
Traffic Sign Classification Using ODENet

Yaratapalli Nitheesh Chandra Sainath(B), Reethesh Venkataraman,
Abhishek Dinesan, Ashni Manish Bhagvandas, and Padmamala Sriram

Department of Computer Science and Engineering, Amrita Vishwa Vidyapeetham,
Amritapuri, India

nitheesh.my@gmail.com, reetheshv.rv@gmail.com, abhishekdinesh3@gmail.com,

ashnibhagvandas16@gmail.com, padmamala@am.amrita.edu

https://www.amrita.edu

Abstract. In the family of deep neural network models, deeper the
model is, the longer it takes to predict and larger the memory space
it utilizes. It is very much likely that use-cases have constraints to be
respected, especially on embedded devices, i.e, low powered, memory-
constrained systems. Finding a suitable model under constraints is
repeated trial-and-error to find optimal trade-off. A novel technique
known as Neural Ordinary Differential Equation Networks (ODENet)
was proposed in NeurIPS2018, where instead of a distinct arrangement
of internal hidden layers of a Residual Neural Network (RNN), they used
parametrized derivatives of internal states in the neural system. Any dif-
ferential equation solver can be used to calculate the final output. These
models have constant depth and can trade between speed and accuracy.
We propose a methodology for Traffic Sign Detection using ODENet and
subsequently conclude that ODENets are more robust and perform bet-
ter in comparison to ResNets. We also conclude that though training
time is high in ODENets, they can trade-off between speed and accuracy
when it comes to both training and testing.

Keywords: Differential equations · Neural networks · Embedded
systems · Traffic sign · Deep learning

1 Introduction

1.1 Traffic Sign Detection(TSD)

An innovation by which a vehicle can discern the road signs that are placed
on sides of the road such as, “Speed Limit”, “No Parking” or “No U-Turn”.
It is being innovated by various self-driving automotive manufacturers. It can
use various techniques ranging from image processing to Lidar analysis to locate
and identify traffic signs. The techniques can be commonly grouped based on
the color, shape and the type of learning [5,7].

TSD is a real world task which involves lot of constraints and complications.
Even a minor misclassification of the traffic sign could lead to catastrophic out-
comes and can even lead to loss of life. This is implemented as a sub system in
various ADAS and in autonomous vehicles [13].
c© Springer Nature Singapore Pte Ltd. 2021
S. M. Thampi et al. (Eds.): SoMMA 2020, CCIS 1366, pp. 187–197, 2021.
https://doi.org/10.1007/978-981-16-0419-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0419-5_15&domain=pdf
https://doi.org/10.1007/978-981-16-0419-5_15


188 Y. N. C. Sainath et al.

Typically, a camera facing the forward direction will be present on the dash-
board of the vehicle and it captures the real time video feed which is sampled
into frames and fed to a series of methods and techniques. One of which is a
deep learning model which is deployed inside an automotive embedded board.
As the vehicle is driven in various environments, lighting conditions, speeds and
geographies it is essential for the deep learning algorithm to be robust and reli-
able at all times. The camera can catch the traffic sign in different orientations
and positions but the algorithm should recognize the correct sign [13].

Detection and classification are the 2 main parts of the algorithm. The detec-
tion module takes the image and localizes any traffic signs in them after which
the classification module identifies which sign it is. Also, both modules work
based on the colour, shape and edges of traffic signs. There are ways to deter-
mine both detection and classification in the same technique [18].

1.2 Neural Networks as Differential Equations

All different variants of residual networks (ResNets) create complicated changes
to hidden state with each transformations:

ht+1 = ht + f(ht, Θt) (1)

where t ∈ {0...T} and ht ∈ R
D.

Ordinary differential equation can be used as a substitute for 1:

dh(t)
dt

= f(h(t), t, θ)) (2)

The initial layer h(0) and designate the output layer h(T ) is the result of this
initial value problem at a certain depth T . By utilizing any differential equation
solver, referred as black-box solver in [7] that computes the concealed dynamics
f . These solvers can consists of tunable parameters which in this case are used
for speed-accuracy trade off.

For other advantages of NeuralODEs, refer [7].

2 Related Work

2.1 Traffic Sign Detection (TSD)

Can be broken down to subsets which include tasks like detection, classification
and tracking. There has been extensive research effort carried by researchers in
this area.

Computer Vision Feature Extraction. Computer vision algorithms and
methodologies were few of early approaches before the advent of machine learn-
ing. Techniques like Histogram Oriented Gradients (HOG) [12] is initially popu-
larized for the detection of pedestrians. In this method the usage of color gradi-
ents in images are computed along with various weighted, normalized histograms.



Traffic Sign Classification Using ODENet 189

Scale Invariant Function Transform, popularly know as SIFT [10] was used to
classify and the sliding window method was used simultaneously to perform both
classification and detection tasks.

Machine Learning. Machine learning algorithms uses many techniques namely
Support Vector Machines [14], Linear Discriminant Analysis [17], Ensemble Clas-
sifiers, Random Forest, and KD-Trees [23].

Linear Discriminate Analysis (LDA) is based on the maximum poste-
rior estimation of the class membership. Class densities are assumed to have
multivariate Gaussian and common co-variance matrix [21].

Random Forest is an ensemble classifier method [20] which is a set of
decision trees. Each decision tree is trained using randomly taken training data.
Testing data is analyzed by all different decision trees for classification. The
classification output is based on majority voting, which takes into account the
majority decision trees’ decisions.

Support Vector Machines (SVMs) are classification algorithms that use
a hyperplane to divide the n-dimensional data [14]. SVM can also isolate data
distributed non-linearly by projecting the classification hyperplane into higher
dimensions using a non-linear kernel function.

Machine learning approaches [1] were unable to manage images of various
aspect ratios, sizes and dimensions and had to be manually produced which is a
very time-consuming operation that can produce a lot of errors.

Deep Learning. To overcome the disadvantages of above mentioned conven-
tional methodologies new implementations based on deep learning algorithms
which presented a novel approach than previous methods. In recent years with
an increase in computing power and availability of standardized data sets and
access to a huge amount of data.

LENET Architecture was the first CNN architecture for traffic sign clas-
sification. Convolutional neural networks are multi-stage neural network archi-
tecture that learns the invariant features automatically [6]. Each stage consists
of convolution layer, a RELU layer, and a pooling layer [19]. The pooling layer
lowers spatial information and functions as complex cells within the visual cor-
tex. A gradient descent based optimizer is used for training and updating each
filter to minimize the loss function. The output of all the layers is fed to the
classifier for improving the accuracy of classification.

2.2 Neural Ordinary Differential Equation

There was no practical application of adjoint training approach for continuous-
time neural networks, even though it was proposed [8]. The concept of exploit-
ing reversibility and approximate computation came into research after viewing
residual networks [4] as an approximate ODE solver [24]. The different sec-
tions of the said concepts that came under research were adaptive computa-
tion (ODE solvers give generalizable and resource and CPU non-intensive solu-
tions to adjust the computation number) [3], constant memory backpropagation



190 Y. N. C. Sainath et al.

(reversible resnets made of restricted architectures with the same memory work-
load as normal approach, except our approach does not have such restricted
architectures) [2], approximate differential equations from given data (fluid sim-
ulation applications are one such example) [22] and using adjoint sensitivity
analysis which uses linear-time number of variables in comparison to forward
analysis which is quadratic-time [11].

3 Reverse-Mode Automatic Differentiation of ODE
Solutions

A package provided by the authors of Neural Ordinary Differential Equations
at https://github.com/rtqichen/torchdiffeq.git [3] is being used with Scikit-learn
[15].

In training continuous-depth networks, the key technological challenge is to
execute backpropagation via the ODE solver. In forward pass operations, differ-
entiating is easy, but it involves a high processing cost and introduces unneces-
sary computational error.

By using a BlackBox ODE solver, gradients are calculated using the adjoint
sensitivity technique [16]. This method measures gradients in time, solving an
increased ODE backwards. This solving is valid to all ODE solvers. This method
also has low memory expenses, scales and problem size are linearly proportional
and manages computational error directly.

L(z(t1)) = L
(
z(t0) +

∫ t1

t0

f(z(t), t, θ)dt

)
(3)

= L (ODESolve(z(t0), f, t0, t1, θ)) (4)

where L() is ascalar-valued loss function and input is the result of an ODE solver:
Gradients corresponding to θ are required to optimize L. In the first step, the

dependency between the hidden state z(t) and the gradient of loss is determined.
Also known as the Adjoint a(t) = ∂L

∂z(t) . Another Ordinary Differential Equation
gives the dynamics:

da(t))
dt

= −a(t)T ∂f(z(t), t, θ)
∂z

(5)

Common ODE solvers can output the state z(t) at any point. The reverse-
mode derivative is seperated inot multiple solutions each bearing the middle of
2 consequtive output times as the loss depends on the in between states. At
each iteration, the Adj (Adjoint) matrix will be updated in the direction of the
respective partial derivative ∂L

∂ti
. Full derivation can be found in [7].

3.1 ODE-Nets: Error Control

Tolerance of the true solution can be ensured by setting parameters for ODE
solvers. Tolerance has direct effect on the behavior of the network. Also the
number of feature evaluations is proportional to the amount of time.

https://github.com/rtqichen/torchdiffeq.git


Traffic Sign Classification Using ODENet 191

Adjusting the tolerance value allows trade-off between accuracy and compu-
tational costs. Training for sensitive changes can be done with high precision
and test the same system with test will lower tolerance as a trade-off for speed
and vice-versa.

3.2 Network Depth

As of now, number of internal evaluations (depends on the initial state) for
hidden state dynamics can be used as depth for an ODE solution, but the term
is still unclear.

4 Experimental Setup

4.1 Dataset

The GTSRB dataset (German Traffic Sign Recognition Benchmark) [20] is a
multi-class classification dataset accumulated as part of IJCNN 2012. It has over
50000 images and 43 different classes. The annotations are given in CSV files
with details such as: height and width of the image, bounding box co-ordinates,
filename and class label of the traffic sign. A more in-depth review of the dataset
was worked upon in Wen Lihua et al. 2017 [9].

4.2 Augmentation and Preprocessing Techniques

Resizing all images to the most prominent width, height and depth of the dataset
i.e, (33 × 34 × 3). Also, the dataset is unbalanced which could be handled by
using some augmenting techniques with rules like

– Allowed rotation: ±25◦ more than this could cause changes to certain samples
– Horizontal shift: ±20%
– Vertical shift: ±20%, most of the image has to be retained
– Horizontal flip: False
– Vertical flip: False, As flipping could change the sign
– Color space transformation: ±0.1, as signs are subject to lighting under dif-

ferent seasons
– Scale in: 0.5
– Scale out: 2.0, to make predictions size invariant
– crop: Allowed with a min height or width as at least 40%
– Noise Injection: Gaussian or Salt and Pepper, adding noise to prevent adver-

sarial attacks



192 Y. N. C. Sainath et al.

4.3 Additional Augmentation Techniques

In the real-world, data can exist in a variety of unpredictable circumstances
which can not be accounted for by the simple methods described above. Condi-
tional GANs have the power to generate images with variations in the wild with
input images.

The above method is robust but computationally intensive. Anything called
neural design transfer would be a cheaper option. This takes one image’s tex-
ture/ambience/appearance (aka, the “style”) and combines this with another’s
material.

The only downside to this approach is that rather than practical, the per-
formance appears to look more artistic. However, there are other advancements
that have amazing effects, such as Deep Picture Style Transfer, shown below.

4.4 Brief on Interpolation

In general, the original image size has to be maintained after performing the
above transformations. Our picture has no knowledge about what’s outside its
borders. In general, the space outside the boundary of the image is zeros. There-
fore you get a black area when you do these transformations where the image is
not specified.

But the images do not have a black colour group of pixels which may not
be what is desired. There are various algorithms both in image processing and
Machine Learning algorithms to fill the missing padding or empty space:

– Constant A simplest gap filler would be to fill the empty part with a fixed
value.
This works monochromatic images but not for images but does work for.

– Reflect Image values will be reflected along the missing values from the
boundary of the image.
Useful for natural or continuous contexts.

– Edge The image’s edge values are extended beyond the boundary.
For mild translations, this method can work

– Symmetric Similar to reflecting, despite the fact that a copy of the edge
pixels is rendered at the boundary of reflection.
Noticeable when dealing with very small scale patterns or images.

– Wrap The picture is only replicated as if it were tiled outside its limits.
This does not make sense for a lot of scenarios, not as popularly used.

Custom methods can be used for handling missing values. For most classification
problems, these methods will typically do well.

4.5 Deep Learning Techniques

Choosing an impainting approach is both temporally consistent and maintains
a clear object boundary.



Traffic Sign Classification Using ODENet 193

4.6 Network Architecture

The architecture used for the TSD consists of 2 convolutional layers as with 64
and 128 filters respectively. Followed by an ODE Block with two convolutions
with a flatten and a dense layer for output. Above mentioned each convolution
is a group of Convolution, Batch Normalization, MaxPooling.

Input Layer. Input Layer is used to instantiate a tensor. This layer takes the
images as input thus the size will be (33 × 34 × 3) to take RGB image as input.

Convolutional Layer. The 2D convolution layer is the most common form of
convolution used and is typically abbreviated as conv2D. In a conv2D layer, a
filter or kernel has a height and a width. It is usually smaller than the image
input and so it is transferred over the entire image. The region in which the filter
appears on the image is called the receptive field.

Every filter in this layer is initialized randomly into some distribution (Nor-
mal, Gaussian, etc.). Each filter is trained slightly differently by having different
initialisation criteria. Eventually, they learn how to detect various features in
the image. Unless they both were equally configured, then the odds of two filters
learning similar features are significantly rising. Random initialization helps each
filter to learn to recognise different characteristics.

Since each conv2D filter learns a separate feature, many of them are used to
identify different features within a single layer. The best part is that every filter
is learnt automatically. Here a kernel size of 3 × 3 is used along with 64, 128
filters in conv 1 and conv 2.

Pooling Layer. Its purpose is to gradually bring down the spatial size which in
turn allows to decrease trainable parameters, thereby decreasing network com-
putation. Pooling layer functions independently on every function diagram.

Max and average pooling are the most common methods employed in pooling.

Batch Normalization Layer. By modifying and scaling the activations, the
input of a layer is normalized. This allows all layers to work independently.

It eliminates overfitting, since it has a small effect of regularization. Hence,
less dropout is used along with batch normalization, which is a good thing since
the loss of details is minimised. Nonetheless, for regularization, batch normal-
ization cannot be solely relied on; its better to be used along with dropout.

Dropout Layer. On a neural network, Dropout is implemented per row. Almost
all layers can be used with a dropout layer. Dropout parameter specifies prob-
ability of an output retaining for next layer. Generally a probability of 0.5 is
used.



194 Y. N. C. Sainath et al.

ODEBlock Layer. A chain of residual blocks in a neural network is basically
a solution of the ODE with the Euler method as

yn+1 = yn + f(tn, yn) (6)

in this case, the the system’s initial condition is “time” 0, which indicates the
very first layer of the neural network, and as x(0) will serve the normal input,
which can be time series, image, whatever you want! The final condition at
“time” t will be the desired output of the neural network: a scalar value, a
vector representing classes or anything else.

These residual connections are discrete time steps of the Euler method, which
means that the depth of the neural network can be regulated just by choosing
the discretizing scheme, hence, making the solution (aka neural network) more
or less accurate, even making it a pseudo-infinite-layer.

Flatten Layer. The spatial dimensions of the input collapse into the channel
dimension by a flattening layer.

Dense Layer. Every node in this layer is connected to every other node in the
previous layer. Also know as fully connected layer. In this case, a dense layer
with 43 nodes is used for output.

5 Results

The model is compared with ResNet, a similar network. The model is evaluated
using the testing data set of 12,630 testing images (Table 1).

Accuracy =
ΣCorrectlyIdentified

Totalimages
(7)

Table 1. Comparison of results

Model Loss (training) Accuracy (training) Loss (testing) Accuracy (testing) Best epochs

ResNet 0.1066 0.9689 0.7283 0.8046 15

ODENet* 0.0100 0.9968 0.1990 0.9561 17

*Our approach

Training was done using 128 batch size, and categorical cross entropy was
used as the loss function. Adam optimizer was been used.

Based on the loss and accuracy metrics of the best epoch, it is concluded
that ODENets perform better in comparison to ResNets. It is observed that the
number of epochs (iterations) for ODENets is higher, proving that ODENets
take longer to converge.



Traffic Sign Classification Using ODENet 195

6 Conclusion

Traffic sign detection is a challenging task as they are implemented on a embed-
ded device, thus having a constraint on processing power. By using Neural Ordi-
nary Differential Equation techniques, a trade-off between speed and accuracy
of the system can be facilitated to correctly perform image classification and
recognition tasks faster, even on blurred, rotated and distorted images. Also as
concluded in the previous section, even though training time is longer than in
other similar methods, ODENets provide a flexible and faster way of getting
results.

7 Future Work

7.1 Minibatching

Usage of mini-batches do not currently have standardization as a regular neural
networks. Evaluations are batched together through the differential solver by
joining states of batches together to create a combined ODE with a dimension
of value DxK. For a case of different errors for each batch, a combined error
is required, which is K times more system intensive to solve individually. But,
no substantial change was noticed in number of evaluations during the practical
usage of mini-batches.

7.2 Setting Tolerances

The usage of adaptive solver for ODEs has a trade off between precision vs speed,
but this requires the manual setting of tolerances for both forward and backward
passes in training. The tolerance was brought down to 1e− 3 and 1e− 5 for atol
and rtol respectively without any changes in performance.

7.3 Functions Neural ODEs Cannot Represent

Classes of functions are introduced in arbitrary dimension d which NODEs can-
not represent. Let 0 < r1 < r2 < r3 and let g : R → R be a function such
that

{
g(x) = −1 if ‖x‖ ≤ r1
g(x) = 1 ifr2 ≤ ‖x‖ ≤ r3

(8)

References

1. Andreas Mogelmose, M.M.T., Moeslund, T.B.: Vision-based traffic sign detection
and analysis for intelligent driver assistance systems: perspectives and survey. IEEE
Trans. Intell. Transp. Syst. 13(4), 1484–1497 (2012)



196 Y. N. C. Sainath et al.

2. Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., Holtham, E.: Reversible
architectures for arbitrarily deep residual neural networks. In: Thirty-Second AAAI
Conference on Artificial Intelligence (2018)

3. Chen, T., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differ-
ential equations. In: Advances in Neural Information Processing Systems, vol. 31,
pp. 6571–6583. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/7892-
neural-ordinary-differential-equations.pdf

4. He, R., Lin, C., Wang, J., McAuley, J.: Sherlock: sparse hierarchical embeddings
for visually-aware one-class collaborative filtering (2016)

5. Hecht, J.: Lidar for self-driving cars. Opt. Photon. News 29(1), 26–33 (2018)
6. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking

machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332
(2012)

7. Lim, K., Hong, Y., Choi, Y., Byun, H.: Real-time traffic sign recognition based on
a general-purpose GPU and deep-learning. PLOS One 12(3), 1–22 (2017). https://
doi.org/10.1371/journal.pone.0173317

8. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backpropagation. In:
Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the
Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-35289-8 3

9. Lihua, W., Jo, K.H.: Traffic sign recognition and classification with modified resid-
ual networks. In: 2017 IEEE/SICE International Symposium on System Integration
(SII), pp. 835–840, December 2017

10. Lowe, D.G.: Object recognition from local scale-invariant features. In: International
Conference on Computer Vision, vol. 2, p. 1150. Computer Society, Washington
(1999)

11. Melicher, W., Uet al.: Fast, lean, and accurate: modeling password guessability
using neural networks. In: 25th USENIX Security Symposium (USENIX Security
16), pp. 175–191. USENIX Association, Austin, August 2016. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/melicher

12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. 886–893, June 2005

13. Deepika, N., Variyar, V.: Obstacle classification and detection for vision-based nav-
igation for autonomous driving. In: International Conference on Advances in Com-
puting, Communications, and informatics (ICACCI)(2017), pp. 2092–2097 (2017).
https://www.semanticscholar.org/paper/Obstacle-classification-and-detection-
for-vision-Deepika-Variyar/1100b4de94fc4ca6307c09d57901d52a01e18b74

14. Park, J.G., Kim, K.J.: Design of a visual perception model with edge-adaptive
gabor filter and support vector machine for traffic sign detection. Expert Syst.
Appl. 40(9), 3679–3687 (2013)

15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

16. Pontryagin, L., Lohwater, A.: Ordinary differential equations (1962). https://cds.
cern.ch/record/113444

17. Rabia Malik, J.K., Ahmad, S.N.: Road sign detection and recognition using color
segmentation, shape analysis, and template matching. In: International Conference
on Machine Learning and Cybernetics, vol. 6, pp. 3556–3560. IEEE (2007)

18. Rani, N.S., Rao, P., Clinton, P.: Visual recognition and classification of videos
using deep convolutional neural networks. Int. J. Eng. Technol. (UAE) 7, 85–88
(2018)

http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
http://papers.nips.cc/paper/7892-neural-ordinary-differential-equations.pdf
https://doi.org/10.1371/journal.pone.0173317
https://doi.org/10.1371/journal.pone.0173317
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/melicher
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/melicher
https://www.semanticscholar.org/paper/Obstacle-classification-and-detection-for-vision-Deepika-Variyar/1100b4de94fc4ca6307c09d57901d52a01e18b74
https://www.semanticscholar.org/paper/Obstacle-classification-and-detection-for-vision-Deepika-Variyar/1100b4de94fc4ca6307c09d57901d52a01e18b74
https://cds.cern.ch/record/113444
https://cds.cern.ch/record/113444


Traffic Sign Classification Using ODENet 197

19. Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-scale convolutional
networks. In: IJCNN, pp. 2809–2813. IEEE (2011)

20. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recogni-
tion benchmark: a multi-class classification competition. In: The 2011 International
Joint Conference on Neural Networks (IJCNN), pp. 1453–1460. IEEE (2011)

21. Wu, Y., Liu, Y., Li, J., Liu, H., Hu, X.: Traffic sign detection based on convolutional
neural networks. In: The 2013 International Joint Conference on Neural Networks
(IJCNN), pp. 1–7 (2013)

22. Xie, X., Zhang, G., Webster, C.: Data-driven reduced order modeling of fluid
dynamics using linear multistep network (2018)

23. Zaklouta, F., Stanciulescu, B.: Real-time traffic sign recognition in three stages.
Robot. Auton. Syst. 62(1), 16–24 (2014)

24. Zhang, Z., et al.: Modeling of a CO2-piperazine-membrane absorption system.
Chem. Eng. Res. Des. 131, 375–384 (2018)


	Traffic Sign Classification Using ODENet
	1 Introduction
	1.1 Traffic Sign Detection(TSD)
	1.2 Neural Networks as Differential Equations

	2 Related Work
	2.1 Traffic Sign Detection (TSD)
	2.2 Neural Ordinary Differential Equation

	3 Reverse-Mode Automatic Differentiation of ODE Solutions
	3.1 ODE-Nets: Error Control
	3.2 Network Depth

	4 Experimental Setup
	4.1 Dataset
	4.2 Augmentation and Preprocessing Techniques
	4.3 Additional Augmentation Techniques
	4.4 Brief on Interpolation
	4.5 Deep Learning Techniques
	4.6 Network Architecture

	5 Results
	6 Conclusion
	7 Future Work
	7.1 Minibatching
	7.2 Setting Tolerances
	7.3 Functions Neural ODEs Cannot Represent

	References




