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Preface

1 Introduction

Human activity recognition (HAR) can benefit various applications, such as health-care
services and smart home applications [1, 2, 10]. Owing to the rapid development of
wireless sensor networks, a large amount of data can be collected for the recognition of
human activities with different kinds of sensors [4]. Conventional machine learning
algorithms require to manually extract representative features from data [3]. However,
manual feature engineering requires expert knowledge and will inevitably miss implicit
features. Recently, deep learning has achieved great success in many challenging
research areas [5]. The biggest merit of deep learning is that it is able to automatically
learn representative features from massive data. It can be a good candidate for human
activity recognition [8, 9].

The 2nd International Workshop on Deep Learning for Human Activity Recogni-
tion, held in conjunction with IJCAI-PRICAI 2020, was intended to prompt
state-of-the-art approaches on deep learning for human activity recognition. Ten
research papers were accepted by this workshop. The details are shown in the following
section.

1.1 Organization of the Chapters

Wearable sensors are widely used for human activity recognition, due to the properties
of low cost and ease of use [6]. The first paper, Human Activity Recognition using
Wearable Sensors: Review, Challenges, Evaluation Benchmark, by Abdel-Salam et al.,
first reviews top-performing techniques for human activity recognition. They use a
standardized evaluation benchmark on these techniques via six public datasets. Finally,
they propose a hybrid of enhanced handcrafted features and a neural network archi-
tecture, which achieves a superior performance over the state-of-the-arts on three
datasets. The second paper, Wheelchair Behavior Recognition for Visualizing Sidewalk
Accessibility by Deep Neural Networks, by Watanabe et al., presents a wheelchair
behavior recognition system for visualizing sidewalk accessibility. First, they designed
a supervised convolutional neural network for the classification of road surface con-
dition based on acceleration data. Then, a weakly supervised method was adopted to
extract features without labeled data. Finally, a self-supervised variational autoencoder
was developed for classification. The third paper, Toward Data Augmentation and
Interpretation in Sensor-Based Fine-Grained Hand Activity Recognition, by Luo et al.,
proposes a convolution-based Generative Adversarial Networks (GAN) approach for
data augmentation on temporal data of acceleration, which is utilized for fine-grained
hand activity recognition. The proposed GAN consists of a 2D-Convolution discrim-
inator and a 2D-Transposed Convolution generator. Experimental results indicate that
their method effectively improved the accuracy of the classifier with the augmented
data. The fourth paper, Personalization Models for Human Activity Recognition With



Distribution Matching-Based Metrics, by Nguyen et al., proposes personalization
models by using the nearest-FID-neighbors neighbors and FID-graph clustering tech-
niques to group users with similar behaviors into the same community. They adopted
the DeepConvLSTM model for training and testing with the data from the same
community. The fifth paper, Resource-Constrained Federated Learning with Hetero-
geneous Labels and Models for Human Activity Recognition, by Gudur and Perepu,
proposes a framework with two different versions for federated label-based aggrega-
tion, i.e., Model Distillation Update and Weighted a-update, when handling hetero-
geneities in labels (activities) across users for human activity recognition. Evaluation
on the Heterogeneity Human Activity Recognition (HHAR) dataset indicates the fea-
sibility of their proposed framework on devices for federated learning.

In addition to wearable sensor-based methods, vision-based activity recognition is
also popular [7]. The first paper, ARID: A New Dataset for Recognizing Action in the
Dark, by Xu et al., provides a new dataset, i.e., the Action Recognition in the Dark
(ARID) dataset, considering the lack of available datasets for action recognition in dark
videos. They benchmarked the performance of existing action recognition algorithms
on this dataset and investigated potential solutions to enhance the performance. It turns
out that existing methods may not be effective for action recognition in dark videos.
The second paper, Single Run Action Detector over Video Stream - A Privacy Pre-
serving Approach, by Saravanan et al., proposes a Single Run Action Detector
(S-RAD) which is built upon Faster-RCNN combined with temporal shift modeling
and segment-based sampling for capturing human actions. Evaluation results on
UCF-Sports and UR Fall dataset indicate that their proposed method can achieve
comparable performance with state-of-the-arts, but with significantly lower model size,
computation demand and the ability of real-time execution on edge devices. The third
paper, Effïcacy of Model Fine-Tuning for Personalized Dynamic Gesture Recognition,
by Guo et al., explores fine-tuning of personalized models from a global model for
gesture recognition. They evaluated the impact of four different options on model
performance, i.e., fine-tuning the earlier vs the later layers of the network, number of
user-specific training samples, batch size, and learning rate. The results indicate that a
proper selection of fine-tuning schemes and hyperparameters will boost the perfor-
mance of the personalized models.

Finally, there are two papers that consider the adoption of Natural Language Pro-
cessing (NLP) techniques for human behavior and activity recognition. The first paper,
Fully Convolutional Network Bootstrapped by Word Encoding and Embedding for
Activity Recognition in Smart Homes, by Bouchabou et al., proposes an end-to-end
framework for daily activity recognition in smart homes by merging a time series
classifier and NLP word encoding. Specifically, they applied frequency-based encoding
with word embedding to enhance feature learning, which was able to encode domain
knowledge, resulting in performance improvement for activity recognition. The second
paper, Towards User Friendly Medication Mapping Using Entity-Boosted Two-Tower
Neural Network, by Yuan et al., proposes a user medication inference system based on
NLP techniques. Specifically, they formulated the problem as a ranking task which
maps standard medication names (SMN) to descriptive medication phrases (DMP) by
ordering the list of medications in the patient’s prescription list obtained from phar-
macies. Besides, they used the output of intermediate layers and performed medication
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clustering. Evaluation results indicate that their solution can achieve state-of-the-art
performance.

The organizers would like to take this opportunity to thank all the authors for their
valuable contributions to this workshop, and all of the reviewers, who provided con-
structive suggestions and thorough reviews during the paper selection process. The
encouragement and support from Springer throughout the preparation of this issue are
also greatly appreciated.

References

1. Chen, Z., Jiang, C., Xiang, S., Ding, J., Wu, M., Li, X.: Smartphone sensor-based
human activity recognition using feature fusion and maximum full a posteriori.
IEEE Transactions on Instrumentation and Measurement (2019)

2. Chen, Z., Zhang, L., Jiang, C., Cao, Z., Cui, W.: WiFi CSI based passive human
activity recognition using attention based BLSTM. IEEE Transactions on Mobile
Computing 18(11), 2714–2724 (2018)

3. Chen, Z., Zhu, Q., Soh, Y.C., Zhang, L.: Robust human activity recognition using
smartphone sensors via CT-PCA and online SVM. IEEE Transactions on Indus-
trial Informatics 13(6), 3070–3080 (2017)

4. Dang, L.M., Min, K., Wang, H., Piran, M.J., Lee, C.H., Moon, H.: Sensor-based
and vision-based human activity recognition: A comprehensive survey. Pattern
Recognition 108, 107561 (2020)

5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

6. Nweke, H.F., Teh, Y.W., Al-Garadi, M.A., Alo, U.R.: Deep learning algorithms
for human activity recognition using mobile and wearable sensor networks: State
of the art and research challenges. Expert Systems with Applications 105,
233–261 (2018)

7. Rigoll, G.: Recent progress in computer-vision-based human activity recognition
and related areas. In: International Conference on Pattern Recognition and
Information Processing. pp. 3–7. Springer (2019)

8. Wan, S., Qi, L., Xu, X., Tong, C., Gu, Z.: Deep learning models for real-time
human activity recognition with smartphones. Mobile Networks and Applications
25(2), 743–755 (2020)

9. Yang, J., Nguyen, M.N., San, P.P., Li, X., Krishnaswamy, S.: Deep convolutional
neural networks on multichannel time series for human activity recognition. In:
IJCAI. vol. 15, pp. 3995–4001. Buenos Aires, Argentina (2015)

10. Zhu, Q., Chen, Z., Soh, Y.C.: A novel semisupervised deep learning method for
human activity recognition. IEEE Transactions on Industrial Informatics 15(7),
3821–3830 (2018)

Preface vii



Organization

Workshop Chairs

Xiaoli Li Nanyang Technological University/A*STAR,
Singapore

Min Wu A*STAR, Singapore
Zhenghua Chen A*STAR, Singapore
Le Zhang A*STAR, Singapore

Program Committee and Reviewers

Ming-Ming Cheng Nankai University, P.R. China
Xi Peng Sichuan University, P.R. China
Vincent Zheng Advanced Digital Sciences Center, Singapore
Sinno Pan Nanyang Technological University, Singapore
Joey Tianyi Zhou A*STAR, Singapore
Zhang Wenyu Cornell University, USA
Jinming Xu Zhejiang University, P.R. China
Zou Han University of California, Berkeley, USA
Lu Xiaoxuan The University of Edinburgh, UK
Zenglin Shi University of Amsterdam, Amsterdam
Peilin Zhao Tencent AI Lab, P.R.C
Karl Surmacz Zimmer Biomet, UK
Wu Keyu A*STAR, Singapore
Cui Wei A*STAR, Singapore



Contents

Human Activity Recognition Using Wearable Sensors: Review, Challenges,
Evaluation Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Reem Abdel-Salam, Rana Mostafa, and Mayada Hadhood

Wheelchair Behavior Recognition for Visualizing Sidewalk Accessibility
by Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Takumi Watanabe, Hiroki Takahashi, Goh Sato, Yusuke Iwasawa,
Yutaka Matsuo, and Ikuko Eguchi Yairi

Toward Data Augmentation and Interpretation in Sensor-Based
Fine-Grained Hand Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Jinqi Luo, Xiang Li, and Rabih Younes

Personalization Models for Human Activity Recognition with Distribution
Matching-Based Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Huy Thong Nguyen, Hyeokhyen Kwon, Harish Haresamudram,
Andrew F. Peterson, and Thomas Plötz

Resource-Constrained Federated Learning with Heterogeneous Labels
and Models for Human Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . 57

Gautham Krishna Gudur and Satheesh Kumar Perepu

ARID: A New Dataset for Recognizing Action in the Dark . . . . . . . . . . . . . 70
Yuecong Xu, Jianfei Yang, Haozhi Cao, Kezhi Mao, Jianxiong Yin,
and Simon See

Single Run Action Detector over Video Stream - A Privacy
Preserving Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Anbumalar Saravanan, Justin Sanchez, Hassan Ghasemzadeh,
Aurelia Macabasco-O’Connell, and Hamed Tabkhi

Efficacy of Model Fine-Tuning for Personalized Dynamic
Gesture Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Junyao Guo, Unmesh Kurup, and Mohak Shah

Fully Convolutional Network Bootstrapped by Word Encoding
and Embedding for Activity Recognition in Smart Homes . . . . . . . . . . . . . . 111

Damien Bouchabou, Sao Mai Nguyen, Christophe Lohr, Benoit LeDuc,
and Ioannis Kanellos



Towards User Friendly Medication Mapping Using Entity-Boosted
Two-Tower Neural Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Shaoqing Yuan, Parminder Bhatia, Busra Celikkaya, Haiyang Liu,
and Kyunghwan Choi

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xii Contents



Human Activity Recognition Using
Wearable Sensors: Review, Challenges,

Evaluation Benchmark

Reem Abdel-Salam(B) , Rana Mostafa(B) , and Mayada Hadhood

Department of Computer Engineering, Cairo University, Giza, Egypt
reem.abdelsalam13@gmail.com, ranamostafamohsen@gmail.com,

mayada.hadhoud@eng.cu.edu.eg

Abstract. Recognizing human activity plays a significant role in the
advancements of human-interaction applications in healthcare, personal
fitness, and smart devices. Many papers presented various techniques for
human activity representation that resulted in distinguishable progress.
In this study, we conduct an extensive literature review on recent, top-
performing techniques in human activity recognition based on wear-
able sensors. Due to the lack of standardized evaluation and to assess
and ensure a fair comparison between the state-of-the-art techniques,
we applied a standardized evaluation benchmark on the state-of-the-art
techniques using six publicly available data-sets: MHealth, USCHAD,
UTD-MHAD, WISDM, WHARF, and OPPORTUNITY. Also, we pro-
pose an experimental, improved approach that is a hybrid of enhanced
handcrafted features and a neural network architecture which outper-
formed top-performing techniques with the same standardized evalua-
tion benchmark applied concerning MHealth, USCHAD, UTD-MHAD
data-sets.

Keywords: Human Activity Recognition · Neural networks ·
Wearable sensor data

1 Introduction

Human Activity Recognition (HAR) is a challenging problem that targets to
predict human gestures through computer interaction. It facilitates human lives
through a various number of applications. There are two main approaches
for human activity recognition: video images-based recognition and wearable
sensors-based recognition. Recognizing human activity from video systems relies
on the camera. Not only does this approach require expensive infrastructure
installations for cameras, but it also poses some challenges due to background,
lighting, and scaling conditions that would lead to difficulty in motion detection.
As for the second approach, human activity detection based on wearable sen-
sors such as barometers, accelerometers, gyro-meter, etc. transforms motion into
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2 R. Abdel-Salam et al.

identified signals. It offers an alternative way to acquire motion without suffering
from the same environmental constraints as in the video-based approach as well
as offering privacy for its users. However, activity recognition based on this app-
roach has some limitations regarding obtaining sufficient information about all
pose movements in the human body that may affect the performance negatively.
It is preferable in industrial applications to use more than one input sensor for
recording human gestures more accurately and boosting performance.

The focus of this study is directed towards human activity techniques based
on wearable sensors. Although there were remarkable improvements in this app-
roach, it is difficult to assess the quality of work in this field due to the lack of
standardized evaluation. Our work is reflected in the following contributions:

1. Extensive Literature review for recent, top-performing techniques in human
activity based on sensor data.

2. Due to different evaluation methodologies, it is hard to achieve a fair compar-
ison between recent techniques. Therefore, we applied a standardized evalua-
tion benchmark on the recent works using six publicly available datasets with
3 different temporal windows techniques: Full-Non-Overlapping, Semi-Non-
Overlapping, and Leave-One-Trial-Out.

3. Implementation, training, and re-evaluation of the recent literature work
using the proposed standardized evaluation benchmark so all techniques fol-
low the same experimental setup to ensure a fair comparison.

4. Proposal of an experimental, hybrid approach that combines enhanced feature
extraction with neural networks, and evaluation using the proposed evaluation
benchmark criteria, achieving a competitive accuracy.

The rest of the paper is organized as follows: in Sect. 2, data-sets used are
demonstrated. In Sect. 3, an extensive literature review of human activity recog-
nition using wearable sensors is discussed further in detail. In Sect. 4, our pro-
posed hybrid approach is introduced. In Sect. 5, the experimental evaluation of
human activity recognition for several top works is addressed. Conclusion and
recommendations for future work are outlined in Sect. 6.

2 Data-Sets

Datasets in HAR consist of two main types: Vision-based datasets and Sensor-
based datasets. Examples of Vision-based datasets are KTH [19] and Wieszmann
[9]. The Sensor-based datasets involve four types: Object sensors, Body-Worn
sensors, Hybrid sensors, and Ambient sensors. Vankastern Benchmark [14] and
Ambient kitchen [18] are examples of datasets based on Object sensors, UCI-
HAR and WISDM [8] are datasets for Body-worn sensors, Opportunity [8] is
a dataset based on Hybrid sensors, and the AAL dataset [2] is for Ambient
sensors. We will focus mainly on this study on wearable sensors data-sets. For
human activity recognition based on wearable sensor data, there are several open-
source data-sets available that offer diversity in categories such as the number
of activities to be classified, the number of sensors used, and the sampling rate.
In our study, we conduct our experiments on data-sets mentioned below:
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1. MHealth [8]
2. USC-HAD [24]
3. UTD-MHAD [7]
4. WISDM [8]
5. WHARF [4]
6. OPPORTUNITY [8]

MHealth dataset was collected from 10 volunteers performing 12 physical activ-
ities such as standing, sitting and relaxing, lying down, walking, climbing stairs,
etc. The readings were collected using three sensors: magnetometer, gyroscope,
acceleration. The sensors were placed on the chest, right wrist, and left ankle.
All the dataset activities are balanced except for the last activity. USC-HAD
dataset consists of 12 daily life activities: walk forward, walk left, walk right,
walk upstairs, walk downstairs, etc. Those activities were carried out by 14 vol-
unteers. The readings were collected using MotionNode, which integrates a 3-axis
accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. MotionNode sen-
sor was placed on the volunteer’s front right hip. The challenge in this dataset
that the sensors may not align their readings due to their different sensors’ place-
ment. Each sensor responds differently to the human activity performed. UTD-
MHAD dataset consists of 27 actions (controlled condition actions): swipe left,
swipe right, wave, clap, throw, arms cross, basketball shoot, draw X, draw a circle
(clockwise), draw circle (counter-clockwise), draw triangle, etc. These activities
were carried out by 8 volunteers. The dataset was collected using a Microsoft
Kinect sensor and a wearable inertial sensor in an indoor environment. The iner-
tial sensor was worn on the volunteer’s right wrist or the right thigh. WISDM
dataset consists of 18 daily living activities classified into Non-hand-oriented
activities, Hand-oriented activities, and Hand-oriented activities. The activities
include walking, jogging, ascending and descending the stairs, sitting, stand-
ing, kicking a ball, etc. Those activities were carried out by 51 volunteers. The
dataset was collected using the accelerometer and gyroscope data from both the
smartphone placed on the right pants pocket of the volunteer and the smart-
watch placed on the volunteer’s dominant hand. WHARF dataset consists of 14
daily life activities classified into five categories: toileting, transferring, feeding,
ability to use a telephone, and indoor transportation. Those activities - brush
own teeth, comb own hair, get up from the bed, lie down on the bed, sit down
on a chair, stand up from a chair, drink from a glass, eat with a fork and knife,
eat with a spoon, pour water into a glass, use the telephone, climb the stairs,
descend the stairs, and walk - were carried out by 17 volunteers. The dataset was
collected using an ad hoc sensing device that contains an accelerometer, worn
at the right wrist. OPPORTUNITY dataset consists of 21 daily life activi-
ties classified into two types locomotion and hand gesture. These activities were
carried out by 12 volunteers. The activities include standing, opening the dish-
washer, opening drawer1, opening drawer2, opening drawer3, sitting, closing the
dishwasher, closing drawer1, closing drawer2, closing drawer3, walking, etc. The
dataset was collected using 72 sensors of 10 modalities, integrated with the envi-
ronment, in objects, and on the body. The sensors include 24 custom Bluetooth
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wireless accelerometers and gyroscopes, 2 Sun SPOTs and 2 InertiaCube3, the
Ubisense localization system, and a custom-made magnetic field sensor. The five
X-sense inertial measurement units are placed on a custom-made motion jacket,
12 Bluetooth 3-axis acceleration sensors on the limbs, and commercial Inerti-
aCube3 inertial sensors located on each foot. OPPORTUNITY poses challenges
since it is an unbalanced, multi-modal composite dataset.

2.1 Data-Set Preparation

Before feeding data to the model, raw data needs to be transformed into identi-
fied samples. In this generation process, data split into equally-sized small win-
dows - or another term temporal windows. Temporal windows are then divided
into train and test data sets. Temporal windows may suffer from overlapping
in part of the window that may lead to a non-bias evaluation. There are three
techniques to generate temporal windows - as mentioned in [12] - for fair exper-
imental evaluation:

1. Full-Non-Overlapping Window represents a generation technique to assure
zero overlaps between temporal windows.

2. Semi-Non-Overlapping Window is an alternative approach to Full-Non-Over-
lapping-Window for sample generation with a 50% overlap between every
temporal window. This approach will generate a high number of samples,
unlike the Full-Non-Over-lapping approach. However, it will result in biased
results since the overlapping content may be seen in training and testing.

3. Leave-One-Trial-Out is a novel approach for sample generation as discussed
in [12]. The trial represents a raw activity signal per single subject. It guar-
antees a non-biased evaluation and sufficient sample number generation. In
this generation technique, trials with the same raw signals are not duplicated
in training and testing data sets.

Table 1 provides a checklist of temporal window generation techniques sup-
ported in each of the six open-source data-sets discussed above. For the UTD-
MAHD dataset, it has been separated into two partitions UTD-1 and UTD-2
based on sensor position. Based on supported temporal window variants of our
data-sets, we conduct our experimental results.

3 Literature Review

HAR is concerned with the ability to understand human behavior. Various
approaches to recognize activities have been addressed. The aim is to build a
model that predicts the activity sequence based on sensors reading. A consider-
able amount of literature has been published in human activity recognition based
on wearable sensors over the past few years. The next sub-section will provide a
comprehensive review related to different approaches for HAR classification.
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Table 1. Checklist of Supported Temporal Window Generation Technique for datasets

Data-set Full-Non-Overlapping
Window

Semi-Non-Overlapping
Window

Leave-One-Trial-Out

MHealth ✓ ✓ ✓

USCHAD ✓ ✓ ✓

UTD-1 ✓ ✓ ✓

UTD-2 ✓ ✓ ✓

WHARF ✓ ✓ ✓

WISDM ✓ ✓ ✓

OPPORTUNITY ✗ ✓ ✗

3.1 Hand Crafted Methods

In handcrafted methods, methodology usually starts with extracting important
features from the dataset, then applying a classical machine learning technique
instead of using deep learning to do both. Kwapisz et al. [15] worked on
WISDM dataset, and extracted features per sensor reading. The authors ana-
lyzed three classifiers - Multi-Layer Perception, J48, and logistic regression - to
determine the best classifier. MLP out-performed the rest of the classifiers and
achieved 91.7%. Catal et al. [6] proposed to use a voting classifier between
J48, Logistic Regression, and Multi-Layer Perceptron with the same dataset and
set of features as [15]. Confusion matrix, AUC, F-measure, and accuracy per each
category in the data-set were used for evaluation. It can be inferred that the fea-
tures introduced by [15]: Average-A, Standard Deviation-SD, Average Absolute
Difference-AAD, Average Resultant Acceleration-ARA, are the best representa-
tive features for sensor-based HAR since they achieve almost the same accuracies
compared to deep learning models.

3.2 CNN Based Methods

Ha and Choi [10] introduced 2 CNN models: CNN-pf and CNN-pff. CNN-
pf represents CNN models with partial weight sharing in the first convolutional
layer and full weight sharing in the second convolutional layer. Meanwhile, CNN-
pff represents CNN models with partial and full weight sharing in the first con-
volutional layer, and full weight sharing in the second convolutional layer. The
authors used the MHealth dataset using the Semi-Non-Overlapping window,
and Leave-One-Subject-Out. The mean accuracy for CNN-pf was 91.33%,
and CNN-pff was 91.94%. It can be inferred that CNN-pff achieves higher
accuracy since they apply partial and full weight sharing. The first convolutional
layer tends to capture high-end features that help in boosting the recognition.
This approach uses 2D convolution, which has fewer model parameters than
applying 1D convolution. Panwar et al. [17] involved five subjects (humans),
especially three arm movements (activities). The authors applied three different
pre-processing techniques. Each technique results in a different dataset that is
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used for training. Two architectures were introduced: the first architecture is
for the first two types of pre-processing, and the second architecture is for the
third technique. Three validation schemes used: 1) Cross-validation evaluation
2) Leave-One-Subject-Out, 3) Hybrid evaluation - out of 4 repetitions, training
with 3 sets of data taken from each subject, and testing with the remaining
one set from each subject. The best Accuracy 99.8% was reported by Synthetic
data using Cross-Validation. In the paper, there was limited information about
Synthetic data. Since it is a private dataset, there might be a likelihood that the
model is overfitting. The approach was simple compared to other HAR CNN-
based approaches, which indicate that the datasets used were not challenging
enough. Kasnesis et al. [13] proposed Perception-Net. It consists of a Deep
Convolutional Neural Network (CNN) that applies a late 2D convolution to mul-
timodal time-series sensor data for efficient feature extraction. The datasets used
to evaluate Perception-Net was UCL and PAMAP2. Both datasets were nor-
malized. For the UCL dataset, the validation scheme was the Leave-3-Subject-
Out approach; meanwhile, for PAMAP2, the Leave-One-Subject-Out validation
scheme was used. Model achieved 97.25% and 88.56% accuracy for UCL
and PAMAP2 datasets respectively. Bevilacqua et al. [3] proposed a CNN
network for HAR classification. The author collected an Otago exercise program
dataset composed of 16 activities, which is further divided into four categories.
The dataset consists of 17 participants. The authors segmented the dataset
into small overlapping windows corresponding to roughly 2 seconds of move-
ments. The evaluation was based on the F-Score and Confusion matrix
for each category. Burns and Whyne [5] proposed two different models:
FCN (Fully Convolutional Network) and PTN (Personalized Feature Classifier).
The datasets used for model evaluation were WISDM, SPARS, MHealth. A
four-second sliding window was used for MHealth and SPAR, and a ten-second
window was utilized for WISDM. The validation scheme used was a 5-fold cross-
validation grouping folds by subject. PTN achieved best results on MHealth
99.9% ± 0.003, WISDM 91.3% ± 0.053, and SPAR 99.0% ± 0.017.

3.3 LSTM-CNN Methods

Lyu et al. [16] introduced an LSTM-CNN model for HAR classification, using
UCI-HAR, Mobile health dataset with a privacy-preserving scheme for model
evaluation. On the UCI-HAR dataset, it was segmented using a fixed sliding win-
dow of 2.56 sec and 50% overlap. For the MHealth dataset, it was segmented in
fixed-width sliding windows - 128 readings/windows. The model achieved 95.56%
and 98.44% on the MHealth dataset and UCI-HAR dataset respectively. The
authors use local and dense properties from convolution and learn the temporal
structure by storing information in LSTM units by placing a CNN layer above the
LSTM layer. This approach achieves better recognition rates for datasets with a
high sampling interval since it takes into consideration the activity changes over
a time interval. Xia et al. [23] proposed an LSTM-CNN Model for HAR classifi-
cation. This model extracts activity features and classifies them with a few model
parameters. The authors used UCI-HAR, WISDM, and OPPORTUNITY
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datsets with some pre-processing applied. Semi-Non-Overlapping-Window was
used to segment the data collected by motion sensors. The validation scheme used
was leave-some-subjects-out, depending on participants’ number in each. The
Evaluation metric was F1 score. The Model achieved 95.80% on UCI-HAR,
95.75% on WISDM, and 92.63% on OPPORTUNITY, Gesture recog-
nition. The approach used the Global Average Pooling layer, which reduces the
number of parameters significantly, allows faster convergence of the model, and
decreases over-fitting.

3.4 CNN-LSTM Methods

Sun et al. [20] proposed a CNN-LSTM-ELM network and used OPPORTU-
NITY data-set. Pre-processing techniques are applied to overcome challenges
in the OPPORTUNITY data-set. OPPORTUNITY data-set activities can be
divided into Gesture and Locomotion. The authors used the Gesture category in
the OPPORTUNITY data-set. F1 and accuracy were used as a performance
measure for the model. Experiments were conducted on the CNN-LSTM-ELM
network and CNN-LSTM Fully connected network. It was found out that the
ELM classifier is generalizing better and faster than Fully connected. The CNN-
LSTM-ELM model achieved 91.8% accuracy for gesture recognition, while
CNN-LSTM-Fully connected model achieved 89.7% accuracy for gesture
recognition. Wang et al. [21] proposed a 1D CNN-LSTM network to learn
local features and model the time dependence between features. The model con-
sists of 3 alternating 1D convolution layer and max pool followed by LSTM layer,
fully connected layer, and batch normalization. The authors used international
standard Data Set, Smartphone-Based Recognition of Human Activ-
ities and Postural Transitions Data Set (HAPT) [1,22]. The HAPT data
set contains twelve types of actions. These actions can be classified into 3 types:
static, walking, and transitions between any two static movements. The authors
experimented using different model CNN, LSTM, CNN-GRU, CNN Bi-LSTM,
CNN-LSTM. The best performing model was the CNN-LSTM, which achieved
95.87% accuracy on the dataset.

Based on the recent works’ findings, we conclude that the CNN-LSTM and
LSTM-CNN techniques achieve overall higher accuracy. We believe that is a
result of using LSTM layers as they take into account the history of the signals,
which may lead to better recognition. The drawbacks of using such techniques
that they take more computational power and time for training. The advan-
tage of using LSTM-CNN techniques for human activity recognition is that the
LSTM captures time dependencies first. Then, the features are extracted based
on the time dependencies using CNN. However, using CNN-LSTM techniques,
the features are captured first, then considering the sequence of the features
in time. This methodology may not align well with time dependencies; thus, it
will make convergence harder with more computational power needed. It can be
inferred that the recent works use a different experimental setup, each proposing
its own evaluation benchmark. Some wearable data-sets are private, so it makes
it hard to reproduce the results and conduct a fair comparison based on the
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work findings. Due to the absence of a unified evaluation criteria on all recent
works, we applied a standardized evaluation benchmark to perform a fair, non-
biased performance comparison. We compare between recent works concerning
the standardized benchmark in Sect. 5.3.

4 Proposed Hybrid Approach

This section describes our proposed hybrid approach in detail. Our methodol-
ogy is divided into two stages: enhanced feature extraction followed by Neural
Network architecture.

4.1 Feature Extraction

Before feeding our data to our NN architecture, features were extracted from
sampled data. We used 12 features - 4 of them were proposed by [15]. In sum-
mary, the features are Average-A, Standard Deviation-SD, Average Absolute
Difference-AAD, Average Resultant Acceleration-ARA, Maximum, Minimum,
Median, Skew, Kurtosis, Interquartile range, Area under the curve, and Square
area under the curve. After the extraction of features, scale normalization, and
Principal Component Analysis (PCA) [11] is further applied to the extracted fea-
tures to remove redundant features - due to window overlapping - that helped
in boosting accuracy.

4.2 NN Architecture

Our proposed architecture consists of three dense layers followed by softmax of
activity categories’ number in the dataset. Our architecture consists of a fully
connected layer of size 128, followed by another fully connected layer of size 64
and then followed by 32 fully-connected layers. We used Adam as an optimizer
with batch size 16 and Leaky-Relu as an activation.

The 12 Features are computed per each sample window in the dataset. Then,
our lightweight neural network trains using the extracted features as input. The
neural network learns the hidden features and optimizes its weights to reach a
higher recognition accuracy than other classical approaches that use classical
machine learning techniques.

Our proposed hybrid approach is stable and lightweight, compared with other
techniques. It has demonstrated high competitive accuracy for HAR datasets as
well as it can be easily deployed on resource-constrained hardware. Last but not
least, it is found to be compatible with HAR datasets with no modifications
needed.

5 Experimental Results

This section outlines our experiments and performance comparison between
different approaches under the same evaluation criteria. We conducted several
experiments with respect to our standardized evaluation benchmark. The eval-
uation metric is discussed in detail below.



HAR Using Wearable Sensors: Review, Challenges, Benchmark 9

5.1 Evaluation Metric

Recent approaches discussed in Sect. 3 are implemented1, trained and re-
evaluated alongside our hybrid approach to follow the same experimental setup
using a standardized benchmark: 6 publicly available data-sets and 3 temporal
window techniques described in Sect. 2.1. We conducted our experiments using
Google colab with 1xTesla T4 GPU, 2496 CUDA cores, and 12 GB GDDR5
VRAM. In our study, mean accuracy is taken into account as an evaluation
criterion for results.

5.2 Experimental Set-Up

We conducted three kinds of experiments based on the validation technique used:

K-Folds Validation Experiment. For the first experiment, top-performing
approaches alongside our proposed approach are being evaluated via the K-Folds
validation technique. We conduct our experiment using: MHealth, USCHAD,
UTD-1, UTD-2, WHARF, and WISDM data-sets, concerning 3 generation tech-
niques discussed earlier in Sect. 2.

Leave-One-Subject-Out Experiment. In this experiment, the same set-up
is used as in the K-Folds experiment. The difference in this experiment is that
the evaluation is conducted via the Leave-One-Subject-Out validation technique
for the Semi-Non-Overlapping-Window sample generation technique only.

Hold-Out Validation Experiment. In this experiment, we investigated the
effect of different hyper-parameters on our proposed approach via Hold-Out
validation. Two variants of our proposed model were introduced: Proposed App-
roach V1 and Proposed Approach V2. Proposed Approach V1 training was set
for 250 epochs; meanwhile, Proposed Approach V2 was set for 200 epochs. This
experiment is divided into two separate trials:

1. The first is to compare the two variants of our proposed approach alongside
other top-performing methods and evaluate accuracies using the OPPORTU-
NITY data-set and Semi-Non-Overlapping-Window technique

2. The second is to report the accuracy of two variants of our proposed app-
roach: Proposed Approach V1 and Proposed Approach V2 using: MHealth,
USCHAD, UTD-1, UTD-2, WHARF, and WISDM data-sets, with respect to
3 temporal window sample generation techniques.

5.3 Results

In this section, we conduct experiments mentioned in Sect. 5.2 to evaluate recent
state-of-the-art approaches, alongside with our proposed method. Top accuracies
and second-top accuracies are highlighted with bold and underlined respectively.

1 Recent works are implemented using the same architecture and hyper-parameters as
mentioned in their papers and re-evaluated using proposed standardized benchmark.
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Firstly, we discuss the results of the K-Folds Validation technique experiment.
Mean accuracies using Semi-Non-Overlapping-Window and K-Folds Validation
are reported in Table 2. It can be inferred that our approach ranked top accuracy
in MHealth, USCHAD, UTD-1, and UTD-2 datasets. For the WHARF dataset,
Lyu et al. [16] achieved top accuracy of 88.99%. Xia et al. [23] ranked top accu-
racy with a 1.3% accuracy difference relative to our approach in the WISDM
dataset.

For Leave-One-Trial-Window and K-Folds Validation experiment demon-
strated in Table 3, our technique ranked top accuracy in MHealth, USHCAD,
UTD-1, UTD-2 datasets. Xia et al. [23] achieved top accuracy of 91.02% with a
5% increase in accuracy compared to our method for the WISDM dataset. Lyu
et al. [16] obtained top accuracy in the WHARF dataset.

Referring to the Full-Non-Overlapping-Window reported in Table 4, our app-
roach ranked top accuracy for MHealth, USCHAD, UTD-1, and UTD-2 datasets.
For the WHARF and WISDM dataset, our approach ranks third-best accuracy.

Based on the results of experiments reported above for Tables 2, 3 and 4,
it can be concluded that our proposed approach outperforms state-of-the-art
techniques - both conventional and deep learning techniques - for MHealth,
USCHAD, UTD-1, and UTD-2 datasets for 3 window generation techniques
respectively. For WISDM and WHARF, our approach, in most of the trials,
has ranked as one of the top three best accuracies. We believe that the reason
behind the drop in our proposed approach’s accuracy for WISDM and WHARF
data-sets is the low sampling rate and that only one sensor was used for signal
readings.

Table 5 reports the accuracies of various techniques alongside our approach
using Semi Non-Overlapping-Window and Leave-One-Subject-Out. Based on
results in Table 5, it is found out that our proposed approach out-performs
state-of-the-art-methods, achieving top-ranked accuracy using MHealth, USC-
AHD, UTD-1, UTD-2, and WISDM dataset. Referring to the WHARF dataset,

Table 2. Mean Accuracy using Semi-Non-Overlapping-Window and K-Folds Valida-
tion. (-) denotes that the approach is incompatible with the dataset and window tech-
nique used

Approach MHealth USCHAD UTD-1 UTD-2 WHARF WISDM

Bevilacqua et al. [3] 93.11 - - - - -

Catal et al.[6] 99.84 91.18 49.06 81.07 66.42 90.60

Burns and Whyne [5] 95.54 - 33.39 69.05 62.40 98.82

Ha and Choi [10] 84.77 - 22.67 61.67 68.95 81.81

Xia et al. [23] 99.96 - 56.41 84.62 87.45 99.65

Sun et al. [20] (Fully Connected) - - - - - -

Sun et al. [20] (ELM) 83.34 - 23.63 56.06 57.06 -

Kasnesis et al. [13] 12.45 39.48 6.85 15.82 - -

Lyu et al. [16] 99.77 - 61.53 86.13 88.99 99.47

Panwar et al. [17] 09.00 13.84 05.22 51.59 - -

Proposed Approach 100 93.48 71.62 87.98 80.39 98.35



HAR Using Wearable Sensors: Review, Challenges, Benchmark 11

Table 3. Mean Accuracy using Leave-One-Trial-Window and K-Folds Validation

Approach MHealth USCHAD UTD-1 UTD-2 WHARF WISDM

Bevilacqua et al. [3] 89.62 - - - - -

Catal et al. [6] 91.76 87.36 47.96 80.35 63.87 80.11

Burns and Whyne [5] 89.77 - 33.64 69.02 61.59 -

Ha and Choi [10] 76.66 - 21.46 63.87 64.68 76.42

Xia et al. [23] 87.89 90.94 53.97 82.44 83.47 91.02

Sun et al. [20] 77.69 - 24.30 - - -

Sun et al. [20] (ELM) 80.27 - 27.46 48.44 61.92 -

Kasnesis et al. [13] 14.33 40.61 6.39 18.13 - -

Lyu et al. [16] 89.17 - 57.10 83.64 85.07 89.19

Panwar et al. [17] 09.02 13.85 05.24 50.00 - -

Proposed Approach 94.76 90.94 71.00 87.18 �77.20 86.18

Table 4. Mean Accuracy using Full-Non-Overlapping-Window and K-Folds Validation

Approach MHealth USCHAD UTD-1 UTD-2 WHARF WISDM

Bevilacqua et al. [3] 95.96 - - - - -

Catal et al. [6] 99.55 88.79 47.01 80.32 60.76 88.84

Burns and Whyne [5] 93.65 - 26.46 65.55 57.70 96.46

Ha and Choi [10] 79.85 - 18.92 57.94 61.70 77.07

Xia et al. [23] 99.70 91.55 45.99 79.76 78.49 99.06

Sun et al. [20] (Fully Connected) 78.77 - 22.70 39.87 44.43 -

Sun et al. [20] (ELM) 62.20 - 19.79 37.46 49.18 -

Kasnesis et al. [13] 9.52 31.74 6.46 16.70 - -

Lyu et al. [16] 99.33 89.92 52.27 80.21 83.29 98.46

Panwar et al. [17] 08.99 13.50 05.27 48.04 - -

Proposed Approach 99.70 91.68 70.48 87.84 76.02 97.50

Lyu et al. [16] ranked top accuracy relative to our model with an 11% accuracy
difference.

Table 6 demonstrates mean accuracy results using the Hold-Out Validation
technique on Opportunity Dataset (Semi-Non-Overlapping). We investigate the
effect of hyper-tuning parameters. Compared with other approaches, Proposed
Approach V1 that is trained with 250 epochs ranked second best with 86.24%
accuracy with 0.4% accuracy difference relative to [3].

Tables 7, 8, 9 investigates the effect of training our model with different
epochs: Proposed Approach V1 and V2 via Hold-out validation. The results
are reported via MHealth, USCHAD, UTD-1, UTD-2, WHARF, and WISDM
datasets for the three-generation techniques respectively. It can be concluded
that there is an overall increase in the performance of the model compared with
K-Folds validation results demonstrated in Tables 2, 3, and 4. We believe it is a
consequence of using the hold-out validation technique, whereas the model could
optimize its parameters over the entire training dataset.

In our experiments, we investigated the performance of our proposed app-
roach not only in terms of recognition accuracy but also in terms of time com-
plexity. We analyzed the time taken for our proposed approach - with respect to
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Table 5. Mean Accuracy using Semi Non-Overlapping-Window and Leave-One-
Subject-Out Validation

Approach MHealth USCHAD UTD-1 UTD-2 WHARF WISDM

Bevilacqua et al. [3] 85.00 - - - - -

Catal et al. [6] 95.87 74.62 31.98 73.67 49.69 73.86

Burns and Whyne [5] 91.78 - 30.33 64.96 49.87 -

Ha and Choi [10] 75.69 - 19.49 59.58 59.13 59.28

Xia et al. [23] 93.81 - 32.60 71.02 65.13 -

Sun et al. [20] (Fully Connected) 78.48 59.13 18.97 51.17 49.39 -

Sun et al. [20] (ELM) 81.57 - 19.37 50.90 50.52 -

Kasnesis et al. [13] 13.23 44.45 6.68 18.40 - -

Lyu et al. [16] 92.05 - 36.73 74.77 70.95 -

Panwar et al. [17] 09.01 14.72 05.23 40.63 - -

Proposed Approach 96.35 74.71 50.82 81.37 59.29 77.91

Table 6. Mean Accuracy using Opportunity with Semi-Non-Overlapping-Window and
Hold-Out Validation

Approach Opportunity

Bevilacqua et al. [3] 86.68

Catal et al. [6] 85.45

Burns and Whyne [5] -

Ha and Choi [10] -

Xia et al. [23] -

Sun et al. [20] (Fully connected) -

Sun et al. [20] (ELM) 83.21

Kasnesis et al. [13] 83.48

Lyu et al. [16] -

Panwar et al. [17] 84.22

Proposed Approach V1 86.24

Proposed Approach V2 85.78

Table 7. Mean Accuracy using Semi-Non-Overlapping-Window and Hold-Out
Validation

Dataset Proposed Approach V1 Proposed Approach V2

MHealth 100 100

USCHAD 92.72 91.83

UTD-1 65.70 66.51

UTD-2 85.64 82.71

WHARF 74.24 74.47

WISDM 95.57 97.18
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Table 8. Mean Accuracy using Leave-One-Trial-Out Window and Hold-Out Validation

Dataset Proposed Approach V1 Proposed Approach V2

MHealth 100 99.76

USCHAD 92.13 91.58

UTD-1 68.51 65.22

UTD-2 83.51 84.84

WHARF 75.04 74.73

WISDM 97.50 96.05

Table 9. Mean Accuracy using Full-Non-Overlapping Window and Hold-Out
Validation

Dataset Proposed Approach V1 Proposed Approach V2

MHealth 100 100

USCHAD 89.72 90.38

UTD-1 62.13 61.83

UTD-2 82.84 82.35

WHARF 69.82 67.84

WISDM 95.45 94.73

the standardized benchmark above - to extract the handcrafted features men-
tioned in Sect. 4.1 per sample window. It was observed that the time taken in
seconds to extract the features per sample varies ranging from 0.008(s) - 0.03(s).
We believe that the MHealth takes longer to extract features due to its long
temporal window size.

6 Conclusion

In this study, an extensive literature review on recent, top-performing approaches
in human activity recognition based on wearable sensors is addressed. Due to the
lack of non-standardized evaluation, recent approaches are implemented and re-
evaluated using our standardized benchmark with three data sample generation
techniques as discussed in Sect. 2.1 to follow the same experimental setup for a
fair evaluation. Our experiments were conducted via six open-source datasets.
A hybrid experimental approach is proposed for human activity recognition.
Features are first extracted using our feature engineering and then followed
by 3-layered neural network architecture. Our experimental results demonstrate
that our proposed hybrid approach has a strong generalization ability with high
recognition accuracy, out-performing all state-of-the-art techniques for MHealth,
USCHAD, UTD-1, and UTD-2 datasets.

Future work should investigate the impact of low-sampling-rate and high
activity number datasets such as WHARF and WISDM. More features should
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be added to our feature extraction approach, and further hyper-tune our neural
network approach for higher recognition ability for human activity.

Acknowledgments. We would like to thank Jordao et al. [12] for sharing datasets:
MHealth, USC-HAD, UTD-MHAD, WHARF, and WISDM that have been segmented
by the temporal window generation techniques publicly to the community.
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Abstract. This paper introduces our methodology to estimate sidewalk acces-
sibilities from wheelchair behavior via a triaxial accelerometer in a smartphone
installed under a wheelchair seat. Our method recognizes sidewalk accessibilities
from environmental factors, e.g. gradient, curbs, and gaps, which influence
wheelchair bodies and become a burden for people with mobility difficulties.
This paper developed and evaluated a prototype system that visualizes sidewalk
accessibility information by extracting knowledge from wheelchair acceleration
using deep neural networks. Firstly, we created a supervised convolutional neural
network model to classify road surface conditions using wheelchair acceleration
data. Secondly, we applied a weakly supervised method to extract representations
of road surface conditions without manual annotations. Finally, we developed a
self-supervised variational autoencoder to assess sidewalk barriers for wheelchair
users. The results show that the proposed method estimates sidewalk accessi-
bilities from wheelchair accelerations and extracts knowledge of accessibilities
by weakly supervised and self-supervised approaches.

Keywords: Sidewalk accessibility � Weakly supervised learning � Self-
supervised learning � Convolutional neural network � Human activity
recognition

1 Introduction

Providing accessibility information on sidewalks for people with mobility difficulties,
such as older, mobility-impaired, and visually impaired people, is an important social
issue. One solution to this issue using information and communication technology is to
develop an accessibility map as a large geographic information system (GIS) to provide
accessibility information (Laakso et al. 2011; Karimi et al. 2014). In the existing
methods for gathering large-scale accessibility information, experts evaluate sidewalk
accessibilities from their images (Ponsard and Snoeck 2006), or accessibility infor-
mation is recruited from volunteers by crowdsourcing (Hara 2014). These methods
depend on human labor and are impractical when collecting accessibility information in
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a huge area. The recent expansion of intelligent gadgets, such as smartphones and
smartwatches, familiarizes people with sensing their activities (Swan 2013). Focusing
on the fact that the acceleration signals of wheelchairs are influenced by a road surface
condition, we have been proposing a system that evaluates sidewalk accessibilities
from wheelchair accelerometer using machine learning. Notably, a wheelchair body is
influenced by road surface conditions, e.g., gradient, curbs, and gaps, which become a
burden for people with mobility difficulties. Human activities measured by body-worn
sensors are recognized by applying machine learning (Wang et al. 2019). The possi-
bility of various machine learning methods is investigated for activity recognition using
mobile sensors (Plötz et al. 2011). Aiming at improving the recognition performance,
convolutional neural networks (CNN) (Yang et al. 2015), recurrent neural networks
(Edel and Enrico 2016), and their hybrid model (Yao et al. 2017) are investigated.

In this paper, we introduce our methodology to estimate sidewalk accessibilities by
recognizing road surface conditions from wheelchair acceleration signals. Our goal is
to realize a system that provides services to visualize sidewalk accessibilities and
navigate safely designed routes for users. We developed and evaluated a CNN model to
classify road surface conditions, a weakly supervised model to extract highly repre-
sentative knowledge from acceleration signals without human annotations, and a self-
supervised autoencoder model to assess the degree of sidewalk barriers for wheelchair
users and visualize accessibility information.

2 Sidewalk Accessibility Visualization

2.1 Proposed System

This section introduces our proposed system for providing accessibility information
that is helpful for all pedestrians, especially people with difficulties with moving.
Figure 1 shows an overview of the system. The wheelchair sensor signals are measured
by a sensing application downloaded on the user’s mobile device or installed in the
wheelchair. The wheelchair acceleration database is created by measured signals and
annotations. After training deep neural networks, knowledge of road conditions is
extracted from the trained network. Then sidewalk accessibility information is accu-
mulated as a sidewalk feature dataset and visualized as a navigation map.

The simplest type of accessibility visualization using human sensing is simple
wheelchair trails (Mora et al. 2017). Wheelchair trails provide practical information for
wheelchair users regarding wheelchair accessible roads and facilities. Although the
information is useful, it is not sufficient for all wheelchair users. The trail approach
indicates if someone could travel in a location, but wheelchair users may have different
mobility and accessibility requirements. The physical abilities of wheelchair users are
more diverse than generally imagined; some users are trained like Paralympic athletes,
whereas others may damage their bodies with only a few vibrations. Critical infor-
mation for wheelchair users includes the physical state of the road surface, such as the
angle of a slope, the height of a curb, and the roughness of a road surface. This
information about the physical state of the road surface helps all people with mobility
difficulties as well as wheelchair users to make decisions about access/avoidance of a
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road according to their physical conditions and abilities. Therefore, the information
about the physical state of the road is the foundation of road accessibility.

The vibrations of a wheelchair body are used for estimating the road accessibility
information because wheelchair tires are directly influenced by the state of the road
surface. Useful information is extracted from noisy raw signals of accelerometers
installed in various wheelchairs because of the recent success of developing impersonal
models by deep neural networks (Wang et al. 2019). Since extracting the only influence
of road surface conditions from raw acceleration signals is challenging (Lara and
Labrador 2012), the observed wheelchair acceleration signals must be converted into an
index that represents the road surface condition. Our ultimate goal is to realize a system
that provides road accessibility visualization services to every user by using impersonal
models that improve its accuracy as new data is provided by users. As the wheelchair
traveling data in more diverse places are gathered by more users after the service is
launched, the model is incrementally strengthened. Along with the maturity of the
model, it will also be possible to extract the road accessibility information from the
running data of baby strollers and bicycles as from wheelchairs. This paper aims to
establish a fundamental method of knowledge extraction from wheelchair behavior
data using deep neural networks in supervised classification and weakly supervised or
self-supervised representation learning.

2.2 Related Work

Various mobility support systems for people with mobility difficulties have been
proposed. GIS applications are utilized to create a walking space network composed of
information about width, step, gradient, and its location of the walking route (Yairi and
Igi 2007; Zimmermann-Janschitz 2018). A navigation system for wheelchair users is
provided on users’ smartphones using on-site surveys (Koga et al. 2015). Although
these mobility support systems are useful for impaired people, these systems depend on
human labor, and collecting accessibility information in a huge area is impractical.

User’s mobile device

Sensors

Annotating road
surface condition

Wheelchair
Acceleration 

Database

Accessibility 
Visualization

Deep Neural Networks

Knowledge
Extraction

Sidewalk
Feature
Dataset

Sensing
Application CNN, VAE

Fig. 1. Overview of the proposed system. Sidewalk accessibilities are visualized as a navigation
map by using wheelchair sensor data and deep neural networks.
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The quality of the road including depressions is detected based on a triaxial
accelerometer and a gyroscope in android application using machine learning (Allouch
et al. 2017). Abnormal traffic conditions in cities are detected using multimodal sensors
of smartphones (Mohan et al. 2008; Yu et al. 2016). Although these methods evaluate
road conditions using automatic processing, collecting detailed road surface conditions,
such as gradient, curbs, and the roughness of a road surface, remains difficult.
Therefore, we focused on developing a system to extract accessibility knowledge from
wheelchair acceleration signals that can be automatically collected and are influenced
by road surface conditions.

In the existing machine learning methods, a large dataset with teacher labels is
required to learn road surface conditions from acceleration data. Manual annotation of
the dataset depends on human labor, which is both expensive and impractical to collect
extensively. The weakly supervised learning (Zhou 2018) method and the unsupervised
feature learning (Längkvist et al. 2014) method have been applied to various machine
learning tasks, including human activity recognition (Sargano et al. 2017), to avoid
human annotations. This paper introduces our methodology to use weakly supervised
and self-supervised approaches to extract accessibility knowledge by learning road
surface conditions without human annotations from wheelchair acceleration signals.

3 Estimate Sidewalk Accessibilities

3.1 Dataset

The actual wheelchair driving data were collected to evaluate the proposed method.
A total of nine wheelchair users between 20 and 60 years of age, including six manual
wheelchairs and three electric wheelchairs, participated in the experiment. Their
behaviors while driving about 1.4 km specified route (shown in Fig. 2) around Yotsuya
station in Tokyo were measured by a triaxial accelerometer in the iPod touch installed
under a wheelchair seat, and positional data were measured using the quasi-zenith
satellite system (QZSS). Acceleration values of the x, y, and z axes of the
accelerometer were sampled at 50 Hz, and a total of 1,341,602 samples (about 7.5 h)
were collected. To confirm the circumstances when the acceleration data were mea-
sured, a video was recorded for both participants’ driving state and the road surface
conditions. Most of the entire route was a standard sidewalk, and a part of the course
was a crosswalk. This route was carefully designed to include various road surface
conditions to evaluate the generalization performance of the proposed method for
common roads. If a user did not experience problems when moving up and down
wheelchair ramp slopes, an excessive burden on the body and risk of an accident were
considered minimal. Each participant drove the route in three laps; they drove clock-
wise from the start point to the goal point for the first and third laps and drove
counterclockwise for the second lap. The slope and the gentle slope that were
ascending clockwise in Fig. 2 were ascending for the first and third laps and
descending for the second lap.
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A mean filter with a length of five was processed for the acceleration dataset to
remove noises. Then, the acceleration dataset was normalized to have a zero mean and
unit standard deviation in each axis. To input acceleration data to a CNN model, the
acceleration data were segmented into 29,727 examples using a sliding window. The
window size was fixed to 450 (about nine seconds) with 90% overlap. The window size
and the overlap percentage were selected to be adapted for the dataset following the
procedure (Iwasawa et al. 2016), which applied machine learning for wheelchair
acceleration data.

3.2 Classifying Road Surface Conditions

This section provides a supervised CNN model to classify road surface conditions
using wheelchair acceleration data. Road surface condition labels have four classes:
moving on slopes (Slope), climbing on curbs (Curb), moving on tactile indicators (TI),
and others (Oths). Each category represents typical road surface conditions: a contin-
uous gradient, an abrupt step, a continued unevenness, and other conditions, respec-
tively. These labels were created by visually observing the participants and the road
surface conditions over the whole experiment video. The information on these road
conditions directly conveys accessibility information to people with mobility difficul-
ties, especially wheelchair users.

(a) Experiment route                     (b) General road conditions  

Slope

Block 
pavement

Gravel 
pavement

Tile pavement

Concrete 
pavement

Concrete 
pavement

Curb

Block 
Pavement

Start/Goal 
Gentle
slope

Tile pavementSlope

Curb Tactile indicator

Fig. 2. Wheelchair experiment route. (a) The experimental route driven by wheelchair users.
(b) The general road conditions in the route.
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Model Architecture. Figure 3 shows the structure of CNN used to classify wheelchair
acceleration data. The network is composed of an input layer, four convolution layers,
one fully connected layer, and an output layer. The convolution layer consists of a
convolution, a ReLU activation, and max-pooling processing. The fully connected
layer consists of 500 units and a ReLU activation. The output layer is governed by a
Softmax function that has four classes. The network has dropout layers after every
convolution layer and fully connected layer. The dropout percentage is set to 20%,
30%, 30%, 40%, and 50% from the top to the bottom layer. This network follows the
relevant research for recognizing human activity data (Yang et al. 2015; Takahashi
et al. 2018), and the hyperparameters are adjusted for recognizing wheelchair accel-
erations. The Adam algorithm was used as an optimizer, and the learning rate was set to
0.0001. The test dataset was created by using a leave-one-subject-out (LOSO)
methodology that verifies the performance for unknown users by evaluating a model
with a dataset of a user who was not included in the training data. In this study, the
model was trained repeatedly with a dataset of eight users as a training dataset, and the
trained model was tested with the dataset of the remaining one user. The model score
was evaluated by the mean of a total of nine trials. The validation dataset was created
by dividing the training dataset into 90% training and 10% validation data using
stratified splitting. The network was trained until the categorical cross-entropy loss of
validation data stopped decreasing.

Classification Result. Table 1 compares the classification performance among the
existing machine learning methods and the CNN model. Macro averaged F1 score
(FS) and accuracy (Acc) were used as the evaluation index. Since Oths represented
nearly 77% of the dataset, the classes are imbalanced, and the high F-score means that a
model well recognizes barriers with few spots appearing in the dataset.

Fig. 3. The structure of the convolutional neural network to classify road surface conditions
from wheelchair triaxial accelerations.

Table 1. Comparison between hand-crafted feature classification methods and CNN model in F-
score (FS) and accuracy (Acc).

Method FS Acc (%) FS Acc (%)

Without smoothing With smoothing

Raw + k-NN 28.2 75.5 26.4 74.9
MV + k-NN 45.0 69.9 45.6 73.2
Heuristic + SVM 51.9 80.3 51.8 80.7
Heuristic + MLP 56.5 78.2 56.3 78.9
CNN + SVM 62.6 82.5 67.4 85.2
CNN + MLP 68.7 84.7 71.3 86.4
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The first comparison method (Raw + k-NN) used raw acceleration signals as a
feature set and used a k-nearest neighbor (k-NN) as a classifier. The second method
(MV + k-NN) used the mean and the standard deviation (MV) of each axis of each
segment as a feature set and used k-NN as a classifier. The third and fourth methods
used rich heuristic features as a feature set. The following 12 types of values of each
axis of each segment were computed as heuristic features: mean; standard deviation;
maximum; minimum; zero-crossing; mean, standard deviation, maximum, and mini-
mum of the difference; FFT frequency component; energy and entropy of the FFT
frequency component. The heuristic features were classified by SVM with rbf kernel
(Heuristic + SVM) and multilayer perceptron with two 500 units fully connected layers
(Heuristic + MLP). The parameter k of k-NN and the regularization parameter C and
the kernel coefficient parameter c of SVM were chosen using five-fold cross-validation
to maximize the macro F-score. The parameter C of SVM and the loss function of MLP
were adjusted to inversely proportionally weight to class frequencies in the training
data to handle the class imbalance problem. To ensure the fairness of the comparison
between these methods and CNN, the activation of trained CNN was classified by
SVM (CNN + SVM) and MLP (CNN + MLP). Motivated by previous research (Cao
et al. 2012), a smoothing method was implemented to post-process the predicted labels
to enhance the prediction performance of the classifiers. Since the adjacent road surface
conditions are in a similar state, the sample labels have a smooth trend. This smoothing
method employs a low-pass filter to remove the impulse noise and maintain the edges.
The impulse noise is a potential incorrect prediction, and the edges, in this case, are the
transition in the road surface conditions. For the ith example, a smoothing filter with
length seven was applied on the sequence whose center was the ith example. The
predicted probabilities of the sequence were averaged for each class, and the class with
the highest probability was assigned to the ith example.

The CNN method using raw wheelchair triaxial acceleration signals to classify road
surface conditions achieved higher classification scores than the existing machine
learning methods. This result shows that the proposed method is reasonable and
practical to estimate road accessibilities.

3.3 Weakly Supervised Knowledge Extraction

3.3.1 Methodology
This section introduces our weakly supervised method to extract representations of
road surface conditions (Watanabe et al. 2020). Our method uses positional informa-
tion collected while driving as low-cost weak supervision to learn road surface con-
ditions and does not depend on human annotations. The positional information can be
automatically collected with acceleration signals and notably is semantically related to
road surface conditions. In the task of weakly supervised feature learning, determining
what information to use for supervision is an important factor that affects the learning
performance. We attempted to use a novel method incorporating positional information
during wheelchair driving as weak supervision. Since adjacent road surfaces have
similar conditions, our model effectively learns road surface conditions by being
trained to predict the measured position of the input acceleration data. For the posi-
tional information in this paper, we confirmed the position where the acceleration data
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were measured by visually observing the experiment video to correct errors included in
the QZSS positional data.

Procedure to Generate Weak Supervision. As the first step, the earth’s surface was
divided into a mesh shape. The objectives of dividing the earth’s surface are to
aggregate adjacent road surfaces into one group and to create discrete classes to for-
mulate the position prediction task as a classification problem. The width of each grid
created by the mesh was selected to 5 m in both the vertical and horizontal dimensions
because a grid width under 5 m can distinguish sidewalks on both sides of a road with
two or more lanes. Then, only the grids that covered the driving route were used as
target grids. Finally, a unique number was assigned to each grid of the target grids.
These assigned numbers are the identification (ID) of each grid. These IDs were
assigned to all acceleration samples. The grid to which each sample belongs was
identified by its positional data. These assigned IDs are the positional label set and are
used as weak supervision for acceleration data. Through these steps, the same class is
assigned to the adjacent road surface, and the CNN model is considered to effectively
learn feature representations of road surface conditions.

Position Prediction. The model architecture and the training procedure of weakly
supervised CNN follow those of supervised CNN in Sect. 3.2, except that weakly
supervised CNN used positional labels and the output classes were the IDs of the grids.
We hereafter refer to this CNN model trained on the weakly supervised task as the
PosNet model.

The result of the position prediction task of PosNet was compared to that using
another machine learning method. The accuracy of the PosNet model was 11.2%. As a
comparison of the proposed model, FFT frequency components of each axis of each
example were calculated and classified by logistic regression. The regularization
parameter C was chosen using five-fold cross-validation to maximize accuracy. The
accuracy of the logistic regression was 5.86%. The pure chance was 0.32% in this case.
The accuracy of these models is the mean of the total of nine trials obtained using the
LOSO methodology. Although the score is low, the purpose of training the PosNet
model with weak supervision was to learn feature representations of road surface
conditions and accumulate them in the network. This absolute score is not important for
evaluating the model.

3.3.2 Analysis
This section evaluates the representations of road surface conditions learned by the
PosNet model. To evaluate the learned representations, the PosNet model was trained
with the training dataset. Then the test dataset was input to the trained network, and the
activation of the fully connected layer was obtained. This activation is a set of feature
vectors and is the internal representation learned by the model from the input accel-
eration data. The obtained feature vector set was grouped by the k-means clustering to
evaluate how well the learned representation conveys the road surface condition
information. The clustering results were color-coded for each cluster and were plotted
on the position of the input acceleration example on a map.

The route consisted of following 11 general road surface conditions: gravel pavement
(GRAV), tile pavement (TILE), block pavement-1 (BLK-1), block pavement-2 (BLK-2),
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concrete pavement-1 (CONC-1), concrete pavement-2 (CONC-2), curb (CURB),
ascending slope (ASC-SLP), descending slope (DESC-SLP), gentle ascending slope
(GENT-ASC-SLP), and gentle descending slope (GENT-DESC-SLP). The clustering
results were evaluated in detail by visually observing their plots for each lap. Figure 4
shows the visualization of the clustering result of one manual wheelchair user when the
number of clusters k was 16. The ASC-SLP of both the first and third laps were clearly
grouped into the purple cluster, and GENT-ASC-SLP in both the first and third laps were
grouped into the light purple cluster. DESC-SLP and part of GENT-DESC-SLP for the
second lap were grouped into the light green cluster. The most CURB were grouped into
the yellow-green cluster on every lap. For other pavement types, GRAV and CONC-1
were grouped into the blue cluster for every lap, and most parts of CONC-2b were
grouped into the green cluster for every lap. Although the clustering result of GRAV and
CONC were similar for every lap, the clustering tendency of TILE, BLK-1, and BLK-2
were different depending on the driving direction. This overall clustering tendency was
observed in all nine dataset patterns.

These observations demonstrate that the PosNet model learns feature representa-
tions of detailed road surface conditions. ASC-SLP and DESC-SLP were grouped into
separate independent clusters, although the same position label was assigned to the
adjacent road regardless of the driving direction. This result shows that the model
effectively learned representations of the differences between the ascending and the
descending gradient. ASC-SLP and GENT-ASC-SLP were grouped into separate
clusters. This result shows that the model learned representations of slight differences
in gradient. The exact points of most CURB were grouped into the same cluster for any
lap. This result shows that the model learned representations of wheelchair driving
patterns over curbs. As a summary of the clustering results of three laps, all 12 curb
points were detected. The same pavement types were roughly grouped into the same
cluster, and the different pavement tended to be grouped into different clusters.

Fig. 4. The clustering visualization of the result of one manual wheelchair user. (Color figure
online)

24 T. Watanabe et al.



The PosNet model was found to learn rich feature representations of road surface
conditions through the clustering evaluation. The usefulness of the learned represen-
tation was evaluated for recognizing general road surface conditions. The classification
task of road surface conditions was evaluated in a semi-supervised setting. A common
scenario for a semi-supervised setting is that a large amount of data is available and
only a small fraction is labeled. This scenario is realistically expected for wheelchair
data because acceleration data and positional information of wheelchairs can be
extensively collected, and manual annotation to all acceleration data is expensive and
impractical. Since the positional information can be automatically collected, the PosNet
model was trained with the entire dataset. Then a classifier was trained with a subset of
road surface condition labels and their corresponding feature set, which was obtained
from the trained PosNet model. Heuristic + MLP and CNN + MLP were selected for
comparison to the proposed method (PosNet +MLP). In the case of CNN +MLP, CNN
was trained only with the subset of the training data because the CNN model was
trained with road surface condition labels.

Figure 5 shows the transition of the classification performance under the semi-
supervised setting. The 100% subset is the extreme case of using the entire dataset. The
proposed model (PosNet + MLP) exceeds the performance of the fully supervised
method (CNN + MLP) when the amount of labeled data decreases below 10%. The
performance gap between them increased as the amount of labeled data decreased. The
proposed method (PosNet + MLP) always outperformed Heuri + MLP on any subset
proportion. This result demonstrates the usefulness of the proposed method in a
practical environment. When more extensive wheelchair driving data are collected than
the experiment conducted in this paper, the performance of the proposed method
improves even if the amount of labeled data is limited, providing a highly practical
model.

Fig. 5. The classification performance in a semi-supervised setting. The classification was
implemented under 100%, 60%, 20%, 10%, 5%, and 2% subsets. The x-axis is logarithmic scale
percentage of the amount of data with road surface condition labels. The y-axis is the macro F-
score of the four classes.
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3.4 Self-supervised Knowledge Extraction

3.4.1 Methodology
This section introduces our self-supervised method to assess the degree of sidewalk
barriers for wheelchair users. This method attempts to use convolutional variational
autoencoder (ConvVAE) to extract knowledge of sidewalk accessibilities from
wheelchair acceleration signals. ConvVAE can detect anomalies even when no or small
labeled training data is provided. The reconstruction error calculated by ConvVAE is
examined whether it reflects the road conditions and is used as the degree of burdens
for wheelchair users.

The ConvVAE network is composed of encoder and decoder. The encoder has an
input layer, four convolution layers, and the decoder has four deconvolution layers and
a linear output layer. The latent distribution of the encoder is sampled to latent rep-
resentation that has standard distribution and is decoded to reconstruct input acceler-
ation through the decoder. The convolution layer in the encoder consists of a
convolution, a ReLU activation, and max-pooling processing, and the deconvolution
layer in the decoder consists of a deconvolution, a ReLU activation, and up-sampling
processing. The kernel size and the number of feature maps of convolution layers and
training procedure follow those of supervised CNN in Sect. 3.2, and the mean square
error was used as a loss function of ConvVAE. The window size in segmenting
acceleration signals was fixed to 400 in this experiment so that the latent representation
is reconstructed to the same shape of input. The reconstruction error was calculated
using the mean square error between the input and output signals.

3.4.2 Analysis
The reconstruction error calculated by the proposed ConvVAE is plotted on the cor-
responding position on a map and examined whether it reflects the degree of burdens
for wheelchair users. After training the ConvVAE model by training dataset, the test
dataset was input to the trained network, and the reconstruction error was obtained for
each nine users by LOSO. The reconstruction error was normalized for each user and
the maximum reconstruction error value over nine users were selected within every
5 m on the route.

Figure 6 shows the visualization of the maximum reconstruction error over nine
users. The color of the plot points is determined by the ratio of each selected recon-
struction error value to the largest value. The larger the ratio, the closer to red, and the
smaller the ratio, the closer to blue. The large reconstruction errors are found at five
CURB points and Unusual spot-A in the figure. Since the spot-A was under con-
struction when the experiment was conducted, the participant drove around the spot
differently from other roads. In most parts of the route, the values of reconstruction
error were moderate or low. This result shows that the reconstruction error reflects the
unusualness of the road such as abrupt steps and spots in an unusual environment.
Since these unusual spots become burdens for wheelchair users, the ConvVAE model
is indicated to extract some accessibility knowledge from wheelchair acceleration
signals without any supervision.
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4 Conclusion

The contributions of this paper were to confirm the possibility of using wheelchair
acceleration signals to provide accessibility information. This paper developed and
proposed a prototype system for visualizing sidewalk accessibility information that
helps pedestrians, especially people with mobility difficulties. The proposed method-
ology used deep neural networks to estimate sidewalk accessibility by extracting
knowledge from wheelchair behavior via a triaxial accelerometer in a smartphone
installed under a wheelchair seat. The supervised method demonstrated that CNN
classifies road surface conditions by recognizing wheelchair behavior from acceleration
signals. A novel method was proposed to estimate road surface conditions without
manual annotation by applying weakly supervised learning. The proposed method
demonstrated that positional information during wheelchair driving helps with learning
rich representations of road surface conditions, and the learned representations were
highly discriminative for a road surface classification task. The learned representations
were visualized on a map and demonstrated to provide detailed representations of road
surface conditions, such as the difference of ascending and descending of a slope, the
angle of slopes, the exact locations of curbs, and the slight differences of similar
pavements. The learned representations were found to be more useful than calculated
rich heuristic features for the road surface classification task. The self-supervised
section introduced a method to assess the degree of sidewalk barriers for wheelchair
users. The proposed method attempted to use ConvVAE to extract knowledge of
sidewalk accessibilities from wheelchair acceleration signals. The result indicated to
extract accessibility knowledge, such as abrupt steps and a spot in an unusual envi-
ronment that leads to a barrier for wheelchair users, without any supervision.

CURB

CURB

Unusual 
spot-A

Fig. 6. The reconstruction error plot over nine participants. (Color figure online)
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Our future work will be directed to the improvement of the wheelchair behavior
recognition model and the design of supervision that do not require human labor and
are beneficial to estimate sidewalk accessibilities. Employing recent hybrid deep
models (Yao et al. 2017) are prospective to enhance the recognition model. The design
of supervision includes unsupervised representation learning that could be employed
for activity recognition (Ji et al. 2019).
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Abstract. Recognizing fine-grained hand activities has widely attracted
the research community’s attention in recent years. However, rather than
enriched sen-sor-based datasets of whole-body activities, there are lim-
ited data available for acceler-ator-based fine-grained hand activities. In
this paper, we propose a purely convolution-based Generative Adver-
sarial Networks (GAN) approach for data augmentation on accelerator-
based temporal data of fine-grained hand activities. The approach con-
sists of 2D-Convolution discriminator and 2D-Transposed-Convolution
generator that are shown capable of learning the distribution of re-shaped
sensor-based data and generating synthetic instances that well reserve
the cross-axis co-relation. We evaluate the usability of synthetic data
by expanding existing datasets and improving the state-of-the-art classi-
fier’s test accuracy. The in-nature unreadable sensor-based data is inter-
preted by introducing visualization methods including axis-wise heatmap
and model-oriented decision explanation. The experiments show that
our approach can effectively improve the classifier’s test accuracy by
GAN-based data augmentation while well preserving the authenticity of
synthetic data.

Keywords: Activity recognition · Data augmentation · GAN · Deep
learning

1 Introduction

Recent years have witnessed the increasing popularity of Human Activity Recog-
nition (HAR). Since deep learning has shown a strong ability to extract high-
level feature representations from large data distribution, exploring such deep
approaches for sensor-based HAR tasks is prospering around the research com-
munity [7,26]. In the recent decade, deep learning techniques have significantly
optimized HAR tasks with a handful of human-oriented applications [20,28].
c© Springer Nature Singapore Pte Ltd. 2021
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However, modern HAR research often ignores to recognize fine-grained hand
actions from sensor-based signals since these hand activities are often indepen-
dent of body activity. For example, a person can be recognized as peacefully
sitting in a chair (body activity) while playing video games (hand activity). Such
gaps make it hard to distinguish the hand action using sensors on other parts
of the human body. Sensing fine-grained hand activity independent from body
motions can inspire further development on context-awareness devices of health
monitoring and assist in interactive game design. Yet, a very limited number
of works have attempted to build deep-learning-based prototypes in this direc-
tion [9,17]. Therefore, it is still of significant potential to explore sensor-based
hand activity recognition with various deep learning techniques toward building
a more comprehensive and context-sensitive HAR system.

Despite the great success of deep learning, modern deep-learning-based HAR
approaches are encountering significant challenges on data scarcity. In the con-
text of sensor-based hand activity recognition, it is still an undeveloped area
when it comes to solving the data scarcity problem when training deep clas-
sifiers for fine-grained signals of hand activity. Since hand motion data collec-
tion involves human labor and sensor purchasing, the collection process for such
sensor-based signals is increasingly demanding with respect to time and money.
The problem of inaccurate activity measurements also impact the data and
results [25]. Furthermore, recently, the COVID-19 pandemic has made it very dif-
ficult to collect data on human subjects, especially for hand activities that are
fine-grained enough for laboratory standard. Under these circumstances, data
augmentation by real-world collection is difficult and sometimes even infeasible.

In the aim to bridge the aforementioned research gaps, in this paper, we
propose a GAN-based approach to enable data augmentation of sensor-based
hand activity recognition tasks, which improves test accuracy for training state-
of-the-art hand activity classifiers. Our approach well captures the intrinsic cor-
relations between time-series data of three axes in an accelerometer by adopting
two-dimension Convolution Layers. Such approach also better learns multi-scale
features in a single slice of time-series data sample. We train the generation
models on real sensor-based data of 12 separate categories of fine-grained hand
activities and then generate augmented datasets. After that, we re-train the
state-of-the-art hand activity recognition classifiers with the help of our aug-
mented datasets and evaluate the improvements on categorical accuracy. To
further assess the synthetic data, we propose two visual inspection methods to
evaluate the quality of the synthetic data and interpret the decision of hand
activity recognition classifiers.

2 Related Works

2.1 Human Activity Recognition

Traditional non-deep-learning approaches mainly focus on utilizing techniques
of feature extraction, such as time-series signal transformation [13] and hand-
crafted statistical modeling [5]. Effectively capturing distinguishable feature
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representations has therefore been a major challenge in HAR tasks for a long
time. Leading deep-learning-based HAR works have demonstrated the useful-
ness of deep neural networks in HAR [16,28]. Beyond that, some research tries
to introduce ensemble classifiers or multimodal solutions that merge different
channels of sensor data to improve the model training process of some chal-
lenging HAR tasks [14,20]. Following the deep learning trend, HAR begins to
release its potential in many industrial and real-world applications, such as heart
indicator evaluation [4] and accident detection [18].

More specifically, in hand activity recognition, some apply computer vision
approaches to recognize hand postures and motions [9,21]. [17] introduce recog-
nizing specific hand activities by sensor-based data from smartwatches, which is
shown to be an underutilized yet a highly complementary contextual channel for
HAR. Such recognition can have wide use in human-oriented applications like
assisting in the translation of sign languages [24].

More recent HAR works are thoroughly optimized to learn latent represen-
tation of signals and make accurate classification upon that. Nevertheless, there
gradually emerges the problem of annotation scarcity [7] since the data collec-
tion process in HAR is often noise-rich, expensive, and time-consuming. Some
works proposed unsupervised or semi-supervised [6,12] learning towards solving
this problem of data scarcity, but few have adopted the concept of Generative
Adversarial Networks (GANs) which can enlarge the existing datasets with more
low-cost generated samples.

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs), which were first proposed by [11],
have shown a strong ability to generate fake but convincing samples in many
domains. Lots of architecture variants, including DCGANs [22], LAPGANs [8],
and BEGANs [3], have been proposed to support stabilization of the training
process or to improve the generation quality for GANs. Nowadays, GANs are
widely applied in a variety of intelligent tasks, such as image manipulation [31],
texture synthesis [2], and semantic segmentation [30].

Nevertheless, existing generation models of HAR tasks mainly applied Recur-
rent Networks or LSTM [1], which are seemingly competent because these archi-
tectures permit internal updates of time-series state memory. [27] proposed Sen-
soryGAN, a unified structure of GANs that generates accelerator-based HAR
data with a mixture of convolutional and recurrent neurons. Authors transform
tri-variate time series of an accelerometer into an one-dimensional representation
of vector distance. However, their approach solely adopts LSTM structures and
one-dimension Convolutional Neural Networks (1D-CNN), which are unable to
capture the intrinsic cross-axis relationship between the sensor-based data distri-
bution of the three different axes of the accelerometer. In [29], authors proposed
SenseGAN, a semi-supervised framework for leveraging unlabelled sensor-based
data to reduce the negative effect of data scarcity on a classifier’s training pro-
cess. However, their approach lacks visual inspections or quality evaluations on
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generated samples. [15] use GAN to learn and generate more human pose pic-
tures, but their approach is not applicable to sensor-based HAR datasets that
are composed of multi-channel time-series signals. [10,19] address the usage of
LSTM-based GANs on HAR under different scenarios, but these structures are
not competent when we want the generator to learn the cross-axis feature rep-
resentations or correlations among X-Y-Z axes from the accelerometer data.

We can see from existing works that, for now, there still lacks investigation
on GAN-based approaches for generating sensor-based fine-grained hand activi-
ties. Furthermore, the use of convolution-based GAN in HAR is less addressed,
making it incompetent to capture the intrinsic relations among sensor axis.

3 GAN-Based Data Augmentation

In this section, we introduce how we transform the data from temporal sequence
into multi-dimensional tensor and we describe our GAN-based framework for
data augmentation.

3.1 Data Transformation

The accelerator-based hand activity dataset opensourced by [17], whose labels
are shown in Table 1, captures both gross orientation and movement of the hands
which contains bio-acoustic information of hand activities. To be specific, the
original IMU data collected is of 256-unit length recorded by 3-axis accelerome-
ter (X, Y and Z axes) at 4 kHz. Such sampling rate with a buffer of 8192 samples
supports the data processing by Fourier transforms (4096 bins with a 0.5 Hz res-
olution). Since most signals of hand activities are distributed around the lowest
256 FFT bins representing frequencies from 0–128 Hz, these 256 bins are saved
into a 48-frame rolling spectrogram, representing a total 3 s of activity signals.
By this pre-processing, the 1-D accelerometer signals are now stacked as 256
frequency bins × 48 frames × 3 orientations. Since CNN has been shown well
capable on multi-channel vision datasets (Height × Width × RGB Channels),
this up-dimensional transformation enables our CNN-based GAN architecture
to learn cross-axis relationships which are eliminated by other approaches where
three orientation channels are added up to become a one-dimensional sequence.
After this up-dimensional transformation, we can even visualize these signal
samples in RGB mode like pictures as shown in Fig. 1. However, since this visu-
alization is not human-readable, in the following sections we provide several ways
to further evaluate and interpret these samples.

Table 1. Label information of hand activities.

Index Label 0 1 2 3 4 5

Activity Name Brushing Hair Brushing Teeth Chopping Vegetables Clapping Drinking Grating

Index Label 6 7 8 9 10 11

Activity NameHands Still - IdleMoving-Clicking

Mouse

Opening Door Opening Jar Operating

Hand Drill

Petting
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Category 1
Brushing Teeth

Category 4
Drinking

Category 6
Hands Still - Idle

Fig. 1. Visualizing transformed signal instances in RGB mode.

3.2 Architecture Description

Min-Max Optimization. Inspired by [22], we apply a 2D-Convolution-based
GAN structure to generate more synthetic 2D-form hand activity signals to
augment the original dataset. As we show in Eq. 1 which is basically a min-max
optimization process of population risk, the generator G attempts to generate
samples that fool the discriminator D while the latter is updating parameters
to better distinguish between real and fake samples correctly. In the end, the
generator should be able to simulate a distribution that is close enough to the
distribution of real data to beat the discriminator.

min
G

max
D

L(D,G) =

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 −D(G(z)))]
(1)

In Eq. 1, x is the real input sample from original dataset and z is the random
Gaussian noise with a certain starting seed. Our working pipeline is shown in
Algorithm 1.

The Generator. The generator uses Conv2DTranspose-LeakyReLU blocks to
generate the target 2D-format signals by gradually up-sampling from a random
noise. The final generated result is of the size (256, 48, 3). Instead of the theoret-
ical population risk, in practice we let the generator to minimize the empirical
risk LG in Eq. 2.

LG =
1
m

m∑

i=1

log(1 −D(G(zi))) (2)

In the equation above, m denotes for the number of training instances. The
structure of generator is shown in Fig. 2.



Data Augmentation for Hand Activity Recognition 35

Fig. 2. The architecture of our approach’s generator.

Fig. 3. The architecture of our approach’s discriminator.

The Discriminator. The discriminator contains Conv2D-LeakyReLU blocks
such that this convolution-based structure will take in a tensor of the size (256,
48, 3) to classify the input samples as real (prediction of 1) or fake (prediction
of 0). Similar to the generator, in practice we let the discriminator to minimize
the empirical risk LD in Eq. 3.

LD =
1
m

m∑

i=1

logD(xi) + log(1 −D(G(zi))) (3)

The structure of discriminator is shown in Fig. 3. The filter window size of all
convolution layers in both generator and discriminator is (5, 5).

4 Experiments and Analysis

In this section, we generate synthetic data following our proposed approach.
Then we conduct experiments to evaluate the improvement of the classifier’s
test accuracy by training on the augmented dataset (i.e., real+synthetic data).
We also propose several ways of data visualization to visually assess and analyse
the synthetic data of different labels.
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Algorithm 1. Working Pipeline of Our Approach
Input: Real sensor-based signal of hand activity Xhand.
Output: Augmented dataset Xaug.
1: for NGAN epochs do
2: Random Gaussian noise Z = {z0, z1, .., zm};
3: Randomly pick Xreal = {x0, x1, .., xm} from Xhand;
4: Generate synthetic signals Xfake = G(Z);
5: for SD steps do
6: WD ← WD + ∇DLD;
7: end for
8: for SG steps do
9: WG ← WG − ∇GLG ;

10: end for
11: end for
12: New random Gaussian noise Znew;
13: Synthetic data Xgen = G(Znew);
14: Augmented dataset Xaug = Xhand ∪ Xgen;
15: for NClassifier epochs do
16: WClassifier = WClassifier − ∇Lclassifier;
17: end for

4.1 Implementation Details

The training of our GAN and hand classifier baseline (called Hand-12 in Sect. 4.2)
uses a GPU cluster of NVIDIA GeForce RTX 2080 Ti. During the training of gen-
erator and discriminator, we set 200 epochs with the batch size of 256 samples.
The generator and discriminator’s optimizers in our approach are both Adam
with the learning rate of 0.0001. After training, there are multiple generator-
discriminator pairs, each for one category of hand activity. During the training
of Hand-12 DCNN classifier, we set 100 epochs with the batch size of 64 sam-
ples. The optimizer for Hand-12 is Adam with the learning rate of 0.001. In the
generation of synthetic data, we train generators on each category (around 3500
training instances) and generate 4,000 more instances for each category.

4.2 Improving Classifier’s Performance

We refer to the VGG-vriant classifier proposed by [17], namely Hand-24, that
is specifically designed for sensor-based hand activity recognition with a DCNN
structure. To fit our 12-category situation, we deploy a modified version of this
approach, Hand-12, shown in Fig. 4, where the number of neurons in dense layers
are slightly reduced. This reduction yields to an increase in baseline accuracy
from 90.70% to 91.76%. To be specific, we train the Hand-12 on the original
training set (round 1 to round 3 in the dataset), which is a collection of 12
categories of hand activities (y label index 0 to index 11), then we test the
model on the original test set (round 4 in the dataset).
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Table 2. Categorical test accuracy of Hand-12 after training on augmented (12 × 2K).

Activity label All 0 1 2 3 4 5 6 7 8 9 10 11

Test samples 14973 1225 1248 1251 1201 1250 1253 1248 1253 1249 1255 1254 1286

Test accuracy 0.9419 0.9894 0.9583 0.9041 1.0000 1.0000 0.9832 0.9944 0.9162 0.8319 0.8351 1.0000 0.8950

Fig. 4. The architecture of Hand-12.

After obtaining generated activity samples for each category, we mix them
with the original training set to have augmented datasets of different ratios
between real and synthetic data. To evaluate that different amounts of augmen-
tation will have different effects on the training, we train the baseline on the
following settings in which the original training set (44862 instances) is aug-
mented with: 1 category of 2K synthetic data (46862 instances), 12 categories of
1K synthetic data (56862 instances), 12 categories of 2K synthetic data (68862
instances), 12 categories of 4K synthetic data (92862 instances). Table 2 shows
the classification test accuracy on each category of data after we train the base-
line model on augmented training set (68862 instances). The comparison results
of accuracy improvement of every different setting are shown in Fig. 6. We were
able to see that the dataset augmented with 12 categories of 2K synthetic data
(68862 instances) had the highest test accuracy compared to other settings. This
shows that our approach to augment the original training set can help the clas-
sifier to better fit the data distribution and hence perform better on the test
set. Note that the setting of 12 categories of 4K synthetic data (92862 instances)
has a slightly lower test accuracy compared to 12 × 2k. We believe that this is
because, when the augmented part highly outnumbers the original training set,
the classifier may not be able to best fit the original distribution. But despite
the small drop compared to 12 × 2k, the 12 × 4k setting still outperforms the
original setting.
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Fig. 5. Decision explanation by LIME. We can see that instances of the same category
share similar attention regions.

Fig. 6. Overall test accuracy improvements by dataset augmentation.

4.3 Data Visualization

Unlike natural pictures, we cannot simply visualize the samples of size (256, 48,
3) by RGB mode shown in Fig. 1 because there are no observed distinguishable
features. Although it is hard to classify these signal instance by the human eye,
we propose two ways to visualize the samples and enable feature interpretation,
namely Axis-Wise Heatmap and Interpretation with Classifier’s Attention. Due
to the restriction of page limit, we only demonstrate visualizing instances of 3
categories: brushing teeth, drinking, and hand still idle.

Axis-Wise Heatmap. Considering each axis of the instance is a matrix of
floating numbers, we found that heatmap-based visualization of each axis sepa-
rately can enable rough classification by human observation. Shown in Fig. 7 as
a demonstration, we decompose each instance given in Fig. 1 by 3 axis, then we
normalize each matrix (axis of size (256, 48, 1)) and visualize them as heatmaps.
A darker pixel indicates a higher sensor-based value. As we can see, each axis of
the example instance of category 1 is denser and darker at bottom while being
sparse at top of the matrices. Inversely, the instance of category 4 is sparser at
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Category 1 Category 4 Category 6

X Axis Y Axis Z Axis X Axis Y Axis Z Axis X Axis Y Axis Z Axis

Fig. 7. Axis-wise heatmap.

bottom while the pixels are denser at top. Since category 6 is hand still (idle),
we can see that its axis-based heatmaps are repeating similar textures from top
to bottom and it does not show significant differences in the attention masks. It
is therefore distinguishable from the other two category.

Interpretation with Classifier’s Attention. In contrast to axis-separated
evaluations, it is also feasible to analyse the three-dimensional signal instance as
a whole by explaining the predictions of its DCNN classifier. More specifically,
the latent evidence that helps the classifier to classify samples with different
labels can be helpful for sample visualization. To make such latent contribution
distinguishable for human observation, we implement Local Interpretable Model-
agnostic Explanations (LIME) [23] to explain the most contributing features in
the input samples of the augmented dataset for our Hand-12 DCNN classifier.
To the best of our knowledge, we are the first to use such an assessment method
in sensor-based hand activity recognition. Shown in Fig. 5 as a demonstration,
for each category, we take two correctly-classified instances from the original
dataset and three correctly-classified instances from the synthetic dataset, then
we apply LIME to explain the classification of Hand-12. As can be seen, the
instances of the same category share some common features that are masked
by the assessment method. For example, in category 4, although the top areas
are slightly different, all instances’ bottom area are masked as contributing fea-
tures. Moreover, in category 1, although different at the bottom, all instances
have a masked area at the top corner. Lastly, in category 6 hand still (idle), it
can be observed that nearly all areas contribute equally to the prediction since
most areas in the samples are masked. This phenomenon matches our previous
observations in the Axis-Wise Heatmap section. In the heatmap, we can also
distinguish these categories considering that heatmaps of category 1 are denser
at bottom while heatmaps of category 4 are denser at the top.
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5 Discussion and Conclusion

In this paper, we propose a 2D-CNN GAN-based approach for data augmen-
tation on accelerator-based temporal data of fine-grained hand activities. The
GAN structure in our approach, consisting of a 2D-CNN discriminator and a 2D-
Transposed-CNN generator, learns the distribution of sensor-based hand activity
data and generates synthetic instances that well reserve the cross-axis correlation
due to the capability of 2D-CNN layers learning three-channel tensors. To assess
the effectiveness of our synthetic data, we evaluate their usability by expand-
ing existed datasets and improving VGG-variant classifier’s test accuracy. We
also evaluate the synthetic data by introducing several interpretation methods
including axis-wise heatmap and model-oriented explanation. The experiments
show that our approach is able to fit on each category of activity data inves-
tigated and to effectively improve the classifier’s test accuracy by GAN-based
data augmentation.

Moving forward, we will focus on (1) utilizing our approach on sensor-based
data with conditional label information, (2) exploring more efficient deep archi-
tectures for data augmentation and more accurate classifiers for fine-grained
hand activity recognition, and (3) developing more interpretation tools for GAN-
based data augmentation to make sure that such an approach is reliable and
deployable in the real world.
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Abstract. Building activity recognition systems conventionally involves
training a common model from all data of training users and utilizing this
model to recognize activities of unseen subjects. However, participants
come from diverse demographics, so that different users can perform the
same actions in diverse ways. Each subject might exhibit user-specific
signal patterns, yet a group of users may perform activities in simi-
lar manners and share analogous patterns. Leveraging this intuition, we
explore Frechet Inception Distance (FID) as a distribution matching-
based metric to measure the similarity between users. From that, we
propose the nearest-FID-neighbors and the FID-graph clustering tech-
niques to develop user-specific models that are trained with data from
the community the testing user likely belongs to. Verified on a series
of benchmark wearable datasets, the proposed techniques significantly
outperform the model trained with all users.

1 Introduction

Human activity recognition (HAR), which involves identifying the activities per-
formed by people based on data from body-worn sensors, is at the core of wear-
able computing. The conventional approach includes training a model from data
available from all known participants, and subsequently utilizing these data to
predict activities of unseen users. One of the critical observations is that wearable
data inherently involve participants from diverse demographics, such as genders,
ages, weights, heights, lifestyles. Such diversity of activities across participants
necessitates diverse, large-scale data collection which is yet to be realized due to
the high costs.

Subsets of the users in a dataset may comprise a number of communities
whose users are similar to each other (lower intra-community variability), yet dis-
tinct from other communities (higher inter-community variability). Intuitively, a
model trained with data from a user community that is more similar to the target
user may result in improved performance over using all users. To conceptualize
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Fig. 1. A conceptual drawing of the conventional and proposed model training
approaches. (Color figure online)

the idea in Fig. 1, we depict mx and tx representing the known and unknown user
representation spaces respectively. The conventional approach trains the global
model with all known participants datasets, mxs, and draws a yellow decision
region, and as a result, this global model is likely to have prediction failures
for the unknown users out of decision regions, such as t2, t3. On the contrary,
the personal method identifies the community of training users that are most
similar to a testing user and use those data to train personal models to recognize
activities on the test user. The subset models are more likely to capture activity
patterns similar to the target users, and thus contain more compact and effec-
tive decision boundaries, such as red-t1, blue-t2, green-t3 decision boundaries as
conceptually depicted in Fig. 1.

In this work, we explore the Frechet Inception Distance (FID) as a distribu-
tion matching-based metric to measure similarity between the users, where this
FID score has effectively measured the distance between two distributions across
various applications [6,8]. From that, we propose two different approaches that
are nearest-FID-neighbor or graph clustering-FID-based algorithms to detect
multiple subsets where a test user is likely to belong. Evaluated on multiple
human activity benchmark datasets, our models significantly outperform the
global model that naively trains on all users. We also extensively evaluate the
practical scenarios where we can only ask test users to collect a handful amount
of data and show the robustness of the approach even when only a few seconds
of target user data is available. Interestingly, the FID-based community also
aligned with the demographic groups of the users.

2 Related Work

Here we introduce a number of previous works which proposed user-adaptive
models by choosing subsets of participants for model training. Related to the
FID metric, we also discuss a number of measures to calculate a distance between
two distributions.
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2.1 User-Adaptive Models

[20] trained personal models on smartphone datasets and [4] built personalized
models for time-series physiologial patient data, both of which train personal
models from scratch. [14] proposed the personalized Gaussian Process model for
predicting key metrics of Alzheimer’ Disease progression by training on all avail-
able users then gradually fitting personal models to target users. [21] presented
a user-adaptive algorithm for activity recognition based on k-mean clustering to
match test data to clusters of training users. All those works demand extensive
test user data to develop personal models.

Additionally, several related works have utilized personal information to
improve activity recognition models. Employing k-means clustering, [19] clus-
tered users based on surveys, such as ages, ethnicity, and jobs. [12] explicitly
use surveys about users as an additional feature to train personal models. [11]
additionally utilized the GPS location and lifestyle survey to improve the similar-
ity score. Although effective, the previous approaches typically require personal
information of users which might raise have privacy issues.

2.2 Distribution Distance Metrics

Majority of the published works use K-means clustering to group users with
similarity, such as [21] and [19]. The simple similarity metric demands intensive
test user data to compute effective sub-groups to develop personal models. [11]
combines various metrics and measures physical similarity based on the Maha-
lanobis distance, lifestyle similarity based on Euclidean distance on histogram
vectors, and sensor data similarity based on the formula in [15]. However, the
combination of similarity measurement is still based on the personal information.
In this work, we explore the deep-learning-based metric of Frechet Inception Dis-
tance (FID) to measure similarity purely from the sensor data. Developed based
on the Inception model (see [18]) and Frechet distance, this deep-learning-based
metric has been crucial for evaluation and auto-design of Generative Adversarial
Networks (GAN) [6,8].

3 Method

In this article, we apply the DeepConvLSTM model [13] to recognize activities,
leverage the deep-learning-based metric of Frechet Inception Distance (FID) to
measure similarity, and propose two techniques to detect multiple communities
where the test user is likely to belong. First, we briefly introduce FID which
measures perceptual distance between two domain distributions that have the
same set of C classes, P1∼(X1, Y1) and P2∼(X2, Y2). From raw samples, we
first extract high-level feature representations at the output of the last layer
of pretrained deep learning model. For features from each class, we calculate
the mean μ1,c, μ2,c and variance matrices Σ1,c, Σ2,c, and the FID score is then
calculated by summing the Frechet distance between two Gaussian distributions
for all classes:
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FID(1,2) =
C∑

k=c

FID(1,2),c where,

FID(1,2),c = ||μ1 − μ2||2 + Tr
(
Σ1 + Σ2 − 2(Σ1Σ2)1/2

)

We compute FID scores for wearable data by using the pretrained global
model as a feature extractor, which captures general concept of activity task,
and utilize a 128-dimension vector from the last LSTM layer of DeepConvLSTM
models as the feature representation. Subsequently, we calculate the pairwise
user FID scores and utilize those to detect communities.

In this work, we make the reasonable assumption that small labeled samples
from test users are recorded. As in practical scenarios, we first deploy the global
DeepConvLSTM model, and for each new user, we collect a few labeled samples
and adapt the global model into user-specific models by using the FID scores.
Under this assumption, we utilize two algorithms to detect training user com-
munities which the new user belongs to: nearest-neighbors and graph clustering.

Nearest-FID-Neighbor. We calculate the FID score between all training users
and the test user and rank the training users according to FID distances from
those to the test user. The community for the test user is constructed by selecting
1 ≤ k ≤ N nearest neighbors from the training users, where N is the maximum
number of training users. For the special case when k = N , the subset data is
equal to the global data. We then train the user specific model on the selected
nearest-FID-neighbor training user subsets.

FID-Graph Clustering. From a pairwise FID score between all training users,
we generate a graph in which nodes are users and the edge weights are FID scores:
D ∈ R

U×U , where U is the number of training users. To maintain only salient
connections between users, we remove edges with an FID score less than the
median of all FID scores. From the filtered FID-graph, we apply the Girvan-
Newman algorithm [5] to detect meaningful communities with strong connectiv-
ities within the graph. Lastly, we select the community as a training set that has
the lowest FID score between the test user and community. The FID-graph clus-
tering generates communities relative to the other training users, whereas the
nearest-FID-neighbor approach constructs the community in a greedy manner.

4 Experiment

To analyze the effectiveness of our proposed method with various number of par-
ticipants, we conducted experiments on four publicly available datasets: Oppor-
tunity, Daphnet Gait (DG), Wetlab, and Mobiactv2. Recording data from accel-
eration or guesture sensors, the Opportunity, Daphnet Gait, Wetlab, and Mobi-
actv2 datasets consists of 4, 10, 21, and 61 participants, respectively.

Opportunity [3] has 18 gesture activities for 4 participants performing kitchen
routines such as opening and closing doors, dishwashers, and drawers.
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Daphnet Gait dataset [1] includes 10 Parkinson’s disease participants expe-
riencing freezing of gait (FoG) while walking.

Wetlab dataset [17] has 8 activities of conducting biology and chemistry exper-
iments on 22 participants.

Mobiact dataset [2] contains data for 11 activities of daily living and 4 types
of falls recorded from a smartphone‘s inertial sensors. Following [7,16], we utilize
data for the daily living activities – sitting, walking, jogging, jumping, stairs up,
stairs down, stand to sit, sitting on a chair, sit to stand, car step-in, and car
step-out, from 61 participants.

Methods. Following previous work [10], we used 1 s window size for Oppor-
tunity, DG, and Mobiactv2, 5 s window size for Wetlab, and 0.5 s overlap-
ping was used for all datasets. For classification, we utilize the DeepConvL-
STM model [13]. To compensate for label imbalance commonly observed in
human activity datasets, weighted cross-entropy loss is utilized to update net-
work parameters. Class weights are set inversely proportional to the number of
samples in the classes, weights ∝ 1/Ndata, and the mean F1-score is chosen as
the metric to compare performance between models.

To facilitate a fair comparison between different training schemes, we train
the model for 75 epochs when starting with random initial weights. For models
which are finetuned, training is performed only for additional 25 epochs. Those
numbers of epochs are large enough to make sure that the loss remains plateau
10 − 15 epochs before we stop the training. We use the Adam optimizer [9] to
update model weights with a fixed learning rate of 0.001 for all datasets. We
perform a grid search on the weight decay from 1e−1 to 1e−5 and set a decay
rate of 1e−5 for Opportunity, Wetlab, and Mobiactv2 datasets. For the DG
dataset, we set it to 1e−2 in order to avoid overfitting.

Before presenting the results, we define several terms here for clarity. (i)
Global data refers to the samples from all participants except for the test subject;
(ii) Global model is the model trained on the global data; (iii) Global scores are
the mean F1-scores of the global model on the test subjects; (iv) Subset model
is a model trained on the subset participants present in a community.

5 Results

For each test participant, we compute communities of training participants most
similar to the test participant using both the nearest-neighbor and the graph
clustering techniques. In what follows, we analyze the performance of both tech-
niques on the benchmark datasets.

5.1 Nearest-FID-Neighbor

In order to evaluate the performance of the nearest-FID-neighbor approach, we
first utilize all available data from test users and then analyze the impact of
having different amounts of test user data for community detection.
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Fig. 2. Experimental results of the nearest-FID-neighbor models as a function of the
number of nearest neighbors on various datasets. Typically, the nearest-FID-neighbors
subsets with small to medium subset size achieve better performance than the global
models. The peak of F1 scores happens at k = 2 for test user 3 of Opportunity, k = 1−3
for test user 9 of dg, k = 3 − 7 for test user 21 of wetlab, k = 3 − 5 for test user 1 of
mobiactv2 datasets, which demonstrates that the subset models can outperform the
global models.

Impact of Neighbor Size. Figure 2 depicts the F1-score of the nearest-FID-
neighbor subset models for varying k neighbors across datasets. The F1-score
initially improves as we include more nearest FID-neighbors and subsequently
rolls down when more distant users are added to the subsets. This clearly demon-
strates the existence of more optimal training user subsets such that the perfor-
mance is improved over using the entire training set.

Opportunity. Figure 3 compares the F1-score of the subset and global models
for the Opportunity dataset, which contains 4 participants. Over all possible
combinations, we show the best subset results for each test user. When testing
on User 3, the subset model 1 + 4 trained from scratch outperforms the global
model by ∼1.5%. The effect of the training dataset size is also shown when subset
models are fine-tuned with weights from the global model. For both of the Test
Users 1 and 3, subset models outperformed the global models by ∼2.1% and
∼2.9%, respectively, which demonstrating that we can always utilize the global
model to adapt to a test user.

Daphnet Freeze of Gait. The Daphnet Freeze of Gait dataset contains 10
participants, and thereby having more subjects than the Opportunity dataset.
Figure 4 clearly shows that subset model has more flexibility to find more opti-
mal communities when more participants are available, therefore outperforming
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Fig. 3. Subset versus global models for Opportunity dataset (a) trained from scratch
(b) fine-tuned from global weights.

Fig. 4. Subset versus global models for Daphnet Gait dataset. (a) trained from scratch
(b) fine-tuned from global weights.

global models even when trained from scratch. For Test User 1, the subset model
outperforms the global model by ∼21%. Fine-tuning from the global model also
drastically boosts the generalization scores. For example, subset models outper-
form global models by ∼6.5% and ∼24% for test user 3 and 7, respectively.
Running on all test users, the proposed technique improves from the average
of all global scores of 46.7% to the average of all nearest-FID-neighbor subset
scores of 57.4%, demonstrating 10.7% increase on average.

Wetlab. To simplify naming convention, we use 1–22 to annotate the subjects
101–142 in the Wetlab dataset. Thanks to the availability of many training users,
the subset model trained from scratch improves the global scores of 25.4%, 33.1%,
and 30.3% to 31.8%, 40.3%, and 36.8% for test user 19, 20, and 21, respectively,
as shown in Fig. 5). Also, fine-tuning for global model, subset model for test user
20 could further improve to 43.7%. Evaluating for all test users, the average of
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Fig. 5. Subset versus global model for wetlab dataset (a) trained from scratch (b)
fine-tuned from global weights.

Fig. 6. Subset versus global models for mobiactv2 dataset (a) trained from scratch (b)
fine-tuned from global weights.

global scores is 34.6%, while the average of subset scores of 39.5%, demonstrating
4.9% or ×14% improvement for the wetlab dataset.

Mobiactv2. Figure 6 demonstrates the results for the mobiactv2 dataset with
61 participants. Likewise in other datasets, a subset model finetuned from a
global model was more effective than training from scratch. For example, the
proposed technique improves the F1 score for test user 1 from 73.7% to 78.8%.
Fine tunning from global weights for all test users, the average score for subset
models is 84.2%, demonstrating 3.5% boost from the average of 80.7% for global
scores.
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Fig. 7. Subset versus global models for mulitple test users. (a) test sets of wetlab
datasets (b) test sets of Mobiactv2 dataset.

Multiple Users. In previous benchmarks, Wetlab and Mobiactv2 datasets eval-
uated models on the test set consisting of 4 and 13 users, respectively. Shown in
Fig. 7, the proposed algorithm improves the scores for multiple test users in wet-
lab and mobiactv2 from 29.1% to 34.8% and from 82.9% to 86.8%, illustrating
an increase of 5.7% and 3.9%, respectively.

Fig. 8. FID scores (upper) and F1 scores (bottom) versus the varying size of test user
data for dg, wetlab, and mobiactv2 dataset with the Nearest-FID-Neighbor algorithm.

Impact of Test User Data Size. In a realistic scenario, the test user’s data is
not available initially. Although new users can provide a number of annotation
samples, we can only ask them to do so for small set of samples practically.
Therefore, we analyze the subset model performance when different amounts of
test user data is available. We sample p%, where p = 0.5, 1, 2, 4, 8, 16, 32, 100, of
test user dataset for subset detection, such that the class ration of test user is
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preserved in sampled data. From the sub-sampled data, we develop the k nearest-
FID-neighbor subsets with k = 3 − 5 and select the best performing model. For
each p% subsampling, we aggregate results from 500 trials of experiments for
statistical significance. For DG, Wetlab, and Mobiactv2 dataset, the results are
shown in Fig. 8. As expected, the confidence interval decreases with more test
user data for both of FID and F1-score. As p% increases, the FID scores between
the test user and selected community decreases and the F1-score of test user
prediction increases. This intuitively shows that the approach is more likely to
find the correct community when more test user samples are available. More
importantly, as soon as only 0.5% of test user samples are available, the subset
models outperform the global models across all datasets, where 0.5% of test user
samples equals to 15 s for DG and Wetlab and 10 s for Mobiactv2 dataset. This
result is encouraging because asking for less than a minute of data from a new
user can be substantial to detect relevant communities for a test user.

5.2 FID-Graph Clustering

Next, we evaluate the performance of FID-graph clustering approach in a similar
way as the Nearest-FID-Neighbor. For brevity, we will only show the meaningful
results to compare with the Nearest-FID-Neighbor approach.

Graph Community Analysis. In Fig. 9, we depict the FID-based graphs for
test user 21 from Wetlab dataset, and for test user 1 from the mobiactv2 dataset.
We also show the F1-score of all subset models trained from scratch along with
the F1-score of global model. Multiple FID-based community subset models
can outperform the global model for both datasets. For example, the detected
community subsets of 20 + 22, 3, 19 outperform global scores for test user 21
of the wetlab dataset by 6.6%, 7.4%, and 11.2%, respectively. Another example
is that the algorithm improves the generalization score for test user 1 of the
mobiactv2 dataset from 73.7% to 82%, as shown in Fig. 9b.

Impact of Test User Data Size. Similarly from Nearest-FID-Neighbor, we
sample p = 0.5, 1, 2, 4, 8, 16, 32% of test user data, choose the best performing
subset among all detected community, and evaluate the impact on subset models
for DG, Wetlab, and Mobiactv2 datasets. From Fig. 10, the overall trend of FID
and F1-score with respect to p% had an inverse relationship, which is similar to
the case of Nearest-FID-Neighbors. Also, only a small amount 0.5% of test data
was enough to build user-adapted models that outperform global models across
the datasets.

Demographic Interpretation. The differences in activity patterns between
users may come from their demographic differences, such as heights, weights,
ages, genders. In Fig. 11, we analyze if the F1-score spectrum of the community
subsets carry demographic meanings on the Mobiatcv2 dataset that provides
the demographic information of users. The upper spectrum of the community
subsets with the highest generalization scores often indicates the similar demo-
graphic, while the lower spectrum with the lowest F1 scores frequently sug-
gests the opposite demographic, as demonstrated for User 1 of the Mobiactv2
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Fig. 9. FID-graph clustering on (a) wetlab (b) mobiactv2 datasets. Typically, the global
score lies at the middle of the community spectrum.

dataset. Particularly, User 65, which forms the community with the highest F1
score, shared similar demographic characteristics to User 1, both of which are

Fig. 10. FID scores (upper) and F1 scores (bottom) versus the varying size of test user
data for dg, wetlab, and mobiactv2 dataset with the FID-graph clustering.
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Fig. 11. FID-graph clustering on the test user 1 of the mobiactv2 dataset and corre-
sponding demographic information. Similar demographic leads to highest F1 scores,
while opposite demographic results in lowest F1 scores.

male with similar heights (180 m–170 m) and weights (85 kg–100 kg). In addition,
User 5, which represents the community with the lowest F1 score, illustrates
contrasting demographic features compared to User 1, such as Female, shorter
(160 m), lighter (50 kg) weights. This study demonstrates that we might infer
the demographic of a test user by looking at the community spectrum and the
corresponding demographic of the communities.

6 Conclusion

When large-scale datasets are not available, carefully selecting most effective
training data to build activity recognition models can be more beneficial than
naively using the entire datasets to do so. In this work, we proposed algorithms
that can select the training user samples that are relevant to a target based
on the distribution matching metrics, namely FID score. With our approach,
user-adaptive models trained on far less data could be more effective than using
the full training set, indicating that collecting more data with more cost may
not be always the answer to the activity recognition problem. The analysis with
limited test data shows that a few minutes of labeled data from the test user
can be enough to develop effective user-adapted models. Notably, the detected
community that works best for a target user often shared similar demographic
characteristics with this user, which further research might lead to a class of
algorithms that can learn demographic information purely from sensor data.

References
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Abstract. One of the most significant applications in pervasive comput-
ing for modeling user behavior is Human Activity Recognition (HAR).
Such applications necessitate us to characterize insights from multiple
resource-constrained user devices using machine learning techniques for
effective personalized activity monitoring. On-device Federated Learning
proves to be an extremely viable option for distributed and collaborative
machine learning in such scenarios, and is an active area of research. How-
ever, there are a variety of challenges in addressing statistical (non-IID
data) and model heterogeneities across users. In addition, in this paper,
we explore a new challenge of interest – to handle heterogeneities in labels
(activities) across users during federated learning. To this end, we pro-
pose a framework with two different versions for federated label-based
aggregation, which leverage overlapping information gain across activi-
ties – one using Model Distillation Update, and the other using Weighted
α-update. Empirical evaluation on the Heterogeneity Human Activity
Recognition (HHAR) dataset (with four activities for effective eluci-
dation of results) indicates an average deterministic accuracy increase
of at least ∼11.01% with the model distillation update strategy and
∼9.16% with the weighted α-update strategy. We demonstrate the on-
device capabilities of our proposed framework by using Raspberry Pi 2,
a single-board computing platform.

Keywords: Human Activity Recognition · On-device deep learning ·
Federated learning · Heterogeneous labels · Heterogeneous models ·
Knowledge distillation

1 Introduction

Contemporary machine learning, particularly deep learning has led to major
breakthroughs in various domains, such as vision, speech, Internet of Things
(IoT), etc. Particularly, on-device deep learning has spiked up a huge interest in
the research community owing to their automatic feature extraction mechanisms
c© Springer Nature Singapore Pte Ltd. 2021
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and the compute capabilities vested in resource-constrained mobile and wearable
devices. Sensors embedded in such IoT devices have a vast amount of incoming
data which have massive potential to leverage such on-device machine learn-
ing techniques on-the-fly to transform them into meaningful information cou-
pled with supervised, unsupervised and/or other learning mechanisms. Human
Activity Recognition (HAR) in such personalized IoT devices is a technique of
significant importance for our community as it plays a key role in modeling user
behavior across a variety of applications like pervasive health monitoring, fitness
tracking, fall detection, etc. With the ubiquitous proliferation of such person-
alized IoT devices, collaborative and distributed learning is now more possible
than ever to help best utilize the behavioral information learnt from multiple
devices.

However, such collaborative data sharing across devices might always not be
feasible owing to privacy concerns from multiple participants. Users might not
have any interest in sending their private data to a remote server/cloud, par-
ticularly in areas like healthcare. With the advent of Federated Learning (FL)
[1,17], it is now possible to effectively train a global/centralized model without
compromising on sensitive data of various users by enabling the transfer of model
weights and updates from local devices to the cloud, instead of conventionally
transferring the sensitive data to the cloud. A server has the role of coordinat-
ing between models, however most of the work is not performed by a central
entity anymore, but by a federation of clients/devices. The Federated Averag-
ing (FedAvg) algorithm was first proposed by McMahan et al. in [17] which
combines local Stochastic Gradient Descent (SGD) of each client (local device)
with a server that aggregates the model weights. Federated learning has been an
active and challenging area of research in solving problems pertaining to secure
communication protocols, optimization, privacy preserving networks, etc. [14].

Federated Learning deals with various forms of heterogeneities like device,
system, statistical heterogeneities, etc. [14]. Particularly in Federated Learning
with IoT scenarios, statistical heterogeneities have gained much visibility as a
research problem predominantly owing to the non-IID (non-independent and
identically distributed) nature of the vast amounts of streaming real-world data
incoming from distinct distributions across devices. This leads to challenges in
personalized federation of devices, and necessitates us to address various hetero-
geneities in data and learning processes for effective model aggregation.

An important step in this direction is the ability of end-users to have the
choice of architecting their own models, rather than being constrained by the
pre-defined architectures mandated by the global model. One effective way to
circumvent this problem is by leveraging the concept of knowledge distillation
[8], wherein the disparate local models distill their respective knowledge into
various student models which have a common model architecture, thereby effec-
tively incorporating model independence and heterogeneity. This was proposed
by Li et al. in FedMD [13]. However, as much independence and heterogene-
ity in architecting the users’ own models is ensured in their work, they do not
guarantee heterogeneity and independence in labels across users.
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Many such scenarios with heterogeneous labels and models exist in federated
IoT settings, such as behaviour/health monitoring, activity tracking, keyword
spotting, next-word prediction, etc. Few works address handling new labels in
typical machine learning scenarios, however, to the best of our knowledge, there
is no work which addresses this important problem of label and model hetero-
geneities in non-IID federated learning scenarios.

The main scientific contributions in this work are as follows:

– Enabling end-users to build and characterize their own preferred local archi-
tectures in a federated learning scenario for HAR, so that effective transfer
learning and federated aggregation happens between global and local models.

– A framework with two different versions to allow flexible heterogeneous selec-
tion of activity labels by showcasing scenarios with and without overlap across
different user devices, thereby leveraging the information learnt across devices
pertaining to those overlapped activities.

– Empirical demonstration of the framework’s ability to handle real-world dis-
parate data/label distributions (non-IID) on-device independent of users on
a public HAR dataset, capable of running on simple mobile and wearable
devices.

2 Related Work

Deep learning for HAR, particularly inertial/sensor-based HAR measured from
devices like accelerometer, gyroscope, etc. for improving pervasive healthcare
has been an active area of research [7,18]. Particularly, mobile- and wearable-
based deep learning techniques for HAR have proven to be an extremely fruitful
area of research with neural network models being able to efficiently run on such
resource-constrained devices [12,22,23]. Few other challenges with deep learning
for HAR have been explored like handling unlabeled data using semi-supervised
and active learning mechanisms [6,24], domain adaptation [2], few-shot learning
[4], and many more.

Federated Learning has contributed vividly in enabling distributed and col-
lective machine learning across various such devices. Federated learning and
differentially private machine learning have, or soon will emerge to become the
de facto mechanisms for dealing with sensitive data, data protected by Intellec-
tual Property rights, GDPR, etc. [1]. Federated Learning was first introduced
in [17], and new challenges and open problems to be solved [14] and multiple
advancements [9] have been proposed and addressed in many interesting recent
works.

Multiple device and system heterogeneities making them optimization prob-
lems are addressed in [15]. Personalized federated learning closely deals with
optimizing the degree of personalization and contribution from various clients,
thereby enabling effective aggregation as discussed in [3]. Federated learning on
the edge with disparate data distributions – non-IID data, and creating a small
subset of data globally shared between all devices is discussed in [25].
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Fig. 1. Overall architecture with both proposed versions. Each device consists of
disparate sets of local labels and models, and they interact with the global model
(cloud/server). The models in each local device are first updated using one of the two
strategies, the respective class scores are then aggregated in the global model, and the
updated consensus is again distributed across local models.

Particularly for Federated Learning in IoT and pervasive (mobile or wearable)
devices, important problems and research directions on mobile and edge networks
are addressed in this survey [16], while federated optimization for on-device
applications is discussed in [11]. Federated Learning for HAR is addressed in
[20] which deals with activity sensing with a smart service adapter, while [19]
compares between centralized and federated learning approaches.

FedMD [13], which we believe to be our most closest work, deals with het-
erogeneities in model architectures, and addresses this problem using transfer
learning and knowledge distillation [8], and also uses an initial public dataset
across all labels (which can be accessed by any device during federated learning).
Current federated learning approaches predominantly handle same labels across
all the users and do not provide the flexibility to handle unique labels. However,
in many practical applications, having unique labels for each local client/model
is a very viable scenario owing to their dependencies and constraints on specific
regions, demographics, privacy constraints, etc. A version of the proposed work
is discussed for vision tasks in [5]. However, to the best of our knowledge, none
of the works take into account label and model heterogeneities in the context of
HAR.

The rest of the paper is organized as follows. Section 3.1 discusses the problem
formulation of handling heterogeneous labels and models in on-device federated
learning scenarios, and Sect. 3.2 presents the overall proposed framework and
the methods used to address these challenges. Systematic experimentation and
evaluation of the framework across different users, devices, iterations, models,
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activities in a federated learning setting is showcased in Sect. 4, while also proving
feasibility of the same on resource-constrained devices (Sect. 4.2). Finally, Sect.
5 concludes the paper.

3 Our Approach

In this section, we discuss in detail about the problem formulation of hetero-
geneity in labels and models, and our proposed framework to handle the same
(showcased in Figs. 1a and 1b).

3.1 Problem Formulation

We assume the following scenario in federated learning. There are multiple local
devices which can characterize different model architectures based on the end
users. We hypothesize that the incoming data to different devices also consist of
heterogeneities in labels, with either unique or overlapping labels. We also have
a public dataset with the label set consisting of all labels – this can be accessed
by any device anytime, and acts as an initial template of the data and labels that
can stream through, over different iterations. We re-purpose this public dataset
as the test set also, so that consistency is maintained while testing. To make
FL iterations independent from the public dataset, we do not expose the public
dataset during learning (training) to the local models. The research problem
here is to create a unified framework to handle heterogeneous labels, models and
data distributions (non-IID nature) in a federated learning setting.

3.2 Proposed Framework

Our proposed framework to handle heterogeneous labels and models in a fed-
erated learning setting is presented in Algorithm 1. There are three important
steps in our proposed method.

1. Build: In this step, we build the model on the incoming data we have in
each local user, i.e., local private data for the specific iteration. The users can
choose their own model architecture which suits best for the data present in
that iteration.

2. Local Update: In this step, we update the averaged global model scores
(on public data) for the ith iteration on the local private data. For the first
iteration, we do not have any global scores and we initialize the scores to be
zero in this case. For the rest of iterations, we have global averaged scores
which we can use to update the local model scores according to Algorithm 1.
We propose two versions in the local update.
(a) Model Distillation Update, where the local model is distilled based

only on labels corresponding to the local user. Distillation acts a summa-
rization of the information captured from the older models in different
FL iterations.
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Algorithm 1. Our Proposed Framework (with two version choices)
Input: Public Dataset D0{x0, y0}, Private Datasets Di

m, Total users M , Total iter-
ations I, LabelSet lm for each user
Output: Trained Model scores fI

G

Initialize f0
G = 0 (Global Model Scores)

for i = 1 to I do
for m = 1 to M do

Build: Model Di
m and predict fDi

m
(x0)

Local Update:
Choice 1 – Model Distillation Update:
Build a distilled model on only labels corresponding to local user’s model with
global averaged probabilities on public dataset D0. Now, update the model with
the new data Di

m arriving in this iteration.
Choice 2 – Weighted α-update:
fDi

m
(x0) = fI

G(xlm
0 ) + αfDi

m
(x0), where fI

G(xlm
0 ) are the global scores of only

the set of labels lm with the mth user, α =
len(Di

m)

len(D0)

end for
Global Update: Update label wise

f i+1
G =

M∑

m=1

βmfDi
m

(x0), where

β =

{
1 If labels are unique

acc(fDi+1
m

(x0)) if labels are not unique

where acc(fDi+1
m

(x0)) is the accuracy function of the given model, and is defined
by the ratio of correctly classified samples to the total samples for the given local
model

end for

(b) Weighted α-update , where α is the ratio between the size of current
private dataset and the size of public dataset. This parameter governs the
contributions of the new and the old models across different FL iterations.

3. Global update: In this step, we first train the local model on the respective
private datasets for that FL iteration. Further, we evaluate (test) this trained
model on the public data, thereby obtaining the model scores on public data.
We then perform such label-based averaging across all the users using the β
parameter, where β governs the weightage given to unique and overlapping
labels across users using test accuracies of the corresponding labels on public
data (as given in Algorithm 1). This module gives the global averaged scores.

4 Experiments and Results

We simulate a federated learning scenario with multiple iterations of small
chunks of incremental data incoming (details in Table 1), across three different
users to test our approach, and assume that the activities arrive in real-time in
the users’ devices. We use the Heterogeneity Human Activity Recognition dataset
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Table 1. Model Architectures (filters/units in each layer), Labels (Activities) and
Number of Activity Windows per federated learning iteration across user devices. Note
the disparate model architectures and labels across users.

User 1 User 2 User 3 Global User

Architecture 2-Layer

CNN (16,

32) Softmax

Activation

3-Layer CNN

(16, 16, 32)

ReLU

Activation

3-Layer ANN

(16, 16, 32)

ReLU Activation

–

Activities {Sit, Walk} {Walk,

Stand}
{Stand, StairsUp} {Sit, Walk,

Stand, StairsUp}
Activity Windows

per iteration

{2000, 2000}
= 4000

{2000, 2000}
= 4000

{2000, 2000}
= 4000

{2000, 2000, 2000,

2000}
= 8000

[21], which consists of inertial data from four different mobile phones across nine
users performing six daily activities: Biking, Sitting, Standing, Walking, Stairs-
Up, Stairs-Down in heterogeneous conditions.

Data Preprocessing: In this experiment, we perform similar preprocessing
techniques as stated in [22]. As discussed, we use the mobile phone accelerom-
eter data only and not gyroscope, due to the reduction in data size without
substantial accuracy decrease. We initially segment the triaxial accelerometer
data into two-second non-overlapping windows and then perform Decimation to
downsample (normalize) all activity windows to the least sampling frequency (50
Hz). Following this, Discrete Wavelet Transform (DWT) is performed for obtain-
ing temporal and frequency information and we use Approximation coefficients
only, all together is stated to have a substantial decrease in data size.

Now, we discuss the settings for label and model heterogeneities in our exper-
iment.

Label Heterogeneities: In our experiment, we consider only four activities –
{Sit, Walk, Stand, StairsUp} from the dataset as shown in Table 1. Also, we
include the number of activity windows considered per user per iteration (2000
activity windows per iteration). The activities in each local user can either be
unique (present only in that single user) or overlapping across users (present
in more one user). We split the four activities into three pairs of two activities
each, for convenience of showcasing the advantage of overlapping activities in
experimentation. We also create a non-IID environment across different feder-
ated learning iterations wherein, the activity data across different iterations are
split with disparities in both the aforementioned labels and distributions in data
(Statistical Heterogeneities).

Model Heterogeneities: We choose three different model architectures (CNNs
and ANNs) for the three different local users. This is clearly elucidated in
Table 1. We also use a simple two-layer ANN model with (8, 16) filters as the
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Table 2. Details of Model Architectures (filters/units in each layers) changed across
federated learning iterations and users.

Iteration New model architecture

User 1 Iteration 10 3-Layer ANN

(16, 16, 32)

ReLU Activation

User 1 Iteration 14 1-Layer CNN

(16)

Softmax Activation

User 2 Iteration 6 3-Layer CNN

(16, 16, 32)

Softmax activation

User 3 Iteration 5 4-Layer CNN

(8, 16, 16, 32)

Softmax activation

distilled student architecture. To truly showcase near-real-time heterogeneity and
model independence, we induce a change in the model architectures across and
within various FL iterations as shown in Table 2.

Initially, we divide the activity windows across the three different users
according to the four activity labels. We create a Public Dataset (D0) with
8000 activity windows, with 2000 activity windows corresponding to each activ-
ity. Next, we sample 2000 activity windows in every iteration for each label of a
user (as shown in Table 1). In total, we ran 15 federated learning iterations in
this whole experiment, with each iteration running with early stopping (with a
maximum 5 epochs). We track the loss using categorical cross-entropy loss func-
tion for multi-class classification, and use the Adam optimizer [10] to optimize
the classification loss. We simulate all our experiments – both federated learning
and inference on a Raspberry Pi 2.

Table 3. Average Accuracies (%) of Local and Global Updates, and their respective
Accuracy increase with Model Distillation Update and Weighted α-update.

Model Distillation Weighted α-update

Local Update Global Update Increase Local Update Global Update Increase

User 1 68.38 77.61 9.23 66.98 74.29 7.31

User 2 70.82 84.4 13.58 68.88 81.9 13.02

User 3 77.68 87.9 10.22 76.57 83.7 7.13

Average 72.293 83.303 11.01 70.81 79.963 9.153
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Fig. 2. Iterations vs Accuracy across all three users with Model Distillation Update
(MD) and Weighted α-update. Local Update signifies the accuracy of each local updated
model (after ith iteration) on Public Dataset. Global Update signifies the accuracy of the
corresponding global updated model (averaged across all the users after ith iteration)
on Public Dataset.

4.1 Discussion on Results

Figure 2 represents the results across all three users for both proposed versions of
our framework on the HHAR dataset. Also, from Table 3, we can clearly observe
that the global updates – which represent the accuracy of the global updated
model (and averaged across all users’ labels in the ith iteration governed by β),
are higher for all three users than the accuracies of their respective local updates.
For instance, from Figs. 2a and 2d, we can infer that the corresponding accuracies
of labels {Sit, Walk} (User 1 labels) after global updates in each iteration are
deterministically higher than their respective local updates by an average of
∼9.23% and ∼7.31% across all iterations with model distillation and α-update
versions respectively. Similarly for User 2 labels consisting of {Walk, Stand}, we
observe an average accuracy increase of ∼13.58% and ∼13.02% respectively from
local updates to the global updates, while for User 3 labels consisting of {Stand,
StairsUp}, we observe an average increase of ∼10.22% and ∼7.13% respectively
from local updates to global updates in model distillation and α-update versions.

We would like to particularly point out that the overlap in activities sig-
nificantly contributes to highest increase in accuracies, since information gain
(weighted global update) happens only for overlapping labels. This is vividly
visible in User 2 (Fig. 2b and Fig. 2e), whose labels are {Walk, Stand}), where,
in spite of an accuracy dip in local update at FL iterations 5 and 12, the global
update at those iterations do not take a spike down which can be primarily
attributed to the information gain from overlapping activity labels between User
1 and User 3 (in this case, Walk and Stand respectively), thereby showcasing
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the robustness of overlapping label information gain in User 2. On the contrary,
when we observe User 3 (Fig. 2c and Fig. 2f), in spite of the accuracies of global
updates being inherently better than local updates, when a dip in accuracies
of local updates are observed at iterations 5 and 8, the accuracies of global
updates at those iterations also spike down in a similar fashion. Similar trends
of local and global accuracy trends like those observed in User 3 can also be
observed in User 1 (Fig. 2a and Fig. 2d). This clearly shows that when there
are lesser overlapping activity labels (User 1 and User 3), the global model does
not learn the activities’ characteristics much, while the global updates are more
robust in spite of spikes and dips in local updates with such overlapping labels
(User 2), thereby leading to higher average increase in accuracies (as observed in
Table 3).

Fig. 3. Iterations vs Final Global Average Accuracies (%) with Model Distillation
Update and Weighted α-update

Overall average deterministic (not relative) increase in accuracies of ∼11.01%
and ∼9.153% are observed respectively with the model distillation and α-update
versions on the HHAR dataset, which are calculated from the global model
updates (Table 3). The overall global model accuracies averaged across all users
after each iteration (which is different from global update accuracies after each
iteration observed in Fig. 2) are also elucidated in Fig. 3. We can observe that
the distillation version performs better than the α-update version with a ∼3.21%
deterministic accuracy increase. With our current framework, communication
(transfer) of just the model scores of respective activity labels between clients
(local devices) and the central cloud is performed, without necessitating transfer
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of the entire model weights, which significantly reduces latency and memory
overheads.

4.2 On-Device Performance

We observe the on-device performance of our proposed framework by exper-
imenting on a Raspberry Pi 2. We choose this single-board computing plat-
form since it has similar hardware and software (HW/SW) specifications with
that of predominant contemporary IoT/mobile devices. The computation times
taken for execution of on-device federated learning and inference are reported in
Table 4. This clearly shows the feasibility of our proposed system on embedded
devices. Also, the distillation mechanism accounts for higher computation over-
heads in time on edge/mobile devices, and depend on the temperature parame-
ters (default set at 1) and the distilled student model architecture chosen. The
end-user can typically make the trade-off of choosing the local distillation version
or the α-update version depending on their compute capabilities and accuracy
requirements.

Table 4. Time taken for Execution

Process Computation time

Training time per epoch in an FL iteration (i) ∼1.8 s

Inference time ∼16 ms

Discrete Wavelet Transform ∼0.45 ms

Decimation ∼4.6 ms

5 Conclusion

This paper presents a unified framework for flexibly handling heterogeneous
labels and model architectures in federated learning for Human Activity Recog-
nition (HAR). By leveraging transfer learning along with simple scenario changes
in the federated learning setting, we propose a framework with two versions –
Model Distillation Update and Weighted α-update aggregation in local models,
and we are able to leverage the effectiveness of global model updates with activity
label based averaging across all devices and obtain higher efficiencies. Moreover,
overlapping activities are found to make our framework robust, and also helps
in effective accuracy increase. We also experiment by sending only model scores
rather than model weights from user device to server, which reduces latency and
memory overheads multifold. We empirically showcase the successful feasibility
of our framework on-device, for federated learning/training across different iter-
ations on the widely used HHAR dataset. We expect a good amount of research
focus hereon in handling statistical, model and label based heterogeneities for
HAR and other pervasive sensing tasks.
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7. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models
for human activity recognition using wearables. In: Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, pp.
1533–1540. AAAI Press (2016)

8. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS Deep Learning and Representation Learning Workshop (2015)

9. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv
preprint arXiv:1912.04977 (2019)

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)
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Abstract. The task of action recognition in dark videos is useful in var-
ious scenarios, e.g., night surveillance and self-driving at night. Though
progress has been made in action recognition task for videos in nor-
mal illumination, few have studied action recognition in the dark, partly
due to the lack of sufficient datasets for such a task. In this paper, we
explored the task of action recognition in dark videos. We bridge the gap
of the lack of data by collecting a new dataset: the Action Recognition in
the Dark (ARID) dataset. It consists of 3,784 video clips with 11 action
categories. To the best of our knowledge, it is the first dataset focused
on human actions in dark videos. To gain further understanding of our
ARID dataset, we analyze our dataset in detail and showed its necessity
over synthetic dark videos. Additionally, we benchmark the performance
of current action recognition models on our dataset and explored poten-
tial methods for increasing their performances. We show that current
action recognition models and frame enhancement methods may not be
effective solutions for the task of action recognition in dark videos (data
available at https://xuyu0010.github.io/arid).

Keywords: Action recognition · Dark videos · Convolution neural
network · Benchmark

1 Introduction

Thanks to the increasing application of automatic action recognition in various
fields, such as surveillance [24] and smart homes [20], action recognition tasks
have received considerable attention in recent years. Although much progress
has been made, current research mostly focused on videos shot under normal
illumination. This is partly because current datasets for action recognition are
normally collected from web videos shot mostly under normal illumination. Yet
videos shot in the dark are useful in many cases, such as night surveillance, and
self-driving at night. Additional sensors, such as infrared or thermal imaging
sensors, could be utilized for recognizing actions in the dark. However, such
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sensors are of high cost and cannot be deployed on a large scale. Hence we
focus on action recognition in the dark without additional sensors. To this end,
we collected a new dataset: Action Recognition In the Dark (ARID) dataset,
dedicated to the task of action recognition in dark videos. To the best of our
knowledge, it is the first dataset focusing on human actions in the dark.

Currently, there already exist a large number of videos in various datasets,
shot under normal illumination. It is intuitive to make use of these videos by cre-
ating synthetic dark videos based on them. In this paper, we prove the necessity
of a dataset with real dark videos through a detailed analysis and comparison
with synthetic dark videos. We observe distinct characteristics of real dark videos
that cannot be replicated by synthetic dark videos.

Recently, neural networks, especially the convolutional neural network (CNN)
based solutions have proven to be effective for various computer vision tasks.
For action recognition, state-of-the-art results on previous action recognition
datasets are mostly achieved through 3D-CNN based networks. To gain further
understanding of the challenges faced with action recognition in dark videos, we
analyze how dark videos affect current action recognition models. Additionally,
we explore potential solutions for substantial improvements in action recognition
accuracy utilizing current models.

In summary, we explored the task of action recognition in dark videos. The
contribution of this work is threefold: 1) we propose a new ARID dataset, dedi-
cated to the task of recognizing actions in dark videos; 2) we verify the impor-
tance of our ARID dataset through statistical and visual analysis and compar-
ison with synthetic dark videos; 3) we benchmark the performance of current
3D-CNN based action recognition models on our dataset while exploring poten-
tial methods to improve accuracy with current models, and reveals challenges in
the task of action recognition in dark videos.

2 Related Works

Action Recognition Datasets. There are several benchmark datasets in the
action recognition domain. Earlier datasets, such as KTH [14] and Weizmann [4],
contain relatively small number of action classes. With the rapidly increased
performance of proposed methods on these smaller datasets, larger and more
challenging datasets are introduced. This includes HMDB51 [10], UCF101 [15]
and Kinetics [1]. Particularly, the Kinetics dataset, with 400 action classes and
more than 160,000 clips in total, becomes the primary choice. Though these
datasets involve an abundant scale of actions, these actions are mostly collected
from web videos, mostly recorded under normal illumination. Hence, to study
the action recognition performance in dark videos, we collected a new video
dataset dedicated to videos shot in the dark.

Dark Visual Datasets. Recently, there has been a rise of research interest
with regards to computer vision tasks in the dark environment, such as face
recognition in the dark. The research for dark environment visual tasks is partly
supported by the various dark visual datasets introduced. Among these, most
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datasets focused on image enhancement and denoising tasks, where the goal is to
visually enhance dark images for a clearer view. These include LOL Dataset [19]
and SID [3]. More recently, such an enhancement task has been expanded to
the video domain. New datasets include DRV [2] and SMOID [8]. Although
both datasets contain dark videos, their focus is more towards enhancing the
visibility of video frames. The scenes are randomly shot and may not include
specific human actions. In contrast, our ARID dataset focuses on classifying
different human actions in dark videos.

3 Action Recognition in the Dark Dataset

Although a small amount of videos taken in the dark do exist in current action
recognition datasets, such as Kinetics and HMDB51, the task of human action
recognition in dark environment has rarely been studied. This is partly due to
the very low proportion of dark videos in current benchmark datasets, and a lack
of datasets dedicated to action analysis in the dark. To bridge the gap in the lack
of dark video data, we introduce a new Action Recognition In the Dark (ARID)
dataset. In this session, we take an overview of the dataset in three perspectives:
the action classes, the process of data collection as well as some basic statistics
of our ARID dataset.

Action Classes. The ARID dataset includes a total of 11 common human action
classes. The list of action classes can be categorized into two types: Singular Per-
son Actions, which includes jumping, running, turning, walking and waving; and
Person Actions with Objects, which includes drinking, picking, pouring, pushing,
sitting and standing. Figure 1 shows the sample frames for each of the 11 action
classes in the ARID dataset.

Drinking Jumping Picking Pouring Pushing Running

Sitting Standing Turning Walking Waving

Fig. 1. Sample frames for each of the 11 action classes of the ARID dataset. All samples
are manually tuned brighter for display purposes. Best viewed in color and zoomed in.
(Color figure online)
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Data Collection. The video clips in the ARID dataset are collected using 3
different commercial cameras. The clips are shot strictly during night hours. All
clips are collected from a total of 11 volunteers, among which 8 males and 3
females. We collected the clips in 9 outdoor scenes and 9 indoor scenes, such
as carparks, corridors and playing fields for outdoor scenes, and classrooms and
laboratories for indoor scenes. The lighting condition of each scene is different,
with no direct light shot on the actor in almost all videos. In many cases, it is
challenging even for the naked eye to recognize the human action without tuning
the raw video clips.

0
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Fig. 2. The distribution of clips among all action classes in ARID. The dark grey and
light grey bars indicate the number of clips in the train and test partitions.

Basic Statistics. The ARID dataset contains a total of 3,784 video clips, with
each class containing at least 110 clips. The clips of a single action class are
divided into 12–18 groups with each group containing no less than 7 clips. The
clips in the same group share some similar features, such as being shot under
similar lighting conditions or shot with the same actor. Figure 2 shows the num-
ber of distribution of clips among all the classes. The training and testing sets
are partitioned by splitting the clip groups, with a ratio of 7:3. We selected three
train/test splits, such that each group would have an equal chance to be present
in either the train partition or the test partition.

The video clips are fixed to a frame rate of 30 FPS with a resolution of
320 × 240. The minimum clip length is 1.2 s with 36 frames, and the duration
of the whole dataset is 8,721 s. The videos are saved in .avi format and are
compressed using the DivX codec.
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4 Experiments and Discussions

In this section, we gain further understanding of our proposed dataset through
a detailed analysis of the ARID dataset. The main objectives are twofold: 1)
validate the necessity of a video dataset collected in the real dark environment
and 2) provide a benchmark for current action recognition datasets while reveal-
ing the challenges with regards to the task of action recognition in dark videos.
In the following, we first introduce the experiment settings along with the con-
struction of a synthetic dark video dataset. We then introduce methods used to
enhance dark video frames in ARID in an effort to improve action recognition
accuracy. We then analyze our ARID dataset in detail through three perspec-
tives: statistical and visual analysis of ARID, analysis of ARID classification
result and visualization of extracted features from ARID.

4.1 Experimental Settings

To obtain the action recognition results on our ARID dataset, we utilize 3D-
CNN based models on PyTorch [12]. For all experiments, the inputs to our 3D-
CNN based models are sequences of 16 sampled frames with each frame resized
to 224 × 224. To accelerate training, we utilize the pretrained 3D-CNN based
models pretrained on the Kinetics dataset when available. Due to the constraint
in computation power, a batch size of 16 is applied to all experiments. The
action recognition results are reported as the average top-1 and average top-5
accuracies of the three splits.

Compared to collecting a new dataset for the dark environment, it is more
intuitive to synthesize dark videos through current video datasets which mainly
consist of videos shot under normal illumination. To showcase the necessity of a
real dark video dataset, we compare the synthetic dark video dataset with our
ARID. The synthetic dark video dataset is constructed based on the HMDB51,
denoted as HMDB51-dark. We synthesize dark videos by gamma intensity cor-
rection formulated as:

D(t, x, y) = I(t, x, y)(1/γ) (1)

where D(t, x, y) is the value of the pixel in the synthetic dark video, located at
spatial location (x, y) at the tth frame, and I(t, x, y) is the pixel value of the
corresponding pixel in the original video. Both D(t, x, y) and I(t, x, y) are in the
range of [0, 1]. γ is the parameter that controls the degree of darkness in the
synthetic dark video, typically in the range of [0.1, 10], where a smaller number
would result in lower pixel values, producing darker synthetic videos.

We note that the dark videos collected in our ARID are shot under differ-
ent illumination conditions. To mimic the differences in illumination, we apply
different γ values when synthesizing dark videos. More specifically, the γ value
is obtained randomly from a normal distribution N (μ, σ2) with the constraint
of γ ≥ 0.1. Here the mean μ is set to 0.2 and the standard deviation σ is set to
0.07. Figure 3 shows the comparison of sample frames of videos from the original
HMDB51 dataset with the sample frames from the corresponding synthetic dark
videos.
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Fig. 3. Comparison of a sample frame of normal illumination taken from the video
in the HMDB51 dataset (left) and the corresponding frame taken from the synthetic
dark video from our HMDB51-dark dataset (right). The frame in the original HMDB51
video has more details, including the background and a clearer contour of the actor.
Best viewed in color. (Color figure online)

4.2 Frame Enhancement Methods

For humans to better recognize actions in dark videos, an intuitive method is to
enhance each dark video frame. In this paper, we investigate the effect of applying
different frame enhancement methods on ARID towards current action recogni-
tion models. We applied five frame enhancement methods: Histogram Equaliza-
tion (HE) [16], Gamma Intensity Correction (GIC), LIME [5], BIMEF [21]
and KinD [22]. Among them, HE and GIC are traditional image enhancement
methods. HE produces higher contrast images, whereas GIC is used to adjust
the luminance of images. Both LIME and BIMEF are based on the Retinex
theory [11], which assumes that images are composed of reflection and illumi-
nation. LIME estimates the illumination map of dark images while imposing a
structure prior to the initial illumination map, while BIMEF proposes a multi-
exposure fusion algorithm. KinD is a deep neural network-based method utiliz-
ing a two-stream structure for reflectance restoration and illumination adjust-
ment. The KinD is implemented with weights pretrained on the LOL Dataset.
The result of applying the above methods to the ARID dataset are denoted as
ARID-HE, ARID-GIC, ARID-LIME, ARID-BIMEF, and ARID-KinD respec-
tively. The GIC is also applied to the synthetic dark dataset HMDB51-dark,
whose result is denoted as HMDB51-dark-GIC.

4.3 Statistical and Visual Analysis of ARID

To better understand real dark videos and understand the necessity of real
dark videos, we compute and compare the statistics of the ARID dataset with
the HMDB51 dataset as well as the synthetic HMDB51-dark dataset. Table 1
presents the detailed mean value and standard deviation value of datasets ARID,
ARID-GIC, HMDB51, HMDB51-dark and HMDB51-dark-GIC respectively. The
gamma values γ for both ARID-GIC and HMDB51-dark-GIC are both set to 5.

The mean and standard deviation values of ARID as shown in Table 1 depict
the characteristics of videos in our ARID dataset. Compared to the original
HMDB51, the RGB mean and standard deviation values of the ARID dataset
are both lower than that of the HMDB51 dataset. This indicates that video
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Table 1. RGB mean and standard deviation values of various datasets, including ARID
and its GIC enhanced output ARID-GIC, HMDB51 and the synthetic dark dataset
HMDB51-dark, as well as the GIC enhanced output of the synthetic dart dataset,
HMDB51-dark-GIC. All values are normalized to the range of [0.0. 1.0].

Dataset RGB mean values RGB standard deviations

ARID [0.0796, 0.0739, 0.0725] [0.1005, 0.0971, 0.0899]

ARID-GIC [0.5473, 0.5418, 0.5391] [0.1101, 0.1102, 0.1022]

HMDB51 [0.4248, 0.4082, 0.3676] [0.2695, 0.2724, 0.2779]

HMDB51-dark [0.0979, 0.0884, 0.0818] [0.1836, 0.1840, 0.1789]

HMDB51-dark-GIC [0.4904, 0.4816, 0.4588] [0.3593, 0.3600, 0.3486]

frames in ARID are lower in brightness and contrast compared to video frames
in HMDB51. This is further justified by the sampled frames and their RGB and
Y histograms comparison between ARID and HMDB51 datasets, as shown in
Fig. 4(a) and (c). The lower brightness and lower contrast for video frames in
ARID make it challenging even for the human naked eye to identify the actions.

We observe that our real dark dataset ARID and the synthetic dark dataset
HMDB51-dark are very similar in terms of the RGB mean values. This in part,
shows that our synthesized operation mimics the real dark environment well.
However, further comparison in terms of RGB standard deviation values indi-
cates that the real dark dataset ARID is still lower in contrast. This matches the
observation of comparison between the sampled frames of ARID and HMDB51-
dark, as shown in Fig. 4(a) and (d). Here we observe that videos from HMDB51-
dark would visually be more distinguishable. We argue that this is due to the
fact that bright pixels in the original HMDB51 dataset, whose corresponding
output pixels in the synthetic dark videos have higher pixel values. This raises
both the standard deviation of HMDB51-dark, which in terms is reflected as
frames with higher contrast.

As mentioned in Sect. 4.2, the GIC method could enhance frames by adjust-
ing the luminance of the frames. By setting γ ≥ 1.0, the resulting pixel value
after applying the GIC method should be larger than the input pixel value.
This is justified by the larger RGB mean values of ARID-GIC and HMDB51-
dark-GIC compared to ARID and HMDB51-dark datasets. Sampled frames as
shown in Fig. 4(a) and (b) also justifies that GIC enhancement greatly increases
the visibility of each video frame. The person seen running can not be clearly
observed by the naked eye in Fig. 4(a), whereas the person becomes more visible
in Fig. 4(b).

Though the comparison of sampled frames across Fig. 4(a)(b) and (d)(e)
shows the effectiveness of GIC enhancement in increasing luminance of dark
videos, there is still a significant difference between ARID-GIC and HMDB51-
dark-GIC. The most significant difference is that standard deviation of ARID-
GIC is much smaller than that of HMDB51-dark-GIC. This indicates that videos
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Fig. 4. Comparison of sampled frames and the RGB (middle column) and Y (right col-
umn) value histograms of their corresponding videos from (a) ARID, (b) ARID-GIC, (c)
HMDB51, (d) HMDB51-dark and (d) HMDB51-dark-GIC datasets. GIC enhancement
shifts the RGB and Y value histograms towards the larger values, indicating brighter
video frames. The RGB and Y values of ARID and ARID-GIC are more concentrated
than that of HMDB51-dark and HMDB51-dark-GIC respectively, which matches the
low contrast and pale sampled images. The peaks of the RGB histogram at the higher
values of the HMDB51-dark video comes from the bright background. Best viewed in
color and zoomed in. (Color figure online)

in ARID-GIC are still low in contrast after the GIC enhancement. This is jus-
tified by comparing the sampled frames as shown in Fig. 4(b) and (e), where we
observe that the sampled frame from ARID-GIC looks pale as compared to that
from HMDB51-dark-GIC.
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From the above observation, we can summarize the main characteristic of the
real dark videos collected in our ARID dataset: low brightness and low contrast.
Though the character of low brightness could be mimicked by the synthetic dark
videos, the characteristic of low contrast cannot be easily mimicked by synthetic
dark videos. This is partly due to the bright backgrounds and pixels commonly
existing in videos shot under normal illumination. The above analysis confirms
that real dark videos are irreplaceable for the task of action recognition in a dark
environment.

4.4 Classification Results on ARID

In this section, we illustrate how current action recognition models perform in
the task of action recognition in the dark on our ARID dataset. We further
explore potential ways to improve the performance of action recognition in real
dark videos, and reveal some challenges faced with action recognition in dark
videos. The performance of current competitive 3D-CNN-based action recogni-
tion models are presented in Table 2, which includes: C3D [17], 3D-ShuffleNet [9],
3D-SqueezeNet [7], 3D-ResNet-18 [18], Pseudo-3D-199 [13], Res50-I3D [1] and
3D-ResNext-101 [6].

Table 2. Performance of current 3D-CNN-based action recognition models on the
ARID dataset.

Method Top-1 accuracy Top-5 accuracy

C3D 39.17% 94.17%

3D-ShuffleNet 44.35% 93.44%

3D-SqueezeNet 50.18% 94.17%

3D-ResNet-18 54.68% 96.60%

Pseudo-3D-199 71.93% 98.66%

Res50-I3D 73.39% 97.21%

3D-ResNext-101 74.73% 98.54%

The performance results as shown in Table 2 show that among the current
action recognition models, 3D-ResNext-101 performs the best with a top-1 accu-
racy of 74.73%. We notice that the top-5 accuracy is relatively high for all meth-
ods, which is partly because of the small number of classes in our dataset.

We also notice that though our dataset is of relatively small size and has
fewer classes than current normal illumination video datasets, there is plenty
of room for improvement in accuracy. To explore potential ways for further
improving accuracy for dark videos, we choose 3D-ResNext-101 as the base-
line for experiments. An intuitive method for improving accuracy is the use of
frame enhancement methods as introduced in Sect. 4.2. To test whether frame
enhancement methods could improve accuracy, we employ GIC method on the
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synthetic HMDB51-dark dataset due to its larger data size and ease of obtain-
ing dark data from the current datasets. The performance of 3D-ResNext-101
on the synthetic dataset HMDB51-dark and its corresponding GIC enhanced
HMDB51-dark-GIC is illustrated in Table 3.

Table 3. Performance of 3D-ResNext-101 on the synthetic HMDB51-dark and its GIC
enhanced HMDB51-dark-GIC. The performance of 3D-ResNext-101 on the original
HMDB51 is presented for reference.

Dataset Top-1 accuracy

HMDB51-dark 44.90%

HMDB51-dark-GIC 56.62%

HMDB51 63.80%

The results as presented in Table 3 show a sharp decrease in classification
accuracy when the same network is utilized for the dark data. The decrease is
expected, given that dark videos contain fewer details as shown in Fig. 3. Besides
this, we also notice a significant increase of 11.72% in accuracy when the GIC
method is applied to enhance the dark video frames. As the synthetic data is
darkened with random gamma values while the GIC enhancement utilizes a fixed
gamma value, it is nearly impossible to recover the original videos. Despite this,
the GIC operation still brings a significant amount of accuracy improvement.

The success in applying frame enhancement methods for increasing classifica-
tion accuracy in synthetic dark videos give us a hint on potential ways to improve
accuracy for action recognition in real dark videos. To justify if the same GIC
method could also improve action recognition accuracy on our ARID dataset, we
perform experiments on the GIC enhanced ARID dataset: ARID-GIC, utilizing
3D-ResNext-101. The result is as presented in Table 4.

Table 4. Performance of 3D-ResNext-101 on variants of ARID enhanced by HE, GIC,
LIME, BIMEF and KinD. The Improvement is compared with the performance of
3D-ResNext-101 on the original ARID dataset.

Dataset Top-1 accuracy Improvement

ARID-GIC 78.03% 3.30%

ARID-HE 75.82% 1.09%

ARID-LIME 77.40% 2.67%

ARID-BIMEF 73.39% −1.34%

ARID-KinD 69.62% −5.11%

ARID 74.73% /

The results in Table 4 illustrate that the action recognition accuracy of our
ARID would improve through GIC enhancement, thanks to the increase in the
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illumination of each video frame as presented in Fig. 4. The increase in accu-
racy is consistent with the findings with regards to the synthetic dark dataset
HMDB51-dark. However, we also notice that the improvement of performance by
using GIC is only 3.3%, which is rather limited compared to the improvement in
the synthetic dark dataset. As GIC method is a method based on simple expo-
nential calculation, we further examine if more sophisticated frame enhancement
methods could further improve action recognition accuracy. We thus examine the
accuracy on datasets ARID-HE, ARID-LIME, ARID-BIMEF and ARID-KinD,
which are results of the output by frame enhancement methods HE, LIME,
BIMEF and KinD respectively. The results are also presented in Table 4.

Interestingly, Table 4 illustrates that not all frame enhancement methods
result in improvements in action recognition accuracy in dark videos. Of all
the frame enhancement methods, the largest improvement is achieved by the
GIC method. Whereas the accuracy drops the most utilizing the recent deep
learning-based method KinD. To gain a better understanding of the differences
between the outcome of utilizing the different enhancement methods, we visualize
the frame output of each enhancement method. Figure 5 presents the sampled
frames of the output of the above enhancement methods with the same input
ARID video frame.

Fig. 5. Comparison of the sampled frames and their RGB histograms from (a) ARID,
(b) ARID-GIC, (c) ARID-HE, (d) ARID-LIME, (e) ARID-BIMEF and (f) ARID-KinD.

Figure 5 clearly shows that visually, the outputs of all frame enhancement
methods improve the visibility of the video. The actor who is running can be
seen clearly in all sampled frames except the sample frame from the original video
in ARID. However, the sampled frame of ARID-GIC does not appear to be the
best enhancement visually, as it is still low in contrast. In comparison, all other
methods produce higher contrast images, as justified by the RGB histograms in
Fig. 5. This indicates that current frame enhancement which clearly improves
dark video frames visually may not bring improvement in action recognition
accuracy for dark videos. We argue that some enhancement can be regarded as
artifact or adversarial attack for videos. Though enhanced frames are clearer
visually, some enhancements break the original distribution of videos and intro-
duce noise. The change in distribution and introduction of noise could lead to a
decrease in performance for action recognition models.
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4.5 Feature Visualization with ARID

To further understand the performance of current action recognition models
on ARID and analyze the effect of dark videos on current models, we extract
and visualize features at the last convolution layer using 3D-ResNext-101. The
visualization of features are presented as Class Activation Maps (CAM) [23],
which depicts the focus of the model with respect to the given prediction. Figure 6
and Fig. 7 compare the sampled frames from the ARID and HMDB51 datasets,
with the corresponding CAM s. We observe that for the frames in HMDB51
with normal illumination as shown in Fig. 6, the 3D-ResNext-101 model is able
to focus on the actors, whereas for the dark video, the model focuses more on
the background. For example, for the action shown in Fig. 7(a)(left), the network
classifies the action as action “Jumping” by focusing on the background whose
details are uncovered due to the person jumping backward. Therefore the CAM
shows that the network focuses on a narrow beam in the background. The focus
on the background instead of the actor could be partly due to the fact that clear
outlines of actors rarely exist in dark videos.

Fig. 6. CAM s of sampled frames from 3 classes of HMDB51: Jumping (left), Running
(mid) and Standing (right).

In Table 4, certain frame enhancement methods could positively affect the
final classification accuracy. To gain further understanding of how the different
frame enhancement methods actually affect the action recognition models, we
compare the CAM s with respect to the same sampled frame from the five frame
enhanced ARID datasets as shown in Fig. 7. Compared with the original video
frame, the outline of the actor is much clearer in all enhanced frames. We observe
that the focus area of the network is more concentrated compared with CAM
of the original frame. Additionally, we observe some offset between the focus of
the network of the frame enhanced sample frames and the actual actor. In com-
parison, the CAM s of HMDB51 video frames show the network focuses center
around the actors. This may partly explain the inability of frame enhancement
methods to improve action recognition accuracy while being able to focus on a
more concentrated area of each video frame.
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Fig. 7. Comparison of sampled frames and their corresponding CAM s of classes: (a)
Jumping and (b) Standing. The sampled frames and their CAM s are from (i) ARID,
(ii) ARID-GIC, (iii) ARID-HE, (iv) ARID-LIME, (v) ARID-BIMEF and (vi) ARID-
KinD.

4.6 Discussion

From the results and analysis presented above, we can draw three major con-
clusions about the task of action recognition in the dark. First, videos taken
in a dark environment are characterized by its low brightness and low con-
trast. As the characteristic of low contrast cannot be fully synthesized, synthetic
dark videos cannot be directly applied to action recognition in the dark. Second,
though current frame enhancement methods could produce visually clearer video
frames, the accuracy improvements made for current action recognition models
after frame enhancing dark videos is rather limited. Some frame enhancement
methods even deteriorate classification accuracy, since some enhancement can
be regarded as artifact or adversarial attack for videos. Breaking the original
distribution of videos might decrease the performance of a statistical model. Bet-
ter frame enhancement methods developed may be helpful in improving action
recognition accuracy in dark videos. Third, in many dark videos, current action
recognition models fail to focus on the actor for classification. This might be
caused by unclear outlines of actors and shows that action recognition models
could tend to focus on the actors for frame enhanced dark videos. However,
the focus in frame enhanced dark videos contain offsets. We believe that bet-
ter action recognition models with a better ability to focus on actors, especially
with unclear outlines, could be a critical part of improving action recognition
accuracy in dark videos. These conclusions contribute to exploring more effective
solutions for ARID.
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5 Conclusion

In this work, we introduced the Action Recognition In the Dark (ARID) dataset,
which is, as far as we are aware, the first dataset dedicated to the task of action
recognition in the dark. The ARID includes 4k video clips with 11 action cat-
egories. To understand the challenges behind real dark videos, we analyze our
ARID dataset with three perspectives: statistical, classification result, and fea-
ture visualization. We discover distinct characteristics of real dark videos that
are different from synthetic dark videos. Our analysis shows that current action
recognition models and frame enhancement methods are not effective enough in
recognizing action in dark videos. We hope this study could draw more interest
to work on the task of action recognition in the dark.
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Abstract. This paper takes initial strides at designing and evaluating
a vision-based system for privacy ensured activity monitoring. The pro-
posed technology utilizing Artificial Intelligence (AI)-empowered proac-
tive systems offering continuous monitoring, behavioral analysis, and
modeling of human activities. To this end, this paper presents Single
Run Action Detector (S-RAD) which is a real-time privacy-preserving
action detector that performs end-to-end action localization and clas-
sification. It is based on Faster-RCNN combined with temporal shift
modeling and segment based sampling to capture the human actions.
Results on UCF-Sports and UR Fall dataset present comparable accu-
racy to State-of-the-Art approaches with significantly lower model size
and computation demand and the ability for real-time execution on edge
embedded device (e.g. Nvidia Jetson Xavier).

Keywords: Action detection · Deep learning · Real time · Edge
computing · Spatial-temporal neural network

1 Introduction

In recent years, deep learning has achieved success in fields such as computer
vision and natural language processing. Compared to traditional machine learn-
ing methods such as support vector and random forest, deep learning has a
strong learning ability from the data and can make better use of datasets for
feature extraction. Because of this practicability, deep learning had become more
and more popular to do research works.

Deep learning models usually adopt hierarchical structures to connect their
layers. The output of a lower layer can be regarded as the input of a higher layer
using linear or nonlinear functions. These models can transform low-level features
to high-level abstract features from the input data. Because of this characteristic,
deep learning models are stronger than shallow machine learning models in fea-
ture representation. The performance of traditional machine-learning methods
c© Springer Nature Singapore Pte Ltd. 2021
X. Li et al. (Eds.): DL-HAR 2020, CCIS 1370, pp. 85–98, 2021.
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usually rely on user experiences and handcrafted methods, while deep learning
approaches rely on the data.

The recent approaches in video analytic and deep learning algorithms like
Convolutional Neural network provides the opportunity for real-time detection
and analysis of human behaviors like walking, running or sitting down, which are
part of daily living Activities (ADL) [18]. Cameras provide very rich information
about persons and environments and their presence is becoming more important
in everyday environments like airports, train and bus stations, malls, elderly
care and even streets. Therefore, reliable vision-based action detection systems is
required for various application like healthcare assistance system, crime detection
and sports monitoring system. In our paper we explored two different domains
(Sport and Healthcare), to prove the comprehensive nature of our proposed
action detector algorithm. Approaches like [1,3,5,9] use larger CNN models that
impose huge computation demand and thus limit their application in real-time
constrained systems, in particular on embedded edge devices. Additionally, these
methods have not been designed to fulfill requirements of pervasive video systems
including privacy-preserving and real-time responsiveness. Other works done in
this area are based on the use of wearable sensors. These works used the tri-
axial accelerometer, ambient/fusion, vibrations or audio and video to capture the
human posture, body shape change. However, wearable sensors require relative
strict positioning and thus bring along inconvenience especially in the scenario
of healthcare unit where elderly seniors may even forget to wear them.

Motivated by the need and importance of image based action detection sys-
tem we introduce a novel Single Run Action detector (S-RAD) for activity moni-
toring. S-RAD provides end-to-end action detection without the use of computa-
tionally heavy methods in a single shot manner with the ability to run real-time
on embedded edge device. S-RAD detects and localizes complex human actions
with a Faster-RCNN like architecture [21] combined with temporal shift blocks
(based on [14]) to capture the low-level and high-level video temporal context.
S-RAD is a privacy-preserving approach and inherently protects Personally Iden-
tifiable Information (PII). The real-time execution on edge avoids unnecessary
video transfer and PII to a cloud or remote computing server.

Overall, our contributions are as follows: (1) We introduce S-RAD, a sin-
gle shot action detector localising humans and classifying actions. (2) We
demonstrate that we can achieve comparable accuracy to the State-of-the-Art
approaches (on the UCF-Sports and UR Fall datasets) at much lower computa-
tion cost. We demonstrate our approach on two different dataset from healthcare
and sport domain to prove it’s robustness and applicability to multiple action
detection domains. (3) We additionally provide possibility’s of extending our
network to real-time scenarios on an edge device. Code is publicly available on
GitHub.1

1 https://github.com/TeCSAR-UNCC/S-RAD-ActionLocalizationClassification.

https://github.com/TeCSAR-UNCC/S-RAD-ActionLocalizationClassification
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2 Related Works

2.1 Activity Recognition Using Wearable Sensors

Most prior research focuses on using wearable and mobile devices (e.g., smart-
phones, smartwatches) for activity recognition. In designing efficient activity
recognition systems, researchers have extensively studied various wearable com-
puting research questions. These research efforts have revolved around optimal
placement of the wearable sensors [2], automatic detection of the on-body loca-
tion of the sensor [22], minimization of the sensing energy consumption [19],
and optimization of the power consumption [17]. A limitation of activity moni-
toring using wearable sensors and mobile devices is that these technologies are
battery-powered and therefore need to be regularly charged. Failure to charge
the battery results in discontinuity of the activity recognition, which in turn may
lead to important behavioral events remaining undetected.

2.2 Action Recognition in Video Data

Action recognition is a long-term research problem and has been studied for
decades. Existing State-of-the-Art methods mostly focus on modelling the tem-
poral dependencies in the successive video frames [23,25,26]. For instance, [26]
directly averaged the motion cues depicted in different temporal segments in
order to capture the irregular nature of temporal information. [23] proposed a
two-stream network, which takes RGB frames and optical flows as input respec-
tively and fused the detection’s from the two streams as the final output. This
was done at several granularities of abstraction and achieved great performance.
Beyond multi-stream based methods, methods like [16,25] explored 3D Con-
vNets on video streams for joint spatio-temporal feature learning on videos. In
this way, they avoid calculating the optical flow, keypoints or saliency maps
explicitly. However all the above approaches are too large to fit in a real-time
edge device. On the other hand [1] uses features calculated from variations in
the human keypoints to classify falling and not falling actions, [3] uses VGG16
based on Multi-stream (optical flow, RGB, pose estimation) for human action
classification. The above approaches only concentrate on the classification of sin-
gle human action at scene level and will not perform well if multiple human’s
are present in an image, which is essential for the healthcare and other public
place monitoring systems. Our proposed approach performs human detection
and action classification together in a single shot manner where algorithm first
localises the human’s in an image and classifies his/her action.

2.3 Spatio-Temporal Human Action Detection

Spatio-temporal human action detection is a challenging computer vision prob-
lem, which involves detecting human actions in a video as well as localizing
these actions both spatially and temporally. Few papers on spatio-temporal
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action detection like [10] uses object detectors like SSD [15] to generate spatio-
temporal tubes by deploying high level linking algorithm on frame level detec-
tion’s. Inspired by RCNN approaches, [20] used Faster-RCNN [21] to detect the
human in an image by capturing the action motion cues with the help of opti-
cal flow and classify the final human actions based on the actionness score. [7]
extracted proposals by using the selective search method on RGB frames and
then applied the original R-CNN on per frame RGB and optical flow data for
frame-level action detection’s and finally link those detection’s using the Viterbi
algorithm to generate action tubes. On the other hand [9] uses 3D CNN to gen-
erate spatio-temporal tubes with Tube of interest pooling and had showed good
performance in the action related datasets. However all these methods poses
high processing time and computation cost due to optical flow generation in the
two stream networks, 3D kernels in the 3D CNN related works and generation
of keypoint’s in the human pose based methods. As such, the aforementioned
methods are unable to be applied in real-time monitoring systems.

3 Single Run-Action Detector

Approach. We introduce S-RAD, an agile and real-time activity monitoring
system. Our approach unifies spatio-temporal feature extraction and localization
into a single network, allowing the opportunity to be deployed on edge device.
This “on-the-edge” deployment eliminates the need for sending sensitive human
data to privacy invalidating cloud servers, similar to [18]. Instead our approach
can delete all video data after it is processed and can store only the high level
activity analytics. Without stored images, S-RAD can be used to solely focus on
differentiating between the human actions rather than identifying or describing
the human.

In order to achieve this privacy preserving edge execution, it is important
to have an algorithm able to perform in a resource constrained edge environ-
ment. Traditionally such constraints resulted in either accuracy reduction, or
increased latency. The overview of S-RAD is shown in Fig. 1. S-RAD takes an
input sequence of N frames f1, f2, f3, ..., fN and outputs the detected bounding
box and confidence score per each class of the proposals. The model consists of
a base feature extractor integrated with temporal shift blocks to capture low
level spatio-temporal features. The base feature extractor is made up of the first
40 layers of the original ResNet-50 [8] backbone. The base feature maps are
processed by the Region Proposal Network (RPN) using a sliding window app-
roach with handpicked anchors and generates action proposals for each frame.
An RPN is a fully convolutional network that simultaneously predicts action
bounds and actionness scores at each position. The RPN is trained end-to-end
to localize and detect valid region action proposals (the foreground) from back-
ground. This sliding window approach to generate the proposals is the source of
its accuracy as opposed to SSD’s [15] rigid grid base proposal generation.

Following the first stage, the original spatio-temporal base features, in conjec-
ture with the proposals are passed into the Region of interest Align (ROI-Align)
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Fig. 1. Overview of the activity detector. Given a sequence of frames we extract channel
shifted convolutional features from the base feature extractor to derive the activity
proposals in the action proposal network. We then ROI align the activity proposals to
predict their scores and regress their co-ordinates.

layer which aligns the varying sized action proposals in to a fixed 7 × 7 spatial
sized action proposals. The second stage of the action detector further classifies
each valid action proposals to the action classes in that particular frame. The
final classification layer outputs C+1 scores for each action proposal, one per
each action class plus one for the background. The regression layer outputs 4 x
K where K is the number of action proposals generated in each frame.

Temporal shift block. TSM [14] are highly hardware efficient. Temporal shift
blocks are inserted into the bottleneck layer of Resnet-50 [8] based feature extrac-
tor to sustain the spatial information using the identity mapping along with the
temporal information using the shifted features. As shown in Fig. 2, each shift
receives the C channels from the previous layer. We shift 1/8th of the channels
from the past frame to the current frame and shift 1/8th of the channels from
current frame to the future frame, while the other part of the channels remain
unshifted. The new features (channels are referred to as features) x̂2, have the
information of both the past x1 and future x2 frames after the “shift” operation.
The features are convoluted and mixed into new spatio-temporal features. The
shift block coupled to the next layer will do the same operation. Each shift block
increases the temporal receptive field by a magnitude of 2 neighbor frames until
N frames. For our work we choose N = 8 since features are in the magnitude of
8 in Resnet-50 architecture [8].

S-RAD goes beyond action classification to action detection. This is valuable
for communal areas such as mesh halls, and for interactions with other human’s
and with objects. We chose Faster-RCNN [21] as our detection baseline due to its
fine-grained detection capabilities when compared to SSD [15]. This fine grained
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Fig. 2. Temporal shift block

detection is especially applicable to the healthcare domain when dealing with
wandering patients and fine-grain abnormal behaviors. Despite the complexity
of such tasks our utilization of TSM [14] enables the extraction of the necessary
spatio-temporal features for human action localization and individual action
classification, in a streaming real-time manner while maintaining privacy.

3.1 Training Loss

RPN Loss: For training RPNs, we assign a binary action class label (of being
an action or not i.e foreground vs background) to each anchor. We assign a
positive action class label to two kinds of anchors: (i) the anchors with the
highest Intersection-over Union (IoU) overlap with a ground-truth box, or (ii)
an anchor that has an IoU > 0.7 with any ground-truth box. We assign a negative
action class label to a non-positive anchor if it’s IoU < 0.3 for all ground-truth
boxes. Anchors that are neither positive nor negative do not contribute to the
training. With these definitions, our loss function for RPN is defined as:

Lrpn({pi}, {bbi}) = 1
K
.

K∑

i=1

Lcls(pi, p
∗
i ) + 1

K
.

K∑

i=1

p∗
iLreg (bbi, bb

∗
i ) (1)

Here, i is the index of an anchor in a mini-batch and pi is the predicted probabil-
ity of anchor i belonging to an action class. The ground-truth label p∗

i is 1 if the
anchor is positive, and 0 if the anchor is negative. The vector representing the



Single Run Action Detector over Video Stream 91

4 coordinates of the predicted bounding box is bbi, and bb∗
i is the ground-truth

box associated with a positive anchor. The term p∗
i Lreg dictates the smooth

L1 regression loss is activated only for positive anchors (p∗
i = 1) and is disabled

otherwise (p∗
i = 0). Lcls is log loss(cross-entropy) over two classes (action vs. no

action) and is averaged over K frames.

RCNN Loss: The seconds stage of the detector assigns the action class label to
the region of interest or foreground proposals from the RPN training. It involves
classification loss and regression loss. The classification layer here includes detect-
ing the correct action class label for the proposals from ROI align layer and
regression layer is to regress the detected box with ground truth. The RCNN
loss is defined as:

Lrcnn({pi}, {bbi}) = 1
K
.

K∑

i=1

Lcls(pi, p
∗
i ) + 1

K
.

K∑

i=1

Lreg(bbi, bb
∗
i ) (2)

where i is the index of proposals or region of interests with spatial dimension
7x7 and pi is the predicted probability of the action class label, with p∗

i being
the ground truth class label. The vector representing the 4 coordinates of the
predicted bounding box is bbi, and bb∗

i is that of the ground-truth box. Lcls is
log loss (cross-entropy) over multi-classes, Lreg is the smooth L1 regression loss
and is averaged over K frames. In training mode we set the network to output
256 proposals and in inference mode network outputs 300 proposals.

Total Training Loss: Total loss is defined as sum of RCNN and RPN loss:

Ltotal = Lrpn({pi}, {bbi}) + Lrcnn({pi}, {bbi}) (3)

4 Results and Evaluations

Setup. We use Resnet-50 [8] as the backbone of our architecture because of the
network depth and residual connections that enable feature reuse and propa-
gation. The UCF-Sports [24] and UR Fall [12] datasets are too small and are
prone to over fitting, so we fine-tuned our network from Kinetics [11] pre-trained
weights and froze the batch normalization layers. The training parameters for
the UCF-Sports [24] dataset are 300 training epochs, with an inital learning rate
of 0.03 and a weight decay 0.1 every 60 epochs. We utilized gradient accumu-
lation with a batch size of 4 and an accumulation step of 3 to fit a total batch
of 12 on one V100GPU. The training parameters for the UR Fall dataset [12]
are 80 training epochs, with initial learning rate of 0.02 and a weight decay 0.1
every 20 epochs. We use the uniform temporal sampling strategy done in [26] to
sample 8 frames from the video and resize the input resolution of the image to
300× 400 for State-of-the-Art comparison. We used datasets from two different
domain (Sport and Healthcare) to show the generic capability of our algorithm.
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4.1 Results on UCF-Sports Dataset

The UCF-Sports dataset [24] consists of 150 videos from 10 action classes. All
videos have spatio-temporal annotations in the form of frame-level bounding
boxes and we follow the same training/testing split used by [7]. On average there
are 103 videos in the training dataset and 47 videos in the testing dataset. Videos
are truncated to the action and bounding boxes annotations are provided for all
frames. To quantify our results, we report the mean Average Precision (mAP) at
the frame level (frame mAP). Frame-level metrics allow us to compare the quality
of the detection’s independently. We use the Precision-recall AUC (Area under
curve) to calculate the average precision per class. We compute the mean of the
average precision per class to see how much our algorithm is able to differentiate
the features between action classes. We followed the same procedure as in the
PASCAL VOC detection challenge [6] to have an apple to apple comparison
with the State-of-the-Art approaches in the detection task. We first evaluate
S-RAD on the widely used UCF-Sports dataset. Table 1 indicates frame level
Average Precision per class for an intersection-over-union threshold of 0.5. Our
approach achieves a mean AP of 85.04%. While obtaining excellent performance
on most of the classes, walking is the only action for which the framework fails to
detect the humans (40.71% frame-AP). This is possibly due to several factors,
the first being that the test videos for “walking” contain multiple actors in
close proximity, which results in false detections due to occlusions. Additionally,
walking is a very slow action with fine grained features and potentially lacks
enough temporal displacement in 8 frames to be picked up by our detector due
to sparse temporal sampling strategy. Ultimately, our approach is off by only
2% when compared to the State-of-the-Art approaches that utilize either multi-
modal, 3-dimensional, or complex proposal architecture solutions. The State-of-
the-Art comparison in terms of mean Average precision (mAP) is summarised
in Table 2.

Table 1. State-of-the-Art per class frame mAP comparison in UCF-Sports

Action class [7] [27] [20] [9] S-RAD

Diving 75.79 60.71 96.12 84.37 99.90

Golf 69.29 77.54 80.46 90.79 87.20

Kicking 54.60 65.26 73.48 86.48 76.00

Lifting 99.09 100.00 99.17 99.76 99.96

Riding 89.59 99.53 97.56 100.0 99.90

Run 54.89 52.60 82.37 83.65 89.79

Skate Boarding 29.80 47.14 57.43 68.71 67.93

Swing1 88.70 88.87 83.64 65.75 88.78

Swing2 74.50 62.85 98.50 99.71 99.9

Walk 44.70 64.43 75.98 87.79 40.71
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Table 2. Overall frame mAP at IOU 0.5 threshold comparison in UCF-Sports Action
dataset

[7] [27] [20] [9] [10] [5] S-RAD

mAP 68.09 71.90 84.51 86.70 87.7 83.9 85.04

The Precision Recall AUC is ploted in Fig. 3 shows the capability of our
algorithm to separate different classes.

Fig. 3. Precision-Recall curve per Action class in UCF-Sports

We also provided the confusion matrix to better understand the detections
with the original ground truth in Fig. 4. The confusion matrix is calculated
considering both the detection and classification tasks. Here the grids in the
diagonal are the true positive’s whose IOU> 0.5 and the detected action class
label match with the ground truth action class label. Other columns are the false
positive whose IOU> 0.5 but the detected action class label does not match the
ground truth action class label. The last column contains false negatives with
detections with an IOU< 0.5.

4.2 Results on UR Fall Dataset

We have also evaluated our framework on the healthcare extensive dataset [12].
The UR Fall dataset is composed of 70 videos: (i) 30 videos of falls; and (ii) 40
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Fig. 4. Confusion matrix of S-RAD on UCF-Sports

videos displaying diverse activities. We used [4] pre-trained only on the person
class in the coco dataset to obtain the bounding box annotations for the ground
truth. On average there are 56 videos in the training and 14 videos are in the
testing dataset.

For the UR Fall dataset we calculate specificity, sensitivity and accuracy
along with mAP for comparison.

(1) Sensitivity: A metric to evaluate detecting falls. And compute the ratio
of trues positives to the number of falls.

Sensitivity =
TP

TP + FN
∗ 100 (4)

(2) Specificity: A metric to evaluate how much our algorithm detects just “fall”
and avoids misclassification with the “not fall” class.

Specificity =
TN

TN + FP
∗ 100 (5)

(3) Accuracy: Metric to compute how much our algorithm can differ between
falls and non-fall videos.

Accuracy =
TP + TN

TN + FP + TP + FN
∗ 100 (6)
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True positive (TP) means that the frame has a fall and our algorithm has
detected fall in those frames. True negative (TN) refers to the frames that don’t
contain fall and our algorithm does not detect fall in those frames. False nega-
tive (FN) designates the frames containing falls, however our algorithm fails to
detect the fall in those frames. Finally, false positive (FP) indicates the frames
don’t contain a fall, yet our algorithm claims to detect a fall. For the sake of
comparison with the other classification based State-of-the-Art papers we take
the detection with the highest confidence score from the output of S-RAD and
compare it’s class label with the ground truth class label to calculate the above
mentioned parameters. Since our approach is based on frame level detection, the
classification task on UR fall dataset is also done in frame level. We achieved a
competitive score of 96.54 % in mAP (detection task at frame level). It is impor-
tant to note, other State-of-the-Art approaches on this dataset relied solely on
classification, hence our comparison being concentrated on the classification met-
rics. The Results are shown on Table 3, showing S-RAD’s true capabilities in
the field of healthcare.

Fig. 5. Confusion matrix of S-RAD on UR Fall dataset

The confusion matrix on Fig. 5 shows the ability of the S-RAD to distinguish
Fall and Not Fall with only 4 instances being misclassified as Fall.

Table 3. State-of-the-Art per frame comparison in UR Fall dataset

[1] [16] [3] [13] S-RAD

Sensitivity 100 - 100 100 100

Specificity 95 - 98.61 98.77 93.75

Accuracy 97.5 99.27 98.77 98.84 96.46
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4.3 Real-Time Execution

The S-RAD framework has the advantage of reduced inference time and less
number of parameters, enabling us to perform real-time on the edge activity
monitoring in a privacy-aware manner. We compare our framework with oth-
ers in terms of FPS (Frame-Per-Second) and mAP in Table 4 on the UCF-
Sports Action dataset. We tested our models on one Titan V GPU (except
the work of TubeCNN [9], which was reported on a titan X). The trade-off is
between accuracy and inference FPS, as well as parameters. Among the state
of the art approaches, our method has the second fastest run time and can pro-
cess 41 frames per second which is three times faster than [9] and [20]. Moreover,
the number of parameters of our framework is the smallest, about 28.36 M in
Table 4, although works like [5] have better FPS with their models, their features
are too heavy to fit into a real-time edge device, additionally our work maintains
a higher mAP at a high resolution when compared to their work. We were unable
to provide performance comparisons with the State-of-the-Art approaches on the
UR Fall dataset as most of the approaches are not publicly available to run on
the edge device, and do not provide performance metrics of their own.

Table 4. Comparison on Server Class Execution on Nvidia Titan platform

Approach Input Resolution Param # (M) FPS mAP

Multi-stream [20] RGB+Flow 600 × 1067 274 11.82 84.51

CapsuleNet[5] RGB 112 × 112 103.137 78.41 83.9

TubeCNN[9] RGB 300 × 400 245.87 17.391 86.7

ACT[10] RGB+Flow 300 × 300 50 12 87.7

S-RAD RGB 300 × 400 28.35 41.64 85.04

We additionally evaluated our work on an edge platform, the Nvidia Xavier
to test its performance on an resource constrained edge platform. We compare
the work of VideoCapsuleNet [5] with our approach, and despite their initial
performance advantage on the Titan V, our work is the only model capable of
running on the memory constrained edge device. S-RAD, as opposed to Video-
CapsuleNet folds temporal data into the channel dimension, and as a result
avoids introducing another dimension to the tensor sizes. VideoCapsuleNet not
only process 3D spatial-temporal feature maps, but they also introduce another
dimension of complexity in the form of capsules. We also observed 6.0 FPS with
5.21 W of total SoC (on chip) power consumption.

5 Conclusion

This paper introduced a novel Single Run Action detector (S-RAD) for activ-
ity monitoring. S-RAD provides end-to-end action detection without the use
of computationally heavy methods with the ability for real-time execution of
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embedded edge devices. S-RAD is a privacy-preserving approach and inherently
protects Personally Identifiable Information (PII). Results on UCF-Sports and
UR Fall dataset presented comparable accuracy to State-of-the-Art approaches
with significantly lower model size and computation demand and the ability for
real-time execution on edge embedded device.
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Abstract. Dynamic hand gestures are usually unique to individual
users in terms of style, speed, and magnitude of the gestures’ perfor-
mance. A gesture recognition model trained with data from a group
of users may not generalize well for unseen users and its performance is
likely to be different for different users. To address these issues, this paper
investigates the approach of fine-tuning a global model using user-specific
data locally for personalizing dynamic hand gesture recognition. Using
comprehensive experiments with state-of-the-art convolutional neural
network architectures for video recognition, we evaluate the impact of
four different choices on personalization performance - fine-tuning the
earlier vs the later layers of the network, number of user-specific training
samples, batch size, and learning rate. The user-specific data is collected
from 11 users performing 7 gesture classes. Our findings show that with
proper selection of fine-tuning strategy and hyperparameters, improved
model performance can be achieved on personalized models for all users
by only fine-tuning a small portion of the network weights and using very
few labeled user-specific training samples.

Keywords: Model personalization · Dynamic gesture recognition ·
Model fine-tuning · Light-weight convolutional neural network ·
Hyperparameter tuning

1 Introduction

Dynamic hand gesture recognition provides a natural user interface for vari-
ous applications including autonomous driving, smart homes, and robotics. The
state-of-the-art approaches for gesture recognition use deep neural networks
(DNNs) trained on large-scale datasets, which are usually collected via RGB
or depth cameras. These models are then deployed directly on users’ devices for
inference without further changes. However, significant variances exist among
users in terms of style, speed, hand used (left vs right), and magnitude when
performing a gesture [1,17]. As a consequence, a single generic model trained
on global data may not always generalize well and could exhibit very different
performances for each individual user.
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To enhance model performance (while also preserving the user’s privacy), a
model personalization approach is needed that adapts the model to user-specific
data locally. A common approach for DNN model personalization is to fine-tune
a pre-trained global model using only local user data. This approach has been
used for personalizing keyboard input prediction [16] and speech recognition [14].
However, it has not been reported whether fine-tuning is effective for personalized
video recognition tasks such as dynamic gesture recognition.

Therefore, in this paper, we assess the efficacy of fine-tuning for dynamic
gesture recognition personalization. To the best of our knowledge, this is the
first systematic empirical study on exploring a fine-tuning approach for DNN
model personalization on video data. Specifically, our contributions are 1) col-
lecting a proprietary gesture dataset from 11 users, 2) conducting comprehensive
experiments on four state-of-the-art light-weight convolutional neural network
(CNN) architectures, and 3) studying the impact of multiple hyperparameters
on fine-tuning, including number of fine-tuned parameters, early or late layers
to fine-tune, number of user-specific training samples, batch size, and learning
rate.

Our findings show that by choosing these hyperparameters properly, recog-
nition accuracy gain can be achieved for all users after fine-tuning by using very
few labelled user data and updating a small number of network parameters. Par-
ticularly, we make the following three key observations: 1) fine-tuning early layers
can achieve similar accuracy gain as fine-tuning late layers but with significantly
fewer parameters to be fine-tuned; 2) as few as one or two user specific training
samples per gesture class can improve the recognition accuracy with fine-tuning;
and 3) fine-tuning shows good convergence with small batch sizes such as 2 or
4. These findings indicate that fine-tuning is a promising approach for training
personalized video recognition models on-device to enhance user experience.

2 Related Works

Personalization has mostly been studied under the federated learning (FL)
framework, where the global model is trained via federated averaging [12]. In
[15], a recurrent neural network model is personalized by fine-tuning the global
model on user data locally, where impacts of training batch-size and learning
rate are evaluated. Another work [5] combined federated averaging with a meta
learning algorithm to improve the model performance after personalization. [13]
proposed an approach for personalizing a global model while still preserving its
performance on general data. The way to achieve this improvement is to com-
bine on-device training with random rehearsal and server-side model averaging.
[9] presented the first learning-theoretic study of personalization under the FL
framework and proposed user clustering, data interpolation, and model interpo-
lation as three efficient algorithms for personalization. However, in this paper,
we will not follow the FL approach, as video recognition models generally need
massive data to train and the performance of FL has not been well evaluated
given that video data is scarce on each user’s device. Also, we assume that the
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user model after personalization will stay on-device and will not be used for
updating the global model.

A recent work [11] applies an adaptive batch normalization for domain adap-
tation method in personalized human activity recognition. This method adapts
a CNN model to unseen target users by updating the user-specific batch normal-
ization layers. However, the proposed approach requires that during the training
of the initial model, each batch should only contain training samples from one
user, which is not required by the fine-tuning approach studied in this paper.

In the application field, DNN model personalization is studied for keyboard
input prediction [16], handwritten character recognition [3], speech recognition
[14], and gaze estimation [4]. Compared to these applications, gesture recogni-
tion, particularly, dynamic gesture recognition using camera data requires video
sequence analysis, which generally needs more complex models that are harder
to fine-tune on-device. Consequently, studies on gesture recognition personaliza-
tion either use traditional machine learning approaches [1,2] whose performances
are inferior to DNN-based approaches or use skeleton data [6,17] which are not
easy to obtain and label by users.

However, with recent advances in light-weight DNN architectures for video
recognition, gesture recognition can be run in real-time on embedded GPUs
and mobile devices [7,8]. This brings the opportunity of personalizing video
recognition on-device and motivates this work on evaluation of personalization
strategies on video sequences.

3 Method

3.1 User Dataset

Seven classes are considered in this work, namely, swiping left, swiping right,
pulling hand in, pushing hand away, thumb up, zooming out with full hand and
no gesture. These gestures are a subset of the 27 classes from the Jester dataset
[10]. We used a laptop RGB camera to record video clips of 11 users, who were
asked to perform these gestures without expert demonstration. The videos were
recorded under the same environmental setting and lighting for all users. For
each gesture class, 6 to 10 samples were collected from each user, and every user
has the same number of samples per class. In total, 52 samples per user will
be used for these experiments. Note that currently there is no similar dataset
available for benchmark which groups the dynamic hand gesture videos by users.
Therefore, we only conduct experiments on our collected user dataset.

3.2 Global Model Training

We evaluate 4 state-of-the-art CNNs that can run fast video recogni-
tion on embedded GPUs, namely, 3D-MobileNetV2-1.0x, 3D-SqueezeNet, 3D-
ShuffleNetV2-0.25x [7], and MobileNetV2-1.0x with temporal shift module [8]
(denoted as MobileNetV2-TSM). The global models are first trained with the
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selected group of gestures from the Jester dataset, which will be referred to as
general data. To ensure a good baseline performance for these global models, we
did hyperparameter tuning for training and present the best hyperparameters
as follows. The training stops after 50 epochs. The initial learning rate is set to
0.01 for SqueezeNet whereas 0.1 for the other models, with a decay factor of 0.1
at epoch 20 and 40. Stochastic gradient descent is used with weight decay 0.0001
for MobileNetV2-TSM and 0.001 for other models. Batch size is 16 and dropout
is 0.5 for the fully connected layer. The global models’ sizes, speeds and accura-
cies are listed in Table 1. Note that all global models have an accuracy drop on
user data, which could be partially caused by the differences in environmental
settings in the global training data.

Table 1. Global model performances. Params is the total trainable parameters of the
model for 7 gesture classes. Speed measures the time on running one forward-pass for
one video clip of 16 frames and size 112 × 112 on the Nvidia TITAN Xp GPU averaged
over 3000 runs. Acc measures the accuracy on the global Jester validation set and Acc
User measures the average prediction accuracy on all samples collected from all users.

Model Params Speed Acc Acc user

MobileNetV2-TSM 2.23M 10 ms 0.975 0.925

3D-MobileNetV2 2.36M 99 ms 0.970 0.864

3D-SqueezeNet 1.84M 6 ms 0.953 0.836

3D-ShuffleNetV2 0.22M 30 ms 0.933 0.809

3.3 Data Augmentation

For both global model training and fine-tuning, the following data augmen-
tation methods are used. For temporal augmentation, for training, 16 frames
are randomly selected from a video sample while maintaining their original
order, whereas for validation, 16 consecutive frames are selected from the cen-
ter of the video. For spatial augmentation, for training, each frame is randomly
cropped with size 112 × 112 and rescaled randomly with one of the factors in
[1, 0.875, 0.766, 0.67], whereas for validation, a center crop resized to 112 × 112
is used. In each epoch, only one clip from each video input is sampled and used.

3.4 Personalization Strategy

For each user, a personalized model is obtained by fine-tuning partial or all of
the network weights initialized from the global model. A personalization strategy
consists of the hyperparameters for fine-tuning, including parameters/layers to
fine-tune, number of training samples, batch size and learning rate. A personal-
ized model is obtained by fine-tuning the global model for 20 epochs given the
personalization strategy.
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We experiment with different numbers of fined-tuned layers according to
the model architecture. The models usually consist of some type of blocks
(e.g., convolution block, inverted residual block for MobileNetV2, Fire block for
SqueezeNet, etc). For the same type of block that is repeated multiple times con-
secutively, we either fine-tune all or none of them. We consider two fine-tuning
strategies - fine-tuning early layers and fine-tuning late layers. More specifically,
fine-tuning early layers means that we fine-tune a certain number of layers from
the beginning of the network while keeping the weights of the later layers frozen
and vice versa when fine-tuning the late layers.

3.5 Metric

To evaluate the benefit of model personalization, delta accuracy is used to mea-
sure the performance of a personalization strategy. Similar to [15], the delta
accuracy is calculated by the following steps for each user: 1) The user data
is split randomly into training and test sets, where the training set includes
K samples per class and the test set includes the rest of the samples; 2) The
global model is applied to the test set and the accuracy is noted as accuracy-
before-finetune; 3) The global model is finetuned using the user training set and
accuracy is recorded on the test set as accuracy-after-finetune; 4) The delta
accuracy is calculated as accuracy-after-finetune− accuracy-before-finetune. We
summarize these metric measurement steps in Fig. 1.

Fig. 1. Experiment flowchart and metric measurement.
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For each user, we conduct the steps illustrated in Fig. 1 for 5 trials and report
the average of delta accuracies of all trials. To measure the overall performance
of a personalization strategy, the mean of delta accuracies across all users is
used.

4 Experiments

4.1 Fine-Tuned Layers

The first experiment shows the impact of fine-tuning strategies, specifically, fine-
tuning early or late layers and number of fine-tuned layers, on the personalization
performance. The results are shown in Fig. 2. The batch size is set to 4, learning
rate to 0.001, and the number of training samples per class is 3. The number of
fine-tuned layers is represented by the percentage of fine-tuned parameters.

As can be seen in Fig. 2, regardless of whether the early or late layers are fine-
tuned, the mean delta accuracy generally increases with the number of fine-tuned
layers and the number of training epochs. This result in unsurprising given the
increase in learning capacity when more weights are available to be fine-tuned.

Another, more interesting, observation is that for all model architectures,
fine-tuning early layers is much more efficient than fine-tuning late layers for
similar accuracy gain. This result shows that by capturing the uniqueness of
users in low-level features rather than high-level features, the model adapts to
individual users more efficiently. We also noticed that the majority of corrected
samples are the same after fine-tuning early or late layers, which shows no clear
distinction between the user-specific features that early and late layers adapt to.
This lack of a distinction is a surprising finding, as it is in contrast to the com-
mon practice in fine-tuning approaches which generally fine tune the last couple
of layers while assuming the lower-level features are universal across different
subjects or even domains. The question of whether this phenomenon is model
or data dependent is beyond the scope of this paper and is a problem for future
research. Additionally, the runtime and memory consumption for fine-tuning dif-
ferent layers are dependent on the framework and hardware used, which are also
subject to our future research.

4.2 Training Samples

Figure 3 shows the impact of the number of user training samples per class on
personalization performance. The entire network is fine-tuned for this experiment
with batch size of 4 and learning rate 0.001. The best accuracy across 20 epochs
for each user is used to calculate the mean delta accuracy. For all models, the
accuracy gain generally increases with the number of training samples, which is
usually expected for fine-tuning [3]. However, it is interesting to observe that even
with only one training sample per class, users can already start to experience
notable accuracy gain. This accuracy gain shows that fine-tuning is fairly sample
efficient which, in turn, suggests that little user effort is needed for labeling data.
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Fig. 2. Mean delta accuracy for different fine-tuning strategies and percentages of fine-
tuned parameters. (a)(c)(e)(g): fine-tuning early layers; (b)(d)(f)(h): fine-tuning late
layers. The legend denotes the percentage of the total network parameters that are
fine-tuned.
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Fig. 3. Mean delta accuracy for different number of user training samples per gesture
class.

4.3 Batch Size and Learning Rate

We experimented with batch sizes 1, 2, and 4, and learning rates 0.01 and 0.001
to evaluate their impacts on fine-tuning performance. The results are shown

Fig. 4. Mean delta accuracy using different batch sizes and learning rates.
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in Fig. 4, with the entire network fine-tuned. As the batch sizes are relatively
small, the smaller learning rate 0.001 yields better convergence curve than 0.01.
In terms of batch size, the larger the batch size, the better the convergence,
which is generally expected in DNN training. Particularly, for 3D-MobileNetV2
and 3D-ShuffleNetV2, using a batch size of 1 will deteriorate the global model
performance due to unstable convergence. However, with learning rate 0.001,
using a batch size of 2 is only slightly inferior than batch size of 4, while saving
on memory for training which could be critical if fine-tuning is implemented
on resource constrained devices. We have also experimented with fine-tuning
partial network with different batch sizes and learning rates, and obtained the
same observation that using the batch size of 2 and 4 with learning rate 0.001
can yield stable convergence for all models.

Fig. 5. Accuracy of each user before and after fine-tuning. Accuracy ranges and largest
difference among users are shown in the figure titles. (Color figure online)
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4.4 Per-User Performance

Figure 5 shows the performance gain for each user by fine-tuning. The users
are sorted by accuracy before fine-tuning for better presentation, and the best
accuracy over 20 fine-tuning epochs is chosen to be the accuracy after fine-tuning.
We show the plot of fine-tuning both the 5 early layers and the entire model using
3 training samples, but the same trends can be observed with other numbers of
fine-tuned layers and training samples. The red bar shows the accuracy of global
model on the general validation set.

The first observation is that by directly applying the global model to user
data, almost all users experience an accuracy drop due to the variance between
the user data and the general data indicating the necessity of personalization
to improve the global model performance for individual users. As the videos
for all users are recorded under the same environmental setting, the variances
in the accuracy drop for different users are mostly likely to be caused by the
inability of the global model to generalize well to all unseen users. The second
observation is that the users with lower accuracy using the global model benefit
more by personalization, as these users deviate more from the general data and
a personalized model can capture their unique features better. Consequently,
the largest difference in accuracies across users after fine-tuning is much smaller
than that before fine-tuning for all architectures. The minimum and maximum
accuracy gain among all users, as well as the accuracy difference across users,
are presented in the figure titles. The third observation is that by fine-tuning
5 early layers, the accuracy gain is very close to that of fine-tuning the entire
model, which again validates that fine-tuning early layers is an efficient strategy
to achieve good personalized model performance.

5 Conclusion

This paper evaluates the efficacy of the fine-tuning approach for personaliz-
ing dynamic gesture recognition. Specifically, we investigated the impact of
fine-tuning strategies, number of fine-tuned parameters, number of user-specific
training samples, batch-size and learning rate on personalized model perfor-
mance. Empirical results show that the global model performance could exhibit
large variance across users, and fine-tuning could yield personalized models
with improved performance for each individual user while preserving user’s
data privacy. We would like to mention that the fine-tuning approach evalu-
ated here represents a different paradigm from federated learning, where hyper-
personalization is the goal and personalized models will not be used to update
the global model.

We also made an interesting observation that fine-tuning early layers is more
efficient than fine-tuning late layers, which invites further research on how to
conduct efficient fine-tuning for various model architectures and datasets. More-
over, we showed that using small batch sizes and few user-specific training sam-
ples can achieve good convergence. These findings suggest that fine-tuning could



Efficacy of Model Fine-Tuning 109

be a viable approach for on-device model personalization for video recognition
applications.
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Abstract. Activity recognition in smart homes is essential when we
wish to propose automatic services for the inhabitants. However, it is a
challenging problem in terms of environments’ variability, sensory-motor
systems, user habits, but also sparsity of signals and redundancy of mod-
els. Therefore, end-to-end systems fail at automatically extracting key
features, and need to access context and domain knowledge. We pro-
pose to tackle feature extraction for activity recognition in smart homes
by merging methods of Natural Language Processing (NLP) and Time
Series Classification (TSC) domains.

We evaluate the performance of our method with two datasets issued
from the Center for Advanced Studies in Adaptive Systems (CASAS).
We analyze the contributions of the use of embedding based on term
frequency encoding, to improve automatic feature extraction. Moreover
we compare the classification performance of Fully Convolutional Net-
work (FCN) from TSC, applied for the first time for activity recognition
in smart homes, to Long Short Term Memory (LSTM). The method we
propose, shows good performance in offline activity classification. Our
analysis also shows that FCNs outperforms LSTMs, and that domain
knowledge gained by event encoding and embedding improves signifi-
cantly the performance of classifiers.

Keywords: Human activity recognition · Smart homes · Embedding ·
Word encoding · Fully Convolutional Network · Automatic features

1 Introduction

Human Activity Recognition (HAR) has been the focus of research efforts due
to its key role for different ambient assisted living (AAL) domains as well as
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the increasing demand for home automation and convenience services in daily
activities. The main task of HAR is to recognize human activities from the data
collected through environmental sensors and Internet of Things (IoT) devices.
They use different sensor technologies such as cameras, wearable or low-level
smart sensors to track human activities, as described in [6].

Recent advances in IoT technologies and the reduction of the cost of sensors
are leading to the proliferation of these ambient devices and the development of
smart homes. This is why in this work we will focus more on IoT-based HAR,
as opposed to video or wearable-based HAR.

Along the development of the hardware, the HAR algorithms also need to
solve the challenges of HAR in smart homes. Indeed, the number, the type but
also the placement of sensors can significantly influence the performance of HAR
systems. A system suitable for a given home may be completely inadequate in
some other, due to different house configuration or user habits. The algorithms
thus need to be robust to the variability of environments. Besides, while video-
based HAR can leverage rich and redundant information from images and video
streams, IoT based HAR faces the challenges of sparse and incomplete infor-
mation and redundant models. In contrast to videos where objects and people
appear on several pixels and over several video frames, the IoT network only
detects changes in the environment that are within their range of detection and
in their field of view, and is oblivious to most changes in the environment, which
occur outside these ranges. When a change is captured, this detection often
translates into a signal with a single value from one sensor. This sparsity entails
the redundancy challenge: a set of signals from the same set of sensors can be
caused by different activities. Thus, algorithms for HAR in smart homes need
to address the challenges of variability, sparsity and redundancy.

To adapt to variations of environments and uses, algorithms for HAR have
turned to machine learning methods, and more specifically Deep Learning (DL)
algorithms. To deal with sparsity and redundancy, first, algorithms that can learn
long-term dependencies have been developed so as to understand the context of
sensor signals. Second, studies have also tried to introduce domain knowledge
and contextualization of sensors signals, through a good feature representation of
sensor events. But handcrafted features need a lot of pre-processing and reduce
its adaptability to various environments. Therefore HAR algorithms need to
automatically extract domain relevant representations.

In recent years, there have been significant improvements of DL techniques.
They have been successfully applied to Natural Language Processing (NLP) and
Time Series Classification (TSC). Respectively for automatic extraction of good
feature representations through word embedding techniques and classifiers.

Our contributions are the following: 1) We apply for the first time the Fully
Convolutional Networks (FCN) classifier from TSC on activity recognition in
smart homes. 2) We propose to use frequency-based encoding with word embed-
ding from NLP to improve automatic feature extraction. 3) We design an end
to end framework to automatically extract key features and classify daily activ-
ities in smart homes by merging TSC classifier and NLP words encoding. 4)
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Finally, we show that domain knowledge gained by event encoding and embed-
ding improves significantly the performance of classifiers.

We propose in the following section to review the state-of-the-art HAR smart
home classifiers, a TSC classifier and the existing feature representation meth-
ods, in particular those used in NLP applications. In Sect. 3, we will propose a
framework combining a TSC algorithm and a NLP sequence features extractor
method. In Sect. 5, we will report on the performance of our proposed framework
before concluding.

2 Related Works

In this section, we describe the algorithms developed for HAR, and more gen-
erally for Time Serie Classification. We then examine how TSC can be boot-
strapped by incorporating domain knowledge in feature encoding as in Natural
Language Processing.

2.1 Traditional HAR Approaches

To recognize human activities based on sensor traces, researchers used various
machine learning algorithms as reviewed in [15]. These can be divided into two
streams: the algorithms exploiting a spatiotemporal representation, with Naive
Bayes, Dynamic Bayesian Networks, Hidden Markov Models; and the algorithms
based on features classification, with Decision Tree, Support Vector Machines,
or Conditional Random Fields.

Most of these traditional HAR approaches commonly use handcrafted fea-
ture extraction methods. Automatic feature extraction is one of the challenges
addressed by DL.

2.2 Deep Learning Approaches

Recently, a variety of DL algorithms have been applied for HAR to overcome
those limitations and improve the performance of HAR. DL methods learn the
features directly from the raw data hierarchically, to uncover high-level fea-
tures. Long Short Term Memory (LSTM) can be seen as a very successful exten-
sion of the Recurrent Neural Networks (RNN), explicitly designed to deal with
long-term dependencies. LSTMs allow automatic learning of temporal informa-
tion from the sensor data without the need of handcrafted features or kernel
fusion approaches, and have led to good performance in HAR in smart homes,
as reported in [10,17]. [10] evaluated different LSTMs structures for HAR in
smart homes. They show that the LSTM approach outperforms traditional HAR
approaches in terms of classification score without using handcrafted features.
LSTMs leads to a viable solution to significantly improve the HAR task in the
smart home but suffers from training time.
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Another DL approach, focusing more on pattern detection is Convolutional
Neural Networks (CNNs). They have three advantages for HAR. They can cap-
ture local dependencies, that is, the importance of neighboring observations cor-
related with the current event. They are scale invariant in terms of step difference
or event frequencies. In addition, they are able to learn a hierarchical represen-
tation of data. Researchers used 2D [4,13] and 1D [16] CNNs on HAR in smart
homes. The 2D CNN obtained good classification results. But this approach is
not robust enough to deal with unbalanced datasets, unlabeled events, and is
not suitable for online recognition. 1D CNNs are competitive with LSTMs on
sequence problems [16]. In general LSTMs obtain better performances due to
their capacity to use long-term dependencies. But CNNs are faster to train and
get accuracy levels close to LSTMs.

The FCN is a particular CNN, with only convolutional layers and no dense
layers. FCN has shown compelling quality and efficiency for semantic segmen-
tation of images [12]. Due to its performance on feature extraction, researchers
transferred the FCN on TSC problems [19]. [3] compared the FCN against other
TSC algorithms and obtained high classification performances. FCNs ranked
first on 18 datasets out of 97 and in the top five on the others. However, no
application of FCN for HAR in smart homes has been reported. For this reason
we propose to apply the FCN to HAR in smart homes as a high-level extractor
of features and classifier.

2.3 NLP and TSC Coupling

Works such as [18,20] have shown the importance of a good feature representa-
tion, but designing features for HAR applications is a tedious task.

DL algorithms can automatically extract features, they have widely shown
to improve feature representation with words pre-processing for text classifi-
cation in NLP. Researchers have devised many language models and different
encoding of words. They proposed encodings such as n-gram, term frequency,
term frequency-inverse document frequency, bag-of-words. Recently, they use DL
algorithms such as word2vec, GloVe ELMo and more recently Transformers, cou-
pled with the aforementioned encoding to achieve meaning word encoding [8,9].
DL algorithms infer features from the current input and to a lesser extent from
past inputs, these encodings incorporate more general domain knowledge from
the whole corpus. Their strong capacity to generate features from raw data and
model word sequences increases the performance of DL classifiers. We propose
to transpose previously cited NLP techniques on smart homes HAR problems in
order to automatically generate key features.

Thus, we introduce in this article a DL methodology for HAR in smart homes
inspired by the NLP and the TSC. We propose to combine the term frequency
encoding and embedding with FCN, respectively: incorporate domain knowl-
edge of event encoding in the first level of extraction features; and realize a
higher-level of extraction features and the activity classification. The choice of
the FCN algorithm from TSC is led by the output of the NLP embedding,
which transforms the sequence classification problem into a multivariate TSC
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problem. To our knowledge this is the first time that a study has used FCN
in smart-home activity recognition, and has combined it with embedding tech-
niques to perform an end-to-end system that automatically extracts key features
and classifies activities in smart homes.

3 Methodology

We merge NLP encoding and FCN classifier from TSC to deal with smart homes
HAR. This coupling allows generating automatic key features and classify activ-
ities.

The framework architecture of the proposed method is shown in Fig. 1. First
raw data from sensors are encoded into a sequence of indexes (Sect. 3.2), then are
split using a sliding window (Sect. 3.4). The sliding windows are then processed
through an embedding to extract a first level of features, and finally classified
by the FCN (Sect. 3.3).

Fig. 1. Framework architecture of the proposed method
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3.1 Problem Definition

The activity recognition problem is a classification problem. The goal is to
attribute an activity label on sensors events sequences. We model our prob-
lem as follows. A set of sensors S = {s1, ..., s|S|} produces events ei ∈ E. An
event is the value or the state returned by a sensor when the sensors emit a
signal: ei = (si, vi, ti), where si is the sensor id, vi the value returned by the
sensor and ti the time when the sensor changes its state or value. A sequence
Li is a trace of activity. Li is a list of events Seqi = (ei, ..., en). Each Li can be
associated to an activity label ai ∈ A, by semantic segmentation.

In this paper we did not take in consideration the timestamp ti when an
event occurs. We simply ignore the parameter t for our experiments. We want to
be able to recognize an activity regardless of the time of the day. For example,
the activity “Sleeping” appears in general during the night but this activity can
appear at any time during the day. Some people can work during the day and
sleep by night and vice versa some people can work during the night and sleep
during the day.

3.2 NLP Encoding

Our hypothesis is to process sensor events like words and activity sequences
as text sentences; these sentences describing the activities carried out by the
inhabitants.

First, each sequence of activity is extracted from the dataset as sentences in
NLP. Thanks to the label provided by the dataset, it is possible to know the
beginning and the end of each activity. As previously described, an event ei is
composed of the sensor ID si, the value vi and the timestamp ti. By concate-
nating the sensor ID si with his value vi and by ignoring the timestamp ti, for
the reasons explained previously, a sensor word is created, e.g., si = M001 and
the value vi = ON becomes M001ON . All these different text words define the
smart home vocabulary to describe activities.

Then, as in NLP, each word in the sequences are transformed into an index
to be usable by a neural network. In NLP the index starts at 1, the 0 value is
reserved for the sequence padding. Indexes are assigned based on word frequency,
e.g., if the word M001ON has the highest occurrence in the dataset, the assigned
index is the lowest one i.e. 1.

Sequences are then passed through an embedding layer which transforms
index tokens (words) into auto learned features vectors. This creates a simple
word embedding that helps the network to get an internal representation of each
word in our cases each sensor event.

3.3 FCN Structure

The FCN is a particular CNN. Its structure only contains convolutional layers
e.g., no fully connected layers for the classification part. The same structure as
[3,19] is used in this paper.
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This structure (Fig. 2) is composed of three blocks described by Eq. 1. Where
x is the input, W the weight matrix, b the bias and ⊗ the convolution operator
and h the hidden representation. Each block consists of a 1D convolutional layer
with Batch Normalization (BN) [7] and a rectified linear unit (ReLU) activation
to speed up the convergence and help improve generalizations.

y = W ⊗ x + b

z = BN(y)
h = ReLU(z)

(1)

After the three convolution blocks, features are fed into a Global Average Pooling
(GAP) layer [11]. GAP is a pooling operation designed to replace fully connected
layers in classical CNNs. The idea is to generate one feature map for each corre-
sponding category of the classification task. The resulting vector is fed directly
into the softmax layer to realize the final classification.

One advantage of GAP over the fully connected layers is that it is more native
to the convolution structure by enforcing correspondences between feature maps
and categories. Thus, the feature maps can be easily interpreted as category
confidence maps. Another advantage is that there is no parameter to optimize
in the GAP thus over fitting is avoided at this layer. Furthermore, GAP sums
out the spatial information; thus it is more robust to spatial translations of the
input.

One of the advantages of FCNs is the invariance in the number of parameters
across time series of different lengths. This invariance due to using a GAP layer
enables the use of a transfer learning approach where one can train a model on
a certain source dataset and fine-tune it on the target dataset [2].

Fig. 2. Fully Convolutional Network (FCN) model core
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3.4 Sliding Window

Contrary to LSTMs, CNNs must have a fixed input size and activity sequences
can have different lengths, between 1 and more than 5000 events. To tackle this
issue, a sliding window is applied over sequences. Using a sliding window also
allows anticipating an online HAR. To fill windows with fewer events than the
window size, a zero padding is used. The zero padding can impact the final
result. To avoid too much zero in the sliding windows, a fine-tuned window size
must be found.

For experiments, the Sensor Event Windows (SEW) [14] was used. The SEW
approach divides the data into equal sensor event intervals. The size of a SEW
is defined by a number of events. Therefore, the duration of the windows may
vary. Authors of [14] compared different windows types and conclude that Time
Windows (TW) provides the best accuracy and F-Measure score. They consider
SEW as the second-best window method because SEW are able to classify more
activities than TW. We assume this is because SEWs keep a fixed context size
while it is variable for TWs. A stable context size allows the neural network to
keep the same amount of information regardless of the window.

In this work, SEWs were used for two reasons. First, we want to evaluate the
method for its ability to learn automatic features from the window context. The
intuition being to train a network onto bounded activity sequences to extract
features and then use them on streaming sensor data for online recognition.
Second, this avoids too many zeros inside windows by controlling the number of
events.

4 Experimental Setup

LSTMs provide very good results on sequence problems and go beyond tra-
ditional advanced HAR methods in Smart Homes [10]. In order to evaluate
the method, LSTMs and FCNs were compared with two dataset ARUBA and
MILAN from the widely spread CASAS [1] benchmark datasets.

4.1 Datasets Description

Two datasets, ARUBA and MILAN (Table 1) from CASAS were selected for the
experiments. The CASAS datasets were introduced by Washington State Uni-
versity. Daily activities data collected, comes from real apartments and houses
with real inhabitants, who live in their own houses. The houses are equipped
with temperature and binary sensors, as motion or doors sensors.

A single person carried out activities in both the datasets. The MILAN
dataset was selected for the noise on the dataset produced by the pet, which
increases the difficulty of classification. They contain several months of labeled
activities and are unbalanced, i.e., some activities are less represented than oth-
ers. In addition these two datasets contain common and different activities with
approximately the same number of sensors.
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An unbalanced dataset increases the classification challenge. Indeed if some
classes are less represented the system gets fewer examples to find the discrim-
inating features. Moreover some events are unlabeled or unidentified and are
tagged under the class name “Other”. This class appears between 45% and 50%
into these datasets. In the literature most researchers remove the class “Other”
and balance the dataset by reducing the number of examples for each class.

This method creates a drawback, by ignoring unlabeled events it becomes
a fixed classification problem. The system cannot make the difference between
a known and an unknown class. This does not allow the system to be able to
discover new sequences of activities.

Here the original distribution was kept. The objective was to evaluate the
robustness of the method and the models.

Table 1. Details of datasets.

Aruba Milan

Habitants 1 1 + pet

Number of sensors 39 33

Number of activities 12 16

Number of days 219 82

Average sequence length 133 87.3

4.2 SEW Parameters

As previously described, sequences of activities were segmented in SEWs. Dif-
ferent SEWs sizes, 100, 75, 50, 25, with a stride of one was studied. This stride
size allows the HAR process each time a new event is triggered. The goal is to
find the best SEW size e.g., the minimal SEW size with the maximal informa-
tion that allows to discriminate activities sequences with a high F1-score and
high-balanced accuracy. The smaller the size of SEW, the faster an activity can
be recognized in the case of online HAR.

4.3 Networks Parameters

FCNs parameters are the same as [3]. All convolutions have a stride equal to
one with a zero padding to preserve the exact length of the time series after the
convolution. The first convolution contains 128 filters and a length equal to 8,
followed by a second convolution of 256 filters with a length equal to 5, which in
turn is fed to a third and final convolutional layer composed of 128 filters, with
a length equal to 3.

LSTMs parameters are the same as [10]. The LSTM cell is composed of 64
neurons and then followed by a softmax layer for the final classification.
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As it is usually made in NLP an embedding layer was added between the
raw data and the neural network. The number of neurons was fixed to 64 as it
was defined in [10].

4.4 Hardware and Software Setup

Experiments were made on a server, with an Intel(R) Xeon(R) CPU E5-2640
v3 2.60 GHz, with 32 CPUs, 128 Go of RAM and a NVIDIA Tesla K80 graphic
card. Keras and Tensorflow frameworks were used for the algorithm’s implemen-
tation. The source code can be found at https://github.com/dbouchabou/Fully-
Convolutional-Network-Smart-Homes.

4.5 Evaluation Method

To evaluate the proposed method, datasets were split into two parts: 70% for
the train and 30% for the test. These two parts contain a shuffled stratified (over
class) number of SEW of each activity. e.g., if the dataset contains 100 windows
labeled “Sleeping” after shuffling, the 100 windows are split into two parts: 70
windows for the train set, 30 windows for the test set. The random shuffle helps
the algorithm to get a better generalization and representation. The stratified
forces both subsets to contain representations of each class.

A stratified (over class) threefold cross-validation procedure is performed on
the training set. These three trains and three validation subsets are then used
to train and validate algorithms.

During the training phase on each train set, early stop and best model selec-
tion methods proposed by the Tensorflow framework was used. These methods
stop the training before overfitting and saves the best model of each train. The
early stop condition is based on the validation loss value. If the current loss
doesn’t decrease after n epochs since the last, best model selected (here n = 20)
the training is interrupted.

The three best trained models (one for each training subset) were evalu-
ated on the test set to calculate the average balanced accuracy and the average
weighted F1-score, because datasets are unbalanced.

To accelerate the training time by epoch and because the number of SEW is
big, a batch size of 1024 was used for all experiments. No differences were noticed
between the batch size evaluation during the tests, the results were similar except
in training time.

5 Experimental Results

5.1 FCNs and LSTMs Performances

Table 2 and Table 3 show the performances of two FCNs and two LSTMs on raw
sensor data for the two datasets. Vanilla LSTM, FCN and LSTM, FCN with an
embedding layer on different windows size were evaluated. The average balanced

https://github.com/dbouchabou/Fully-Convolutional-Network-Smart-Homes
https://github.com/dbouchabou/Fully-Convolutional-Network-Smart-Homes
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accuracy and the average weighted F1-score was computed. FCN appears to
obtain the best weighted F1-score with and without the embedding onto both
datasets. The LSTM is close to or equal to the FCN on a large SEW, greater
than 50. Compared to the FCN the LSTM looks to need more events to realize
the classification.

From the balanced accuracy point of view, FCNs get best values except on
the MILAN dataset when the window size is higher than 50. This decrease in
performance is due to the zero padding. Indeed the average sequence length on
the MILAN dataset is around 88 events. When the window size is close to or
over this average, the performances of the FCN decrease. Some small sequences
like “Bed to Toilet” or “Eve Meds” are not classified. This results in a drop in
the balanced accuracy score.

As an online HAR is expected in our future work, it is interesting to observe
the performance of the method on the small SEW size. The goal is to achieve

Table 2. Weighted F1 score and balanced accuracy in Aruba’s dataset

Model 100 75 50 25

Weighted avg F1 score (%)

LSTM 96.67 94.67 90.67 85.00

FCN 99.00 98.00 97.67 92.33

LSTM + Embedding 100.00 99.67 98.00 90.00

FCN + Embedding 100.00 100.00 100.00 99.00

Balanced accuracy (%)

LSTM 81.45 76.09 71.05 83.30

FCN 88.85 87.41 87.08 80.32

LSTM + Embedding 94.55 93.61 90.20 74.81

FCN + Embedding 95.37 95.07 94.89 92.44

Table 3. Weighted F1 score and balanced accuracy in Milan’s dataset

Model 100 75 50 25

Weighted avg F1 score (%)

LSTM 84.00 85.67 75.33 64.00

FCN 77.33 93.67 88.33 83.67

LSTM + Embedding 98.00 97.00 93.00 73.67

FCN + Embedding 99.00 98.00 97.00 94.33

Balanced accuracy (%)

LSTM 62.15 64.95 55.70 43.29

FCN 42.24 76.41 71.82 71.34

LSTM + Embedding 88.52 86.77 82.05 59.35

FCN + Embedding 84.23 86.64 87.83 90.86
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HAR in as little time as possible, with as few events as possible, to get the most
responsive system possible. In this case, the FCN obtained the best values with
SEWs of sizes 50 and 25. Performances decrease as the SEW size decreases, but
the FCN maintained a high score for balanced accuracy and the F1-score. Perfor-
mance drops less with FCNs than with LSTMs. It seems that FCNs can generate
more relevant automatic features than LSTMs on small sequences, therefore with
less information.

5.2 Training Time

Table 4 and Table 5 show the average training time and the average amount
of training epochs by SEWs size. On both datasets FCNs realized the shortest
time on every SEWs size. The embedding layer allows to reduce the number of
epochs and the total training time in the majority of cases. The training time

Table 4. Training time performance and number of epochs training in Aruba’s dataset

Model 100 75 50 25

Average epoch number

LSTM 242 278 335 256

FCN 77 71 111 108

LSTM + Embedding 161 191 210 161

FCN + Embedding 67 62 71 98

Average training time (HH:MM:SS)

LSTM 06:28:42 06:43:08 06:29:58 03:00:26

FCN 00:58:00 00:52:15 01:20:35 00:51:27

LSTM + Embedding 04:45:56 04:45:38 04:14:35 02:02:53

FCN + Embedding 01:12:37 00:59:42 00:57:27 00:52:15

Table 5. Training time performance and number of epochs training in Milan’s dataset

Model 100 75 50 25

Average epoch number

LSTM 274 385 365 324

FCN 45 101 87 145

LSTM + Embedding 255 290 320 183

FCN + Embedding 65 51 52 55

Average training time (HH:MM:SS)

LSTM 02:03:43 02:11:07 01:44:06 01:00:10

FCN 00:09:39 00:20:17 00:15:08 00:16:50

LSTM + Embedding 01:57:52 01:49:35 01:36:56 00:35:26

FCN + Embedding 00:16:24 00:11:42 00:10:00 00:07:67
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is divided by 2 to 6 with the FCN depending on the window size compared to
LSTM. This time saving is explained by the ease of parallelization of calculations
of convolutional networks.

5.3 Encoding Impact

Tables 2, 3, 4 and 5 show that the embedding layer improves network perfor-
mances. Indeed, with the embedding layer networks gain significant performance,
10% points on balanced accuracy in average. Sensor events are transformed into
vectors of 64 automatically learned features that allow networks to maintain a
high score on small SEWs.

During our experiments, we noticed that the frequency encoding strategy
improved performance, unlike random or arbitrary index allocation. We think
this ordering helps networks generate discriminators on important events or rare
events.

6 Conclusion

We have proposed a new method that coupled for the first time FCNs and embed-
ding based on frequency encoding for HAR in smart homes. Our assessment on
two datasets shows that:

– The embedding based on frequency encoding significantly improves the per-
formance of LSTM and FCN in all cases. This means that the domain knowl-
edge incorporated in the embedding can improve the understanding of events
by LSTM and FCN.

– With the same encoding, FCNs obtain the same or better performance than
LSTMs, with the exception of only two configurations and are quicker to
train.

– Moreover, FCNs outperform LSTMs when the window size decreases. This
means that FCNs have a shorter delay in recognizing activities, and are more
suitable for real-time activity recognition.

The proposed framework is pure end-to-end without any heavy pre-processing
on the raw data or feature crafting, thanks to frequency-based encoding and the
embedding. This method appears to be relevant for HAR problems in smart
homes with low-level sensors.

7 Discussion and Future Directions

The results presented in this paper show that the applied DL approach based on
NLP encoding and FCN is a relevant solution to significantly improve the smart
homes HAR task.

We used a naive embedding based on frequency encoding that improved
classification results. We plan to explore more word embedding techniques [9]
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such as Word2Vec or ELMo to improve the latent knowledge space and in the
process enhance classification performances. Indeed these techniques take into
account the context of words.

In addition, we are only experimenting with offline HAR. But the usage of
SEWs in our assessment showed relevant results so we want to apply this to
online HAR applications.

Moreover we plan to evaluate other windowing methods as TW or Fuzzy
Windows [5] with this method. To study which window methods produce the
fastest and most accurate online HAR in smart homes.
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Abstract. Recent advancements in medical entity linking have been
applied in the area of scientific literature and social media data. How-
ever, with the adoption of telemedicine and conversational agents such
as Alexa in healthcare settings, medical name inference has become an
important task. Medication name inference is the task of mapping user
friendly medication names from a free-form text to a concept in a normal-
ized medication list. This is challenging due to the differences in the use
of medical terminology from health care professionals and user conver-
sations coming from the lay public. We begin with mapping descriptive
medication phrases (DMP) to standard medication names (SMN). Given
the prescriptions of each patient, we want to provide them with the flexi-
bility of referring to the medication in their preferred ways. We approach
this as a ranking problem which maps SMN to DMP by ordering the list
of medications in the patient’s prescription list obtained from pharma-
cies. Furthermore, we leveraged the output of intermediate layers and
performed medication clustering. We present the Medication Inference
Model (MIM) achieving state-of-the-art results. By incorporating med-
ical entities based attention, we have obtained further improvement for
ranking models.

Keywords: Text matching · NLP · Medication name

1 Introduction

Medication names are extremely hard to pronounce for patients without a proper
medical background. Thus, when interacting with Alexa on medication names,
patients without this background may have many different ways to refer to a
medication (e.g., Bumetanide can be referred to as Bumetanide (generic name),
Bumex (brand name), high blood pressure pill (disease name)). On the other
hand, patients with medical knowledge may use abbreviations or specialized
ways to refer to medication names. For example, patients may use “immune
c© Springer Nature Singapore Pte Ltd. 2021
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Fig. 1. Different ways of how users interact with conversational agents for medical
queries

meds” to refer to “mycophenolate mofetil hydrochloride” in their prescription
list (Fig. 1).

In this paper, we describe a new problem about finding the generic medication
name (SMN: standardized medication name) based on a patient’s description
(DMP: descriptive medication phrase) from a list of medications the patient
is consuming. According to our internal user research, in the United States,
patients with chronic diseases usually take around four to five medications daily.
This problem is different from medical concept normalization [1] which tries
to map a health-related entity mention in a free-form text to a concept in a
controlled vocabulary [2] which is a generic concept list rather than a patient
specific prescription list and is generally much longer.

We structure this as a ranking problem. Here we rank all medications a
patient is consuming based on the relationship with the patient’s description
and the one ranked highest will be the inference result. We present a hard atten-
tion based entity boosted CNN architecture achieving 4% over earlier ranking
methods.

Furthermore, the mapping between SMN and DMP contains the patient’s
understanding of the medications, especially from the usage perspective of the
medications. Using latent output from our model, we build a medication cluster-
ing system which groups together medications with similar effects and disease
treatments. The output is designed to aid physicians to consider other medica-
tions as a substitution for decreasing cost as well as helping patients distinguish
medications that are similar in their impression but should, in reality, be used
in different conditions. Moreover, with clustering patients will have an intuitive
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understanding of the relationship of the medications they are consuming. Our
contributions are as follows:

– We present a medical entity boosted architecture, Medication Inference Model
(MIM) achieving a 7%–9% improvement over strong BERT baselines.

– We benchmark against state-of-the-art ranking architectures, demonstrating
robustness of our work.

– We present medication clustering results which group together medications
with similar effects and treat the similar diseases.

2 Task Definition

Each example is represented as a tuple (Q,P1, P2, ..., Pn, Y ), where Q =
(q1, q2, ..., qlq ) is a DMP, with a length lq, Pi = (p1, p2, ...plpi ) is a SMN, with
a length lpi

, and Y = (y1, y2, ..., yn) is the label representing the relationship
between Q and P1, P2, ..., Pn. Y and P have the same length. yi = 1 if Pi is the
generic medication name that Q is referring to, 0 otherwise.

Y Q = {q1(high), q2(blood), q3(pressure)}
y1 = 0 P1 = {p1(morphine), p2(suppository)}
y2 = 1 P2 = {p1(hydrochlorothiazide)}
y3 = 0 P3 = {. . . }
. . . . . .

It is possible that among P1, P2, ..., Pn, more than one medications may be
referred to by Q. Thus,

∑n
i=0 yi = m where m is the number of medications in

P1, P2, ..., Pn that could be referred by Q. Ideally, we should make it possible that
for the estimated Ŷ ,

∑n
i=0 ŷi > 1. In this paper, however, we assume

∑n
i=0 yi = 1.

The clustering task is defined as grouping medications across the prescrip-
tions of different patients. i.e., we assign each medication in (P1, P2, ..., PN ) to a
group according to the DMP Q associated with them.

3 Method

Instead of comparing n medications in each sample, we begin with two. Each
sample consists of (Q,P1, P2, Y ) and the model must distinguish which SMN
in P1, P2 the patient is referring to by Q. To simplify, we assume only one of
(P1, P2) could be referred by Q. In practice, when there are n (where n > 2)
medications in a patient’s prescription we run the model on all the combinations
of the medications and rank them accordingly.
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Fig. 2. Medication inference model structure

3.1 Entity Boosted Two-Tower Neural Network

Motivated by the facial recognition problem, where the models evaluate the
similarity between images of faces [3], we apply a Two-tower neural network to
our problem. We regard the DMP as the query of each medicine and the SMNs
as the medication candidates. The purpose is to match the correct SMNs to the
DMP provided.

Descriptions can often be verbose and can contain a large amount of noise.
To improve the robustness and reduce noise, we have incorporated medical entity
based hard attention [4] using Amazon Web Services Comprehend Medical (CM)
[5] which is a natural language processing service to perform entity and relation
extraction.

For each instance of data, we use the generic name as the SMN in our model,
and generate DMPs from free-form text data that describe the usage of each
medication in patient friendly terms. To reduce the noise, we feed the description
to CM to extract entities. CM is able to extract relevant medical information
from unstructured text and classify extracted entities into five categories and 28
types. In this work we use the entities marked with types “dx name” (diagnostic
indicator), “treatment name”, “system organ site”, “swap”, “generic name”,
“procedure name”, “brand name”, “test name” as DMPs.
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Medication Inference Model. Figure 2 outlines the Medication Inference
Model (MIM) network. In this model, there are two different sets of unshared
embedding weights, where one is used to embed SMNs and the other DMP. We
use convolutional (CNN) layers [6] followed by pooling on top of the embedding
layer to get a vector representation of SMNs and DNP separately. We use cosine
distance to measure the separation between the two SMNs and DMP.

BERT-Based Model. It is natural to leverage models which prove to be suc-
cessful in solving question-answering problems to process our task. Here, DMP
are regarded as the patient’s query, with the n SMNs as the answer candidates.

We concatenate the DMP output with different SMNs separately and com-
bine them into a BERT [7] based multi-choice model [8]. The vector represen-
tations of the [CLS] tokens are used to represent the combinations of DMP with
each SMN, and are fed into a fully connected layer. Finally we use hinge loss for
ranking to compare the scale values with ground truth.

4 Experiments

4.1 Dataset and Evaluation Metrics

Synthetic Data Set. The training and test dataset are generated from
2,683 medication descriptions from the FDB1 PEM (patient education mod-
ule) dataset. FDB stands for First DataBank which is a known drug database
and medical device database provider. Each PEM file contains a patient facing
medication description including medication generic name, uses, warnings side
effects etc.2

The SMNs are collected from the generic name section and DMPs are gen-
erated from the “USES” section of the PEM files using CM as described in
Sect. 3.1. To evaluate the effect of the entity extraction component, we generate
another DMP set by randomly drawing n-grams (where n = [1, 2, 3, 4, 5]) from
the “USES” section of the PEM files as a replacement for CM.

Next, we use the SMNs and DMPs collected to generate our training and
test sets. We generate each instance starting with a DMP according to following
steps.

1. For each DMP, we generate a positive SMNs set which consist of SMNs
extracted from the same PEM file where the DMP is extracted from. It is
possible that one DMP may have multiple positive SMNs if the DMP is a
very general phrase. For example, the DMP “high blood pressure” may have
multiple SMNs since many medications can be used to treat hypertension.

1 https://www.fdbhealth.com/.
2 CommonNames, Warning, Uses, HowToUse, SideEffects, Precautions, DrugInterac-

tions, Overdose, Notes, MissedDose, Storage, MedicAlert.

https://www.fdbhealth.com/
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2. For each DMP, we also generate a negative SMN set. The negative SMNs are
all the medications covered by the PEM files excluding the positive SMNs
identified above and should follow the constraint that the entities extracted
from the “USES” section of the negative SMNs’ PEM files should have no
overlap with that of the DMPs.

3. Each instance in the training and validation data set consists of 1 posi-
tive SMN and n − 1 negative SMNs randomly selected from the SMN sets
described above. The label of each instance is indicating which SMN is posi-
tive.

For the training and validation splits, n is set to 2 in step 3 above, which
means there are two SMNs in each instance. The training and validation data
set contains 680K instances and 70% of them are used for training and 30% for
validation and testing.

For testing purposes, we generated four synthetic test sets with n in step 3 set
to 2, 3, 4, 5 separately to simulate the real situations where patients with chronic
disease in the U.S. usually have four to five medications in their prescription list
at a time.

Real Data Set. The real data set is generated based on 251 prescriptions col-
lected from the i2b2 data set3 which contains the de-identified patient discharge
summaries. Internal human annotators generate DMPs for each medication in
the prescriptions. It is observed that in a real prescription, multiple medications
may serve the same purpose and a general DMP could be used to refer to mul-
tiple medications in a prescription. In our current experiment, we assume the
ground truth of each DMP is only the medication used to generate the DMP in
a prescription. In this way, we will get the lower bound of the performance of
the models. For testing purpose, we limited the number of medications in each
prescription to be 10, 5, 4, 3, 2 respectively. For the test set with 10 as max num-
ber of medications, we go through all the 251 prescriptions and only select the
prescriptions that has less than 10 medications into our test set. We randomly
truncate the prescriptions in the 10 medication test set to 5, 4, 3, 2 medications
as the other test sets. Further more, in order to evaluate the situations where one
DMP may refer to multiple SMNs in a prescription, the annotators are currently
working on labeling all the SMNs that a DMP could refer to in a prescription
and if the model outputs one of the medications in the ground truth SMNs, the
test sample will be marked as success in future experiments.

We report accuracy as the main evaluation metric, i.e., the correctness of
selecting the positive SMN from n SMNs. When evaluating on the test data,
the model goes through all pairwise combinations of the SMNs and ranks all the
SMNs accordingly.

4.2 Experimental Details

For the CNN-based model, we test multiple word embedding models includ-
ing 200-dimensional BioWordVec [9,10] and 300-dimensional FastText word
3 https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/.

https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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embeddings [11] trained with 3,466 articles from the Mayo Clinic. The two
dimensional CNN layer consisted of 200 filters with window size 2, strip as 1
and no regularization. Batch size is set to 150 and we observed model conver-
gence after six epochs. For the pre-trained language model, we leverage Clinical
BERT [12], BioBERT [13], and original BERT models [7]. We used the default
settings for all BERT models as provided by [7]. Batch size is set to 32, learning
rate is set to 5 × 10−5 and dropout rate is set to 0.2. We observed the model
converged after 10 epochs. We trained and evaluated all the models using a Tesla
V100 GPU.

Baselines. When evaluating the performance of our model, we compare the
medication name inference performance with baseline models listed below.

– ARC-I [14]: ARC-I finds the representation of each sentence with CNN lay-
ers, and then compares the representation for the two sentences with a multi-
layer perceptron (MLP).

– ARC-II [14]: ARC-II improves based on ARC-I by calculating the interaction
features between sentences with CNN.

– ConvKNRM [15]: Conv-KNRM uses CNN to represent n-grams of various
lengths and soft matches them in a unified embedding space. The n-gram soft
matches are then utilized by the kernel pooling and a fully connected layer
to generate the final ranking score.

– MatchLSTM [16]: The matchLSTM sequentially aggregates the matching
of the attention-weighted question to each token of the answer and uses the
aggregated matching result to make a final prediction.

– MatchPyramid [17]: MatchPyramid generates a matching matrix which
represents the similarity between mention and candidate and then apply CNN
layers on top of the matrix followed by a MLP layer to calculate the similarity
score.

5 Results and Discussion

Table 1 provides the accuracy results for each model we experimented with on
the synthetic test data set. Number of candidates represent test data sets with
2, 3, 4, 5 medications in each test instance, as described in Sect. 4.1. We report
test results for each model with and without AWS Comprehend Medical as
“Entity-based Attention” and “Baseline” columns.

Table 1 demonstrates the robustness of MIM. We observe that MIM and
BERT based models outperform current state-of-the-art models such as ARC-
I and MatchPyramid across a different number of candidates. Table 2 further
compares the performance of two best performing models on real test set.

MIM outperforms BERT based models with a 7–9% improvement in accu-
racy. We believe the major reason for this is that MIM, by encoding SMN and
DMP separately, is able to encode the representation in a more robust way
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Table 1. Synthetic test set: For each model we report top1 accuracy including and
excluding entity-based attention.

Number of candidates

Model Baseline Entity-based attention

2 3 4 5 2 3 4 5

NormalBert 69.7 54.7 46.6 42.7 79.7 72.7 62.4 62.5

BioBert 73.4 59.8 51.9 46.4 81.5 74.8 66.2 66.4

ClinicalBert 73.5 57.8 51.9 47.4 79.5 74.4 64.8 62.7

ARC-1 65.2 46.2 37.5 33.4 76.8 66.8 58.6 59.4

ARC-2 64.0 48.1 39.1 36.5 75.7 65.7 62.1 57.0

ConvKNRM 65.4 52.0 42.6 38.8 76.7 66.6 60.7 57.3

MatchLSTM 64.9 50.8 40.9 35.4 82.4 70.9 62.6 58.3

MatchPyramid 59.5 45.0 36.5 33.5 74.0 58.0 58.0 54.1

MIM 73.9 57.9 48.9 49.7 87.7 80.8 78.9 76.9

Table 2. Real test set: For each model we report top1 accuracy.

Upper limit for number of candidates

Model 2 3 4 5 10

BioBert 83.10 73.50 67.00 61.8 52.70

MIM 83.50 74.50 69.50 63.60 53.80

in comparison to BERT based models which concatenate the representations
together using a special separator token. We also observe performance variation
of BERT models based on their pre-training. We found that domain specific pre-
training helps, giving 2-3% improvement when compared to the baseline BERT.

We observe the entity-boosted description gives robust results across all the
model settings achieving significant improvement in accuracy over non-entity
based models. This alleviates the problem of noise in the lengthy descriptions.

Furthermore we see that our MIM model, with a relatively simpler CNN
encoder as well as separate encoders for SMN and DMP, has the distinct advan-
tage of generating inference results with low latency. This is ideal for real-time
industrial settings. According to our experiments, the average latency for the
MIM model for five medications is 10ms, while, compared against BERT at
89 ms.

5.1 Medication Clustering Result

We apply k -nearest neighbor (KNN) clustering based on the CNN max pooling
output from the Two-tower neural network. The generic names of 2,683 med-
ications are represented by vectors of 200 dimension. The number of clusters
of KNN is determined by a Silhouette analysis [18] with result given in Fig. 3.
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The Silhouette analysis shows that clustering performs better when number of
classes is 31.

Fig. 3. Average Silhouette value for different number of clusters

Figure 4 shows the t-SNE visualization of the result where 2,683 medications
are grouped into 31 clusters. The figure illustrates that medications with same
effects, treating same disease or having similar drug types are mapped close to
each other.

Table 3. Examples of the DMP/SMN match and clustering results

(a) Diagnose (b) Symptom (c) Drug type

DMP High blood pressure,

strokes, heart attacks

Cough, coughing Antibiotic

Example SMN Amlodipine Promethazine Chloramphenicol

Nearby SMNs Perindopril, ramipril,

trandolapril, quinapril,

enalapril, isradipine,

lisinopril, sacubitril,

aliskiren, eplerenone

Dextromethorphan,

guaifenesin, expectorant,

antihistamine,

acetaminophen,

hydrocodone, zanamivir

Polymyxin b, gentamicin,

cefotetan, spiramycin,

gatifloxacin, piperacillin,

cephalexin, cefoxitin,

ofloxacin

Table 3 shows three examples of the clustering result. The nearby SMNs
are sampled from the same cluster which example SMNs belong to and ranked
according to their distance to the given SMN. The nature of the problem enables
and requires the inference model to group SMNs based on multiple dimensions.
We list examples from three dimensions and it is very natural for users to refer
to their medications by diagnosis, disease symptoms and drug type. For exam-
ple, coughing is a common symptom for multiple diseases including the common
cold, pulmonary diseases such as pneumonia, and even from seasonal allergies.
In column (b), the model is able to cluster medications that could relieve cough
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Fig. 4. t-SNE visualization of the clusters

symptom of different underlying causes, for example, promethazine and antihis-
tamine are used to treat allergies whereas zanamivir is used to treat and prevent
flu.

6 Related Work

Earlier work on medical concept normalization [1] relied on lexicon based string
matching and dictionary lookup to map limited number of variations of text
to a pre-defined medical vocabulary [19,20]. [21] introduced DNrom as the first
pairwise learning ranking model that compares associations between mentions
and entities of various disease. [22,23] then further leveraged deep learning mod-
els, convolutional neural network [22] and recurrent neural network models [24]
trained on large corpus of medical articles etc. Currently, researchers enhanced
the deep learning based model with different model structure to incorporate
context information, better process out of vocabulary (OOV) words and take
advantages of interaction features from different semantic levels [2,25,26].

With the success of deep learning, many neural network based models have
been proposed for semantic matching, and document ranking. Models such as
ARC-I [14] first compute the representation of the two sentences, and then
compute their relevance. Semantic/text matching techniques fits well to solve
the medical concept normalization problems when the number of candidates
is limited. As listed in [8], recently researchers have focused on developing
deep learning models to solve document retrieval, question answering, conver-
sational response ranking, and paraphrase identification [8] problems and intro-
duced state-of-the-art models such as ARC-I [14], ARC-II [14], ConvKNRM [15],
MatchLSTM [16], MatchPyramid [17], Bert [7].
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In recent years, natural language processing (NLP) techniques have demon-
strated increasing effectiveness in clinical text mining [5,27] . Electronic health
record (EHR) narratives, e.g., discharge summaries and progress notes contain
a wealth of medically relevant information such as diagnosis information and
adverse drug events. Automatic extraction of such information and representa-
tion of clinical knowledge in standardized formats [28] could be employed for
a variety of purposes such as clinical event surveillance, decision support [29],
pharmacovigilance, and drug efficacy studies.

This paper describes a problem that is a combination of the medical con-
cept normalization and semantic matching problem using medical entity based
hard attention. The nature of the problem presented in this paper requires the
solution be able to extract informations from short phrases with limited context
information.

7 Conclusion and Future Work

In this paper, we introduce a new problem common in the development of
medication voice interaction products. We evaluate the accuracy of different
solutions and show that our entity boosted MIM outperform baseline models.
The specialty of this problem is that the context information is very limited
when compared against other NLP tasks and the short length of the phrases
prevent us from leveraging other advanced techniques that rely on words rela-
tionship in a phrase. The evaluation result also show that the problem prefers
simple model structure. Since the phrases structure is very simple, the quality of
word embeddings is more important in this problem and keeping the embedding
weight unchanged is important when the training data is not sufficient enough
to enhance the relationship between words either due to the nature of the data
or small sample sizes.

We also observe the discrepancy between synthetic collected datasets from
real patients. For example, the combinations of the medicine on synthetic pre-
scriptions may not be valid from a practitioner’s or patient’s perspective. We
plan to further validate our model on real patient data to increase practicality.
Finally on top of comparing and evaluating on two medications samples, we plan
to experiment with more medications in each sample in training to closer mimic
real world scenarios.
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