
Chapter 8
Coating and Film-Forming Properties

Qian Xiao

Abstract Hydrocolloid-based coatings and films, produced from polysaccharides,
proteins, and their blends, have emerged as alternatives to synthetic polymers for
food and packaging applications, because they are edible, versatile, renewable, and
biodegradable. Coatings are formed as a thin layer directly onto food surfaces by
dipping, spraying, brushing, fluidized bed, or panning method. By contrast, films are
standalone pre-formed materials either placed between food components or sealed
into pouches, and they are manufactured by wet- or dry-casting method. Overall,
hydrocolloid-based coatings and films possess excellent barrier properties to CO2,
O2, and oil under certain conditions, but moderate water vapor barrier properties.
Their formation mechanisms are closely correlated with conformation of biopoly-
mers, their aggregation and crystalline state, as well as their interactions with
additives and water. This chapter discusses the existing and potential applications
of coatings and films, focusing on the developments and trends of hydrocolloid-
based coatings and films for the food industry.

Keywords Hydrocolloids · Coatings · Films · Physicochemical properties ·
Applications

1 Introduction

Petrochemical-based plastics, such as polyethylene (PE), poly(ethylene terephthal-
ate) (PET), polypropylene (PP), polyvinylchloride (PVC), have dominated the food
packaging market for their functionality, lightweight, ease of processing, and low
cost (Siracusa et al. 2008). Despite these advantages, increased use of plastic
packaging materials has led to serious ecological problems, since they are neither
fully recyclable nor biodegradable. While the materials can be incinerated to reclaim
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the energy, this end-of-life approach can produce toxic compounds, including furans
and dioxins, such as those produced from burning PVC (Marsh and Bugusu 2007).
To address these issues, edible coatings and films have emerged as an alternative to
synthetic petroleum-based polymers for food packaging because they are versatile,
renewable, and biodegradable (Siew et al. 1999). They have the potential to delay the
deterioration of food products and to prolong their shelf life due to their selective
barrier properties against oxygen, carbon dioxide, water vapor, and flavor com-
pounds (Giancone et al. 2008). Global edible packaging market is expected to reach
USD 1097 million by 2023, from USD 697 million in 2016, growing at a compound
average growth rate (CAGR) of 6.81% (Edible packaging-global market outlook
from 2017 to 2023 2017).

Polysaccharides, proteins, lipids, and composites derived from these materials,
can be used as base materials to prepare edible coatings and films (Gennadios et al.
1996). Hydrocolloids based on polysaccharides and proteins are used extensively for
the formation of coatings and films for food preservation, because of their desirable
mechanical and gas barrier properties. Besides providing protective function, coat-
ings and films can act as nutritious food ingredients due to the unique nutritional and
functional properties of hydrocolloids (Viebke et al. 2014). A scheme illustrating the
main characteristics of hydrocolloid-based coatings and films is shown in Fig. 8.1.
Generally, there are no fundamental differences in material composition between
coatings and films, other than their method of manufacture. Coatings are formed as a
thin layer directly onto food surfaces by dipping, spraying, brushing, fluidized bed,

Fig. 8.1 Summary of characteristics and advantages of hydrocolloid-based coatings and films
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or panning method (Andrade et al. 2012). By contrast, films are standalone
pre-formed material either placed between food components or sealed into pouches,
and they are manufactured by wet- or dry-casting method (Janjarasskul and Krochta
2010). The performance and functionality of hydrocolloid-based coatings and films
are evaluated by their mechanical properties, barrier effects against oxygen (O2),
carbon oxygen (CO2) and water vapor, and thermal stability. These characteristics
are strongly correlated with material compositions, manufacture methods, and the
end-use conditions (e.g., relative humidity, temperature, and pH) (Rojas-Graü et al.
2009).

This chapter provides an overview on different categories of hydrocolloids for
coating and film formation. Methods of preparation, forming mechanisms, and the
physicochemical properties for coatings and films are also discussed. Finally, recent
developments and trends for packaging applications involving hydrocolloids are
summarized.

2 Components of Coatings and Films

Hydrocolloid-based coatings and films are produced from polysaccharides, proteins,
their blends, and/or food-grade additives. Their functional, organoleptic, nutritional,
and mechanical properties are modified by addition of food-grade additives, includ-
ing plasticizers, antimicrobials, antioxidants, anti-browning and crosslinking agents,
nanofillers, colorants, and flavors (Otoni et al. 2017). The main components for
formulation of hydrocolloid-based coatings and films are summarized in Fig. 8.2.

2.1 Polysaccharides

Polysaccharides are nontoxic and naturally occurring biopolymers. The polysaccha-
ride film-forming materials include starch and starch derivatives, cellulose deriva-
tives, alginate, carrageenan, chitosan, various plant gums (pectin, konjac, locust
bean gum, and guar gum) and microbial gums (pullulan, xanthan) (Cazón et al.
2017). Although polysaccharide-based coatings and films have superlative barrier
properties to CO2, O2, and oil under certain conditions, and high strength and
structural integrity, they tend to present a poor barrier to water vapor due to their
hydrophilic properties (Yang and Paulson 2000).

2.1.1 Starch and Starch Derivatives

Starch, an agricultural biopolymer found in a variety of plants, is a mixture of
amylose and amylopectin whose content varies depending on its botanic origin
(LeCorre et al. 2011). Amylose, a nearly linear biopolymer of α-1,4 anhydroglucose
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units, is known to form a coherent and relatively strong films (Campos et al. 2011).
In contrast, amylopectin is a highly branched biopolymer of short α-1,4 chains
linked by α-1,6 glucosidic branching points occurring every 25–30 glucose units
(Durrani and Donald 1995). Its branched structure leads to form brittle and
non-continuous films (De Azeredo et al. 2014). In comparison with native starch,
modified starches, like acetylated starch, hydroxypropyl starch, and oxidized-starch,
have been reported to form stronger and more flexible films (López et al. 2008, 2010;
Hu et al. 2009).

2.1.2 Cellulose Derivatives

Cellulose, the main component of plant fibers, is essentially a linear high-molecular
weight biopolymer of D-glucose units linked through β-1,4 glycosidic bonds. The
close packing of cellulose chains makes it highly crystalline, fibrous, and insoluble
in water (Wang et al. 2016). Water-soluble cellulose derivatives, such as methylcel-
lulose (MC), hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose

Fig. 8.2 Main components for formulation of hydrocolloid-based coatings and films
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(CMC), and hydroxypropyl cellulose (HPC), possess good film-forming character-
istics (Dhall 2013). Among them, MC films show the lowest hydrophilic properties,
whereas the water vapor permeability of HPMC and CMC films is relatively high
(Sánchez-González et al. 2009; Kester and Fennema 1989). In addition, the substi-
tution type and degree in cellulose derivatives are critical factors determining the
performance of cellulose-based films (Espinoza-Herrera et al. 2011).

2.1.3 Chitosan

Chitosan is a functional biopolymer derived from chitin by deacetylation in alkaline
media. It consists of randomly distributed β-(1,4)-2-acetamido-D-glucose and
β-(1,4)-2-amino-D-glucose units, with the latter usually exceeding 60% (Kim et al.
2006). Chitosan has a wide spectrum of activity and high killing rate against Gram-
positive and Gram-negative bacteria (Chung and Chen 2008). The antimicrobial
activity and film-forming ability of chitosan are correlated to its degree of acetylation
or deacetylation, and molecular weight (Hosseinnejad and Jafari 2016). Owing to its
outstanding characteristics, chitosan could be potentially utilized as the antimicro-
bial packaging materials to improve food quality and shelf life.

2.1.4 Polysaccharides Extracted from Seaweed

Alginate, a linear polysaccharide extracted from brown seaweed, is composed of
variable proportions of β-D-mannuronic acid (M block) and α-L-guluronic acid
(G block) linked by 1,4 glycosidic bonds. The block copolymer consists of homo-
polymeric regions of M- and G-blocks, separated by regions that contain M and G
units (Fu et al. 2011). The proportion and distribution of these blocks determine the
physicochemical properties of the biopolymer (Lacroix and Le Tien 2005). Alginate
dissolves readily in water to form homogeneous film-forming solutions, which upon
drying can yield coherent, and transparent films that have a wide range of food
applications (Xiao et al. 2012).

Carrageenan is an anionic linear polysaccharide, extracted from edible red sea-
weeds of Rhodophycea class. It is formed by alternate units of D-galactose and
3,6-anhydrogalactose linked by α-1,3 and β-1,4 glycosidic linkage (Cosenza et al.
2014). There are three types (κ, ι, and λ) of carrageenan with varying number and
position of sulfate groups on the galactose dimer (Liu et al. 2015). In comparison
with ι-carrageenan films, κ-carrageenan films showed the higher moisture barrier and
mechanical properties, except for its flexibility (Paula et al. 2015).

2.1.5 Pectin

Pectin consists of linear homo-galacturonan (α-1,4-galacturonic acids) chains inter-
spersed with branched rhamnogalacturonan (α-1,4-galacturonic acid to
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α-1,2-rhamnose) chains (Jolie et al. 2010). According to its degree of esterification
(DE), pectin can be classified as high-methoxyl pectin (HMP, DE > 50%) and
low-methoxyl pectin (LMP, DE< 50%) (Espitia et al. 2014). The mechanical, water
barrier properties and thermal stability of HMP films are better than that of LMP
films (Lorevice et al. 2016).

2.1.6 Pullulan

Pullulan is an extracellular and water-soluble microbial polysaccharide produced by
Aureobasidium pullulans. The linear polymer mainly consists of maltotriose units
interconnected to each other by α-(1,6) glycosidic bonds, which are responsible for
the flexible conformation and the ensued amorphous character of this polysaccharide
in the solid state (Sutherland 1998). This unique linkage pattern endows pullulan
with distinctive physical properties to form film that is strong, transparent, and with
low permeability to oil and oxygen (Xiao et al. 2012, 2015).

2.2 Proteins

Proteins used for film-forming materials can be categorized into two groups based on
their origin of sources: plant-derived proteins, such as corn zein, soy protein, and
wheat gluten, or animal-derived proteins like casein, whey protein, gelatin, and
collagen proteins (Han 2014). Depending on amino acid composition and sequence,
the structure of protein can be random coil, fibrous, or globular. For globular proteins
(i.e., soy protein, wheat gluten), they must be denatured by heat, acid, and/or solvent
to shape extra extended structures that are required for film formation (Dhall 2013).
Overall, protein-based coatings and films display considerably lower O2 and CO2

permeability and CO2/O2 permeability ratio, and moderate mechanical and water
vapor barrier properties (Song and Zheng 2014).

2.2.1 Corn Zein

Corn zein, a prolamin protein, has a molecular weight ranging from 18 to 45 kDa. As
a relatively hydrophobic protein, the hydrophobicity of zein is related to its high
content of non-polar amino acids residues including leucine, alanine, and proline
(Shukla and Cheryan 2001). Corn zein dissolves in aqueous ethanol solution to form
the glossy, greaseproof, and brittle films through the hydrophobic, hydrogen, and
limited disulfide (SS) bonds between zein chains (Ghanbarzadeh et al. 2007).
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2.2.2 Wheat Gluten

Wheat gluten, an ethanol-soluble protein in wheat flour, is composed of gliadin and
glutenin. Gliadin is monomeric protein with molecular weight of 28–55 kDa, while
glutenin is aggregated protein linked by interchain SS bonds with molecular weight
of about 500 to 10,000 kDa (Wieser 2007). Glutenin films presented higher mechan-
ical strength and lower water vapor permeability than gliadin films (Hernández-
Muñoz et al. 2003). Moreover, the purity of wheat gluten has positive effect on the
appearance and mechanical attributes of wheat gluten films (Gennadios et al. 1993).

2.2.3 Soy Protein

Soy protein is comprised of two major components, 7S (β-conglycinin) and 11S
(glycinin), representing 37% and 31% of soy protein, respectively. 7S is rich in
asparagine, glutamine, leucine, and arginine residues with a molecular weight of
180 kDa. 11S has a molecular weight of 320–360 kDa and contains 20 intramolec-
ular SS bonds (Kumar et al. 2002). Films made from 11S fraction are smooth and
opaque, whereas 7S films exhibit transparent and creased appearance (Kunte et al.
1997). At low relative humidity (RH), O2 permeability of soy protein isolate (SPI)
films was lower than that of films based on low-density polyethylene (LDPE),
methylcellulose, starch and pectin, respectively (Song et al. 2011a).

2.2.4 Casein and Caseinate

Casein mainly consists of five fractions including αs1, αs2, β, κ, and δ-casein, and
their sizes vary from 11.5 to 25 kDa. Among them, β-casein is the most interesting
one, as it produces films with lower permeability to water vapor than other milk
protein (Mauer et al. 2000). Caseinate is a mixture of casein monomers and small
aggregates formed after removing of colloidal calcium phosphate from casein
micelles. Compared to casein, caseinate, particularly for sodium caseinate, is more
soluble and has better film-forming capacity. Films produced from sodium caseinate
possess excellent barriers to O2, CO2, and aromas, and thermal resistance (Khwaldia
et al. 2004a).

2.2.5 Whey Protein

Whey protein includes β-lactoglobulin, α-lactalbumin, bovine serum albumin,
immunoglobulins, lactoferrin, and proteose-peptones (Mulvihill and Ennis 2003).
Films prepared from whey protein isolates (WPI) exhibited promising mechanical
features, as well as moderate moisture permeability and good oxygen barrier prop-
erties, compared to the synthetic polymer films, e.g., low-density polyethylene
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(LDPE), high density polyethylene (HDPE), PVDC, cellophane, and polyester
(Khwaldia et al. 2004b).

2.2.6 Gelatin

Gelatin is an animal protein obtained by hydrolysis of collagen. It is a combination
of many fractions varying in size, including the whole α-chain of tropocollagen
molecule (a trimer of around 330 kDa that aggregates to form the larger collagen
structures) and hydrolytic fragments of parts of the α-chains (Boran and Regenstein
2010). Gelatin films display effective barriers against O2 and aromas at low or
intermediate RH, but weak water resistance due to its hydrophilic nature. Further-
more, their mechanical properties are closely related to the renaturation level of
gelatin (Bigi et al. 2004).

2.3 Food-Grade Additives

2.3.1 Plasticizers

Plasticizers are low molecular weight compounds with non-volatile compounds.
Their primary role is to enhance the flexibility and processability of hydrocolloid-
based coatings and films. However, their barrier properties are impaired as result of
the increased free volume and molecular mobility after plasticizers addition
(Sothornvit and Krochta 2005; Vieira et al. 2011). Food-grade plasticizers mainly
include glycerol, sorbitol, polyethylene glycol, sucrose, glucose, fructose, mannitol,
xylitol, fatty acids, and monoglycerides (Vieira et al. 2011).

2.3.2 Polysaccharide Nanofillers

Nanofillers (at least one dimension smaller than 100 nm) provide reinforcement
effects due to their high aspect ratio and surface-to-volume ratios (Crosby and Lee
2007). Considering the application and safety for hydrocolloid-based coatings and
films in food packaging, the polysaccharide nanofillers, e.g., cellulose nanoparticles,
cellulose nanocrystals, starch nanoparticles, starch nanocrystals, chitin
nanowhiskers, and chitin nanofibers, have been used as excellent candidates for
improvement of their mechanical, barrier, and thermal properties (Otoni et al. 2017).

2.3.3 Antimicrobial Additives

Incorporation of antimicrobial compounds into packaging materials provides inhib-
itory effects against spoilage and pathogenic bacteria by maintaining active

274 Q. Xiao



compounds on food surface (Gennadios et al. 1997). There are several categories of
antimicrobial compounds that have been employed in hydrocolloid-based coatings
and films, including organic acids (sorbic and its potassium salt, acetic acid, and
malic acid), polypeptides and bacteriocins (lysozyme and nisin), plant essential oils
(cinnamon, oregano, rosemary, and lemongrass), and polyphenols (flavonoids and
phenolic derivatives) (Franssen and Krochta 2003).

3 Preparation Methods

3.1 Preparation of Hydrocolloid-Based Coatings

3.1.1 Spray Coating

Spray coating is a commonly used technique for food coatings, especially for fruits
and vegetables. In this process, food products are placed on a rotating platform, then
the coating-forming solution forms droplets and distributes them over the food
surface by means of a set of spraying nozzles (Debeaufort and Voilley 2009). The
main advantages of this technique offer uniform coating, thickness control, and the
possibility of multilayer applications, such as using alternating sodium alginate and
chitosan solutions (Ustunol 2009).

3.1.2 Dip Coating

Dip coating involves submerging food products into a vat containing coating
solution. After dipping the products and draining away excess coating, it is dried
either at room temperature or with the aid of a dryer (Andrade et al. 2012). The
advantage of this method is to obtain good uniformity around the irregularly-shaped
and rough food surface. Several problems may occur by using this method, such as
coating dilution, build-up of trash or dirt, and microorganism growth in the dipping
tank (Andrade et al. 2012).

3.1.3 Fluidized-Bed Coating

Fluidized beds are categorized by three different configurations: top spray, bottom
spray, and rotating-fluidized bed. The conventional top-spray method has a greater
possibility of success in the food industry compared to other methods (Andrade et al.
2012). As presented in Fig. 8.3, the coating solution is sprayed through a set of
nozzles onto the surface of fluidized particles to form a shell-type structure. Its
application focuses on the functional ingredients and food additives, i.e., leavening
agents, enzymes, vitamins, minerals, and spices (Chen et al. 2009).
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3.1.4 Pan Coating

The schematic of pan coating process is displayed in Fig. 8.4. As shown, the coating
solution is sprayed into a rotating bowl (referred to as pan), and the food particles are
tumbled within the pan to distribute the coating solution over their surface. Forced
air, either ambient or elevated temperature, is utilized to dry the coating (Agrawal
and Pandey 2015). Pan coating is mainly used for the confectionery and chocolate
industries or particularly small food items like nuts and raisins (Andrade et al. 2012).

Fig. 8.3 Schematic of
top-spray fluidized-bed
coating process, adapted
from (Dewettinck and
Huyghebaert 1999) with
permission

Fig. 8.4 Schematic of pan
coating process, adapted
from (Agrawal and Pandey
2015) with permission
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3.2 Preparation of Hydrocolloid-Based Films

3.2.1 Wet Method

The wet method, also known as solvent casting, can be sub-classified to bench
casting and continuous casting, respectively. The bench casting is commonly uti-
lized to fabricate films at laboratory scale as it is simple and cost effective. In this
method, the film-forming solution is deposited over a rimmed plate, and then
followed by drying to produce a cohesive and free-standing film.

Continuous casting is more suitable for industrial applications, because it requires
less space and labor. As shown in Fig. 8.5, film-forming solution is uniformly spread
on a continuous steel belt that passes through a drying chamber. The dried film is
then stripped from the steel belt and wound into film roller. The advantage of this
method is optimizing uniformity, heat transfer, and drying efficiency, while avoiding
expense of a separate substrate (Rossman 2009).

3.2.2 Dry Method

Dry method, i.e., compression molding and extrusion processing, is based on the
thermoplastic properties of polysaccharides and proteins. In the presence of plasti-
cizers, at low moisture levels and high temperatures and with pressure, biopolymers
acquire a viscoelastic behavior that allows them to be shaped for the production of
films (Gómez-Estaca et al. 2016). In general, compression molding is studied at
laboratory scale as a precursor to extrusion with the aim of determining the suitable
processing conditions (Hernandez-Izquierdo and Krochta 2008).

Extrusion processing is a highly efficient manufacturing method with commercial
potential for large-scale production of biopolymer films (Fishman et al. 2000). The

Fig. 8.5 Schematic of continuous casting technique to prepare hydrocolloid-based films, adapted
from (Borges et al. 2015) with permission
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configuration of one-screw extruder is presented in Fig. 8.6. The extruder basically
consists of an endless screw inside a barrel with a double casing that permits control
of temperature. The biopolymer is fed from a hopper and pushed by the screw
towards a die (Nur Hanani et al. 2012). To date, dry method has been successfully
used in preparation of starch, alginate, wheat gluten, soy protein, and whey protein
films (Mendes et al. 2016; Hernandez-Izquierdo and Krochta 2008; Azevedo et al.
2017; Ciannamea et al. 2014).

4 Microstructural and Physicochemical Characterization

The microstructural characteristics (such as chemical, crystalline structure, and
morphology) of hydrocolloid-based coatings and films are closely correlated with
their packaging performance (e.g., mechanical, barrier, and thermal properties).

4.1 Structural Analysis

Microscopy and spectroscopic techniques have been utilized to study the architec-
ture and structure of hydrocolloid-based films at micro and nanometric scales.
Ultrastructural and internal structure in films have been characterized by confocal
laser scanning microscopy (CSLM), while scanning electron microscopy (SEM) and
atomic force microscopy (AFM) are more used to study their surface and cross-
section morphology (Arzate-Vázquez et al. 2012; Andreuccetti et al. 2009). Fourier
transform infrared spectroscopy (FTIR) analyzes the possible functional chemical
groups, conformational transitions, and molecular interactions (Yadav et al. 2014).
Nuclear magnetic resonance (NMR) spectroscopy provides information about the
chemical and physical properties of atoms or their related molecules, as well as
reaction state, dynamics, structure and chemical environment (Karbowiak et al.
2008). For instance, for hsian-tsao gum (HG)-casein films, the hydrogen bonding
interactions and Maillard reactions between HG and casein were revealed by FTIR

Fig. 8.6 The configuration of one-screw extruder, adapted from (Borges et al. 2015) with
permission
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data. Meanwhile, NMR analysis indicated that HG addition significantly changed
the mobility of water molecule in casein films (Yang et al. 2015). Other comple-
mentary techniques are also utilized for structural analysis of hydrocolloid-based
coatings and films, such as X-ray diffraction (XRD) to identify the information about
crystalline/amorphous structures, and small-angle X-ray scattering (SAXS) to mon-
itor crystalline and aggregate structures of membrane materials (Bodnár et al. 2007).

4.2 Mechanical Properties

Favorable mechanical properties are essential for packaging materials to perform
their protective functions efficiently. Mechanical properties of selected
hydrocolloid-based films are listed in Table 8.1. A standard method, ASTM-
D882–91, originally developed to evaluate mechanical properties such as tensile
strength (TS), elongation at break (EAB), elastic modulus (EM), and toughness of
commercial plastic, is also applied to hydrocolloid-based films (ASTM-D882-91
1991). As shown in Fig. 8.7, the mechanical parameters are calculated by determin-
ing the relationship between stress and strain, when film is stretched at a set rate
(distance/time). EM, a measure of intrinsic film stiffness, is the slope of the linear
range of the stress–strain curve (Mauer et al. 2000). Toughness refers to the ability of
a material to absorb energy during deformation up to fracture, determined as the area
under the stress–strain curves (Fig. 8.7b). TS is the maximum strength measuring the
resistance of the film, whereas the percentage of EAB is a measure of the stretching
capacity of flexibility of the film prior to breaking. They are calculated by using
Eqs. 8.1 and 8.2:

TS ¼ F=A ð8:1Þ

where TS is the tensile strength (MPa), F is the force (N) at maximum load, and A is
the initial cross-sectional area (m2) of the film specimen.

EAB ¼ 100� l� l1ð Þ=l1 ð8:2Þ

where EAB is the elongation at break (%), l1 is the initial length, and l is the length of
the film at breaking point.

4.3 Barrier Properties

The basic function of packaging materials is to control mass transfer between food
and the ambient atmosphere. Water vapor in environment transferring to packaged
food results in problematic microbial growth, and undesirable textural changes.
Oxygen can cause deterioration of food due to oxidation of lipids and other
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oxygen-sensitive components. Thus, water vapor and gas permeability is a vital
property for selecting or tailoring the hydrocolloid-based films.

4.3.1 Water Vapor Permeability (WVP)

Table 8.1 shows WVP values of selected hydrocolloid-based films. These data are
obtained gravimetrically following the ASTM Standard Test Method E96, known as
the “cup method” (ASTM-E96-92 1990). According to this method, a cup with an
open mouth is filled with distilled water or desiccant. The film is sealed on the open
mouth of the cup, the assembly is weighed, and placed under controlled temperature
and RH conditions (Cazón et al. 2017). WVP is calculated according to the com-
bined Fick–Henry laws for gas diffusion through films (Eq. 8.3).

WVP ¼ Δw
Δt � A

� L
Δp ð8:3Þ

where Δw/Δt is the rate of water gain (g/h), A is the exposed area of the film (m2),
L is the mean thickness of film specimens (m), and Δp is the difference in partial
water vapor pressure between the two sides of film specimens.

4.3.2 Gas Permeability

Oxygen permeability (O2P) and carbon dioxide permeability (CO2P) are evaluated
on the basis of the ASTM D 3985–02 method (ASTM-D3985-02 2002). The films
are sealed between two chambers with each having two channels to the exterior. In

Fig. 8.7 (a) Schematic of tension test setup, adapted from (Pham et al. 2008) with permission, (b)
mechanical properties determined from the typical stress-strain curve
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the lower chamber, O2 or CO2 is supplied at a controlled flow rate to maintain the
pressure constant in that compartment. The other chamber is purged by a stream of
nitrogen, also at a controlled flow. In the case of O2P measurement, the nitrogen flow
leaving this chamber is connected to an O2 sensor installed on-line which measures
the O2 concentration. For CO2P measurement, the nitrogen flow leaving this cham-
ber is collected in a syringe for CO2 quantification by a gas chromatograph
(Cerqueira et al. 2009). The O2P and CO2P of selected hydrocolloid-based films
are listed in Table 8.1.

4.4 Thermal Properties

One key factor that influences the processing and operating temperatures of
hydrocolloid-based coatings and films is their thermal properties. The properties are
investigated by differential scanning calorimetry (DSC), thermogravimetric analysis
(TGA), and dynamic mechanical analysis (DMTA). DSC technique is used to
determine the glass transition temperature (Tg), melting temperature (Tm), crystalli-
zation temperature, heat capacity difference at Tg of hydrocolloid-based coatings and
films (Cheng 2002). TGA is widely employed to examine their decomposition
temperature, weight loss, and activation energy of decomposition (Cheng 2002).
Furthermore, the structural and viscoelastic properties of films are investigated by
DMTA. Dynamic modulus, dynamic loss modulus, temperature of main chain
relaxation, and temperature of local mode relaxation are measured as functions of
temperature and frequency by forced oscillation method (Brown and Gallagher
2011).

5 Film-Forming Mechanism

Understanding the film-forming mechanism is important to predict material proper-
ties of hydrocolloid-based films, which is essential for the optimization of drying and
processing condition. As previously mentioned, both processing methods (wet and
dry) have been widely used to prepare the films. The wet method requires solubi-
lizing the hydrocolloids in a solvent, spreading the solution onto a flat surface, and
then followed by drying to produce a film. The film-forming mechanism involves
conformational change of the biopolymer, as well as solvent-biopolymer and
biopolymer-biopolymer interactions that continue to evolve as the solvent evapo-
rates under different drying conditions (Watanabe et al. 2006; Xiao et al. 2014b).
However, a number of polysaccharides and proteins have capacity to form gel during
film-forming process, and their film-forming mechanism is related to the gelation
mechanism. Although a few researchers proposed that the transition from wet gel
(biopolymer-in-water) to dry film (water-in-biopolymer) is a critical stage during
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film-forming process, the complete transition mechanism after gelation have not yet
been fully explained (Szabó et al. 2012).

By contrast, dry method involves heating and mixing biopolymers and plasti-
cizers by extrusion and/or compression molding techniques. Over the course of
extrusion, biopolymer chains denature, dissociate, unravel and align, and then
recombine, crosslink, and aggregate via specific linkages with heat and pressure,
which result in film formation through complete restructuring of biopolymer mole-
cules. Thus, the film-forming mechanism is correlated with conformation changes of
biopolymers, their aggregation and crystalline state, as well as the interactions
among biopolymer, plasticizer, and water.

5.1 Polysaccharide-Based Films

Polysaccharides (with the exception of glycogen, etc.) are long-chain biopolymers
formed from mono- or disaccharide repeating units joined together by glycosidic
bonds. Owing to the presence of a large number of hydroxyl and other polar groups
in their structure, hydrogen bonds and/or electrostatic interactions have a crucial
function in film formation (Han 2014). Polysaccharide films are fabricated by
disrupting interactions among polysaccharide segments and forming new
intermolecular hydrophilic interactions and hydrogen bonding (Rhim and Ng 2007).

5.1.1 Formation Mechanism of Solvent Casting Films

For starch films, their formation mechanism depends on the starch concentration and
amylose content. At relatively high concentration, aggregation and packing of
swollen granules dominated the film formation, whereas both coil-to-helix transition
and aggregation of double helices were operative during the film formation from
dilute starch solutions (Liu 2005). Xiao et al. (2014a, b) elaborated the formation
mechanism of pullulan and alginate films by monitoring the conformational change
of polysaccharides, water-polysaccharide, and polysaccharide-polysaccharide inter-
actions during drying. As pullulan drying process progressed, the oxygen atoms at
the C5 and C6 carbons of the D-glucopyranose ring might preferentially form
hydrogen bond with water or pullulan molecules, resulting in more-ordered structure
with increased interchain interactions in pullulan films. Moreover, the less-ordered
structure domain of the pullulan was first affected during drying, followed by
pullulan skeleton segments. Finally, conformational changes in pullulan chains
occurred as the drying process completion (Xiao et al. 2014b). In the course of the
formation of alginate film, the oxygen atoms at the C2 and C3 carbons of the
pyranose ring preferentially formed hydrogen bond with water or alginate mole-
cules, while the skeletal vibrations of pyranose ring (e.g., C-C and C-O-C groups)
were less perturbed than the stretching vibrations of COO� group and O-H bending
vibration of alginate with drying (Xiao et al. 2014a). The film-forming mechanism of
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Flammulina velutipes polysaccharide might be associated with the intermolecular
and intramolecular hydrogen bonds between polysaccharide chains and the forma-
tion of β-glycosidic bonds upon drying (Du et al. 2016). Li et al. (2019) proved that
the electrostatic interactions and hydrogen bonds are crucial in fabricating the
multilayer films based on chitosan and alginate by layer-by-layer (LbL) technique.
Strong intermolecular interactions occurred among the amino, carboxyl, and
hydroxyl groups of the chitosan and alginate.

5.1.2 Formation Mechanism of Extruded and Compression-Molded
Films

Pushpadass et al. (2009) reported that glycerol and/or water destroyed the crystal-
linity of native starch, then the starch fragmentation converted into thermoplastic
starch with heat and shear. During extrusion process, the inter- and intra-hydrogen
bonds of starch would be unraveled when the glycerol was added into starch, and
the new hydrogen bonds between starch and glycerol were formed simultaneously
(Pushpadass et al. 2009). Afterwards, the starch recrystallization induction process
among the helical amylose molecule occurred during cooling, which led to the
Vh-type crystalline arrangement (Azevedo et al. 2017). According to Gao et al.
(2017), neat alginate granules were largely de-structured by glycerol and water,
and glycerol increased the mobility of alginate chains while promoting the crys-
tallization of alginate chains with structural reorganization during compression
molding.

5.2 Protein-Based Films

The main formation mechanism of protein films involves denaturation of the protein
initiated by heat, solvent, or change in pH, followed by association of extended
peptide chains through new intermolecular interactions, such as covalent (SS bond
or crosslinking) and electrostatic, hydrophobic, or ionic interactions between protein
chains (Janjarasskul and Krochta 2010).

5.2.1 Formation Mechanism of Solvent Casting Films

The formation of intact and water-insoluble WPI films was realized by heat dena-
turation of aqueous protein solution (Pérez-Gago and Krochta 2002). Heat denatur-
ation unfolded whey protein and promoted the exposure of SH and hydrophobic
groups. The unfolded protein might then undergo intermolecular interactions
(hydrogen bonds, hydrophobic, covalent and electrostatic interactions). It is note-
worthy that the cohesion of WPI films relied principally on the intermolecular SS
bonds via sulphydryl/disulphide (SH/SS) exchange reactions (Guckian et al. 2006).
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On the other hand, WPI had the ability to form water-soluble films without heat
denaturation. Since most of the hydrophobic and SH groups are buried in the interior
of WPI molecule, their film-forming mechanism involves the intermolecular hydro-
gen bonding between protein molecules, rather than the hydrophobic and covalent
interactions (Guckian et al. 2006; Pérez-Gago et al. 1999). Ciannamea et al. (2014)
also proved that hydrogen bonds and hydrophobic interactions played a more
important role in the formation of soy protein films. During the film formation of
11S, along with disappearance of its α-helices and disordered structures, the
intermolecular hydrogen bonds between β-sheet segments predominated the aggre-
gation of 11S (Robert et al. 2001; Subirade et al. 1998). Similar to the 11S films, the
high density of intermolecular hydrogen-bonded β-sheets were conducive to the
formation of gliadin network during drying (Mangavel et al. 2001). According to
Pankaj et al. (2014), the film-forming mechanism of caseinate was attributed to their
random coil structure which allowed them to form extensive intermolecular hydro-
gen, electrostatic, and hydrophobic bonds, resulting in increased interchain
cohesion.

In comparison, the formation mechanism of gelatin films is related to the tem-
perature during drying due to thermo-reversible gelation behavior of gelatin. When
the gelatin films were prepared below the helix-coil transition temperature, partial
renaturation of collagen in gelatin took place, which resulted in the formation of a
collagen-like triple-helix structure. Moreover, the partial renaturation only took
place during the advanced stage of drying (Ghoshal et al. 2014). On the contrary,
a helix structure was rarely formed in gelatin films when they were dried above the
helix-coil transition temperature.

5.2.2 Formation Mechanism of Extruded and Compression-Molded
Films

For compression-molded soybean protein films, the high temperature promoted the
crosslinking between soybean proteins through intermolecular SS bonds, either from
free sulfhydryl (SH) groups or through SH/SS exchange reactions, which
predominated the formation of film matrix (Ciannamea et al. 2014). During extru-
sion process, the aggregation and reorganization of wheat gluten molecules were
principally related to the formation of intermolecular SS crosslinking bonds via
oxidation of SH groups and SH/SS exchange reactions between glutenin and gliadin
(Lagrain et al. 2010). The formation schematic of intermolecular SS bonds between
glutenin and gliadin during heat processing is illustrated in Fig. 8.8.
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6 Applications and Recent Developments

Oxidation, microbial spoilage, and metabolism are the main causes of deterioration
of food products. Thus, the primary function of packaging materials based on
hydrocolloids is to maintain the quality and safety of food products during storage
and conveyance. Normally, fruits and vegetables have short shelf life due to its
perishable nature. Hydrocolloid-based coatings and films may act as a semiperme-
able barrier to selectively control the exchange of CO2, O2, and ethylene, resulting in
the reduction in ethylene levels, ripening, respiration rate, and water loss on fruits
and vegetables (Valencia-Chamorro et al. 2011). Several studies shown in Table 8.2.
have demonstrated the ability of hydrocolloid-based coatings and films carrying
bioactive compounds to retard browning reactions and microbial growth in fruits and
vegetables, especially the minimally processed (MP) fruits and vegetables. Ramos-
García et al. (2012) reported that lime essential oil incorporated into chitosan-
beeswax blend coatings on tomato showed strong inhibitory effect against Rhizopus
stolonifer and Escherichia coli DH5α during storage at 12 and 23 �C. Sarengaowa
et al. (2018) coated the fresh-cut “Red Fuji” apples with alginate coatings containing
thyme oil, cinnamon oil, and/or oregano oil, and observed that reduction of total
coliform, yeast and mold counts in comparison with control and alginate-coated
samples. Meanwhile, the respiration rate, weight loss, firmness, and browning
reactions in fresh-cut apples stored at 4 �C were significantly decreased.

Recently, the development of multilayer and nanomultilayer coatings based on
hydrocolloids, formed by LbL deposition technique, gained much attention for the
preservation of fruits and vegetables. For instance, the multilayer coatings based on
gelatin and chitosan predominantly enhanced physiological quality and reduced the

Fig. 8.8 Schematic of the formation of intermolecular SS crosslinking bonds between glutenin and
gliadin during heat processing. Adopted and modified from (Lagrain et al. 2010) with permission
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Table 8.2 Recent applications of hydrocolloid-based coatings and films in fruits and vegetables

Coating/film
composites Form Food products Main benefits References

Fruits and
vegetables

Pectin-pullulan-
chitosan with
sodium benzoate
and potassium
sorbate

Coatings Strawberry
(Fragaria
ananassa)

Reduced weight loss,
fruit softening and
microbial growth (total
aerobic counts, molds,
and yeasts), delayed
alteration of color and
total soluble solids
content

(Treviño-
Garza et al.
2015)

Alginate with
carvacrol and
methyl
cinnamate

Coatings Strawberry Inhibited the
Escherichia coli O157:
H7 and Botrytis
cinereal

(Peretto et al.
2014)

Alginate-pectin Coatings Blueberry Improved the firmness,
significantly reduced
growth kinetics of
yeasts and mesophilic
aerobic bacteria

(Mannozzi
et al. 2017)

Gum arabic-
Aloe vera-
chitosan com-
bined with
thyme oil

Coatings Avocado
(Persea ameri-
cana Mill.)

Reduced the anthrac-
nose incidence during
the postharvest supply
chain, inhibited myce-
lial growth of
Colletotrichum
gloeosporioides

(Bill et al.
2014)

Chitosan-
carrageenan

Coatings Longan
(Dimocarpus
longan)

Reduced weight loss,
respiration rate and
color changes

(Lin et al.
2018)

Chitosan-cas-
sava starch with
essential oil
extract from
Lippia gracilis

Coatings Guavas
(Psidium
guajava L.)

Reduced total aerobic
mesophilic bacteria,
mold and yeast counts,
exhibition lower titrat-
able acidity value

(de Aquino
et al. 2015)

Pea starch-guar
gum with shellac
and oleic acid

Coatings ‘Valencia’
oranges

Reduced fruit respira-
tion rate, ethylene pro-
duction, weight and
firmness loss, and peel
pitting

(Saberi et al.
2018)

CMC-chitosan Bilayer coatings Citrus fruit Increased fruit firm-
ness, and enhanced
fruit gloss

(Arnon et al.
2014)

Gum arabic with
cinnamon oil

Coatings Banana and
papaya

Delayed ripening,
weight loss, fruit firm-
ness, and titratable
acidity, fungicidal
effects against

(Maqbool
et al. 2011)

(continued)

8 Coating and Film-Forming Properties 287



Table 8.2 (continued)

Coating/film
composites Form Food products Main benefits References

Colletotrichum musae
and Colletotrichum
gloeosporioides

HPMC-beeswax Coatings Plums
(Cv. Angeleno)

Reduced water loss,
flesh softening and
internal breakdown

(Navarro-
Tarazaga
et al. 2011)

HPMC with
oregano essen-
tial oil

Coatings ‘Formosa’
plum

Reduced the respiration
rate, ethylene produc-
tion, total weight loss

(Choi et al.
2016)

Chitosan with
Artemisia annua
oil

Coatings Cherry
tomato

Decreased Escherichia
coli O157:H7

(Cui et al.
2017)

Chitosan-bees-
wax with lime
essential oil

Coatings Tomato No growth of Rhizopus
stolonifer and
Escherichia coli DH5α

(Ramos-
García et al.
2012)

Pectin-chitosan Nanomultilayer
coatings

‘Tommy
Atkins’
mangoes

Presented a lower mass
loss, lower total soluble
solids and higher titrat-
able acidity

(Medeiros
et al.
2012a, b)

Starch-gelatin Coatings Refrigerated
red crimson
grapes

Enhanced appearance
and decreased weight
loss

(Fakhouri
et al. 2015)

Aloe vera-gum
tragacanth

Coatings Button
mushroom

Reduced weight loss,
color changes and
softening

(Mohebbi
et al. 2012)

Chitosan-banana
flour

Films Asparagus
and corn

Inhibited growth of
Staphylococcus aureus

(Pitak and
Rakshit
2011)

MP fruits and
vegetables

Cassava starch-
potassium
sorbate

Coatings Minimally
processed
strawberry

Reduced respiration
rate, increased water
vapor resistance

(Garcia et al.
2010)

Gellan with
geraniol

Coatings Fresh-cut
strawberry

Significantly reduced
microbial counts

(Tomadoni
et al. 2018)

Alginate-
chitosan

Nanomultilayer
coatings

Fresh-cut
mangoes

Lower values of mass
loss, pH,
malondialdehyde con-
tent, browning rate,
soluble solids

(Souza et al.
2015)

κ-Carrageenan-
lysozyme

Nanomultilayer
coatings

Whole and
fresh-cut
‘Rocha’ pear

Presented lower mass
loss, and total soluble
solids and higher titrat-
able acidity

(Medeiros
et al.
2012a, b)

SPI with ferulic
acid

Coatings Fresh-cut
apples

Effective in controlling
their weight loss and
firmness

(Alves et al.
2017)

(continued)
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bacteria, yeast, and fungi counts of fresh-cut melons (Poverenov et al. 2014). Souza
et al. (2015) reported that the nanomultilayer coatings, made of alginate and
chitosan, considerably inhibited putrefaction of fresh-cut mangoes during 14 days
at 8 �C. At the end of the storage period, the lower values of mass loss, pH,
malondialdehyde content, and browning rate were observed in the coated mangoes.
Furthermore, nanoemulsion-based sodium alginate coatings with lemongrass essen-
tial oil at 0.5% or 1% (v/v) were created to completely inhibit the natural microflora
of fresh-cut Fuji apples during 2 weeks at 23 �C. The application of this coating on
fresh-cut apples exhibited a faster and greater inactivation of Escherichia coli during
storage time compared with conventional emulsions (Salvia-Trujillo et al. 2015).
Rossi Marquez et al. (2017) reported that transglutaminase crosslinked coatings
prepared from whey protein and pectin were able to totally prevent the weight loss
of fresh-cut potato and carrot at least until the sixth day of storage, which also
maintained the phenolic and carotenoid content of fresh-cut carrot during storage.

Meat, poultry, and seafood products are common sources of proteins, yet sus-
ceptible to the spoilage microorganisms and food-borne pathogens. Thus, the
hydrocolloid-based coatings and films with antimicrobial and/or antioxidant

Table 8.2 (continued)

Coating/film
composites Form Food products Main benefits References

Alginate with
thyme/ cinna-
mon/oregano oil

Coatings Fresh-cut
‘Red Fuji’
apples

Significantly inhibited
the microbial growth,
respiration, weight loss,
firmness and browning

(Sarengaowa
et al. 2018)

Gelatin-chitosan Multilayer
coatings

Fresh-cut
melon

Effective inhibition of
the total microbial
growth

(Poverenov
et al. 2014)

Sodium alginate
with lemongrass
essential oil

Nanoemulsion
coatings

Fresh-cut
Fuji apples

A greater inactivation
of Escherichia coli
during storage time

(Salvia-
Trujillo et al.
2015)

Whey protein-
pectin

Crosslinked
coatings

Fresh-cut
apples

Reduced the weight
loss, prevented micro-
bial growth

(Rossi
Marquez
et al. 2017)

Chitosan Coatings Fresh-cut
broccoli

Decreased in total
mesophilic and
psychrotrophic bacteria
counts, inhibited open-
ing florets

(Moreira
et al. 2011b)

Starch with
carvacrol

Coatings Minimally
processed
pumpkin

Decreased counts of
Escherichia coli O157:
H7, and Staphylococ-
cus aureus

(Santos et al.
2016)

Whey protein-
pectin

Crosslinked
coatings

Fresh-cut
potatoes and
carrots

Reduced the weight
loss, prevented micro-
bial growth

(Rossi
Marquez
et al. 2017)
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Table 8.3 Recent applications of hydrocolloid-based coatings and films in meat, poultry, and
seafood

Coating/film
composites Form Food products Main benefits References

Chitosan with
Satureja plant
essential oil

Nanoencapsulation
coatings

Lamb meat Retention of the
good quality char-
acteristics,
improvement of
microbiological
safety, and exten-
sion of shelf life

(Pabast
et al. 2018)

Chitosan–
nanocelullose

Nanocomposite
films

Ground meat Decreased lactic
acid bacteria
population

(Dehnad
et al. 2014)

Sodium caseinate
with pomegranate
peel extract

Films Ground beef More pronounced
against gram-
positive bacteria
compared with
gram-negative
bacteria

(Emam-
Djomeh
et al. 2015)

Distiller dried
grains-soluble
protein with tea
extract

Films Pork meat Decreased lipid
oxidation

(Yang et al.
2016)

Perilla seed meal
protein with clove
oil

Films Pork sausages Reduced the micro-
bial growth, and
decreased peroxide
value and
thiobarbituric acid
value

(Song et al.
2015)

Chitosan with
thymus moroderi
and piperella
essential oil

Films Cooked cured
ham

Decreased the
counts of aerobic
mesophilic bacteria
and lactic acid bac-
teria, and lipid
oxidation

(Ruiz-
Navajas
et al. 2015)

WPI with oreg-
ano/clove essen-
tial oils

Coatings Chicken breast
fillets

Decreased counts
of total mesophilic
aerobic,
enterobacteriaceae,
Pseudomonas spp.,
and lactic acid
bacteria

(Fernández-
Pan et al.
2014)

Sodium caseinate
with ginger essen-
tial oil

Nanoemulsion
coatings

Chicken breast
fillets

Significantly
decreased the total
aerobic psychro-
philic bacteria,
maintained food
color

(Noori et al.
2018)

(continued)
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Table 8.3 (continued)

Coating/film
composites Form Food products Main benefits References

Chitosan-cyclo-
dextrin with
carvacrol

Films Chicken breast
fillet

A bactericidal
effect against
Staphylococcus
aureus and
Escherichia coli
O157:H7

(Higueras
et al. 2014)

Skate skin gelatin
with thyme essen-
tial oil

Films Chicken
tenderloin

Inhibited the
growth of Listeria
monocytogenes and
Escherichia coli
O157:H7

(Lee et al.
2016b)

Chitosan with
lauric alginate
ester

Coatings Ready-to-eat
deli Turkey
meat

Reduced the
growth of Listeria
innocua

(Guo et al.
2014)

Sunflower seed
protein-red algae
with grapefruit
seed extract

Films Smoked duck
meat

Decreased popula-
tion of Listeria
monocytogenes

(Song et al.
2013)

Chitosan with
citric acid/licorice
extract

Coatings Japanese sea
bass
(Lateolabrax
japonicas)

Reduced the
TVB-N levels,
showed antioxidant
and antimicrobial
effects

(Qiu et al.
2014)

Alginate with Vc/
tea polyphenols

Coatings Refrigerated
bream
(Megalobrama
amblycephala)

Efficiently
inhibited the
growth of total via-
ble counts, chemi-
cal spoilage, and
water loss

(Song et al.
2011b)

Chitosan with
grape seed extract
and tea
polyphenols

Coatings Refrigerated
red drum
(Sciaenops
ocellatus)
fillets

Maintained lower
pH values,
inhibited the degra-
dation of ATP and
lipid oxidation

(Li et al.
2013)

Chitosan Coatings Frozen Atlantic
salmon

Maintained the
color, controlled
microbial activity

(Soares
et al. 2015)

Chicken feather
protein-gelatin
with clove oil

Films Smoked
salmon

Decreased the
populations of
Escherichia coli
O157:H7 and
Listeria
monocytogenes,
decreased peroxide
and thiobarbituric
acid value

(Song et al.
2014)

(continued)
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compounds are produced to prolong their shelf life (Table 8.3). The incorporation of
grape seed extract and tea polyphenols into chitosan coatings predominantly delayed
the degradation of ATP and lipid oxidation of red drum during refrigerated storage
(Li et al. 2013). Song et al. (2011b) reported the efficacy of alginate coatings
enriched with Vc and tea polyphenols in inhibiting the growth of total viable counts,
reducing chemical spoilage, and improving sensory quality of refrigerated bream
compared to uncoated samples. According to Kim et al. (2018b), the multilayer
coatings, based on alginate, chitosan, and grapefruit seed extract, were fabricated to
reduce the bacterial counts and off-flavor of shrimp stored at 4 �C.

As shown in Table 8.3, the hydrocolloid-based coatings and films with
nanoemulsion, nanoencapsulation, and nanocellulose have been created to extend
shelf life of meat and seafood products. Dehnad et al. (2014) proved that the
application of nanocomposite films based on chitosan and nanocellulose on ground
meat decreased lactic acid bacteria population up to 3.1 logarithmic cycles (com-
pared with nylon packaged sample) at 25 �C during 6 days of storage. Noori et al.
(2018) showed that the addition of ginger essential oil nanoemulsion into sodium

Table 8.3 (continued)

Coating/film
composites Form Food products Main benefits References

Gelatin with lem-
ongrass essential
oil

Films Sea bass slices Retarded growth of
lactic acid bacteria,
psychrophilic bac-
teria and spoilage
microorganisms,
lowered changes of
color, K value, and
total volatile base
nitrogen

(Ahmad
et al. 2012)

Quince seed
mucilage with
thyme/oregano
essential oil

Films Rainbow trout
fillets

Decreased peroxi-
dation values,
reduced the
changes of color,
texture, and lipid
oxidation

(Jouki et al.
2014)

Alginate-chitosan
with grapefruit
seed extract

Multilayer coatings Shrimp
(Litopenaeus
vannamei)

Reduced the bacte-
rial count and the
off-flavor

(Kim et al.
2018b)

Chitosan/gelatin
with Ziziphora
clinopodioides
essential oil and
pomegranate peel
extract

Films Fresh shrimp Decreased counts
of bacterial, and
population of
Listeria
monocytogenes

(Shahbazi
2018)

Starfish gelatin
with vanillin

Films Crab sticks Inhibited the
populations of
Listeria
monocytogenes

(Lee et al.
2016a)
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caseinate coatings caused significant decrease of total aerobic psychrophilic bacteria
of refrigerated chicken fillets during 12 days. The chitosan coatings included with
nanoencapsulated Satureja plant essential oil were developed by Pabast et al. (2018)
to improve the microbiological safety and prolong shelf life of lamb meat during
chilled storage. Additionally, new plant extracts, as well as hydrocolloids based on
non-conventional sources have been developed as potential ingredients of coatings
and films (Shahbazi 2018; Jouki et al. 2014; Lee et al. 2016a; Ruiz-Navajas et al.
2015).

Cheese is nutritious food derived from milk. The shelf life of cheese is limited due
to the uncontrolled and extensive fungal and bacterial proliferation on its surface.
Table 8.4 shows some recent applications of antimicrobial coatings and films based
on hydrocolloids in cheese. WPI coatings included with thyme and clove essential
oils were produced by Kavas et al. (2015) to prolong the shelf life of semi-hard
kashar cheese. The application of this coating on cheese retarded the growth of
Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli O157:H7
during 60 days of storage. Nanolaminate coatings based on alginate and lysozyme
by LbL technique were fabricated to preserve “Coalho” cheese (Medeiros et al.
2014). After 20 days, coated cheese showed lower values of mass loss, pH, lipidic
peroxidation and higher titratable acidity in comparison with uncoated cheese
(Medeiros et al. 2014). Kim et al. (2018a, b) wrapped the Mozzarella cheese with
chicken bone gelatine films containing cinnamon bark oil (1% w/v) and observed the
reduction in the population of Listeria monocytogenes on mozzarella cheese during
20 days storage. In the current market, the commercialized hydrocolloid-based
coatings, RIOCOBERT and RIOCOBERT PLUS (Becor Barbanza Ltd., A Coruña,
Spain) effectively inhibited the growth of fungi on cheese (Fuciños et al. 2017).

For bakery and nuts products, most applications are hydrocolloid-based coatings
rather than films. The coatings made from potato starch with potassium sorbate and
citric acid were applied to extend shelf life of mini panettone (Ferreira Saraiva et al.
2016). Pinto et al. (2015) coated the cashew nuts with starch-cashew tree gum blend
coatings to reduce moisture absorption, lipid oxidation, and the loss of crisp texture
of nuts. Apart from that, hydrocolloid-based coatings are an additional method to
improve unit operation efficiencies in the food industry. For example, they were
applied in frying pre-treatments to reduce oil content in deep-fat fried products, such
as chicken breasts (Dragich and Krochta 2010), potato chips (Hua et al. 2015), and
fish cake (He et al. 2015). In osmotic dehydration processes of fruits and vegetables,
hydrocolloid-based coatings can prevent large solute uptake without noticeably
affecting water loss (Rodriguez et al. 2016; Azam et al. 2013).

7 Future Perspectives

Although hydrocolloid-based coatings and films have been utilized in food products,
their mechanical and water barrier attributes are still weaker compared to those of
synthetic plastic materials. Several approaches (e.g., bilayer, multilayer,
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Table 8.4 Recent applications of hydrocolloid-based coatings and films in cheese

Coating/film
composites Form

Food
products Main benefits References

Water chestnut
starch-chitosan
containing perilla
oil

Coatings Mongolian
cheese

Delayed weight loss and the
microbial growth

(Mei et al.
2013)

WPI-guar
gum-sunflower
oil with
natamycin and
lactic acid

Coatings Cheese Decreased water loss, hard-
ness, and color change,
inhibited pathogenic or
contaminant
microorganisms

(Ramos et al.
2012)

Sodium casein-
ate-chitosan

Coatings Cheese Significantly inhibited the
growth of mesophilic bac-
teria, psychrotrophic,
yeasts, and molds

(Moreira
et al. 2011a)

Galactomannan
with nisin

Coatings Ricotta
cheese

Against Listeria
monocytogenes

(Martins
et al. 2010)

WPI with thyme
and clove essen-
tial oils

Coatings Semi-hard
kashar
cheese

Significant effect on the
antimicrobial activity
against Listeria
monocytogenes

(Kavas et al.
2015)

WPI with ginger
essential oil

Coatings Kashar
cheese

Inhibited the growth of
Escherichia coli O157:H7
and Staphylococcus aureus

(Kavas et al.
2016)

Alginate-
lysozyme

Nanolaminate
coatings

‘Coalho’
cheese

Lower values of mass loss,
pH, lipidic peroxidation,
microorganisms’ prolifera-
tion and higher titratable
acidity

(Medeiros
et al. 2014)

Sodium caseinate
with nisin

Films Mini red
Babybel
cheese

Against Listeria innocua
during storage at refriger-
ated temperatures

(Cao-Hoang
et al. 2010)

Starch with
natamycin and
nisin

Films Port Salut
cheese

Controlled Saccharomyces
cerevisiae and Listeria
innocua growth

(Ollé Resa
et al. 2016)

Zein-carnauba
wax with
lysozyme

Films Fresh
Kashar
cheese

A significant reduction in
initial Listeria
monocytogenes counts

(Ünalan
et al. 2013)

Puffer fish skin
gelatin with
Moringa oleifera
Lam. leaf extract

Films Gouda
cheese

Inhibited the Listeria
monocytogenes growth,
retarded the lipid oxidation

(Lee et al.
2016c)

Chicken bone
gelatine with cin-
namon bark oil

Films Mozzarella
cheese

Displayed antimicrobial and
antioxidant activities,
inhibited Listeria
monocytogenes

(Kim et al.
2018a)

Red algae with
grapefruit seed
extract

Films Cheese Inhibited the growth of
Escherichia coli O157:H7
and Listeria monocytogenes,
decreased peroxide and
thiobarbituric acid values

(Shin et al.
2012)
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crosslinking, and bio-nanocomposite films, etc.) are employed to ameliorate prop-
erties of hydrocolloid-based coatings and films. Among them, incorporation of
polysaccharide nanofillers into hydrocolloids to produce bio-nanocomposites has
gained increasing attention in recent years, due to their edibility, remarkable physical
performance, and functional properties (Otoni et al. 2017). Thus, this type of
bio-nanocomposites is expected to be a promising area of research in the future.

On the other hand, the nanodelivery systems, such as nanoencapsulation,
nanoliposomes, nanoemulsion, and nanolaminate, have emerged to enhance the
performance of bioactive agents and improve their effectiveness in preserving food
products. Currently, they are developed as the effective tools to augment the
functionality of hydrocolloid-based coatings and films (Aloui and Khwaldia 2016).
Future research should focus on the development of hydrocolloid coatings and films
based on nanodelivery systems as well as their interactions with food products.

As a bottom-up approach, the structure-properties of hydrocolloid coatings and
films should be studied further. Practically important properties such as WVP, TS,
and EAB must be correlated with molecular structure and mobility in the solid state
to further develop the utilization of polysaccharides. For instance, dextran,
consisting of α-1,6 glycosidic linkages, shows a poor film-forming capacity in
comparison with pullulan or amylose. In addition, dextran shows the largest molec-
ular mobility in the solid state, followed by pullulan and amylose. The physico-
chemical properties and molecular mobility of dextran, pullulan, and amylose in the
solid state are quite different from each other because of the different modes of
glucosidic linkages (Nishinari et al. 1985, 1992). Overall, hydrocolloids as packag-
ing materials still need scientific research to improve their properties, quality and
marketability. Further studies include (1) embracing big data and artificial intelli-
gence (AI) in research and development, e.g., for process simulation, classification,
pattern recognition, and transfer learning; (2) developing new techniques, equip-
ment, machines for large-scale industrial implementation and applications.
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