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Abstract. Human Computer interaction has been moving towards Nat-
ural language in the modern age. SQL (Structured Query Language) is
the chief database query language used today. There are many flavors of
SQL but all of them have the same basic underlying structure. This paper
attempts to use the Natural Language inputs to query the databases,
which is achieved by translating the natural language (which in our case
is English) input into the SQL (specific to MySQL database) query lan-
guage. Here we use a semi-supervised learning with Memory augmented
policy optimization approach to solve this problem. This method uses
the context of the natural language questions through database schema,
and hence its not just generation of SQL code. We have used the Wik-
iSQL dataset for all our experiments. The proposed method gives a 2.3%
higher accuracy than the state of the art semi-supervised method on an
average.

Keywords: NLP (Natural Language Processing) · SQL (Structured
Query Language) · MAPO (Memory Augmented Policy
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1 Introduction

Natural Language Processing has been in existence for more than 50 years. As
computers continue to become more and more affordable and accessible, the
importance of user interfaces that are effective, robust, unobtrusive and user-
friendly become more pronounced. Since natural language usually is the pre-
ferred mode for human-human interaction, it is only sensible to adopt it in
Human Computer interaction also. Hence there has been a major move towards
incorporating Natural Language Processing (NLP) into the Human Computer
Interaction.

A large swathes of information is stored in the form of relational databases
(RDBMS). Relational databases are becoming increasingly important in actual
applications and Web sites. They are often used by people who do not have great
c© Springer Nature Singapore Pte Ltd. 2021
D. Garg et al. (Eds.): IACC 2020, CCIS 1367, pp. 288–299, 2021.
https://doi.org/10.1007/978-981-16-0401-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0401-0_22&domain=pdf
https://doi.org/10.1007/978-981-16-0401-0_22


NLP2SQL Using Semi-supervised Learning 289

competence in this domain and who do not know exactly their structure. The
only way to efficiently access, manage and manipulate the data in the databases is
through the use of the Structure Query Language (SQL). This is why translators
from natural language to SQL queries are being developed.

These translators will prove to be intelligent interfaces for interaction with
the data. A lot of approaches have been used to tackle the problem including
the traditional sequence to sequence model [19] which is pretty generalized and
doesn’t make use of the full structure of the SQL queries. Hence a new approach
which uses sequence to set along with column attention was proposed to address
the previous problems. We solve this problem using a reinforcement learning
algorithm (vanilla policy gradient) coupled with off-policy experience replay.

The chief contributions of this paper include

– Use of GloVe [13], a pre-trained word embedding.
– Apart from storing the high positive trajectories, poorly performing trajec-

tories have also been used for training.
– Hyper-parameter tuning with respect to the architecture of internal nodes in

every LSTM, dimension of GloVe [13].
– Use of Epsilon Greedy strategy for systematic exploration.
– Use of Bidirectional LSTM [6].

The following section provides details of, (i) Literature review done during
the research process (Sect. 2) (ii) The proposed algorithm (Sect. 3) (iii) Imple-
mentation Experimentation and results (Sect. 4)

2 Literature Review

This section describes the literature review performed during the research pro-
cess.

2.1 MAPO

Memory Augmented Policy Optimization (MAPO) [7] reduces the variance in
the policy gradient estimates and improves the sampling efficiency with the help
of a high trajectory memory buffer. Memory clipping alleviates cold start of
policy gradients and an efficient search algorithm is used to explore the memory
buffers, for which bloom filters are used. For calculation of Expected rewards
from the large memory buffers, sampling is employed. Distributed actor-learner
(with 30 actors) is used to quicken the training process. This technique was first
employed in [12].

2.2 Coarse2Fine

This algorithm is analogous to 3-step machine translation. It uses attention
mechanisms [1] in both encoder and decoder. A rough sketch a is first gener-
ated, and this is used to guide the final decoding. The rough sketch is devoid
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of argument-names, variable-names (replaced with it’s datatype), and all other
lower level details. All the components of input x, rough sketch a and final out-
put y are treated as sequences. Hence, this becomes a seq2seq problem [20].
GloVe vectors are used to encode the input. The training objective maximizes
the joint probability of the final meaning representation and that of the interme-
diate rough sketch also. During preprocessing of the data, 10-dimensional PoS
tag embeddings are appended to the embeddings of the words in the natural lan-
guage question. This novel idea was presented in [5]. Parent feeding technique
is employed in the current work. The authors of this paper have not mentioned
how this work is better than that of Yin and Neubig [18] which uses a generic
system of abstract syntax trees(AST).

2.3 Gated Convolution Neural Network (G-CNN)

This work aims to perform language modeling using Gated CNNs. This is the
first non recurrent approach to language modeling, and the paper achieves sub-
stantial accuracy results on large-context datasets also. The main unique selling
proposition (USP) is that the CNN units can be parallelized and hence this
model is more faster than LSTM based models, only during inference, not nec-
essarily during training. It uses stacked convolutions which increases the number
of operations per context to O(nk) (per kernel), where n is the context size and
k is the kernel width. Causal convolutions are used, i.e., the kernel can only see
the previous words and not the future words. This ensures that the model does
not cheat.

The initial part of the sentence is padded with (k− 1) tokens, where k is the
width of the kernel. Comparison between Gated Linear Unit (GLU) and Gated
Tanh Unit has been performed. GLU is better than the latter, because it han-
dles the vanishing gradient problem better. RNNs are parallelized over different
sequences while training, and CNNs can be parallelized over different contexts
or tokens. The model uses residual activation blocks and the gradients have been
clipped to [−5, 5]. Kaiming initialization, Momentum and weight normalization
are some of the techniques that help in faster convergence even with large learn-
ing rates = 1. Adaptive softmax is used, instead of the conventional softmax.
This is less expensive but approximately gives the same results. It is empirically
found that a context size of 40 tokens is sufficient to obtain high accuracy. Sim-
ilarly, it is sufficient to limit the backpropagation to 40 time steps (instead of
the theoretical infinite limits).

Although this work provided better results theoretically, we found it hard
to reproduce similar results in our paper when we replaced LSTMs/RNNs with
G-CNNs.

2.4 DeepFix

The model trains a neural network for fixing the syntactic (non-semantic) pro-
gramming errors in the C language. The authors train a GRU with attention
to achieve 60% accuracy. The literals are given a fixed vector representation (as
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they do not affect the syntax) and all the identifiers are given a similar fixed
representation. The initial weights of the GRU is drawn from a uniform distri-
bution within the range (−0.07, 0.07). Both encoder and decoder have 4 layers,
300 cells each. The model performs the error localization upto 80% accuracy.

Certain types of errors might never be suitable for LSTMs. For instance,
assignment of an array into another is not allowed in the C language (unlike
Python). The solution to this is to use a for loop and index through all the
elements of the array. It might be impossible to enable an LSTM to generate
such solutions.

It is not entirely clear if the vanilla attention mechanism is adding value
to the process. The model is stopped from continuing if one of it’s proposed
corrections is rejected by the oracle(during iterative repair). If this bound is
reduced to 3/4 it might give the model more chances to take corrective actions,
because a single line might contain multiple fixes(at different positions) which
are required to eliminate a single error message.

Eliminating bias has not been argued comprehensively in the paper because
real-world data might also have a similar distribution of the types of errors. By
forcing equal representation, we could be losing the information regarding the
priority of errors.

The mutations in the data set (seeded) were performed manually by the
authors. This might have introduced bias and might be a reason for the poor
performance. The authors select only one erroneous program per student for
every programming task citing the concern of bias. But since syntactic errors
are independent of the semantic nature of the program, this leads to wastage
of training data. It is true that there may be some correlation between the
programming task and the syntax errors and a specific student, but it will be
useful if a comparison had been provided.

2.5 SQLNet

The paper proposes a sketch-based model for SQL generation. The contents of
the sketch is filled with the help of neural networks. Column attention is used
extensively in three different steps. A sql2set model is used in the paper, as the
order of the conditions are to be considered only during evaluation in SQL. This
technique is very similar to the approach of generating Abstract Syntax Tree
(AST) and filling in the slots. To decide whether or not to include a column name
in the WHERE condition, binary classification is performed. The mechanism of
predicting the column names for SELECT and WHERE clauses are identical.
But the weights of the trainable matrices cannot be shared, because the column
in either of SELECT or WHERE need not be present in the other also (in fact
it might not be present in most of the cases). In predicting columns for WHERE
condition, the authors do not share weights between the bi-LSTMs used for
encoding the column names and the question. They propose that this ensures
independence of the decisions made. But this is a tradeoff, because the current
methodology requires a large number of trainable parameters. Apart from this,
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the WikiSQL dataset does not contain examples of self-join where a single table
is involved.

2.6 Execution Guided Decoding (EGD)

EGD uses the partially generated queries and weeds out the incorrect SQL state-
ments(those that produce a runtime error) and queries that do not match any
records. Some of the questions may not have any suitable records in the table.
The authors hypothesize that this could be because the decoder generated an
overly-restrictive where condition. EGD is performed only during inference, and
not during training. Using EGD during training may potentially improve the
model performance. EGD is model-agnostic and is useful in a variety of auto-
regressive tasks. It is difficult to use EGD in pure seq2seq models, because it’s
hard to know what stage the partial programs are executable. Execution guid-
ance only tries to reduce the number of execution errors. As a by product, the
accuracy increases by a small value (because the number of erroneous programs
decreases). This increases the number of semantically meaningful programs, but
not necessarily the number of semantically correct programs.

The authors make an impoprtant observation that many queries in WikiSQL
are grammatically wrong. This might hinder possible approaches like that of
GANs. It is not clear whether the beam-size plays an important role in deter-
mining the accuracy.

The paper does not use the Teacher-Forcing method while training of LSTMs.
We have incorporated this methodology in our proposed algorithm.

Execution guidance only tries to reduce the number of execution errors. As
a by product, the accuracy increases by a small value (because the number
of erroneous programs decreases). This increases the number of semantically
meaningful programs, but not necessarily the number of semantically correct
programs

It’s not possible to implement EGD for all auto-regressive tasks. Example,
for tasks like music generation, there are no standard set of rules to determine if
an audio piece is syntactically and semantically correct (except for systems like
Carnatic/Hindustani music).

2.7 SQLova

It is very similar in structure to SQLNet [17], but has three important contribu-
tions.

– It uses BERT word representations instead of GloVe [13].
– It uses Sequence to sequence (Seq2Seq) model
– It uses Execution Guided Decoding [15]

NLQ is concatenated with the table headers. Every token consists of token,
position and segment embedding(see BERT for more details). It is not entirely
clear if this ordering of the input had any effect on the accuracy metric. (This is
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because this paper largely borrows from SQLNet, and SQLNet does not impose
such restrictions on ordering of input). [17] predict the where-value using pointer-
networks (Vinyals). But this paper follows [5] and predicts the start and the end
token for the where-val instead of going for a seq2seq approach. Also, where-
val is conditioned on where-col and where-op. The order of where conditions
is ignored in measuring logical form accuracy in the model. The final output
of where-clause will be that one which has the highest joint probability with
respect to all the four where predictors.

The authors claim that SQLNet conditions the where-val only on the where-
col. But this is not true. It conditions the where-val on NLQ, column name, and
the partially generated query. This probability is calculated for every column
and softmax is used to choose the one with the highest probability.

2.8 XSQL

This work brings in a fresh set of fine-tuning of the results by leveraging recent
strides in natural language processing like the MT-DNN algorithm [11] over
BERT [3]

– It Uses MT-DNN instead of BERT to encode the question and to generate a
new structural representation for schema

– The [EMPTY] token is appended to every table schema to account for cases
where there are no WHERE conditions.

– KL-Divergence is used as an objective only for predicting the WHERE con-
dition column name.

– The ground truth Q in predicting the WHERE column name is calculated as
follows:

– If there is no where clause, Q[EMPTY] receives probability mass 1 for special
column [EMPTY]

– For n ≥ 1 where clauses, each where column receives probability mass of 1/n
Although this paper shows improvements in predicting the individual slots
of the SQL query, it would behave been fair playing ground if the authors
presented the test and dev accuracy that is prevalent in the NL2SQL research
community.

3 Proposed Algorithm

The current work proposes to generate the SQL statements by using the policy
gradient [14] algorithm. The algorithm has been developed on top of Memory
Augmented Policy Optimization [10]. Similar to MAPO, the memory buffers
have also been used to store both the high reward trajectories and the low reward
trajectories. Sampling and training periodically from these buffers ensure that
the agent/model does not forget the high/low-reward trajectories.

The low-reward trajectories are also included in the memory buffer because
agent has equal opportunity to learn from both the high-reward and low reward
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trajectory. The usage of policy gradient makes it all the more important to
reinforce both positive and negative reward trajectories.

The authors of MAPO [10] have not made use of pretrained word embeddings,
but they have used random word embeddings. This work alleviates those lacunas
by using GloVe word embeddings [13]. This ensures that the inductive priors
from the unsupervised training of GloVe word embeddings are leveraged in the
proposed NLP2SQL model.

Similar to the original MAPO paper, the epsilon greedy strategy to ensure
systematic exploration of the search space has been retained. This step uses
bloom filters in order to store billions of patterns to ensure that no programs
are missed out.

We have also performed hyper parameter tuning with respect to the size of
the pretrained word embeddings and we realized that the optimal value is 300
dimensions. Apart from these, bidirectional LSTM in both encoder and decoder
has also been used.

4 Implementation, Experiments and Results

The algorithm has been implemented using Python 3.6, Tensorflow 1.7, gensim
3.2.0, nltk 3.3, Babel 2.5.3, bloom-filter 1.3. The model is tested against the
WikiSQL dataset [19] in the Linux environment over a cluster of 2 Nvidia K40
GPUs. Tensorflow GPU optimizations have also been used.

The reinforcement learning agent has been allowed to train for a maximum
of 15000 training steps in the environment. We have used the standard baselines
from OpenAI [4] for comparison with the vanilla policy gradient algorithm.

4.1 Dataset

WikiSQL [19] is a large database built mainly for the development of interfaces
for the natural language processing for relational databases. Annotated with SQL
queries, the dataset primarily consists of entries from Wikipedia and other com-
mon sources of information. In comparison with other question-answer datasets
(like WikiTableQuestions), WikiSQL has simple semantics as the SQL queries
have simpler structure and fewer operators. While most of the state-of-the-art
models are dependent on the question-program pairs as the data for the super-
vised learning, we will be using the question-answer pairs for semi-supervised
learning.

4.2 Model Architecture

As mentioned earlier, the model proposed in this paper is an improvement over
the Memory-Augmented Policy Optimisation(MAPO) [10] model. Neural Sym-
bolic Machine (NSM) [9] framework has been used the implementation of the
model, with a bi-directional LSTM as the encoder and two-layer LSTM for
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both encoder and decoder. The ability of LSTM in assigning credit from high-
dimensional and/or continuous actions based on backpropagation and its learn-
ing from long-term temporal dependencies to infer states in partially observable
tasks makes it one of the best models to be used in the current scenario [2].

4.3 Results

The results from the experiment can be visualised in Table 1 and Table 2, and
in the Fig. 1 shown below.

Table 1 is the compilation of the measurement of the accuracy of each fea-
ture in the model. As more features are added over the vanilla MAPO imple-
mentation, the dev accuracy and the test accuracy increases. Finally, after the
inclusion of all the features, dev accuracy of 76.8% and test accuracy of 77.6%
is achieved.

Table 1. Measurement of accuracy of each feature in the model.

Features Dev accuracy (%) Test accuracy (%)

MAPO 72.4 74.9

GloVe Word Embeddings 75.1 76.7

Word Embeddings of Dimension
300

76.9 77.7

Bidirectional LSTM 75.3 75.6

Epsilon greedy exploration 77.3 78.0

Training with extremely good bad
performances

77.3 77.9

All the above changes 79.3 78.7

Figure 1 is a line graph of the dev accuracy of the model against the training
steps (epochs). The dev accuracy grows slowly over the epochs, from 62.5% for
very small epochs up to 76% for large epochs. The accuracy saturates to 76.8%,
which is recorded as the performance of the model proposed.

Table 2 is a comparison of the performance of the model with other state-of-
the-art supervised and semi-supervised learning models in terms of dev accuracy
and test accuracy. The accuracy of the proposed model is significantly larger than
the state-of-the-art semi-supervised learning models (models proposed in [15,
17,19] and [8]), and is close to the accuracy of the supervised learning model
(proposed in [5]).

4.4 Discussion

Analysis of the dev accuracy and test accuracy results of the model, and com-
parison of its performance with various state-of-the-art models can be concluded
as follows:
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Fig. 1. Dev accuracy vs number of training epochs.

Table 2. Comparison with the previous works in supervised and weakly-supervised
setting

Fully supervised Dev accuracy (%) Test accuracy (%)

[19] 60.8 59.4

[15] 67.1 66.8

[17] 69.8 68.0

[8] 68.3 68.0

[5] 79.0 78.5

Semi supervised Dev accuracy (%) Test accuracy (%)

MAPO 72.4 72.6

MAPO (mean of 5 runs) 72.2 72.1

MAPO (std of 5 runs) 0.2 0.3

MAPO (ensemble of 10) – 74.9

Current algorithm 79.3 78.7



NLP2SQL Using Semi-supervised Learning 297

– Addition of various features (like GloVe embeddings and epsilon greedy explo-
ration) over vanilla MAPO has resulted in the increase in dev accuracy and
test accuracy of the model

– The dev accuracy curve is of positive slope but negative curvature with respect
to the training epochs. This implies that the dev accuracy increases with
increase in epochs, but there is a drop in the rate of increase of the accuracy.
Also, the accuracy peaks to a value of 76.8%

– The performance of the model proposed is better than vanilla MAPO model
and the current state-of-the-art semi-supervised models, and is on par with
the current state-of-the-art supervised models.

We also explored the option of incorporating recent policy gradient algo-
rithms like Proximal Policy Optimization(PPO) and Trust Region Policy Opti-
mization(TRPO). But these algorithms are substantially different from that con-
sidered in the MAPO research paper. The major unique selling point of these
algorithms over policy gradient is that they use different objective functions like
KL-Divergence and Clipping respectively, to ensure that the newer policy is not
significantly different from the old policy. This is done to ensure that the agent
is robust and is not brittle.

The baseline paper that we have chosen is MAPO, which makes use of replay
buffers to remember high trajectory rewards. Although Actor-Critic Experience
Replay (ACER) [16] algorithm resembles this setup, the ACER algorithm does
not specifically address the usage of high-reward trajectories. More specifically,
we could not find theoretic justification with respect to the convergence proper-
ties in this modified algorithm.

We also considered the possibility of pure Q-learning algorithms like Deep
Q Learning(DQN), Double DQN and Duelling DQN. We faced substantial dif-
ficulty in framing this problem in a manner that is amenable to Q-learning in
particular. More importantly, historically Q-learning has not been applied to
search problems with such a large search space.

5 Conclusion

We have attempted to solve the problem of “NLP2SQL” using policy gradients.
We have used cutting edge techniques from program repair machine translation
and question-answering to solve this problem. This method gives 2.3% higher
accuracy than the state of the art on an average.

As future work, the theoretical underpinnings of this algorithm need to be
verified. More specifically, it is necessary to obtain convergence proofs for this
algorithm so that it can be applied to other problem areas like robotic control and
natural language understanding. Another line of thought worth exploring would
be the, although tangential to the topic of this paper, is optimal tuning of hyper-
parameters. Such tuning techniques would be extremely useful in generating
provably optimal model architectures.
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