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Abstract. The development of knowledge graph needs the support of a vast quan-
tity of data. However, the amount of data increases rapidly is placing increasing
demands on machines. Centralized data storage requires high-performance hosts
to store data, which is costly and have single point of failure. Distributed data
storage can reduce the cost of the machine greatly, and there is no single point of
failure, but it has requirements for partition and storage of data collection. In the
knowledge storage of specific domain, the way of graph data partition and storage
vary from the different domain knowledge. To solve the above problems, a scheme
of graph partition and distributed storage for domain-specific knowledge graphs
is proposed. The proposed graph partition scheme pays attention to the correla-
tion between the data, and divides the nodes affiliated each other into the same
or similar partition. A distributed aggregation storage scheme is designed, which
makes full use of cluster performance and solves the problem of data consistency
during data insertion and update. The proposed distributed storage scheme based
onHBase combines Neo4j to realize visual query effectively. Experimental results
show the efficiency and the effectiveness of the proposed method in partition time,
the number of edge-cut and update time.

Keywords: Knowledge graph · Distributed storage · Graph partition ·
Visualization

1 Introduction

The rapid development of information and Internet technology has led to the continuous
increase in the scale of data and an increasing demand for its application. As a typical
application of knowledge data in a specific field, knowledge graphs can further explore
the internal connections of various knowledge to infer new knowledge based on the visu-
alization and data analysis [1]. Therefore, in addition to being used in intelligent question
and answer system [2], intelligent search system [3] and personalized recommendation
[4], knowledge graphs are also widely applied in different domains [5, 6]. For example,
using an anti–fraud knowledge graph of credit card application, we can quickly query
whether an entity has fraud risks and analyze whether a relationship is suspicious. We
can also use an enterprise knowledge graph for enterprise risk assessments. Financial
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knowledge graphs can be utilized to predict financial risks and investment. However,
faced with the explosive growth of data scale, how to effectively store and manage the
knowledge graphs will face enormous challenges.

The graph database organizes data by entity dimensions, which can better obtain the
attributes of an entity and its relationship with other entities. So it is more efficient for
identifying the characteristics of entities. Therefore, the mainstream method of knowl-
edge graph storage is utilizing graph database at present. The centralized storage pattern
can manage only one server. Although it is easy to implement, there are problems such
as the inaccessibility of data caused by single point failure and the inability to meet the
storage requirement of big data. The multi-point backup of distributed storage can effec-
tively solve the impact of single point of failure on data query. The dynamic expansion
feature enables the distributed storage pattern with great scalability, which can meet
the continuously increase of the amount of data. At the same time, it can also alleviate
the excessive processing pressure on a single server, so as to raise the speed of query.
However, knowledge graphs in different fields have their own features. If a unified dis-
tributed storage model is adopted, the characteristics of the graph cannot be satisfied.
So, it is of great significance to design a corresponding distributed storage model for the
domain-specific knowledge graph.

To this end, this paper conducts in-depth research on knowledge graphs in spe-
cific fields, and proposes a distributed storage and query method for domain-specific
knowledge graphs. The main contributions of this patter are as follows:

• A graph partition method based on node density and modularity is proposed, which
applies the node density to initially divide the graph, and then usemodularity detection
to assign the remaining nodes to the more close-knit partitions. So far as possible to
ensure that closely connected nodes and their relationships are stored centrally on a
server to reduce network communication overhead.

• A distributed aggregation storage mode is designed. This storage schema makes full
use of cluster performance, which can effectively reduce the redundancy overhead
caused by repeated data storage. At the same time, it solves the problem of data
consistency during data insertion and update.

• In order to realize the distributed storage and query of domain-specific knowledge
graph, we design to combines HBase distributed database storage and Neo4j visual
query effectively. Related entities and relationships in HBase are extracted according
to the query semantics frommaster node. Then the information is imported into Neo4j
to form sub-graphs that users concern for visual display.

The rest of this paper is organized as follows. In Sect. 2, we review related works.
The details of the storage and query are discussed in Sect. 3 and 4. Experimental results
and analysis are shown in Sect. 5. We finally conclude in Sect. 6.

2 Related Work

2.1 Knowledge Graph Storage

The knowledge graph is composed of nodes and relationships. Through the association of
different knowledge, a network-like knowledge structure is formed to intuitively model
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various real-world scenarios. There are two main current mainstream ways to store the
knowledge graphs.

The first kind is RDF storage [7]. An important design principle of RDF is that the
data should be easy to publish and share. But RDF stores data in the form of triples
and does not contain attribute information, meanwhile there are problems such as high
update and maintenance costs. The other is graph database storage. Compared with the
RDF storage, the graph database is more general. It generally takes attribute graphs as
the basic representation form, which realizes the storage of graph data by nodes, edges,
and attributes in the graph structure. So it is easier to express real world business sce-
narios. Typically, open source graph databases are Neo4j [8], Arangodb [9], etc. Since
the database itself has provided a perfect graph query language and supports various
graph mining algorithms, it has efficient graph query and search functions. However,
the distributed storage of graph database is expensive. With the growth of graph scale,
distributed storage has become the mainstream. How to reduce the overhead of graph
database distributed storage has become one of the research hotspots of knowledge graph
storage.

2.2 Graph Partition

The knowledge graph stored in the graph database is to represent the relationship struc-
ture of a certain thing in the form of a graph, which is composed of nodes and edges and
attributes. Therefore, the data partition problem of knowledge graph can be transformed
into graph partition problem.

The problem of graph partition has been extensively studied in many application
fields. Finding the optimal partition of graphs is anNP-complete problem [10], andmany
solutions have been proposed. In recent years, several multi-level partition algorithms
have been proposed [11–13]. The idea is to coarsen large graphs into small ones, and
then apply classic algorithms on the small graph. However, the optimal partition on
the roughened graph may not be suitable for realistic scale-free graphs. In addition,
the coarsening algorithm is very expensive and cannot be scaled on a graph of large-
scale nodes. To improve scalability, several parallel partitioning solutions have been
proposed. The JA-BE-JA algorithm [14] combines simulated annealing algorithm and
datamigration algorithm for edge cutting and point cutting, and uses the heuristicmethod
centered on vertex to solve the equilibrium graph partitioning problem by processing
each vertex of the graph data in parallel. DFEP [15] randomly assigns a partition for
each node and gives an initial funding. Each node uses its funding to find its neighbors.
The principle of random selection has a certain influence on the stability of the partition
quality.

2.3 Semantic Query

In this paper, the query processing techniques for knowledge graphs on existing graph
databases are investigated.Neo4j is the currentmainstreamgraphdatabase system,which
uses Cypher language to perform centralized query of graphs. Themain clause in Cypher
is the MATCH clause, which indicates the matching of a graph pattern on the property
graph. And an empty table is added to the matching result to form a new table as a



Distributed Storage and Query for Domain Knowledge Graphs 119

result. With the scale of graphs keeping growing, the index and maintenance efficiency
of centralized processing methods is greatly reduced and replaced by distributed query
processing technology. Compared with the centralized processing method, distributed
query processing assigns the sub-graphs among different compute nodes, decomposes
the query graph according to the data division, and realizes the parallel query on each
compute node. GeaBas graph database can query the relationship information quickly
and efficiently through the unique data organization method and distributed parallel
computing algorithm. JanusGraph is a distributed graph database, which is an attribute
graph database system that supports the TinkerPop framework. Its query mechanism is
Gremlin graph traversal language.

3 Distributed Storage Based on HBase

3.1 Graph Partition Based on Node Density and Modularity

In order to ensure the high-cohesion and low-coupling of graph partition, closely related
nodes and relationships are divided into a sub-graph tominimize network communication
overhead. This paper proposes a graph partition method based on node density and
modularity (GP-NDM). Because of data increasing rapidly and complex relationships
in specific fields, GP-NDM first selects hotspot nodes (nodes with large degrees) as the
initial partition according to the node density. Then it uses the modularity to detect the
partition effect, and the graph partition is completed by dynamically adding nodes. The
algorithm in this paper effectively avoids the poor partition due to the high degree of
data aggregation.

If there are N storage servers, first the N nodes with the largest degrees and no direct
relationship (i.e., the direct relationship (vi, vj) is not allowed, the indirect contact (vi, vk),
(vk, vj) exists) are selected randomly. For all the remaining nodes, GP-NDM calculates
the modularity when joining a partition and adds each node to the server that makes the
modularity larger, so as to ensure the tightness of internal connections in the sub-graph.
The modularity formula is given as follows:

Q = 1
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Aij represents the edges weights between two nodes. Since in this paper the edge in
the knowledge graph is a relation, rather than a edge with weight, the weight of the edge
is regarded as value 1. The ki indicates the degree of node i. ci represents the community
to which the node i belongs. The m is the sum of the weights of all edges. The formula
of modularity can be simplified as:
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∑
cin represents the sum of weights in community c.

∑
tot represents the sum of

the weights connected to the nodes within the community c. As the value of modularity,
Q represents the degree of tightness of nodes within the community, the larger the
modularity, the better the community partition. An example is illustrated in Fig. 1.

Fig. 1. The directed data graph G Fig. 2. The partition result of G

Suppose that a node in graph is assigned to m1, it can be seen from formula of
modularity, the modularity degree before moving is

Q1 =
[∑
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The modularity after assigning the node i to m1 is Q2. Ei indicates that the number
of new edges after node i join m1.

Q2 =
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cin + Ei
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−
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]

(4)

The gain of the modularity is:

�Q = Q2 − Q1 = Ei

2m
− ki

∑
tot

2m2 (5)

Aftermodularity detection, each node is assigned to corresponding servers according
to the criterion of maximum modularity. The results are shown Fig. 2. The specific
algorithm is shown in Algorithm 1.



Distributed Storage and Query for Domain Knowledge Graphs 121

Algorithm 1 GP-NDM Algorithm
Input: G(V,E) N
Output: N-way partition results 
1 G’=G, Ni={0}(1≤i≤n);
2 N={N1,N2,N3,....Nn},q= ∞− ;
3 foreach(Ni in N(N1,N2,...Nn)) do
4 dispatchInitNode(Ni,V);
5 C the index of community of each nodes of G’;
6 Initialize each nodes with its own community;
7 foreach(Vk in G(V,E)) do
8 foreach(Ni in N(N1,N2,...Nn)) do
9 while q<Q(G’,C) do
10 q=Q(G’,C);
11 if(LOAD(Ni<1.3*AVG(LOAD(Ni)) then
12 chooseServer(N);
13 C= MoveNodes(G’);
14 G’=Aggregate(G’,C);
15 C=put each node of G’ In its own community;
16 else select another server;
17 return the N-way partition results;

3.2 The Design of Distributed Storage Mode

Faced with enormous entities and relationships, the knowledge graph storage access sys-
tem needs to design a scalable storage schema to enhance the storage performance. This
paper takes the knowledge graph in the financial domain as an example to illustrate. We
design the storage mode based on HBase, and store enterprise entities and relationships
in it.

This paper takes full advantage of the sparse, distributed, consistent, multidimen-
sional sorting characteristics of HBase. And it is designed as a distributed storage model
with a single table and multiple-column clusters. The mode not only can effectively
avoid data redundancy, but also has the overall storage load distribution balance, pre-
venting the query nodes from re-traverse all entries to meet the need for scalability of
the knowledge graph storage. The storage mode is shown in Fig. 3.

As shown in Fig. 3, the distributed storage mode designed in this paper uses a table
for each entity type to store relationships and attribute values between entities. Each
row stores the attribute values and relationship objects of an entity. The row key stores
the table name to which the entity belongs, the entity and another entity associated with
it. The attributes store the entity’s attribute values, and object stores the corresponding
entity. The value in the cell stores the corresponding attribute value or entity, where the
entity representation is consistent with the entity representation of the row key. Storing
attributes and relationships with two column clusters is not only easy to manage, but
also reduces the number of columns loaded in memory during query, which helps to
load more entities into memory and speed up query. In order to meet the requirements
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Fig. 3. The storage mode

of the knowledge graph, the row key format of this storage mode is designed as “tname:
object1:object2”. “tname” is the table name corresponding to the stored entity data,
“object1” corresponds to the first entity, “object2” corresponds to the second entity
associated with first entity, and “:” is the custom delimiter.

The distributed aggregation storagemode designed in this paper not only reduces data
redundancy caused by repeated data storage, but also avoids data inconsistency caused
bymultiple table data insertion and update operations. It can also make full use of cluster
performance, improve parallelism and ensure load balancing. The entity storage has the
characteristics of overall storage load distribution and local node aggregation storage
which fully meets the requirements of knowledge graph storage.

3.3 Load Balancing

In order to solve the problem of load balancing, this paper adopts an improved algorithm
of consistent hashing method [16], i.e., a method of increasing the upper limit of the
load to solve this problem. The algorithm adding to each server a maximum load limit,
where the maximum load limit is (1 + e) times the average load. The custom e value
is 0.3, i.e., the average load of the storage node server is 100, if the current node and
relationship to be added to the N i server will result in the load of this server to be 30%
higher than the average load, the current selected server would be excluded. And the
node will select the server with the second largest modularity to further determine the
load of the server at this time. If the maximum load limit is met, add the node to the
server, otherwise continue to filter the server.

4 Visual Query Based on Neo4j

4.1 Problem Description

Neo4j is currently themostwidely usedopen source graphdatabase,which can intuitively
and vividly represent real-world application scenarios. Therefore, this paper takes the
knowledge graph in the financial field as an example to study the visual display and query
strategy based on Neo4j. The complex, difficult and diverse knowledge in the financial
field is visually presented in a graphical way. The implicit knowledge is manifested and
the external knowledge is materialized. And the relevant knowledge in the financial field
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will be constructed, connected and integrated. In this section, we use the constructed
financial knowledge graph as the back-end data source. By designing specific query
statements, the query result obtained is the sub-graph that meets the limited conditions,
which is inside the users’ scope of concern.

Figure 4 shows the visual query architecture of the knowledge graph in this paper.
Among them, the user enters a query statement through the query interface, and the query
condition is sent to the background processing program. The HBase database interface
is logically called by the background code, according to the query condition to find the
satisfaction in the HBase database. Query the condition data and write it in Neo4j. Neo4j
correlates the corresponding nodes according to the written data, draws the map, and
finally returns the map to the user.

Fig. 4. Visual query architecture

4.2 Visual Query Based on Property Graph

The knowledge graph created by Neo4j is based on the property graph, and the query
language on it is Cypher, which can query, modify and update data through the nodes
and relationships in the pattern matching graph database without writing complex query
statements. It lays a good foundation for data analysis and expansion of knowledge
graphs in the financial field. The entity information and semantic relations involved in
the graph are stored in the visual query architecture of this paper. The operation content
and implementation method of data update and query of financial knowledge graph
based on Cypher language are introduced in detail below.

(1) Create financial graph entity nodes, including enterprise entities and business per-
sonnel entities. Formally expressed as (Variable: Lable1: Label2 {Key1:Value1,
Key2:Value2}). The label of the node is equivalent to the table name of the rela-
tional database (RDB), and the attribute is equivalent to the column of the relational
database. Each node contains the default internal property id. When creating nodes,
Neo4j graph data server will automatically assign an integer id to it. In the entire
graph database, the id value of the node is incremented by default and unique. As
shown in Fig. 5, creating a Cypher statement for an enterprise entity:

(2) Query the entity node of the financial graph. Cypher query language depends on
matching a graph model. The keyword MATCH graph pattern is used to match the
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Fig. 5. Creating an enterprise entity by Cypher

existing entity nodes in the database. The MATCH clause is used to specify the
search model (pattern). And the WHERE clause adds a predicate to the MATCH
pattern constrain the pattern. Query the node of the specified attribute. Such as the
Cypher statement of querying “MicroSoft” is “MATCH (n {Name: “MicroSoft”})
RETURN n”.

(3) Create entity relationship of a financial graph. Similar to the syntax of the node,
the relationship type (RelationshopType) and attributes are defined in the square
brackets of the relationship. The relationship type is similar to the node label. When
creating a relationship, specifying the relationship type is essential, but only one
relationship type can be specified.

(4) Query entity relationship of financial graph. By usingMATCH clause to specify the
searchmode, theWHERE clause adds a predicate to theMATCHmode to constrain
the StartNode node, so as to query the information of the StartNode node and its
related nodes with a layer of direct relationships.

4.3 The Display of Neo4j Visual Query

By inputting the corresponding query statement to the knowledge graph, the user can
concentrate on querying the graph inside his scope of concern, while the other unrelated
partial graphs are not displayed. In this paper, through the collection of financial data from
professional financial network, we realize the construction of the financial knowledge
graph by the process of data cleaning and extraction. A total of 3548 entities have been
constructed in the knowledge base.

In Neo4j, the financial domain knowledge graph stores knowledge with nodes and
edges. A part of the entities and relationships of financial knowledge that contains the
keyword “GuangdongHongdaBlasting Co., Ltd.” are displayed in Neo4j as shown in
Fig. 6. Different entity classes are distinguished by different colors. Red nodes repre-
sent business entities, blue nodes represent product entities, and orange nodes represent
human entities. These nodes are accompanied by their own attribute information. The
relationship between entities and entities is represented by edges. The edges contain
relationship attributes, start node id and end node id.
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Fig. 6. Partial financial knowledge queried by user

5 Experiments

5.1 Experimental Settings and Datasets

The experimental environment of this paper is Inter Core i7–8750 CPU @ 1.8 Hz
2.00 GHz processor, and the computer with 8G memory is used as the host of Neo4j
graph database. Three other servers with 64 GB memory and 512 GB hard disk and
Ubuntu operating system are applied as devices for deploying HBase distributed data-
base. The host and server communicate with each other through deployment in the same
local area network.

In the selection of data sources, the financial knowledge graph studied in this paper
covers the basic information of the company, shareholder information, executive infor-
mation, corporate news, and corporate credit information. Use crawlers for large-scale
data acquisition on selected data sources, such as Royalflush Finance News, Sohu
Finance News and Tianyancha. After obtaining the data, we perform basic statistical
analysis and processing for subsequent data partition and distributed storage. Build basic
connections between enterprises. The original datasets is split into two sets of different
sizes. The node numbers of both datasets are 13832 and 21299; the numbers of edges
are 69160 and 106440.

5.2 Efficiency Analysis of Graph Partition

This paper compares the proposed GP-NDM algorithm with BS and DynamicDFEP in
terms of the partition time and the number of edge cuts. Each partition algorithm is
executed three times, and the result is averaged. With the increasing graph scale, the
partition time of GP-NDM does not increase greatly as shown in Fig. 7, and the effect is
good for large-scale dynamic graphs. DynamicDFEP is more complicated and its time
complexity is relatively large. In the experiments, DynamicDFEP is used to cyclically
allocate nodes onN servers.As the result the time complexity of the algorithmwill further
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increase, and the algorithm is inefficient. As for BS architecture, the BS algorithm is
fast, but if the graph changes dynamically, the BS cannot respond to the graph division
in real time.

Fig. 7. Comparison of partition time Fig. 8. Comparison of edge-cut

Figure 8 shows the comparison of edge cutting on different datasets. Edge cutting is
the number of edges with endpoints in different partitions, and the quality of the partition
can be verified by edge cutting. In order to ensure the partitioning principle of high cohe-
sion and low coupling, fewer cutting edges indirectly prove that the segmentation quality
is better. BS switches nodes to improve the division result, but ignores the influence of
weight on closeness. DynamicDFEP utilizes the principle of random selection, which
has a certain influence on the segmentation quality. GP-NDM considers the influence of
modularity and node degree, so we exchange nodes to improve the node’s modularity.

5.3 Performance Analysis of Incremental Dynamic Maintenance

We evaluate the update efficiency on different numbers of partitions. Since BS is an
algorithm for static graphs, it can be updated only by repartitioning the graph, which
is much lower than the incremental update method. Therefore, we compared GP-NDM
with the DynamicDFEP. As shown in Fig. 9, DynamicDFEP algorithm is sensitive to
update, and it is not applicable to the situation where the freshness of the graph exceeds
20%. In the stage of graph update and maintenance, the DynamicDFEP assigns initial
“funds” to the initial graph partitioning interactions up to the final vertex. In repeating the
initial graph partitioning steps, the information of the boundary nodes needs to be stored
in the partition. Due to the incremental update of the graph which leads to the expansion
of the graph size, the cost of space and time is close to running the DFEP algorithm
starting from the beginning. GP-NDM only need execute to perform the module degree
calculation to complete the update according to the newly added nodes or edges. And
the algorithm does not need to be run from scratch.
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Fig. 9. Comparison of incremental dynamic maintenance

6 Conclusion

This paper conducts an in-depth study of knowledge graphs in specific fields, and pro-
poses a distributed storage and query method for domain-specific knowledge graphs. A
graph partition method based on node density and modularity is proposed to ensure as
far as possible that nodes closely connected and their relationships are stored in the same
partition. The network communication overhead is reduced. A distributed aggregate stor-
age model is designed. This storage model makes full use of cluster performance and
can effectively reduce the redundancy overhead caused by storing repeated data. At the
same time, it solves the problem of data consistency when inserting and updating data.
In order to achieve distributed storage and query of domain-specific knowledge graphs,
we manage to combines HBase distributed storage with Neo4j visual query effectively.
According to the query semantics of the master node, the related Entities and relation-
ships in HBase are extracted and imported into Neo4j to form sub-graphs that users
are interested in for visual display. The proposed method has a wide range of practical
application value.
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