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Abstract. One of the most significant applications in pervasive comput-
ing for modeling user behavior is Human Activity Recognition (HAR).
Such applications necessitate us to characterize insights from multiple
resource-constrained user devices using machine learning techniques for
effective personalized activity monitoring. On-device Federated Learning
proves to be an extremely viable option for distributed and collaborative
machine learning in such scenarios, and is an active area of research. How-
ever, there are a variety of challenges in addressing statistical (non-IID
data) and model heterogeneities across users. In addition, in this paper,
we explore a new challenge of interest – to handle heterogeneities in labels
(activities) across users during federated learning. To this end, we pro-
pose a framework with two different versions for federated label-based
aggregation, which leverage overlapping information gain across activi-
ties – one using Model Distillation Update, and the other using Weighted
α-update. Empirical evaluation on the Heterogeneity Human Activity
Recognition (HHAR) dataset (with four activities for effective eluci-
dation of results) indicates an average deterministic accuracy increase
of at least ∼11.01% with the model distillation update strategy and
∼9.16% with the weighted α-update strategy. We demonstrate the on-
device capabilities of our proposed framework by using Raspberry Pi 2,
a single-board computing platform.

Keywords: Human Activity Recognition · On-device deep learning ·
Federated learning · Heterogeneous labels · Heterogeneous models ·
Knowledge distillation

1 Introduction

Contemporary machine learning, particularly deep learning has led to major
breakthroughs in various domains, such as vision, speech, Internet of Things
(IoT), etc. Particularly, on-device deep learning has spiked up a huge interest in
the research community owing to their automatic feature extraction mechanisms
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and the compute capabilities vested in resource-constrained mobile and wearable
devices. Sensors embedded in such IoT devices have a vast amount of incoming
data which have massive potential to leverage such on-device machine learn-
ing techniques on-the-fly to transform them into meaningful information cou-
pled with supervised, unsupervised and/or other learning mechanisms. Human
Activity Recognition (HAR) in such personalized IoT devices is a technique of
significant importance for our community as it plays a key role in modeling user
behavior across a variety of applications like pervasive health monitoring, fitness
tracking, fall detection, etc. With the ubiquitous proliferation of such person-
alized IoT devices, collaborative and distributed learning is now more possible
than ever to help best utilize the behavioral information learnt from multiple
devices.

However, such collaborative data sharing across devices might always not be
feasible owing to privacy concerns from multiple participants. Users might not
have any interest in sending their private data to a remote server/cloud, par-
ticularly in areas like healthcare. With the advent of Federated Learning (FL)
[1,17], it is now possible to effectively train a global/centralized model without
compromising on sensitive data of various users by enabling the transfer of model
weights and updates from local devices to the cloud, instead of conventionally
transferring the sensitive data to the cloud. A server has the role of coordinat-
ing between models, however most of the work is not performed by a central
entity anymore, but by a federation of clients/devices. The Federated Averag-
ing (FedAvg) algorithm was first proposed by McMahan et al. in [17] which
combines local Stochastic Gradient Descent (SGD) of each client (local device)
with a server that aggregates the model weights. Federated learning has been an
active and challenging area of research in solving problems pertaining to secure
communication protocols, optimization, privacy preserving networks, etc. [14].

Federated Learning deals with various forms of heterogeneities like device,
system, statistical heterogeneities, etc. [14]. Particularly in Federated Learning
with IoT scenarios, statistical heterogeneities have gained much visibility as a
research problem predominantly owing to the non-IID (non-independent and
identically distributed) nature of the vast amounts of streaming real-world data
incoming from distinct distributions across devices. This leads to challenges in
personalized federation of devices, and necessitates us to address various hetero-
geneities in data and learning processes for effective model aggregation.

An important step in this direction is the ability of end-users to have the
choice of architecting their own models, rather than being constrained by the
pre-defined architectures mandated by the global model. One effective way to
circumvent this problem is by leveraging the concept of knowledge distillation
[8], wherein the disparate local models distill their respective knowledge into
various student models which have a common model architecture, thereby effec-
tively incorporating model independence and heterogeneity. This was proposed
by Li et al. in FedMD [13]. However, as much independence and heterogene-
ity in architecting the users’ own models is ensured in their work, they do not
guarantee heterogeneity and independence in labels across users.
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Many such scenarios with heterogeneous labels and models exist in federated
IoT settings, such as behaviour/health monitoring, activity tracking, keyword
spotting, next-word prediction, etc. Few works address handling new labels in
typical machine learning scenarios, however, to the best of our knowledge, there
is no work which addresses this important problem of label and model hetero-
geneities in non-IID federated learning scenarios.

The main scientific contributions in this work are as follows:

– Enabling end-users to build and characterize their own preferred local archi-
tectures in a federated learning scenario for HAR, so that effective transfer
learning and federated aggregation happens between global and local models.

– A framework with two different versions to allow flexible heterogeneous selec-
tion of activity labels by showcasing scenarios with and without overlap across
different user devices, thereby leveraging the information learnt across devices
pertaining to those overlapped activities.

– Empirical demonstration of the framework’s ability to handle real-world dis-
parate data/label distributions (non-IID) on-device independent of users on
a public HAR dataset, capable of running on simple mobile and wearable
devices.

2 Related Work

Deep learning for HAR, particularly inertial/sensor-based HAR measured from
devices like accelerometer, gyroscope, etc. for improving pervasive healthcare
has been an active area of research [7,18]. Particularly, mobile- and wearable-
based deep learning techniques for HAR have proven to be an extremely fruitful
area of research with neural network models being able to efficiently run on such
resource-constrained devices [12,22,23]. Few other challenges with deep learning
for HAR have been explored like handling unlabeled data using semi-supervised
and active learning mechanisms [6,24], domain adaptation [2], few-shot learning
[4], and many more.

Federated Learning has contributed vividly in enabling distributed and col-
lective machine learning across various such devices. Federated learning and
differentially private machine learning have, or soon will emerge to become the
de facto mechanisms for dealing with sensitive data, data protected by Intellec-
tual Property rights, GDPR, etc. [1]. Federated Learning was first introduced
in [17], and new challenges and open problems to be solved [14] and multiple
advancements [9] have been proposed and addressed in many interesting recent
works.

Multiple device and system heterogeneities making them optimization prob-
lems are addressed in [15]. Personalized federated learning closely deals with
optimizing the degree of personalization and contribution from various clients,
thereby enabling effective aggregation as discussed in [3]. Federated learning on
the edge with disparate data distributions – non-IID data, and creating a small
subset of data globally shared between all devices is discussed in [25].
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Fig. 1. Overall architecture with both proposed versions. Each device consists of
disparate sets of local labels and models, and they interact with the global model
(cloud/server). The models in each local device are first updated using one of the two
strategies, the respective class scores are then aggregated in the global model, and the
updated consensus is again distributed across local models.

Particularly for Federated Learning in IoT and pervasive (mobile or wearable)
devices, important problems and research directions on mobile and edge networks
are addressed in this survey [16], while federated optimization for on-device
applications is discussed in [11]. Federated Learning for HAR is addressed in
[20] which deals with activity sensing with a smart service adapter, while [19]
compares between centralized and federated learning approaches.

FedMD [13], which we believe to be our most closest work, deals with het-
erogeneities in model architectures, and addresses this problem using transfer
learning and knowledge distillation [8], and also uses an initial public dataset
across all labels (which can be accessed by any device during federated learning).
Current federated learning approaches predominantly handle same labels across
all the users and do not provide the flexibility to handle unique labels. However,
in many practical applications, having unique labels for each local client/model
is a very viable scenario owing to their dependencies and constraints on specific
regions, demographics, privacy constraints, etc. A version of the proposed work
is discussed for vision tasks in [5]. However, to the best of our knowledge, none
of the works take into account label and model heterogeneities in the context of
HAR.

The rest of the paper is organized as follows. Section 3.1 discusses the problem
formulation of handling heterogeneous labels and models in on-device federated
learning scenarios, and Sect. 3.2 presents the overall proposed framework and
the methods used to address these challenges. Systematic experimentation and
evaluation of the framework across different users, devices, iterations, models,
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activities in a federated learning setting is showcased in Sect. 4, while also proving
feasibility of the same on resource-constrained devices (Sect. 4.2). Finally, Sect.
5 concludes the paper.

3 Our Approach

In this section, we discuss in detail about the problem formulation of hetero-
geneity in labels and models, and our proposed framework to handle the same
(showcased in Figs. 1a and 1b).

3.1 Problem Formulation

We assume the following scenario in federated learning. There are multiple local
devices which can characterize different model architectures based on the end
users. We hypothesize that the incoming data to different devices also consist of
heterogeneities in labels, with either unique or overlapping labels. We also have
a public dataset with the label set consisting of all labels – this can be accessed
by any device anytime, and acts as an initial template of the data and labels that
can stream through, over different iterations. We re-purpose this public dataset
as the test set also, so that consistency is maintained while testing. To make
FL iterations independent from the public dataset, we do not expose the public
dataset during learning (training) to the local models. The research problem
here is to create a unified framework to handle heterogeneous labels, models and
data distributions (non-IID nature) in a federated learning setting.

3.2 Proposed Framework

Our proposed framework to handle heterogeneous labels and models in a fed-
erated learning setting is presented in Algorithm 1. There are three important
steps in our proposed method.

1. Build: In this step, we build the model on the incoming data we have in
each local user, i.e., local private data for the specific iteration. The users can
choose their own model architecture which suits best for the data present in
that iteration.

2. Local Update: In this step, we update the averaged global model scores
(on public data) for the ith iteration on the local private data. For the first
iteration, we do not have any global scores and we initialize the scores to be
zero in this case. For the rest of iterations, we have global averaged scores
which we can use to update the local model scores according to Algorithm 1.
We propose two versions in the local update.
(a) Model Distillation Update, where the local model is distilled based

only on labels corresponding to the local user. Distillation acts a summa-
rization of the information captured from the older models in different
FL iterations.
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Algorithm 1. Our Proposed Framework (with two version choices)
Input: Public Dataset D0{x0, y0}, Private Datasets Di

m, Total users M , Total iter-
ations I, LabelSet lm for each user
Output: Trained Model scores fI

G

Initialize f0
G = 0 (Global Model Scores)

for i = 1 to I do
for m = 1 to M do

Build: Model Di
m and predict fDi

m
(x0)

Local Update:
Choice 1 – Model Distillation Update:
Build a distilled model on only labels corresponding to local user’s model with
global averaged probabilities on public dataset D0. Now, update the model with
the new data Di

m arriving in this iteration.
Choice 2 – Weighted α-update:
fDi

m
(x0) = fI

G(xlm
0 ) + αfDi

m
(x0), where fI

G(xlm
0 ) are the global scores of only

the set of labels lm with the mth user, α =
len(Di

m)

len(D0)

end for
Global Update: Update label wise

f i+1
G =

M∑

m=1

βmfDi
m

(x0), where

β =

{
1 If labels are unique

acc(fDi+1
m

(x0)) if labels are not unique

where acc(fDi+1
m

(x0)) is the accuracy function of the given model, and is defined
by the ratio of correctly classified samples to the total samples for the given local
model

end for

(b) Weighted α-update , where α is the ratio between the size of current
private dataset and the size of public dataset. This parameter governs the
contributions of the new and the old models across different FL iterations.

3. Global update: In this step, we first train the local model on the respective
private datasets for that FL iteration. Further, we evaluate (test) this trained
model on the public data, thereby obtaining the model scores on public data.
We then perform such label-based averaging across all the users using the β
parameter, where β governs the weightage given to unique and overlapping
labels across users using test accuracies of the corresponding labels on public
data (as given in Algorithm 1). This module gives the global averaged scores.

4 Experiments and Results

We simulate a federated learning scenario with multiple iterations of small
chunks of incremental data incoming (details in Table 1), across three different
users to test our approach, and assume that the activities arrive in real-time in
the users’ devices. We use the Heterogeneity Human Activity Recognition dataset
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Table 1. Model Architectures (filters/units in each layer), Labels (Activities) and
Number of Activity Windows per federated learning iteration across user devices. Note
the disparate model architectures and labels across users.

User 1 User 2 User 3 Global User

Architecture 2-Layer

CNN (16,

32) Softmax

Activation

3-Layer CNN

(16, 16, 32)

ReLU

Activation

3-Layer ANN

(16, 16, 32)

ReLU Activation

–

Activities {Sit, Walk} {Walk,

Stand}
{Stand, StairsUp} {Sit, Walk,

Stand, StairsUp}
Activity Windows

per iteration

{2000, 2000}
= 4000

{2000, 2000}
= 4000

{2000, 2000}
= 4000

{2000, 2000, 2000,

2000}
= 8000

[21], which consists of inertial data from four different mobile phones across nine
users performing six daily activities: Biking, Sitting, Standing, Walking, Stairs-
Up, Stairs-Down in heterogeneous conditions.

Data Preprocessing: In this experiment, we perform similar preprocessing
techniques as stated in [22]. As discussed, we use the mobile phone accelerom-
eter data only and not gyroscope, due to the reduction in data size without
substantial accuracy decrease. We initially segment the triaxial accelerometer
data into two-second non-overlapping windows and then perform Decimation to
downsample (normalize) all activity windows to the least sampling frequency (50
Hz). Following this, Discrete Wavelet Transform (DWT) is performed for obtain-
ing temporal and frequency information and we use Approximation coefficients
only, all together is stated to have a substantial decrease in data size.

Now, we discuss the settings for label and model heterogeneities in our exper-
iment.

Label Heterogeneities: In our experiment, we consider only four activities –
{Sit, Walk, Stand, StairsUp} from the dataset as shown in Table 1. Also, we
include the number of activity windows considered per user per iteration (2000
activity windows per iteration). The activities in each local user can either be
unique (present only in that single user) or overlapping across users (present
in more one user). We split the four activities into three pairs of two activities
each, for convenience of showcasing the advantage of overlapping activities in
experimentation. We also create a non-IID environment across different feder-
ated learning iterations wherein, the activity data across different iterations are
split with disparities in both the aforementioned labels and distributions in data
(Statistical Heterogeneities).

Model Heterogeneities: We choose three different model architectures (CNNs
and ANNs) for the three different local users. This is clearly elucidated in
Table 1. We also use a simple two-layer ANN model with (8, 16) filters as the
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Table 2. Details of Model Architectures (filters/units in each layers) changed across
federated learning iterations and users.

Iteration New model architecture

User 1 Iteration 10 3-Layer ANN

(16, 16, 32)

ReLU Activation

User 1 Iteration 14 1-Layer CNN

(16)

Softmax Activation

User 2 Iteration 6 3-Layer CNN

(16, 16, 32)

Softmax activation

User 3 Iteration 5 4-Layer CNN

(8, 16, 16, 32)

Softmax activation

distilled student architecture. To truly showcase near-real-time heterogeneity and
model independence, we induce a change in the model architectures across and
within various FL iterations as shown in Table 2.

Initially, we divide the activity windows across the three different users
according to the four activity labels. We create a Public Dataset (D0) with
8000 activity windows, with 2000 activity windows corresponding to each activ-
ity. Next, we sample 2000 activity windows in every iteration for each label of a
user (as shown in Table 1). In total, we ran 15 federated learning iterations in
this whole experiment, with each iteration running with early stopping (with a
maximum 5 epochs). We track the loss using categorical cross-entropy loss func-
tion for multi-class classification, and use the Adam optimizer [10] to optimize
the classification loss. We simulate all our experiments – both federated learning
and inference on a Raspberry Pi 2.

Table 3. Average Accuracies (%) of Local and Global Updates, and their respective
Accuracy increase with Model Distillation Update and Weighted α-update.

Model Distillation Weighted α-update

Local Update Global Update Increase Local Update Global Update Increase

User 1 68.38 77.61 9.23 66.98 74.29 7.31

User 2 70.82 84.4 13.58 68.88 81.9 13.02

User 3 77.68 87.9 10.22 76.57 83.7 7.13

Average 72.293 83.303 11.01 70.81 79.963 9.153
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Fig. 2. Iterations vs Accuracy across all three users with Model Distillation Update
(MD) and Weighted α-update. Local Update signifies the accuracy of each local updated
model (after ith iteration) on Public Dataset. Global Update signifies the accuracy of the
corresponding global updated model (averaged across all the users after ith iteration)
on Public Dataset.

4.1 Discussion on Results

Figure 2 represents the results across all three users for both proposed versions of
our framework on the HHAR dataset. Also, from Table 3, we can clearly observe
that the global updates – which represent the accuracy of the global updated
model (and averaged across all users’ labels in the ith iteration governed by β),
are higher for all three users than the accuracies of their respective local updates.
For instance, from Figs. 2a and 2d, we can infer that the corresponding accuracies
of labels {Sit, Walk} (User 1 labels) after global updates in each iteration are
deterministically higher than their respective local updates by an average of
∼9.23% and ∼7.31% across all iterations with model distillation and α-update
versions respectively. Similarly for User 2 labels consisting of {Walk, Stand}, we
observe an average accuracy increase of ∼13.58% and ∼13.02% respectively from
local updates to the global updates, while for User 3 labels consisting of {Stand,
StairsUp}, we observe an average increase of ∼10.22% and ∼7.13% respectively
from local updates to global updates in model distillation and α-update versions.

We would like to particularly point out that the overlap in activities sig-
nificantly contributes to highest increase in accuracies, since information gain
(weighted global update) happens only for overlapping labels. This is vividly
visible in User 2 (Fig. 2b and Fig. 2e), whose labels are {Walk, Stand}), where,
in spite of an accuracy dip in local update at FL iterations 5 and 12, the global
update at those iterations do not take a spike down which can be primarily
attributed to the information gain from overlapping activity labels between User
1 and User 3 (in this case, Walk and Stand respectively), thereby showcasing
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the robustness of overlapping label information gain in User 2. On the contrary,
when we observe User 3 (Fig. 2c and Fig. 2f), in spite of the accuracies of global
updates being inherently better than local updates, when a dip in accuracies
of local updates are observed at iterations 5 and 8, the accuracies of global
updates at those iterations also spike down in a similar fashion. Similar trends
of local and global accuracy trends like those observed in User 3 can also be
observed in User 1 (Fig. 2a and Fig. 2d). This clearly shows that when there
are lesser overlapping activity labels (User 1 and User 3), the global model does
not learn the activities’ characteristics much, while the global updates are more
robust in spite of spikes and dips in local updates with such overlapping labels
(User 2), thereby leading to higher average increase in accuracies (as observed in
Table 3).

Fig. 3. Iterations vs Final Global Average Accuracies (%) with Model Distillation
Update and Weighted α-update

Overall average deterministic (not relative) increase in accuracies of ∼11.01%
and ∼9.153% are observed respectively with the model distillation and α-update
versions on the HHAR dataset, which are calculated from the global model
updates (Table 3). The overall global model accuracies averaged across all users
after each iteration (which is different from global update accuracies after each
iteration observed in Fig. 2) are also elucidated in Fig. 3. We can observe that
the distillation version performs better than the α-update version with a ∼3.21%
deterministic accuracy increase. With our current framework, communication
(transfer) of just the model scores of respective activity labels between clients
(local devices) and the central cloud is performed, without necessitating transfer
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of the entire model weights, which significantly reduces latency and memory
overheads.

4.2 On-Device Performance

We observe the on-device performance of our proposed framework by exper-
imenting on a Raspberry Pi 2. We choose this single-board computing plat-
form since it has similar hardware and software (HW/SW) specifications with
that of predominant contemporary IoT/mobile devices. The computation times
taken for execution of on-device federated learning and inference are reported in
Table 4. This clearly shows the feasibility of our proposed system on embedded
devices. Also, the distillation mechanism accounts for higher computation over-
heads in time on edge/mobile devices, and depend on the temperature parame-
ters (default set at 1) and the distilled student model architecture chosen. The
end-user can typically make the trade-off of choosing the local distillation version
or the α-update version depending on their compute capabilities and accuracy
requirements.

Table 4. Time taken for Execution

Process Computation time

Training time per epoch in an FL iteration (i) ∼1.8 s

Inference time ∼16 ms

Discrete Wavelet Transform ∼0.45 ms

Decimation ∼4.6 ms

5 Conclusion

This paper presents a unified framework for flexibly handling heterogeneous
labels and model architectures in federated learning for Human Activity Recog-
nition (HAR). By leveraging transfer learning along with simple scenario changes
in the federated learning setting, we propose a framework with two versions –
Model Distillation Update and Weighted α-update aggregation in local models,
and we are able to leverage the effectiveness of global model updates with activity
label based averaging across all devices and obtain higher efficiencies. Moreover,
overlapping activities are found to make our framework robust, and also helps
in effective accuracy increase. We also experiment by sending only model scores
rather than model weights from user device to server, which reduces latency and
memory overheads multifold. We empirically showcase the successful feasibility
of our framework on-device, for federated learning/training across different iter-
ations on the widely used HHAR dataset. We expect a good amount of research
focus hereon in handling statistical, model and label based heterogeneities for
HAR and other pervasive sensing tasks.
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