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Abstract. Obfuscation techniques are used by malware authors to con-
ceal malicious code and surpass the antivirus scanning. Machine Learn-
ing techniques especially deep learning techniques are strong enough
to identify obfuscated malware samples. Performance of deep learning
model on obfuscated malware detection is compared with conventional
machine learning models like Random Forest (RF), Classification and
Regression Trees (CART) and K Nearest Neighbour (KNN). Both Static
(hardware and permission) and dynamic features (system calls) are con-
sidered for evaluating the performance. The models are evaluated using
metrics which are precision, recall, F1-score and accuracy. Obfuscation
transformation attribution is also addressed in this work using associa-
tion rule mining. Random forest produced best outcome with F1-Score
of 0.99 with benign samples, 0.95 with malware and 0.94 with obfuscated
malware with system calls as features. Deep learning network with feed
forward architecture is capable of identifying benign, malware, obfus-
cated malware samples with F1-Score of 0.99, 0.96 and 0.97 respectively.

Keywords: Obfuscated malware detection · Machine learning · Deep
learning · Random forest · Classification and regression trees ·
K nearest neighbor

1 Introduction

The significance of mobile phone is countless as it offers a variety of incredi-
ble features and opportunities. The tremendous progress in the field of mobile
technology together with availability and access to the internet has resulted in
an innovative experience in mobile computing. This has been made possible by
developing mobile applications. Many factors contributed to the massive growth
of mobile applications. Mobile applications are increasingly playing a vital role
in the commercial world. A large number of business applications have sprung up
with the smart phone industry boom. Some of the most popular types of business
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applications are banking apps, online shopping apps, mobile payment apps and
communication apps. Cyber terrorism is growing exponentially in a sophisticated
manner, such that it is mandatory to employ a strong anti-malware strategies
to protect the information and digital assets. As per the IT threat evolution
Q3 statistics 2018, Kaspersky Lab solutions clogged around 947,027,517 attacks
initiated from online assets [1]. McAfee Global Threat Intelligence examined fur-
ther 1,800,000 URLs, 800,000 files, and 200,000 files in a sandbox each day [2].
Security is becoming more extortionate and hard to manage. The organizations
around the world have started spending whopping amounts of money to protect
their software from these attacks. Worldwide cyber security spending is said to
have reached 96 billion dollars in 2018 [3].

Malware authors have resorted to techniques like obfuscation to evade detec-
tion by anti-malware system. Obfuscation has numerous genuine uses, including
making software secure and preventing tamper. It also plays an important role
in aiding malware to evade different detection mechanisms. Obfuscation is a
technique that models programs difficult to interpret. It converts the code to a
new version. Originally, this technology was aimed at protecting the intellectual
property of software developers. Software developers may also employ obfusca-
tion techniques to conceal flaws and vulnerabilities of the code. Code obfuscation
in malicious context has two goals: the malware must elude detection and out-
live long enough to accomplish its tasks. Conventional antivirus use signature
based or pattern based malware detection. Malware writers can easily defeat the
antivirus by changing the syntax without changing the malicious semantics using
obfuscation techniques [5]. So it is very crucial to identify obfuscated malware.

Deep learning models are significant in android malware detection since it
improves the classification performance. Semantics hidden in the sequence of fea-
tures can be easily identified by this models [27]. Obfuscated malicious behaviour
can be easily revealed with deep learning layers. This work make the following
contribution in the area of obfuscated mobile malware detection: Performance of
Deep learning models are better than conventional machine learning models for
identifying obfuscated malware. Performance of dynamic feature (system calls)
is better than static feature (hardware and permission) for conventional machine
learning models. Obfuscation transformation attribution requires sophisticated
pattern mining methods other than association rule mining with apriori algo-
rithm. Rest of the paper is organised as follows. Section 2 covers literature survey
on existing obfuscated malware detection techniques. Section 3 describes archi-
tecture and theoretical background of machine learning and deep learning mod-
els. Experimental results are demonstrated and analysed in Sect. 4. Section 5
concludes the work.

2 Related Work

Signature-based detection in an anti-malware approach can be easily evaded
using simple obfuscation techniques [4]. Static analyses alone are not capable
enough to identify malware that incorporates evasion mechanisms. The anti-
malware tools that correctly identifies malware failed to detect them after the
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transformation mechanisms were applied to it. The techniques adopted by mal-
ware writers are becoming increasingly sophisticated. This proposes the need
for re-designing the malware detection methods so as to effectively protect the
smart devices. Numerous experimentation and analysis has been carried out
to assess the performance of antivirus tools against obfuscated android mobile
malware application. It is observed that many anti-viruses failed to detect obfus-
cated applications. A detailed literature survey for identifying obfuscated mobile
malware given in Table 1.

Table 1. Related work

Author Methodology and inferences

M. Ikram et al. 2019 [7] Features from weighted directed graph of API calls.
Machine learning models: SVM, KNN, Random
Forest. 96% of malware samples were correctly
classified

O. Mirzaei et al.
2018 [5]

Features: Dalvik bytecode, control flow graph.
Classification models: KNN, SVM, Decision Trees,
Random Forest. Accuracy of 92.2% for identifier
renaming, 81.41% for string encryption, 68.32% for
control flow obfuscation and overall accuracy of
80.66% for the combination of more than one
obfuscation technique

G. Suarez-Tangil et al.
2017 [8]

Extra trees are used for malware detection and
family identification. Features (API calls, permission,
code structure, invoked components, native
components, obfuscation artifacts, invariant features
underobfuscation). Malware detection accuracy -
99.82% and family identification accuracy - 99.26%

Y. Wang et al. 2017 [9] Support vector machine for provenance analysis.
Features are extracted from data section of DEX
files. Obfuscator dentification accuracy - 97%,
Configuration recognition accuracy - 90%

J. Garcia et al.
2016 [10]

API based features are used. SVM is used for
malware detection and CART is used for family
identification. Malicious app detection accuracy -
98% and family identification accuracy - 95%

Most of the works in obfuscated malware analysis concentrates on evaluating
the strength of antimalware software on obfuscation techniques and evaluating
existing malware detection methods on obfuscation transformation. Obfuscation
detection in mobile applcation using batch learning not able to compete in terms
of accuracy but save computational resources and time. Androdet [5] claims
efficient obfuscated malware detection system. But the authors of Androdet
failed to account for the fact that their dataset is biased [6]. As a result machine
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learning models fail to learn a generalist model for string encryption and might
instead learn to classify samples based on characteristic of each malware family.
When Androdet is reevaluated with samples never appeared in both the training
and testing data, accuracy dropped to around 50%.

3 Methodology

A novel architecture is proposed for identifying obfuscated malicious android
application. The model is evaluated with two static features and a dynamic
feature. The static features considered here are permission and hardware and
dynamic is system call. Figure 1 illustrates the architecture of the proposed model
for obfuscated android malware detection.

Fig. 1. Proposed system architecture

3.1 Problem Formulation

Let dataset (B, M, O) consist of Benign (B), Malware (M), and Obfuscated Mal-
ware (O) samples. Obfuscated Malware samples (O) are generated by applying
different obfuscation strategies (Δ) on Malware (M).

O = Δ(M) (1)

Each samples are represented as n + 1 tuples such that

Xij = (xi1, xi2, xi3..........xim, Ci) (2)

where xij represent the value of jth feature of ith sample and Ci is the class label
of sample Xi, Ci ∈ (B, M, O). Problem is to build a three class classification
model capable of mapping the class label of Y(y1, y2, ....yn) to B, M, O.
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3.2 Dataset

The dataset for the proposed system consists of three types of samples-benign,
malware and obfuscated malware. A total of 5750 benign samples are collected
from the Google Playstore [11] and their genuineness is verified using Virus
Total [12]. 5000 malware samples are collected from Drebin [13] and 5000 obfus-
cated samples are collected from PRAgard dataset [14].

3.3 Feature Extraction

– Static features: Two static features are considered: Permission and hardware
features. They are extracted using the Android Asset Packaging Tool [15].

– Dynamic Feature: The dynamic feature considered here is system call. It is
extracted using the Android Dumb Bridge [16] and the stress test is performed
using the Monkey-runner [17].

3.4 Feature Reduction

Let S be the set of features. Recursive Feature Elimination [18] will generate
all combination of features and find X ∈ S which produce best accuracy with
logistic regression. For finding X this approach considers all the subsets of S.
For each subset Sj classification model MSj

is generated by Logistic Regression
(LR) [19],

MSj
= LR(Sj)

and its performance is measured. Feature set for which the model produces the
maximum performance is selected as X.

X = Max(Performance(MSj
)|Sj ∈ (subset(S))) (3)

3.5 Feature Vector Table Construction

Classification Model M is generated from the feature vector table F . Feature
vector table is a m × n matrix where m represents the number of samples and
n represents the count of the attributes. Feature occurrence matrix is generated
for permission and hardware features, whereas frequency matrix for system call
features.

Three classification models are generated for identifying obfuscated malware.
They are Random Forest [20], Classification and Regression Trees [21] and K-
Nearest Neighbour [22].

3.6 Deep Neural Network

Deep learning networks are strong enough to execute feature engineering and
thereby can identify relevant features that correlate and then combine features
to promote efficient malware detection. In this work a feed forward architecture
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is proposed with 3 layers with Rectified Linear Unit (ReLU) as activation func-
tion in hidden layer and sigmoidal activation function in the output layer. Feed
forward network is trained to predict output for all the three features. In order
to fit the given data on the feed forward network, the weights of the neural net-
work are updated at the end of every iteration. The hyper-parameters [23,24],
used for training deep neural network are epoch, dropout, batch and iteration.
They are tuned to get optimised deep network that can identify malware and
obfuscated malware efficiently by avoid over fitting of the data and eliminating
vanishing gradient problem of deep network.

3.7 Evaluation Metrics

Metrics for evaluating proposed architecture is given in Table 2 [25].
Recall: Sensitivity of classification model is evaluated by recall and it measures
the capability of the model to identify the real positive cases.
Precision: Confidence of the model is evaluated by precision. It denotes the true
positive accuracy.
F1-Score: F1-Score is the harmonic mean of recall and precision.

Table 2. Evaluation parameters

Precision TP
TP+FP

Recall TP
TP+FN

F1 score 2∗Precision∗Recall
Precision+Recall

3.8 Association Rule Mining

Obfuscation transformation attribution can be performed using association rule
mining [26], which is strong enough to find features that are correlated and
occur together. In this attribution model, apriori algorithm is used to perform
association rule mining for reflection obfuscation with permission, hardware and
system call features. Metrics for evaluating quality of mined rules are support,
confidence and lift.

Support: Support of a feature P is measured as the proportion of mobile Apps (α)
instances in which the feature appears.

Support(P ) =
#{P ∈ α}

#α
(4)

Confidence: Confidence says how likely a feature Q will exist together with
feature P . It is expressed as P → Q.

Confidence(P → Q) =
Support(P,Q)
Support(P )

(5)
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Lift: Lift says how likely a feature P occurs when a feature Q is present.

Lift(P ) =
Support(P,Q)

Support(P ) ∗ Support(Q)
(6)

4 Results and Discussions

The experiment was conducted on Ubuntu 14.04 platform with the support of
Intel core I7 and 8 GB RAM.

Fig. 2. Performance of classification algorithms with f1-score for permission

Fig. 3. Performance of classification algorithms with f1-score for system call

Fig. 4. Performance of classification algorithms with f1-score for hardware feature
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4.1 Evaluation of Machine Learning Models

Classification models (CART, RF, kNN) with permission, hardware features and
system calls are evaluated using three metrics which are recall, precision and F-
Score and results are shown in Fig. 2, Fig. 3 and Fig. 4. Models are generated
for different feature length: Permission (160, 190, 220, 250, 280), System Calls
(54, 66, 78, 90, 102) and hardware features (16, 19, 22, 25, 28). Experimental
results shows that Random forest outperforms other two classifiers with all the
three features for malware and obfuscated malware detection due to its ensemble
nature. Performance of the hardware features are not appreciable when compared
with other two, as its fails to produce much variance among classes due to
its limited size. Performance of the system calls are affected much by feature
length. As feature length increases, F1-score improves and after a certain limit
performance tends to decreases.

Fig. 5. Evaluation of deep neural network with f1-score

Fig. 6. ROC for permission, system call and hardware feature
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4.2 Evaluation of Deep Neural Network (DNN) Models

The DNN is evaluated using recall and F1-score for permission, system calls
and hardware features and results are shown in Fig. 5 and Fig. 6. F1-Score for
malware and obfuscated malware in permission shows similar trends. F1-Score
increases with increase in dropout rate till 0.5 with a value of 97.5 and then
shows a gradual decrease. Benign samples show comparatively constant F1-Score
values with no steep rises and falls. F1-Score decreases gradually for all the three
classes in system calls with increasing dropout values. F1-Score for hardware
feature for three classes are not correlated. Permission feature produces best
Area under curve (AUC) for benign class and results shows permission and
system call features performs much better than hardware feature. Permission
features have produced 99% accuracy on deep learning model with dropout 0.5,
which is comparatively greater than the existing DaDiDroid [7] model.

Table 3. Association rules

Feature Rule Supp. Conf. Lift

Permission android.permission.EXPAND
STATUS BAR and
android.permission.
SET WALLPAPER HINTS

0.02 1 34.7

System
calls

getuid32 and fcntl64
and clock gettime

0.10 1 4.72

Hardware gps and network 0.35 0.88 2.5

4.3 Evaluation of Association Rule Mining

Performance of permission, hardware and system call features are evaluated in
detecting reflection obfuscation using association rule mining is given in Table 3.
Even though the support of permission based feature is poor, confidence factor
is maximum for around 20 permissions which indicates the permissions are good
for identifying reflection. Moreover highest lift value for around 20 permission
is 34.785 which indicates these permissions are strongly bounded to reflection.
Support value of system calls are better than permissions. Performance in terms
of confidence score is same for all the three features considered. Lift value pro-
duced by system calls to identify reflection is less with maximum of 4.72 which
depicts the poor associative nature of the system calls with reflection. Further
performance of hardware features is less compared with permission and system
calls with maximum lift value of 2.52.
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5 Conclusion

Machine learning and deep learning models are evaluated for identifying obfus-
cated malware with features like permissions, hardware features and system
calls. Random forest produced best results with permission and system call as
it is a strong ensemble decision tree based classifier. Deep learning generates
improved results with permission compared to conventional machine learning
models. Scope of Association Rule Mining for obfuscation transformation attri-
bution addressed in this work by generating rules for sophisticated reflection
obfuscation. In future, various deep learning models can be applied and evaluated
for obfuscation detection in malicious mobile application. Obfuscation transfor-
mations can be easily identified with resilient features that can be extracted
using visualization techniques of malware source code which form the future
scope to enrich this research work.
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