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Abstract. This paper presents Spatial Pyramid image representation
based technique with partial sum of second order Taylor Series Expan-
sion (TSE) for offline signature verification. In this approach, the given
signature image is partitioned into sub blocks recursively and the local
features in each sub blocks are computed and are represented as his-
togram. The histograms of the image and subblocks at various levels are
concatenated to form a single histogram. This spatial pyramid feature
vector is an extension of an orderless bag-of-features consisting of collec-
tion of histograms concatenated to form a single histogram. The partial
sum of second order Taylor Series Expansion (TSE) is an approximate
computation of finite number of terms in a small neighbourhood and
hence provides a powerful mechanism to extract the localised structural
information from the signature image. We propose kernel structures by
extending the sobel operators to compute the higher order derivatives of
TSE. Our approach captures both local and global features from the sig-
nature. We have used weighted histograms. The weight associated with
the histogram is directly proportional to the depth of the level. The
Support Vector Machine (SVM) is used for the classification. The classi-
fication accuracy of our approach on standard datasets is calculated and
the results are compared with a few well known approaches. This shows
that the performance of the proposed approach is better than the other
approaches in the state of art literature.
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1 Introduction

Signature is one of the significant and most popular Biometric for person authen-
tication and identification. It has been widely accepted in banking and commer-
cial systems. Unlike other authentication schemes that uses password or PIN,
signatures can not be forgotten. The signature verification systems can be cat-
egorised as online and offline verification systems. Offline signature verification
can be either writer dependent and writer independent. “In writer independent
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approach the classifier is trained only once with genuine and forged signature
samples of varying number of writers” [3]. whereas in writer dependent app-
roach for every newly added signer class, the classifier has to be retrained. The
offline signature verification becomes more challenging since it lacks dynamic
information. Due to the wide acceptance of the signature biometrics, there is a
high demand for the powerful feature extraction technique for the offline signa-
ture verification systems. The features extracted can be either local or global in
nature. In our approach we capture both global and local features using spatial
pyramid image representation with Taylor Series Expansion (TSE) as the feature
extraction technique. Even though there are an ample number of algorithms in
the literature, designing an accurate algorithms for offline signature verification
is still a challenging task. This motivates the researchers to come up with better
algorithms. The following section presents a brief review of related works in the
state of art literature.

2 Literature Review

Over the past two decades research in signature verification has drawn the atten-
tion of a lot of researcher, contributing in the development of this area. The Local
Binary Pattern (LBP) and HOG based technique [17] partitions the signature
image into blocks using the cartesian and polar coordinate systems. The features
are then stored as a histogram. The Blockwise Binary Pattern (BBP) [13] takes
3 × 3 neighbourhood of every point of the signature image and uses histogram
representation for representing the local BBP features. The deep multitask met-
ric learning (DMML) [16] is based on multitask and transfer learning. This app-
roach trains a distance metric that enables the model to learn user-dependent
factors. The Writer-independent [8] approach mainly focuses on the shape of the
signature and considers the spatial distribution of a background pixel around
foreground pixel. For classification this approach uses the Multi-layer Perceptron
and the Support Vector Machine classifiers. The inter point distances is com-
puted by Distance Moments [7] in order to captures the structural and temporal
information. Shikha et al. proposed a method “based on Multi-layer perceptron
(MLP) and Self Organizing Map groups of neural networks (SOM)” [15]. Shekar
et al., [12] proposed a morphological pattern spectra and Bhattacharyaa et al., [4]
have proposed an pixel matching technique (PMT). Yasmine et al., [6] proposed
a one class support vector machine. The nature of similarities and dissimilarities
of both the genuine and forge signature by the Deep Multitask Metric Learning
(DMML) [16] approach that uses both the writer dependent and writer indepen-
dent approaches. The bag-of-visual words (BoVW) [10] uses forensic document
examiners (FDEs) cognitive process for feature extraction by extracting KAZE
features.

The organization of the paper as follows. The proposed approach is brought
down in the Sect. 3. The experimentation and discussion of the results are pre-
sented in Sect. 4 followed by the conclusion in Sect. 5.
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3 Proposed Approach

The proposed methodology uses the spatial pyramid image [5] technique on the
two dimensional signature images. The partial sum of second order Taylor Series
Expansion (TSE) is used as the feature extraction technique to obtain the local
features of the input image. The spatial pyramid is an extension of the bag of
features that consists of collection of the orderless features represented in the
form of histograms, FF = {Hi | i = 1, 2, . . . , n}. Here, a given image is parti-
tioned into sub regions recursively. The features in the form of histograms from
the image and its sub regions are extracted. Then these orderless collection of
histograms representing local features are concatenated to form a single his-
togram representing that image. Let F be the features extracted by the image I
and HI = {hi | i = 1, 2 . . . ,m} be the histogram representation of the features,
where m is the number of bins in the histogram. The image I is partitioned into
N blocks, say Bij , for i = 1, . . . , N and j = 1, and j represents the level L. From
each Bij , features are extracted and are represented in the form of histogram
HBi and the partitioning and extraction of local features from sub blocks is per-
formed recursively for L levels. We have used N = 4 and L =3 in our approach.
The histogram HI and the histograms, Bij obtained by the subblocks at vari-
ous levels together forms the collection of features representing that image. The
features are obtained from the image and its subregions using the same feature
extraction technique. The subregions are then recursively partitioned forming
orderless statistics of low-level image features in these subblocks. The Fig. 1
illustrates the spatial pyramid applied on a signature image.

“The features extracted from the signature are the partial sum of second
order Taylor Series Expansion (TSE). The Taylor series expansion of function
f(x) at a point x = a computes the function in a small neighbourhood of a
point a. The necessary condition is that the f(x) must be a regular function i.e
f(x) is continuously infinitely differentiable in the neighbourhood. The equation
for infinite Taylor series expansion of a regular function f(x) at x = a is given
below” [14]

f(x) ≡
∞∑

n=0

fn(a)
n!

(x − a)n (1)

The function can be calculated at all the points in a neighbourhood of a
point say a = (x, y), provided the function value and its derivatives are known
at point a. The above equation can be written as,

f(x) ≡
N∑

n=0

fn(a)
n!

(x − a)n + Rn (2)

where Rn is the Taylor’s remainder. If we assume Rn tends to zero as n → ∞,
we can obtain the approximation for f(x) by the partial sum of TSE computed
with N terms (where N is finite) within a small neighbourhood. This property
of TSE is used in this approach to obtain the local signature features.
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Fig. 1. Spatial pyramid with 3 levels. Level 0: Signature image, level 1: Image is parti-
tioned into 4 blocks. Level 2: Image is partitioned into 16 subblocks, Image courtesy [9]

In the papers [2] and [1] only the second and third coefficients of TSE is used.
This is based on the first and second order derivatives calculated individually
at eight different scales. This is encoded based on the zero crossings of the
convolution outputs. The first and the second derivatives represents the minute
local information and the information about the concavity and convexity of the
edges respectively. The global information within a neighbourhood is captured
by the derivatives of the higher order. It is verified that the fifth and higher
order derivatives do not contribute much. In our experimentation we have taken
only upto third order derivatives because there are only minor variations between
fourth and fifth derivatives. “An example of the derivative outputs of a 1D signal
of the signature sample from CEDAR database is presented in Fig. 2. The range
of values on the Y axis specifies the range by which the derivatives differ and
this becomes wider as the order becomes higher” [14].

“To compute the horizontal and vertical higher order derivatives we have
extended Sobel’s kernel using the coefficients of nth order binomial expansion.
i.e. the elements of the nth order kernel are the elements of the nth row of Pascal
triangle which are devised by the coefficients of the binomial expansion (a+ b)n,
a and b being unity” [14]. For example, the extended kernels to compute third
order derivatives along the X and Y direction are given below.

⎡

⎢⎢⎣

−1 −3 −3 −1
0 0 0 0
0 0 0 0
1 3 3 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

−1 0 0 1
−3 0 0 3
−3 0 0 3
−1 0 0 1

⎤

⎥⎥⎦
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Fig. 2. (a) 1D signal of the signature sample from CEDAR database; (b)–(f) First to
fifth derivatives of this signal in order. The vertical axis specifies the range through
which the derivatives vary. The range becomes wider as the order becomes higher.

The summation of horizontal and vertical partial sum of TSE forms the
features for that point x = a. The features are stored as a histogram of 10 bins.

We have used weighted histograms. The weight associated with the histogram
is directly proportional to the depth of the level. In other words, the weight
associated with the level l is set to 1

2L−l , where L is the total number of levels in
the pyramid and l = {0, 1 . . . L − 1}. The equation is given below.

HH = HI +
L−1∑

j=0

Bij (3)

The best results were obtained when the number of levels was L = 3 and
the number of bins in the histogram was m = 10. We obtain a single histogram
at level l = 0 from the signature image, 4 histograms from the level l = 1 and
16 histograms from the level l = 2. Hence we have an orderless collection of 21
histograms. We have carried out experimentations with the number of bins in
the histogram as m = {10, 50, 100, 200}. We have obtained the best results with
m = 10. We concatenate the histograms to form a single combined histogram
with 210 features. We have performed SVM based classification.

Support Vector Machines (SVM) learns a linear decision boundary for a given
training set. It finds a decision plane that maximizes the margin. “Given a set
of n training samples {(xi; y)}n

i=1 where xi ∈ RL is drawn from a domain X and
each of the label yi is an integer from Y = {0, 1}. For a given instance of label
pairs (xi, yi) , i = 1, . . . , l where xi ∈ Rn and y ∈ {0, 1}l, the SVM needs the
solution for the following optimization problem” [12]:

min(W,b,ξ)
1
2
WT W + C

l∑

i=1

ξi (4)
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Subjected to

yi

(
WT φ (xi) + b

) ≥ 1 − ξi (5)

and

ξi ≥ 0. (6)

“The function φ maps the training features xi into a higher dimensional
space. The SVM finds a linear separating hyperplane with the maximal margin
in the higher dimensional space. C is the penalty parameter. The kernel trick is
used to transform a lower dimensional data into a higher dimensional one. Since
SVM is a binary classifier, for classification of N classes, N SVM classifiers are
needed. Hence, in the proposed work number of SVM classifiers is equal to the
number of writers [12]”.

4 Experimental Results and Discussions

In order to reveal the accuracy of the proposed approach, we have conducted
various experimentations on offline signature datasets like CEDAR and MUKOS
(Mangalore university Kannada Off-line Signature). The CEDAR dataset con-
sists of 55 Signers with 24 genuine and 24 skilled Forgery images for each signer.
MUKOS dataset consists of 30 signers with 30 genuine and 15 skilled forged
Signature images.

Each signature dataset is divided into training and testing sets. We have
conducted 4 sets of experiments.

– Set-1: The first 10 genuine and 10 forged images are taken as training set and
rest are taken as testing sample set.

– Set-2: The first 15 genuine and 15 forged images are taken as training set and
rest are taken as testing sample set.

– Set-3: 10 genuine and 10 randomly chosen forged images are taken as training
set and rest are taken as testing sample set.

– Set-4: 15 genuine and 15 randomly chosen forged images are taken as training
set and rest are taken as testing sample set.

Table 1. Experimental results obtained for CEDAR dataset

Experimental set-up Accuracy FRR FAR

Set-1 92.22 9.89 5.65

Set-2 94.73 5.25 5.47

Set-3 92.99 9.75 5.43

Set-4 94.91 5.76 4.01
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Experimental Results on CEDAR Dataset

We have carried out 4 sets of experiments on CEDAR dataset as explained in
the previous section. The results are presented in Table 1.

In order to compare the accuracy of the proposed method with the other
methods in the literature, we have tabulated the results in the Table 2.

Table 2. Experimental results for CEDAR dataset - a comparison:

Proposed by Classifier Accuracy FAR FRR

PS (Morphological
Spectrum) [12]

Earth mover distance 91.06 10.63 9.4

InterPoint
envelop [7]

Support vector machine 92.73 6.36 8.18

Proposed
approach

SVM 94.91 5.76 4.01

Table 3. Experimental results for MUKOS dataset

Experimental set-up Accuracy FRR FAR

Set-1 94.80 4.42 6.21

Set-2 97.93 1.20 4.11

Set-3 92.42 5.16 9.14

Set-4 95.52 3.12 6.73

Table 4. Experimental results for MUKOS dataset- a comparative analysis

Method Classifier Accuracy FAR FRR

Eigen-Signature [11] Euclidean distance 93.00 11.07 6.40

Morphological PS [12] EMD 97.39 5.6 8.2

Proposed approach SVM 97.93 1.20 4.11

Experimentation on MUKOS Dataset

We have carried out 4 sets of experiments on MUKOS dataset as explained in
the previous section. The results are presented in Table 3. In order to compare
the accuracy of the proposed method with the other methods in the literature,
we have tabulated the results in the Table 4.



Offline Signature Verification 73

5 Conclusion

In this paper we have explored Spatial Pyramid image representation based tech-
nique with Taylor Series Expansion for offline signature verification. Here, the
given signature image is partitioned into sub blocks recursively and the local
features in each sub blocks are computed and are stored as histogram. The his-
tograms of the signature image and subblocks at various levels are concatenated
to form a single histogram. Thus, the obtained spatial pyramid feature vector is
an extension of an orderless bag-of-features consisting of collection of histograms
concatenated to form a single histogram. The partial sum of second order TSE
calculated with N number of terms (where N is finite) within a small neighbour-
hood, gives approximation for the function and extracts the localised structural
features of signature. The Experimental results reveals the performance of the
proposed approach.
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