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Abstract This paper presents a comparison of two strategies of estimation the state
of charge (SOC) for Lithium-ion battery. Since the SOC cannot be directlymeasured,
the extended Kalman filter (EKF) and modified sliding mode observer (SMO) algo-
rithms were applied and compared to investigate the convergence, tracking accuracy
and robust estimation against uncertainties. First-order Thevenin electrical circuit
model (ECM) has been established to capture the dynamics of the battery and its
parameters were extracted from experiment. Both algorisms are evaluated by two
current profiles to show the efficiency of each one. The comparison results show the
effectiveness of SMO in terms of execution time, robust estimation and capability of
tracking in SOC estimation.

Keywords Sliding mode observer · State of charge · Lithium-ion battery ·
Extended Kalman filter

15.1 Introduction

Nowadays, electric vehicles and autonomous photovoltaic systems are widely spread
share and their usage increasing with the development of energy storage systems.
Safe and durable batteries are the fundamental part of this sort of systems, for this
reason battery management system (BMS) is widely used [1].

SOC is defined as the remains power in the battery, due to this reason a strong
necessity growth for developing strategies and techniques to accurately estimate the
SOC. Therefore, methods are divided in three mains families. The first category
consists of the Coulomb counting method [2], which is the well know approach as
ampere-hour (Ah). It is based on the integration of the discharge or charge current.
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The second categories are based on artificial intelligence, such as artificial neural
network (ANN) and fuzzy logic [3]. The rest of methods are generally closed loop
techniques such as Kalman filters [3, 4] and sliding mode observers [5, 6] or based
on the chemical of the battery such as spectroscopy and the open circuit voltage
method (OCV) [7]. Therefore, these two strategies; Kalman filters and the sliding
mode observers have high accuracy and their option of performing better under
unknown conditions is proved. This paper presents a comparison study of checking
performance of the EKF and SMO, an ECM based on first order Thevenin circuit has
been established and its parameters determined by using the least square method.

The rest of this paper is organized as follows, in section two an ECM is presented
and the process of extracting its parameters is discussed. Follows by the design
process of SMO and EKF processes. In section four, the simulation results are
elaborated. The manuscript is ended with conclusions and summary.

15.2 Battery Modeling

BothEKF andSMOestimators aremodel-based requires an earlier information of the
battery model, the first-order Thevenin model is selected, where the model depicted
in Fig. 15.1. It composed of a shunt resistor Rs , an RC parallel branch to characterize
the polarization and a nonlinear controlled voltage represent the mapped OCV with
SOC.

In order to map the relationship between OCV and SOC, the OCV-SOC mapping
process consists of discharging the battery 10% of its nominal capacity, which reduce
the SOC 10%. So, it consists of a pulse current with 10 sequences of a current 1 C-
rate and the experiment data stored into a PC host. The final relationship OCV-SOC
is presented in Fig. 15.2a. Where the terminal voltage of the battery VL captured is
depicted in Fig. 15.2b, which shows the battery response under current pulse profile.

The OCV presents the terminal voltage of the battery while no load connected,
and the cell achieved the equilibrium steady state after a sequence of pulse current.

Fig. 15.1 First-order
Thevenin battery model
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Fig. 15.2 a The OCV-SOC relationship curve at 25 °C. b Experiment The terminal voltage of the
battery

A magnified view of the terminal voltage under a pulse discharge is presented in
Fig. 15.3.

The series resistor presents the internal impedance, which is voltage captured in
the moment the load is connected or disconnected. From the drop and jump voltage
captured, the series resistor can be computed as follows:

Rs = moy

(∣∣∣∣U1 −U2

IL

∣∣∣∣ +
∣∣∣∣U3 −U4

IL

∣∣∣∣
)

(15.1)

where:U1 −U2 andU3 −U4 represent the drop and jump in tension for each vector
respectively, IL is the flows current of the connected load. Therefore, the transient
behavior can be exploited to determine the RC branches’ parameters. By applying
Matlab curve fitting tool in Fig. 15.3, the terminal voltage and time can present

Fig. 15.3 A zoomed pulse
of the terminal voltage
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Table 15.1 First order
Thevenin model parameters

Parameters Rs (Ohm) R1 (Ohm) C1 (Farad)

Value 0.00245 0.00215 17,540

respectively as follows:

Vt = U5 −U4exp

(
− t

T 1

)
(15.2)

C1 = U4

IL(1 − e−t0
T1

)
(15.3)

where t0 is the instant time of jumping voltage at voltage (U4). The final parameters
of the model were identified are given in Table 15.1.

15.3 State of Charge Estimation

15.3.1 Kalman Filters

EKF is considered as an optimal mean to predict and correct time-varying system in
a way that minimizes the mean of the squared error. The EKF stat space algorithm
is summarized below:

{
xk+1 = f (xk, uk) + wk

yk = g(xk, uk) + vk
(15.4)

The terms vk and wk are random distributions Gaussian representing the error
theirs covariances respectively Qk and Rk and the system can be presented as follows:

xk = {V1,k SOCk}T (15.5)

⎧⎪⎨
⎪⎩
xk+1 =

[
e− T

T1

0
0
1

]
xk +

[
R1

(
1 − e− T

T1

)
− T

Cn

]
IL ,k +

[
w1,k

w2,k

]

yk = [−1 ∂OCV
∂SOC

]
xk + [−Rs]IL ,k + vk

(15.6)

where T is the sampling time, T1 = C1R1 is the polarization time, Cn is the nominal
capacity of the battery.

Step 1: Initialization:

x
∧+
0 = E[x0] (15.7)
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P0 = E
[
(x0 − x+

0

)
(x0 − x+

0 )
T ] (15.8)

Step 2: State prediction: and estimation the covariance error matrix:

x
∧−
k+1 = Ak ∗ x

∧

k + Bk ∗ IL ,k (15.9)

P−
k = Ak PkA

T
k + Rk (15.10)

Step 4: Calculating the Kalman coefficient:

Kk = P−
k CT

k

[
Ck P

−
k CT

k + Qk
]−1

(15.11)

Step 5: Update the estimate state and covariance error matrix:

x
∧

k = x
∧−
k+1 + Kk(VL ,k − V

∧

t,k) (15.12)

Pk = (I − KkCk)P
−
k (15.13)

where I is an identity matrix, x
∧

k is the update state estimated from the previous step.

15.3.2 Sliding Mode Observer

TheSMOobserver has the same structure as the conventional,which is relies ondeter-
mination of an appropriate feedback switching gain linked with system uncertainty
bound. Therefore, the error of the sliding surfaces is defined as:

⎧⎪⎨
⎪⎩
eV L = VL − V

∧

L

ez = z − ẑ
eV 1 = V1 − V

∧

1

(15.14)

Based on Fig. 15.1, the dynamic state model can be presented by the below
equation:

⎧⎨
⎩
V̇L = −a1VL + a1Vocv − b1 IL
ż = a2VL − a2Vocv + a2V1

V̇1 = −a1V1 + b2 IL

(15.15)

where a1 = 1/R1C1, a2 = 1/RsCn, b1 = K1
Cn

+ Rs
R1C1

+ 1
C1

and b2 = 1/C1. And the
modified SMO can be presented as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣
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V̇1

⎤
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⎡
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−a1 a1K1 0
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0 0 −a1
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z
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⎡
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−b1
0
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⎡
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a1K2
−a2K2

0
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⎡
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g1sgn(eV L )

g2sgn(ez)
g3sgn(eV 1)

⎤
⎥⎦

y =
[
1 0 0

]
⎡
⎢⎣
VL
z
V1

⎤
⎥⎦

(15.16)

where g1, g2 and g3 are the switching gains. The error dynamics of the terminal
voltage eV L is computed by:

⎧⎨
⎩
ėV L = −a1eV L + a1K1ez + a1K2 + d1 − g1sgn(eV L)

ėz = a2eV L − a2K1ez − a2K2 + a2eV 1 + d2 − g2sgn(ez)
ėV 1 = −a1eV 1 + d3 − g3sgn(eV 1)

(15.17)

whered1,d2 andd3 represent the error ofmodeling. Therefore, based on theLyapunov
stability theory, the choosing candidate of Lyapunov function.

Vr (e) = 0.5e2V L (15.18)

To ensure the existence of the sliding regime, the derivative of the candidate
Lyapunov function has to be negative. So, after developing the following V̇r , the
value of g1 that guarantee V̇r < 0 is g1 � |d1|. Since the ėV L = eV L = 0.

Thereby, the signum function replaced by the saturation function as depicted in
Fig. 15.4, to reduce the chattering phenomenon which has the equation expressed as:

sat(eV L) =
{
sgn(eV L) i f |eV L | > M
eVL
M i f |eV L | < M

(15.19)

Fig. 15.4 The saturation
function

1
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With M is the boundary of width.

15.4 Simulation and Results Discussion

In order to investigate the two estimators, the SMO and EKF were tested and simu-
lated under Matlab/Simulink platform for a lithium-ion battery of 10 Ah nominal
capacity. The simulation results are depicted in Fig. 15.5a for continuous discharge
and followed by error committed by both estimators in Fig. 15.5b for discharge
current of 1 C. Then the results of pulse discharge are presented in Fig. 15.6a, the
comparison error between them is illustrated in Fig. 15.6b.

Fig. 15.5 a SOC estimation using SMO and EKF for 1 C-rate. b SOC estimation error for both
observatory algorithms

Fig. 15.6 a SOC estimation using SMO and EKF for pulse current. b SOC estimation error for
both algorithms



114 M. Souaihia et al.

Table 15.2 Simulations statistics

Technique Continuous discharge Pulse discharge

Execution time RMSE Execution time RMSE

EKF 3.15 0.0310 5.95 0.0093

SMO 0.306 0.0255 1.41 0.0035

And the statistics of the simulation are summarized in Table 15.2. From the above
simulation results, it is clear that the two methods perform better in SOC estimation,
despite that the SMO ismarginallymore robust than EKF as shown in Table 15.2. The
SMO is really robust and deal with uncertainties. Besides, it has high convergence
and small time of execution.

15.5 Conclusion

Estimating the SOC with high efficiency is the key factor for managing the batteries
and guarantee of its long-life cycle and avoids a harmful usage. This paper selects
a simple ECM and mapped OCV-SOC relationship. Therefore, a comparative study
of SMO and EKF observers.

The designed estimators were investigated in term of robustness and accuracy
in accordance with the battery and figure out the time execution of each estimator
technique. It can be concluded that both strategies are competitive in termof precision
but the SMO is more robust against uncertainties and modeling errors, converges
rapidly, and easy to implement.
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