
Chapter 7
Real-Time Monitoring of Small
Reservoir Hydrology Using ICT
and Application of Deep Learning
for Prediction of Water Level

Tsugumu Kusudo, Daisuke Hayashi, Daiki Matsuura, Atsushi Yamamoto,
Masaomi Kimura, and Yutaka Matsuno

7.1 Introduction

A reservoir is an artificial pond to collect water from the catchment area where there
are frequent deficits in precipitation or river water. There are more than 150,000
reservoirs in Japan (Matsuno et al. 2019). Seventy per cent of them have been built
before the eighteenth century and many of them have deteriorated. Recently, occur-
rences of natural disasters, such as torrential rains and earthquakes, often bring about
floods and the collapse of reservoirs (Japanese Ministry of Agriculture, Forestry and
Fisheries 2018). As shown in Fig. 7.1, the annual number of heavy rains has increased
over the past decades (Japanese Meteorological Agency). Flooding and collapse of
reservoirs caused by these disasters have given rise to an increase in the number of
secondary disasters in the downstream basins. In particular, as shown in Fig. 7.2,
73% of the causes of such damage and 98% of the causes of such collapses are heavy
rains (Japanese Ministry of Agriculture, Forestry and Fisheries 2018).

There has been an increasing interest in monitoring small reservoirs’ hydrologic
parameters and predicting the risk of local floods using modern sensing and simu-
lation technologies. For example, Tanihara (2008) created a simulation model esti-
mating an embankment breach of irrigation tanks based on catchment area, spillway
and freeboard and rainfall data. This model estimates inflow and outflow volumes
and water level and, based on these estimations, predicts flooding risks. However,
there is a limitation in accurate prediction with this model as the initial loss was not
accounted for when using the general runoff estimation. Generally, there are many
advantages inmaking a predictionmodel for large dams ormajor rivers. But for small
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Fig. 7.1 Yearly number of precipitations (Modified from the data by Japanese Meteorological
Agency. https://www.data.jma.go.jp/cpdinfo/extreme/extreme_p.html)

reservoirs, themodel is a relatively high cost when considering O&Mcosts for devel-
opment of a particular water level prediction model. More recently, Hitokoto et al.
(2016) predicted a river’s water level and a reservoir’s water level utilizing the deep
learning technique. Although there are researches utilizing deep learning on drought
prediction (Agana and Homaifar 2017), urban water level prediction (Assem et al.
2017) and daily reservoir inflow forecasting (Bai et al. 2016), the authors found very
few published research on water level prediction of small irrigation reservoirs.

https://www.data.jma.go.jp/cpdinfo/extreme/extreme_p.html
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Fig. 7.2 Trend of reservoir’s damages in Japan (Created from the information by JapaneseMinistry
of Agriculture, Forestry and Fisheries. https://www.maff.go.jp/j/nousin/bousai/bousai_saigai/b_t
ameike/attach/pdf/index-58.pdf)

In this paper, we describe developed low-cost monitoring systems to acquire
the hydrologic information utilizing information and communication technologies
(ICT), which is coupled with a model that predicts the future water level applying the
long short-term memory (LSTM) algorithm as one of the deep learning techniques.

7.2 Material and Methods

7.2.1 Study Site

A survey was conducted at the Takayama Reservoir in Takayama Town, Ikoma City,
Nara Prefecture, and at theKaerumata Reservoir located inAyameike-Minami Town,
Nara City, Nara Prefecture (Fig. 7.3). There are approximately 4300 reservoirs in
Nara Prefecture, the majority of which are found in the Yamato Plain. The Yamato
Plain region, which occupies two-thirds of the prefecture’s agricultural land area,
has been plagued by a shortage of water due to low annual rainfall and the absence
of large rivers and lakes. The outflow from the Takayama Reservoir flows to the
Tomi River, a tributary of the Yamato River basin. The Kaerumata Reservoir flows
through the Oike River to the Akishino River, which also belongs to the Yamato
River system. Both reservoirs are mainly used for irrigation so that water is released
during the irrigation period from early May or late April to mid-September. The
specification of the Takayama Reservoir is provided in Table 7.1.

https://www.maff.go.jp/j/nousin/bousai/bousai_saigai/b_tameike/attach/pdf/index-58.pdf
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Fig. 7.3 Location of Takayama and Kaerumata Reservoirs

Table 7.1 Specification of
Takayama and Kaerumata
Reservoirs

Capacity Surface area Catchment area

Takayama 580,000 m3 90,000 m2 2.3 km2

Kaerumata 211,716 m3 86,300 m2 0.92 km2

Beneficiary
area

Embankment
height

Embankment
length

Takayama 530 ha 23 m 135 m

Kaerumata 38 ha 14 m
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7.2.2 Water Level and Weather Data Monitoring

The sensor was set to monitor water level and water temperature of the reservoir
every ten minutes (GSC-01A, Geotech Service) and show them on the web page
through the remote data logger (HOBO RX3000, Onset) with the communication
channel, SORACOM.Atmospheric pressure, atmospheric humidity, air temperature,
solar radiation, precipitation, wind velocity and wind direction were also measured
every ten minutes using the KOSEN weather station. A solar panel was attached
to the sensing system for electricity supply. Water level data was stored as a CSV
data file, while the weather data was stored as a JSON format so that it could be
later converted to a CSV data file. Combined data accumulated from July 2018 to
September 2019was used for training and testing of the water level predictionmodel.
The Python program was used to organize and combine the water level and weather
data (Fig. 7.4).

For the Kaerumata Reservoir, we installed a different set of IoT devices tomonitor
real time water level, water temperature, rainfall. In addition, a web camera was set
up to observe the reservoir water online. These data were sent to the server once
every hour through the LTE mobile line. METER’s CTD-10 was used as the water
level and water temperature sensor, and METER’s ECRN-50 was also used as the
rain gauge. The data observed by these was integrated and quantified using Atmel’s
microcontroller ATMEGA328P-PU, and the data was stored and sent to the server
using RS Components’ single board computer Raspberry Pi 3B+. Regarding the

Fig. 7.4 Weather station (left), data logger (upper right), water level sensor (lower right)
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ATMEGA328P-PU, we designed the circuit board to connect to each sensor and to
communicate with the Raspberry Pi 3B+, as shown in Fig. 7.5.

These devices are readily available and can be purchased through online shops in
Japan and can be assembled even with a limited knowledge of electronics. Figure 7.6
shows the schematic of the IoT system flow. The solar power supply was used for the
system that ensured the supply of sufficient power to run the sensors, web camera
and communication devices (Fig. 7.7).

Fig. 7.5 Designed circuit board for connecting ATMEGA328P-PU

Fig. 7.6 IoT system flow for
the Kaerumata Reservoir
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Fig. 7.7 Installed devices and solar panel for the Kaerumata Reservoir

7.2.3 Water Level Prediction Model Using LSTM

The water level prediction model using the deep learning technique was developed
using Python with neural network libraries such as TensorFlow and Keras. Deep
learning, a kind of neural network, imitates the neural transmission of living things.
By assigning a threshold and weight to each unit from a huge number of input and
output data groups, it can be expressed similar to a person identifying an event
with a lot of information. In recent years, deep neural network models with deeply
complicated neural network layers have been successful in fields such as image
processing and pre-language processing and their effects are accepted in the fields of
hydrology and agricultural engineering (Li et al. 2016; Taniguchi et al. 2019; Xudong
et al. 2019).

A neural network is composed of an input layer, hidden layers and an output layer,
while past water level, precipitation and discharge are considered as inputs to predict
the future water level of the reservoir, as shown in Fig. 7.8.

Themodel was developed by applying long short-termmemory (LSTM) algorism
for prediction of the reservoir’s water level as it is suitable for handling the time series

Fig. 7.8 Schematic of deep
learning
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Fig. 7.9 Schematic of long short-term memory (LSTM) algorithm

data. LSTM is considered as a kind of recurrent neural network (RNN) that integrates
past hidden layers with present learning data (Fig. 7.9). RNN is a deep learning
method often used for natural language processing and time series data analysis. In
this study, we treated water level fluctuations as time series data and assumed that
futurewater levels could be predicted byRNN.SimpleRNNs, on the other hand, had a
problem of disappearing gradients in the past due to long-termmemory difficulty and
an increase in learning volume. LSTMwas adopted to solve these problems because
long-term past memory is considered to be significantly involved in learning water
level prediction. With LSTM, the vanishing gradient problem encountered in the
ordinary RNN is solved because the long temporary dependence vanishes every time
the model learns a new.

7.2.4 Layer Setting for LSTM Model Development

Table 7.2 shows the selected parameters and layer setting of the developed model.

Table 7.2 Model parameters
and layer

Input layer Hidden layer Output layer

Past rainfall intensity
Current water level
Discharge

Activation: tanh
LSTM layer: 1
Unit number: 7
Loss function:
RMSE

Water level at
1–11 h future
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7.2.5 LSTM Model Evaluation

The difference between predicted and actual water level data was examined by
applying Nash–Sutcliffe efficiency (NSE) and per cent bias (PBIAS) for the evalua-
tion. NSE is the normalized statistic to determine the relative magnitude of residual
variance for comparison with the variance of measured data that is often used to
assess the performance of hydrological models. NSE is expressed as:

NSE = 1 −
{ ∑n

i=1

(
Y act
i − Y pre

i

)2
∑n

i=1

(
Y act
i − Ymean

)2
}

(7.1)

where Y act
i expresses the ith actual water level, Y pre

i expresses the ith predicted water
level and Ymean expresses the mean of all data. PBIAS estimates the deviation of data
expressed as percentages that is shown in Eq. (7.2):

PBIAS =
{∑n

i=1

(
Y act
i − Y pre

i

) ∗ (100)∑n
i=1

(
Y act
i

)
}

(7.2)

7.2.6 Reservoir Monitoring System and Water Level
Prediction Model

PHP, JavaScript, MySQL and Python were used to develop a website to display
the hydrologic data of the reservoir in real time. The prediction model was also
incorporated into the website to show the future water level with given forecasted
precipitation events.

The accuracy of the deep learning model depends on the quality and amount of
training and testing data. In the system, the model can automatically update these
data by incorporating observed data into the program in real time. It was set to use
70% of the observed data for the training and 30% for the testing. The schematic
diagram for building the system is shown in Fig. 7.10.

The rainfall intensity data obtained from KOSEN weather station and the water
level data obtained from GSC-01A are saved in HOBO RX3000 and sent automat-
ically to the cloud server. The LSTM model uses the data for prediction of future
water levels. At the same time, the observedwater level and rainfall data are displayed
graphically, together with predicted water levels on the web screen.
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Fig. 7.10 Flow of developed system

7.3 Results and Discussion

7.3.1 Collection and Display of Water Level and Weather
Data

With the developed system, the water level of the Takayama Reservoir was success-
fully monitored. Every ten minutes water level data displayed on the web page of
HOBOlink (see Fig. 7.11). The data file was exported as a CSV file from the page
to the developed system every hour. The weather data, such as rainfall, ambient
temperature, relative humidity, solar radiation, wind speed and wind direction, were
also successfully obtained every ten minutes and was shown on the web page of the
KOSENsystem (Fig. 7.12). The data fromHOBOlink andKOSENwas automatically
acquired via FTPS communication and API, respectively.

The water level from HOBOlink and the precipitation data from KOSEN system
were merged to visualize the relationship between water level and precipitation. The
gradual water level changes with changes in climatic variation are shown in Fig. 7.13.
The precipitation events from 1 July 2018 through 31 December 2018 shown in this
figure indicate the response of the reservoir’s water level with rainfall events. An
overflow was observed in July as the water level surpassed the spill level of the
Takayama Reservoir. The overflow–precipitation relationship is shown in Fig. 7.14.
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Fig. 7.11 Display of water level on web page of HOBOlink

7.3.2 Reservoir Monitoring by Web Camera

In the Kaerumata Reservoir, a web camera was installed for surveillance of the
reservoir water and surroundings that could be useful, especially during heavy rain
events, to observe the situation of the reservoir without going to the site. Figure 7.15
shows the location of the installed camera in the reservoir and an image taken and
transmitted to the server.

The images can be seen from the mobile phone communication tools, Slack and
Line. Figure 7.16 shows the screen display on the Slack application sending the
imagery data every hour.

7.3.3 Water Level Prediction Component of the System

The water level prediction model was developed using the aforementioned moni-
toring data for training and testing of the model. Using the LSTM algorithm, the
future water levels of one to 11 h were estimated from the series of observed current
and past water levels, rainfall and the forecasted precipitation data. The forecasted
precipitation data was received from a commercial weather forecasting service. The
model was developed to estimate possible amounts of water storage during a future
rainfall event. It could also be used to reduce the risk of the reservoir’s collapse and
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Measured data
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Fig. 7.12 Display of weather data on web page of KOSEN system in Japanese

downstream flooding that occurs with the collapse, while ensuring sufficient water
storage for irrigation owing to its ability to decide an appropriate amount of water
release from the reservoir prior to rainfall events. The observed data from 1 July
2018 to 31 December 2018 was used for learning and testing of the model.

The performance of the developed model, as indicated by the relation between
the epochs of the model, i.e. the number of times to learn an absolute error with
observed values, is shown in Fig. 7.17. The abscissa of Fig. 7.17 is for the number
of epochs. This figure indicates that the error decreases as the epochs increase. The
prediction model became accurate sharply when the epoch was around 30.

Prediction of this model was then compared with the observed data obtained from
15 January 2019 to 21 January 2019 as shown in Fig. 7.18. Figure 7.18 shows that
the model could respond to precipitation and predict water level, although it reacted
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Fig. 7.13 Relationship of water level and precipitation
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Fig. 7.14 Relationship of overflow and precipitation

Fig. 7.15 Location of web camera and an image taken from the camera

too immediately after the rainfall event. On the other hand, as shown in Fig. 7.19,
the difference between observed and predicted water level is about 1 cm.

Figure 7.20 expresses an accuracy of themodel, when it compared observed water
level with predicted water level data after an hour and after 11 h. Nash–Sutcliffe
efficiency (NSE) and per cent bias (PBIAS) were used for model evaluation. Table
7.3 shows the results of the model evaluation. Both NSE values significantly surpass
the standard value. Generally, a model is judged as satisfactory if NSE is close to 1
and low values of PBIAS indicate accurate model simulation (Moriasi et al. 2007).
Here, both NSE and PBIAS values show satisfactory levels of prediction.
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Fig. 7.16 Reservoir images displayed on the screen of Slack during the night time

Fig. 7.17 Relation of epochs and absolute error of water level prediction
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Fig. 7.18 The comparison of predicted and observed water level

Fig. 7.19 Difference between observed and predicted water level

Fig. 7.20 Accuracy of predicted water level after an hour and after 11 h
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Table 7.3 Results of NSE
and PBIAS values estimated

One hour later 11 h later

NSE 0.999 0.998

PBIAS 5.0% 8.9%

7.3.4 Visualization of Past, Present, and Future Water Level
and Rainfall

The water prediction model was incorporated into the monitoring system for its
application to water management of the reservoirs. Figure 7.21 shows the web screen
displaying the current observed water levels, future water levels from after an hour
to 11 h with forecasted rainfall events in the Takayama (upper figure) and Kaerumata
(lower figure) Reservoirs.

It should be noted that, even in the same rainfall event, the prediction results
differ due to the difference in the period of training data used in the model. Accu-
racy is increased with the increased training data period. Consequently, long-term
monitoring data has an advantage in the construction of accurate DNN models.

7.4 Conclusions

The water level sensor and the weather station were set in the Takayama and Kaeru-
mata Reservoirs to monitor water level and the other hydrologic parameters. The
system was able to obtain the data from a remote location at relatively low cost.
However, there are issues that were realized during the process of the development,
such as power supply when installing in the area, wireless data transmission cost,
versatility and interchangeability of sensing devices.

The developed model predicted the water level changes using past water level and
precipitation data but requires more training data to increase its accuracy. Both NSE
and PBIAS meet the criteria of prediction. The advantage of the model using LSTM
is that it may require a smaller set of hydrologic parameters than the conventional
one and the accuracy could be increased with an increased number of training data,
even though the basic structure of the model remains the same. On the other hand,
the quality of the model outcomes may depend on the availability of training and
testing data.

By combining the monitoring system and the prediction model developed in this
study, it would be easy to use the model for reservoir water management to decrease
the risk of flooding in reservoir downstream and also for irrigation.
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Fig. 7.21 Display of current and predicted future water levels
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