on the interval [0, ξ), where 0 < ξ ≤ ∞; therefore, all solutions exist on
the first quadrant of the xyz-plane.

To prove the boundedness of solutions for system (10.3), let us first consider the
case when the predator is absent so that

dx

dt
= x

(
β1x

α1 + x
− γ1 − g1x

)
− αxy ≡ G1(x, y),

dy

dt
= y

(
β2y

α2 + y
− γ2 − g2y

)
− βxy ≡ G2(x, y).

(10.6)

With initial conditions x(0) > 0 and y(0) > 0, we can easily show thatG1(x, y) ≥ 0
for y = 0 and x <

β1−γ1
g1

, such that β1 > γ1 and G2(x, y) ≥ 0 for x = 0 and y <
β2−γ2
g2

, where β2 > γ2. Adding the two equations of (10.6) yields
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d

dt
(x + y) = x(

β1x

α1 + x
− γ1 − g1x) + y(

β2y

α2 + y
− γ2 − g2y) − xy(α + β)

≤ x(β1 − γ1 − g1x) + y(β2 − γ2 − g2y)

≤ β1x + β2y ≤ κ(x + y)
(10.7)

where κ = min{β1, β2}. If we integrate both sides of (10.7), we get

(x(t) + y(t)) ≤ (x(0) + y(0))e−κt .

Since (x(0) + y(0)) > 0, the solutions are bounded, which clearly shows that
limt→∞ sup(x(t) + y(t)) ≤ κ.

To extend the analysis to (10.3), let us consider 0 < φ1(θ) + φ2(θ) + φ3(0) < M ,
θ ∈ [−τ, 0]. Additionally, assume that W (t) = εx(t − τ1) + εδy(t − τ2) + z and
choose 0 < ρ < β3. By considering the derivative of W , for t > T + τ for some
fixed positive time T , we have

dW

dt
+ ρW ≤ εx(t − τ1)(β1 + ρ − x(t − τ1)) + εδy(t − τ2)(β2 + ρ − y(t − τ2)) + (ρ − β3)z.

Since x and y are non-negative and bounded by κ ,

dW

dt
+ ρW ≤ (ε + εδ)κ + (ρ − β3)z ≤ M.

Due to the positivity of z and the parametric condition exists for ρ, the differ-
ential inequality is bounded above, such that dW

dt ≤ M − ρW , i.e., there exists N
where 0 < W (t) < N for all t > T , which implies the boundedness of z, such that
limt→∞ sup z(t) ≤ N . 	


10.3 Local Stability and Hopf Bifurcation

In this section, we investigate the qualitative behavior of system (10.3) by studying
the local stability of positive equilibria points and Hopf bifurcation analysis, which
provides a deeper insight into themodel to address the behavioral change of solutions
as a response to changes in a particular parameter. Since time-lags τ1 and τ2 have a
significant impact on the complexity and dynamics of the model, we consider them
as bifurcation parameters.
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10.3.1 Existence of Interior Equilibrium Points

System (10.3) has some boundary and interior equilibrium points. However, we only
focus on the dynamic analysis of interior equilibrium points. To obtain the attain-
able equilibrium points for the system (10.3), the zero growth isoclines of the sys-

tem are given by x
(

β1x
α1+x − γ1 − g1x

)
− αxy − exz = 0, y

(
β2 y

α2+y − γ2 − g2y
)

−
βxy − δyz

1+cy = 0 and −β3z + εexz + εδyz
1+cy = 0, inR3+ = {(x, y, z) ∈ R

3 : x, y, z ≥
0}. Therefore, the equilibria are the points of intersection of these zero growth iso-
clines regardless of the parameter values.

An interior equilibrium point E∗ ≡ (x∗, y∗, z∗) exists with
(

β1x∗
α1+x∗ − γ1 − g1x∗

)

− αy∗ − ez∗ = 0,
(

β2 y∗
α2+y∗ − γ2 − g2y∗

)
− βx∗ − δz∗

1+cy∗ = 0, −β3 + εex∗ + εδy∗
1+cy∗

= 0, such that x∗ = 1
εe (β3 − εδy∗

1+cy∗ ) > 0, z∗ = 1
e

(
β1(β3(1+cy∗)−εδy∗)

(1+cy∗)(εe+β3)

+g1(β3 − εδy∗
1+cy∗ ) − γ1 − αy∗

)
> 0, where y∗ is the root(s) to the following equa-

tion:
G(y) = σ1y

4 + σ2y
3 + σ3y

2 + σ4y + σ5 = 0. (10.8)

The coefficients σi , i = 1, . . . , 5 are defined by

σ1 = α2c
2, σ2 = c(2α2 + α2cg2 + ββ2c

εe
− βδ

e
− δα + cγ2),

σ3 = β1δ
2ε − cδβ1β2

εe + β3
+ α2βδεc − ββ2α2c2 − βδε

εe
− δ2εg1 + cβ2

+ c2β2 + cg1δβ3 + cδγ1 + α2 − δα,

σ4 = ββ2 − α2βδε

εe
+ δβ1β2 + cδβ1β3α2 + β1α2δ

2

εe + β3
− g1α2δ

2ε

+ cα2δβ3g1 + cα2δγ1 + cα2γ2 − β2 − β2c + α2g2 − δβ2g1 − δγ1 + γ2,

σ5 = δβ1β3α2

εe + β3
− α2β2β

εe
− α2δβ3g1 − α2δγ1 + α2γ2.

The nature of the roots for (10.8) is determined by noting the sign of its discriminant
[28]. Therefore, a sufficient condition that guarantees that (10.8) has at least one pos-

itive root is σ5 < 0, which leads to
δβ1β3α2

εe + β3
+ α2γ2 <

α2β2β

εe
+ α2δβ3g1 + α2δγ1.

Thus, system (10.3) can have, at most, four interior equilibria in the presence of an
Allee effect. However, in the absence of an Allee effect, we arrive at the following
remark.

Remark 10.1 In the absence of anAllee effect (α1 = α2 = 0), the interior equilibria
for system (10.3) are reduced to, at most, three interior equilibria. Consequently, an
Allee effect can generate or eradicate interior equilibria. Itmay stabilize or destabilize
the system.
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10.3.2 Stability and Bifurcation Analysis of the Interior
Equilibrium

Now, we examine the stability of the interior equilibrium E∗ ≡ (x∗, y∗, z∗) at which
the Jcobian matrix is

J =
⎡
⎣ F1 F2 F3

F4 F5 F6

I1e−λτ1 I2e−λτ2 F7 + I3e−λτ1 + I4e−λτ2

⎤
⎦ .

Here,

F1 = β1x
∗

(α1 + x∗)

(
1 + α1

(α1 + x∗)

)
− 2g1x

∗ − γ1 − αy∗ − ez∗ < 0, F2 = −αx∗, F3 = −ex∗,

F4 = − βy∗, F5 = β2y
∗

(α2 + y∗)

(
1 + α2

(α2 + y∗)

)
− 2g2y

∗ − γ2 − βx∗ − δz∗
(1 + cy∗)2

< 0,

F6 = − δy∗
1 + cy∗ , F7 = −β3, I1 = εez∗, I2 = εδz∗

(1 + cy∗)2
, I3 = εex∗, I4 = εδy∗

1 + cy∗ .

The characteristic equation for the interior point E∗ ≡ (x∗, y∗, z∗) is then given by

A(λ) + B(λ)e−λτ1 + C(λ)e−λτ2 = 0. (10.9)

Here,
A(λ) = λ3 + R1λ

2 + R2λ + R3

B(λ) = N1λ
2 + N2λ + N3

C(λ) = M1λ
2 + M2λ + M3,

such that

R1 = −F1 − F5 − F7, R2 = F1F5 + F1F7 + F5F7 − F2F4, R3 = F2F4F7 − F1F5F7,

N1 = −I3, N2 = (F1 + F5)I3 − F3 I1, N3 = F2F4 I3 + F3F5 I1 − F2F6 I1 − F1F5 I3,

M1 = −I4, M2 = (F1 + F5)I4 − F6 I2, M3 = F2F4 I4 + F1F6 I2 − F3F4 I2 − F1F5 I4.

To gain an insight into the interior equilibrium E∗, we discuss the stability of
interior steady states and Hopf bifurcation conditions of the threshold parameters τ1
and τ2 by considering the following different cases:

Case (1): When τ1 = τ2 = 0, Eq. (10.9) becomes

λ3 + (R1 + N1 + M1)λ
2 + (R2 + N2 + M2)λ + (R3 + N3 + M3) = 0.

(10.10)
Therefore, the interior equilibrium E∗ is locally asymptotically stable if
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• (H1) R1 + N1 + M1 > 0, R3 + N3 + M3 > 0 & (R1 + N1 + M1)

(R2 + N2 + M2) > R3 + N3 + M3 hold.
Thus, based on Routh-Hurwitz Criteria, all the roots of (10.10) have negative
real parts.

Case (2): For τ1 = 0, τ2 > 0, then Eq. (10.9) becomes

λ3 + (R1 + N1)λ
2 + (R2 + N2)λ + (R3 + N3) + (M1λ

2 + M2λ + M3)e
−λτ2 = 0.

(10.11)
We assume for some values of (τ2 > 0) that there exists a real number ω

such that λ = iω is a root of (10.11); then, we obtain

−(R1 + M1)ω
2 + (R3 + N3) = (M1ω

2 − M3) cosωτ2 − M2ω sinωτ2

−ω3 + (R2 + N2)ω = (M3 − M1ω
2) sinωτ2 − M2ω cosωτ2.

(10.12)
Squaring and adding both of the equations yields the following:

ω6 + a1ω
4 + a2ω

2 + a3 = 0, (10.13)

where

a1 = (R1 + M1)
2 − 2(R2 + N2) − M2

1 ,

a2 = (R2 + N2)
2 − 2(R1 + M1)(R3 + N3) + 2M1M3 − M2

2 , a3 = (R3 + N3)
2 − M2

3 .

(10.14)
By Descartes’ rule of signs, Eq. (10.13) has at least one positive root ω1

if

• (H2) R2
1 + 2R1M1 > 2(R2 + N2) and (R3 + N3)

2 < M2
3 hold.

Eliminating sinω1τ2 from (10.12) yields the following:

τ2, j = 1

w1
arccos

[
((R3 + N3) − (R1 + N1)w

2
1)(M1w

2
1 − M3) + M2(R2 + N2)w

2
1 − M2w

4
1

(M3 − M1w
2
1)2 − (M2w1)2

]
+ 2 jπ

w1

(10.15)
where j = 0, 1, 2, . . . .

By differentiating (10.11) with respect to τ2, such that ω = ω1 and τ2 =
τ2, j , the transversality condition can be obtained in this form:

Re( dλ

dτ2
)−1 = A1A4 − A2A3

A2A4
. (10.16)

Here,

A1 = [(R2 + N2) − 3ω2
1]((R2 + N2)ω

2
1 − ω4

1) + 2(R1 + N1)ω1[(R3 + N3)ω1 − (R1 + N1)ω
3
1],

A2 = (ω4
1 − (R2 + N2)ω

2
1)2 + ((R3 + N3)ω1 − (R1 + N1)ω

3
1)2,

A3 = M2
2ω2

1 + 2(M1ω
3
1 − M3ω1)M1ω1,

A4 = (M2ω
2
1)2 + (M3ω1 − M1ω

3
1)2.
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Then, a Hopf bifurcation occurs for τ2 if Re( dλ
dτ2

)−1 > 0; i.e., A1A4 > A2A3. We
arrive at the following theorem:

Theorem 10.1 Let (H1)–(H2) hold, where τ1 = 0, then there exists τ2 > 0 such
that E∗ remains stable for τ2 < τ

′
2 and unstable for τ2 > τ

′
2, where τ

′
2 = min{τ2, j }

defined by (10.15). Moreover, system (10.3) undergoes a Hopf bifurcation atE∗ when
τ2 = τ

′
2.

Case (3): When τ2 = 0, τ1 > 0, in the same manner as that of the previous case, we
arrive at the following theorem:

Theorem 10.2 For system (10.3), with τ2 = 0, there exists a positive number τ1,
such that the equilibrium point E∗ is locally asymptotically stable for τ1 < τ

′
1 and

unstable for τ1 > τ
′
1, where τ

′
1 = min{τ1, j }. Furthermore, Hopf bifurcation occurs

at τ1 = τ
′
1.

τ1, j = 1

w0
arccos

[
((R3 + M3) − (R1 + M1)w2

2)(N1w2
2 − N3) − N2(R2 + M2)w2

2 + N2w4
2

(N1w2
2 − N3)2 + (N2w2)2

]
+ 2 jπ

w2

(10.17)

where j = 0, 1, 2, . . . .

Case (4): When τ1 > 0 and τ2 > 0, we assume that τ1 is a variable parameter and
τ2 is fixed on its stable interval. Let λ = iw as a root of (10.9). Separating
the real and imaginary parts,

−w3 + R2w + (M1w
2 − M3) sinwτ2+M2w coswτ2

= (N3 − N1w
2) sinwτ1 − N2w coswτ1,

(10.18)

−R1w
2 + R3 + (M3 − M1w

2) coswτ2+M2w sinwτ2

= (N1w
2 − N3) coswτ1 − N2w sinwτ1.

(10.19)
Thus, eliminating the trigonometric functions (sinωτ1 and cosωτ1) from
(10.18) and (10.19) yields the following:

w6 + ξ4w
5 + ξ3w

4 + ξ2w
3 + ξ1w

2 + ξ0 = 0, (10.20)

where

ξ4 = −2M1 sinwτ2,

ξ3 = R1 + M2
1 − 2R2 − N 2

1 − 2M2 coswτ2,

ξ2 = 2(M1R2 + M3) sinwτ2 − 2M3R1 coswτ2,

ξ1 = −2M3R2 sinwτ2,

ξ0 = R2
3 + M2

3 − N 2
3 + (2M3R3 + R1M1) coswτ2.
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Equation (10.20) is a preternatural equation in a complicated form, and
it is quite difficult to predict the nature of its roots. Thus, by applying
Descartes’ rule of signs we can say that (10.20) has at least one positive
root ω0 if

• (H3) ξ4 > 0 since M1 < 0 & ξ0 < 0; therefore, we have

τ1, j = 1

w0
arccos

[
AD + CB

A2 + C2

]
+ 2 jπ

w0
, j = 0, 1, 2, . . . . (10.21)

Here,

A = N1w
2
0 − N3, B = −w3

0 + R2w0 + (M3 − M1w
2
0) sinw0τ2 + cosw0τ2,

C = N2w0, D = −R1w
2
0 + R3 + (M1w

2
0 − M3) cosw0τ2 + M2w0 sinw0τ2.

To study the Hopf bifurcation analysis, we fix τ2 in its stable interval and
differentiate Equations (10.18) and (10.19) with respect to τ1. Substituting
τ1 = τ1,0 and w = w0, we have

Q2

(
d(�λ)

dτ1

)
|τ1=τ1,0

)
+ Q1

(
d(w)

dτ1

)
|τ1=τ1,0

)
= Q3

−Q1

(
d(�λ)

dτ1

)
|τ1=τ1,0

)
+ Q2

(
d(w)

dτ1

)
|τ1=τ1,0

)
= Q4,

(10.22)

where

Q1 = −3w2
0 + R2 + (2N1w0 − N2w0τ1,0) sinw0τ1,0 + (N2 + N1τ1w

2
0 − N3τ1,0) cosw0τ1,0

+ (2w0M1 − M2τ2w0) sinw0τ2 + (M1τ2w
2
0 − M3τ2 + M2) cosw0τ2,

Q2 = −2R1w0 + (N1w
2
0τ1,0 − N3τ1,0 + N2) sinw0τ1,0 + (N2w0τ1 − 2N1w0) cosw0τ1,0

+ (M2 + M1w
2
0τ2 − M3τ2) sinw0τ2 + (M2w0τ2 − 2M1w0) cosw0τ2,

Q3 = N2w
2
0 sinw0τ1,0 + (N3w0 − N1w

3
0) cosw0τ1,0,

Q4 = N2w
2
0 cosw0τ1,0 + (N1w

3
0 − N3w0) sinw0τ1,0.

From (10.22), we get

(
d(�λ)

dτ1

)
|τ1=τ1,0

)
= Q2Q3 − Q1Q4

Q2
2 + Q2

1

. (10.23)

As Q2Q3 > Q1Q4, Hopf bifurcation occurs for τ1 = τ1,0.

Therefore, we arrive at the following theorem:

Theorem 10.3 If E∗ exists, such that (H1) and (H3) hold, with τ2 ∈ (0, τ
′
2), then

there exists a positive threshold parameter τ ∗
1 , such that the interior equilibrium

E∗ is locally asymptotically stable for τ1 < τ ∗
1 and unstable for τ1 > τ ∗

1 , where
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τ ∗
1 = min{τ1, j } as in (10.21). Additionally, system (10.3) undergoes Hopf bifurcation
at E∗ when τ1 = τ ∗

1 .

Remark 10.2 Similarly, for τ1 ∈ (0, τ
′
1), there exists a threshold parameter τ ∗

2 such
that the interior equilibriumE∗ is locally asymptotically stable for τ2 < τ ∗

2 and unsta-
ble for τ2 > τ ∗

2 . Also, Hopf bifurcation occurs for system (10.3) as τ2 = τ ∗
2 , where

τ ∗
2 = min{τ2, j } is given by

τ2, j = 1

w3
arccos

[
A1D1 + C1B1

A2
1 + C2

1

]
+ 2 jπ

w3
, j = 0, 1, 2, . . . , (10.24)

with

A1 = M1w
2
3 − M3, B1 = w3

3 − R2w3 + (N3 − N1w
2
3) sinw3τ1 − N2w3 cosw3τ1,

C1 = M2w3, D1 = −R1w
2
3 + R3 + cosw3τ1 + N2w3 sinw3τ1.

The proofs are obtained in the same manner as the above analysis.

Remark 10.3 The coexistence between two stable attractors can be determined by
increasing or decreasing the value of some control parameters [29]. Therefore, the
system pursues one branch of equilibriumpointswhen increasing a control parameter
until a threshold limit point is reached at which the system jumps to another branch
of stable equilibrium points. The underlying model (10.3) displays bistability of two
interior equilibrium, which is based on the variation of the coefficient of competition
α; see Figure 10.5. Both equilibria are locally asymptotically stable.

10.4 Global Stability of Interior Steady State E∗

Now, we study the global stability of system (10.3) around interior steady state
E∗ ≡ (x∗, y∗, z∗).

Theorem 10.4 If β1α1 < g1(α1 + x∗)(α1 + x) and β2α2(1 + cy∗)(1 + cy) + δcz∗
(α2 + y∗)(α2 + y) < g2(α2 + y∗)(α2 + y)(1 + cy∗)(1 + cy), then system (10.3) is
globally asymptotically stable at the interior equilibrium point E∗.

Proof We suggest the Lyapunov function at E∗ ≡ (x∗, y∗, z∗) of the form

V (t) = �1

(
x(t) − x∗ − x∗ ln x(t)

x∗
)

+ �2

(
y(t) − y∗ − y∗ ln y(t)

y∗
)

+ �3

(
z(t) − z∗ − z∗ ln z(t)

z∗
)

where �1, �2, and �3 are non-negative constants. Take derivative V with respect to
time t yielding
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V̇ (t) = �1
x − x∗

x
ẋ(t) + �2

y − y∗
y

ẏ(t) + �3
z − z∗

z
ż(t)

= �1(x − x∗)

(
β1x

α1 + x
− γ1 − g1x − αy − ez

)

+ �2(y − y∗)

(
β2y

α2 + y
− γ2 − g2y − βx − δyz

y(1 + cy)

)

+ �3(z − z∗)

(
−β3 + εex(t − τ1)z(t − τ1)

z
+ εδy(t − τ2)z(t − τ2)

z(1 + cy(t − τ2))

)

≤ �1(x − x∗)

(
β1x

α1 + x
− β1x

∗
α1 + x∗ − g1(x − x∗) − α(y − y∗) − e(z − z∗)

)

+ �2(y − y∗)

(
β2y

α2 + y
− β2y

∗
α2 + y∗ − g2(y − y∗) − β(x − x∗) + δy∗z∗

y∗(1 + cy∗)
− δyz

y(1 + cy)

)

+ �3(z − z∗)

(
εex(t − τ1)z(t − τ1)

z
+ εδy(t − τ2)z(t − τ2)

z(1 + cy(t − τ2))
− (εex∗ + εδy∗

1 + cy∗ )

)

≤ −�1g1(x − x∗)2 − �2g2(y − y∗)2 − (�1α + �2β)(x − x∗)(y − y∗)

+ (εe�3 − e�1)(x − x∗)(z − z∗) + �1(x − x∗)

(
β1x

α1 + x
− β1x

∗
α1 + x∗

)

+ �2(y − y∗)

(
β2y

α2 + y
− β2y

∗
α2 + y∗

)
+ �2(y − y∗)(

δy∗z∗
y∗(1 + cy∗)

− δyz

y(1 + cy)
)

+ �3(z − z∗)(
εδy

1 + cy
− εδy∗

1 + cy∗ )

≤ −�1g1(x − x∗)2 − �2g2(y − y∗)2 − (�1α + �2β)(x − x∗)(y − y∗)

+ (εe�3 − e�1)(x − x∗)(z − z∗) + β1�1(x − x∗)2(
α1

(α1 + x∗)(α1 + x)
)

+ β2�2(y − y∗)2(
α2

(α2 + y∗)(α2 + y)
) + δ�2(y − y∗)

(−(z − z∗)

1 + cy
+ cz∗(y − y∗)

(1 + cy∗)(1 + cy)

)

+ εδ�3(y − y∗)(z − z∗)(
1

1 + cy
− cy

(1 + cy∗)(1 + cy)
).

Thus, based on the assumptions β1α1 < g1(α1 + x∗)(α1 + x), β2α2(1 + cy∗)(1 +
cy) + δcz∗(α2 + y∗)(α2 + y) < g2(α2 + y∗)(α2 + y)(1 + cy∗)(1 + cy), ε�3
< max{�1, �2}, we can get

V̇ (t) ≤ (
�1α1β1

(α1 + x∗)(α1 + x)
− �1g1)(x − x∗)2 + (

εδ�3 − δ�2
1 + cy

)(y − y∗)(z − z∗)

+
(

δ�2cz
∗

(1 + cy∗)(1 + cy)
+ �2α2β2

(α2 + y∗)(α2 + y)
− �2g2

)
(y − y∗)2 + (εe�3 − �1e)(x − x∗)(z − z∗)

− (�1α + �2β)(x − x∗)(y − y∗) − εδ�3cy

(1 + cy∗)(1 + cy)
(z − z∗)(y − y∗) ≤ 0.

Hence, the proof is complete. 	
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10.5 Sensitivity to Allee Effect

Here, we study the sensitivity of the model solution of (10.3) with respect to the
parameters α1 and α2 (strength of the Allee effect). Sensitivity functions of the
model solution to small changes in Allee parameters αi (i = 1, 2) are denoted by

Sxαi
(t) := ∂

∂αi
x(t), Syαi

(t) := ∂

∂αi
y(t), Szαi

(t) := ∂

∂αi
z(t). (10.25)

Using the direct method, discussed in Chap. 2, the sensitivity functions due to small
perturbations in α1 are estimated by solving the following system of DDEs:

S
′
xα1 (t) = Sxα1 (t)[

β1x(t)

α1 + x(t)
− γ1 − 2g1x(t) − αy(t) − ez(t)] − αSyα1 (t)x(t)

− eSzα1 (t)x(t) + β1x(t)(
α1Sxα1 (t) − x(t)

(α1 + x(t))2
),

S
′
yα1 (t) = Syα1 (t)[

β2y(t)

α2 + y(t)
− γ2 − 2g2y(t) − βx(t)] + y(t)[−βSxα1 (t) + α2β2Syα1 (t)

(α2 + y(t))2
]

− δ[ Syα1 (t)z(t)

(1 + cy(t))2
+ Szα1 (t)y(t)

1 + cy(t)
],

S
′
zα1 (t) = −β3Szα1 (t) + εe[Sxα1 (t − τ1)z(t − τ1) + Szα1 (t − τ1)x(t − τ1)]

+ εδ[ Syα1 (t − τ2)z(t − τ2)

(1 + cy(t − τ2))
2 + Szα1 (t − τ2)y(t − τ2)

1 + cy(t − τ2)
].

(10.26)
To estimate the sensitivity functions Sxα1

(t), Syα1
(t) and Szα1

(t), we have to solve the
system of sensitivity equations (10.26), together with the original system (10.3).

Similarly, the sensitivity functions due to small changes in Allee coefficient α2

satisfy the system of DDEs

S
′
xα2

(t) = Sxα2(t)[
β1x(t)

α1 + x(t)
− γ1 − 2g1x(t) − αy(t) − ez(t)]

+ β1x(t)(
α1Sxα2(t)

(α1 + x(t))2
) − αSyα2(t)x(t) − eSzα2(t)x(t),

S
′
yα2

(t) = Syα2(t)[
β2y(t)

α2 + y(t)
− γ2 − 2g2y(t) − βx(t)] − βSxα2(t)y(t)

+ β2y(t)[α2Syα2(t) − y(t)

(α2 + y(t))2
] − δ[ Syα2(t)z(t)

(1 + cy(t))2
+ Szα2(t)y(t)

1 + cy(t)
],

S
′
zα2

(t) = −β3Szα2(t) + εe[Sxα2(t − τ1)z(t − τ1) + Szα2(t − τ1)x(t − τ1)]
+ εδ[ Syα2(t − τ2)z(t − τ2)

(1 + cy(t − τ2))2
+ Szα2(t − τ2)y(t − τ2)

1 + cy(t − τ2)
].

(10.27)
We then solve (10.27) along with (10.3) to evaluate Sxα2

(t), Syα2
(t), and Szα3

(t); see
Fig. 10.7.
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Fig. 10.3 Numerical simulations of system (10.3) around the steady stateE∗. (top)E∗ is asymptoti-
cally stablewhen τ1 = 5.54 < τ ∗

1 and τ2 ∈ (0, τ ∗
2 ). (bottom)Hopf bifurcationwhen τ1 = τ ∗

1 = 4.34
and τ2 < τ ∗

2 = 5.34; the other parameter values are given in (10.28)

10.6 Numerical Simulations

Some numerical simulations of system (10.3) are carried out, in this section, to
confirm the obtained theoretical results.We first investigate the behavior of themodel
around E∗ with parameter values

α = 0.9, α1 = 0.001, α2 = 0.001, β = 1.35, γ2 = 1, γ1 = 1,

β1 = 2, β2 = 2, β3 = 1, ε = 0.5, e = 5, δ = 1.
(10.28)

Figure 10.3 shows the numerical simulations of the delayed system (10.3) around
the steady stateE∗. The interior steady stateE∗ is asymptotically stable when τ1 < τ ∗

1
and τ2 ∈ (0, τ ∗

2 ). The model undergoes a Hopf bifurcation when τ1 = τ ∗
1 = 4.34 and

τ2 < τ ∗
2 = 5.33. Figure 10.4 displays the Hopf bifurcation diagrams of τ1 & τ2,

which are obtained numerically by the maximum and minimum amplitudes of z(t)
. (left) Threshold parameter τ ∗

1 = 4.34 with τ2 < τ ∗
2 . (right) Threshold parameter

τ ∗
2 = 5.54 with τ1 < τ ∗

1 .
Figure 10.5 shows a bistability of two interior equilibrium points, for the DDEs

model (10.3) when parameter α varies from α = 0.5 to α = 0.9. If the interior equi-
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Fig. 10.4 Hopf bifurcation diagrams of τ1 and τ2, which are obtained numerically by maximum
and minimum amplitude of z(t). (left) The threshold parameter τ ∗

1 = 4.34 with τ2 < τ ∗
2 . (right)
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Fig. 10.5 Bistability of two interior equilibria for the delayed system (10.3), with α = 0.9 and
α = 0.5. Both equilibria are locally asymptotically stable, other parameter values are given in
(10.28)

libria exist, any trajectory starting from the interior of R3+ converges to one of the
interior equilibria.

Figure 10.6 shows the sensitivity of the dynamics of the system (10.3) due to
small changes in the severity of the Allee effect α1 and α2. The figures on the left
show the numerical simulations with different values of α1 ( 0.001 ≤ α1 ≤ 0.02)
and fixed value of α2 = 0.001, while the figures on the right show the simulations
with different values of α2 (0.01 ≤ α2 ≤ 0.02) and fixed value of α1 = 0.01. The
phase portrait gets stretched over time as α1 reduces, while low values of α2 increase
the oscillations over time. The presence of an Allee effect in the model enriches
the dynamics of the system. Figure 10.7 exhibits the absolute values of sensitivity
functions: |∂x(t)/∂α1,2|, |∂y(t)/∂α1,2|, and |∂z(t)/∂α1,2| to evaluate the sensitivity
of the state variables due to small perturbations in α1 and α2. The oscillation behav-
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Fig. 10.6 Sensitivity of the dynamics of the system (10.3) due to small changes in the severity of the
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values of α2 increase the oscillations over time
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Fig. 10.7 Sensitivity functions of the model solution of the system (10.3) with respect to Allee
parameters α1 and α2. (top) Sensitivity functions for x(t), y(t), and z(t) with respect to small
changes in Allee parameter α1. (bottom) Sensitivity with respect to α2. The figures show that the
model is very sensitive to the small perturbations of Allee parameters in early time intervals and
that the sensitivity decreases with time. The two parameters α1 and α2 are significant in the model
and have a significant impact in the early stages of interactions
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ior indicates that the species population is very sensitive to small changes in the
parameter. It is clear that α1 and α2 are important in the model and have a significant
impact on the dynamics, especially in the early stages of interaction. However, the
sensitivity to these parameters decreases with time.

10.7 Concluding Remarks

In this chapter, we have established a two-prey one-predator model with time-delays
and a weak Allee effect in the preys’ growth functions, where there is a direct compe-
tition between prey populations. Although the model is simple, the system exhibits
rich dynamic behavior such as bistability of equilibria, Hopf bifurcation, period-
doubling chaos, etc. Non-negativity and boundedness of the solutions have been
investigated. Some new sufficient conditions for local and global asymptotic stabil-
ity of interior steady states have been deduced. In addition, Hopf bifurcation with
respect to time-delays threshold parameters τ ∗

1 and τ ∗
2 have been studied. The model

undergoes a Hopf bifurcation when time-delays pass through its critical values. We
also investigated the sensitivity ofmodel solutions to small perturbations in the sever-
ity of the Allee effect α1 and α2. The obtained results confirm that the Allee effect
has a significant impact on the system dynamics in the early stages of interaction. It
has been seen by the numerical simulations that time-delay and Allee effect play an
important role in the dynamics of prey-predator systems. Introducing time-delay and
Allee effect in the model improves the stability results and enriches the dynamics of
the system, keeps the population densities in balance, and brings the model closer to
reality.

In the next two chapters, we extend the analysis and consider DDEs with
fractional-order derivatives to represent long-range temporal memory in the model.
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Chapter 11
Fractional-Order Delay Differential
Equations with Predator-Prey Systems

11.1 Introduction

Mathematical models using differential equations with integer order have proved
valuable in understanding the dynamics of biological systems. However, most bio-
logical, physical, and engineering systems have long-range temporal memory [1–4]
and/or long-range space interactions [5–7]. Modeling such systems using fractional-
order differential equations is more advantageous than classical integer-order math-
ematical modeling, in which the effects of existence of time memory or long-range
space interactions are neglected.Moreover, the fractional-order derivative is related to
thewhole space for a physical process, whereas the integer-order derivative describes
the local properties of a certain position. Accordingly, the subject of fractional calcu-
lus (i.e., calculus of integral and derivatives of arbitrary order) has gained popularity
and importance, mainly due to its demonstrated applications in numerous diverse
and widespread fields of science and engineering. It has been successfully applied to
system biology [3, 8–11], physics [12–15], chemistry and biochemistry [16], hydrol-
ogy [17, 18], engineering [19, 20], medicine [21–23], and finance [24]. Examples of
fractional-order systems in modeling and control can be found in [25–27]. In most
cases, the fractional-order differential equations (FODEs) models seem more con-
sistent with the real phenomena than integer-order models. This is because fractional
derivatives and integrals enable the description of the memory and hereditary prop-
erties inherent in various materials and processes that exist within most biological
systems.

Inmost biological systems time-lags or -delays exist intrinsically, such as predator-
prey (PP) systems, where the predator needs time to mature [28–32]. Considerable
attention has been given to study and investigate the different types of PPmodels due
to their universal existence and importance. However, most such models have been
either studied using integer-order equations with delays or using fractional order
without delays [33, 34]. In this work, we combine the fractional-order with the delay
terms in the model to describe the complex systems of PP interactions with memory
effects. We also study the stability properties of such models.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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In [28], the authors addressed the existence and global stability of a periodic solu-
tion for a discrete PP system with the functional response and predator cannibalism,
whereas a global analysis of Holling type II PP model with a constant prey refuge is
presented in [30]. In [32], a Holling-Tanner PP model with time-delay is considered.
By regarding the delay as the bifurcation parameter, the local asymptotic stability of
the positive equilibrium is investigated. In [31], a delayed stage-structured PP model
with non-monotone functional responses is proposed. It is assumed that immature
individuals and mature individuals of the predator are divided by a fixed age and that
immature predators do not have the ability to attack prey. In [29], the main feature
is that the authors introduce time-delay and pulse into the PP (natural enemy-pest)
model with age structure, exhibit a new modeling method that is applied to investi-
gate impulsive DDEs, and give some reasonable suggestions for pest management.
Next, we present fractional-order with time-delay in the system that allows greater
degrees of freedom in the model and in describing systems with long-time memory,
such as PP dynamics.

Despite these various applications of fractional calculus, there are some impor-
tant challenges, such as numerical approximation and the physical interpretation,
for the fractional derivative. Fractional differential equations are integro-differential
equations and their numerical solution requires large computer memory and long
runs of numerical simulations; this makes it very difficult to investigate the general
properties of fractional dynamical systems. As a consequence, accurate approxima-
tion and a suitable numerical technique play an important role in identifying the
solution behavior of such fractional equations and in exploring their applications
(see, e.g., [35–37] and the references therein). Recently, an increasing number of
investigators have been studying the qualitative properties and numerical solutions
of fractional-order biological models [38, 39].

Motivated by the above, in this chapter, we suggest a fractional-order PP model
with a feeding rate of delayed saturated form for the prey population. We study the
qualitative behavior of the model using local and global stability of the equilibrium
points and present conditions in the time-delay τ in which the model is stable. Hopf
bifurcation analysis is also addressed and the results of simulation scenarios are
presented. We also present suitable implicit schemes for the numerical treatments of
such types of fractional-order delay differential equations (FODDEs). The organiza-
tion of this chapter is as follows. In Sect. 11.2, we describe the model. In Sects. 11.3
and 11.4, we present local and global stability of equilibrium states, respectively.
In Sect. 11.5, we provide an unconditional stable numerical method for FODDEs
along with some numerical examples. Section11.6 provides a brief discussion and
concluding remarks about the obtained results.

11.1.1 Preliminaries

The are different definitions of fractional order are Riemann-Liouville, Grunwald-
Letnikov,Weyle,Marchaud, Jumarie,Hadamard, andCaputo sense. TheCaputo frac-
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tional operator provides flexibility to the physical, biological models to attain the dif-
ferent considerable dynamical behaviors and chance to know the better understand-
ing for the model dynamics Moreover, the Caputo fractional-order system allows the
local initial values to be included in a proper way, well understandable features of
physical situations, frequently applied to tackle real-world problems.

Definition 11.1 ([40]) Caputo derivative of fractional-order α for a function f (t) is
defined by

Dα f (t) = 1

�(n − α)

∫ t

0
(t − τ)n−α−1 f n(τ )dτ, (11.1)

where n − 1 < α < n ∈ Z
+, �(·) is the Gamma function.

The Laplace transform of Caputo fractional-order derivative is defined as follows:

L{Dα f (t); s} = sαF (s) −
n−1∑
i=1

sα−i−1 f (i)(0) (11.2)

where F (s) = L{ f (t)}. In particular, when f (i)(0) = 0, i = 1, 2, . . . , n − 1, then
L{Dα f (t); s} = sαF (s).

Remark 11.1 For 0 < α ≤ 1, the fractional-order derivative defined based on
Caputo sense (see Definition11.1), the memory effects in dynamical systems is
described by using a convolution integral with power-lawmemory kernel. The mem-
ory kernel (time correlation function) decaying rate depends on fractional order α.
The lower value of α corresponds to more slowly decaying long memory (time-
correlation functions). Then, α → 1, the influence of memory decreases.

For given the following m-dimensional fractional-order system

Dα1x1(t) = a11x1(t − τ11) + a12x2(t − τ12) + · · · + a1mxm(t − τ1m)

Dα2x2(t) = a21x1(t − τ21) + a22x2(t − τ22) + · · · + a2mxm(t − τ2m)

...

Dαm xm(t) = am1x1(t − τm1) + am2x2(t − τm2) + · · · + ammxm(t − τmm)

(11.3)

where 0 < αi < 1 (i = 1, 2, . . . ,m). The smooth initial conditions xi (t) =
ψi (t), t ∈ [−max

i, j
τi j , 0] , i, j = 1, 2, . . . ,m. The state variables x(t), x(t − τi j ) ∈

R. Taking Laplace transform for both sides of (11.3), yields
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sα1 X1(s) − sα1−1ψ1(0) = a11e
−sτ11

(
X1(s) +

∫ 0

−τ11

e−stψ1(t)dt

)
+ a12e

−sτ12

(
X2(s)

+
∫ 0

−τ12

e−stψ2(t)dt

)
+ · · · + a1me

−sτ1m

(
Xm (s) +

∫ 0

−τ1m

e−stψm (t)dt

)

sα2 X2(s) − sα2−1ψ2(0) = a21e
−sτ21

(
X1(s) +

∫ 0

−τ21

e−stψ1(t)dt

)
+ a22e

−sτ22

(
X2(s)

+
∫ 0

−τ22

e−stψ2(t)dt

)
+ · · · + a2me

−sτ2m

(
Xm (s) +

∫ 0

−τ2m

e−stψm (t)dt

)

.

.

.

sαm Xm (s) − sαm−1ψm (0) = am1e
−sτm1

(
X1(s) +

∫ 0

−τm1

e−stψ1(t)dt

)
+ am2e

−sτm2

(
X2(s)

+
∫ 0

−τm2

e−stψ2(t)dt

)
+ · · · + amme

−sτmm

(
Xm (s) +

∫ 0

−τmm

e−stψm (t)dt

)

(11.4)

where Xi (s) is the Laplace transform of xi (t). This system can be written in a matrix
form

�(s) ·

⎡
⎢⎢⎢⎣

X1(s)
X2(s)

...

Xm(s)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1(s)
b2(s)

...

bm(s)

⎤
⎥⎥⎥⎦ . (11.5)

We call �(s) a characteristic matrix of the system

�(s) =

⎡
⎢⎢⎢⎣

sα1 − a11e−sτ11 −a12e−sτ12 . . . −a1me−sτ1m

−a21e−sτ21 sα2 − a22e−sτ22 . . . −a2me−sτ2m

...
...

. . .
...

−am1e−sτm1 −am2e−sτm2 . . . sαm − amme−sτmm

⎤
⎥⎥⎥⎦ (11.6)

and

b1(s) =sα1−1ψ1(0) + a11e
−sτ11

∫ 0

−τ11
e−stψ1(t)dt + a12e

−sτ12
∫ 0

−τ12
e−stψ2(t)dt

+ · · · + a1me−sτ1m
∫ 0

−τ1m
e−stψm (t)dt

b2(s) =sα2−1ψ2(0) + a21e
−sτ21

∫ 0

−τ21
e−stψ1(t)dt + a22e

−sτ22
∫ 0

−τ22
e−stψ2(t)dt

+ · · · + a2me−sτ2m
∫ 0

−τ2m
e−stψm (t)dt

.

.

.

bm (s) =sαm−1ψm (0) + am1e
−sτm1

∫ 0

−τm1
e−stψ1(t)dt + am2e

−sτm2
∫ 0

−τm2
e−stψ2(t)dt

+ · · · + amme−sτmm
∫ 0

−τmm
e−stψm (t)dt.
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Remark 11.2 Zero solution of system (11.3) is Lyapunov asymptotically stable if
all the roots of det(�(s)) = 0 have negative real parts.

11.2 Fractional Delayed Predator-Prey Model

Lotka [41] in 1925 andVolterra [42] in 1926 introduced the first PPmodel. After that,
many more complicated but realistic PP models, with various forms of “functional
responses,” have been formulated by ecologists and mathematicians. One of the
most popular PP models was introduced by Freedman [43] in 1980, which has the

Michaelis-Menten type orHolling type-II functional response
βx(t)y(t)

1 + σ x(t)
, where x(t)

and y(t) are the population densities of the prey and predator, respectively. β (units:
1/time) is the feeding rate, or the maximal predator per-capita consumption rate, i.e.,
the maximum number of preys that can be eaten by a predator in each time unit,
while σ (units: 1/prey) is a positive constant that describes the effects of capture rate.

The prey host population is assumed to have logistic growth r x(t)

(
1 − x(t)

K

)
with

carrying capacity K (in a closed community) and a specific growth rate constant r .
Then, the interactions between prey and predator with time-delay τ in the saturation
term takes the form

Dx(t) = r x(t)

(
1 − x(t)

K

)
− βx(t)y(t − τ)

1 + σ x(t)
,

Dy(t) = βx(t)y(t − τ)

1 + σ x(t)
− ay(t),

(11.7)

where τ is regarded as reaction time of the predations and a is a positive real number.
In system (11.7), it is assumed that each individual predator has the same ability to
feed on prey.

In this chapter, we extend the derivatives of (11.7) to an arbitrary order to investi-
gate the combination of both fractional-order formulation and time-delay in the same
model. Therefore, the model becomes

Dαx(t) = r x(t)

(
1 − x(t)

K

)
− βx(t)y(t − τ)

1 + σ x(t)

Dα y(t) = βx(t)y(t − τ)

1 + σ x(t)
− ay(t), 0 < α ≤ 1, t ≥ 0

(11.8)

with initial conditions x(0) > 0 and y(t) = ψ(t) > 0 when t ∈ [−τ, 0], where ψ(t)
is a smooth function. Next, we study the impact of the fractional-order and time-delay
τ in the dynamics of the model.

By choosing the delay τ as a bifurcation parameter, when it crosses some critical
values τ ∗, a Hopf bifurcation about the stability of interior equilibrium in (11.8) can
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occur, as we shall discuss in the next section. The fractional order grants the model
a greater degree of freedom and consistency with real interactions due to its ability
to provide an exact description of the non-linear phenomena.

11.3 Local Stability Analysis and Hopf Bifurcation

Consider the fractional-order systems of the form

Dαx(t) = f1(x, y), Dα y(t) = f2(x, y), α ∈ (0, 1],
x(0) = x0, y(0) = y0

(11.9)

with an equilibrium point (xe, ye). Therefore,

Lemma 11.1 The equilibrium point (xe, ye) of the fractional differential system
(11.9) is locally asymptotically stable if and only if all eigenvalues λi of the Jacobian
matrix

J =
(

∂ f1/∂x ∂ f1/∂y
∂ f2/∂x ∂ f2/∂y

)
,

evaluated at the equilibrium point (xe, ye), satisfy the condition that |arg(λi )| >
απ

2
[44] (see Fig.11.1).

Since it is known that systems with memory are typically more stable than their
memoryless counterparts, we expect that “fractional-order differential equations
are, at least, as stable as their integer-order counterpart.”

Fig. 11.1 Stability region of
the fractional-order system
(11.9) when 0 < α ≤ 1
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The equilibria of (11.8) are the points of intersections at which Dαx(t) = 0 and
Dα y(t) = 0. Thus, we arrive at the following proposition: For the model system
(11.8), there always exist trivial equilibriumE0 = (0, 0) and semi-trivial equilibrium
E1 = (K , 0). However, if the threshold parameter

R0 = K [β − σa]
a

> 1, (11.10)

there also exists an interior equilibrium E+ = (x∗, y∗), where

E+ = (x∗, y∗) =
(

a

β − σa
,
r x∗2

Ka
(R0 − 1)

)
. (11.11)

11.3.1 Trivial and Semi-trivial Equilibria and Their
Stabilities

The theorem matrix of the linearized system of model (11.8) is

J =
⎛
⎜⎝
r − 2r x∗

K
− βy∗

(1 + σ x∗)2
− βx∗

1 + σ x∗ e
−λτ

βy∗

(1 + σ x∗)2
βx∗

1 + σ x∗ e
−λτ − a

⎞
⎟⎠ (11.12)

Using (11.12), the characteristic equation1 at the trivial equilibrium pointE0 = (0, 0)
reduces to

(λα − r)(λα + a) = 0. (11.13)

Clearly, Eq. (11.13) has a positive root λα = r (0 < α ≤ 1). Then, the trivial equi-
librium E0 of system (11.8) is always unstable (saddle point). However, at the semi-
trivial equilibrium E1 = (K , 0), the Jacobian matrix (11.12) reduces to

Jsemi-trivial =
⎛
⎜⎝

−r − βK

1 + σK
e−λτ

0
βK

1 + σK
e−λτ − a

⎞
⎟⎠ (11.14)

with characteristic equation

(λα + r)

(
λα + a

[
1 − R0 + σK

1 + σK
e−λτ

])
= 0. (11.15)

1 We may note that the characteristic equation of a system with delay has infinite roots.
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It is obvious from Eq. (11.15) that the two roots are real and negative ifR0 < 1 (when
τ = 0) and the equilibrium E1 is then asymptotically stable. In case of τ > 0, we
assume that the root of (11.15) λ = ξ i must satisfy

ξ 2α = a2
[R0 + σK

1 + σK
− 1

]
< 0.

Then, when R0 < 1, there are no positive real roots ξ . Hence, according to Lemma
11.1, we can get the following theorem to indicate the stability of E1:

Theorem 11.1 IfR0 is defined by (11.10), then semi-trivial equilibriumE1 = (K , 0)
of system (11.8) is asymptotically stable when R0 < 1 (for all values of τ > 0),
unstable when R0 > 1, and linearly neutrally stable if R0 = 1.

11.3.2 Interior Equilibrium and Its Stability

Here, we investigate the linear stability of (11.8) at the interior equilibrium E+ =
(x∗, y∗) defined in (11.11). x∗ = a

β − σa
=⇒ βx∗

1 + σ x∗ = a, and y∗ = r x∗2

Ka
(R0 −

1) =⇒ βy∗

1 + σ x∗ = r

(
1 − 1

R0

)
.We also haveR0 = K

x∗ . Therefore, the correspond-

ing Jacobian matrix at the interior equilibrium E+ can be easily expressed in terms
of the reproduction number R0, as follows:

Jinterior =
⎛
⎝η11 −ae−λτ

r

1 + σ x∗
(
1 − 1

R0

)
ae−λτ − a

⎞
⎠ , (11.16)

whereη11 = r
(
1 − 2

R0

) − r

1 + σ x∗
(
1 − 1

R0

)
. The characteristic equation of (11.16)

for the interior equilibrium is

λ2α + λα

[
− r

(
1 − 2

R0

)
+ a(1 − e−λτ )

+ r

1 + σ x∗

(
1 − 1

R0

)]
+ a

[
− r

(
1 − 2

R0

)
(1 − e−λτ )

+ r

1 + σ x∗

(
1 − 1

R0

)]
= 0. (11.17)

We need to find the necessary and sufficient condition for every root of the charac-
teristic Eq. (11.17) having negative real part. Introducing
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�1 = r

(
1 − 2

R0

)
, �2 = r

1 + σ x∗

(
1 − 1

R0

)
, �3 = a. (11.18)

Then, the characteristic Equation (11.17) can be rewritten in the form

λ2α + λα(−�1 + �2 + �3) + �3(−�1 + �2) + e−λτ (−�3λ + �1�3) = 0.

For simplicity, let us also assume that

A1 = (−�1 + �2 + �3), A2 = �3(−�1 + �2),

A3 = �3, A4 = �1�3.
(11.19)

Then, Eq. (11.19) takes the form

λ2α + A1λ
α + A2 + e−λτ (−A3λ + A4) = 0. (11.20)

We establish the existence of the parameter value τ ∗ for which the equilibrium
solution undergoes two simultaneous Hopf bifurcations.

Theorem 11.2 Assume that Rc = 2 + 1/(1 + 2σ x∗). Then,

(1) the interior equilibriumE+ of system (11.8) is feasible and locally asymptotically
stable for all τ ≥ 0 if 1 < R0 ≤ Rc holds;

(2) if R0 > Rc > 1, then there exist τ ∗ > 0, such that τ ∈ [0, τ ∗) the interior equi-
librium E+ is asymptotically stable, and unstable when τ > τ ∗. When τ = τ ∗,
the characteristic equation (11.20) has a pair of purely imaginary roots ±iξα

0
with

ξ 2α
0 = 1

2
(2A2 + A2

3 − A2
1) + 1

2

√
(2A2 + A2

3 − A2
1)

2 − 4(A2
2 − A2

4),

and

τ ∗ = 1

ξ̄0
arccos

(
(A4 + A1A3)ξ

2
0 − A2A4

A2
3ξ

2
0 + A2

4

)
+ 2 jαπ

ξα
0

,

where A1, A2, A3 and A4 are defined in (11.19).

Proof If λ = ξ i is a root of (11.19). After substitution and separation of the real and
imaginary parts, we have

−ξ 2α + �3(−�1 + �2) = ξα�3 sin ξτ − �1�3 cos ξτ,

ξα(−�1 + �2 + �3) = �1�3 sin ξτ + ξ�3 cos ξτ,
(11.21)

which are equivalent to

−ξ 2α + A2 = ξαA3 sin ξτ − A4 cos ξτ,

ξαA1 = A4 sin ξτ + ξ A3 cos ξτ.
(11.22)
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Squaring and adding both equations yields

ξ 4α + ξ 2α(−�1 + �2)
2 + �2�

2
3(−2�1 + �2) = 0, (11.23)

which is equivalent to

ξ 4α − (2A2 + A2
3 − A2

1)ξ
2α + (A2

2 − A2
4) = 0. (11.24)

Equation (11.23) can also be re-written in the form

ξ 4α + ξ 2α[�2
1 + �2(−2�1 + �2)] + �2�

2
3(−2�1 + �2) = 0. (11.25)

Therefore, if−2�1 + �2 ≥ 0 (whenR0 > 1), then there is no positive real ξ satisfying
(11.23). According to the definitions given in (11.18), the inequality−2�1 + �2 ≥ 0,
which is equivalent toR0 ≤ 2 + 1/(1 + 2σ x∗) so that all the roots (λ = ξi ) of (11.17)
are negative.

However, if −2�1 + �2 < 0, then (11.25) has one and only one positive root
denoted by ξ0, and the characteristic equation (11.20) has a pair of purely imaginary
roots±iξ0. Let λ(τ) = σ(τ) + iξ(τ ) be the eigenvalue of (11.20), such that σ(τ ∗) =
0 and ξ(τ ∗) = ξ0. From (11.22), we have

τ ∗ = 1

ξ̄ α
0

arccos

(
(A4 + A1A3)ξ

2
0 − A2A4

A2
3ξ

2
0 + A2

4

)
+ 2 jαπ

ξα
0

(11.26)

and from (11.24)

ξ 2α
0 = 1

2
(2A2 + A2

3 − A2
1) + 1

2

√
(2A2 + A2

3 − A2
1)

2 − 4(A2
2 − A2

4) < 0.

Hence, according to Lemma 11.1, the interior equilibrium E+ of system (11.8) is
locally asymptotically stable with 0 < α ≤ 1. The proof is, thus, complete. �

11.4 Global Stability Analysis

In this section, we extend the analysis to study the global stability conditions [45,
46] for the fractional-order delay differential system. To study the global stability of
the equilibrium points of (11.8), we linearize the system into the form

Dαx(t) = m1x(t) + m2y(t − τ)

Dα y(t) = n1x(t) + n2y(t) + n3y(t − τ)
0 < α ≤ 1. (11.27)

where
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m1 = r − 2x∗

K
− βy∗

1 + σ x∗ + σβx∗y∗

(1 + σ x∗)2
,

m2 = − βx∗

1 + σ x∗ , n1 = βy∗

1 + σ x∗ − σβx∗y∗

(1 + σ x∗)2
,

n2 = −a, n3 = βx∗

1 + σ x∗ .

If the linear fractional differential equation has non-zero equilibrium point, we can
shift equilibrium point to the origin. Put x̄(t) = x(t) − x∗, ȳ(t) = y(t) − y∗, then
the Eqs. (11.27) become

Dα x̄(t) = m1 x̄(t) + m2 ȳ(t − τ)

Dα ȳ(t) = n1 x̄(t) + n2 ȳ(t) + n3 ȳ(t − τ)
0 < α ≤ 1. (11.28)

To study the stability of system (11.8), we take a Laplace transform [47] on both
sides of (11.28). Then, we have

sαX1(s) = m1X1(s) + sα−1ϕ1(0)

+ m2e
−sτ

(
X2(s) +

∫ 0

−τ

e−stϕ2(t)dt

)

sαX2(s) = n1X1(s) + n2X2(s) + sα−1ϕ2(0)

+ n3e
−sτ

(
X2(s) +

∫ 0

−τ

e−stϕ2(t)dt

)
.

(11.29)

Here, it should bementioned that the initial values x̄(t) = ϕ1(t) and ȳ(t) = ϕ2(t)with
t ∈ [−τ, 0]. Additionally, X1(s) and X2(s) are Laplace transforms of x̄(t) and ȳ(t)
with X1(s) = L(x̄(t)) and X2(s) = L(ȳ(t)). The system (11.29) can be rewritten as
follows:

�(s)

(
X1(s)
X2(s)

)
=

(
k1(s)
k2(s)

)
(11.30)

in which

�(s) =
(
sα − m1 −m2e−sτ

−n1 sα − n2 − n3e−sτ

)

and

k1(s) = sα−1ϕ1(0) + m2e−sτ
∫ 0
−τ

e−stϕ2(t)dt

k2(s) = sα−1ϕ2(0) + n3e−sτ
∫ 0
−τ

e−stϕ2(t)dt.
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�(s) is considered as characteristic matrix of system (11.8) and det�(s) as its
characteristic polynomial. Therefore, the distribution of the eigenvalues of the char-
acteristic polynomial determines the stability of the system (11.8). In other words,
if all roots of the characteristic equation have negative parts, then the equilibrium of
the above fractional-order PP system is Lyapunov globally asymptotical stable if the
equilibrium exists [45]. If we multiply both sides of (11.30) by s, we have

�(s)

(
sX1(s)
sX2(s)

)
=

(
sk1(s)
sk2(s)

)
(11.31)

Therefore, if all roots of the transcendental equation det�(s) = 0 lie in the open
left complex plane, i.e., Re(s) < 0, then we consider (11.31) in Re(s) ≥ 0. In this
restricted area, system (11.31) has a unique solution (sX1(s), sX2(s)), so that

lim
s→0,Re(s)≥o

sXi (s) = 0, i = 1, 2.

From the assumption of all roots of the characteristic equation det�(s) = 0 and the
final-value theorem of the Laplace transform [47], we get

lim
t→+∞ x̄(t) ≡ lim

s→0,Re(s)≥0
sX1(s) = 0,

and lim
t→+∞ ȳ(t) ≡ lim

s→0,Re(s)≥0
sX2(s) = 0.

It implies that the zero solution of the fractional-order PP system isLyapunovglobally
asymptotically stable. Therefore, we arrive at the following result:

Theorem 11.3 If all the roots of the characteristic equation det�(s) = 0 have neg-
ative real parts, then the positive equilibrium points (x∗, y∗) of system (11.8) is
Lyapunov globally asymptotically stable.

11.5 Implicit Euler’s Scheme for FODDEs

Sincemost FODEs do not have exact analytical solutions, approximation and numer-
ical techniques must be used. In addition, most of the resulting biological systems are
stiff.2 The stiffness often appears due to the differences in speed between the fastest
and slowest components of the solutions and due to stability constraints. In addition,
the state variables of these types of models are very sensitive to small perturbations
(or changes) in the parameters that occur in the model. Therefore, efficient use of a
reliable numerical method for dealing with stiff problems is necessary.

Consider the following FODDEs:

2 One definition of stiffness is that the global accuracy of the numerical solution is determined by
stability rather than local error and implicit methods are more appropriate for it.
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Dα y(t) = f (t, y(t), y(t − τ)), t ∈ J = [0, T ],
y(t) =ψ(t), t ∈ [−τ, 0], 0 < α ≤ 1.

(11.32)

Here y(t) = [y1(t), y2(t), . . . , yn(t)]T , f : J × R
n × R

n → R
n satisfies the Lips-

chitz condition, and there exists a positive constant K > 0 such that

‖ f (t, y(t), y(t − τ)) − f (t, x(t), x(t − τ))‖
≤ K {‖y(t) − x(t)‖ + ‖y(t − τ) − x(t − τ)‖}. (11.33)

Theorem 11.4 Problem (11.32) has a unique solution provided that the Lipschitz

condition (11.33) is satisfied and M̄ = 2KTα

�(α + 1)
< 1.

Proof We can apply a fractional integral operator to the differential equation (11.32)
and incorporate the initial conditions, thus converting the equation into the equivalent
equation

y(t) = ψ(0) + 1

�(α)

∫ t

0
(t − s)α−1 f (s, y(s), y(s − τ))ds, (11.34)

which is also a Volterra equation of the second kind. Define the operator L :
C(J,Rn) → C(J,Rn), such that

Ly(t) = ψ(0) + 1

�(α)

∫ t

0
(t − s)α−1 f (s, y(s), y(s − τ))ds. (11.35)

Then, we have

‖Ly(t) − Lx(t)‖
≤ 1

�(α)

∫ t

0
(t − s)α−1 × ‖ f (s, y(s), y(s − τ)) − f (s, x(s), x(s − τ))‖ds

≤ K

�(α)

∫ t

0
(t − s)α−1{‖y(s) − x(s)‖ + ‖y(s − τ) − x(s − τ)‖}ds

≤ K

�(α)

∫ t

0
(t − s)α−1

{
sup
s∈J

‖y(s) − x(s)‖ + sup
s∈[−τ,0]

‖y(s) − x(s)‖ + sup
s∈J

‖y(s) − x(s)‖
}
ds

≤ 2K

�(α)

∫ t

0
(t − s)α−1 sup

s∈J
‖y(s) − x(s)‖ds

≤ 2K

�(α + 1)
‖y − x‖Tα.

Therefore, we obtain

‖Ly(t) − Lx(t)‖ ≤ M̄‖y − x‖.
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Using Banach contraction principle [48], we can deduce that L has a unique fixed
point; this implies that our problem has a unique solution. �

Several numerical methods have been proposed to solve fractional-order differ-
ential equations (FODEs) [36, 49]. The predictor-corrector algorithm is an efficient
and powerful technique for solving FODEs, which is a generalization of the Adams-
Bashforth-Moulton method. The modification of the Adams-Bashforth-Moulton
algorithm is proposed by Diethelm [50] to approximate the fractional-order deriva-
tive (See Appendix B). However, the converted Volterra integral equation (11.34)
has a weakly singular kernel, such that regularization is not necessary anymore. It
appears that there exists only a very small number of software packages for non-linear
Volterra equations. In our case, the kernel may not be continuous and, therefore, the
classical numerical algorithms for the integral part of (11.34) are unable to handle the
solution of Equation (11.32). Therefore, we implement the implicit Euler’s scheme
to approximate the fractional-order derivative.

Given the delay fractional-order model (11.32) and mesh points T = {t0, t1,
. . . , tN }, such that t0 = 0 and tN = T with stepsize h = τ/m. If ψ(t) is a con-
tinuous function, then the solution y(t) for 0 ≤ t ≤ τ (τ is bounded) satisfies the
fractional-order ordinary differential equation

Dα y′(t) = f (t, y(t), ψ(t − τ)), 0 ≤ t ≤ τ,

y(0) = ψ(0) 0 < α ≤ 1.
(11.36)

This equation has a unique solution, where f satisfies Lipschitz conditions and the
solution of (11.36) on [0, τ ] coincides with the solution of (11.32) on [0, τ ]. Once
the solution y is known on [0, τ ], we can repeat the same procedure, starting with
the solution on [0, τ ], to find the solution for τ ≤ t ≤ 2τ , etc. This procedure is
called method of steps,3 and yields a unique defined solution of the resulting system
of FODDEs (11.32), given the initial function ψ(t) on [0, τ ]. Therefore, FODDEs
(11.32) can be numerically solved by a step-by-step fractional-order ODE integrator
provided that the solution is known up to the current integration point.

Next, we will approximate the fractional derivative by a simple quadrature for-
mula, using the Caputo fractional derivative (11.1) of order α, 0 < α ≤ 1, and using
implicit Euler’s approximation as follows (see [37]):

Dα∗ xi (tn) = 1

�(1 − α)

∫ t

0

dxi (s)

ds
(tn − s)−αds

≈ 1

�(1 − α)

n∑
j=1

∫ jh

( j−1)h

[
x j
i − x j−1

i

h
+ O(h)

]
(nh − s)−αds

= 1

(1 − α)�(1 − α)

n∑
j=1

{[
x j
i − x j−1

i

h
+ O(h)

]
× [

(n − j + 1)1−α − (n − j)1−α
]}

h1−α

3 Method of steps is not universal, as it cannot be applied with time-varying delays, which vanish
in some points.
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= 1

(1 − α)�(1 − α)

1

hα

n∑
j=1

[
x j
i − x j−1

i

]
× [

(n − j + 1)1−α − (n − j)1−α
]

+ 1

(1 − α)�(1 − α)

n∑
j=1

[
x j
i − x j−1

i

]
× [

(n − j + 1)1−α − (n − j)1−α
]
O(h2−α).

Setting

G(α, h) = 1

(1 − α)�(1 − α)

1

hα
,

and ωα
j = j1−α − ( j − 1)1−α, (where ωα

1 = 1),
(11.37)

then the first-order approximation method for the computation of Caputo’s fractional
derivative is given by the expression

Dα
∗ xi (tn) = G(α, h)

n∑
j=1

ωα
j

(
xn− j+1
i − xn− j

i

)
+ O(h). (11.38)

From the analysis and numerical approximation, we also arrive at the following
proposition:

Proposition 11.1 The presence of a fractional differential order in a differential
equation can lead to a notable increase in the complexity of the observed behavior,
and the solution continuously depends on all previous states.

11.5.1 Stability and Convergence of Implicit Scheme for
FODDEs

In this section, we prove that the fractional-order implicit difference approximation
(11.38) is unconditionally stable. It then follows that the numerical solution converges
to the exact solution as h → 0. To study the stability of the numerical method, let us
consider a test problem of a linear scalar fractional differential equation

Dα
∗ u(t) = ρ0u(t) + ρ1u(t − τ), t ≥ 0, 0 < α ≤ 1

u(t) = ψ(t), t ∈ [−τ, 0], u(0) = u0
(11.39)

such that ρ0 < 0, |ρ1| < ρ0 and ψ(t) is a continuous and bounded function.

Theorem 11.5 The fully implicit numerical approximation (11.38), to test problem
(11.39) for all t ≥ 0, is consistent and unconditionally stable.

Proof We assume that τ = mh and the approximate solution of (11.39) is of the
form u(tn) ≈ Un ≡ ζn , and u(tn − τ) ≈ ζn−m ; then, the Eq. (11.39) can be reduced
to
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(
1 − ρ0

Gα,h

)
ζn = ζn−1 +

n∑
j=2

ω
(α)
j

(
ζn− j − ζn− j+1

) + ρ1ζn−m/Gα,h, n ≥ m (11.40)

and

(
1 − ρ0

Gα,h

)
ζn = ζn−1 +

n∑
j=2

ω
(α)
j

(
ζn− j − ζn− j+1

)

+ρ1ψ(tn−m)/Gα,h , n = 2, . . .m.

(11.41)

Therefore,

ζn =
ζn−1 +

n∑
j=2

ω
(α)
j

(
ζn− j − ζn− j+1

) + ρ1ζn−m/Gα,h

(
1 − ρ0

Gα,h

) , n ≥ 2. (11.42)

Since
(
1 − ρ0

Gα,h

) ≥ 1 for all Gα,h , then

ζ1 ≤ ζ0, (11.43)

ζn ≤ ζn−1 +
n∑
j=2

ω
(α)
j

(
ζn− j − ζn− j+1

)
, n ≥ 2. (11.44)

Thus, for n = 2, the above inequality implies

ζ2 ≤ ζ1 + ω
(α)
2

(
ζ0 − ζ1

)
.

Using the relation (11.43) and the positivity of the coefficients ω2, we get

ζ2 ≤ ζ1.

Repeating the process, we have from (11.44)

ζn ≤ ζn−1 +
n∑
j=2

ω
(α)
j

(
ζn− j − ζn− j+1

) ≤ ζn−1,

since each term in the summation is negative. Thus, ζn ≤ ζn−1 ≤ ζn−2 ≤ · · · ≤ ζ0.
With the assumption that ζn = |Un| ≤ ζ0 = |U 0|, which entails ‖Un‖ ≤ ‖ψ(t0)‖
and we have stability. �

Of course, this numerical technique can be used both for linear and for non-linear
problems, and it may be extended to multi-term FODDEs as well.
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11.5.2 Numerical Simulations

In this subsection, to verify the effectiveness of the obtained results, some numeri-
cal simulations for the fractional-order PP system (11.8) have been conducted. All
the differential equations are solved using the method proposed in this chapter. In
all numerical runs, the solution has been approximated using the parameter values
given in the captions of the figures. Figures11.2, 11.3 and 11.4 show the numerical
simulations of model (11.8), with different values of the model parameters given
in the corresponding captions. According to the obtained analysis, Fig. 11.2 shows
that the numerical simulations of the model, for particular values of the parameters,
admit limit cycles, whereas Fig. 11.3 shows that periodic solutions arise due to Hopf
bifurcation. When the reproduction number R0 < 1, the semi-trivial equilibrium is
stable (see Fig. 11.4); however, whenR0 > 1, the semi-trivial equilibrium is unstable
and interior equilibrium exists. The interior equilibrium is stable if 1 < R0 ≤ Rc and
a sustained periodic solution is obtained when R0 > Rc.

It has been seen that the fractional derivative damps the oscillation behavior of
the model (see Figs. 11.5, 11.6, 11.7 and 11.8).

Remark 11.3 For α ∈ (0, 1] the fractional order is defined by Caputo sense (11.1)
so that introducing a convolution integral with a power-law memory kernel is useful
to describe memory effects in dynamical systems. The decay rate of the memory
kernel (a time correlation function) depends on α. A lower value of α corresponds
to more slowly decaying time-correlation functions (long memory) [51]. Therefore,
as α → 1, the influence of memory decreases. Therefore, in the above figures, we
observe that the phase portrait gets stretched as the order of the derivative is reduced.
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Fig. 11.2 Solution of PPmodel (11.8)when r = 0.8, k = 5, σ = 0.01,β = 0.5; a = 0.3, andR0 >

Rc > 1 with time-lag τ = 0.1 < τ ∗ (top) and τ = τ ∗ = 0.86 (bottom), which display periodic
outbreak of the disease due to a Hopf bifurcation when τ = τ ∗
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Fig. 11.3 Solution of PP model (11.8), when r = 0.2, k = 5, σ = 0.01, β = 0.2; a = 0.2, and
R0 = 4.7 > Rc = 3with time-lag τ = 0.01 < τ ∗ (top) and τ = 12 (bottom),whichdisplayperiodic
outbreak of the disease due to a Hopf bifurcation when τ = τ ∗
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Fig. 11.4 Solution of delayed PP model (11.8). We have asymptotically stable semi-trivial equi-
librium E1 = (K , 0) when R0 < 1, with r = 0.2, K = 5, σ = 0.01, β = 0.2, a = 1; and τ = 1

11.6 Concluding Remarks

In this chapter, we have introduced a fractional-order PP model with time-delay in
the response function.We have also studied local stability and global stability behav-
iors of all the feasible equilibrium states of the system. It has been found that Hopf
bifurcation occurs when the delay passes through a sequence of critical values τ ∗,
with fractional order 0 < α ≤ 1. We derived the conditions in terms of the threshold
parameter R0, which guarantees the asymptotic stability of the semi-trivial and inte-
rior equilibria.WhenR0 < 1, the semi-trivial equilibriumE1 is asymptotically stable
for all values of τ > 0 and unstable when R0 > 1. If all roots of the characteristic
equation have negative parts, then the zero solution of the fractional-order delay PP
system is Lyapunov globally asymptotical stable. If R0 > Rc > 1, then there exists
τ ∗ > 0 such that τ ∈ [0, τ ∗) the interior equilibrium E+ is asymptotically stable, and
unstable when τ > τ ∗.
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Fig. 11.5 Solution of PP model (11.8) when r = 0.2, k = 5, σ = 0.01, β = 0.2; a = 0.2, and
R0 = 4.7 > Rc = 3with time-lag τ = 0.01 < τ ∗ (top) and τ = 12 (bottom),whichdisplayperiodic
outbreak of the disease due to a Hopf bifurcation when τ = τ ∗
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Fig. 11.6 The behavior of the PP model (11.8) with different fractional-order 0 < α ≤ 1, with the
same parameter values of Fig. 11.5. The fractional derivative damps the oscillation behavior
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Fig. 11.7 The behavior of the PP model (11.8) with different initial conditions τ = 0.2 < τ ∗. The
fractional derivative damps the oscillation behavior

0 0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Prey

P
re

yd
at

or

α=1

0 0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

Prey

P
re

yd
at

or
α=0.85

Fig. 11.8 The behavior of the PP model (11.8) with different initial conditions and τ = 1 > τ ∗.
The fractional derivative damps the oscillation behavior

We also introduced a suitable numerical method based on an implicit scheme
for FODDEs. The numerical simulations demonstrate the accuracy and efficiency of
the numerical scheme. Fractional-order models with time-delay are consistent with
the dynamics of real PP interactions. We have seen from the numerical simulations
that the fractional derivative improves the stability of the solutions and sometimes
dampens the oscillation behavior of the solutions.

In the next chapter, we extend the analysis to investigate the dynamics of HCV
infection using FODDEs.
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Chapter 12
Fractional-Order Delay Differential
Equations of Hepatitis C Virus

12.1 Introduction

In this chapter, we investigate a fractional-order delay differential model reflecting
the dynamics of Hepatitis C virus (HCV) replication in the presence of interferon-α
treatment. We consider a fractional order in the model to represent the intermediate
cellular interactions and intracellular delay of the viral life cycle and incorporate
a discrete time-delay to justify the short-run memory. The fractional order is also
considered with existing model parameters to unify the units of the differential equa-
tions. We analyze the steady states and dynamical behavior of the model. We deduce
a threshold parameter R0 (average number of newly infected cells produced by a
single infected cell) in terms of the treatment efficacy parameter 0 ≤ ε < 1 and other
parameters. The numerical simulations confirm that the suggested model with frac-
tional order and time-delay can provide accurate description of non-linear biological
systems with memory. The analyses presented here will give the reader an insight
into the dynamics of HCV infection.

HCV is an infectious disease that spreads through blood contact. It is estimated
that about 200 million individuals have been infected by HCVworldwide [1]. About
50–80% of HCV infected cases are chronic in nature [2]. Of these chronic cases,
about 10–20% develop into liver cirrhosis of which, about 5% develop hepatocellu-
lar carcinoma. The extent of prevalence of HCV varies widely across geographical
locations. In most countries, the transmission of HCV occurs primarily through
injecting drug use (IDU), which is mainly associated with the sharing of contami-
nated syringes/needles. Moreover, the absence of reliable screening for HCV among
blood donors remains a major challenge in combating the spread of the disease in
Eastern countries [3]. Geographically, HCV genotypes 1, 2, and 3 occur globally,
whereas infection with HCV genotypes 4 and 5 occurs mainly in Africa, and HCV
genotype 6 appears mainly in Asia [4]. Many mathematical epidemic models quan-
tify the transmission of HCV among IDUs in the population. These models provide
alternative means to define the problems, organize our thoughts, understand the data,
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communicate, test our understanding, and help in making predictions among groups
[5]. Currently, there is a motivation for further study of the dynamics and mathemat-
ical modeling of HCV on a cellular level; see [6] and references therein.

Mathematical models using ODEs with integer order have proved valuable in
understanding the dynamics ofHCV infections on a cellular level or in one host [7, 8].
Most of these models have been restricted to the short-term dynamics of the systems.
One of the earliest models was proposed by Neumann et al. [9], who examined the
dynamics of HCV in the presence of interferon-α treatment. They found that the
primary role of interferon-α is in blocking the production of virions from the infected
hepatocytes. Dahari et al. [7], in a subsequent and improved model, considered the
homeostatic mechanisms for the liver by incorporating a growth function.

However, classical mathematical models with integer orders ignore the interme-
diate cellular interactions and memory effects. For example, the kinetics of the viral
decline in patients responding to interferon-α is characterized by bi-phase shape
following a delay of approximately 8–9h, likely to be the sum of interferon-α phar-
macokinetics and pharmacodynamics aswell as the intracellular delay of the viral life
cycle [10]. Therefore, modeling of the biological systems using fractional-order dif-
ferential equations is more advantageous than classical integer-order mathematical
modeling, in which such effects are neglected [11–13].

Fractional-order differential equations are naturally related to systems with mem-
ory, which are found in most biological systems [14–16]. Moreover, all biological
models have long-range historical memory or after-effects (such as delay due to
incubation time for vectors to become infectious). A fractional-order optimal control
problem for HIV-immune system is proposed in [17]. Rihan and Velmurugan, in
[18], proposed a delay differential model with fractional order for tumor immune
systems with external treatment. They investigated the necessary and sufficient con-
ditions for stability of the steady states and Hopf bifurcation, with respect to two
different tumor time-delays. A fractional-order model of cytotoxic T lymphocyte
response with long-term behavior of tumor growth and with tumor elimination was
investigated in [19]. In [12], a fractional dynamical system of predator-prey with
Holling type-II functional response and time-delay was studied. It was deduced in
[20] that the membranes of cells of a biological organism have fractional-order elec-
trical conductance, and they were then classified into groups of non-integer order
models.

In this chapter, we propose a system of fractional-order delay differential equa-
tions (FODDEs) for modeling the dynamics of HCV to capture, as accurately as
possible, the dynamics of the target cell population: uninfected target cells, infected
cells, and viral load in presence of antiviral interferon-α drugs. We assume here
that the target cells of the model are hepatocytes. The organization of the chapter
is as follows: In Sect. 12.2, we propose a fractional-order delay model of HCV. In
Sect. 12.3,we investigate the local stability of the steady states. Section12.4 discusses
the global asymptotic stability of infection-free steady state. In Sect. 12.5, we pro-
vide some numerical simulations and investigate the validity of the model by fitting
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the model to available data for HCV RNA production For a decay profile case and
a chronically infected case during treatment with interferon-α using least-squares
approach. We then conclude the chapter in Sect. 12.6.

12.2 Mathematical Model of HCV

The model that we consider for HCV infection is based on a three-dimensional
model given by Dahari et al. [7] and the model by Neumann et al. [9]. They assumed
a simplified view of HCV infection and described the response to interferon therapy
through the coupled evolution of three populations: the uninfected hepatocytes, the
productively infected hepatocytes, and the free HCV virions, with the following
ODEs:

DH = s − μ1H − k1V H,

DI = k2V H − μ2 I,

DV = μα
3 I − μ4V .

(12.1)

Here, D ≡ d

dt
, H = H(t) represents the concentration of uninfected (healthy) hep-

atocytes, I = I (t) is the concentration of infected hepatocytes, and V = V (t) is the
concentration of free HCV at time t . The model assumes that uninfected hepatocytes
are produced at a constant rate of s, die at rate of μα

1 per cell, and are infected at a
constant rate k1. Infected hepatocytes are lost at a rate of μα

2 per cell. The HCV V
is assumed to infect the hepatocytes at a rate k1; thereby, producing infected hepato-
cytes I . kα

2 is the rate at which infected cells become actively infected. Viral particles
(virions) are produced at a rate μα

3 per infected hepatocyte and cleared at a rate of
μα
4 per virion.
The literature reveals thatmostmathematicalmodels of viral-immune interactions

are based either on ODEs or DDEs with integer order. Indeed, combining both time-
delays and fractional-order in the biological systems gives it more degree of freedom
and consistency [18, 21]. Herein, we modify the above standard model to include
a time-delay to describe the time between an HCV or infected cell contacting an
uninfected hepatocyte and the emission of new active HCV. We also replace the
integer order by a fractional-order α (0.5 < α ≤ 1) to the system to naturally relate
the system with memory that exists in viral life cycle and to describe long-range
interaction of the disease [22]. Moreover, the parameters of the modified model will
also depend on the fractional-order to unify the units of the differential equations.
The modified model with logistic proliferation of uninfected hepatocytes takes the
form
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DαH(t) = sα − μα
1H(t) + rαH(t)

(
1 − H(t) + I (t)

Hmax

)
− kα

1 V (t)H(t),

Dα I (t) = kα
2 e

−μα
1 τV (t − τ)H(t − τ) − μα

2 I (t),

DαV (t) = (1 − ε)μα
3MI (t) − kα

1 V (t)H(t) − μα
4V (t).

(12.2)

with initial conditions H(t) = ψ1(t) for t < 0 and H(0) = H0 > 0, V (t) = ψ2(t)
for t < 0 and I (0) = I0 > 0, and V (0) = V0 > 0. It should be mentioned that the
left sides of all equations of the system have dimension t ime−α . To make the sys-
tem more consistent with reality, we must ensure that the right-hand sides of these
equations have the same dimensions. Therefore, we need to modify the right-hand
sides to make the dimensions match. We assume that the uninfected hepatocytes H

are being produced at a rate sα and proliferate logistically
(
1 − H + I

Hmax

)
at a rate rα ,

accompanied by a natural death rate ofμα
1 , and that Hmax is the maximum hepatocyte

count in the liver. We assume that the proliferation of infected cells is neglected and
that physiological conditions μα

1Hmax > s, r > μα
1 . In the absence of any kind of

treatment, the infected hepatocytes produce HCV at a rate μα
3 , which has a clearance

rate of μα
4 . In this model, the impact of antiviral interferon-α drugs on the dynamics

of the viral infection is considered by the coefficients (1 − ε), where ε is the efficacy
of interferon-α. The viral production rate is then lowered by a fraction ε. μα

2 is a
blanket death term for infected cells to reflect the assumption that we do not initially
know whether the cells die naturally or by bursting. The time-delay τ represents an
intracellular delay that is between initial infection of a cell by HCV and the release
of new virions, and only a fraction of e−μα

1 τ can survive after the interval τ . The term
e−μα

1 τ represents the proportion of latently infected cells becoming actively infected
after τ period of time. Since M viral particles are released by each lysing cell, this
term is multiplied by the parameter M to represent the source of free virus (assuming
a one-time initial infection); see Fig. 12.1.

Fig. 12.1 Schematic diagram showing the key players in HCV infection models. H(t) and I (t)
represent target and infected cells, respectively, and V (t) represents free virus
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Table 12.1 Parameter definitions and values used in the model

Parameter Description Units Value Source

s Production rate of uninfected
hepatocytes

cell ml−1day−1 0.1 [7]

μ1 Natural death rate of rate of
effector cells

day−1 0.6 [7]

r Proliferation rate of uninfected
hepatocytes

day−1 0.05

Hmax Maximum hepatocyte count in
the liver

cells ml−1 2 × 106 [7]

k1 Infection rate of hepatocytes ml day−1 virions−1 0.08 [10]

k2 Rate of infected cells become
actively infected

ml day−1 virions−1 0.45

μ2 Natural death rate of infected
cells

day−1 0.28 [10]

μ3 Production rate of HCV by the
infected cells

cell −1day−1 1 × 10−4

μ4 Clearance rate of HCV virions virgins day−1 2 ×10−2 [7]

M Source of free virus in the
initial infection

virion 200 [10]

ε The efficacy of IFN – 0 ≤ ε < 1 –

When Hepatitis C virus first infects a person, the ensuing dynamics depend on the
relative parameter values (see Table12.1). Since newly infected individuals do not
know that they are infected, we assume there is initially no treatment (ε = 0). We
might expect several different scenarios: infection may fade out without becoming
established, infectionmay spreadwith limited success and infect only part of the liver,
or infection may spread rapidly and infect the whole liver. For untreated chronically
infected patients with HCV, the mean serum viral load is approximately 3.5 × 106

IU/ml according to the WHO HCV RNA standard [23].
To understand the dynamics of system under acute infection corresponding to

each of these situations, it is helpful to walk through the stability of the steady states.
The boundedness of the solutions is guaranteed by the following theorem:

Theorem 12.1 The system (12.2) has a unique solution (H, I, V )T that remains in
R

3+ and is bounded by Hmax ; see [24].

12.3 Local Stability of Infection-Free and Infected
Steady States

To evaluate the equilibrium points of system (12.2), we put DαH(t) = Dα I (t) =
DαV (t) = 0. This model admits two steady states, namely, the infection-free steady
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state E0 = (H0, 0, 0), where

H0 = {rα − μα
1 + [(rα − μα

1 )
2 + 4rαsαH−1

max ]1/2}/2rαH−1
max , (12.3)

and the infected state, E+ = (H∗, I ∗, V ∗), where

H∗ = μα
4μ

α
2

kα
2 M(1 − ε)e−μα

1 τμα
3 − kα

1μα
2

,

I ∗ = kα
2 e

−μα
1 τ H∗V ∗

μα
2

,

V ∗ = μα
2 [(sα + (rα − μα

1 )H
∗)Hmax − rαH∗2]

H∗[kα
2 e

−μα
1 τrαH∗ − kα

1μα
2Hmax ] .

(12.4)

Let us introduce the following definition and assumption to ease the analysis.

Definition 12.1 The basic reproductive number of the virus R0 is defined as the
average number of newly infected cells produced by a single infected cell at the
beginning of the infection. The threshold parameter R0 has the property that if
R0 < 1, then the endemic infected state does not exist, whereas if R0 > 1, the
endemic infected state persists, where

R0 = kα
2 e

−μα
1 τμα

3 (1 − ε)MH0

μα
2 (μ

α
4 + kα

1 H0)
. (12.5)

The Jacobian matrix J (E0) for system (12.2) evaluated at the uninfected steady
state E0 is then given by

J (E0) =
⎛
⎝ −μα

1 + rα − 2r H0
Hmax

− λ − r H0
Hmax

−kα
1 H0

0 −μα
2 − λ kα

2 e
−(μα

1+λ)τ H0
0 (1 − ε)μα

3M −(k1H0 + μα
4 + λ)

⎞
⎠ . (12.6)

However, Jacobian matrix J (E+) for system (12.2) evaluated at the infected steady
state E+ is

J (E+) =
⎛
⎝ −(L∗ + λ) −rαH∗/Hmax −kα

1 H
∗

kα
2 e

−(μα
1+λ)τV ∗ −(μα

2 + λ) kα
2 e

−(μα
1+λ)τ H∗

−kα
1 V

∗ (1 − ε)Mμα
3 −(kα

1 H
∗ + μα

4 + λ)

⎞
⎠ . (12.7)

Here:
L∗ = [μα

1 − rα + kα
1 V

∗ + rα(2H∗ + I ∗)/Hmax ].

Then, the characteristic equation of the linearized system is

p(λ, τ ) = λ3 + a2λ
2 + a1λ + a0 + (b1λ + b0)e

−λτ = 0, (12.8)
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a2 = μα
2 + μα

4 + kα
1 H

∗ + L∗,

a1 = L∗(μα
2 + μα

4 + kα
1 H

∗) + μα
2 (μα

4 + kα
1 H

∗) − kα
1
2H∗V ∗ − kα

2 e
−μα

1 τ H∗
(

(1 − ε)Mμα
3 − rV ∗

Hmax

)
,

a0 = L∗μα
2 (kα

1 H
∗ + μα

4 ) − μα
2 k

α
1
2H∗V ∗ + kα

2 e
−μα

1 τ H∗
(
rμα

4V
∗

Hmax
+ (1 − ε)Mμα

3 (k1V
∗ − L∗)

)
,

b1 = kα
2 H

∗
(

rV ∗

Hmax
− (1 − ε)Mμα

3

)
,

b0 = kα
2 H

∗

Hmax
(rV ∗μα

4 + (1 − ε)Mμα
3 Hmax (k1V

∗ − L∗)).

Here, ak (k = 0, 1, 2) and b j ( j = 0, 1) are non-linear functions of τ. The general
form of Eq. (12.8) can be written as

p(λ, τ ) = p0(λ, τ ) + p1(λ, τ )e−λτ , (12.9)

where
p0(λ, τ ) = λ3 + a2(τ )λ2 + a1(τ )λ + a0(τ ),

p1(λ, τ ) = b1(τ )λ + b0(τ ).
(12.10)

Case I: τ= 0
For τ = 0, the uninfected steady state is asymptotically stable if all of the eigenval-
ues λ of the Jacobian matrix J (E0), given by (12.6), have negative real parts. The
characteristic equation det(J (E0) − I ) = 0 becomes

λ3 + Aλ2 + Bλ + C = 0, (12.11)

where A=kα
1 H0 + μα

4 + μα
2 + L∗

0, B = L∗
0(μ

α
2 + kα

1 H0 + μα
4 ) + μα

2 (k
α
1 H0 + μα

4 ) −
(1 − ε)Mμα

3k
α
2 H0,C = L∗

0(μ
α
2 (k

α
1 H0 + μα

4 ) − (1 − ε)Mμα
3k

α
2 H0), and L∗

0 = [μα
1 −

rα + 2rαH∗
Hmax

].

Proposition 12.1 If R0 ≡ kα
2μα

3 (1 − ε)MH0

μα
2 (μ

α
4 + kα

1 H0)
< 1, then A > 0,C > 0, AB > C,

and the three roots of the characteristic equation (12.11) will have negative real
parts.

Assume that

R∗
0 = kα

2μα
3MH0

μα
2 (μ

α
4 + kα

1 H0)
> 1 ≥ R0. (12.12)

Then, under the physiological conditions, μα
1Hmax > s and r > μα

1 , we arrive at the
following remark.

Remark 12.1 In case of uninfected steady state E0, we have three cases:
(1) IfR0 < 1, the uninfected state is asymptotically stable and the infected steady-

state E+ does not exist (unphysical). The efficacy of the drug ε should exceed(
1 − 1

R∗
0

)
to eradicate the virus.
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(2) IfR0 = 1, then C = 0; combined with (12.11), this implies that one eigenvalue
must be zero and the remaining two eigenvalues have negative real parts. The
uninfected and infected steady states collide and there is a transcritical bifurca-

tion, and the efficacy threshold is ε∗ =
(
1 − 1

R∗
0

)
.

(3) If R0 > 1, then C < 0 and, thus, at least one eigenvalue will be positive real
root. Thus, the uninfected state E0 is unstable and the endemically infected state

E+ emerges. The efficacy ε does not exceed

(
1 − 1

R∗
0

)
.

For τ = 0, the infected steady-state E+ is asymptotically stable if all of the eigen-
values have negative real parts. This occurs if and only if the Routh-Hurwitz condi-
tions are satisfied

a2(0) > 0, a0(0) + b0(0) > 0, [a1(0) + b1(0)] a2(0) > a0(0) + b0(0).

Case II: τ �= 0
Equation (12.9) can be written as

G(λ, τ ) = − p0(λ, τ )

p1(λ, τ )
eλτ , (12.13)

with
p1(λ, τ ) �= 0. (12.14)

For λ = iω(ω ∈ R), we get

G(iω, τ) = μ(ω, τ)eiθ(ω,τ), (12.15)

where
μ(ω, τ) =

∣∣∣ p0(iω,τ)

p1(iω,τ)

∣∣∣ ,
θ(ω, τ) = ∠p0(iω, τ) − ∠p1(iω, τ) + ωτ + π.

(12.16)

Clearly, the existence of purely imaginary roots λ = iω of Eq. (12.9) is equivalent
to the following two conditions:

μ(ω, τ) = 1,
θ(ω, τ) = 2πh, h is integer.

(12.17)

To establish the existence of purely imaginary roots of Eq. (12.9), the criterion due to
Jin et al. [25, 26] is applied. To apply this method, the following assumptions must
be achieved for all τ ∈ 
, where 
 = [0, τmax) is the range of delay parameters τ

of interest:

(A1) ∀τ ∈ 
 :
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lim
ω→∞

∣∣∣∣ p1(iω, τ)

p0(iω, τ)

∣∣∣∣ < 1. (12.18)

(A2) The following equations are not fulfilled together for any values of the pair
(ω, τ):

p0(iω, τ) = 0,
p1(iω, τ) = 0.

(12.19)

(A3) The following equations have a finite number of pairs (ω, τ) that satisfies it

�(ω, τ) = 0,
∂

∂ω
�(ω, τ) = ∂ω�(ω, τ) = 0,

(12.20)

where
�(ω, τ) = |p0(iω, τ)|2 − |p1(iω, τ)|2 (12.21)

(A4) ∀ critical pair (ω∗, τ ∗) that satisfies

p(iω, τ) = 0, (12.22)

then

� dλ

dτ

∣∣∣∣
λ=iω∗,τ=τ ∗

�= 0, (12.23)

Furthermore, there are a finite number of solutions for (ω, τ) that satisfy (12.22).
Note that if ω is a root of �(ω, τ), then −ω is also a root of it.

We first need to find the positive root ω = ω(τ) that satisfies Eq. (12.21) and then
identify the critical values (ω∗, τ ∗) at which the switch stability has occurred on it.
To find the root, we suppose that τ j , j = 1, 2, . . . ,m − 1 is the set of all τ ∈ 
 that
satisfies assumption (A3). Then we ascend these τ j as

τ1 < τ2 < · · · < τm−1.

Then, 
 is divided into m subintervals as


 j = [
τ j−1, τ j

]
, j = 1, 2, . . . ,m,

where τ0 = 0 and τm = τmax. The following proposition characterizes the positive
roots in each portion 
 j [25, 26].

Proposition 12.2 For each τ ∈ [
τ j−1, τ j

]
, the number of real roots of �(ω, τ) are

the same and simple. These roots are continuous functions of τ and may be expressed
as ±ω jk(τ ), k = 1, 2, . . . , q, q ≤ m.

Therefore, the phase angle functions in each subinterval 
 j can be defined as



242 12 Fractional-Order Delay Differential Equations of Hepatitis C Virus

θ jk(ω(τ), τ ) = ∠p0(iω jk(τ ), τ ) − ∠p1(iω jk(τ ), τ ) + ω jk(τ )τ + π. (12.24)

To identify the critical delay τ = τ ∗, one goes through each interval 
 j and each
curve ω jk(τ ) and then finds the values of τ at which the following equation is
satisfying

θ jk(τ
∗) = 2πh, h is integer.

Hence, one gets the critical values (ω∗, τ ∗) at which the stability switches occur.
Next, the direction stability of these critical values is investigated. In other words,
we need to know in which direction these critical values cross the imaginary axis.
To do that, the sign of the real part of the differentiation of λ with respect to τ must
be determined, i.e.,

sign

[
�

(
dλ

dτ

)
λ=iω∗,τ=τ ∗

]
. (12.25)

If the sign is negative (positive), it means the roots are crossing the imaginary axis
from the right (left) to left (right), which indicates that the system is stable (unstable).
The following theorem is used for determining the signof the real part of the derivative
of λ with respect to τ [25, 26].

Theorem 12.2 Let (ω∗, τ ∗) satisfy Eqs. (12.22) and (12.23). Then,

sign
[
� ( dλ

dτ

)
λ=iω∗,τ=τ∗

]
= sign [∂ω�(ω, τ)]ω=ω∗,τ=τ∗ × sign

[
dθ(ω(τ),τ )

dτ

]
ω=ω∗,τ=τ∗ .

(12.26)

12.4 Global Stability of Infection-Free Steady State E0

Lemma 12.1 ([27]) Let x(t) ∈ R
+ be a continuous and derivative function. Then,

for any time t ≥ t0,

t0D
α
t

[
x(t) − x
 − x
ln

x(t)

x


]
≤

(
1 − x


x(t)

)
t0
Dα

t x(t), ∀α ∈ (0, 1), x
 ∈ R
+.

Theorem 12.3 Assume that kα
2w1e−μα

1 τ < kα
1w2,w2(1 − ε)μα

3M < w1μ
α
2 ; then, the

fractional-order HCV model (12.2) is globally asymptotically stable at an infection-
free steady-state E0.
Proof We define the following positive definite Lyapunov function:

V(t) =
(
H(t) − H 
 − H 
ln

H(t)

H 


)
+ w1 I (t) + w2V (t),

where w1 and w2 are non-negative constants. Take fractional derivative of V with
respect to time t , yielding
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DαV(t)

≤ (H(t) − H 
)

H(t)

(
sα − μα

1 H(t) + rαH(t)

(
1 − H(t) + I (t)

Hmax

)
− kα

1 V (t)H(t)

)

+ w1

(
kα
2 e

−μα
1 τV (t − τ)H(t − τ) − μα

2 I (t)
)

+ w2

(
(1 − ε)μα

3MI (t) − kα
1 V (t)H(t) − μα

4V (t)
)
,

≤ (H − H 
)

(−sα(H − H 
)

HH 

− rα

Hmax
(H − H 
) − r I

Hmax
− kα

1 V

)

+ w1k
α
2 e

−μα
1 τV H − w1μ

α
2 I + w2(1 − ε)μα

3MI − w2k
α
1 V H − w2μ

α
4V,

≤ −
(
s + rα

Hmax

)
(H − H 
)2 − r I

Hmax
(H − H 
) − kα

1 V (H − H 
) − (kα
1w2 − kα

2w1e
−μα

1 τ )V H

− (w1μ
α
2 − w2(1 − ε)μα

3M)I − w2μ
α
4V

Based on the assumption that kα
2w1e−μα

1 τ < kα
1w2,w2(1 − ε)μα

3M < w1μ
α
2 , we can

obtain

DαV(t) ≤ 0.

Hence, the theorem is proved.

12.5 Numerical Simulations and Validity of Model

In this section, we carry out numerical simulations to show the qualitative behavior
of model (12.2) and verify it by fitting the model (12.2) to experimental data of
HCV RNA replications. The numerical simulations confirm the theoretical results
obtained in the above sections. The simulations have been obtained by using the
Adams-Bashforth-Moulton predictor-corrector scheme, discussed in [13], with step
size h = 0.005 and 0.5 < α ≤ 1.

For s = 10, μ1 = 0.02, r = 0.03, Hmax = 1500, k1 = 2.42 × 10−5, k2 = 2 ×
10−5,μ2 = 0.26, M = 800,μ3 = 0.26, andμ4 = 2.4, the infection-free steady state
is E0 = (1000, 0, 0) and the infected steady-state E+ is

H∗ = −99173.6 + 108e−0.26τ

100833e−0.26τ − 1.6522
,

I ∗ = 1.18393 × 107e−0.26τ + 1.88509 × 106 − 628384e0.26τ

376312 − 1226.9e0.26τ + e0.52τ
,

V ∗ = 82370.7 + 251691e−0.26τ + 108e−0.26τ

1.9786 − 122002e−0.26τ
.

This steady state exists if τ ≤ 6.95017.
We first investigate the stability of the infection-free steady-state E0. The corre-

sponding characteristic equation (12.9) at this point can be written as
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p(λ, τ ) = λ3 + 2.7142λ2 + 0.710818λ + 0.0189088 +
(
−3.84e−0.26τ λ − 0.1152e−0.26τ

)
e−λτ .

(12.27)
Then,

�(ω, τ) = ω6 + aω4 + bω + c, (12.28)

where a = 5.94525, b = 0.402618 − 14.7456e−0.52τ , and c = 357541 × 10−9 −
0.013271e−0.52τ .

For τ = 0, the roots of Eq. (12.27) are

λ1 = −3.58061, λ2 = −0.03, λ3 = 0.896413,

which means that E0 is unstable.
However, to ensure the stability of E0 for τ > 0, we must check the validity of

assumptions (A1)–(A4):

• Obviously, from Eq. (12.27), assumption (A1) is satisfied. It is achieved for any
value of the parameters.

• Suppose that

p1(iω, τ) = −3.84e−0.26τ iω − 0.1152e−0.26τ = 0.

Therefore, from Eq. (12.5), we obtain

ω = 0.03i /∈ R.

Thus, there is no value of (ω, τ) that satisfies p1(iω, τ) = 0. Therefore, (A2) is
satisfied.

• Solving Eqs. (12.20) together, we find that 
 ≡ [0, τmax ) can be decomposed into
two subintervals 
1 ∪ 
2, where


1 = [τ0, τ1),
1 = [τ1, τ2),

τ0 = 0, τ1 = 6.95017, and τ2 = τmax → ∞. The polynomial �(ω, τ) has one
real positive root ω11(τ ) in 
1 and does not have any real solution in 
2. Thus,
assumption (A3) is satisfied.

• From Eq. (12.26), it is easy to get

�
(
dλ

dτ

)
λ=iω∗

1 ,τ=τ ∗
1

= 6.16123 > 0, �
(
dλ

dτ

)
λ=iω∗

2 ,τ=τ ∗
2

= −0.451645 < 0.

Therefore, assumption (A4) is satisfied.

From the above discussion, we arrive at the following theorem:

Theorem 12.4 The infection-free steady state is locally asymptotically stable for
τ ∈ (τ ∗

2 ,∞) and unstable for τ ∈ [0, τ ∗
2 ).
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Fig. 12.2 Infection-free steady-state E0 of model (12.2) when τ = 7 ∈ (τ ∗
2 ,∞) with R0 < 1 and

α = 1

Regarding the infected steady-state E+, the roots of Eq. (12.27) for τ = 0 are

λ1 = −2.67009, λ2,3 = −0.0292724 ± 0.12279i,

which means that the infected steady-state E+ is stable when τ = 0.

To investigate the stability of E+ for τ > 0, wemust check the validity of assump-
tions (A1)–(A4).

Figure12.2 shows that the infection-free steady-state E0 is stable when τ = 7 ∈
(τ ∗

2 ,∞)withR0 < 1.Moreover, the infected steady-stateE+ is stable when τ = 1 ∈
[0, τ ∗

2 ); see Fig. 12.3. Figure12.4 displays an oscillating behavior of model (12.2)
when τ = τ ∗.

Figure12.5 shows an asymptotically stable infected steady-state E+ for different
values of the fractional-order α, when R0 > 1. Figure12.6 shows an infection-free
steady-state E0 whenR0 < 1. A complete recovery is obtained whenR0 < 1. Before
treatment ε = 0, a steady state exists where viral production is balanced by viral
clearance and the production of infected cells is balanced by their loss. Uninfected
hepatocytes are also in steady state determined by the balance between their pro-
duction, death, and loss due to infection. We notice that the smaller value of the
fractional-order α, the longer is incubational period of the virus in the beginning
stage.

12.5.1 Parameter Estimation and Validity of Model

To check the reality of the underlying model, we use non-linear least squares regres-
sion, discussed in Chap.5, to fit the model to real observations. Given the parameter-
ized biological system (12.2), with right-hand side depending on the constant vector
of parameters:

P = [sα, μα
1 , r, k

α
1 , kα

2 , μα
2 , μ

α
3 , μ

α
4 ].
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Fig. 12.3 Endemic (infected) steady-state E+ of model (12.2) when τ = 1 ∈ [0, τ ∗
2 ) withR0 > 1

and α = 1
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Fig. 12.4 Oscillating behavior of model (12.2) when τ = τ ∗

Let Xi (i = 1, 2, . . . ,m) denote a set of observed data vectors with component Xi j

( j = 1, 2, 3), where m is the amount of data. Let x(ti ; p̃) ≡ [H(ti ), I (ti ), V (ti )]T
denote the “true” solution of the system at time ti and exact value of parameter p̃.
We assume that data Xi satisfy the following observation equation:

Xi j = x j (ti ) + σ jεi j (12.29)

where σ j > 0 measures the variance of the noise associated with the j th component
and is related to the scale of the expected magnitude of the j th component, |X j (t)|.
The εi j are independent and standard Gaussian distributed random variables. The
principle of maximum-likelihood yields an appropriate cost function that should be
minimized with respect to the parameters p to yield an approximation p̂ of the true
value. We define the cost function or objective function by

�(P) =
m∑
i=1

εTi ωi (σ )εi ≡ 1

n

m∑
i=1

n∑
j=1

[x j (ti ;p) − Xi j ]2
2σ 2

j

, (12.30)
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Fig. 12.5 Numerical simulations of the HCV model (12.2) that show a stable infected steady state
E+ with different fractional order α, with parameter values given in Table12.1, and with ε = 0.0
(R0 > 1). The fractional order plays the role of memory and heredity

We seek p̂ that satisfies

�(p̂) =: min
p

�(p) ≡ max
p

L(p). (12.31)

where L(p) = [exp(−ε2i j/2σ
2
j )]/

√
2πσ 2

j is the likelihood function; see [28].

Estimation of the parameters that occur in model (12.2), for given data, is consid-
ered as an optimization problem that should include the following steps [29]:

1. Provide an initial guess p0 for the parameter estimates;
2. Solve the model equations with the current values of the parameters using the

scheme in Sect. 12.4;
3. Adjust the parameter values by a minimization routine such as OPTIMTOOL in

MATLAB;
4. Check stopping conditions; if satisfied, stop;
5. Otherwise, choose a better value for ṕ and return to step 2.

The underlying FODEs model is non-linear; thus, the selection of local minima
should be based on meaningful biological parameters. To examine the underlying
model (12.2), we have used the generated experimental data given in Table12.2. The
dataset taken from Neumann et al. [9] was used to find estimates of the parameters.
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Fig. 12.6 Numerical simulations of the HCVmodel (12.2) that show a stable infection-free steady-
state E0 with the same parameter values of Fig. 12.5 but with r = 0.1 (increasing proliferation rate
of the uninfected hepatocytes) and k1 = 0.01 (decreasing the infection rate of hepatocytes). A
complete recovery is obtained when R0 < 1

Table 12.2 Hepatitis C viremia within 14 days of treatment with interferon-α in a patient [9]
(Case I)

Time (days) 1 2 3 4 5 6 7

log10 V̄ (t)/liver 8.5 8.6 8.5 10.7 10.5 7.2 4.1

Time (days) 8 9 10 11 12 13 14

log10 V̄ (t)/liver 3.5 2.6 1.6 0.7 0.6 0.4 0.3

The data was produced to better understand the dynamics of HCV and the antiviral
effect of interferon-α. The major initial effect of interferon-α is to block virion
production or release, with blocking efficacies of 81, 95, and 96% for daily doses of
5, 10, and 15 million international units, respectively. The estimated virion half-life
(t1/2 = 1/2) was, on average, 2.7h, with pretreatment production and clearance of
1012 virions per day. The estimated infected cell death rate exhibited large interpatient
variation (corresponding t1/2 = 1.7 − 7 days), was inversely correlatedwith baseline
viral load, and was positively correlated with alanine aminotransferase levels; see
[10, 30].
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Fig. 12.7 Comparison of viral load data (squares) with model predictions (12.2) for a case of HCV
RNA decay profile during antiviral therapy, INF-α [31]. The treatment efficacy, as an estimate, is
ε = 0.950. Other parameter values and estimates are given in the text
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Fig. 12.8 Comparison of viral load data with model predictions for a case of HCV RNA persist
(endermic) steady state during INF-α therapy [31]. The treatment efficacy, as an estimate, ε = 0.701
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Table 12.3 Hepatitis C viremia within 25 days of treatment with interferon-α in a patient [9] (Case
II)

Time (days) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

log10 V̄ (t)/liver 9.6 10.2 8.5 10.1 10.2 8.2 6.2 4.5 3.6 3.6 4.0 3.8 4.2 4.1

Time (days) 15 16 17 18 19 20 21 22 23 24 25

log10 V̄ (t)/liver 3.7 3.5 4.0 4.2 4.3 4.2 4.3 4.2 4.4 4.4 4.3

In Fig. 12.7, we fit the model (12.2) to the experimental data of Table12.2 during
antiviral therapy (0 < ε < 1) for HCV-infected patients. We fixed all the parameters
except P = [r, k1, μα

4 , ε]. The rest of the parameters take the values s = 0.1 × 102,
kα
2 = 0.0103, M = 800, Hmax=1.4×103, μα

1 = 0.0107, and μα
2 = 0.31. Using least

squares approach, the unknown parameters are P̂=[0.0401, 0.017, 0.731, 0.601].
The reproductive number for the best estimate and infection-free steady state is
R0 = 0.7654 < 1. The decay occurs rapidly during the treatment and the efficacy
of treatment in blocking virion production ε = 0.950. The simulation matches the
viral-free steady-state E0. Figure12.8 shows the fitting of the model (12.2) to the real
data of Table12.3 for chronically infected patients during treatment. The parameter
estimates with such data are P̂ = [0.004, 0.021, 1.701, 0.502].

12.6 Concluding Remarks

In this chapter, we have developed a mathematical model for HCV dynamics to
describe the interactions between healthy liver cells H , infected liver cells I , and
virus load V . Themodel is governed by a system of fractional-order delay differential
equations.While themodel is overly simple in that it does not account for the immune
response to HCV infection, it reflects the complex dynamics sufficiently due to the
fractional-order derivative (which considers the longer termbehavior) and time-delay
(which considers the short memory of the HCV kinetics). The basic reproductive
number of the virus R0 has been deduced in understanding the persistence of viral
infections. If R0 < 1, the level of virus load and infected cells will monotonically
decrease and ultimately be eliminated. However, forR0 > 1, there will be a chronic
HCV infection. The higher the reproductive numberR∗

0, the higher treatment efficacy
ε is required to eradicate the virus.WhenR0 < 1, the treatment efficacy ε greater than(
1 − 1/R∗

0

)
leads to complete clearance of infection. We also deduced a threshold

parameter τ ∗ so that the infection-free steady-stateE0 is locally asymptotically stable
for τ ∈ (τ ∗,∞) and unstable when τ ∈ [0, τ ∗), whereas the infected steady state E+
is stable when τ ∈ [0, τ ∗) and unstable when τ ∈ (τ ∗,∞).

The model prediction is validated by fitting the model to available data for HCV
RNA production for a decay profile case and a chronic infected case during treatment
with interferon-α. When R0 < 1, the decay of the virion occurs rapidly during the
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treatment and the estimated efficacy of the drug (in blocking virion production) is
ε = 0.950. While for the chronic state R0 > 1, the estimated efficacy parameter is
ε = 0.701. In this case of the infected steady state, the higher value of ε will not
have enough of an effect to reduce the viral load and keep the threshold parameter
R0 < 1.

Our findings show that the combination of fractional-order derivative and time-
delay in themodel improves the dynamics and increases the complexity of themodel.
Matching the dimensions of both sides of the differential equations improves the
consistency of the model with the real data/observations.
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Chapter 13
Stochastic Delay Differential Model
for Coronavirus Infection COVID-19

13.1 Introduction

Environmental factors, such as humidity, precipitation, and temperature, have signif-
icant impacts on the spread of coronavirus COVID-19 to humans. In this chapter, we
use a stochastic epidemic SIRC model, with cross-immune class and time-delay in
transmission terms, for the spread of COVID-19.We analyze themodel and prove the
existence and uniqueness of positive global solution. We deduce the basic reproduc-
tion numberRs

0 for the stochasticmodelwhich is smaller thanR0 of the corresponding
deterministic model. Sufficient conditions that guarantee the existence of a unique
ergodic stationary distribution, using the stochastic Lyapunov function, and condi-
tions for the extinction of the disease are obtained. We provide a stochastic SIRC
model with time delay in Sect. 13.2. In Sect. 13.3, we study the existence and unique-
ness of a global positive solution for the stochastic delayedSIRCmodel. In Sects. 13.4
and 13.5, a stationary distribution and extinction analysis of the underlyingmodel are
investigated. Some virtual numerical examples are presented in Sect. 13.6. Finally,
concluding remarks are provided in Sect. 13.7.

The ongoing pandemic Coronavirus Disease (COVID-19) is spreading fast,
endangering large number of people health, and thus needs immediate actions and
intensive studies to control the disease in communities [1]. COVID-19 is the seventh
member of the coronavirus (CoV) family, such as MERS-CoV and SARS-CoV [2].
Although SARS-CoVwas more deadly, it was much less infectious than COVID-19.
There have been no outbreaks of SARS anywhere in the world since 2003. The symp-
toms of COVID-19 infection include cough, fever, tiredness, diarrhea, and shortness
of breath. Mostly in severe cases, COVID-19 causes pneumonia and death [3]. The
primary studies show that the incubation period of COVID-19 is between 3 and 14
days or longer [4]. Additionally, the average of basic reproduction number R0 for
COVID-19 is about 2–2.8. The disease may still be infectious in the latent infection
period. Studies to date suggest that the virus is very serious and spreads fast from
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Table 13.1 Incubation period of several common infectious diseases

Disease Range Ref.

COVID-19 3–14 days [4]

Cholera 0.5-4.5 days [23]

Common cold 1–3 days [24]

Ebola 1–21 days [25]

HIV 2–3 weeks to months or longer [26]

Influenza 1–3 days [27]

MERS 2–14 days [28]

SARS 1–10 days [29]

person to person through close contact and respiratory droplets rather than through
the air [4]. Table13.1 shows the incubation period of several common infectious
diseases.

Mathematical modeling of infectious diseases has an important role in the epi-
demiological aspect of disease control [5]. Several epidemic models, with various
characteristics, have been described and investigated in the literature. Most of these
models are based on the susceptible-infected-removed (SIR) model. Casagrandi et
al. [6] introduced the SIRC model to describe the dynamical behavior of influenza
A by inserting a new compartment, namely the Cross-Immunity (C) component1 of
people who have recovered after being infected by different strains of the same viral
subtype in previous years. Component C describes an intermediate state between
susceptible S and recovered R. Rihan et al. [7] investigated the qualitative behavior
of the fractional-order SIRC model for Salmonella bacterial infection. Recently, in
[8], the authors provided a deterministic SEIR epidemic model of fractional order
to describe the dynamics of COVID-19. In other descriptions, quarantine state (Q)
may be included in the presence of subjects, such as SIRQ models [9].

In fact, stochastic perturbation factors such as precipitation, absolute humidity,
and temperature have a significant impact on the infection force of all types of viral
diseases in humans. Taking this into consideration enables us to introduce random-
ness into deterministic biological models to expose the environmental variability
effect, whether it is an environmental fluctuation in parameters or random noise in
the differential systems [10–14].Moreover, stochastic models give an extra degree of
freedom and realism in comparison with their corresponding deterministic models.
Stochastic population dynamics perturbed by white noise (or Brownian motion) has
been studied extensively by many authors [15–17]. It has been investigated in [18],
which revealed that an environmental Brownian noise can suppress explosions in
population dynamics. Yuan et al. [19] discussed the results of stochastic viral infec-
tion and immune response dynamics and analyzed the human immunodeficiency

1 Cross-immunity (or cross-reactivity) is a major evolutionary force that affects pathogen diversity
(i.e., it drives viruses and microbes to be as distinct as possible from one another in order to avoid
immunity detection, memory recognition, and clearance).
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virus infection. In [20], the author investigated the existence results of ergodic dis-
tribution for stochastic hepatitis B virus model based on Lyapunov function. In [21],
the authors explored the dynamics of the SIR epidemic model with environmental
fluctuations. Additionally, they calculated a threshold parameter to demonstrate the
persistence and extinction of the disease. Recently, Lakshmi et al. [22] identified the
environmental factors, such as the geographic location of the countries, the upcom-
ing climate, atmospheric temperature, humidity, sociobiological factors, etc., that
influence the global spread of COVID-19.

It has been reported that there are many COVID-19 carriers who are not suffering
from the disease. Thismay be due to cross-immunity in peoplewho have survived and
recovered from another virus, such as other stains of coronavirus, H1N1, or influenza
A. It has been reported in [2] that “SARS-CoV-2 immunity has some degree of cross-
reactive coronavirus immunity in a fraction of the humanpopulation, and this fraction
of population has influence susceptibility to COVID-19 disease” Accordingly, in the
present chapter, we investigate a SIRC epidemicmodel of cross-immune class for the
dynamics of transmission of COVID-19 among groups.We include time-delay in the
transmission terms to represent the incubation period of the virus (the time between
infection and symptom onset). We also incorporate white noise type of perturbations
to reveal the effect of environmental fluctuations and variability in parameters. Based
on existing literature studies, this is the first work dealing with the persistence and
extinction of a stochastic epidemic model for COVID-19. We investigate the impact
of small and large values of white noise on the persistence and extinction of the
disease. We also derive the existing results of stationary distribution and extinction
of the disease, using a novel combination of stochastic Lyapunov functional.

13.2 Stochastic SIRC Epidemic Model

For the spread of COVID-19 disease in humans, we classify the population into
four categories: S(t), I (t), R(t), and C(t) represent the proportion of susceptible,
infected, recovered, and cross-immune people at time t , respectively. Let N (t) =
S(t) + I (t) + R(t) + C(t) be the total population. At this stage, we believe that the
SIRC model efficiently describes the mechanism for the spread of the SARS-CoV-2
virus. The classical SIRC model [6, 30] takes the form

Ṡ(t) = η(1 − S(t)) − ξ S(t)I (t − τ) + βC(t),

İ (t) = ξ S(t)I (t − τ) + σξC(t)I (t) − (η + α)I (t),

Ṙ(t) = (1 − σ)ξC(t)I (t) + α I (t) − (η + γ )R(t),

Ċ(t) = γ R(t) − ξC(t)I (t) − (η + β)C(t).

(13.1)

We incorporate a discrete time-delay τ into the SIRC model to represent the incuba-
tion period, which is about 3–14 days [4]. All the parameters appearing in the model
are nonnegative, see Table13.2. In the absence of cross-immunity, i.e., (1 − σ = 0),
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Table 13.2 Description of the model parameters

Parameters Description

η Mortality rate in every compartment and is assumed equal to the rate of
newborn in the population [6]

β Rate at which the cross-immune population becomes susceptible again

ξ Contact/transmission rate

σ The average reinfection probability of a cross-immune individual

α Recovery rate of the infected population

γ Rate at which the recovered population becomes the cross-immune population
and moves from total to partial immunity

the SIRCmodel curtails to the SIRSmodel, since the two individuals S andC become
immunologically indistinguishable. Figure13.1 shows the scheme of SIRC model.

Time-delay τ > 0 is incorporated in the transmission terms to represent the incu-
bation period of the viral infection, i.e., the time between infection and symptom
onset. The current studies show that the average/median of the incubation period
of early confirmed cases of COVID-19 is approximately 5.5 days, which is similar
to SARS. The presence of time-delay in the model may cause periodic solutions
many times for different time-delay values τ . The model (13.1) has a disease-free
equilibrium E0 = [1, 0, 0, 0], and an endemic equilibrium E+ = [S∗, I ∗, R∗,C∗],
where

S∗ = η + α

ξ
− βγα I ∗

[(η + γ ) − (1 − σ)γ ]ξ I ∗ + (η + β)(η + γ )
,

R∗ = α I ∗(ξ I ∗ + η + β)

[(η + γ ) − (1 − σ)γ ]ξ I ∗ + (η + β)(η + γ )
,

C∗ = γα I ∗

[(η + γ ) − (1 − σ)γ ]ξ I ∗ + (η + β)(η + γ )
,

and I ∗ is a root of quadratic equation pI 2 + q I + r = 0, where

p = ηξ(η + α + σγ ),

q = ηξ
[
α(2η + γ + β) + (η + β)(η + γ ) + (η + σγ )(η − ξ)

]
,

r = η(η + β)(η + γ )(η + α)(1 − R0).

Here, R0 = ξ

η + α
is known as the basic reproduction number of the deterministic

model.
In fact, there is an increasing indication that superior consistency with some

phenomena can be achieved if the effects of environmental noises in the system
are taken into account [31]. The epidemic model (13.1) assumes that the observed
dynamics are driven exclusively by internal deterministic cases. We ignore that the
environmental variability in the modeling may affect the dynamics of the model and
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Fig. 13.1 Scheme of SIRC model (13.1), assuming that the total population N = 1

transmission of the disease. Accordingly, there is a need to extend the deterministic
systems described by differential equations into stochastic differential equations
(SDEs),where related parameters aremodeled as suitable stochastic processes, added
to the driving system equations.

From themathematical and biological point of view, there are some assumptions to
incorporate stochastic perturbations into the epidemiological model, such asMarkov
chain process, parameter perturbations, white noise type, etc. Here, we incorporate
white noise type perturbation into model (13.1), which is proportional to S, I, R, and
C classes, so that

dS(t) = [η(1 − S(t)) − ξ S(t)I (t − τ) + βC(t)]dt + ν1S(t)dW1(t),

d I (t) = [ξ S(t)I (t − τ) + σξC(t)I (t) − (η + α)I (t)]dt + ν2 I (t)dW2(t),

dR(t) = [(1 − σ)ξC(t)I (t) + α I (t) − (η + γ )R(t)]dt + ν3R(t)dW3(t),

dC(t) = [γ R(t) − ξC(t)I (t) − (η + β)C(t)]dt + ν4C(t)dW4(t),

(13.2)

where W1(t),W2(t),W3(t), and W4(t) denote the independent Brownian motions.
ν2
1 , ν

2
2 , ν

2
3 , and ν2

4 represent the intensity of the environmental white noises, νi > 0
(i = 1, 2, 3, 4), subject to the following initial conditions:

S(θ) = φ1(θ), I (θ) = φ2(θ),

R(θ) = φ3(θ), C(θ) = φ4(θ), θ ∈ [−τ, 0]
φi (θ) ∈ C, i = 1, 2, 3, 4,

(13.3)

such that C is the family of Lebesgue integrable functions from [−τ, 0] into R4+.

13.3 Existence and Uniqueness of Positive Solution

To investigate the dynamical characteristics of SDDEs (13.2), the first consideration
is to verify that system (13.2) has a unique global positive solution. As the coefficients
of system (13.2) satisfy the local Lipschitz condition together with the linear growth
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condition [32], there exists a unique local solution. Now, we need to prove that the
solution is positive and global using the Lyapunov analysis method [33].

Theorem 13.1 System (13.2) has a unique positive solution (S(t), I (t), R(t),C(t))
on t ≥ −τ , and the solution will remain in R

4+ for the given initial condition (13.3)
with probability one.

Proof For any initial value (13.3), as the coefficients of system (13.2) satisfy the local
Lipschitz condition, so system (13.2) has a unique local solution (S(t), I (t), R(t),
C(t)) on t ∈ [−τ, τe), a.s., where τe represents the explosion time [33].

Our aim is to show that this solution is global, i.e., τe = ∞, a.s. Assume n0 ≥ 1
is sufficiently large such that S(θ), I (θ), R(θ), and C(θ) (θ ∈ [−τ, 0]) are lying in

the interval
[

1
n0

, n0
]
. For each n ≥ n0, n ∈ N, the stopping time is defined as

τn = inf

{
t ∈ [−τ, τe) : min{S(t), I (t), R(t),C(t)} ≤ 1

n
or max{S(t), I (t), R(t),C(t)} ≥ n

}
,

We fix inf φ = ∞ (φ be the empty set). Apparently, τn is increasing as n → ∞.

Assume τ∞ = limn→∞ τn, then τ∞ ≤ τe a.s. Therefore, we need to show that τ∞ =
∞ a.s.; then, τe = ∞ a.s. and (S(t), I (t), R(t),C(t)) ∈ R

4+ a.s. for all t ≥ −τ . If it
is erroneous, there is a pair ε ∈ (0, 1) and T̃ > 0 such that P{τ∞ ≤ T̃ } > ε. Then,
there is an integer n1 ≥ n0 such that

P{τn ≤ T̃ } ≥ ε,∀n ≥ n1. (13.4)

We define a C2 function V : R4+ → R+ as

V(S, I, R,C) =
(
S − κ − κ

ln S

κ

)
+ (I − 1 − ln I ) + (R − 1 − ln R) + (C − 1 − lnC)+

∫ t+τ

t
κξ I (s − τ)ds,

where κ > 0 is a constant to be determined. By Ito’s formula, we can obtain

dV = LVdt + ν1(S − κ)dW1(t) + ν2(I − 1)dW2(t) + ν3(R − 1)dW3(t) + ν4(C − 1)dW4(t),

where

LV =
(
1 − κ

S

)
(η − ηS − ξ SI (t − τ) + βC) +

(
1 − 1

I

)
(ξ SI (t − τ) + σξC I − (η + α)I )

+
(
1 − 1

R

)
(ξC I − σξC I + α I − ηR − γ R) +

(
1 − 1

C

)
(γ R − ξC I

− (η + β)C) + κν21 + ν22 + ν23 + ν24

2
+ κξ I (t) − κξ I (t − τ),

≤ 4η + κη + α + β + γ − ηC − ηR + (ξ(1 + κ) − α)I − ηI − ηS+
κν21 + ν22 + ν23 + ν24

2
.
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Let κ = α−ξ

ξ
, then we have

LV ≤ 4η + κη + α + β + γ + κν2
1 + ν2

2 + ν2
3 + ν2

4

2
≤ M,

(13.5)

whereM > 0 is a constant that is independent of S(t), I (t), R(t), and C(t). There-
fore,

dV(S, I, R,C) ≤Mdt + ν1(S − κ)dW1(t) + ν2(I − 1)dW2(t)

+ ν3(R − 1)dW3(t) + ν4(C − 1)dW4(t). (13.6)

Integrating (13.6) from 0 to τn ∧ T̃ = min{τn, T̃ } and then taking the expectation E
on both sides, we have

E[V(S(τn ∧ T̃ ), I (τn ∧ T̃ ), R(τn ∧ T̃ ),C(τn ∧ T̃ ))] ≤ E[V(S(0), I (0), R(0),C(0))] + MT̃ .

(13.7)
Let �n = {τn ≤ T̃ }, for n ≥ n1 and in view of (13.4), we obtain P(�n) ≥ ε. Such
that, for everyω ∈ �n , there is at least one of S(τn, ω), I (τn, ω), R(τn, ω), orC(τn, ω)

equaling either to n or 1
n and then we obtain

V(S(τn ∧ T̃ ), I (τn ∧ T̃ ), R(τn ∧ T̃ ),C(τn ∧ T̃ )) ≥ (n − 1 − ln n) ∧
(
1

n
− 1 − ln

1

n

)
.

(13.8)
According to (13.7), we get

EV(S(0), I (0), R(0),C(0)) + MT̃ ≥ E[1�n (ω)V(S(τn, ω), I (τn, ω), R(τn, ω)),C(τn, ω)]
≥ ε(n − 1 − ln n) ∧

(
1

n
− 1 − ln

1

n

)
,

(13.9)
where 1�n represents the indicator function of �n . Letting n → ∞ yields

∞ > EV(S(0), I (0), R(0),C(0)) + MT̃ = ∞, (13.10)

which leads to a contradiction. It can be concluded that τ∞ = ∞ a.s., which proves
the theorem. �

13.4 Existence of Ergodic Stationary Distribution

In this section, we construct a suitable stochastic Lyapunov function to study the
existence of a unique ergodic stationary distribution of the positive solutions to
system (13.2). First, let assume that X (t) is a regular time-homogenous Markov
process in Rd , illustrated by the SDDE
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dX (t) = f (X (t), X (t − τ), t)dt +
d∑

r=1

gr (X (t), t)dBr (t). (13.11)

The diffusion matrix of the process X (t) is

�(x) = (λi j (x)), λi j (x) =
d∑

r=1

gir (x)g
j
r (x)

Lemma 13.1 ([17]) The Markov process X (t) has a unique ergodic stationary dis-
tribution π(.) if there exists a bounded domain U ⊂ R

d with regular boundary �

and

(1): there is a positive numberM such that
∑d

i, j=1 λi j (x)ξiξ j ≥ M|ξ |2, x ∈ U, ξ ∈
R

d .

(2): there exists a non-negative C2-function V such that LV is negative for any
R

d \ U.

Define the reproduction number of the stochastic model as follows:

Rs
0 = ηγ ξ 2(1 − σ)

η̂α̂γ̂ β̂
, (13.12)

where η̂ = η + ν2
1
2 , α̂ = η + α + ν2

2
2 , γ̂ = η + γ + ν2

3
2 , and β̂ = η + β + ν2

4
2 .

Theorem 13.2 Assume that Rs
0 > 1, and η − ν2

1∨ν2
2∨ν2

3∨ν2
4

2 > 0; then, for any initial
value (S(0), I (0), R(0),C(0)) ∈ R

4+, system (13.2) has a unique ergodic stationary
distribution π(·).
Proof First, we need to validate conditions (1) and (2) of Lemma13.1. To prove
condition (1), the diffusion matrix of model (13.2) is described as

� =

⎛

⎜
⎜
⎝

ν2
1 S

2 0 0 0
0 ν2

2 I
2 0 0

0 0 ν2
3 R

2 0
0 0 0 ν2

4 C
2

⎞

⎟
⎟
⎠ .

Then, the matrix � is positive definite for any compact subset of R4+, then condition
(1) of Lemma13.1 is satisfied.

Next, we prove condition (2). To this end, define the C2 function V : R4+ → R

as follows

V(S, I, R,C) = Q

(
− ln S − c1 ln I − c2 ln R − c3 lnC + ξ

∫ t+τ

t
I (s − τ)ds

)

− ln S + ξ

∫ t+τ

t
I (s − τ)ds − ln R − lnC + 1

ρ + 1
(S + I + R + C)ρ+1,

= QV1 + V2 + V3 + V4 + V5,



13.4 Existence of Ergodic Stationary Distribution 261

where c1 = ηγ ξ 2(1−σ)

α̂2γ̂ β̂
, c2 = ηγ ξ 2(1−σ)

α̂γ̂ 2β̂
, and c3 = ηγ ξ 2(1−σ)

α̂γ̂ β̂2
. Note that V(S, I, R,C)

is not only continuous but also tends to +∞ as (S, I, R,C) approaches the bound-
ary of R4+ and ‖(S, I, R,C)‖ → ∞. Therefore, V must have a minimum point
(S(0), I (0), R(0),C(0)) in the interior of R4+. We define a C2−function Ṽ : R4+ →
R+ as

Ṽ (S, I, R,C) = Q

(
− ln S − c1 ln I − c2 ln R − c3 lnC + ξ

∫ t+τ

t
I (s − τ)ds

)

− ln S + ξ

∫ t+τ

t
I (s − τ)ds − ln R − lnC + 1

ρ + 1
(S + I + R + C)ρ+1

− V(S(0), I (0), R(0),C(0)),

:= QV1 + V2 + V3 + V4 + V5 − V(S(0), I (0), R(0),C(0))
(13.13)

where (S, I, R,C) ∈ ( 1n , n) × ( 1n , n) × ( 1n , n) × ( 1n , n) and n > 1 is a sufficiently

large integer,V1 = − ln S − c1ln I − c2 ln R − c3 lnC + ξ
∫ t+τ

t I (s − τ)ds,V2 =
− ln S + ξ

∫ t+τ

t I (s − τ)ds, V3 = − ln R, V4 = − lnC , and V5 = 1
ρ+1 (S + I +

R + C)ρ+1. ρ > 1 is a constant satisfying

η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 ) > 0,

and Q > 0 is a sufficiently large number satisfying the following condition:

− Qμ + w ≤ −2, (13.14)

where μ = ηγ ξ 2(1−σ)

α̂γ̂ β̂
− (η + ν2

1
2 ) > 0, since Rs

0 > 1.

w = sup
(S,I,R,C)∈R4+

{
− 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )

]
I ρ+1

+ 3η + γ + β + 2ξ I + A + ν2
1

2
+ ν2

3

2
+ ν2

4

2

}
(13.15)

and

A = sup
(S,I,R,C)∈R4+

{
η(S + I + R + C)ρ

− 1

2

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
(S + I + R + C)ρ+1

}
< ∞.

(13.16)

Applying Itô’s formula toV1, we obtain
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LV1 = − η

S
+ η + ξ I − βC

S
− c1ξ SI (t − τ)

I
− c1σξC + c1(η + α) − c2(1 − σ)ξC I

R

− c2α I

R
+ c2(η + γ ) − c3γ R

C
+ c3ξ I + c3(η + β) + ν21

2
+ c1ν22

2
+ c2ν23

2
+ c3ν24

2

≤ −4 4
√

ηγ ξ2(1 − σ)c1c2c3 + η + ν21

2
+ c1

(

η + α + ν22

2

)

+ c2

(

η + γ + ν23

2

)

+ c3

(

η + β + ν24

2

)

+ ξ(1 + c3)I

≤ −ηγ ξ2(1 − σ)

α̂γ̂ β̂
+ η + ν21

2
+ ξ(1 + c3)I = −μ + ξ(1 + c3)I,

(13.17)
Similarly, we can get

LV2 = −η

S
+ η + ξ I − βC

S
+ ν2

1

2
, (13.18)

LV3 = − (1 − σ)ξC I

R
− α I

R
+ η + γ + ν2

3

2
, (13.19)

LV4 = −γ R

C
+ ξ I + η + β + ν2

4

2
, (13.20)

LV5 = (S + I + R + C)ρ [η − η(S + I + R + C)] + ρ

2
(S + I + R + C)ρ−1

× [ν21 S2 + ν22 I
2 + ν23 R

2 + ν24C
2],

≤ (S + I + R + C)ρ [η − η(S + I + R + C)] + ρ

2
(S + I + R + C)ρ+1(ν21 ∨ ν22 ∨ ν23 ∨ ν24 ),

≤ η(S + I + R + C)ρ − (S + I + R + C)ρ+1
[
η − ρ

2
(ν21 ∨ ν22 ∨ ν23 ∨ ν24 )

]
,

≤ A − 1

2

[
η − ρ

2
(ν21 ∨ ν22 ∨ ν23 ∨ ν24 )

]
(S + I + R + C)ρ+1

≤ A − 1

2

[
η − ρ

2
(ν21 ∨ ν22 ∨ ν23 ∨ ν24 )

]
(Sρ+1 + Iρ+1 + Rρ+1 + Cρ+1),

(13.21)

where A is defined by (13.16). From the Eqs. (13.17)–(13.21), we have

LṼ ≤ −Qμ + Qξ(1 + c3)I − 1

2

[
η − ρ

2
(ν21 ∨ ν22 ∨ ν23 ∨ ν24 )

]
(Sρ+1 + I ρ+1 + Rρ+1 + Cρ+1)

− η

S
+ 3η − βC

S
+ ν21

2
− α I

R
+ γ + ν23

2
− γ R

C
+ 2ξ I + A + β + ν24

2
,

≤ −Qμ + Qξ(1 + c3)I − 1

4

[
η − ρ

2
(ν21 ∨ ν22 ∨ ν23 ∨ ν24 )

]
(Sρ+1 + I ρ+1 + Rρ+1 + Cρ+1)

− η

S
− 1

4

[
η − ρ

2
(ν21 ∨ ν22 ∨ ν23 ∨ ν24 )

]
I ρ+1 + 3η − βC

S
+ ν21

2
− α I

R
+ γ

+ ν23

2
− γ R

C
+ 2ξ I + A + β + ν24

2
.
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For ε > 0, define a bounded closed set

D =
{
(S, I, R,C) ∈ R

4
+ : ε ≤ S ≤ 1

ε
, ε ≤ I ≤ 1

ε
, ε2 ≤ R ≤ 1

ε2
, ε3 ≤ C ≤ 1

ε3

}
.

In the set R4+ \ D, let us choose ε satisfying the following conditions:

− η

ε
+ H ≤ −1, (13.22)

− Qμ + Qξ(1 + c3)ε + w ≤ −1, (13.23)

− α

ε
+ H ≤ −1, (13.24)

− γ

ε
+ H ≤ −1, (13.25)

− 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
] 1

ερ+1
+ H ≤ −1, (13.26)

− 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
] 1

ε2(ρ+1)
+ H ≤ −1, (13.27)

− 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
] 1

ε3(ρ+1)
+ H ≤ −1, (13.28)

where

H = sup
(S,I,R,C)∈R4+

{
Q(c3 + 1)ξ I − 1

4

[
η − ρ

2
(ν21 ∨ ν22 ∨ ν23 ∨ ν24 )

]
I ρ+1 + 3η + γ + β + 2ξ I

+ A + ν21

2
+ ν23

2
+ ν24

2

}
.

We need to show that LṼ ≤ −1 for any (S, I, R,C) ∈ R
4+ \ D, and R

4+ \ D =
⋃8

i=1 Di , where

D1 = {(S, I, R,C) ∈ R
4+; 0 < S < ε}, D2 = {(S, I, R,C) ∈ R

4+; 0 < I < ε},
D3 = {(S, I, R,C) ∈ R

4+; 0 < R < ε2, I ≥ ε}, D4 = {(S, I, R,C) ∈ R
4+; 0 < C < ε3, R ≥ ε2},

D5 =
{
(S, I, R,C) ∈ R

4+; S >
1

ε

}
, D6 =

{
(S, I, R,C) ∈ R

4+; I >
1

ε

}
,

D7 =
{
(S, I, R,C) ∈ R

4+; R >
1

ε2

}
, D8 =

{
(S, I, R,C) ∈ R

4+;C >
1

ε3

}
.

Case 1. For any (S, I, R,C) ∈ D1, we obtain
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LṼ ≤ −η

S
+ Q(c3 + 1)ξ I − 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
I ρ+1 + 3η + γ + β

+ 2ξ I + A + ν2
1

2
+ ν2

3

2
+ ν2

4

2

≤ −η

S
+ H,

≤ −η

ε
+ H ≤ −1,

which is obtained from (13.22). Therefore, LV≤−1 for any (S, I, R,C) ∈ D1.

Case 2. For any (S, I, R,C) ∈ D2, we have

LṼ ≤ −Qμ + Qξ(1 + c3)I − 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
I ρ+1 + 3η

+ γ + β + 2ξ I + A + ν2
1

2
+ ν2

3

2
+ ν2

4

2
,

≤ −Qμ + Qξ(1 + c3)I + w

≤ −Qμ + Qξ(1 + c3)ε + w < −1,

which follows from (13.23) and (13.14). Thus,LV ≤ −1 for any (S, I, R,C) ∈ D2.

Case 3. For any (S, I, R,C) ∈ D3, we can get

LṼ ≤ −α I

R
+ Q(c3 + 1)ξ I − 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
I ρ+1 + 3η + γ + β

+ 2ξ I + A + ν2
1

2
+ ν2

3

2
+ ν2

4

2

≤ −αε

ε2
+ H ≤ −1,

which follows from (13.24). Consequently, LV ≤ −1 for any (S, I, R,C) ∈ D3.

Case 4. For any (S, I, R,C) ∈ D4, it yields

LṼ ≤ −γ R

C
+ Q(c3 + 1)ξ I − 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
I ρ+1 + 3η + γ + β

+ 2ξ I + A + ν2
1

2
+ ν2

3

2
+ ν2

4

2

≤ −γ ε2

ε3
+ H ≤ −1,

which is obtained from (13.25). Thus, LV ≤ −1 for any (S, I, R,C) ∈ D4.
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Case 5. If (S, I, R,C) ∈ D5, we have

LṼ ≤ −1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
Sρ+1 + Q(c3 + 1)ξ I

− 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
I ρ+1 + 3η

+ γ + β + 2ξ I + A + ν2
1

2
+ ν2

3

2
+ ν2

4

2

≤ −1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
] 1

ερ+1
+ H ≤ −1,

which is obtained from (13.26). Therefore, we obtainLV≤−1 for any (S, I, R,C) ∈
D5.

Case 6 If (S, I, R,C) ∈ D6, we get

LṼ ≤ −1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
I ρ+1 + Q(c3 + 1)ξ I

− 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
I ρ+1 + 3η

+ γ + β + 2ξ I + A + ν2
1

2
+ ν2

3

2
+ ν2

4

2

≤ −1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
] 1

ερ+1
+ H ≤ −1,

which is obtained from (13.26). Hence, LV ≤ −1 for any (S, I, R,C) ∈ D6.

Case 7. If (S, I, R,C) ∈ D7, then

LṼ ≤ −1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
Rρ+1 + Q(c3 + 1)ξ I

− 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
I ρ+1 + 3η

+ γ + β + 2ξ I + A + ν2
1

2
+ ν2

3

2
+ ν2

4

2

≤ −1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
] 1

ε2ρ+2
+ H ≤ −1,

which is obtained from (13.27). Hence, LV ≤ −1 for any (S, I, R,C) ∈ D7.

Case 8. If (S, I, R,C) ∈ D8, we can see that



266 13 Stochastic Delay Differential Model for Coronavirus Infection COVID-19

LṼ ≤ −1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
Cρ+1 + Q(c3 + 1)ξ I

− 1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
]
I ρ+1 + 3η

+ γ + β + 2ξ I + A + ν2
1

2
+ ν2

3

2
+ ν2

4

2

≤ −1

4

[
η − ρ

2
(ν2

1 ∨ ν2
2 ∨ ν2

3 ∨ ν2
4 )
] 1

ε3ρ+3
+ H ≤ −1,

which is obtained from (13.28). Therefore, LV ≤ −1 for any (S, I, R,C) ∈ D8.

Clearly, condition (2) of Lemma13.1 holds. Therefore, we conclude that system
(13.2) identifies a unique stationary distribution π(.). �

13.5 Extinction

To show the extinction of the disease, we go through the following lemma:

Lemma 13.2 (See Lemmas 2.1 and 2.2 in [34]) Let (S(t), I (t), R(t),C(t)) be the
solution of (13.2) with any (S(0), I (0), R(0),C(0)) ∈ R

4+, then

lim
t→∞

S(t)

t
= 0, lim

t→∞
I (t)

t
= 0, lim

t→∞
R(t)

t
= 0, lim

t→∞
C(t)

t
= 0, a.s.

Furthermore, if η >
ν2
1∨ν2

2∨ν2
3∨ν2

4
2 , then

limt→∞
∫ t
0 S(s)dW1(s)

t = 0, limt→∞
∫ t
0 I (s)dW2(s)

t = 0, limt→∞
∫ t
0 R(s)dW3(s)

t = 0,

limt→∞
∫ t
0 C(s)dW4(s)

t = 0, a.s.

Theorem 13.3 If Rs
0 < 1 and η >

ν2
1∨ν2

2∨ν2
3∨ν2

4
2 , then the solution of (13.2) satisfies

the following: lim
t→∞ sup

1

t
ln(α(I (t) + C(t)) + (η + α)R(t)) ≤ ξ − 1

2(α)2

{
α2 ν2

2

2
∧

(η(η + α + γ ) + (η + α)2
ν2
3

2
) ∧ α2(η + β + ν2

4

2
)
}

< 0 and lim
t→∞〈S〉 = 1 a.s.

Proof Define U (t) = α(I (t) + C(t)) + (η + α)R(t), taking Ito’s formula, we can
get

d lnU (t) =
{

1

α(I + C) + (η + α)R

[
αξ SI (t − τ) − α(η + β)C − (η2 + ηα + ηγ )R

]

−
[
α2ν22 I

2 + (η + α)2ν23 R
2 + α2ν24C

2
]

2(α(I + C) + (η + α)R)2

}
dt + αν2 I

α(I + C) + (η + α)R
dW2(t)

+ (η + α)ν3R

α(I + C) + (η + α)R
dW3(t) + αν4C

α(I + C) + (η + α)R
dW4(t),
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≤ ξ Sdt − 1

(α(I + C) + (η + α)R)2

{
α2 ν22

2
I 2 + α2

(

η + β + ν24

2

)

C2 +
(

η(η + α + γ )

+ (η + α)2
ν23

2

)
R2
}
dt + αν2 I

α(I + C) + (η + α)R
dW2(t)

+ (η + α)ν3R

α(I + C) + (η + α)R
dW3(t) + αν4C

α(I + C) + (η + α)R
dW4(t),

≤ ξ Sdt − 1

2(α)2

{
α2 ν22

2
∧
(

η(η + α + γ ) + (η + α)2
ν23

2

)

∧ α2

(

η + β + ν24

2

)}
dt

+ αν2 I

α(I + C) + (η + α)R
dW2(t) + (η + α)ν3R

α(I + C) + (η + α)R
dW3(t)

+ αν4C

α(I + C) + (η + α)R
dW4(t). (13.29)

From model (13.2), we have

d(S(t) + I (t) + R(t) + C(t)) =
[
η − η(S(t) + I (t) + R(t) + C(t))

]
dt + ν1S(t)dW1(t)

+ ν2 I (t)dW2(t) + ν3R(t)dW3(t) + ν4C(t)dW4(t). (13.30)

Integrating (13.30) from 0 to t , we obtain

〈S(t) + I (t) + R(t) + C(t)〉 = 1 + ψ1(t), (13.31)

where

ψ1(t) = 1

η

[
1

t
(S(0) + I (0) + R(0) + C(0)) − 1

t
(S(t) + I (t) + R(t) + C(t)) + ν1

∫ t
0 S(s)dW1(s)

t

+ ν2
∫ t
0 I (s)dW2(s)

t
+ ν3

∫ t
0 R(s)dW3(s)

t
+ ν4

∫ t
0 C(s)dW4(s)

t

]
.

(13.32)
By Lemma13.2, we can easily obtain

lim
t→∞ ψ1(t) = 0 a.s.

Therefore, by taking the superior limit on both sides of (13.31), we have

lim
t→∞ sup〈S(t) + I (t) + R(t) + C(t)〉 = 1 a.s. (13.33)

Integrating (13.29) from 0 to t , we obtain

lnU (t)

t
≤ ξ − 1

2(α)2

{
α2 ν22

2
∧
(

η(η + α + γ ) + (η + α)2
ν23

2

)

∧ α2

(

η + β + ν24

2

)}
+ ψ2(t),

(13.34)
where
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ψ2(t) = lnU (0)

t
+ αν2

t

∫ t

0

(
I (s)

α(I (s) + C(s)) + (η + α)R(s)
dW2(s)

)

+ (η + α)ν3

t

∫ t

0

(
R(s)

α(I (s) + C(s)) + (η + α)R(s)
dW3(s)

)

+ αν4

t

∫ t

0

(
C(s)

α(I (s) + C(s)) + (η + α)R(s)
dW4(s)

)
.

In the same manner; by Lemma13.2, we have

lim
t→∞ ψ2(t) = 0 a.s.

Since Rs
0 < 1, therefore, by taking the superior limit of both sides of (13.34), we

have

lim
t→∞ sup

lnU (t)

t
≤ ξ − 1

2(α)2

{

α2
ν22
2

∧ (η(η + α + γ ) + (η + α)2
ν23
2

) ∧ α2(η + β + ν24
2

)

}

< 0,

(13.35)
which implies that limt→∞ I (t) = 0, limt→∞ R(t) = 0, limt→∞ C(t) = 0. a.s.,
which confirms that the disease I can die out with probability one.

By using (13.33) and (13.35), it is easy to show that lim
t→∞〈S〉 = 1 a.s. �

13.6 Numerical Simulations and Discussions

In this section, numerical simulations are provided to validate our theoretical results
using Milstein’s Scheme for SDDEs, discussed in Chap.7, to numerically solve
SDDEs (13.2); See Appendix C.

The discretization transformation takes the form

Sj+1 =Sj + [η(1 − Sj ) − ξ Sj I j−m + βC j ]�t + ν1Sj

√
�tζ1, j ,

I j+1 =I j + [ξ Sj I j−m + σξC j I j − (η + α)I j ]�t + ν2 I j
√

�tζ2, j ,

R j+1 =R j + [(1 − σ)ξC j I j + α I j − (η + γ )R j ]�t + ν3R j

√
�tζ3, j ,

C j+1 =C j + [γ R j − ξC j I j − (η + β)C j ]�t + ν4C j

√
�tζ4, j .

(13.36)

The independent Gaussian random variables denoted as ζi, j , (i = 1, 2, 3, 4), which
follow the distribution N (0, 1), the time-delay is defined as τ = m�t ,m is an integer
and the step size is �t . Let νi > 0, (i = 1, 2, 3, 4) be the white noise values.

Example 13.1 Consider model (13.2), with white noise values of ν1 = 0.1, ν2 =
0.09, ν3 = 0.09, ν4 = 0.07 and parameter values Of η = 0.09, ξ = 1.3, β = 0.05,
σ = 0.9, γ = 0.1, α = 0.36, τ = 1.2. Simple calculation leads toRs

0 = ηγ ξ 2(1−σ)

η̂α̂γ̂ β̂
=
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Fig. 13.2 Numerical simulations of stochastic model (13.2), when Rs
0 = 1.3 > 1, with η =

0.09, ξ = 1.3, β = 0.05, σ = 0.9, α = 0.36, γ = 0.1; τ = 1 and white noises ν1 = 0.1, ν2 =
0.09, ν3 = 0.09, ν4 = 0.07. Themodel has a unique ergodic stationary distribution and the infection
is persistent

1.3 > 1andη − ν2
1∨ν2

2∨ν2
3∨ν2

4
2 = 0.087 > 0.Therefore, the conditions ofTheorem13.2

hold. Based on Theorem13.2, there is a unique ergodic stationary distribution π(.)

of model (13.2). Thus, the disease I is persistent; see Fig. 13.2.

Example 13.2 Given the model (13.2), with parameters values of η = 0.0005; ξ =
0.6;β = 0.01; σ = 0.12;α = 0.3; γ = 0.02, τ = 1.4 and white noises of ν1=0.02,
ν2 = 0.02, ν3 = 0.01, ν4 = 0.2. We obtain Rs

0 = ηγ ξ 2(1−σ)

η̂α̂γ̂ β̂
= 0.38 < 1 and η −

ν2
1∨ν2

2∨ν2
3∨ν2

4
2 = −0.0195 < 0. In this case, the conditions of Theorem13.2 are not

satisfied. From Fig. 13.3, we can clearly find that the disease goes to extinction.
In Fig. 13.4, time-delay is increased to τ = 2.5, with white noises ν1 = 0.01, ν2 =
0.2, ν3 = 0.02, andν4 = 0.03; other parameter values are the same as in Fig. 13.3.

Therefore, Rs
0 < 1 and η − ν2

1∨ν2
2∨ν2

3∨ν2
4

2 = −0.0445 < 0. The conditions of Theo-
rem13.2 are not satisfied. Figure13.5 shows a periodic outbreak due to the time-delay
τ . However, the infection dies out with time as white noise increases.

Example 13.3 To further explain the impact of time-delay and white noises on
system (13.2) we choose τ = 2.5 and parameter values η = 0.0005; ξ = 0.6;β =
0.01; σ = 0.12;α = 0.3; γ = 0.02 and white noises ν1 = 0.2, ν2 = 0.2, ν3 = 0.1,

ν4 = 0.3, such thatRs
0 = ηγ ξ 2(1−σ)

η̂α̂γ̂ β̂
= 0.38 < 1, andη − ν2

1∨ν2
2∨ν2

3∨ν2
4

2 = −0.045 < 0.

Thus, the conditions of Theorem13.2 are not satisfied. Figure13.5 shows a periodic
outbreak due to the time-delay τ ; when the white noise increased, the periodicity of
the outbreak decreased. The infection dies out with time as white noise increases.



270 13 Stochastic Delay Differential Model for Coronavirus Infection COVID-19
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Fig. 13.3 Time domain behaviors of solutions of SDDEsmodel (13.2) (right) and the corresponding
deterministic model (13.1) (left), when Rs

0 = 0.38 < 1, with η = 0.0005, ξ = 0.6, β = 0.01, σ =
0.12, α = 0.3, γ = 0.02; τ = 1.4 andwhite noises ν1 = ν2 = 0.02, ν3 = 0.01, andν4 = 0.02.The
infection dies out with probability one

Time (t)

0 50 100 150 200 250 300

 S
(t

),
I(

t)
,R

(t
),

C
(t

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S(t)
I(t)
R(t)
C(t)

Time(t)
0 50 100 150 200 250

S
(t

),
 I(

t)
, R

(t
),

 C
(t

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S(t)
I(t)
R(t)
C(t)

Fig. 13.4 Time domain behavior of SDDE model (13.2) (right) and the corresponding determinis-
tic model (13.1) (left), when Rs

0 = 0.38 < 1, with η = 0.0005, ξ = 0.6, β = 0.01, σ = 0.12, α =
0.3, γ = 0.02; τ = 2.5 and white noises ν1 = 0.02, ν2 = 0.2, ν3 = 0.02, andν4 = 0.2. The figure
shows a periodic outbreak due to the time-delay τ
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Fig. 13.5 Simulations of the stochastic model (13.2) (right) and the corresponding determinis-
tic model (13.1) (left), when Rs

0 = 0.38 < 1, with η = 0.0005, ξ = 0.6, β = 0.01, σ = 0.12, α =
0.3, γ = 0.02; τ = 2.5 and white noises ν1 = 0.2, ν2 = 0.2, ν3 = 0.1, andν4 = 0.2. The deter-
ministic model shows a periodic outbreak due to the time-delay τ . The infection dies out with time
when white noise is large
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Fig. 13.6 Time domain behavior of SDDE model (13.2) (right) and the corresponding determin-
istic model (13.1) (left) where τ = 1; when R0 = 1.78 > 1, the infection persists in the determin-
istic model; when Rs

0 = 0.75 < 1, the infection dies out in the stochastic model. With parameter
values η = 0.02, ξ = 0.5, β = 0.1, σ = 0.2, α = 0.26, γ = 1 and white noises ν1 = 0.13, ν2 =
0.54, ν3 = 0.26, andν4 = 0.75
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Fig. 13.7 Time response of solutions for model (13.2) (right) and the corresponding determin-
istic model (13.1) (left); when R0 = 1.78 > 1, the infection persists in the deterministic model;
when Rs

0 = 0.75 < 1, the infection dies out in the stochastic model. With parameter values η =
0.02, ξ = 0.5, β = 0.1, σ = 0.2, α = 0.26, γ = 1 and white noises ν1 = 0.13, ν2 = 0.54, ν3 =
0.26, andν4 = 0.75

Example 13.4 To show the impact of random perturbation, with τ = 1, we increase
thewhite noise values ν1 = 0.13, ν2 = 0.54, ν3 = 0.26, andν4 = 0.75with param-
eter values η = 0.02; ξ = 0.5;β = 0.1; σ = 0.2;α = 0.26; γ = 1. Thus, Rs

0 =
ηγ ξ 2(1−σ)

η̂α̂γ̂ β̂
= 0.75 < 1 < 1.78 = ξ

α+η
= R0 and η − ν2

1∨ν2
2∨ν2

3∨ν2
4

2 = 0.0115 > 0.
Therefore, the conditions of Theorem13.3 hold, and the disease dies out expo-
nentially with probability one. However, the disease persists with the deterministic
model; see Fig. 13.6.

Example 13.5 Consider the same parameter values of Example 6.6.4, but with time-
delay τ = 0.Thus, according toTheorem13.3, the disease dies out exponentiallywith
probability one; see Fig. 13.7. Therefore, the smaller values of white noise ensure
the existence of unique stationary distribution, which gives the persistence of the
disease, while larger values of white noise can lead to disease extinction.
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Remark 13.1 Given the deterministic SIRC model (13.1), if the basic reproduc-

tion number R0 = ξ

α + η
< 1, then the disease-free equilibrium point is globally

asymptotically stable. Whereas if R0 > 1, the unique endemic equilibrium point is
globally asymptotically stable. Repeated outbreaks of the infection can occur due
to the time-delay in the transmission terms. In our stochastic SIRC model (13.2), if

Rs
0 = ηγ ξ 2(1 − σ)

η̂α̂γ̂ β̂
< 1 < R0 and η >

ν2
1∨ν2

2∨ν2
3∨ν2

4
2 , the stochastic model (13.2) has

disease extinction with probability one, and for Rs
0 > 1, the stochastic model (13.2)

has a unique ergodic stationary distribution. See Figs. 13.6 and 13.7.

13.7 Concluding Remarks

In this chapter, we have provided a stochastic SIRC epidemic model with time-delay
for SARS-CoV-2. The stochastic components, due to environmental variability, are
incorporated in the model as Gaussian white noise. We established some sufficient
conditions for persistence and extinction in the mean of the disease. The model
has a unique stationary distribution that is ergodic if the intensity of white noise
is small. Introduction of noise in the deterministic SIRC model modifies the basic
reproductive number R0, giving rise to a new threshold quantity Rs

0. It has been
proved that the disease dies out if Rs

0 < 1 < R0. On the other hand, if Rs
0 > 1 and

R0 > 1, the disease persists with both models but with different behavior. In other
words, extinction of the infection possibly occurs when Rs

0 < 1 < R0, along with
the intensity of white noise being large. This would not happen in the deterministic
models. The potential of using stochastic SIRC model for COVID-19 is to consider
the environmental fluctuation that affects the spread of the virus. The parameters
of the model are stochastically perturbed with a normal distribution to handle the
uncertainty in the estimates of COVID-19 prevalence and to simulate the difficulty
in detecting patients, different confinement measures taken by different countries, as
well as changes in the virus characteristics. Periodicity of the outbreaks is possible
due to the presence of time-delay (memory) in the transmission terms.

The author believes that the stochastic SIRC model is an attempt to understand
epidemiological characteristics of COVID-19. The model provides new insights
into epidemiological situations when environmental noise (perturbations) and cross-
immunity are considered in the COVID-19 epidemic models. The combination of
white noise and time-delay, in the epidemic model, has a considerable impact on the
persistence and extinction of the infection and enriches the dynamics of the model.
This work can be extended to include control variables for a vaccination, treatment,
and/or quarantine actions. A more sophisticated model is also required to investigate
the dynamics of COVID-19 with the immune system at the cell level [35].
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Chapter 14
Remarks and Current Challenges

Themain focus of this bookwas to analyze the qualitative and quantitative features of
delay differential equations (DDEs) (with integer- and fractional-order derivatives)
and their applications in biological systems with memory. This book covers valuable
topics related toDDEs, including its theory and numericalmethods; stability; control;
biological models; inverse problems; parameter estimations; sensitivity analysis with
DDEs; deterministic and stochasticDDEs; numericalmethod based on extended one-
step schemes for optimal control problem with time-lags; applications of DDEs in
immunology, epidemiology, and ecology; DDEs of tumor-immune dynamics with
chemo-immunotherapy and optimal control; Pontryagins maximum (or minimum)
principle and incorporation of optimal control parameters into a delay differential
model to describe the interactions of the disease response cells with external therapy;
dynamical analysis of biological systems; dynamics of HIV, HCV, and COVID-19
using delay differential models; and local and global stability analysis and Hopf
bifurcation.

Several remarks need to be noted:

• Physical and biological systems have a complex non-linear dynamic behavior.
Studying the qualitative behavior of all stability and bifurcation properties is essen-
tial for ensuring safe application in the real world.

• Time-delays have been considered as an important factor that directly affects sys-
tem performance; Hopf bifurcation also occurs when the delay passes through a
sequence of critical values.

• Delay differential models of real-life phenomena have potentially more interesting
dynamics than equations that lack memory effects: They are more qualitatively
and quantitatively consistent with cell proliferation phenomena than comparable
ODE models.

• Time-delays have been incorporated into biological systems to describe resource
regeneration times, maturation periods, reaction times, feeding times, gestation
periods, etc.
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• Fractional-order derivatives are incorporated to represent long-run memory, while
time-delays are considered to represent short-runmemory in amodel. The presence
of fractional-order in the delayed differential model improves the stability of the
solutions and enriches the dynamics of the model.

• Sensitivity analysis is an important tool for understanding a particular model,
which is considered as an issue of stability with respect to structural perturbations
of the model parameters.

• Optimal control results represent the efficiency of drug treatment in inhibiting viral
production and preventing new infections.

• The obtained results provide insights to biologists to improve the properties of the
models and experimental data.

• Stiff problems can occur in the field of applications of biomathematics; implicit
or semi-implicit numerical methods are more suitable for this type of models than
explicit methods. Non-linearity, sensitivity to small perturbations in the parame-
ters (or noisy data), identifiability, and model selection are also challenges facing
numerical modeling for biosciences.

• The presence of a fractional-order differential in a model can lead to a notable
increase in the complexity of the observed behavior. It enriches the dynamics of
the model and grants the model a greater degree of freedom and consistency with
real interactions.

• A combination of time-delay and fractional-order derivatives enriches the dynam-
ics and improves the stability of the solutions. In addition, fractional-order models
are, at least, as stable as their integer-order counterparts.

• Environmental factors, such as humidity, precipitation, and temperature, have a
significant impact on the spread of disease among humans, especially COVID-19.

• A combination of white noise and time-delay in an epidemic model has a consid-
erable impact on the persistence and extinction of the infection and enriches the
dynamics of the model.

This monograph significantly contributes to the theory and applications of DDEs
in biosciences, dynamical systems, and medicine. However, from a mathematical
perspective, several challenging issues that remain deserve further analyses, both
analytically and numerically. Thus, there are many future directions for this work:

1. Study DDEs with a variety of delay differential models with variable and state-
dependent delays and then estimate numerically the unknown lag parameters.

2. Physical and biological phenomena are non-linear in nature, and therefore, are
better described by non-linear delay differential models.

3. More sophisticated DDEs of disease dynamics are required to consider control
variables in order to determine the best strategy of treatment, control, and elimi-
nation.

4. Sensitivity analysis with respect to the parameters of the model is desirable. It
is useful to investigate how a small shift (change) in the input parameters would
change the stability of the tumor-free equilibrium and detect the most significant
parameter that has a major impact on the model dynamics.
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5. Stiff problems can occur in biomathematics, immune response models, etc., due
to the existence of greatly differing time constants. Reasonable candidatemethods
for treating stiff DDEs, such as implicit or singly implicit Runge-Kutta methods,
are necessary to treat the stiffness, particularly in a large system of equations.

6. Further analyses of interdisciplinary applications from the fields of physics,
mechanics, economics, and control theory are also required.

7. More sophisticated DDEs models, with multi-scale effects, different types of
stochastic processes, and spatial representation need to be studied and investi-
gated.

To conclude, we expect that mathematical modeling with DDEs is entering the
phase of genuine mutual inspiration of biological systems with memory, immunol-
ogy, physiology, epidemiology, ecology, neural networks, and the dynamics of
viral infections. Exciting research involving DDEs with integer and fractional-order
derivatives, and stochastic DDEs with spatial state variables will be observed in
future work.



Appendix A
Fifth-Order Dormand and Prince RK
Method

Butcher tableau for explicit fifth-order Dormand and Prince RK method (that has
seven stages) [1] is as follows:

c A
bT

̂bT
≡

0 0 0 0 0 0 0 0
1
5

1
5 0 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0 0

4
5

44
45

−56
15

32
9 0 0 0 0

8
9

19372
6561

−25360
2187

64448
6561

−212
729 0 0 0

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656 0 0

1 35
384 0 500

1113
125
192

−2187
6784

11
84 0

5179
57600 0 7571

16695
393
640

−92097
339200

187
2100

1
40

35
384 0 500

1113
125
192

−2187
6784

11
84 0

(A.1)

In order to obtain fifth-order Hermite approximation,1 to get, e.g., ỹn+1/2, we
require extraRKstages to be added to (A.1). The following formulae are byShampine
[2]:

1
2

−33728713
104693760 2 −30167461

21674880
7739027
17448960

−194162737
123305984 0 −26949

363520 0
7157
75776 0 70925

164724
10825
113664

−220887
4016128

80069
3530688

−107
5254

−5
74

The Hermite interpolation process (as shown in Sect. 2.4.3) can be converted into
the form of continuous extension with polynomials:

1 The best choice of fixed Hermite support points is {0, 1
2 , 1}; see [2].
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b1(θ) = 29

16
θ5 − 81685

14208
θ4 + 24433

3552
θ3 − 6839

1776
θ2 + θ,

b2(θ) = 0

b3(θ) = −4000

371
θ5 + 1245700

41181
θ4 − 398800

13727
θ3 + 413200

41181
θ2,

b4(θ) = −125

8
θ5 + 83775

2368
θ4 − 44725

1776
θ3 + 225

37
θ2,

b5(θ) = 6561

848
θ5 − 4428675

251008
θ4 + 798255

62752
θ3 − 98415

31376
θ2,

b6(θ) = −22

7
θ5 + 527571

73556
θ4 − 285659

55167
θ3 + 23529

18389
θ2,

b7(θ) = 4θ5 − 21872

2627
θ4 + 14847

2627
θ3 − 3483

2627
θ2,

b8(θ) = −40

37
θ4 + 80

37
θ3 − 40

37
θ2,

b9(θ) = 16θ5 − 40θ4 + 32θ3 − 8θ2.



Appendix B
Adams-Bashforth-Moulton Method for
Fractional-Order Delay Differential Equations

The Adams-Bashforth-Moulton method [3] has been proven to be an efficient and
powerful technique for finding the solution of fractional-order ODEs. In addition, the
authors of [4] discussed the modified Adams-Bashforth-Moulton predictor-corrector
scheme [5] to solve fractional-order DDEs. Herein, we have again highlighted the
main steps of this algorithm to solve the following fractional-order DDEs of the
form:

Dα y(t) = f (t, y(t), y(t − τ)), t ∈ J = [0, T ],
y(t) =ψ(t), t ∈ [−τ, 0], 0 < α ≤ 1

(B.1)

where y(t) = [y1(t), y2(t), . . . , yn(t)]T , f : J × R
n × R

n → R
n and for M > 0

satisfies the Lipschitz condition:

‖ f (t, y(t), y(t − τ)) − f (t, z(t), z(t − τ))‖ ≤ M
[‖y(t) − z(t)‖ + ‖y(t − τ) − z(t − τ)‖].

(B.2)

It is known that the satisfaction of condition (B.2) with M̄ = 2MTα

�(α + 1)
< 1 ensures

the uniqueness of the solution of problem (B.1).
We know that the delay IVP (B.1) for 0 < α ≤ 1 is equivalent to the Volterra-

integral equation

y(t) = ψ(0) + 1

�(α)

∫ t

0
(t − s)α−1 f (s, y(s), y(s − τ))ds. (B.3)

Given mesh points T = {t−m, t−m+1, . . . ...t−1, t0, t1, . . . , tN }, such that t0 = 0 and
tN = T with stepsize h = τ/m. Let yh(t j ) = ψ(t j ), j = −m,−m + 1, . . . ,−1, 0.
and yh(t j − τ) = yh(t j h − mh), j = 0, 1, . . . , N . Suppose yh(t j ) ≈ y(t j ) (for j =
−m,−m + 1, . . . ,−1, 0, 1, . . . , n) are already calculated; then, the numerical
scheme of (B.3) is
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yh(tn+1) = ψ(0) + 1

�(α)

∫ tn+1

0
(tn+1 − s)α−1 f (s, y(s), y(s − τ))ds. (B.4)

Using the product trapezoidal quadrature formula to evaluate the right-hand side
integral of (B.4) in which the nodes t j , ( j = 0, 1, . . . , n + 1) are considered with
respect to the weight function (tn+1 − s)α−1. The integral on the right-hand side of
(B.4) can be written by the use of the standard technique of quadrature theory

∫ tn+1

0
(tn+1 − s)α−1 f (s, y(s), y(s − τ))ds ≈ hα

α(α + 1)

n+1
∑

j=0

r j,n+1 f (t j , yh(t j ), yh(t j − τ)),

where r j,n+1 are given by

r j,n+1 =
⎧

⎨

⎩

nα+1 − (n − α)(n + 1)α, if j = 0,
(n − j + 2)α+1 − (n − α)(n + 1)α − 2(n − j + 1)α+1, if 1 ≤ j ≤ n;
1, if j = n + 1.

(B.5)

Therefore, the numerical schemeof the fractional-orderDDE (B.1) can be formulated
as

yh (tn+1) = ψ(0) + hα

�(α + 2)
f (tn+1, yh (tn+1), yh (tn+1 − τ)) + hα

�(α + 2)

n
∑

j=0

r j,n+1 f (t j , yh (t j ), yh (t j − τ))

= ψ(0) + hα

�(α + 2)
f (tn+1, yh (tn+1), yh (tn+1−k )) + hα

�(α + 2)

n
∑

j=0

r j,n+1 f (t j , yh (t j ), yh (t j−k )).

(B.6)

Then, the term yh(tn+1) in the right-hand side of (B.6) is replaced by an approximation
yPh (tn+1) (called predictor), which is evaluated via the product rectangle rule in
Eq. (B.4) to evaluate the predictor term

yPh (tn+1) = ψ(0) + 1

�(α)

n
∑

j=0

a j,n+1 f (t j , yh (t j ), yh (t j − τ)) = ψ(0) + 1

�(α)

n
∑

j=0

a j,n+1 f (t j , yh (t j ), yh (t j−k )),

where a j,n+1 is given by

a j,n+1 = hα

α

(

(n + 1 − j)α − (n − j)α
)

. (B.7)



Appendix C
Matlab Program for Stochastic Delay
Differential Equations Using Milstein Scheme

Here, a sample of Matlab program for solving SDDEs (13.2) is provided, Fig. 13.2.

%This program to solve Stochastic SIRC Epidemic model with time−delay using
%Milstein Scheme
%The stochastis DDEs model takes the form
%dS( t )=[eta∗(1−S( t))−xi∗S( t )∗I ( t−tau)+beta∗C( t )] dt+sig1∗dW1,
%dI( t )=[xi∗S( t ) I ( t−tau)+sig∗xi∗C( t )∗I ( t)−(eta+alpha) I ( t )]+sig2∗dW2,
%dR( t)=[(1−sig)∗xi∗C( t )∗I ( t )+alpha∗I ( t)−(eta+gamma)R( t )] dt+sig3∗dW3,
%dC( t )=[gamma∗R( t)−xi∗C( t )∗I ( t)−(eta+beta)C( t )] dt+sig3∗dW4.

function SIRC
clear al l ;
clc ;
clear al l ;
clc ;
tau = 1;
M = 10;
st = 0;
et = 300;
h = tau /M;
t = st :h: et ;
M = tau /h;
N_0 = round( st /h) ;
N_1 = round( et /h) ;
N = N_0 + N_1;

global eta xi beta sig alpha gamma
eta=0.09; xi=1.3; beta=0.05; sig=0.9; alpha=0.36; gamma=0.1;
sig1=0.1; sig2=.09;sig3=0.09; sig4=0.07;

for i=1:N + 1
if i< =M + 1
x( i )=0.99; y( i )=0.09; z( i )=0.01; r ( i )=0.01;
else

bt=randn(4 , N_1)∗sqrt (h) ;
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x( i )=x( i−1)+h∗(eta∗(1−x( i−1))−xi∗y( i−M−1)∗x( i−1)+beta∗r ( i−1))+...
sig1∗x( i−1)∗randn∗sqrt (h)+sig1^2∗0.5∗x( i−1)∗(randn^2−1)∗h;

y( i )=y( i−1)+h∗(xi∗y( i−M−1)∗x( i−1)+sig∗xi∗r ( i−1)∗y( i−1)−(eta+alpha)∗y( i−1))+...
sig2∗y( i−1)∗randn∗sqrt (h)+sig2^2∗0.5∗y( i−1)∗(randn^2−1)∗h;

z( i )=z( i−1)+h∗((1−sig)∗xi∗y( i−1)∗r ( i−1)+alpha∗y( i−1)−(eta+gamma)∗z( i−1))+...
sig3∗z( i−1)∗randn∗sqrt (h)+sig2^2∗0.5∗z( i−1)∗(randn^2−1)∗h;

r ( i )=r ( i−1)+h∗(gamma∗z( i−1)−xi∗r ( i−1)∗y( i−1)−(eta+beta)∗r ( i−1))+...
sig4∗r ( i−1)∗randn∗sqrt (h)+sig4^2∗0.5∗x( i−1)∗(randn^2−1)∗h;

end
end

figure (1)
plot ( t−tau ,x, t−tau , y, t−tau ,z , t−tau , r , ’LineWidth’ ,2)
xlabel ( ’Time ( t ) ’ , ’FontSize’ ,14)
ylabel ( ’ S( t ) , I ( t ) ,R( t ) ,C( t ) ’ , ’FontSize’ ,14)

xlim([0 , et ] ) ;
legend({’S( t ) ’ , ’ I ( t ) ’ , ’R( t ) ’ , ’C( t ) ’} , ’FontSize’ ,14)
grid on;

end
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