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1 Introduction

1.1 Global Energy Crisis

Global energy demand rises by 1.3% each year, and the empirical evidence points
toward a steady increase in energy consumption until the year 2040 (International
Energy Agency 2019). Almost one billion of the global population still do not have
access to electricity, highlighting the need for additional energy. Electricity drives the
modern civilization, and energy security is paramount to the sustainable development
and prosperity of the human civilization. The over-reliance on fossil fuel to meet
the growing energy demand has contributed in a major way to aggravate the current
energy problem.Rapid consumption of fossil fuel severely depleted the global energy
reserves and their combustion destroying our environment by pouring the harmful
greenhouse gasses into it. To contain the global average temperature to increase
below 2 °C rapid cut in greenhouse gasses has been suggested by multiple scientific
and environmental forums.
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1.2 Renewable Clean Energy Alternatives

The generation of energy from renewable energy sources with a minimum carbon
footprint could be a possible way forward to the present energy crisis. Several
renewable energy technologies have been explored over the years, among which
most common technologies with large-scale production capabilities are wind, hydro,
geothermal, biomass, and solar. These energy resources are intermittent, in terms of
geographical positioning and duration of availability of the energy sources during a
day; however, they can be complimentary to develop smart electricity grid to meet all
the energy needs. For example, wind speed varies during a day, or the hydropower
resource may not be available in all the places; similarly, solar light is inaccessible
during the night time. A smart combination of renewable energy sources together
with storage capacity (batteries, fuel production, and pumped-storage hydro) would
meet most of the energy demands of our daily life.

Among all renewable energy sources, solar energy is particularly interesting as
it provides an inexhaustible and universal source of energy. Annually earth receives
around 1 × 109 TWh of solar energy with a typical intensity of around 1000 W/m2

on the ground. Cumulative global annual energy consumption is merely 0.012%
(124,290 TWh) (Morton 2006; https://www.iea.org/reports/world-energy-outlook-
2019) of the annual solar irradiance. This is to say that the sun provides the earth
with as much energy every hour as human civilization consumes every year. Though
solar energy is ubiquitous, the conversion of solar energy to useful electrical energy
is not as economical when compared to fossil fuel-based alternatives.

1.3 Solar Cell Technology

A solar cell device absorbs the incident light and converts it to the usable electrical
power, known as the photovoltaic effect, discovered by French physicist Edmond
Becquerel in 1839. Typically, a semiconductor of appropriate band-gap (EG) is used
in solar cells to absorb solar radiation. Photons having energies higher than EG

are absorbed by the semiconductor to create excited electrons in the conduction
band and vacancy of electrons in the valance band. These negative and positive
charge carriers are separated and extracted from the solar cells to achieve electrical
power. Carrier selective contacts, on either side of the absorber layer, are used for
the preferential collection of electron and hole at the terminal electrodes of a solar
cell. Solar radiation is a panchromatic one and extends within the broad energy range
of 3.5–0.5 eV. The wide bandwidth of the solar spectrum makes it challenging to
harness in the solar cell devices. Semiconductor having a specific band-gap EG is
transparent to the photons having energy lower than EG, which is accounted for
transmittance loss in solar cells. Similarly, absorption of high energy photons (>EG)
excites the valance band electrons to deep inside the conduction band. The high
energy photon releases their excess energy quickly (~10−12 s) through the emission

https://www.iea.org/reports/world-energy-outlook-2019
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of phonon to reach the conduction band minimum. The loss of the excess energy
for the high energy photons (>EG) is known as thermalization loss for the solar
cell. Additional losses in a solar cell are emission loss due to spontaneous emission
of the photoexcited electron from the conduction band to valance band (Hirst and
Ekins-Daukes 2011). Those losses are qualified as intrinsic loss, as they cannot be
overcome by device and material optimization in the high-performing solar cells.
The fundamental efficiency limit for single-junction solar cells is limited to 33.7%,
formulated in 1961 by Shockley and Queisser (Shockley and Queisser 1961). The
first actual solar cell was developed in 1954 at Bell laboratories using the silicon
semiconductor to show the photoconversion efficiency of 6%. Over the last 60 years,
research and development have pushed the PCE of silicon solar cells to record 26.7%
(Yoshikawa et al. 2017), very close to its theoretical limit of 29% (Andreani et al.
2018). The silicon solar cell technology is already a proven technology with more
than 90% accumulated share in the PV market (Andreani et al. 2018).

1.4 The Emergence of Perovskite Solar Cells (PSCs)

In last ten years, the organic–inorganic hybrid perovskite solar cells (PSCs) have
emerged as a potential alternative to the existing photovoltaic technologies as their
efficiency has improved from 3.8% in 2009 to 25.1% in 2019 as shown in Fig. 1
(Kojima et al. 2009; NREL solar energy chart: https://www.nrel.gov/pv/assets/pdfs/
pv-efficiency-chart 2019). The unprecedented growth of the PSCs is associated with
the fact that the perovskite materials can be synthesized from low-cost solution

Fig. 1 Graphical representation of progress of PSCs (Kim et al. 2012; Yang et al. 2015a; Kojima
et al. 2009;NRELsolar energy chart: https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart 2019;
Im et al. 2013; Zhou et al. 2014b; Liu and Kelly 2014; Saliba et al. 2016a)

https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart
https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart
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processing and can bemade crystalline below 200 °C, promising for the cost compet-
itiveness of the disruptive solar cell technology (Green et al. 2014; Zuo et al. 2016).
The band-gap of the perovskite semiconductors can be tunable for a range of 2.2–
1.2 eV through composition engineering. Hybrid perovskite systems possess the
direct band-gap with the strong absorption coefficient (>104 cm−1), which requires
only 1-μm-thick perovskite layer to absorb the full solar radiation above their band-
gap. Long-range crystallinity of solution-processed perovskite layer contributes
significantly to achieve high carrier mobility (1–30 cm2 V−1 S−1) and long carrier
lifetime (~100 ns) in their solid films (Johnston and Herz 2016). The carrier diffusion
length in PSCs exceeds 10 μm as a result (Tainter et al. 2019), allowing efficient
extraction of photogenerated carriers in solar cells. The aforementioned traits make
hybrid perovskites unique for the solar cells (Grätzel 2014) as well as other optoelec-
tronic applications, like light-emitting diodes (Tan et al. 2014; Zhang et al. 2017a),
lasers (Chen et al. 2016a; Stylianakis et al. 2019), and photodetectors, (Hu et al.
2014a; Wang and Kim 2017).

Despite several advancements, there are concerns over the stability of the
perovskitematerials (Wang et al. 2019),which hinders their prospect for commercial-
ization. The organic–inorganic hybrid perovskite materials suffer from poor stability
when exposed to heat, oxygen, moisture, and even illumination (Lee et al. 2015a;
Smecca et al. 2016; Aristidou et al. 2015). The instability of perovskite materials lies
with the fact that the perovskite crystals are ionic, and there exits significant empty
space within the perovskite unit cells which makes them soft crystals and the volatile
nature of the organic component in the perovskite crystal. Significant progress has
been made to improve the stability of perovskite semiconductor through composi-
tional engineering to minimize the crystal strain, tuning the unit cell toward cubic
structure, and replacement of the volatile component (Wang et al. 2019; Asghar
et al. 2017). Development of the two-dimensionally confined perovskite layer, inter-
linked by long-chain organic molecules has been investigated to reduce the moisture
induce degradation of the perovskite layer (Grancini et al. 2017; Tsai et al. 2016).
However, the special confinement and insulating ligands have a detrimental effect on
charge transport. Nevertheless, it is an interesting approach to improve the stability
of perovskite semiconductors.

In this book chapter, a detailed overview of PSCs will be discussed. Progress
in synthesis strategies in terms of composition engineering and structure–property
correlation to attain the high photovoltaic efficiency will be explained. The evolution
of device engineering for the PSCs to attain high photovoltaic efficiency and better
stability will be summarized.
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2 Intrinsic Properties of Perovskites

2.1 Structural Properties

Metal halide perovskites are known as the common cluster of compounds with
general chemical formula of AMX3, where A is organic or inorganic cations (typi-
cally MA = CH3NH3

+, FA = HC(NH2)+2 , Cs
+, K+, Rb+, etc.), M is metal cations

(Pb2+, Sn2+, Eu2+, Ge+, etc.), and X is halide anions (Cl−, Br−, I−) (Kojima et al.
2009; NREL solar energy chart: https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-
chart 2019; Sum and Mathews 2014). In a perovskite unit cell, A cation is situated
at the eight corners of the cube, while M-cation is placed at the body center and six
numbers of X anions are located at the face centers. AMX3 belongs to an extended
large family of organic–inorganic metal halide perovskites where the [MX6]4− octa-
hedra can grow three-dimensional (3D), two-dimensional (2D), one-dimensional
(1D), or zero-dimensional (0D) crystal structures having the same unit cell as shown
in Fig. 2. For example, in MAPbI3 each [PbI6]4− octahedra is connected with six

(d)

(b)(a)

(c)

Fig. 2 Schematic representation of a 3D, b 2D, c 1D, and d 0D perovskite crystal structure,
respectively

https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart
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neighbors of iodide forming a 3D network while MA+ is located at the void of
the network (see Fig. 2a). In other words, the [PbI6]4− octahedras are connected
three dimensionally in the crystal structure. For the 2D case (see Fig. 2b), longer
organic cations like CH3(CH2)nNH3

+ situated at A-site where each [PbI6]4− octahe-
dron is connected with four neighbors iodide anions, forming a 2D network layer
that is sandwiched between two CH3(CH2)nNH3

+ layers and the chemical formula
becomes A2PbI4. It results in multiple quantum well structures from the stacking
of these sandwiched layers via van der Waals interaction with the CH3(CH2)nNH3

+

layer as the barrier. In 1D case (see Fig. 2c), each octahedra is attached to two oppo-
site corners with neighboring octrahedras and forming parallel infinite chains (e.g.,
(C10H21NH3)2PbI4). Lastly, for 0D structure (e.g., Cs4PbI6), each [PbI6]4− octra-
hedra is separated by four Cs+ ions to form an isolated molecule resembles to a
quantum dot array (see Fig. 2d).

The lead halide perovskite structure (AMX3), in which A-site cation, plays a
very important role for formation of stable perovskite crystal structure (Park and
Seok 2019; Correa-Baena et al. 2017). The stability parameter is characterized the
Goldschmidt tolerance factor (t),

t = (rA + rX )√
2 × (rM + rX )

where rA, rM , and rX are the ionic radii of the A-site cation, metal cation, and halide,
anions, respectively. For an example, the ionic radii of I− and Pb2+ ions are 2.03 Å
(rX ) and 1.33 Å (rM), respectively, as represented in Fig. 3, and the radii of A-site
cation is in the range of 2.3–2.8 Å (rA). When the perovskite is formed using Cs+,
MA+, or FA+ as the A-site cations, the optical properties of the perovskites change
with the cation result in a red-shifting absorbance onset. In other words, band-gap of
the perovskite material changes in this order, MA+ (1.55 eV) < Cs+ (1.5 eV) < FA+

(1.45 eV). However, the volume per APbI3 unit changes from 222, 248, and 256 Å3

for Cs+, MA+, and FA+ cations, respectively. Thus, Cs+ and MA+ differ significantly
in radial size, but the band-gap changes a little compared to difference between the
MA+ and FA+ cations.

Halide substitution. The advantage of these metal halide lead halide perovskites is
the capability to tune their optoelectronic properties by substitution the halide ions.
For an example, the iodine ions in MAPbI3 perovskite structure can be substituted
with both Cl− and Br− anions (Correa-Baena et al. 2017). Same substitution of the
ions can be possible for MAPbBr3 andMAPbCl3 perovskite structures. While halide
substitution, the band-gap of the perovskites changes 2.97, 2.24, and 1.53 eV for the
MAPbCl3, MAPbBr3, and MAPbI3 perovskite, respectively. At room temperature,
MAPbCl3 and MAPbBr3 perovskites are found to be in a cubic structure while the
phase changes to a tetragonal structure at lower temperatures. Moreover, MAPbI3
crystallizes to tetragonal crystal structure, whereas FAPbI3 crystallizes to hexagonal
δ-phase or cubic α-phase at room temperature as shown in Fig. 4.
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Fig. 3 Tolerance factor of ABX3 perovskites with the various compositions of A, B, and X-sites

Fig. 4 Crystal structure of a cubic α-phase and b hexagonal δ-phase of perovskites

Organic cation substitution. Similar to halide substitution, organic cations can
also be replaced in the perovskites (Correa-Baena et al. 2017). For an example,
MA+ cations can be exchanged with slightly bigger sized FA+ cations. The cation
exchange in perovskites has very small impact on the optical band-gap or very little
change in band-gap observed. DFT computations demonstrate that organic cations
do not contribute to the electronic states close to the band edges. However, with
cation exchange the crystal lattices changes which results in a slight change in the
band-gap.



62 S. Bhaumik et al.

Organic/inorganic ion mixing. Simultaneous exchange of both organic cations
and anions has been done as well. For an example, the performance of MAPbI3
perovskite-based solar cells is not highly efficient (Correa-Baena et al. 2017). On
the other hand, FAPbI3 and CsPbI3 perovskite structures (cubic phase) are not
stable at room temperature. However, the compositional mixing of MA/FA/Cs/Br/I
perovskites has been studied enormously. FAPbI3 perovskite-based photovoltaics
appears to give better device performance over MAPbI3, but some MA+ cations
in FAPbI3 perovskites stabilizes the perovskite structure. Introducing Br− anions
in FAPbI3 perovskites allows to tune the band-gap, enhance structural stability, and
improve the device performance. Therefore, it is very important to design principle to
mix cations and halides to achieve final perovskite compositions that is advantageous
while evading their disadvantages.

2.2 Electronic Structure

Perovskite is known for the common cluster of compounds with general chemical
formula. The electronic band structures of organic–inorganic perovskites can be
calculated by using a semiempirical technique based on the extended Huckel theory
and an ab initio method based on the Hartree–Fock theory (Sum andMathews 2014).
Another approach is using ultraviolet photoelectron spectroscopy and first princi-
ples density functional theory (DFT) band calculations at the room temperature.
DFT calculations for 3D MAPbI3 perovskite crystals reveal that the valence band
maxima contain Pb 6p–I 5p σ antibonding orbital, while the conduction bandminima
comprise of Pb 6p–I 5s σ antibonding and Pb 6p–I 5pπ antibonding orbitals as repre-
sented in Fig. 5. Nevertheless, DFT calculations also show that the A-site cation has
a very little influence on the band-gap energy, of which is mainly determined by the
[PbI4]6− network.

Fig. 5 Bonding energy diagram of a [PbI4]6− cluster, b 0D, 3D, 2D band structure of MAPbI3
perovskites
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Absorption coefficient. The absorption coefficient of materials is described as the
amount of a given color of light is absorbed by the material for a given thickness.
Thats means that more light absorbs by a material then its absorption coefficient will
be higher. The absorption coefficient is represented by the Greek letter “α”. It has
units of cm−1 because it defines the amount of light absorbed per unit thickness of
the material. Since the material absorbance varies with the wavelength of the light,
so the absorption coefficient is a function of wavelength/color. For an example, the
absorption coefficient ofMAPbI3 thin films is around 1.5× 104 cm−1 at 550 nm, that
gives the penetration depth is only 0.66 mm for 550 nm light. However, for 700 nm
light, the absorption coefficient of MAPbI3 thin films is around 0.5 × 104 cm−1 and
corresponding penetration depth is around 2 mm (Park 2015). Higher penetration
depths led to more incoming light can be absorbed by the perovskite films, which is
essential for high-efficiency PSCs.

Balanced charge transport behaviors. The charge transport properties ofMAPbX3

perovskites were reported by Xing et al. (2013) and Stranks et al. (2013). Transient
spectroscopic analysis reveals that upon absorbing the light perovskites exhibited
balanced electron- and hole-transporting behavior. The calculated electron diffusion
length for MAPbI3 thin film is around 130 nm while the hole diffusion length is
calculated to 100 nm (Xing et al. 2013). However, by doping Cl− ions in MAPbI3
perovskite, the electron and hole diffusion length enhanced to 1069 nm and 1213 nm,
respectively (Stranks et al. 2013). The longer and balanced charge diffusion lengths
results in improved solar cells device performance.

3 Perovskite Structure Formation Techniques

3.1 Single Crystals (SCs)

Solution temperature-lowering (STL)method. In this method, the solubility of the
lead halide perovskites in acid halide solvents (e.g., HI, HBr, HCl) plays an impor-
tant role for perovskite crystal growth. The perovskite materials solubility changes
significantly with temperature. This mechanism is generally used for perovskite
SCs growth. At first perovskite, seed crystals are dipped into an acid halide solvent
at certain temperature (see Fig. 6a). Upon lowering the temperature, the satura-
tion of the solute in the solvent takes place and corresponding crystal growth start
around the perovskite seed crystals. High-quality MAPbI3 SCs can be grown by this
temperature-lowering process. In a glass beaker, MAPbI3 seed crystals are spanned
by a stirrer in HI solvent at 65 °C (Dang et al. 2015). By lowering the temperature to
40 °C, saturation of perovskites solute in the HI solvent expedite the crystal forma-
tion and finally 10 mm × 10 mm × 8 mm-sized MAPbI3 SCs. These as-synthesized
SCs exhibit two natural facets in the directions of (100) and (112) crystal planes.
The advantages of this method are that the crystal growths are easily controlled with
temperature and high-quality large-size SCs can be obtained.
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Fig. 6 Schematic illustration of growth of MAPbI3 perovskite single crystals via various synthetic
methods as a STL, b ITC, c AVC, d SEM, and e DPC method, respectively

Inverse temperature crystallization (ITC)method. The ITCcrystal growthmecha-
nism is totally opposite to the temperature-loweringmethod. The perovskitematerials
whose solubility in a particular solvent are decreasing with increasing the temper-
ature. Several research groups investigated the lead halide perovskites solubility in
N, N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), and γ -butyrolactone
(GBL). Interestingly, in these solvents the perovskite crystal structure formation
was observed with increase of solution temperature. By this ITC method, mm-sized
MAPbX3 and FAPbX3 (X = Cl−, Br−, I−) SCs were obtained via using different
organic solvents (Saidaminov et al. 2015; Liu et al. 2015a).

Basically, in the solvent mixture organic solvents such as DMF and DMSO are
connected with lead halides and form intermediate adducts. The perovskite SCs can
be developed by removing the organic solvents at higher temperature (see Fig. 6b).
For example, whenMAI and PbI2 are mixed in DMF, an intermediateMAPbI3-DMF
adduct phase is formed due to a strong interaction of DMF–MA bonding. In a similar
way, MAPbI3-DMSO adduct phase is formed due to the interaction of DMSO–PbI2
bonding, when MAI and PbI2 are mixed in DMSO. The MAPbI3 single crystal was
obtained by removing the DMF or DMSO solvent via annealing.

Anti-solvent vapor-assisted crystallization (AVC) method. The AVC method is
used to grow the perovskite crystals that are highly soluble in a solvent but have
very poor solubility in other solvent (Shi et al. 2015). By this method, mm-sized
MAPbX3 SCs were obtained by using the anti-solvent dichloromethane (DCM),
that is slowly diffused into the solution containing MAX and PbX2 (X = Br−, I−)
dissolved in DMF or GBA solvents (see Fig. 6c). This growthmethod for preparation
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of the hybrid halide perovskites SCs are highly efficient and applicable. However, it
is difficult to develop large-size SCs that is important for large-area optoelectronic
device applications.

Slow evaporation method (SEM). This slow evaporation method is a traditional
and easy solution-based process for growth of SCs. Liao et al. (2015) have prepared
the SCs of hybrid perovskite analogue (benzylammonium)2PbX4 (X = Cl−, Br−).
In this process, stoichiometric mixture of benzylammonium chloride and PbCl2 was
mixed in concentrated HCl aqueous solution. Bulk (benzylammonium)2PbX4 crys-
tals with the dimensions of 5 mm × 10 mm × 2 mm were obtained via the slow
evaporation of DMF solution at 90 °C (see Fig. 6d). The preferred growth of single
crystalline planes is extended along the [001] direction. Although this process is
highly efficient, sometimes this method is hard to control precisely, that limits the
industrial applications.

Droplet-pinned crystallization (DPC) method. Micrometer-sized MAPbI3 single
crystalline arrays can be formed using this DPC method (Jiang and Kloc 2013). At
first, MAPbI3 precursor solution was drop-casted on PEDOT:PSS-coated indium tin
oxide (ITO) glass substrate, on which smaller wafers were placed (see Fig. 6e). Upon
annealing, the precursor solventwas evaporated and rectangular-shapedMAPbI3 SCs
arrays were formed within some minutes. This method is very useful for growth of
micrometer-sized SCs. It also provides a platform to grow single crystalline thin
films.

3.2 Thin Films

Perovskites thin films are usually grown using solution process and vapor-phase
deposition techniques. Very careful control on several processing parameters, such
as the perovskite film thickness, crystallinity, perovskite phase purity, and perovskite
film morphology, plays a significant role in achieving high-quality perovskite thin
films and corresponding final device performance. The optimized perovskite thin-
film processing steps can lead to desired perovskite thin-film thickness, highly crys-
talline films, uniform morphology, bigger crystal sizes, and less defect states. For
solution-processed perovskite thin films, the processing parameters are types of
perovskite precursors and solvent mixtures, precursor solubility, spin-coating speed,
solvent engineering steps, types of anti-solvents, volume of the anti-solvent, time of
anti-solvent injection, post-film thermal annealing temperature and time.

Single-step solution deposition. It is the simplest way to prepare a perovskite thin
film via solution-processed spin-coating method. This perovskite thin films forma-
tion depends on various components, like substrate on which perovskite film will be
deposited, precursors, solvents/mixed solvent and followed by spin-coating param-
eters. After spin coating, the semiconducting thin film is further annealed for faster
crystallizationprocess. Thefinal filmcrystallinity, thickness, andmorphologydepend



66 S. Bhaumik et al.

Fig. 7 Schematic illustration of formation of MAPbI3 perovskite thin films via a one-step solution
deposition process, b solvent engineering process, c two-step deposition process, and d vacuum
processing technique, as mentioned in the diagram

on various processing parameters. Single-step perovskite films formation was first
introduced by Im et al. in 2011 (Im et al. 2013). In this process, they prepared a
precursor solution bymixing an equimolarMAI and PbI2 powders in γ-butyrolactone
(GBL) solvent at 60 °C for 12 h under vigorous stirring. Then the mixed solution
was filtered through a 0.45 mm size PVDF filter for final thin-film formation via
spin coating (see Fig. 7a). Then they spin-coated the precursor concentrations are in
various concentrations of 10.05, 20.13, 30.18, 40.26 to 41.22 wt%. They observed
that mesoporous TiO2 films are better than compact films of TiO2 for growth of
thick uniform perovskite films. On the top of mesoporous TiO2 film, the precursor
solution was dropped and waits for one min to penetrate the solution into a meso-
porous TiO2 layer, which was then spin-coated at 2000 rpm for 40 s in an ambient
atmosphere. The spin-coated MAPbI3 film was annealed at different temperatures,
and tetragonal crystal structure was formed. With increasing the concentration of
the perovskite precursor, the film formation abruptly changes. A yellow-colored
perovskite film was obtained for 10.05 wt% of precursor concentration, while it
transformed to black color when the wt% concentration increased to 40.26 wt%. The
color change of perovskite thin films at different precursor concentrations is ascribed
due to higher perovskite precursor concentrations led to enhanced precursor inter-
action upon annealing and corresponding formation of the black perovskite phase.
The UV-vis absorption spectra of films prepared from different concentrations of the
perovskite precursor showed an increase in light absorption with higher precursor
concentrations. It is also observed that up on annealing from temperature 40–100 °C,
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the perovskite film led to an increase in the absorption intensity, however, beyond
100 °C the absorption intensity decreases.

Selection of mixed solvents to dissolve perovskite precursors is also very impor-
tant for formation of smooth perovskite surface with uniform crystal domains
(Kim et al. 2014a). A mixed precursor solution of DMF and GBL was used to
dissolve MAI and PbI2 at 60 °C inside a nitrogen glovebox. The morphology of
spin-coated perovskite films hugely differs when the films when spin-coated from
different solvents like only DMF, only GBL, andmixed DMF andGBL solvents. The
perovskite films formed from GBL solvents show formation of larger crystal grains
with poor surface coverage. However, the perovskite films prepared fromDMF show
an improved morphology but non-uniform crystal dimensions. When the perovskite
films developed frommixed solvent of DMF:GBL, the films display a smooth surface
morphology with denser packing having uniform crystal dimension of 100 nm. The
root-mean-square (RMS) roughness of the perovskite thin film reduces to 6.6 nm
(for DMF:GBL) from 24.53 nm (for GBL) and 8.88 nm (for DMF). The crystalliza-
tion process of perovskites varies from different solvents to solvents due to different
evaporation rate of each solvent during spin-coating process. A higher evaporation
rate of a solvent could lead to irregular thin-film surface morphology while mixture
of different solvents may increase precursor solubility and controls the evaporation
rate and resulted in an uniform and compact perovskite film.

Solvent engineering approach. This method is slightly modified compared to
conventional single-step solution deposition process where some volume of an anti-
solvent is drop-casted on top of perovskite film during spin coating of the perovskite
precursor (see Fig. 7b). This solvent engineering process for perovskite preparation
was first introduced by Jeon et al. in 2014 (Jeon et al. 2014). Usually, perovskite
precursors are dissolved in a mixed solvent of GBL and DMSO. An anti-solvent
that does not dissolve the perovskite but is miscible with GBL and DMSO, such
as toluene, chlorobenzene, and chloroform, was dropped during the spin coating to
facilitate an intermediate complex (MAI–PbI2–DMSO) film and reduces the growth
kinetic for perovskite crystallization process. The intermediate phase is confirmed by
X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) anal-
ysis (Beckmann 2010). This intermediate thin film was finally annealed at 130 °C
and fully converted into perovskite phase. The resulted films are very uniform, dense,
and smooth over larger active area.

Two-step deposition: Two-step deposition or sequential deposition technique, in
which individual precursor layers, is deposited separately and interacts together to
develop a final perovskite thin film (Burschka et al. 2013). At first, lead halide films
are grown on the substrate via spin coating and later this film is dipped inMAI in IPA
solution, leading to formation of MAPbI3 perovskite thin films (see Fig. 7c). The
precursor PbI2 dissolved in DMF solvent and the solution was spin-coated on top
of a mesoporous TiO2 layer, followed by annealing at 70 °C to form yellow-colored
PbI2 film. This film was then dipped in a 5–10 mg/ml MAI precursor in IPA for
several seconds of time, followed by rinsing in IPA and annealing at 70 °C. The
yellow PbI2 films transformed into black-colored films confirmed the formation of
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the perovskite phase. The thin-film morphology greatly depends on MAI solvent
concentration and dipping time. This procedure is very useful for large-area device
fabrication with reproducible high-quality crystalline perovskite film and excellent
photovoltaic device performance.

Vacuum processing technique. In vapor deposited technique, the perovskite
precursor powders MAI and PbCl2 are placed separately in a thermal boat and
simultaneously thermally evaporated on a substrate to form a perovskite film (Liu
et al. 2013). Usually, the MAI and PbCl2 precursors were evaporated with a molar
ratio of 4:1 in a vacuum of 10−5 mbar and resulted in a dark reddish-brown-
colored perovskite (MAPbI3−xClx) film (see Fig. 7d). The resulted perovskite films
show a complete, crystalline, uniform coverage, and larger grain size compared
to the conventional solution-processed perovskite. This procedure is also very
advantageous for large-area device fabrication.

4 Basic Principle of PSCs

Mainly three key parameters play crucial role for device performance of the PSCs.
First, the active perovskite material, the material needs to be designated in such a
way that it has optimized band-gap and high-phase stability. However, the band-
gap of the perovskites can be tuned in the visible to infrared spectral range by
mixing/exchanging the halide anions (X = Cl−, Br−, I−) or replacing the cations
(MA+, C2H5NH3

+, FA+, Cs+, K+, Rb+). Second, the surface morphology of the
perovskite thin films, uniform top layer, and large crystals formation is very essential
for efficient charge transport and good diode characteristics; this is widely governed
by precursor/solvent selections and post-processing conditions. Third, selection of
proper charge transporting materials and optimizing the energy levels alignment is
between the perovskite and the neighboring transport layers in order to enable effec-
tive charge transport throughout the device. In this regards, detailed study on the
position of conduction band (CB) minimum and valence band (VB) maximum is
required for perovskites and transporting materials.

The basic principle of solar cells is to convert the solar energy into electrical
energy. The solar energy originates from the Sun, considered as a blackbody with a
light spectrum at the temperature of about 5800 K. As the Sunlight passes through
the Earth’s atmosphere, it is attenuated by light scattering and some part is absorbed
via chemical interactions with the atmospheric molecules. The atmosphere absorbs
certain wavelengths of light and changing the amount of light reaching the Earth’s
surface. The water vapor mostly contributes for absorption of Sunlight spectra
while molecular nitrogen, oxygen, and carbon dioxide also absorb some parts. The
final solar spectrum that reaches to the Earth’s surface varies with the light path
length covered through the atmosphere. AM 1.5 spectrum with light intensity of 100
mW cm−2 are standardized as the measuring conditions for characterization of solar
cells (see Fig. 8).
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Fig. 8 Spectral power of the AM 1.5 global solar spectrum

4.1 Charge Generation and Transport in Perovskite Materials

For the semiconductor-based photovoltaics, the photons from Sunlight with enough
energy can excite the electrons from the valence band to the conduction band across
the band-gap and that results in generation of charge carriers. The photogenerated
charge carriers can be separated outwith proper band alignment of transporting layers
such that electrons and holes are moving in opposite directions and store at counter
electrodes. This is how solar cells are working under Sunlight. When Sunlight is
falling on any absorbing active material, there are two types of loss mechanisms
happened that hinder the solar cell efficiency. In a single-junction solar cell, the
absorbingmaterial cannot absorb photons having energy less than the band-gap of the
activematerial and the light directly transmit through thematerial (see Fig. 9a). These
low energy photons do not contribute to solar cells device performance. However,
the photons having energy higher than the band-gap, absorbed by the active material,
and the charge carriers are excited to higher energy states. After a very short time
period, these excited charge carries relaxes to band edges of the active material
through non-radiative thermalization process (see Fig. 9b). Here the excess energy
of the incident photons is losses via this non-radiative process. Finally, the band-gap
energy contributes to the device electricity. These two loss mechanisms reduce half
of incident solar energy conversion to electrical energy.

Generation of charge carriers. In an ideal semiconductor, the valence and conduc-
tion bands are not flat. The band alignment is depending on the k-vector in the phase
space that describes the momentum of an electron in the semiconductor. So, the
energy of an electron is dependent on its momentum because of the periodic crystal
structure of the semiconductor. If the maximum energy of the valence band and the
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Fig. 9 Schematic representation of two types of energy losses in a solar cell when photon incident
on the device. a If Eph < EG, the incident photon is not absorbed by the semiconductor. b If Eph >
EG, a part of photon energy relaxes through thermalization process

minimum energy of the conduction band matches at the same k-vector in the E–
k space, an electron can be excited from the valence band to the conduction band
without a change in the momentum. Such a semiconductor is called a direct band-
gap material. If the maximum energy of the valence band and the minimum energy
of the conduction band does not match at same k-vector, so the electron cannot be
excited without changing its momentum, such materials are called an indirect band-
gap material. The absorption coefficient of a direct band-gap material is much higher
than an indirect band-gap material; thus, the absorbing semiconductor can be much
thinner for a direct band-gap semiconductor.

In a semiconductor, electrons can only stay at energy levels below the valence
band edge (Ev) and above the conduction band edge (Ec). Between these two energy
levels no allowed energy states exist for the electrons. Hence, the band-gap energy
difference is, Eg = Ec − Ev. When the Sunlight with incident photons has energy
higher than the band-gap of the semi-conducting material, which are absorbed and
subsequently excite electrons from an initial energy level Ei to a higher energy level
Ef as shown in Fig. 10a. So, the photons with an energy smaller than Eg incident
on the ideal semiconductor, it will not be absorbed by the material. If an electron is
excited from Ei energy level to Ef energy level, a void is created at Ei energy level
and the void acts like a positive charged particle and is so-called a hole. Therefore,
the absorption of a photon leads to formation of an electron–hole pair where electron
stays at conduction band and hole stays are at valence band.
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Fig. 10 Schematic representation of a absorption of a photon in a semiconductor with band-gap of
EG. The incident photonwith energyEph = hγ excites an electron fromEi toEf in the semiconductor
and at Ei a hole is created. b If Eph > EG, a part of the energy is thermalized

Separation of the photogenerated charge carriers. The excited electron can stay
at the conduction energy level for a very short period of time, which is so-called the
lifetime of the electron. The time period is generally in millisecond to microsecond
scale. After the lifetime, the electrons will return back to the valence energy level
from the conduction energy level and recombine with the holes. The electron–hole
recombination energy will be released either as a photon (radiative recombination) or
relaxes via lattice vibrations (non-radiative recombination) as shown in Fig. 10b. One
can store the energy for further use before the electron–hole recombination process
by separating out the electrons and holes via an external circuit and it is so-called
solar cells circuit. A solar cell has to be designed such that the electrons and holes
can transfer to opposite directions in presence of favorable adjacent energy levels of
transporting materials in a very short span of time, i.e., less than the lifetime of the
excited electrons. This requirement limits the thickness of the absorber materials.

Collection of the photo-generated charge carriers. Finally, the opposite charge
carriers are extracted from the solar cells with electrical contacts and the energy is
stored in a battery. Here, the chemical energy of the electron–hole pairs is converted
into electrical energy.

4.2 Characterization Processes of PSCs

Power conversion efficiency (PCE). The most important parameter to characterize
the solar cells is the PCE, which can be obtained from the current density–voltage
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(J–V ) characterization. As demonstrated in Fig. 11, under illumination and without
external bias, a negative current is flowing through the circuit. The current density
under these conditions through the solar cells device is called short-circuit current
density (Jsc). When a positive bias is applied to the circuit, up to an open-circuit
voltage (V oc) a negative current is transporting though the circuit, indicating the
power generation by the solar cell. The PCE of a solar cell is defined as the ratio
of the maximum power output (Pout) to the incident light power (Pin), and it is
represented by the formula,

PCE = Pout
Pin

= Isc × Voc × FF

Pin

where the fill factor (FF) can be thought of as the biggest rectangular area (blue area;
see Fig. 11) covered under the current voltage curve. It is the quotient of maximum
solar power output and the product of V oc and Isc.

External quantum efficiency. Another important parameter to characterize solar
cells is the external quantumefficiency (EQE). It is the conversion ratio of the incident
photon into electron in a solar cell, which is also known as the incident photon to
converted electron (IPCE). The EQE is defined as the ratio of the number of output
electrons to the number of incident photons at different wavelengths. EQE of a
solar cell is depended on many factors, such as light absorption-co-efficient of the
active layer, exciton generation efficiency, exciton dissociation efficiency, and carrier
extraction efficiency.

Fig. 11 Schematic representation of J–V characteristics of a solar cell
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5 Working Principle of PSCs

5.1 Device Architectures

Selection of the transporting materials with proper band alignment is a crucial part.
In PSCs, perovskite layer acted as an absorber layer. Depending upon the electron
and hole transport toward light entering electrode, PSCs can be classified into two
parts n-i-p structure and p-i-n structure. One can easily understand this classification
by checking the position of transporting layer [n-i-p: electron-transporting mate-
rials (ETMs) layer placed on top of TCO; and p-i-n: hole-transporting materials
(HTMs) layer placed on top of TCO]. These two types of solar cells device struc-
tures are subclassified into two other parts mainly mesoscopic and planer structure.
The mesoscopic structure incorporates a mesoporous layer (in front of light entering
window), whereas the planar structure consists of all planar layers of transporting
layers. Sometimes PSCs are classified without transporting layers.

Regular n-i-p structure. PSCs are often called as solid-state dye sanitized solar
cells (SS-DSSCs). PSCs are modified form of conventional DSSC. Here the light
absorption was governed by the solid-state perovskite material in DSSCs, and it
was fabricated from dyes. Conventional PSCs structure is n-i-p (see Fig. 12) type,
where the n-type metal oxide layer (transporting layer) was deposited on top of
the conducting oxide layer. On the top of this n-type transporting layer, intrinsic
absorber perovskite layer was grown and finally the p-type transporting layer and
top electrodewas deposited in succession. The efficiency of the PSCsmostly depends
on the proper selection of transporting materials. Mesoscopic layer (like, TiO2) was
deposited as a transporting layer in front of the light entering window to enhance
the charge collection ability from perovskite layer and as a result the PSCs device
performance enhanced.

Fig. 12 Schematic energy
band diagram of direct
n-i-p structure
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Inverted p-i-n structure. Inverted p-i-n structure was imported from the organic
solar cells. Where the p-type hole-transporting layer (HTL) was deposited on top of
the TCO and the n-type electron-transporting layer (ETL) was deposited under the
top electrode. Here the holes and electrons are forced to move in two different direc-
tions and collected at different electrodes (see Fig. 13). In this device configuration,
mesoscopic and planer PSCs were fabricated in the presence of different perovskite
compositions.

Electron-transporting layer-free structure. A compact p-type transporting layer
was deposited on top of transparent conductive oxide (see Fig. 14a), or on top of
perovskite layer (see Fig. 14b) to fabricate electron-transporting layer-free PSCs.
On top suitable electrodes are deposited. This type of PSCs is fabricated on planar
structure and helps to achieve high PCE by increasing the open-circuit voltage (V oc).
Recently, scientists have developed a suitable method for fabricating PSCs without
one transporting layer and achieved higher PCE.

The essential requirements of HTM layers in PSCs are due to several advantages
such as,

Fig. 13 Schematic energy
band diagram of inverted
p-i-n structure
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Fig. 14 Schematic energy band diagram of PSC without ETL a direct and b inverted structure
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(1) Suitable band matching with perovskite layer helps to attain high V oc values.
(2) Enhancement of the fill factor (FF) by reducing the series resistance governed

by the high hole mobility in the device.
(3) The optical loss in the devices can be minimized by proper selection of low

optical absorption of the transporting material in the visible region.

5.2 PSCs with Various HTM Layers and Their Device
Performance

The thickness of the transporting layer should be maintained at an optimum value to
overcome the resistive losses and allowed better crystalline growth of the perovskite.
Some of the PSCs device structures are shown in Fig. 15.

Nanoparticles as HTMs
Nanomaterials are a suitable candidate for large-area optoelectronic industry due to
their low production costs and ease synthesis helps. Superior optoelectronic proper-
ties such as easy processability, low synthesis cost, tunable band-gap, high mobility
serve the nanomaterials as an alternative choice as a transporting layer material for
PSCs. Tunable optoelectronic properties of nanomaterials help easy band matching
with perovskite. As a result, the use of nanomaterials in the PSCs expected to improve
the performance the device indeed. In the previous study, on colloidal QDs have been
used in DSSC to get a device performance of 7% as an alternative to molecular dyes
(Ip et al. 2012). Here, in this section we will discuss the device performance of in
PSCs with various hole-transporting nanomaterials, such as Cu2ZnSnS4, WO3, NiO,
CuS nanocrystals (NCs) together with CuInS2- and PbS-based QDs.

Cu2ZnSnS4 Nanoparticles (NPs). Earth-abundant Cu2ZnSnS4 (CZTS) NPs display
some interesting properties such as high hole mobility (6–30 cm2 V−1 s−1), ideal
band-gap (1.5 eV) and permit them to use as a HTL in PSCs (Chen et al. 2013; Zhou
et al. 2013; Walsh et al. 2012; Vanalakar et al. 2015). Wu et al. introduced the CZTS
NPs as a transporting material due to the band matching with absorber perovskite
layer in which the PCE was reached to 13% (Wu et al. 2015a). In this report, the
NPs were synthesized with different reaction times of 20, 30, and 40 min to achieve
different sizes such as CZTS-20, CZTS-30, and CZTS-40, and optical absorption
was verified with mostly used organic HTM spiro-OMeTAD. After analyzing the
SEM images, it was revealed that smooth, uniform, and homogeneous perovskite
layer was formed on top of CZTS NPs. When compared with the commonly used
spiro-OMeTADHTMlayer, it was found that theCZTS layer improved the interfacial
contact between the perovskite layer and the top electrode to reduce the non-radiative
recombination at the interfaces. The results suggested that the CZTS NPs can be
effectively acts as a low-cost HTM layer as its able to transport holes effectively in
PSCs (Fig. 16).
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Fig. 15 a Left to right, normal n-i-p structure of PSCs in mesoporous and planar configuration
of ETL. b Left to right, normal p-i-n structure of PSCs in mesoporous and planar configuration of
HTL. c Structure of PSC without ETL (left) and without HTL (right)
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Fig. 16 Schematic energy
band position of various
HTMs used in PSCs
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WO3 NCs. In 2015, Li et al. had shown the successful use of WO3 NCs as an
efficient inorganic HTL in PSCs (Li 2015). Highly transparent WO3 NCs layer (87%
transparency) allows the incoming photons to be absorbed by the perovskite layer,
high work function, and deep energy levels of WO3 makes them efficient HTM in
PSCs. It was also observed that the WO3-based PSCs were more stable compared to
the other organic and nanocrystalline HTLs-based solar cells. It was found that the
device performance was considerably well with WO3 as HTL and a PCE of 7.68%
observed (Table 1).

NiONCs. In 2014, Zhu et al. had successfully demonstrated the use of NiONCs as an
efficient HTL in PSCs. The NiO layer (30–40 nm thick) was grown by conventional
sol–gel method and the corresponding solar cells device exhibited a PCE of 9.11%
(Zhu et al. 2014). From the photoluminescence (PL) measurements, it was found
that the NiO thin films have superior hole extraction ability from the perovskite layer
compared to PEDOT:PSS layer.

CuS NPs. Rao et al. also discovered the use of CuS NPs as a hole-transporting mate-
rial in an inverted perovskite solar cell (Rao et al. 2016). CuS NPs-based solar cells
exhibit some interesting features, such as reproducibility, low charge recombination,
effective hole extraction, higher stability, and ability to modify work function of ITO
layer, found perfect band matching with the perovskite layer. From the SEM images,
it was confirmed that the CuS NPs provide good surface coverage on ITO substrate.
AFM studies of root-mean square (RMS) roughness suggest that no pinholes were
formed in the CuS layer. From the J–V curves, it was discovered that the solar cell
device exhibited PCE value of 16.2% and stability of the device boosted up to 250 h.

Copper indium disulfides (CuInS2) colloidal Quantum Dots (QDs). Less toxic
suitable band-gap (1.45 eV) with high extinction coefficient in the visible region of
CuInS2 QDs enables them to use as an HTM layer in PSCs. Lv et al. introduced
CuInS2 as an HTM in PSCs by replacing organic HTMs (Kolny-Olesaik and Weller
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2013). The use of CuInS2 QDs (VB: 5.00–5.05 eV) improves the hole conduction
from perovskite layer (VB: −5.43 eV) due to suitable band matching (Pan et al.
2014). The devices were fabricated by depositing colloidal CuInS2 QDs on top of
the MAPbI3-coated TiO2 films, during testing under suitable light intensity these
cells delivered a PCE of 6.57%. The device performance was improved with a PCE
of 8.38%, which was achieved by using modified CuInS2 QDs with ZnS shell layer.
The ZnS layer helps to reduce the non-radiative carrier recombination at the interface
of TiO2 and HTM layer (Santra et al. 2013).

Lead sulfide (PbS) QDs. Excellent optoelectronic properties of PbS QDs, such as
high absorption coefficient, low band-gap, tunable band-gap, large exciton Bohr
radius (~18 nm), motivate to implement them as a p-type HTM layer in PSCs (Hodes
2013; Snaith 2013). Solution-processed PbS QDs as an inorganic HTM layer in
PSCswas successfully demonstrated and attained a PCE of 7.5% (Hu et al. 2015). By
varying the band-gap of PbSQDs, the energy level alignments between the perovskite
andPbSQDs can easily be tuned to achieve optimized device performance (Tang et al.
2011). Dai et al. have reached device efficiency nearly 8%with a good device stability
by using colloidal PbS QDs as an inorganic HTM layer (Li et al. 2015a). This article
investigated the solar cells performance by optimizing the PbS QDs layer thickness.
Here two-step spin-coatingmethod provides a higher PCE of 7.8%,whereas one-step
method contributed lower PCE 4.73%. Enhanced solar cells device performance was
achieved due to the low recombination in two-step processed perovskite thin films.
From the SEM images of the two-step processed MAPbI3, thin films deposited on
TiO2 layer showed more uniform surface coverage over the one-step process. These
results discovered the efficient use of PbS QDs as a low-cost HTM in perovskite/QD
hybrid solar cells.

Copper-based HTMs
Copper Iodide (CuI). Inexpensive, stable, wide band-gap, with high conductivity
make CuI as a favorable candidate for HTM layer in PSCs. Christians et al., used CuI
using the drop casting method and recorded a PCE of 6% (Christians et al. 2014).
When compared with the conventional spiro-OMeTEDHTM layer, it was found that
the electrical conductivity of CuI solar cells was two orders higher and resulted in
significant improvement in device performance. The stability test of these solar cell
devices was carried out under constant illuminations of 100 mW/cm2 AM 1.5G for a
period of 2 h without encapsulation under ambient conditions. It was found that Jsc
value remained constant for CuI based solar cells, while there is a decrement of Jsc
of 10% from initial value was observed for spiro-OMeTAD-based solar cells. CuI
HTM-based PSCs exhibited higher V oc value with lower device efficiency compared
to the conventional spiro-OMeTAD HTM-based solar cells (Table 2).

Cuprousoxide (Cu2O)andCopperoxide (CuO). Earth-abundant and easyprocess-
able Cu2O and CuO are typically p-type semiconductors, with suitable band align-
ment matches well with the perovskite (MAPbI3) energy levels. Copper-based oxide
materials have shown high hole mobility of 100 cm2 V−1 s−1, which makes them
suitable as an HTM material (Shao et al. 2010; Bao et al. 2009). Zuo et al. had
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successfully introduced the copper-based oxide materials as HTMs in PSCs. They
have achieved maximum PCE of 13.35% with Cu2O and 12.16% with CuO consid-
ered as inorganic HTMs (Zuo and Ding 2015). Cu2O and CuO thin films showed
smooth surface morphology that was analyzed from AFM study. The RMS values
were obtained as of 2.81 nm and 3.32 nm, respectively. Highly crystalline MAPbI3
films were observed on Cu2O and CuO thin films compared with PEDOT:PSS films.
These oxide transporting layers facilitate the charge transport and as a result increase
in the device performance (Dong et al. 2015a). Cu2O solar cells were found more
stable compared to PEDOT:PSS-based solar cells. The PCE value of Cu2O HTM-
based solar cells reduced from 11.02 to 9.96%,whereas for PEDOT:PSSHTM-based
solar cells declined from 10.11 to 6.79%, when the devices were kept for 70 days
in the nitrogen filled glove box. In another study, Yu et al. have reported Cu2O
HTM-based PSCs with maximum PCE of 11.0% (Yu et al. 2016) (Table 3).

Sun et al. had reported a PCE of 17.1% by using CuOx as an inorganic HTM layer
in PSCs and exhibited short-circuited current density of 23.2 mA/cm2, open-circuit
voltage of 0.99V, andfill factor of 0.74 (Sun et al. 2016). The deviceswere found to be
stable for approximately 200 h. The better device performance of CuOx-based PSC
devices was achieved due to efficient hole transport from perovskite layer to HTM
layer. Low contact resistance of CuOx layer was beneficial for such enhanced device
performance. FromAFM study, it was discovered that the surface roughness or RMS
value of ITO surface was 4.7 nm and the RMS value was decreased to 4.2 nm with
addition of CuOx HTM layer on top of ITO surface that improves the overall surface
morphology and prevents short-circuited current leakage inside the device. Rao et al.,
have reported an output power efficiency of 19.0% where MAPbI3−xClx have been
used as an absorber layer and CuOx used as a HTM layer (Rao et al. 2016). Doping of
Cl offers the better surface morphology compared to undoped perovskites thin film
and improved the hole mobility which in turn enhanced the device performance. The
SEMmorphology of MAPbI3 films revealed that the average perovskite particle size
was very small and form several grain boundaries, which trigger the non-radiative
trap assisted recombination in turn reduced the overall device performance.

Copper thiocyanate (CuSCN). CuSCN is immensely used as an inorganic HTM
layer in PSCs due to their some promising characteristics, such as their high optical
transparency, high holemobility of 0.01–0.1 cm2 V−1 s−1 and good chemical stability
(O’Regan et al. 2000; Tsujimoto et al. 2012; Pattanasattayavong et al. 2013a, b). Qin
et al. had reported the fabrication of PSCs with copper thiocyanate (CuSCN) used
as an HTM and achieved device PCE of 12.4% (Qin et al. 2014a). Ye et al. found
in inverted PSCs with CuSCN HTM that exhibited an average PCE of 16.6% which
was better compared to other conventional organic HTM layers used in PSCs (Ye
et al. 2015). It was found that the device fabricated from perovskite layer deposited
on top of a CuSCN via one-step deposition method was much efficient compared
to two-step deposition. In one-step deposition process, the perovskites crystallized
slowly and resulted in low surface roughness. The high device performance also
signifies the smaller interface contact resistance between the perovskite layer and
the CuSCN layer (Table 4).
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Nickel oxide (NiOx). NiOx is also ambient stable having larger band-gap (5.4 eV),
and suitable energy levels match well with energy band to perovskite and make
them as a potential candidate for HTM layer in PSCs. Yin et al. observed a higher
PCE of 16.47% on a ITO-coated glass substrate compared to those of ITO-PEN
(polyethylene naphthalate) substrate solar cells (PCE of 13.43%). Here solution-
processed NiOx was used as a HTM layer in the inverted planar heterojunction (Yin
et al. 2016). From the J–V curve and EQE spectra, it was exposed that NiOx-based
device show low recombination than that of PEDOT:PSS which is commonly used
HTM in perovskite solar cell. The use of pristine and copper-doped NiOx as HTMs
was represented by Kim et al., publicized the use of pristine and copper-doped NiOx

as HTMs for high performing and stable planar PSCs (Kim et al. 2014b). After
careful analysis of J–V curves of Cu:NiOx HTM-based PSC showed the maximum
PCE of 15.40% compared to pristine NiOx HTM exhibited PCE of 8.94%.

Wei et al. fabricated PSCs using Li–Mg-doped NiO as HTM and Ti(Nb)Ox used
as an ETL, showing a highest PCE of 18.3%with a Jsc= 20.4 mA/cm2, V oc = 1.08 V,
FF = 0.83 (Chen et al. 2015a). Introduction of Li+ and Mg2+ into the NiO lattice
increased the conductivity and avoid the undesirable shift of valence band (Chen
et al. 2015a; Alidoust et al. 2014; Huang et al. 2014; Deng et al. 2012). For the
stability test, the devices were kept under dark condition for 1000 h and it was found
that the efficiency was reduced to its 97% from the initial value. Same experiment
was carried out under 1000 h constant illumination condition, and the device PCE
value was reduced to 90% from its initial value (Table 5).

Carbon Materials-based HTMs
Advantageous optoelectronic properties of carbon (C) materials, such as carbon
nanotubes, graphene, and graphene oxide, as a transporting layer have gained signif-
icant attention in the field of organic electronics. It was observed that the carbon
material-based solar cells had achieved a maximum PCE of 15.5% with better
stability (Aitola et al. 2016). Zheng et al. had reported to achieve a PCE of 12.8%
by using graphene sheet doped functionalized thiolated nanographene (TSHBC) as
a HTM layer in PSCs and the device improved to an efficiency of 14% (Cao et al.
2015a) (Fig. 17; Table 6).

NiOx/PEDOT:PSS. Use of hybrid PEDOT:PSS/NiOx HTL was reported by Park
et al. in an inverted planar device architecture and the device exhibited aPCEof 15.1%
(Park et al. 2015). The hybrid PEDOT:PSS/NiOx transporting layer was deposited
by spin-coating different concentrations of (0.1, 1.0 and 5.0%) PEDOT:PSS solu-
tion on top of NiOx layer. The device fabricated with 1.0% PEDOT:PSS/NiOx as
HTL displayed highest PCE of 13.9% compared to other compositions. Device with
pure PEDOT:PSS (11.8%) and bare NiOx (12.7%) achieved a lower PCE. From
the impedance spectroscopy studies, it was observed that there was a subsequent
reduction of internal resistance for PEDOT:PSS/NiOx HTL based PSCs.

Spiro-OMeTAD. Due to several advantageous features of spiro-OMeTAD HTM
layer, such as favorable glass transition temperature (T g = 120 °C), easy solubility,
ideal ionization potential, suitable absorption spectrum, and solid-state morphology
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Fig. 17 Graphical
representation of PCE value
associated, different HTM
materials used in perovskite
solar cells
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introduced them the most commonly used organic HTM layer in PSCs which can
provide the high output (Huang et al. 2016a). Spiro-OMeTAD was introduced by
Bach et al. in 1998 (Bach et al. 1998) in DSSCs to use them as an efficient hetero-
junction layer formed with dye absorbers achieved a good PCE. Recently, many
researchers extensively utilized the spiro-OMeTAD as HTM layer in solid-state
DSSCs. Using spiro-OMeTAD, the PSCs boosted the device PCE up to 22%. The
devices fabricated with spiro-OMeTAD suffered low stability toward water, light,
and heat due to amorphous nature and the chemical structure spiro-OMeTAD. Pris-
tine and various-doped spiro have been used as a HTM layer in PSCs to overcome the
low stability of the devices. These various dopants in the spiro-OMeTAD enhance the
electrical conductivity, stability of the device. The first doping effect was employed
in spiro-OMeTAD by lithium and antimony-based salts Li[(CF3SO2)2N] (Li-TFSI)
and achieved the highest PCE of 7.2% (Burschka et al. 2013). Doping of antimony in
spiro-OMeTAD resulted in generation of free charge carriers via oxidization. Gener-
ated Li+ ions inside the system by the ionic lithium improve the device performance,
but due to extreme hygroscopic nature of lithium accelerates the decomposition of
perovskite and degrades the device performance quickly. The presence of pinhole
channels from the bottom to the top across the organic transporting layer spiro-
OMeTAD accelerates the degradation processes, the pinholes are generated from
the migration of Li-TFSI film, Hawash et al. (2015). Hua et al. (2016) had success-
fully demonstrated the use of fluorine-doped spiro-OMeTAD and found enhanced
stability of PSCs. Improvement of the device performance was observed when non-
hygroscopic materials (tetrafluoro-tetra cyanoquinodimethane [F4-TCNQ])-doped
spiro-OMeTAD used instead of pristine spiro-OMeTAD. The energy offset between
the perovskite and the spiro-OMeTAD has to be small enough in order to achieve a
high V oc (Ou et al. 2017). In 2018, Hawash et al. observed that spiro-OMeTAD with
various new additives and dopants excels pristine spiro-OMeTAD both in terms of
device performance and stability (Hawash et al. 2018) (Fig. 18; Table 7).

PEDOT:PSS mixed polymer-based HTMs. The HOMO energy level of PEDOT
film at −5.0 eV facilities the hole extraction from the perovskite layer due to band
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Fig. 18 Schematic energy
band position of various
ETMs used in PSCs
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matching. In 2014, You et al. (2014) had successfully demonstrated the use of poly
(3,4-ethylene dioxythiophene) polystyrene sulfonate polymer (PEDOT:PSS) as an
HTM to fabricate high-efficiency PSCs at a low temperature, where PEDOT:PSS
and PCBM were used as hole and electron transport layers, respectively. The device
exhibited a PCE of 11.5% on glass/ITO substrate, while a 9.2% PCE was achieved
in a flexible substrate (polyethylene terephthalate/ITO). The successfully grown
of conducting poly (3,4-ethylene dioxythiophene) polystyrene sulfonate polymer
(PEDOT:PSS) and applys them as a potential HTM in PSCs was demonstrated by
Jiang et al. in 2017, (Jiang et al. 2017). They had deposited PEDOT:PSS layer on top
of perovskite and showed an excellent PCE of 17.0%. One of the major drawback
of PSCs fabricated by depositing PEDOT:PSS on top of perovskite layer is their
limited stability in ambient atmosphere, modified by the inverted structure of PSCs,
where perovskite layer was deposited on top of PEDOT: PSS layer. In 2017, Luo
et al. (2017a) achieved a PCE of 15.34% by using GO-modified PEDOT:PSS. They
had found that the device was less effective with the application of PEDOT:PSS
(11.90%) layer in PSCs. It was also found that the devices fabricated with GO-
modified PEDOT:PSS were much stable as compared to unmodified one and main-
tained PCE up to 83.5% of the initial PCE value after aging for 39 days. During
the spin coating of the GO solution (ethanol in the GO solution), the hydrophilic
PSS material can be partially removed from the surface. Energy levels of various
HTMs used in PSCs and the highest achieved efficiency presented in Figs. 16 and
17, respectively.
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5.3 PSCs with Various ETM Layers and Their Device
Performance

In the PSCs, the conventional compact ETL layer was used due to two different
reasons, primarily to extract the photogenerated electrons from perovskite layer, and
secondly, working as a hole blocking layer. This also indicates that the compact ETL
layer should able to hinder the reverse movement of the electrons from the FTO
substrate to the perovskite layer. It is important for the ETL layer to have continuous,
uniform, and high transparent and thin structure for the better performance of the solar
cells. TheMAPbBr3 andMAPbI3-based PSCs efficiency were limited to 3.8%while
using TiO2 as an ETM layer. Later scientists have devoted themselves to improve the
device performance and achieved an efficiency of more than 15%. Recently, Yang
et al. have reported 19.3% efficient PSC using a polyethyleneimine (PEI) thin layer
on TiO2 as ETM fabricated in air (Zhou et al. 2014b) (Table 8).

Recently, metal oxides have gained much attention as a suitable ETL layer due
to their good stability, high electron mobility, easy processability, and high trans-
parency. Among various metal oxide materials, TiO2, Al2O3, ZnO, SnO2, SrO2, etc.,
have shown potential in the perovskite cell device performance. TiO2 is widely used
in PSCs as an ETL layer. Ultra-thin TiO2 could smooth the surface and keep the
uniformity where the mesoscopic TiO2 has better light scattering effect prolonging
the incident light path. Park et al. (Lee et al. 2014) studied the effect of the crystal
phase and morphology of the TiO2 for the device performance of PSCs. They have
reported that the rutile TiO2 film was better than the anatase TiO2 film because of the
smooth surface of perovskite capping layer and lower conduction band position of
the rutile TiO2 film than that of the perovskite layer. Mali et al. have reported the use
of transporting layermade by two TiO2 layers, atom layer deposited (ALD) ultra-thin
TiO2 was deposited on top of the surface of one-dimensional TiO2 nanorod arrays
(Mali et al. 2015a). The device structure with 4.8 nm ALD passivated TiO2 nanorod
achieved the output PCE of 13.45%. In this method, it helped the light absorption and
avoided the high-temperature processed TiCl4 treatment. It is conventional that the
nanorods, nanotubes, and nanofibers have shown better electron transport ability than
nanoparticle films because of their directional charge transport properties. The PCE-
based on TiO2 nanorods grown in different method, with water-HCl solution was
found to be higher than that with ethanol-HCl solution, which could be attributed
to their special orientation, good optical properties, high conductivity, fast charge
transfer, and reduced charge recombination (Wu et al. 2015b). TiO2 is not suitable
for flexible devices because it needs to be annealed at high temperature to get better
crystallite (Table 9).

Al2O3 mesoscopic scaffold was used as an ETL layer and MAPbCl3−xIx as the
light absorber in PSCs (Lee et al. 2012). An optimal thick Al2O3 layer was fabri-
cated at low temperature by atomic layer deposition (ALD) method. Introduction of
Al2O3 layer effectively blocks the electron recombination between the perovskite and
fluorine-doped tin oxide (FTO) layer and enhances the electron transport between
the junction (Zhang et al. 2017b). It was observed that the perovskite cells with a
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5 nm Al2O3 layer revealed a PCE of 16.2%, which is much higher than the device
fabricated without Al2O3 layer (PCE ~ 11.0%) (Table 10).

In an inverted PSCs, ZnO and SnO2 are usually used as an ETL layer because of
their excellent electron mobility property. Low-temperature synthesized ZnO layer
was used as a transporting layer in PSCs and the device exhibited a PCE value of
15.7% (Liu and Kelly 2014). SnO2 has higher electron mobility and deeper conduc-
tion band than TiO2. It was reported that SnO2 shows better environmental stability
with beneficial for charge transportation from perovskite layer to electron transport
layer. SnO2 layer is generally fabricated at low temperature, and the corresponding
solar cells had achieved a PCE of 13%. Such devise showed a good device stability
in ambient environment (Song et al. 2015a). A higher device efficiency of 17.2%was
achieved by preparing the SnO2 as a transporting layer. This layer was fabricated by
spin coating of SnCl2·H2O precursor and annealing at 180 °C in the air (Ke et al.
2015a). A high efficiency of 19.9% was achieved by adopting solution-processed
SnO2 that was fabricated at the temperature of 150 °C (Jiang et al. 2016). WO3

transporting layer are also exhibiting a good stability and higher mobility compared
to TiO2 layer. It was observed that WO3-based devices are more sensitive to ambient
moisture compared to TiO2-based devices. The WO3 ETM layer-based PSCs also
degrade faster (Gheno et al. 2017). These devices showed better photovoltaic device
performance when TiO2 NPs were covered on WO3 thin-film surface. Amorphous
WOx:TiOx composites were fabricated at a relatively low temperature, and they were
very effective as a ETL layer in PSCs. The addition of TiOx andWOx could raise the
Fermi level and simultaneously suppress the non-radiative charge recombination at
the perovskite interfaces (Wang et al. 2016d) (Table 11).

Doping in the metal oxides reduces the surface vacancies and other defects and
reduces the charge recombination probability, which could exhibit better device
performance due to their better electron mobility and suitable energy levels. The
oxygen vacancies on TiO2 surface are not beneficial for charge transport and also
detrimental for efficient device performance (Leijtens et al. 2013). A 15% enhance-
ment in short-circuit current density was observed when the device fabricated with
Y 3+-doped TiO2 layer. TiO2 doped with Y 3+ was used to modify the morphology of
the perovskite active layer and improved the electron transfer properties (Qin et al.
2014b). Al-dopedTiO2 shown enhanced conductivity as the dopingmight remove the
oxygen defects from the TiO2 lattice causes the device stability (Pathak et al. 2014).
Mg-doped TiO2 demonstrated better optical properties and better energy level align-
ment with the perovskite active layer which provided better electron transportation
(Wang et al. 2015). Nitrogen-doped ZnO (N:ZnO) nanorods also enhance the elec-
tron mobility and corresponding PSC devices exposed higher PCE (Mahmood et al.
2015b) (Table 12).

Fullerenes and their derivatives. Fullerene and its derivatives are commonly used
as an ETL layer in inverted PSCs due to their band matching with perovskite layer
and better electron transport ability. C60, phenyl-C60-butyric acid methyl ester
(PC61BM), and indene-C60 bisadduct (ICBA) were firstly employed as ETL layers
inMAPbI3-based PSCs (Jeng et al. 2013). The open-circuit voltage of corresponding
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Fig. 19 Graphical
representation of PCE values
associated with various ETM
materials used in perovskite
solar cells
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PSCs was achieved as 0.55, 0.65, and 0.75 V, respectively. The higher open-circuit
voltage was achieved for ICBA because of its higher LUMO level compared to
C60 and PC61BM. The PCE of fullerene-based PSCs is mostly related to electron
mobility of these transport layers (C60, ICBA, PC61BM) (Liang et al. 2015). High
mobility fullerene will beneficial for the charge transportation. Fullerene materials
can also passivate the interfacial trap states of perovskite layer and reduce the energy
barrier between the electrode and perovskite layer.

The new fullerene derivative C70-DPM-OE was synthesized by phenyl groups of
diphenyl methano fullerene (DPM) moiety with oligoether chain (Xing et al. 2016).
This oligoether chain can reduce thework function of themetal cathode and passivate
the trap states of the perovskite layer. The device fabricated with C70-DPM-OE as an
ETL have achieved the PCE of 16% which was much higher than the conventional
PC61BM as electron transport layer. Another fullerene pyrrolidine derivative, N-
methyl-2-pentyl-(Santra et al. 2013) fullerene pyrrolidine (NMPFP) was prepared
by a simple solution process (Chen et al. 2019). The NMPFP thin film revealed a
higher conductivity than the PC61BM thin film. The device fabricated with NMPFP
as an ETL layer exhibited a PCE of 13.83% (Fig. 19; Table 13).

Doping in the fullerenes is a good way to improve the mobility and the device effi-
ciency of PSCs.MAI-doped fullerene C60, exhibited dramatically increased conduc-
tivity by over 100 times (Bai et al. 2016). The iodide as a Lewis base anion in the
MAI-dopant acted as an electron donor. When the iodide contacts fullerene after
solvent drying, the electron density would redistribute from iodide to fullerene.
Enhanced free electron density in fullerene presented a higher conductivity. The
improved conductivity plays a significant role in boosting the device performance;
the perovskite solar cell delivered an efficiency of 19.5% with a high fill factor of
80.6%.

Low-dimensional lead halide perovskites
In recent years, quasi-2D halide perovskites have intensively investigated as active
layers in solar cells comparingwith the conventional 3Dperovskites structures. Smith
et al. reported the solar cell from quasi-2D halide perovskites with a device structure



A Perspective on Perovskite Solar Cells 117

Ta
bl
e
13

Pe
rf
or
m
an
ce

of
PS

C
s
ba
se
d
on

fu
lle
re
ne
s
as

E
T
M

la
ye
r
in

va
ri
ou
s
de
vi
ce

st
ru
ct
ur
es

M
at
er
ia
l

D
ev
ic
e
st
ru
ct
ur
e

PC
E

(%
)

J s
c
(m

A
-

cm
−2

)
V
oc

(V
)

FF
R
ef
er
en
ce
s

Y
ea
r

T
iO

2
/I
L

IT
O
/c
-T
iO

2
/c
-[
B
M
IM

]B
F 4
/M

A
Pb

I 3
/P
TA

A
/A
u

19
.6

22
.8

1.
12

0.
77

Y
an
g
et
al
.

(2
01
6c
)

20
16

Sn
O
2
/P
C
B
M

FT
O
/c
-S
nO

2
/P
C
B
M
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

19
.1

22
.6
1

1.
12

0.
76

(K
e
et
al
.2
01
6)

20
16

T
iO

2/
IL

FT
O
/c
-T
iO

2
/c
-[
E
M
IM

]P
F 6
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

18
.5

22
.9

1.
10

0.
74

W
u
et
al
.(
20
16
)

20
16

T
iO

2
/P
C
B
M

IT
O
/c
-T
iO

2
/P
C
B
M
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

18
.4

22
.2

1.
11

0.
75

K
eg
el
m
an
n
et
al
.

(2
01
7)

20
17

T
iO

2
/P
C
B
M

FT
O
/c
-T
iO

2
/P
C
B
M
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

17
.9

21
.0

1.
11

0.
77

Ta
o
et
al
.(
20
15
)

20
15

T
iO

2
/g
ra
ph
en
e

FT
O
/c
-T
iO

2
/m

p-
G
r:
M
A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

17
.2

22
.8

1.
05

0.
72

Ta
va
ko
li
et
al
.

(2
01
6)

20
16

T
iO

2
/I
L

FT
O
/c
-T
iO

2
/c
-[
E
M
IM

]I
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

17
.2

23
.7

1.
10

0.
66

W
u
et
al
.(
20
16
)

20
16

G
ra
ph

en
e/
T
iO

2
FT

O
/c
-G

r:
T
iO

2
/A

l 2
O
3
:M

A
Pb

I 3
−x

C
l x
/s
pi
ro
-O

M
eT
A
D
/A
u

15
.6

21
.9

1.
04

0.
73

W
an
g
et
al
.

(2
01
4e
)

20
14

PC
B
M

FT
O
/P
E
I/
c-
PC

B
M
/M

A
Pb

I 3
/P
TA

A
/A
u

15
.3

21
.8

0.
98

0.
72

R
yu

et
al
.(
20
15
)

20
15

C
60

IT
O
/c
-C
60
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

15
.1

18
.9

1.
08

0.
75

K
e
et
al
.(
20
15
c)

20
15

IL
PE

T
/I
T
O
/c
-B
en
M
eI
M
-C
l/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

15
.0

20
.6

1.
00

0.
73

Y
an
g
et
al
.

(2
01
6b
)

20
16

(c
on
tin

ue
d)



118 S. Bhaumik et al.

Ta
bl
e
13

(c
on
tin

ue
d)

M
at
er
ia
l

D
ev
ic
e
st
ru
ct
ur
e

PC
E

(%
)

J s
c
(m

A
-

cm
−2

)
V
oc

(V
)

FF
R
ef
er
en
ce
s

Y
ea
r

C
60

FT
O
/c
-C
60
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

14
.5

19
.6

1.
07

0.
69

W
oj
ci
ec
ho
w
sk
i

et
al
.(
20
15
)

20
15

PC
B
M

FT
O
/P
C
B
M
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

14
.6

20
.4

1.
03

0.
69

K
e
et
al
.(
20
16
)

20
16

IL
FT

O
/c
-[
E
M
IM

]P
F 6
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

14
.2

21
.6

1.
05

0.
63

W
u
et
al
.(
20
16
)

20
16

PC
B
M

IT
O
/c
-P
C
71
B
M
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/M

oO
3
/A

g
13
.9

20
.5

1.
08

0.
63

U
pa
m
a
et
al
.

(2
01
7)

20
17

PC
B
M

IT
O
/c
-P
C
61
B
M
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/M

oO
3
/A

g
12
.7

23
.9

0.
84

0.
63

U
pa
m
a
et
al
.

(2
01
7)

20
17

IL
FT

O
/c
-[
E
M
IM

]I
/M

A
Pb

I 3
/s
pi
ro
-O

M
eT
A
D
/A
u

9.
2

15
.2

1.
03

0.
59

W
u
et
al
.(
20
16
)

20
16

G
ra
ph
en
e

FT
O
/c
-G

r/
A
l 2
O
3
:M

A
Pb

I 3
−x

C
l x
/s
pi
ro
-O

M
eT
A
D
/A
u

5.
9

14
.6

0.
90

0.
48

W
an
g
et
al
.

(2
01
4e
)

20
14



A Perspective on Perovskite Solar Cells 119

of FTO/TiO2/(PEA)2(MA)2[Pb3I10]/spiro-OMeTAD/Au and the device showed a
PCE of 4.71% (Quan et al. 2016). In this work, the quasi-2D halide perovskite was
obtained by mixing C6H5(CH3)2NH3I (PEAI), MAI and PbI2 with a molar ratio of
2:2:3 and form a quasi-2Dperovskite structure of (PEA)2(MA)2[Pb3I10]. The number
of layers (n) was determined to be 3. It was observed that the decrease in dimension
resulting an increase in the band-gap and exciton binding energy. It was shown that
the devices were more stable when fabricated with quasi-2D halide perovskites and
remained stable after 46 days, whereas the 3D halide perovskite started to decompose
after 4–5 days, as it was evident from the XRD spectra. Improved stability of the
perovskites was observed using all-inorganic halide perovskite (CsPbX3), reported
by many groups. CsPbI3 having band-gap of 1.73 eV was the suitable for solar cells.
Swarnakar et al. had grown α-CsPbI3 perovskite QDs which was found stable for
several months in ambient air (Fang et al. 2015). These QDs were also used as
active layer in PSCs and deposited on TiO2/FTO substrates. The CsPbI3 QDs-coated
substrates were then immersed in saturated methyl acetate (MeOAc) solution for
several times to yield a desired thick perovskite thin film. Such QDs-based solar
cells revealed a PCE of 10.77% with a V oc of 1.23 eV and fill factor of 0.65. More
recently, Sanehira et al. boosted the PCE up to 13.43% by using CsPbI3 QDs in the
device and resulted in enhancement of charge carrier mobility of QD films (Sanehira
et al. 2017).

Mixed cations
FA/MA-Cs mixed-cation perovskite

Theα-CsxFA1−xPbI3 perovskite layerwas fabricated via a regular one-step solvent
engineering method with different Cs/FA ratios. Such thin films showed compara-
tively more stable and do not transform from α-phase to δH-phase (Li et al. 2016b).
FA0.9Cs0.1PbI3 thin-film-based PSCs displayed both the superior stability and effi-
ciency (16.5%) in solar cell devices compared to pure FAPbI3 perovskite (Lee
et al. 2015c). Later, Yi et al. had achieved the improved PCE to 18% by replacing
both a small fraction of the iodide and bromide anions as Cs0.2FA0.8PbI2.84Br0.16.
McMeekin et al. also reported a FA/Cs mixed cation perovskite of FA0.83Cs0.17PbI3
with some added bromide achieve a band-gap of 1.75 eV (Yi et al. 2016). The struc-
ture of perovskite FA0.83Cs0.17Pb(I0.6Br0.4)3 was used in a solar cell and achieved
an open-circuit voltage 1.2 volts with PCE of over 17%. The mixed perovskites
of FA0.83Cs0.17Pb(I0.6Br0.4)3 absorber layer was used in a p-i-n solar cell structure
where n-doped C60 used as an electron collecting layer where 80% of the original
efficiency sustained after 650 h under ambient air without encapsulation and stable
over 3400 h with encapsulation (Wu et al. 2016). MA cation had also been alloyed
with Cs+ to form the MA/Cs mixed perovskites. Chio et al. represented the use
of perovskite containing Cs+ and MA+ with [6,6]-phenyl-C60 butyric acid methyl
ester (PCBM) as an electron acceptor (Choi et al. 2014). 10% of Cs+ ions doping in
MAPbI3 perovskite improved the efficiency from 5.51 to 7.68%.
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Ternary cation perovskite
The successful exhibition of binary cation perovskites with enhanced performance
and stability might open a new way to use of ternary cation perovskite using MA+,
FA+, and Cs+ cations-based perovskite in solar cells. Saliba et al. first reported the
triple cation perovskite with FA/MA/Cs where Cs+ ions could improve the film
quality for FA/MA mixture (Saliba et al. 2016a). 5% CsI was incorporated into the
mixed-cation perovskitewhichwas knownas (FAPbI3)0.83(MAPbBr3)0.17 to suppress
non-perovskite phase and enhanced the crystallization process with a highly stabi-
lized PCE (21.1%) and stability was reported. The solar cells still maintained an
efficiency at 18% after 250 h. Saliba et al. investigated several alkali cations and
found the radii of Rb+ was only slightly smaller than the favorable cations of Cs+,
MA+, and FA+. They have successfully alloyed a small amount of RbI (about 5–10%)
into Cs/MA/FA mixed-cation perovskite to achieve a record efficiency of 21.6% on
small areas and 19.0% on large area (0.5 cm2) under AM 1.5G. The addition of
Rb+ ions suppresses the formation of unwanted yellow phase of Cs- or FA-based
perovskite structures and improves the stability of solar cells. These devices based on
Rb/Cs/MA/FA perovskite were found 95% efficient from its initial value after 500 h
at 85 °C under continuous illumination, which could meet the industrial standards
for reliable solar cells (Saliba et al. 2016b). However, more than 10% RbI addition
into the mixed-cation perovskite resulted in a Rb-rich phase and was destructive to
the solar cells.

Mixed Cation to stabilize the Pb-Sn alloy metal halide perovskite
Due to the similar electronic structure and the similar ionic radii of Sn2+ (1.35 Å) to
Pb2+ (1.49 Å), tin is a useful candidate for the application of lead-free perovskites.
Hao et al. had reported the optical band-gap 1.3 eV in MASnI3 with high absorption
at 950 nm,which is ideal for solar cell application (Hao et al. 2014a). It was found that
the presence of Pb and Sn in methylammonium iodide perovskite showed a narrower
band-gap of 1.3 eVwhich extend the absorption onset to the near-IR region (Hao et al.
2014b; Ogomi et al. 2014; Im et al. 2015). According to Shockley–Queisser theory,
the PCEof approximately 30%canbe achieved by replacing 15%Pb+2 bySn+2 ions in
the perovskite structure (Anaya et al. 2016). PureSn-basedPSCshad shown relatively
low PCE apart from that their tendency of oxidizing to Sn+2 to Sn+4 state damage
the perovskite structure. Zhao and co-workers had found the lesser oxidation proba-
bility observed for Sn atom in FASnI3 than in MASnI3 due to the stronger hydrogen
bond in FASnI3 (Wang et al. 2016f). Liao et al. had used the mixed cation (FA/MA)
and (Sn/Pb) perovskite materials in the inverted device structure by using FASnI3
and MAPbI3 precursor solutions (Liao et al. 2016). The as-fabricated device struc-
ture with this perovskite ITO/PEDOT:PSS/(FASnI3)0.6(MAPbI3)0.4/C60/BCP/Ag
showed a PCE of 15.08%. TheMA0.5FA0.5Pb0.75Sn0.25I3 PSCs were fabricated using
one-step spin-coating method and resulted in a PCE of 14.19% with a great stability
(Yang et al. 2016d). The fabricated solar cells maintained PCE of 94% of its initial
value after 30 days when kept in an inert atmosphere and retained 80% of initial
PCE value after 12 days when exposed to an ambient atmosphere (30–40% R.H.)
(Table 14).
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6 Challenges of PSCs

6.1 Hysteresis

The current–voltage hysteresis behavior in PSCs appeared due to several internal
factors, such that (a) hysteresis is mostly depending on the perovskite material, (b)
selective contact materials, i.e., HTM, ETM, play crucial roles in this behavior,
including the material and the morphology, and (c) the typical charge genera-
tion/recombination processes (≈ns) in PSCs (Snaith et al. 2014). These effects cause
non-uniform current flow in forward and reverse biasing condition. The shape of
measured J–V curves and corresponding device efficiency hugely depends on scan
direction, light source, delay inmeasurement time, and voltage bias conditions before
measurement. In last few years, different mechanisms have been proposed to be
responsible such hysteresis effects, like, ferroelectricity, charge trapping/detrapping,
and ionic migration. Out of them ionic migration seems to appear as dominative
factor.

Ferroelectricity. Ferroelectricity of a material depends on the hysteretic swapping
of ferroelectric domains in an external electric field. Even though the MAPbI3
perovskite crystal structure possesses centrosymmetric tetragonal space group,
however the reorientation of the organic cations and the distortion of the [PbI6]4−
cages can result in a polarization (Sherkar and Jan Anton Koster 2016). Secondly, the
ability of the perovskite crystal structure to switch this polarization by an external
field can originate the hysteresis effect. Several research groups have confirmed
the polarization switching in both amplitude and phase by using piezoelectric force
microscopy (PFM) in the perovskite materials (Chen et al. 2015f; Coll et al. 2015).

Charge trapping/detrapping. Generally, the perovskite thin films are grown via
low-temperature solution process that creates defects in the perovskite crystal struc-
ture, which impact the charge separation/recombination and charge transport through
the device (Ono and Qi 2016). Spectroscopic characterization confirms that these
traps are mostly accumulated at the interfaces or surface, where the periodic crys-
talline structure is not liable (Wu et al. 2015d; D’Innocenzo et al. 2014). Such
defects can be passivated by severalmethods and can significantly improve the device
performance and decreases the hysteresis. Luminescence characteristics confirmed
that oxygen exposure led to a significant reduce the density of the trap state in
the perovskite material (Motti et al. 2016). Lewis bases treatment to the perovskite
thin films also can reduce the recombination centers and enhance the photolumines-
cence intensity and lifetime (deQuilettes et al. 2015). It has been observed that by
using PCBM or other organic molecules either in grain boundary or an interlayer
or mixed as bulk heterojunction structure can able to passivate defect states and
correspondingly reduce the hysteresis effect (Meng et al. 2016).

Ionicmigration. Several experimental observations point out that the ionicmigration
through the perovskite thin films is a dominant factor for the origin of hysteresis.
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Mobile charge carriers not only impact on the hysteresis effect in J–V curves but
also influence the emission properties of the perovskites (e.g., photoluminescence,
electroluminescence, blinking), and they induce capacitive effects (Richardson et al.
2016; deQuilettes et al. 2016). In an external electric field, charge carriers move
toward the opposite interfaces (perovskite/ETL or perovskite/HTL) (De Bastiani
et al. 2016). These accumulations of charge carriers at the interfaces result in change
of the internal field and amodulation of interfacial barriers which ultimately results in
the hysteretic behavior. For an example, the migrating ions in MAPbI3 are MA+, I−,
H+ ions. These ions originate during growth of perovskites at low-temperature fabri-
cation and include vacancies like Schottky defects, interstitial defects, and Frenkel
defects (Azpiroz et al. 2015; Yuan and Huang 2016).

Suppression of hysteresis. It is very important to reduce the hysteresis effects in
PSCs. It will be very beneficial to not only reduce the hysteresis but also to increase
the long-term stability of PSC devices. There are several ways to reduce defect
states as: (1) reducing the concentration of defects/ions in the precursor solution,
(2) hindering the motion of these ions from the perovskite octahedral crystal struc-
ture, and (3) reducing the interfacial barriers and accelerating the interfacial charge-
transfer process (Gangishetty et al. 2016). Larger crystal grains possess very few
defects that are the source of mobile ions. It has been observed that if the surface
recombination in the material is low and diffusion length is long, then the hysteresis
is weak. Improved crystallinity, better fabrication process, and improved contacts
are going to reduce hysteresis effects. If the perovskite films deposited on meso-
porous TiO2 layers, forms a uniform, compact and dense perovskite grains, leading
to negligible hysteresis (Yang et al. 2016e).

6.2 Stability

Moisture. Water molecules are strongly interacting with perovskite molecules as the
perovskite structure itself is soluble in water. In the presence of limited humidity at
the atmosphere during perovskite thin-film processing time can improve the thin-
film morphology and can lead to improve solar cell device performance. However,
when the PSCs are exposed to the atmosphere with a relatively high humidity, a
detrimental device performance was occurred. So, it is very important to understand
the effect of moisture on perovskite materials to achieve highly stable PSCs that
can last over a decade. It has been observed that if the MAPbI3 perovskite film is
exposed to a warm humid air at room temperature, the perovskite film decomposes
into hydroiodic acid (soluble in water), solid PbI2, and CH3NH2 (either released as
a gas or dissolved in water) (Frost et al. 2014). This process is irreversible and in
results the device degrades. When the films are exposed to cool humid air, then water
is slowly incorporated into the crystal and results in homogeneous uniform films
throughout the sample. In this case, the process is reversible in films and enhances
the performance of solar cells (Hao et al. 2014c). When spiro-OMeTAD is used as
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HTM for PSCs, these results in many pinholes that poorly protect the perovskite
against the atmospheric water and forms PbIOH as a degradation product (Ono et al.
2015; Chen et al. 2017g). Synthesis of hydrophobic HTMs forms pinhole-free films
and improves device performance and stability (Kwon et al. 2014). To improve the
moisture stability of PSCs, the encapsulation of the devices is a key for long-term
stability.

Heat. Heating in the perovskite thin films can result in the internal crystal structural
changes. For an example, MAPbI3 perovskites undergo a reversible crystal-phase
transition between tetragonal and cubic symmetry in the temperature range of 54–
57 °C (Baikie et al. 2013). Changes to the electronic band structure can modify the
band alignment and potentially reduce the photovoltaic performance. Additionally,
cycling between the two crystal phases during the day and night cycles is likely to
lead to material fatigue and shorter device lifetimes. CsPbI3 is a large band-gap of
2.8 eV at room temperature and has a cubic phase with a band-gap of 1.7 eV at
high temperatures (Giesbrecht et al. 2016). FAPbI3 has a band-gap of 2.2 eV also
which possess hexagonal structure at room temperature, similar to the PbI2 lattice,
so-called δ-phase. However, depending on the growth temperature, FAPbI3 can also
be crystallized in the α-phase with trigonal symmetry (Binek et al. 2015). It is very
difficult to find a suitable synthesis route such that the solar cells remain stable at
normal operating conditions. To overcome this issue, Cs+, MA+, FA+ and halides
were mixed to form cubic structure at room temperature and allow the band-gap
tuning, which enhance the device stability of the device.

Mixed-Halide, mixed-cation perovskites. The intrinsic stability of the perovskite
crystal structures has been studied immensely with the DFT calculations and exper-
imental observations. It has been observed that MAPbI3 is very unstable in the
normal atmospheric conditions while MAPbCl3 is the most stable (Buin et al.
2015). Partially substituting the I− ions with Br− or Cl− ions can improve the
stability of the perovskite structure compared to the pureMAPbI3 perovskitematerial.
However, under illumination condition MAPb(BrxI1−x)3 mixed-halide perovskites
undergo a reversible phase separation into I− and Br− ion-rich domains (Hoke
et al. 2015). This creates recombination centers inside the film, which limits the
open-circuit voltage. This also leads to a poor photovoltaic device performance
and poor long-term stability. However, in a mixed-cation, mixed-halide perovskite
(CsyFA1−yPb(BrxI1−x)3), we suppress unwanted halide segregation. Small content
between 0.10 < y < 0.30 of Cs+ cations inside the perovskite structure shows a high
crystallinity and good optoelectronic properties (Rehman et al. 2017). Upon adding,
FA+ cations significantly improve the solar cells performance and good long-term
stability under continuous illumination condition. Rb+ cations are also an alternative
cation that further increasing the photovoltaic performance (Saliba et al. 2016c).

Defect states: Another main reason of perovskite instability is the defect chemistry
of perovskite structure. Since perovskite materials are ionic in nature, their solution-
processed growth process enables formation of defect states. That defect states gener-
ally form at the thin-film surfaces or the grain boundaries of perovskite films. Point
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defects, such as organic cation (MA/FA) vacancies, and halide anion (I/Br) vacancies,
can easily develop in the perovskite structure due to their low formation energies.
These defect states create shallow electronic energy levels close to the band edges
and resulted in lower device performance in PSCs. Such defects also play a signifi-
cant role in chemical degradation of the perovskite materials and leads to instability
in PSCs (Wang et al. 2016g). Ion vacancies can diffuse into the perovskite crystals
and also trigger cations and anions to diffuse at the surfaces and grain boundaries.
Therefore, systematic control of defect states is essential during perovskite thin-film
growth process that can enhance PSCs device efficient and stability.

There are several strategies to reduce these unwanted defect states in perovskite
films (Noel et al. 2014; Abdi-Jalebi et al. 2018; Saidaminov et al. 2018; Yang et al.
2020). Firstly, use of excess MA/FA organic cations during film growth or after
the thin-film annealing process can compensate with thermally evaporated organic
cations. Secondly, introduction of larger organic molecules: such as phenethylamine,
polyethylenimine, and trifluoroethylamine, which are difficult to evaporate. Thirdly,
guanidinium, an organic cation that connect with perovskite structure via forming
hydrogen bonds, has been used to suppress the formation of iodide vacancies.
Fourthly, addition of KI into perovskites passivating iodine vacancies and small
ions (Cl and Cd) doped into the perovskite lattice also suppress the formation of
halide vacancies via lattice strain relaxation. Such perovskite films exhibited better
device efficiency and stability compared to pristine PSCs.

7 Future Outlooks

In the last decade, organometal halide perovskites (OHPs) have emerged as a
promising alternative to the existing commercially available solar cells. High photo-
voltaic efficiency, low materials cost, solution-phase deposition, low-temperature
processing steps, and long-range crystallinity sets the OHPs apart from the contem-
porary emerging solar cell technologies (Petrus et al. 2017). Their performance has
rapidly increased from3.8% in 2009 to 23.7% in 2019, thanks to their high absorption
coefficient, high carrier mobility, and long carrier lifetime. The commercial success
of the PSCs, however, depends on their long-term stability, high-efficiency large-area
module formation, and the toxicity issue related to the use of lead in the perovskite
semiconductors (Petrus et al. 2017; Asghar et al. 2017).

Compositional engineering has been applied to a great effect to minimize the
crystal strain in the perovskite crystals, which has improved their thermal stability
significantly (Jeon et al. 2015b). The use of hydrophobic surfactants in the develop-
ment of 2D/3D perovskite crystal has increased its moisture resistance considerably
in solid films (Grancini et al. 2017). In PSCs, efficiency, stability, and J–V hysteresis
are closely correlated. Interfacial defect and bulk recombination through intermediate
trap states are adversely affecting the solar cell properties. Interfacial engineering
at both ETL/perovskite and HTL/perovskite and grain boundary engineering are
believed to be the right research direction toward stable and high-efficiency PSCs
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(Grancini et al. 2017). Further, hydrophobic ETL and HTL layer development would
act as a deterrent toward moisture ingress to the sensitive perovskite layer. Better
encapsulation may also be critical to improve the PSCs device stability and it is very
essential to resolve this stability issue for further industrial commercialization (Jena
et al. 2019).

Large-area compatible roll-to-roll processing needs to be developed for smooth,
reproducible, and pinhole-free deposition of perovskite and other solution-processed
layers (ETL/HTL) for large-scale production of PSCs. A significant amount of
research efforts have been made in this direction in recent years, resulting in a mini-
module with a certified efficiency of 12.1% with an aperture area >36 cm2 (Chen
et al. 2017h). The efficiencies of perovskite solar cellmodules are still notably lagging
behind the small-area cells. A loss in solar cell performance in large-area modules is
observed due to several issues like higher series resistance, lower shunt resistance,
non-uniform surface morphology, pinholes, and unavoidable dead area. However,
the efficiency gap between small-area cell and large-area modules for PSCs is much
larger than the well-established PV technologies, as of today. Challenges in scaling
up PSCs involve development of deposition methods for growth of uniform films
over larger area and need reliable module design process (laser scribing process,
interconnection properties, optimal width of subcells, etc.).

As of date, only lead-based perovskite systems show efficiency exceeding 20%,
however, the toxicity of lead is a serious concern for their commercialization.
Efforts have been made to replace Pb with nontoxic and earth-abundant alterna-
tives (Shockley and Queisser 1961). Among all the metals, tin (Sn) and germanium
(Ge) can form genuine perovskite structure since they both fulfill the coordination,
ionic size, and charge balance prerequisites (Ke et al. 2019). Sn-based perovskites are
potential candidate to replace Pb-atoms as they exhibit very similar optoelectronic
characteristics, such as suitable optical band-gaps, high absorption coefficient, and
reasonable charge carrier mobilities. However, Sn has two main oxidation states,
+2 and the slightly more stable +4, which makes them even more unstable than
Pb-based perovskite systems. Sn-based perovskite systems show higher p-doping
and higher conductivity arising from the oxidation of Sn2+/Sn4+. The photovoltaic
efficiency of Sn-based perovskites has reached 9%; however, the solar cells suffer
significantly from low open-circuit voltage and low fill factor.

As the PCE of PSCs approaching their theoretical limits set by the Shockley–
Queisser equation for single-junction solar cells, alternative architectural platforms
are being explored in the form of the multifunction tandem solar cell. Composi-
tion engineering has been utilized to achieve the band-gap tunability of perovskite
systems to develop perovskite (high-Eg)/perovskite (low-Eg) tandem solar cells
(Zhao et al. 2017). High band-gap perovskite systems are also being explored to
develop perovskite/crystalline-Silicon tandem solar cells (Sahli et al. 2018). Four-
terminal and monolithic two-terminal tandem architectures have been successfully
realized on both perovskite/perovskite and perovskite/crystalline-Silicon tandem
solar cells. In the future, a lot more works are expected in this direction to boost
the PCE over 30%.
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