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Abstract

Autophagy is an essential cellular mechanism involving the lysosomal degrada-
tion of cytoplasmic organelles or cytosolic components. Autophagy can be
induced by various stress stimuli including oxidative stress, hypoxia, pathogen
infection, and osmotic pressure, which in turn affects a variety of cellular
biological functions and plays a role of double-edged sword in determining the
fate of cells depending on different stress conditions, degrees of damage, and cell
model. We have summarized the molecular events involved in the process of
autophagy induced by cellular stress in this chapter.
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AAC Abdominal aortic constriction
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AMP Adenosine monophosphate
AMPK AMP-activated protein kinase
ATF Activating transcription factor
ATF4 Activating transcription factor 4
ATG101 Autophagy-related gene 101
ATG12 Autophagy-related gene 12
ATG13 Autophagy-related gene 13
ATG14L Atg14-like protein
ATG5 Autophagy-related gene 5
ATG9A Autophagy-related gene 9A
ATP Adenosine triphosphate
Bcl-2 B cell lymphoma-2
BH3 B cell lymphoma-2 homology domain 3
BNIP3 BCL2/adenovirus E1B-interacting protein 3
cGAS Cyclic GMP-AMP synthase
CHOP C/EBP homologous protein
CMA Chaperone-mediated autophagy
CQ Chloroquine
CRACs Ca2+ release-activated channels
CXCR4 C-X-C chemokine receptor type 4
E1 Ubiquitin activating
E2 Ubiquitin conjugating
E3 Ubiquitin ligase
eIF2α Eukaryotic translation initiation factor 2 alpha
ER stress Endoplasmic reticulum stress
ER Endoplasmic reticulum
F6P Fructose-6-phosphate
FIP200 FAK family kinase interacting protein of 200 kDa
FYCO1 FYVE and coiled-coil domain-containing 1
G6P Glucose-6-phosphate
G6PDH Glucose-6-phosphate dehydrogenase
GRP78/BiP 78 kDa glucose-regulated protein/binding immunoglobulin

protein
HCV Hepatitis C Virus
HIF-1 Hypoxia-inducible factor-1
HK II Hexokinase II
HSP Heat shock protein
HSPA8/HSC70 Heat shock 70 kDa protein 8
HSV-1 Herpes simplex virus type 1
ICS model Intermittent cold stress in C57BL/6 J mouse model
ICS Intermittent cold stress
IH Intermittent hypoxia
IRE1 Inositol-requiring enzyme 1
IRE1α Inositol-requiring enzyme 1α
IRF3 Interferon regulator 3
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IRGM Immunity-related GTPase family M
K-48 Lysine residue 48
K-63 Lysine residue 63
KFERQ Recognizes the signal peptide
LAMP2A Lysosomal-associated membrane protein 2A
LC3 Microtubule-associated protein light chain 3
LC3-II Microtubule-associated protein light chain 3-II
LIR LC3 interacts
LUBAC Linear ubiquitin chain assembly complex
MAP 1LC3B Microtubule-associated protein 1 light chain 3B
MAVS Mitochondrial antiviral signaling proteins
MeV Measles virus
mTOR Mammalian target of rapamycin
mTORC1 Mammalian target of rapamycin complex 1
NADPH Nicotinamide adenine dinucleotide phosphate
NDP52 Nuclear dot 10 protein 52
NLRP3 Nucleotide-binding oligomerization domain receptor, pyrin

domain-containing 3
NS4B Nonstructural protein 4B
NS5ATP9 Nonstructural protein 5A upregulation gene
OPTN Optineurin
OXPHOS Oxidative phosphorylation
p62 Protein sequestosome 1/p62
PAMPs Pathogen-associated molecular patterns
PE Phosphatidylethanolamine
PERK Protein kinase RNA-like ER kinase
PI3K Phosphatidylinositol 3-kinase
PI3P Phosphatidylinositol 3-phosphate
PINK1 Putative kinase protein 1
PKR Double-stranded RNA-dependent protein kinase
PLEKHM1 Pleckstrin homology and RUN domain containing M1
PRRS Pattern recognition receptors
R5P Ribulose-5-phosphate
RIG-I Retinoic acid-inducible gene I
ROS Reactive oxygen species
SINV Sindbis virus
SnRK1 Snf1-related protein kinase 1
SQSTM1 Sequestosome 1
TANK1 TANK-binding kinase 1
TAX1BP1 3’-UTR of Tax1-binding protein 1
TAX1BP1 Tax1-binding protein 1
TBC1D5 Tre-2/Bub2/Cdc16 domain family member 5
TIAM1 T-lymphoma invasion and metastasis-inducing protein 1
TLR Toll-like receptors
TOR Target of rapamycin
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TRIF Toll/IL-1R domain-containing adaptor-inducing IFNβ
TRPV1 Transient receptor potential vanilloid 1
TSC1 Tuberous sclerosis complex subunit 1
TSC2 Tuberous sclerosis complex subunit 2
ULK1 UNC-51-like kinase 1
UPR Unfolded protein reaction
UPR Unfolded protein response
UPS Ubiquitin-proteasome system
UVRAG UV irradiation resistance-associated gene
Vps34 Vacuolar protein sorting 34

6.1 Introduction

Autophagy is a process of dynamic changes of subcellular membrane structure in
eukaryotes and lysosome-mediated degradation of intracellular proteins and
organelles. There are three types of autophagic degradation, including
macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA),
mainly differing in the mechanism of cargo delivery to the lysosome, which have
been elaborated in these reviews [1, 2]. During macroautophagy, usually referred to
as “autophagy”, autophagosomes encapsulate part of the cytoplasm and organelles,
proteins, and other components that need to be degraded in the cell and fuse with the
lysosome to form an autophagolysosome, which degrades the contents of the
lysosome under the action of lysosomal enzymes and achieves the energy metabo-
lism needs of the cell itself as well as the renewal of certain organelles.

The autophagosome is a vacuole structure with a diameter of about 100 nm
composed of a double-layer phospholipid molecular membrane, the formation of
which marks the initiation of autophagy. The processing of phosphatidylethanol-
amine (PE), phosphatidylinositol 3-phosphate (PI3P), and other phospholipid
molecules is the key molecular event in autophagosome formation [3], which is
achieved by high-dimensional protein complexes due to large volume of phospho-
lipid molecules containing two 14–18 carbon fatty acid tails. The formation of
autophagosomes is a process precisely regulated by multiple protein complexes
such as ULK1, ATG14L, and ATG16L1, which can be divided into three stages,
including initial signaling stage, functional protein recruitment stage, and membrane
extension stage. During the initial signaling stage, ULK1 (autophagy-related gene
1, Atg1) stimulated by upstream signals forms a “ULK1 complex” with FIP200,
ATG13, and ATG101, which in turn significantly activates ULK1 and subsequently
triggers the functional protein recruitment stage. The activation of ULK1 can further
activate beclin-1 (Atg6), Vps34, ATG14L, UVRAG, and other proteins to form
“class III PI3K complex.”As a PI3P synthase, Vps34 is activated by formation of the
complex and thereby synthesizes a large amount of PI3P to recruit more autophagy-
related functional proteins, thus laying the foundation for the formation and
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extension of autophagosome membranes. In response to activated PI3P synthesis,
ATG16L1, ATG5, and ATG12 form a three-element “ATG16L1 complex” that
further transforms into a higher-dimensional 12-element complex. The complex
subsequently promotes the lipidation reaction of LC3 (Atg8) via connecting it to a
PE molecule, thus leading to formation of LC3-II anchored to the autophagosome
membrane. As a linker protein, LC3-II can assist in transporting the substances that
need to be degraded into the autophagosomes, which is also considered as a
distinguishable feature of autophagosomes.

When exposed to external stress stimuli, cells initiate a series of reactions in
response to cell pressure and protect themselves from potential damage. Autophagy
is one of the core pathways that mediates cellular stress response. In 1992, Ohsumi’s
team reported for the first time that nutrient-deficient conditions stimulated extensive
autophagic deg radation of cytosolic components in the vacuoles of yeast cells
[4]. Subsequent studies have shown that as a cellular stress response, a utophagy
can be induced by various stimuli, including oxidative stress, hypoxia, pathogen
infection, and osmotic pressure. In this chapter, we will discuss molecular events
involved in the process of autophagy induced by cellular stress.

6.2 Oxidative Stress and Autophagy

Oxidative stress refers to the imbalance between oxidation and antioxidation states
in the body, and the production of a large number of reactive oxygen species (ROS)
as well as the tendency to oxidation will damage organelles, especially mitochondria
[5]. So far, the only known mechanism for mitochondrial renewal is autophagy.
Current studies have shown that cellular ROS levels increase under stress conditions,
and H2O2 and O2

•� in ROS are early inducers of autophagy [6–12].
The mammalian target of rapamycin complex 1 (mTORC1) is involved in the

synthesis of proteins [13]. Under nutrient-rich conditions, mTORC1 is activated and
phosphorylates Atg13 (Ser258) and ULK1 (Ser757) to inhibit catalytic activation of
ULK1 complex (containing ULK1, Atg13, FIP200, and Atg101), thereby inhibiting
autophagy [7]. When glucose deficiency and glucose-6-phosphate (G6P) levels are
reduced, the glycolytic pathway and pentose phosphate pathway are inhibited,
resulting in reduced NADPH and ATP levels. Since NADPH is the common
substrate of glutathione reductase and thiol regeneration-related reductase and
provides the electrons needed for thiol redox homeostasis, the cellular antioxidant
capacity is reduced, and ROS production accordingly increases (Fig. 6.1) [6, 14, 15].

The exposed H2O2 and O2
•� actively regulate autophagy through at least three

different pathways. Excessive exposure of H2O2 and O2•� can induce the activation
of AMP-dependent protein kinase (AMPK) [16, 17]. AMPK stabilizes TSC1–TSC2
complex and shuts down mTORC1 signaling by phosphorylating TSC2, which
removes the inhibition of mTORC1 on autophagy induction [18] (1). AMPK also
directly phosphorylates ULK1 (Ser777 and Ser317) and activates the catalytic
function of ULK1, which subsequently phosphorylates its interaction factors
(Atg13 and FIP200) at other residues different from mTORC1. Activated ULK1
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complex recruits class III PI3K complex through activating molecules in beclin-1-
regulated autophagy Ambra1, which contributes to the extension of autophagic
bubble membrane [19, 20] (2). Adaptor molecule p62 has been shown to bind to
ubiquitinated proteins and target them to LC3-II to induce autophagy [21, 22], and
the study has indicated that p62 may be regulated by redox signaling [23]. In
addition, ROS can also promote ubiquitination of the substances to be degraded,
which promotes their recognition by p62 and targeted transport to the
autophagosomes via binding to LC3-II [7] (3). ROS also causes oxidation of
Cys81 on Atg4, resulting in inactivation of its “delipidating” activity on LC3,
which facilitates accumulation of LC3-II and helps to extend autophagy (Fig. 6.1)
[6, 24].

6.3 Endoplasmic Reticulum Stress and Autophagy

Endoplasmic reticulum (ER) stress involves accumulation of misfolded and
unfolded proteins in the endoplasmic reticulum and disturbance of calcium ion
balance [25]. The unfolded protein reaction (UPR) is the main pathway of ER stress
response, which can help misfolded and unfolded proteins return to normal structure
[26, 27]. UPR is mainly regulated by three ER membrane-associated sensor proteins,
namely, inositol-requiring enzyme 1α (IRE1α), protein kinase RNA-like ER kinase
(PERK), and activating transcription factor (ATF) 6 [28]. Under physiological
conditions, the ER chaperone GRP78/BiP binds to ER membrane-located ATF6,
IRE1, and PERK proteins. When misfolded proteins accumulate in the ER lumen,
BiP/GRP78 dissociates from the three proteins and binds to unfolded proteins, thus
activating these sensors and triggering UPR system to clear the accumulated proteins
[25]. However, when the accumulation exceeds the UPR clearance capacity, cells
may initiate autophagy as a scavenger to the point of protecting cells from damage
[29]. Emerging evidence has shown that UPR sensors, PERK and IRE1, are
implicated in mediating ER stress-induced autophagy [30, 31]. On the other hand,
Ca2+ plays a vital role in ER stress-induced autophagy. During ER stress, Ca2+ is
released from the ER lumen to the cytosol, thereby leading to the activation of
AMPK and inducing autophagosome formation via CaMKKβ [32]. ER stress can
also mediate autophagy by enhancing the interaction between Ca2+ binding protein
caldendrin and LC3, which in turn reduces ER stress [33]. Taken together,
autophagy can be induced through Ca2+- and UPR-dependent mechanism under
ER stress (Fig. 6.2).

6.4 Hypoxia-Induced Autophagy

Oxygen plays an important role in cellular respiration and energy metabolism. It was
found that the number of autophagosomes increased under the condition of hypoxic
culture [34]. HIF-1 is a hypoxia-inducible factor closely related to hypoxia-induced
autophagy [35]. HIF-1 enhances the activity of BNIP3 by acting on BH3 site, so as
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to regulate the interaction between Bcl-2 and beclin-1 as well as inhibit the activity
of mTOR, thus stimulating the occurrence of autophagy [36, 37]. Moreover, hypoxia
can also cause an increase in intracellular AMP/ATP ratio, thus stimulating AMPK
that can promote autophagy by inhibiting the activity of mTOR [38]. Other studies
have shown that mRNA levels of autophagy genes LC3 and ATG5 increase under
hypoxia, which are regulated by PERK-dependent ATF4 and CHOP [39]. In addi-
tion, intermittent hypoxia (IH) activates endoplasmic reticulum stress and induces
autophagy through the PERK/eIF2/ATF4 signaling pathway, thereby reducing
IH-induced apoptosis [40] (Fig. 6.3).

6.5 Osmotic Stress and Autophagy

Normal osmotic pressure is crucial for maintaining cellular homeostasis. However,
osmotic stress may occur under both physiological and pathological conditions
[41]. As an important stress response, how does autophagy respond to cellular
osmotic pressure? Hypertonic stress has been shown to induce autophagy in some
organisms [42, 43]. Jiang et al. found that hyperosmotic stress could activate
autophagy of nucleus pulposus cells through Ca2+-dependent AMPK/mTOR path-
way, thereby promoting the degradation of SQSTM1/p62 and inhibiting apoptosis
under hyperosmotic condition, so as to ensure the survival of nucleus pulposus cells
[44]. Similarly, Daniel et al. found that polycystin-2, a membrane protein of the
polycystin family, downregulated mTOR pathway and thus promoted autophagy to
act as an adaptive mechanism of cell survival under hyperosmotic stress [41]. In
plants, osmotic stress also inhibits the TOR complex by activating an ortholog of
mammalian AMPK and Snf1-related protein kinase 1 (SnRK1) and hinders the
inhibitory effect of TOR on Atg1 or other unknown downstream regulatory factors
and finally induces autophagy [45, 46]. The above findings indicate that autophagy
tends to be activated as a protective mechanism response to osmotic stress.

6.6 Infection-Induced Autophagy

6.6.1 Bacterial Pathogen Infection

Selective autophagy is an important pathway to remove intracellular pathogens (e.g.,
Mycobacterium, Salmonella, Escherichia coli) [47–49]. In the case of pathogen
invasion, host cells respond to the warning signals and damaged cell membranes
through the family of galectins [50]. This will help the specific pathogens coated in
ubiquitin by E3 ligases to generate a “kill-me” signal within the cells [50–52]. Sub-
sequently, the autophagy receptor proteins (p62, NDP52, OPTN, TAX1BP1) recog-
nize ubiquitinated pathogens and deliver them to autophagosomes for subsequent
degradation [53–56].

Ubiquitination of pathogens needs three enzyme cascade effects: ubiquitin
activating (E1), ubiquitin conjugating (E2), and ubiquitin ligating (E3) [57]. The

6 Autophagy in Cellular Stress Responses 141



Fi
g
.
6.
3

S
ch
em

at
ic

pr
es
en
ta
tio

n
of

hy
po

xi
a-
in
du

ce
d
au
to
ph

ag
y.

H
yp

ox
ia

en
ha
nc
ed

th
e
ac
tiv

ity
of

B
N
IP
3
by

pr
om

ot
in
g
H
IF
-1
α,

w
hi
ch

di
ss
oc
ia
te
s
th
e

in
te
ra
ct
io
n
be
tw
ee
n
B
cl
-2

an
d
be
cl
in
-1
.O

n
th
e
ot
he
r
ha
nd

,h
yp

ox
ia
in
du

ce
s
au
to
ph

ag
y
by

in
hi
bi
tin

g
th
e
ac
tiv

ity
of

m
T
O
R
.A

n
in
cr
ea
se

in
A
M
P
/A
T
P
ra
tio

is
al
so

ob
se
rv
ed

in
hy

po
xi
c
ce
lls
.M

ea
nw

hi
le
,m

R
N
A
le
ve
ls
of

au
to
ph

ag
y
ge
ne
s
ar
e
in
cr
ea
se
d
th
ro
ug

h
th
e
re
gu

la
tio

n
of

A
T
F
4
an
d
C
H
O
P
.I
H
ca
n
st
im

ul
at
e
E
R

st
re
ss

an
d
pr
om

ot
e
th
e
P
E
R
K
/e
IF
2α

/A
T
F
4
si
gn

al
in
g
pa
th
w
ay

to
in
du

ce
au
to
ph

ag
y

142 J. Li and R. Liu



ubiquitin coat produced by E3 ligases can attract autophagy receptor proteins (p62,
NDP52, OPTN, TAX1BP1), which increases the ability of autophagy to eliminate
pathogens and limit bacterial proliferation [48, 58]. The ubiquitin coat consists of
several different linkages such as linear K-63 and K-48, and all the linkages can
perform as “eat me” signals in triggering autophagy to remove the pathogens
[48, 59]. However, for proteins, the way of ubiquitin connection will affect
subsequent degradation pathways of these proteins. The proteins wrapped by K-63
ubiquitin chains are mainly cleared by autophagy, while the proteins wrapped by
K-48 ubiquitin chains are subjected to be degraded by proteasomes [60, 61]. Several
E3 ligases have been identified to be involved in ubiquitinating bacterial pathogens
and targeting them for selective autophagy [62–65]. Parkin is one of the most
thoroughly studied E3 ligases, which is required for the ubiquitination of Mycobac-
terium tuberculosis and Salmonella typhi as well as subsequent autophagy-mediated
degradation [49, 62]. The E3 ligase LRSAM1 is an important ligase in the process of
clearing many intracellular bacterial pathogens such as S. typhimurium, Escherichia
coli, and a Shigella flexneri [63]. Other E3 ligases such as ARIH, HOIPI, and
LUBAC are also involved in the ubiquitination of bacterial pathogens [64, 65].

In selective autophagy, the autophagy adaptor proteins are a bridge between the
ubiquitinated cargoes to be degraded and the newborn autophagosomes. The
autophagy adaptor proteins, including ULK1/2, FYCO1, TBC1D5, PLEKHM1,
and TIAM1, target the ubiquitinated substrate degradation by driving autophagy-
lysosome pathway without degradation of themselves [66–71]. However, under the
conditions caused by bacterial pathogen infection, the autophagy receptor proteins
(such as p62, NDP52, OPTN, TAX1BP1) can act as the adaptor proteins to promote
the maturation of autophagosomes and degrade along with the pathogens [53–56,
72, 73]. For example, during the Salmonella infection, (1) p62 recognizes the targets
of the E3 ligase ARIH, HOIP1, and LRSAM1 and then is recruited into Salmonella
and used as a target for autophagy degradation [74]. (2) NDP52 interacts with
galectin 8 to help recruit TANK-binding kinase 1 (TNK1) to phosphorylate
NDP52. NDP52-TBK1 is the first responder before E3 ligase LSRAM1
ubiquitinates bacteria, which can help NDP52 target bacterial autophagy
[50, 75]. LC3 interacts with the (LIR) domain of NDP52 to deliver bacteria into
autophagosomes and limit its proliferation [54]. (3) M1 polyubiquitination on the
surface of bacteria is recruited by the E3 ligase complex LUBAC, and then OPTN
recognizes LUBAC and targets the bacteria for autophagy degradation
[64]. (4) TAX1BP1 interacts with myosin VI to induce the fusion of autophagosome
and lysosome in Salmonella [56].

The E3 ligase and autophagy receptor proteins are important in the selective
autophagy of bacterial pathogens. Different autophagy receptor proteins display
similar functions in targeting bacterial species for autophagy degradation. However,
there are relatively few types of E3 ligase that have been clarified, and the
ubiquitination (single ubiquitin or polyubiquitination) degree of ubiquitin chains
(K-63, K-48, K-27) and the mechanisms in different infectious bacteria remain to be
further studied.
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6.6.2 Virus Infection

During viral infection, autophagy may be induced by adsorption, invasion, mem-
brane fusion, protein synthesis, and other steps in the viral replication cycle [76–
78]. At first, the adsorption of virions can induce autophagy [79]. For example, in
measles virus (MeV) infection, human surface pathogen receptor CD46 induces
autophagy by interacting with the Vps34-beclin-1 complex via the CD46-Cyt1/
GOPC pathway [80–82]. MeV can also activate autophagy by targeting immunity-
related GTPase family M (IRGM) [83, 84]. Moreover, autophagy is also activated
during viral membrane fusion. The fusion of HIV-1 envelope glycoproteins gp120
and gp41 with the CD4 and CXCR4 receptors of uninfected CD4+ T cells induces
autophagy [78, 85]. Studies have shown that CXCR4 phosphorylates and activates
p53, which increases the expression of Bax and activates the mitochondrial death
pathway, thereby resulting in the death of uninfected CD4+ T cells [86]. Another
study suggested that autophagy activation may be also associated with increased
bioactive lipids and ROS during membrane fusion [87].

After the membrane fusion, the viral genome activates different pattern recogni-
tion receptors (PRRs) such as retinoic acid-inducible gene I (RIG-I) and toll-like
receptors (TLRs), and PRR induces autophagy by recognizing pathogen-associated
molecular patterns (PAMPs) [88–90]. After TLRs recognize viral genome, the
myeloid differentiation primary response protein MYD88 and adaptor molecule
1 (TRIF) will be recruited. TLR then stimulates MYD88 or TRIF to bind to
beclin-1, which dissociates beclin-1 from the inhibitory complex Bcl-2 and induces
autophagy [89, 91]. After being stimulated by viral dsRNA, RIG-I transmits signals
to mitochondrial antiviral signaling proteins (MAVS) to activate interferon regulator
3 (IRF3), inducing the expression of IFNα/β and IFN target genes [88]. Double-
stranded RNA-dependent protein kinase R (PKR) is activated by interferon and
binds to beclin-1 in the Vps34-beclin-1 complex to initiate autophagosome forma-
tion. PKR can also induce autophagy by inhibiting protein translation through
phosphorylating and inactivating eukaryotic initiation factor 2 (eIF2) [89, 92]. During
DNA virus infection, the DNA sensor cyclic GMP-AMP synthase (cGAS) competes
with the autophagy inhibitor Rubicon to bind to beclin-1, thereby triggering
autophagy and stimulating the degradation of cytoplasmic viral DNA [93].

The viruses can induce autophagy not only directly through the interaction
between its own proteins and autophagy-related proteins but also indirectly by
inducing cellular stress [85, 94]. Take hepatitis C virus (HCV) infection as an
example: the NS3/4A protease of HCV can bind to the autophagy-related protein
IRGM to induce autophagy [95]. The NS4B protein of HCV has been shown to
induce LC3 lipidation and autophagosome accumulation and may form complexes
with Rab5, hVps34, and beclin-1 to induce autophagy [96, 97]. NS5ATP9 is a
functional protein involved in DNA damage response, cellular signal transduction,
and cell death. It has been reported that HCV NS5A upregulates the expression of
beclin-1 via NS5ATP9 and may therefore induce autophagy [98–100]. A recent
study shows that the host endoplasmic reticulum transmembrane protein SCOTIN
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interacts with NS5A of HCV and induces autophagic degradation, thereby inhibiting
virus replication [101].

On the other hand, HCV infection may induce ER stress, which enables the
unfolded protein response (UPR) to induce autophagy and enhance protein degrada-
tion, thus alleviating ER stress [102, 103]. At the same time, ER stress releases
calcium ions from the endoplasmic reticulum, which increases the activity of
mitochondria, leading to the production of excessive ROS and causing oxidative
stress. The damaged mitochondria are then degraded by targeted mitophagy
[104, 105]. Another study has shown that HCV infection induces the expression
of the protein kinase PINK1 and its substrate parkin (an E3 ubiquitin ligase), which
are meanwhile recruited to the mitochondrial membrane to induce mitophagy
[94, 106].

In the autophagy induced by viral infection, a few viruses such as HSV-1 and
SINV are targets of xenophagy [107, 108]. The mechanism is that the host
recognizes the ubiquitin chain on the virus and targets the virus particles to the
autophagosome for degradation [109]. This is similar to the mechanism by which a
bacterial pathogen infection induces autophagy. But in most cases, autophagy is
induced by viral components such as nucleic acids and proteins or indirectly
stimulated by viral infection-mediated cellular stress.

6.7 Autophagy Under Heat and Cold Stress

Autophagy and the heat shock response are two cellular protein homeostasis
systems, the former occurring only in eukaryotes while the latter existing in all
prokaryotes and eukaryotes [110]. The heat shock protein (HSP) chaperone system
can regulate the folding of newborn peptides and the transport of mature proteins
[111, 112]. When cells are under heat stress, the expression of the molecular
chaperone HSP increases. HSP promotes the degradation of irreversible protein
aggregation during heat stress through ubiquitin-proteasome system (UPS) and
chaperone-mediated autophagy pathways [111, 113]. For example, in chaperone-
mediated autophagy, heat shock 70 kDa protein 8 (HSPA8/HSC70) recognizes the
signal peptide (KFERQ) at the N-terminal of the cytosolic protein and then binds it
to lysosomal-associated membrane protein 2A (LAMP2A) followed by subsequent
degradation in lysosomes [114].

A new research suggests that in response to cellular stress, cells prioritize the heat
shock response over autophagy in order to ensure protein homeostasis. When the
two systems are activated, the heat shock response can inhibit autophagy
[115]. Overexpression of HSP70 protein is the main executor of heat shock response
[116]. In the cell culture model, overexpression of HSP70 inhibits starvation-
mediated increase of LC3 and the degradation of p62, because LC3 and p62 are
respectively involved in the elongation of autophagosome membranes and the
degradation of autophagosomes, suggesting that overexpression of HSP70 signifi-
cantly inhibits starvation-induced autophagy [115, 117, 118]. Moreover, this inhibi-
tion may be related to the activation of Akt/mTOR pathway. HSP70 phosphorylates
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mTOR by inducing the phosphorylation of Akt, leading to the inhibition of
autophagy [19]. Knockdown of heat shock transcription factor 1 (HSF1) leads to
accumulation of misfolded proteins, which increases the lipidation of LC3
associated with autophagosome formation and promotes hunger-induced
autophagy [115].

According to the researches on cold stress, severe cold exposure can promote the
oxidative stress of organisms and induce the increase of ROS and the damage of
mitochondria. Meanwhile, cold stress also plays an important role in the regulation
of autophagy [119–122]. Transient receptor potential vanilloid 1 (TRPV1) is a
nonselective cation channel with high permeability to calcium ions, which can be
activated by a variety of endogenous and exogenous physical or chemical stimuli
and plays a key role in pain and temperature perception [123, 124]. In a study of cold
stress and pressure overload [122], it was found that pressure overload produced by
abdominal aortic constriction (AAC) treatment of mice led to upregulated TRPV1
expression, phosphorylated autophagy regulator AMPK, downregulated autophagy
marker protein p62, and increased ratio of LC3 II/LC3 I. And subsequent continuous
cold exposure not only did promote autophagy by significantly enhancing the
regulation of TRPV1, AMPK, and p62 by AAC surgery but also increased the
production of ROS and mitochondrial damage induced by pressure overload.
Under pressure overload, cold stress-induced ROS production may help induce
AMPK activation [125]. Moreover, TRPV1 promotes autophagy dependent of
ROS and AMPK [126]. Therefore, it is speculated that in the state of pressure
overload, the upregulation of TRPV1 expression induced by cold stress may pro-
mote excessive autophagy [122].

A study found that the mice exposed to intermittent cold stress (ICS)
demonstrated induced mitochondrial dysfunction and autophagy, reflected by sig-
nificantly increased transcription levels of autophagy-related genesMAP 1LC3B and
BECN1 that respectively encodes LC3 and beclin-1 [121]. Accordingly, another
study showed increased LC3 II/LC3 I ratio and observable marks of autophagosome
vesicles in cells exposed to mild cold shock, suggesting that the autophagy pathway
can also be activated under mild cold stress [127].

There are few studies on autophagy-related cold stress, and the regulation of
autophagy may not be directly affected by cold stress. Some have been accompanied
by a combination of oxidative stress. For example, in studies on cold stress and
pressure overload, cold exposure itself has little impact on the generation of
autophagy regulators and ROS as well as can only enhance the effect of pressure
overload on autophagy promotion. However, the mechanism of heat stress-induced
autophagy is more complex. It has been reported that autophagy and the heat shock
response are two systems in protein homeostasis complementing each other under
certain conditions, but the underlying molecular mechanisms remain to be further
explained.
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6.8 Autophagy Inducers or Inhibitors

At present, some typical autophagy inhibitors including 3-methyladenine (3-MA),
chloroquine (CQ), and hydroxychloroquine have been clearly clarified [128]. 3-MA
inhibits autophagy by inactiviting PI3K [129], and CQ exerts inhibitory effect by
disrupting the fusion of autophagy lysosomes and blocking autophagy flux
[130]. Chemicals that target the autophagy-related gene themselves or key upstream
autophagy regulatory proteins may alter the levels of autophagy. Sulfosalicylic acid
has been shown to reduce autophagy of cachectic cancer mice in vivo [131]. On the
contrary, there are also some chemicals or drugs showing a promotive effect on
autophagy. For example, inflammatory bowel disease drug corticosteroids [132]
could induce autophagy of bone cells, L6 myoblasts, and lymphocytes through
mTORC1 inhibition [133–135]. By inhibiting mTOR, Akt, and ERK1/2 phosphory-
lation, harmaline can regulate B16 cell autophagy [136]. Similarly, sinomenine
inhibits the PI3K/Akt/mTOR signaling pathway in melanoma cells, which reduces
the proliferation of melanoma cells by stimulating autophagy and promoting the
apoptosis of melanoma cells [137]. In conclusion, different chemicals or drugs have
dual effects on regulation of autophagy, and the treatment of some diseases by
targeting autophagy has already become the focus of researches.

6.9 Conclusions and Perspectives

As an important stress response, autophagy is closely related to the development of
various diseases. In traditional view, autophagy serves as a pro-survival mechanism.
However, there is also large quantity of evidence demonstrating that the excessive
activation of autophagy is disadvantageous for cell survival. For example, hypoxia
promotes autophagy by inhibiting the mTOR/NLRP3 pathway, which reduces the
expression of inflammatory genes in Crohn’s disease and improves the inflammatory
response [138]. Another study also demonstrates that autophagy may play a protec-
tive role in ischemic hypoxia injury [139]. In a variety of tumor cells, autophagy is
usually induced through HIF-1 [140, 141], ATG9A [142], AEG-1 [143], and other
pathways under hypoxia environment, thereby promoting the proliferation and
metastasis of tumor cells and reducing the chemical sensitivity of tumor cells. In
summary, autophagy plays a role of double-edged sword in determining the fate of
cells, which may change depending on different stress conditions, degrees of
damage, and cell models. Nevertheless, the manipulation of stress-induced
autophagy can become a treatment strategy for related diseases.
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