
Evading Static and Dynamic Android
Malware Detection Mechanisms

Teenu S. John(B) and Tony Thomas(B)

Indian Institute of Information Technology and Management-Kerala,
Thiruvananthapuram, India

{teenu.john,tony.thomas}@iiitmk.ac.in

Abstract. With the widespread usage of Android mobile devices, mal-
ware developers are increasingly targeting Android applications for car-
rying out their malicious activities. Despite employing powerful malware
detection mechanisms, an adversary can evade the threat detection model
by launching intelligent malware with fine-grained feature perturbations.
Since machine learning is widely adopted in malware detection owing
to its automatic threat prediction and detection capabilities, attackers
are nowadays targeting the vulnerability of machine learning models for
malicious activities. In this work, we demonstrate how an adversary can
evade various machine learning based static and dynamic Android mal-
ware detection mechanisms. To the best of our knowledge, this is the
first work that discusses adversarial evasion in both static and dynamic
machine learning based malware detection mechanisms.

Keywords: Android · Adversarial malware · Evasion techniques

1 Introduction

Nowadays Android malware are increasing rapidly. According to the McAfee
mobile threat report issued in 2020, there is an increase in the malicious apps
targeting Android operating system [3]. These malware can hide themselves
after installation, mimick the legitimate applications icon and also use advanced
evasion technique that downloads the malicious code after sometime. The con-
ventional signature based detection mechanisms [1] cannot detect such obfus-
cated evasive malware. Hence many malware detection mechanisms are adopt-
ing machine learning to detect unknown malware. The advantage of machine
learning is that it can automatically learn and predict the malware behaviour
from raw data [34]. In Android, there are many works that show how machine
learning can be used effectively for static, dynamic and hybrid malware detec-
tion mechanisms [42].

This work is done as a part of Centre for Research and Innovation in Cyber Threat
Resilience project (CRICTR 2020-21), which is funded by Kerala State Planning Board.

c© Springer Nature Singapore Pte Ltd. 2021
S. M. Thampi et al. (Eds.): SSCC 2020, CCIS 1364, pp. 33–48, 2021.
https://doi.org/10.1007/978-981-16-0422-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0422-5_3&domain=pdf
https://doi.org/10.1007/978-981-16-0422-5_3


34 T. S. John and T. Thomas

In static Android malware detection, the Android application is examined with-
out executing it [51]. The features used for static analysis are permissions,
intents, static API calls, opcodes etc. The advantage of employing static analy-
sis technique is that it has high code coverage. The drawback of static detection
mechanism is that, it cannot detect obfuscated malware. Dynamic analysis on
the other hand runs the application in an emulator and then captures the mali-
cious behaviour of the application by examining the run time features such as
system calls, dynamic API calls etc. [13,25,26,45]. The disadvantage of dynamic
detection mechanism is that it has less code coverage. Moreover, malware devel-
opers can evade the dynamic analysis by examining the specific API’s invoked
by the application when it is made to run in a virtual machine. For example, if
an application is executed in a virtual machine, then the TelephonyManager.get-
Device id() API returns zero [47]. Petsas et al. [38] proposed an attack against
virtual machines by examining the dynamic sensor information and VM-related
intricacies of the Android emulator to evade detection. Wenrui et al. [24] pro-
posed a mechanism to evade Android emulator runtime analysis using an evasive
component that identifies whether the events are coming from a real user or from
an automated tool. To solve the problems related to static and dynamic malware
detection, several mechanisms have been proposed in the past that use hybrid
analysis. The hybrid analysis uses a combination of both static and dynamic
features for detection. The drawback of hybrid detection is that the resource
consumption is more [12] when compared to static and dynamic malware detec-
tion mechanisms.

To detect malware, the static, dynamic or hybrid features of the application
are fed into unsupervised or supervised machine learning classifiers. In super-
vised machine learning malware detection, the machine learning model is trained
with thousands of benign and malware samples. However, adversaries can evade
the most powerful machine learning models used for the malware detection by
crafting malware that exploits the vulnerability of machine learning models.
These malware are called adversarial malware. Adversarial malware pose a seri-
ous threat nowadays and is an emerging area of research [36].

There are some works that show how static detection mechanism using per-
missions and API calls can be easily evaded using adversarial attack. In [5], the
authors evade the Drebin [11] detection method using some feature perturba-
tion techniques. However, a research on how adversary evades the opcode based
Android malware detection is yet to be explored and is an interesting area of
study. This is because the opcodes contain valuable information to detect mal-
ware that employ code repackaging. The recent CoronaVirus application is one
such ransomware [14] that uses code repackaging. The effectiveness of opcodes
lies in the fact that despite obfuscation, the same family of Android malware
share the same code parts and hence can be identified by examining the opcode
patterns of the application [7,45].



Evading Static and Dynamic Android Malware Detection Mechanisms 35

Likewise in dynamic malware detection, system calls are very effective fea-
tures for detecting obfuscated malware [16,33]. This is because, system call cap-
tures the interaction of the application with the operating system and hence
reveal the actual behaviour of the application even if the application adopts
dynamic loading, encryption and other techniques for evasion. Vinod et al. [49]
showed label flipping attack against Android system call based malware detec-
tion where they poison the training data with adversarial samples. However,
their attack injects individual system calls rather than sequences of system calls
that is not effective.

In this paper, we show how static Android malware detection mechanism
using opcodes and dynamic Android malware detection mechanism using system
calls can be evaded by the adversary. We employ frequency based evasion in both
static and dynamic malware detection mechanisms whereby the attacker injects
the most frequent benign code sequences into the malware to subvert the detec-
tion. Our attack is realistic which shows that injecting a few sequences of benign
code can evade the robust machine learning based malware detection mecha-
nisms. Moreover, our attack is resilient against feature selection approaches [23]
since we inject opcode sequences that replicate benign application behaviour.

The contributions in this paper are the following:-

1. We explore how an adversary injects benign opcode sequences to evade the
static Android malware detection mechanism. For this we evade the mecha-
nism employed in [16], which is a malware detection mechanism using opcode
n- grams. This is the first work that shows adversarial attacks in the form of
benign opcode injection.

2. We explore how the adversary injects benign system call sequences for evading
dynamic Android malware detection mechanism. To show this, we evade the
mechanism employed in [44] which is a malware detection mechanism using
graph signal processing. We show that Android system call based malware
detection mechanism using the powerful graph signal processing technique
can be evaded by injecting a few benign system call sequences.

2 Related Works

The malware detection mechanism employed by the popular malware detection
companies like Kaspersky [2] and Norton [4] use machine learning to detect
polymorphic and obfuscated malware. However their detection capabilities can
be deteriorated by an adversary that employs feature perturbations to evade
detection. According to the recent threat report issued by Kaspersky [9], the
adversarial attack against machine learning based malware detection can cause
misidentified Trojans to infect millions of devices. There are many works in the
past that discuss about adversarial attacks and defenses in Android malware
detection. This section discusses about the attacks and defenses against Android
malware detection classifiers that are implemented in the past.



36 T. S. John and T. Thomas

There are two types of adversarial attacks. They are data poisoning and
evasion attacks [32]. Data poisoning attacks are launched by contaminating the
training instances of the classifier. Evasion attack on the other hand finely per-
turbs the applications features to evade detection. The evasion attack can be
either problem space attacks or feature space attacks [39].

Chen al [19] proposed a data poisoning attack in Android malware detec-
tion where the adversary contaminates the training data with malicious sam-
ples. However, their attack required gradient information about the classifier.
Abaid et al. [5] proposed an evasion attack in which evades the Drebin detection
mechanism.They constructed attackerswithdifferent capabilities and showed that
adversarial evasion is a feasible threat. Their attack reduced the detection accuracy
of the classifier from 100% to 0%. However, their attack removed some features
from the Android application, which may cause the application to lose its malware
functionality.

The evasion attack can be either problem space attacks or feature space
attacks [39].

In problem space attacks, the attacker transforms the malicious application
to a new variant sample that is valid and realistic. Pierazzi et al. [39] proposed a
problem space attack in android malware where the adversary employs opaque
predicates by carefully constructing obfuscated conditions or program code that
returns False but evades static detection. Their attack can be detected with the
help of feature selection techniques mentioned in [31]. Yang et al. [53] proposed
a problem space attack in which they craft adversarial malware samples. Their
technique alters the semantics of the application, and the generated malware
may loose its functionality. Rosenberg et al. [40] proposed an attack against
the API call based malware detection mechanism. They added artifacts into the
application which can be detected using dynamic analysis.

The feature space attack on the other hand makes fine grained feature per-
turbations on various static and dynamic features of the application for eva-
sion. Gross et al. [27] proposed a feature space attack using Jacobian matrix
perturbation to evade Drebin Android malware detection. However the gener-
ated malware can be detected using undeclared classes and unused permissions.
Li et al. [35] crafted attack against Drebin android malware detection mecha-
nism. Their attack employed multiple generative methods to craft malware that
do not ruin the malware functionality. They also proposed an ensemble technique
to defend against adversarial attack.

Demontis et al. [23] proposed a secure learning technique to detect adversarial
attacks in Android malware detection. However, their technique cannot detect
malware that replicated benign applications behaviour. Chen et al. [18] proposed
an ensemble based defense against adversarial attacks in Android malware detec-
tion. They used a feature selection approach to detect adversarial malware. The
disadvantage of all these defensive mechanisms is that they can only detect adver-
sarial attacks that perturb syntactic features like permissions [19,23,28,53,53].
Moreover, perturbing syntactic features like Android permissions can be easily
achieved unlike semantic features. Since many malware detection mechanisms



Evading Static and Dynamic Android Malware Detection Mechanisms 37

are extensively using the information of the dex files for malware detection [20]
the attack that manipulates the features of the dex file is critical.

In this work, we perturb the features in the classes.dex file by injecting Dalvik
opcodes that occur in the benign Android applications. Chen et al. [21] proposed
a similar attack that manipulates the API control flow graph to evade detection.
However, their attack inserts Nop API calls that can be detected using white
list filtering [21]. Moreover their attack requires sophisticated adversarial feature
perturbation techniques to achieve high evasion rate. In this paper, we investigate
evasion attack in the form of feature space attack in which the attacker subverts
the malware detection mechanism by injecting the features of the benign appli-
cation. Our attack is resilient against feature selection approaches as mentioned
in [23]. In Android, malware developers can easily download evasive malware by
launching an update attack [5] when compared to data poisoning attacks. This
motivated us to explore evasion attacks in static and dynamic Android malware
detection mechanisms. We believe that our work will help security researchers
to develop suitable defensive mechanisms against adversarial attacks in Android
malware detection classifiers.

3 Machine Learning for Android Malware Detection

There are many works that show the effectiveness of machine learning for mal-
ware detection. This section discusses about the various machine learning mod-
els implemented in the past for malware detection. In [54] the authors pro-
posed a classifier fusion approach that combines several machine learning clas-
sifiers for detecting malware. They combined various classifiers like J48, Ran-
dom Tree-100, and Voted Perceptron, REPTree and Random Tree-9. Among
the various machine learning models used for malware detection, Support Vec-
tor Machines(SVM) are found to be extremely useful for detecting unknown
malware. Justin et al. [41] proposed a malware detection mechanism using SVM
to detect Android malware with control flow graphs(CFG). Shifu et al. [30] pro-
posed Hindroid, a mechanism using standard multi-kernel learning with SVM
to detect Android malware. Canfora et al. [17] proposed a malware detection
mechanism using sequences of system calls with SVM for building a finger-
print of the Android malware applications. Wen et al. [52] proposed a malware
detection approach based on big data analytics and SVM by extracting various
static and dynamic features of Android malware. Besides SVM, decision trees
and random forest also gave excellent results in detecting malware. Peiravain
et al.[37] proposed a malware detection method with permissions and API calls
to detect Android malware using decision trees. Alam et al. [6] proposed a mal-
ware detection mechanism using Random Forest. The features used were battery
consumption, CPU usage, memory related features, permissions etc. Moutaz et
al. [8] proposed a malware detection mechanism using API calls and permissions.
Their detection mechanism gave 94.3% F-measure with random forest classifier.
Among all other machine learning models, deep neural network gained popularity
owing to its ability to detect malware without manual feature engineering [48].



38 T. S. John and T. Thomas

Venkatraman et al.[46] proposed a malware detection with deep neural network
and their detection mechanism gave 96% accuracy. However, all these malware
detection mechanisms using machine learning can be evaded by an adversary
that crafts intelligent malware using adversarial machine learning.

4 Method of Attack

In this work, we evade the state of the art malware detection mechanisms [44]
and [16] that use system calls and opcode n- grams as features. To inject the
features of benign application to the malware application, we use TF-IDF feature
selection. We chose TF-IDF since both of these malware detection mechanisms
[16,44] use the frequency counts of the opcode n- grams and system calls for
constructing the features for malware detection.

5 Evading Opcode Based Android Malware Detection
Mechanism

To evade the opcode based malware detection mechanism, an adversary may
employ code injection attack to inject benign dalvik code parts to the malware
application or may insert junk codes to evade the detection mechanism. Since a
good feature selection approach can easily detect junk code insertion, we launch
attacks in the form of benign opcode injection to test whether the classifier is
able to detect malware. This section discusses about how an adversary can evade
opcode n- gram based Android malware detection mechanism mentioned in [16].
In [16], the opcode n- grams obtained from benign and malware applications are
given to SVM(Support Vector Machines) and Random Forest for malware detec-
tion. An accuracy of 95.67% accuracy was obtained using opcode 5- grams with
SVM classifier while with Random Forest, an accuracy of 96.88% was obtained
using opcode 2- grams.

5.1 Preprocessing

We replicated the experimental setup mentioned in [16] to explore how adversary
evades the detection mechanism. For this, we took 5560 malware applications
from the Drebin dataset [11] and collected 5560 benign applications. Table 1
shows the malware families that were taken for the experiments as mentioned in
[16]. We took all the benign application categories as mentioned in the original
work. The benign applications were downloaded from Google Playstore and were
uploaded to VirusTotal to check for malicious behaviour. Using apktool [50], we
first extracted the .dex files from the apk. Then by using smali tool [29], we
extracted the smali files from the .dex files. These smali files contain the opcodes
of an apk and can be used to construct opcode n- grams.



Evading Static and Dynamic Android Malware Detection Mechanisms 39

Table 1. Android malware familes

SI no Android malware family Obfuscation Malware type

1 DroidKungFu Repackaging, string
encryption, native
payload

Trojan

2 Fakeinstaller Renaming Trojan

3 Plankton Dynamic loading Trojan,botnet

4 Opfake Renaming Trojan

5 GinMaster Renaming Trojan

6 Basebridge Renaming Trojan

7 Kmin – Trojan

8 Geinimi Renaming Trojan

9 Adrd Renaming Trojan

10 DroidDream Renaming Botnet

5.2 Training the Classifier

We trained the classifier as mentioned in [16]. We took opcode n- grams with n =
2 and 5 since they gave the maximum accuracy when compared to n = 1,3,4. We
took top 2000 number of opcode n- grams that distinguish benign from malware
application by using the technique mentioned in the original paper. We trained
the two classifiers Support Vector Machine(SVM) and Random Forest(RF) as
mentioned in the original work. We obtained an accuracy 96.3% with 1000 num-
ber of opcode 2-grams and an accuracy of 95.3% on 2000 number of opcode
5-grams. The accuracy values were approximately equal to that of the original
work. Table 2 shows this.

5.3 Testing the Classifier

To evaluate the performance of the classifier, we used metrics such as True Pos-
itive Rate(TPR), False positive(FPR), True negative Rate (TNR), False Neg-
ative Rate (TNR), Accuracy, Recall, F-measure. True Positives(TP) refers to
the number of malware applications that are correctly classified as malware by
the classifier. True Negatives(TN) refers to the number of goodware applica-
tions that are correctly classified as goodware. False Positives(FP) refers to the
number of benign applications that are incorrectly classified as malware. False

Table 2. Performance of [16] before the attack

Number of

opcodes

n-gram Classifier TPR FPR TNR FNR Accuracy Precision Recall F-measure

1000 2- gram Random forest 0.963 0.027 0.973 0.037 0.963 0.972 0.963 0.968

2000 5- gram SVM 0.962 0.055 0.945 0.038 0.953 0.945 0.962 0.953



40 T. S. John and T. Thomas

Table 3. Performance of [16] After the Attack

l TPR FPR TNR FNR Accuracy Precision Recall F-measure

50 0.751 0.027 0.973 0.249 0.862 0.965 0.751 0.844

100 0.489 0.039 0.961 0.511 0.725 0.926 0.489 0.640

150 0.305 0.033 0.967 0.695 0.636 0.902 0.305 0.455

200 0.191 0.027 0.973 0.809 0.582 0.876 0.191 0.313

Negatives(FN) represents the number of malware applications incorrectly classi-
fied as goodware applications. The accuracy, precision and F-measure are com-
puted as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F −measure =
2 × precision× recall

precision + recall
(4)

5.4 Dalvik Opcode Injection

The aim of the Dalvik opcode injection attack is to evade the classifier by inject-
ing benign opcode n- grams. We aim to use opcode injection attack rather than
opcode elimination attack since the latter may destroy the malware functionality.
The attack is achieved by using a JADX tool to find the java files corresponding
to the smali files and injecting opcode sequences corresponding to the malicious
class files.

We assume that the attacker has complete knowledge about the classifier
and the features. To evade the detection mechanism the attacker injects benign
opcode n- grams. We computed the most frequent benign opcode n- grams
obtained using the TF-IDF method as mentioned before and injected them to
evade the detection mechanism employed in [16]. Table 4 shows the top five
opcode 5- grams obtained using TF-IDF method. In addition to the benign
opcode n- grams obtained using TF-IDF, we also injected opcode n- grams for
displaying text messages inside the malicious application to mimick the legiti-
mate application behaviour. Figure 1 shows this. In this figure, the java code and
its corresponding dalvik code to display a text message is shown. Here we aim
to explore how injecting junk or random text messages can evade the opcode n-
gram based detection mechanism.



Evading Static and Dynamic Android Malware Detection Mechanisms 41

We conducted the experiments on Random Forest classifier with opcode 2-
grams, since it gave maximum accuracy in the original work. For testing the
performance of the classifier, we took 500 benign application and 500 opcode
injected malware applications. We took 50 samples from each of the Android
malware families listed in Table 1. The performance of the classifier when we
inject l benign opcode n- grams is shown in Table 3. When l increases, the FNR
also increases which shows that the injected malware can evade the detection
mechanism employed in [16]. Figure 2 shows how the detection accuracy of the
classifier is reduced when we increase the value of l.

Table 4. Top five opcode 5- grams obtained from TF-IDF Method.

SI no Opcode 5- grams Category

1 array-length,const/1,const/,const-string,goto Malware

2 const/1,const/,const/high1,const-string,const-wide/ Malware

3 aput-object,array-length,const/1,const/,const-string Malware

4 aget-object,aput-char,aput-object,array-length,check-cast Malware

5 iget-object,iput,iput-boolean,iput-object,move-exception Malware

1 iget-object,iput-object,move-result-object,return-object,return-void Benign

2 check-cast,const/,goto ,if-eqz,if-nez Benign

3 mul-int/lit,new-instance,return,return-object,return-void Benign

4 move-result-object,new-instance,nop,return-object,return-void Benign

5 move-result,move-result-object,new-instance,nop,return-object Benign

Fig. 1. Injecting benign opcodes for displaying text messages



42 T. S. John and T. Thomas

Fig. 2. Accuracy Values of [16] After Injecting l number of opcode n− grams

6 Evading System Call Graph Based Android Malware
Detection Mechanism

System call based Android malware detection mechanisms are found to be
extremely powerful in detecting malware that evade static detection mechanisms
[33]. Most of the system call based Android malware detection mechanisms are
using frequency of occurrence of the system calls for detecting malware [17,25].
This is because certain system calls like read(), write() etc. are frequently invoked
by the malware than goodware. This technique can be evaded by using a system
call injection attack in which the malware injects some rare or benign system calls
at runtime [15]. In this section, we show how an adversary can evade the system
call based Android malware detection mechanism in [44]. The malware detection
mechanism in [44] employs graph signal processing mechanism to detect Android
malware. In this mechanism, the frequency of occurrence of the system calls are
taken as the signals and then a graph shift operation is applied to the signals
to obtain the processed graph signals. These graph signals are then fed into the
machine learning classifiers to check whether the application is malicious or not.

6.1 Preprocessing and Signal Extraction

We took 2500 malware and goodware applications as mentioned in the origi-
nal work [44] to replicate the experimental setup. The malware samples were
taken from Drebin [11], AMD [10], and Contagio minidump [22]. We took
1,2,5,6,9,10 malware families mentioned in Table 1 and also the malware families
in Table 5 as mentioned in [44] for conducting the experiments. The benign appli-
cations were downloaded from Google Playstore and checked with VirusTotal to
check for malicious behaviour. We also eliminated semantically similar Android



Evading Static and Dynamic Android Malware Detection Mechanisms 43

malware and took all the malware families mentioned in [44] and replicated the
experimental set up. The Android applications were made to run in an emulator
by injecting thousand pseudorandom events like key press event, touch event etc.
to achieve high code coverage. We collected system calls using strace utility [43]
and eliminated irrelevant system calls as mentioned in [44] and only selected
relevant opcodes for malware detection to replicate the features for classifica-
tion. After selecting the relevant opcodes, we constructed system call digraph
and extracted the graph signals.

6.2 Training the Classifier

We trained the classifier as mentioned in the original paper. We took Random
Forest Classifier, since it gave maximum accuracy. We took 80% samples for
training and remaining 20% for training as mentioned in the original work [44].

6.3 Testing the Classifier

The accuracy, precision, recall and F-measure was computed as in Section 3.1.
Table 6 shows the performance matrix of the classifier.

6.4 System Call Injection

The system call graph signal based detection mechanism takes the frequency of
occurrence of the system call for constructing the graph signal. This mechanism
can be evaded by injecting benign system call codes that mimick legitimate
application behaviour. We model a perfect knowledge attack where the attacker
has complete knowledge about the features and the classification model. The
attacker can gather malware and benign system calls from public repositories
and examine the most frequent system calls that are occurring in malware and
benign applications. We inject a sequence of system calls rather than individual
system calls since the application may not work properly if we do so. To inject
a system call sequence, we first computed the most frequently occurring benign
system calls from goodware applications using the TF-IDF method. We found
that certain system calls like unlink(), mkdir(), chmod() are frequently invoked
by the benign application. Our attack is similar to the attack as mentioned
in [15]. We carefully selected the benign applications that are having the most
frequent benign system call counts and then injected those system call sequences
to evade the detection. We took 10 malware samples from each of the malware
family and made a test set of 270 system call injected malware samples and 270
benign samples. Table 7 shows how the detection accuracy is reduced.



44 T. S. John and T. Thomas

Table 5. Android malware familes

SI No Android malware
family

Obfuscation Malware type

1 Andrup String encryption, renaming Adware

2 GoldDream Repackaging, string encryption,
native payload

Backdoor

3 Boxer Renaming, string encryption Trojan-SMS

4 FakeTimer – Trojan

5 Lotoor Renaming, dynamic loading HackerTool

6 Rumms String encryption, renaming,
dynamic loading

Trojan-SMS

7 NandroBox Repackaging Trojan

8 MMarketPay Renaming Trojan

9 Penetho – Exploit

10 Mercor – Trojan

11 FakeDoc Renaming Trojan

12 FakePlayer Renaming Trojan

13 Vidro – Trojan SMS

14 Tesbo Repackaging, string encryption,
renaming

Trojan

15 AndroRat – Backdoor

16 Mseg Repackaging, renaming Trojan

17 SpyBubble – Trojan

18 MobileTX – Trojan

19 Zitmo Renaming Trojan

20 Lnk – Trojan

21 FakeDoc Renaming Trojan

Table 6. Performance of [44] before the attack

TPR FPR TNR FNR Accuracy Precision Recall F-measure

0.971 0.041 0.959 0.029 0.965 0.959 0.971 0.965

Table 7. Performance of [44] after the attack

TPR FPR TNR FNR Accuracy Precision Recall F-measure

0.400 0.00 1.00 0.600 0.700 1.00 0.400 0.571



Evading Static and Dynamic Android Malware Detection Mechanisms 45

7 Conclusion and Future Work

In this paper, we showed that how an adversary can evade the static and dynamic
Android malware detection mechanism employed by some of the state of the art
machine learning models. We showed that by injecting only a few number of
features, adversaries can induce misclassification. In future, we plan to model a
limited knowledge attack and a blackbox attack to evade the system call and
opcode based malware detection mechanisms. This is to explore how the adver-
sary evades the detection model with less or no knowledge about the classifier.
We also plan to develop suitable mechanisms to detect adversarial malware.

References

1. A guide to malware detection techniques and beyond. https://www.cynet.com/
blog/a-guide-to-malware-detection-techniques-av-ngav-and-beyond/. Accessed 08
Sept 2020

2. Machine learning methods for malware detection. https://media.kaspersky.
com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf.
Accessed 08 Oct 2020

3. Mcafee mobile threat report 2020. https://www.mcafee.com/content/dam/
consumer/en-us/docs/2020-Mobile-Threat-Report.pdf. Accessed 08 Sept 2020

4. Securing against malware using artificial intelligence. https://www.nortonlifelock.
com/blogs/feature-stories/securing-against-malware-using-artificial-intelligence.
Accessed 08 Oct 2020

5. Abaid, Z., Kaafar, M.A., Jha, S.: Quantifying the impact of adversarial evasion
attacks on machine learning based android malware classifiers. In: 2017 IEEE 16th
International Symposium on Network Computing and Applications (NCA), pp.
1–10. IEEE (2017)

6. Alam, M.S., Vuong, S.T.: Random forest classification for detecting android mal-
ware. In: 2013 IEEE international conference on green computing and communi-
cations and IEEE Internet of Things and IEEE Cyber, Physical and Social Com-
puting, pp. 663–669. IEEE (2013)

7. Alazab, M., et al.: A hybrid wrapper-filter approach for malware detection. J.
Netw. 9(11), 2878–2891 (2014)

8. Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., Awajan, A.: Intelligent mobile
malware detection using permission requests and API calls. Future Gen. Comput.
Syst. 107, 509–521 (2020)

9. Alexander Chistyakov, A.A.: Ai under attack. https://media.kaspersky.com/
en/business-security/enterprise/machine-learning-cybersecurity-whitepaper.pdf.
Accessed 08 Oct 2020

10. Amd: http://amd.arguslab.org/ (2015)
11. Arp, D., Spreitzenbarth, M., Gascon, H., Rieck, K., Siemens, C.: Drebin: Effective

and explainable detection of android malware in your pocket (2014)
12. Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: Samadroid: a

novel 3-level hybrid malware detection model for android operating system. IEEE
Access 6, 4321–4339 (2018)

13. Azab, A., Alazab, M., Aiash, M.: Machine learning based botnet identification
traffic. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 1788–1794. IEEE (2016)

https://www.cynet.com/blog/a-guide-to-malware-detection-techniques-av-ngav-and-beyond/
https://www.cynet.com/blog/a-guide-to-malware-detection-techniques-av-ngav-and-beyond/
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.nortonlifelock.com/blogs/feature-stories/securing-against-malware-using-artificial-intelligence
https://www.nortonlifelock.com/blogs/feature-stories/securing-against-malware-using-artificial-intelligence
https://media.kaspersky.com/en/business-security/enterprise/machine-learning-cybersecurity-whitepaper.pdf
https://media.kaspersky.com/en/business-security/enterprise/machine-learning-cybersecurity-whitepaper.pdf
http://amd.arguslab.org/


46 T. S. John and T. Thomas

14. Barth, B.: Coronavirus app locks android screens with repackaged malware.
https://www.scmagazine.com/home/security-news/cybercrime/about-corona-
virus-app-locks-android-screens-with-repackaged-malware/, https://www.
scmagazine.com/home/security-news/ cybercrime/about-coronavirus-app-locks-
android-screens-with-repackaged-malware/. Accessed 08 Sept 2020

15. Bhandari, S., Panihar, R., Naval, S., Laxmi, V., Zemmari, A., Gaur, M.S.: Sword:
semantic aware android malware detector. J. Inf. Secur. Appl. 42, 46–56 (2018)

16. Canfora, G., De Lorenzo, A., Medvet, E., Mercaldo, F., Visaggio, C.A.: Effective-
ness of opcode ngrams for detection of multi family android malware. In: 2015
10th International Conference on Availability, Reliability and Security, pp. 333–
340. IEEE (2015)

17. Canfora, G., Medvet, E., Mercaldo, F., Visaggio, C.A.: Detecting android malware
using sequences of system calls. In: Proceedings of the 3rd International Workshop
on Software Development Lifecycle for Mobile, pp. 13–20 (2015)

18. Chen, L., Hou, S., Ye, Y.: Securedroid: enhancing security of machine learning-
based detection against adversarial android malware attacks. In: Proceedings of
the 33rd Annual Computer Security Applications Conference, pp. 362–372 (2017)

19. Chen, S., et al.: Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach. Comput. Secur. 73, 326–344
(2018)

20. Chen, T., Mao, Q., Yang, Y., Lv, M., Zhu, J.: Tinydroid: a lightweight and efficient
model for android malware detection and classification. Mob. Inf. Syst. 2018 (2018)

21. Chen, X., et al.: Android HIV: a study of repackaging malware for evading machine-
learning detection. IEEE Trans. Inf. Forensics Secur. 15, 987–1001 (2019)

22. Contagio: http://contagiodump.blogspot.com/ (2015)
23. Demontis, A., et al.: Yes, machine learning can be more secure! a case study on

android malware detection. IEEE Trans. Depend. Secur. Comput. (2017)
24. Diao, W., Liu, X., Li, Z., Zhang, K.: Evading android runtime analysis through

detecting programmed interactions. In: Proceedings of the 9th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, pp. 159–164 (2016)

25. Dimjašević, M., Atzeni, S., Ugrina, I., Rakamaric, Z.: Evaluation of android mal-
ware detection based on system calls. In: Proceedings of the 2016 ACM on Inter-
national Workshop on Security And Privacy Analytics, pp. 1–8 (2016)

26. Du, Y., Wang, J., Li, Q.: An android malware detection approach using community
structures of weighted function call graphs. IEEE Access 5, 17478–17486 (2017)

27. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversar-
ial perturbations against deep neural networks for malware classification. arXiv
preprint arXiv:1606.04435 (2016)

28. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial
examples for malware detection. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.)
ESORICS 2017. LNCS, vol. 10493, pp. 62–79. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66399-9 4

29. Gruver, B.: Smali/baksmali tool (2015)
30. Hou, S., Ye, Y., Song, Y., Abdulhayoglu, M.: Hindroid: an intelligent android

malware detection system based on structured heterogeneous information network.
In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1507–1515 (2017)

31. Íncer Romeo, Í., Theodorides, M., Afroz, S., Wagner, D.: Adversarially robust
malware detection using monotonic classification. In: Proceedings of the Fourth
ACM International Workshop on Security and Privacy Analytics, pp. 54–63 (2018)

https://www.scmagazine.com/home/ security-news/cybercrime/about-corona-virus-app-locks-android-screens-with-repackaged-malware/
https://www.scmagazine.com/home/ security-news/cybercrime/about-corona-virus-app-locks-android-screens-with-repackaged-malware/
https://www.scmagazine.com/home/security-news/ cybercrime/about-coronavirus-app-locks-android-screens-with-repackaged-malware/
https://www.scmagazine.com/home/security-news/ cybercrime/about-coronavirus-app-locks-android-screens-with-repackaged-malware/
https://www.scmagazine.com/home/security-news/ cybercrime/about-coronavirus-app-locks-android-screens-with-repackaged-malware/
http://contagiodump.blogspot.com/
http://arxiv.org/abs/1606.04435
https://doi.org/10.1007/978-3-319-66399-9_4
https://doi.org/10.1007/978-3-319-66399-9_4


Evading Static and Dynamic Android Malware Detection Mechanisms 47

32. John, T.S., Thomas, T.: Adversarial attacks and defenses in malware detection
classifiers. In: Handbook of Research on Cloud Computing and Big Data Applica-
tions in IoT, pp. 127–150. IGI global (2019)

33. John, T.S., Thomas, T., Emmanuel, S.: Graph convolutional networks for android
malware detection with system call graphs. In: 2020 Third ISEA Conference on
Security and Privacy (ISEA-ISAP), pp. 162–170. IEEE

34. Lee, J., Kim, J., Kim, I., Han, K.: Cyber threat detection based on artificial neural
networks using event profiles. IEEE Access 7, 165607–165626 (2019)

35. Li, D., Li, Q.: Adversarial deep ensemble: evasion attacks and defenses for malware
detection. IEEE Trans. Inf. Forensics Secur. 15, 3886–3900 (2020)

36. Li, D., Li, Q., Ye, Y., Xu, S.: Sok: Arms race in adversarial malware detection.
arXiv preprint arXiv:2005.11671 (2020)

37. Peiravian, N., Zhu, X.: Machine learning for android malware detection using per-
mission and API calls. In: 2013 IEEE 25th international conference on tools with
artificial intelligence, pp. 300–305. IEEE (2013)

38. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.:
Rage against the virtual machine: hindering dynamic analysis of android malware.
In: Proceedings of the Seventh European Workshop on System Security, pp. 1–6
(2014)

39. Pierazzi, F., Pendlebury, F., Cortellazzi, J., Cavallaro, L.: Intriguing properties of
adversarial ml attacks in the problem space. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 1332–1349. IEEE (2020)

40. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-end
attack against state of the art API call based malware classifiers. In: Bailey, M.,
Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050,
pp. 490–510. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-
5 23

41. Sahs, J., Khan, L.: A machine learning approach to android malware detection.
In: 2012 European Intelligence and Security Informatics Conference, pp. 141–147.
IEEE (2012)

42. Souri, A., Hosseini, R.: A state-of-the-art survey of malware detection approaches
using data mining techniques. Hum.-centric Comput. Inf. Sci. 8(1), 3 (2018)

43. strace: https://strace.io/ (2015)
44. Surendran, R., Thomas, T., Emmanuel, S.: Gsdroid: graph signal based compact

feature representation for android malware detection. Expert Syst. Appl. 113581
(2020)

45. Venkatraman, S., Alazab, M.: Use of data visualisation for zero-day malware detec-
tion. Secur. Commun. Netw. 2018 (2018)

46. Venkatraman, S., Alazab, M., Vinayakumar, R.: A hybrid deep learning image-
based analysis for effective malware detection. J. Inf. Secur. Appli. 47, 377–389
(2019)

47. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection.
In: Proceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security, pp. 447–458 (2014)

48. Vinayakumar, R., Alazab, M., Srinivasan, S., Pham, Q.V., Padannayil, S.K.,
Simran, K.: A visualized botnet detection system based deep learning for the inter-
net of things networks of smart cities. IEEE Trans. Ind. Appl. (2020)

49. Vinod, P., Zemmari, A., Conti, M.: A machine learning based approach to detect
malicious android apps using discriminant system calls. Future Gen. Comput. Syst.
94, 333–350 (2019)

http://arxiv.org/abs/2005.11671
https://doi.org/10.1007/978-3-030-00470-5_23
https://doi.org/10.1007/978-3-030-00470-5_23
https://strace.io/


48 T. S. John and T. Thomas

50. Winsniewski, R.: Android-apktool: A tool for reverse engineering android APK
files. 10, 2020 (2012)

51. Wu, D.J., Mao, C.H., Wei, T.E., Lee, H.M., Wu, K.P.: Droidmat: android malware
detection through manifest and API calls tracing. In: 2012 Seventh Asia Joint
Conference on Information Security, pp. 62–69. IEEE (2012)

52. Wu, W.C., Hung, S.H.: Droiddolphin: a dynamic android malware detection frame-
work using big data and machine learning. In: Proceedings of the 2014 Conference
on Research in Adaptive and Convergent Systems, pp. 247–252 (2014)

53. Yang, W., Kong, D., Xie, T., Gunter, C.A.: Malware detection in adversarial set-
tings: Exploiting feature evolutions and confusions in android apps. In: Proceed-
ings of the 33rd Annual Computer Security Applications Conference, pp. 288–302
(2017)

54. Yerima, S.Y., Sezer, S.: Droidfusion: a novel multilevel classifier fusion approach
for android malware detection. IEEE Trans. Cybern. 49(2), 453–466 (2018)


	Evading Static and Dynamic Android Malware Detection Mechanisms
	1 Introduction
	2 Related Works
	3 Machine Learning for Android Malware Detection
	4 Method of Attack
	5 Evading Opcode Based Android Malware Detection Mechanism
	5.1 Preprocessing
	5.2 Training the Classifier
	5.3 Testing the Classifier
	5.4 Dalvik Opcode Injection

	6 Evading System Call Graph Based Android Malware Detection Mechanism
	6.1 Preprocessing and Signal Extraction
	6.2 Training the Classifier
	6.3 Testing the Classifier
	6.4 System Call Injection

	7 Conclusion and Future Work
	References




