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1 Introduction

Security is the key issue in many communication applications especially for mili-
tary applications. In contrast to this, the authorities of boarder security may wish to
monitor unlicensed transmitters for jamming their signals [1]. The necessary action
of doing so is to identify or recognize the modulation class of that intercepted signal.
Such type of actions also arises in several other applications such as interference
management, signal authorization, verification, and selection of appropriate demod-
ulation techniques in electronic combat, threat analysis, and so on.Modulation recog-
nition is also useful to recognize the suspicious transmitter in the near geographical
site and to generate jamming signals to stop communication between the suspicious
users. In recent civilian applications, a greater number of modulation formats can be
employed by a transmitter to manage the data rate, to reduce the individual band-
widths of every user, and to assure the integrity of the message [2]. However, the
group of modulation formats is known both to transmitter and receiver. The choice
of the modulation format is adaptive and may not be known at the receiving end.
Therefore, an AMCmechanism is required for the receiving end to recognize modu-
lation format of the received signal and to select the proper demodulation approach
in order to recover the original message. Moreover, in civilian applications, several
techniques developed to reduce overhead of reference signals required for channel
estimation havemotivated the research in blind and semi-blindMIMO techniques [3].
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Blind techniques are also expected to play a role in software defined radio and cogni-
tive radio. Configuration information required by a software defined radio system is
transmitted as overhead to the data. Intelligent receivers capable of extracting this
information blindly may improve transmission efficiency through reductions in over-
head, i.e., automatic modulation classification eliminates the need for supplementary
information on the modulation type [4].

AMC techniques are mainly classified into decision theoretic (DT) or maximum
likelihood and feature-based (FB) or pattern recognition approaches. Some of the
AMC approaches are tabulated in Table 1. From the literature, it is observed that
many authors considered a basic modulation classes as a dataset. So that the accuracy
achieved is about 90%.This paper performsAMCof higher ordermodulation classes.

Table 1 AMC techniques

Ref. No. Approach type Features used Modulation type Accuracy (%)

[5] DT Ratio of variance of
envelope to square of
mean

AM, FM, SSB, DSB 80–95

[6] DT Likelihood ratio of Phase BPSK, QPSK 100

[7] DT Instantaneous amplitude
and phase

AM, DSB, SSB, VSB,
LSB, USB, FM

91–100

[8] FB Instantaneous amplitude,
phase, freq, spectrum
symmetry

ASK2, ASK4, PSK2,
PSK4, FSK2, FSK4

97

[9] DT I-Q data 16QAM, 32QAM, 64
QAM

100

[10] FB Combination of spectral
and higher order
cumulant

QAM16, QAM64,
ASK2, ASK4, PSK2,
PSK4, FSK2, FSK4

98

[11] FB Power and cyclic spectral
features

QPSK, PSK8, QAM8,
16QAM CW, FSK2,
FSK4, FSK8, ASK4,
BPSK

94.9

[12] DT Moments PSK4, PSK8, QAM16
ASK4, ASK8, FSK4,
BPSK,

89.76

[13] FB Moments of wavelet ASK4, ASK8, PSK8,
QAM16,32, 64, FSK4,
BPSK, PSK4

98

[14] FB Energy of signal, zero
crossing rate, variance

ASK4, ASK8, PSK8,
QAM16, 32, 64 FSK4,
BPSK, PSK4

91

[15] FB Two stage classification BPSK, QPSK,
QAM16 & 64

70–100

[16] DT Cumulants 16 QAM, 64 QAM,
BPSK, QPSK & 8 PSK

50–90
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Organization paper is as follows: Sect. 1 describes about the scenario of existing
wireless communication systems and their current challenges. Also, an elaborate
study on existing different AMC techniques is presented. Section 2 deals with the
extraction of different higher order statistical features and framework of PRapproach.
Section 3 presents the development of PRC for AMC algorithms using ensemble
classifiers. Section 4 deals with the performance analysis of proposed ensemble-
based PRCs under non-ideal channel conditions. Section 5 depicts the important
surmises of the research work.

2 Framework

The functional block diagram representation of proposed PR classification model
is shown in Fig. 1. In order to classify the modulation classes, a set of features are
extracted from each class. The set of features are considered in the proposed approach
are cumulants, and they are extracted from the moments.

The received signal y(n) by a communication receiver is

y(n) = Mei(2πnT fo+θn)

∞∑

l=−∞
x(l)h((n − l + ε)T ) (1)

where T is duration of the symbol, M is the magnitude, θn is phase shifts and ε is
time shifts caused by the channel. h(n) is channel impulse response, and x(l) is input
binary data.

Fig. 1 Proposed classification model
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The moments of signal y(n) are

Mab = E
[
y(n)a−b y∗(n)b

]
(2)

Here, a and b are integers. y(n) and y*(n) are received signal and its conjugate.
Multi-Order moments (for a= 2, 4, 6 and 8) are derived from Eq. 2. To train the

classifier a set of 11 cumulants of order 2, 4, 6 and 8 are derived from the moments
[17].

3 Ensemble Classifiers

The performance of PR classifiers such as DT, KNNs, and SVMs is varied across
different data sets because of their strategy in classification. Prediction of best model
for all data sets is not at all possible for all the time. Keeping this in mind, the
proposed classifiers are built with a combination of various classes of classifiers to
achieve better accuracy than individuals. It works on a principle of majority vote,
i.e., initially individual classifiers identified the class of unknown signal and finally
ensemble classifiers identify the majority vote, and gives the class label for unknown
signal. An ensemble classifier contains a set of independently trained classifiers
whose predictions are pooled when recognizing new object. The block diagram
representation of an proposed classifier is shown in Fig. 2 [17].

In this paper, a varity of classifiers are used for AMC. These are boosted trees,
bagged tress, subspace KNN, RUSBoosted trees, and discriminant KNN. Boosted
trees and bagged are constructed from decision trees, and these are slower in speed.

Fig. 2 Ensemble classification model
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Whereas, discriminant KNN and subspace KNN both used nearest neighbors and
discriminant analysis. Based on random undersampling, weak learners are boosted
in RUSBoosted trees.

4 Simulation Results

In this section, the performance analysis of proposed ensemble-based PRCs is carried
out under SNR of 0 dB to 20 dB with modulation classes of M-ary QAM (M = 4, 16
and 64) and M-ary PSK (M = 2, 4 and 8). The simulation parameters are tabulated
is shown in Table 2.

The performance of five ensemble classifiers is tested with different SNR condi-
tions. Table 2 represents the confusion matrix for different ensemble classifiers using
multi-order cumulants at different SNRs. Diagonal elements in the confusion matrix
denote the true classification rates, and off diagonal elements represent misclassi-
fication rates. From Table 3, it is proved that the proposed ensemble classifiers are
able to distinguish the different modulating classes at low SNR than that of existing
classifiers.

The performance accuracy of boosted tree classifier for different modulation
classes with different SNR values is shown in Fig. 3. The average modulation classi-
fication accuracy of boosted tree from 0 dB to 20 dB is 81.7%, 95%, 98.3%, 98.9%,
and 100%, respectively.

The classification performance of proposed bagged tree classifier with 90%
training is shown in Fig. 4. At 0 dB, the average classification accuracy of bagged tree
classifier is 81.7%. The classification performance of proposed subspace discrimi-
nant classifierwith 90% training is shown in Fig. 5. At 0 dB, the average classification
accuracy of subspace discriminant classifier is 77.8%.

The classification performance of proposed subspace KNN classifier with 90%
training is shown in Fig. 6. At 0 dB, the accuracy of subspace KNN is 72.2% because
the classifier is unable to distinguish higher order modulation classes at lower SNR
values.

Table 2 Simulation parameters

Parameters Description

Modulation types MQAM (M = 4, 16 and 64), MPSK (M = 2, 4, 8)

Channels Fading and Gaussian

SNR 0–20 dB

Data set 6000 * 11
(11 features, 1000 of each class)

Data set for training 50-90%

Data set for testing 10-50%
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Fig. 3 Performance of boosted tree classifier

Fig. 4 Performance of bagged tree classifier



Automatic Modulation Classification Using Cumulants … 117

Fig. 5 Performance of subspace discriminant KNN classifier

Fig. 6 Performance of subspace KNN classifier
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Fig. 7 Performance of RUSBoosted tree classifier

The classification performance of proposed RUSBoosted tree classifier with
90% training is shown in Fig. 7. At 0 dB, the average classification accuracy of
RUSBoosted tree is 81.1%. From simulations, bagged, boosted, and RUSBoosted
tree classifiers have higher classification accuracy than others.

At different training rates, the performance of ensemble classifiers is tabulated in
Table 4. It is showed that the accuracy of classifiers is higher even at high testing
rates. Among all the classifiers, bagged tree classifier has the highest accuracy.

5 Simulation Results

In this paper, a varity of ensemble classifiers is developed for AMC. Thereafter,
performance of proposed ensemble classifiers is analyzed under non-ideal channel
conditions with various values of SNR along with different cases of training.
Further, performance of proposed ensemble classifiers is compared with the existing
approaches to prove the efficiency of the proposed classifiers in modulation recogni-
tion. From the simulation results, it is proved that evenwithmore classes the proposed
ensemble classifiers achieve more classification accuracy even at lower SNRs.
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Table 4 Performance at different training rates

Training % Classifier Classification accuracy (%)

0 dB 5 dB 10 dB 15 dB 20 dB

80 Boosted Trees 81.2 94.6 99.2 99.5 100

Bagged Trees 81.2 95.2 99.3 99.3 100

Subspace Discriminant KNNs 77.5 93.4 96.8 97.5 100

Subspace KNNs 71.6 86.2 96.0 96.9 100

RUSBoosted trees 80.8 94.7 98.8 98.7 100

70 Boosted trees 80.4 94.1 98.8 99.2 100

Bagged trees 80.3 94.8 99.1 99.3 100

Subspace discriminant KNNs 76.2 93.1 96.2 97.4 100

Subspace KNNs 71.1 85.4 95.8 96.4 100

RUSBoosted trees 79.9 94.2 98.3 98.2 100

60 Boosted trees 80.1 93.8 98.3 99.1 100

Bagged trees 80.1 94.1 98.7 99.5 100

Subspace discriminant KNNs 75.7 92.5 95.6 97.7 100

Subspace KNNs 70.9 85.4 95.2 96.5 100

RUSBoosted trees 79.8 93.9 97.9 98.6 100

50 Boosted trees 79.8 93.3 98.1 98.9 100

Bagged trees 79.8 93.7 98.2 99.3 100

Subspace discriminant KNNs 75.4 92.1 95.6 97.2 100

Subspace KNNs 70.1 85.3 95.1 96.2 100

RUSBoosted trees 79.2 93.7 96.8 98.6 100
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