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Abstract Polysaccharides and proteins are representative natural
biomacromolecules existing in animals, plants, and microorganisms. They are
attracting a great attention of scholars worldwide due to their various healthy
functions, such as immunomodulation, anti-tumor, anti-oxidative, hypoglycemic,
and hypolipidemic activities. Besides the strong bioactivity, these natural polysac-
charides and proteins are non-toxic and show no side effects. In recent decades, a
large number of bioactive polysaccharides and proteins with different structure and
bioactivity from natural resources have been extracted, purified, and characterized.
The aim of this chapter is to summarize the bioactivities, active mechanisms,
structure features, structure–activity relationships of natural polysaccharides, pro-
teins, and their derivatives. Moreover, this chapter also presented the applications of
some active natural biopolymers in foods and medicines.
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1 Introduction

The food hydrocolloid is an edible soft matter system, which determines the texture
and flavor characteristics of food products (Van der Sman and Van der Goot 2009).
In food processing, various food materials such as polysaccharides, proteins, lipids,
emulsifiers, sugars, minerals, and water are often mixed and fabricated. Among these
ingredients, polysaccharides and proteins are the most used materials, which not
only acting as “building blocks” for designing food hydrocolloids, but also provid-
ing interface-stabilizing properties via the interaction with other molecules (Wijaya
et al. 2017).
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Polysaccharide is defined as carbohydrate polymers consisting of different mono-
saccharide linked by glycosidic bonds (Xie et al. 2016). Protein is a macromolecular
compound, which is formed by the binding of peptide chains composed of amino
acids. In recent decades, many natural polysaccharides and proteins have been
extracted and purified from plants, animals, and microorganisms. In addition to the
properties of food hydrocolloids, these natural macromolecules also possess many
bioactivities, such as anti-tumor, immunomodulation, anti-oxidative, hypoglycemic,
and hypolipidemic (Cho et al. 2015). Therefore, this chapter mainly introduces the
bioactivities of natural hydrocolloids, including anti-tumor, immunomodulation,
anti-oxidation, antimicrobial, hypoglycemic, and hypolipidemic effects. Moreover,
the applications of these natural biomacromolecules in functional foods and medi-
cines are presented in this chapter.

2 Bioactivities

In recent years, natural polysaccharides and proteins extracted from different mate-
rials have attracted increasing attention because of their wide bioactivities, such as
anti-oxidation, immunomodulation, anti-tumor, antimicrobial, hypoglycemic, and
hypolipidemic effects. Moreover, more and more evidence indicated that most of
these bioactivities of polysaccharides and proteins are related to the immune system.

2.1 Anti-Tumor

Cancer is a group of diseases involving abnormal cell growth with the potential to
invade or spread to other parts of the body. According to the report released by the
World Health Organization (WHO) 2018, cancer is one of the main causes of human
death worldwide. Although there are many different types of antineoplastic drugs in
clinic, these drugs not only have limited efficacy, but also have strong side effects.
Since Lentinanwas first recognized to have anti-tumor efficacy (Chihara et al. 1969),
more and more studies on natural polysaccharides used in cancer treatment have
been carried out in vitro and in vivo.

Up to date, a series of human carcinoma cell lines have been employed to
investigate the anticancer activity of polysaccharides, such as the lung cancer cell
line (A549 cell), the cervical carcinoma cell line (Hela cell), the gastric carcinoma
cell line (BGC-823 cell), the breast carcinoma cell line (MCF-7 cell), the colon
cancer cell line (HCT116 cell and HT29 cell), and the liver cancer cell line (HepG2
cell). In addition, some mouse-derived cancer cell lines were also used to evaluate
the activity of polysaccharides. It has been suggested that the anti-tumor mechanisms
of polysaccharides were possibly attributed to their inhibition of tumor cell prolif-
eration, initiation of tumor cell apoptosis, and activation of immune system to kill
tumor cells (Zong et al. 2012).
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It has been reported that polysaccharides from Dendrobium (Yu et al. 2018),
Astragalus (Zhai et al. 2018), Lentinus edodes (Ya 2017), Ganoderma lucidum
(Mohan et al. 2017), and Portulaca Oleracea L. (Zhao et al. 2016) exhibited good
inhibitory effects on HeLa cells proliferation. These anti-proliferation effects might
be related to the increase in autophagic activity of HeLa cells via regulating the
expression of some key proteins in mitochondria-mediated signaling pathway, such
as beclin1, LC3, and p62 (Zhai et al. 2018). Polysaccharides extracted from
Houttuynia cordata (Han et al. 2018), Tremella (Shi et al. 2018), Sargassum
integerrimum (Liu et al. 2016), Pleurotus nebrodensis (Cui et al. 2016), Auricularia
polytricha (Yu et al. 2014) exhibited strong activity to resist the proliferation of
human A549 cells. Lin et al. (2018) reported that Hedyotis diffusa polysaccharides
could induce the apoptosis of A549 cells via regulating caspase-3-dependent mito-
chondrial pathway. Wu et al. (2017) found that polysaccharide from Glehnia
littoralis could inhibit A549 cell proliferation and migration via decreasing the
expression of PCNA, leading to cell cycle arrested in S and G2/M phase. Luo
et al. (2016) also found that coix polysaccharides had the function to inhibit the
migration and invasion of A549 cells via down-regulating the expression of
S100A4. S100A4, a member of the S100 family, is a sort of calcium binding protein
with EF double helix domain. The S100A4 expresses in kinds of tumor and stem
cells of human rather than normal somatocytes.

HepG2 is an immortalized cell line consisting of human liver carcinoma cells. It
has been reported that polysaccharides extracted from Phormidium versicolor
(Belhaj et al. 2018), Ganoderma lucidum (Yang et al. 2017), Lentinus edodes
(Zhao et al. 2017), Antrodia camphorata (Li et al. 2009a, b), Grifola frondosa
(Wang et al. 2013) showed strong ability to prevent the proliferation of HepG2 cells.
Li et al. (2013a) reported that polysaccharide from Phellinus linteus could induce
S-phase arrest in HepG2 cells via decreasing calreticulin expression and activating
the P27kip1-cyclin A/D1/E-CDK2 pathway. Shen et al. (2014) found that polysac-
charide from Ganoderma lucidum mycelia could induce HepG2 cells apoptosis via
regulating the expression of miRNAs. Some algae polysaccharides have been
proved to possess broad-spectrum antineoplastic effects. For instance, polysaccha-
rides from Sargassum plagiophyllum and Sargassum pallidum showed strong inhib-
itory effects on the proliferation of HepG2 cells, A549 cells, and MGC-803 cells
in vitro (Ye et al. 2008; Suresh et al. 2013).

β-glucans, a type of the most abundant polysaccharides in the cell wall of bacteria
and fungus, are glucose polymers linked by 1!3 linear β-glycosidic bond (Chan
et al. 2009). Over the last half-century, fungi-derived β-glucans have received great
attention because of the potential medical and edible value all over the world.
Lentinan is a representative β-glucan. It has been widely proved to have therapeutic
effect on many kinds of tumors. In clinical trials, compared to chemotherapy alone,
the addition of lentinan to standard chemotherapy could relieve the pain and prolong
survival in patients with gastric cancer (Oba et al. 2009), pancreatic cancer (Shimizu
et al. 1999), colorectal cancer (Hazama et al. 2009), liver cancer (Ina et al. 2016),
breast Cancer (Taguchi 1983). A large number of cell and animal experiments have
also proved these anti-tumor effects. For instance, lentinan has ability to inhibit
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proliferation and differentiation of cancer cells, such as human autologous tumor cell
line (K562 cell) (Tani et al. 1993), human gastric cancer cell line (BGC823 cell)
(Zhao et al. 2013), human pancreatic cancer cell line (BXPC-3 cell) (Qian et al.
2018), human cervical cancer cell line (Hela cell) (Qian et al. 2018), human breast
cancer cell line (MCF-7 cell) (Yi et al. 2018), non-small cell lung cancer (Wang et al.
2020), human bladder cancer cell line (T24) (Bao et al. 2015), liver cancer cell
line (H22 cell) (Yamamoto et al. 1989). Animal experiments demonstrated that
lentinan could inhibit colitis-associated cancer (CAC) development via regulating
TLR4/NF-kappaB signaling-mediated inflammatory responses in model mice (Liu
et al. 2018).

β-glucans have also been reported to kill cancer cells directly. The anticancer
mechanisms of these polysaccharides are mainly dependent on the ability of
enhancement of host immune system, increase in the antioxidant capacity of host,
up-regulation of phase I and phase II enzymes in metabolic transformation, and the
detoxification of mutagenic compounds (Vannucci et al. 2013). Masuda et al. (2013)
reported that both oral administration and intraperitoneal injection of β-glucans from
Grifola frondosa could inhibit tumor growth via regulating the systemic immune
response. Moreover, the possible mechanism was revealed that the Grifola frondosa
β-glucans can induce systemic tumor-antigen specific T cell response via dectin-1-
dependent activation of DCs, enhance the infiltration of the activated T cells into the
tumor, and decrease number of tumor-caused immunosuppressive cells such as
myeloid-derived suppressor cells and regulatory T cells, thus leading to the anti-
tumor activity. Yeast β-glucans, extracted from by-product yeast of beer production,
have been known to exhibit anti-tumor activities by potentiating host immunity
(Suphantharika et al. 2003).

In recent years, a large number of anticancer peptides have been identified from
plant-derived proteins. For instance, corn peptides can induce the apoptosis of
HepG2 cells by increasing caspase-3 expression (Díaz-Gómez et al. 2018). The
lunasin peptide from soybean has the ability to resist skin cancer (Hernandez-
Ledesma et al. 2009). The potato protein was found to suppress the proliferation
of mouse melanoma B16 cells (Sun et al. 2013). Kannan et al. have extracted a
pentapeptide (Glu-Gly-Arg-Pro-Arg) from rice bran and proved that it had the ability
against the proliferation of colon cancer cells (Kannan et al. 2010). It has been
reported that peptides derived from fish proteins have the inhibitory effect on MCF-7
cells in a dose-dependent manner (Hsu et al. 2011). Nongonierma and FitzGerald
(2016) also found that milk protein-derived peptides exhibited anti-proliferative
activity to tumor cells.

2.2 Immunoregulation

The immune system is a complex network of cells, tissues, and organs that work
together to protect the body from harmful substances and organisms and defend
against disease. However, when the immune system is disorder, autoimmune
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diseases, inflammatory diseases, and cancer will happen in the body. Many natural
polysaccharides have exhibited the ability to affect the immune system via modu-
lating the immune functions including ROS production, cytokine/chemokine pro-
duction, cell proliferation, and so on (Table 14.1). Therefore, polysaccharide is
considered as a potential immunomodulator with great development prospects
(Schepetkin and Quinn 2006). Figure 14.1 shows the possible signaling pathways
involved in macrophage activation by polysaccharides (Schepetkin and Quinn
2006). It is known that the anti-tumor activity of polysaccharide is partly related to
the enhancement of immune system.

The host defense mechanism consists of innate immunity and adaptive immunity,
where the innate immunity is the first line of defense mediated the initial protection
against infections. It is known that the innate immune system mainly contains
macrophages, monocytes, granulocytes, and humoral elements. Among these

Table 14.1 Immunomodulatory effects of some polysaccharides on macrophages

Source Mice type Cell type
Effects on immune
cells References

Ganoderma
atrum

– RAW264.7 Phagocytosis ", NO ",
TNF-α", IL-1β "

Yu et al.
(2013)

Dendrobium
officinale

– RAW264.7 Phagocytosis ", NO " Xia et al.
(2012)

Astragalus
membranaceus

H22 tumor-bearing mice H22 IL-2", IL-12"
TNF-α ", IL-10#

Yang et al.
(2013)

Mushroom
sclerotia

Male BALB/c mice and
athymic BALB/c nude
mice

– IL-13", IL-17",
IFN-γ"

Wong
et al.
(2011)

Grifola
frondosa

– HepG-2 NO ", TNF-α", IL-1β
"

Mao et al.
(2015)

Inonotus
obliquus

– SGC-7901 TNF-α", Fan et al.
(2012a, b)

Porphyra
haitanensis

A BALB/c murine RAW264.7
DC Tregs

Phagocytosis ",
TNF-α ", NO",
IL-10", IL-6"

Liu et al.
(2017a, b)

Dictyophora
indusiata

– RAW
264.7

TNF-α", NO",(IL)-6" Liao et al.
(2015)

Ganoderma
lucidum

– CD – Lai et al.
(2010)

Prunella
vulgaris

– RAW
264.7

NO", TNF-α", (IL)-
6"

Li et al.
(2015)

Longan pulp – Splenic
cells

Proliferation" Yi et al.
(2012)

Cordyceps
sinensis

– RAW
264.7

TNF-α", (IL)-6",
IL-10", IL-1α"

Wu et al.
(2014)

Panax
Ginseng

– DC Proliferation", IL-12
", TNF-α"

Kim et al.
(2010)

Laminaria
japonica

– RAW264.7 NO", TNF-α",
IL-1β", IL-6", IL-10 "

Fang et al.
(2015)
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components, macrophages are reported to exhibit various biological functions, such
as chemotaxis, surveillance, phagocytosis, and destruction of targeted organisms,
indicating the macrophages activation might be a hopeful strategy to resist diseases
(José et al. 2007). It has been reported that Juniperus scopolorum polysaccharides
could increase macrophage cytotoxic activity against tumor cells and microorgan-
isms, activate phagocytic activity, and enhance the secretion of cytokines and
chemokines, such as tumor necrosis factor (TNF-α), interleukin (IL)-1, IL-6, IL-8,
IL-12, interferon gamma (IFN-γ), and IFN-2 (Chen et al. 2010a, b; Schepetkin et al.
2005). Polysaccharide from Lycium barbarum could activate macrophages via
regulating the transcription factors AP-1 and NF-κB to induce TNF-α production
and up-regulating the expression of MHC class II costimulatory molecules, resulting
in the enhancement of innate immunity (Chen et al. 2008). Those phenomenons
indicated that macrophage activation is required for the activation of innate immune
system (Plüddemann et al. 2011). For these events, the pattern recognition receptors
(PRRs) are required for these cells to recognize stimulators, triggering the activation
of signaling pathways and the synthesis of pro-inflammatory cytokines (Kumar et al.
2011). Toll-like receptors (TLRs), the important PRRs, are existed on plasma
membrane (Kawai and Akira 2010). It has been reported that macrophage activation

Fig. 14.1 Schematic model of potential signaling pathways involved in macrophage activation by
polysaccharides. Reproduction with permission from (Schepetkin and Quinn 2006), Copyright
2006 Elsevier
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induced by polysaccharides involves TLRs mediated recognition (Li et al. 2011).
Figueiredo et al. (2012) have evidenced that TLR2 and TLR4 were the receptors
involved in the recognition of fungal polysaccharides. Ferwerda et al. (2008)
reported that the saccharomyces cerevisiae cell wall polysaccharide (Zymosan)
has function to induce macrophages to release cytokines by the recognition of
TLR2, TLR4, and Dectin-1. Nuclear factor κB (NF-κB) and mitogen-activated
protein kinases (MAPK) are the key proteins in the downstream signaling pathway
of TLR, which play important role in the host defenses via regulating the expression
of multiple inflammatory and immune genes (DiDonato et al. 2012). With respect to
MAPKs, mammalian cells expressed three representative MAPK pathways,
containing C-Jun-N-terminal kinase (JNK), extracellular signal regulated kinase
(ERK1/2), and p38. In recent years, the immunostimulatory activity mechanisms
of polysaccharides have been widely studied. Results suggested that the regulation
of intracellular signaling pathways is essential for the activation of macrophages
(Diao et al. 2014; Zhang et al. 2014; Maeda et al. 2012). Extracellular polysaccharide
LBP32 from Bacillus sp. strain was reported to inhibit LPS-induced production of
pro-inflammatory cytokines via attenuating the phosphorylation of P38 and JNK, but
not ERK1/2 (Diao et al. 2014). Lycium barbarum polysaccharide (LBPF4-OL) was
found to have the ability to promote the secretion of TNF-α and IL-1β via inhibiting
JNK and ERK1/2 MAPK phosphorylation and increasing the phosphorylation of
p38-MAPK (Zhang et al. 2014). The sulfated polysaccharide SP1 from Caulerpa
lentillifera had the function to activate macrophages and enhance NO production via
regulating NF-κB and P38 MAPK signaling pathways (Maeda et al. 2012). These
results demonstrated that various polysaccharides can exert their biological activities
through regulating different signaling pathways. The inflammatory response has
been reported to be highly dependent on MAPK signaling pathways via activating
its downstream cytosolic proteins and nuclear transcriptional factors (Arthur and Ley
2013). NF-κB is a ubiquitous transcription factor, which plays a critical role in the
host defenses via regulating the expression of multiple inflammatory and immune
genes (DiDonato et al. 2012). In unstimulated cells, NF-κB locates in cytoplasm and
combines with inhibitory proteins to form an inactive trimer (p50-p65-IκB). When
cells are stimulated, IκBs will be phosphorylated by IκB kinase, leading to IκB
degradation and translocation of NF-κB to the nucleus for binding to its cognate
DNA in the regulation region of a variety of genes (He et al. 2013). It has been
reported that the ability of some polysaccharides to activate macrophages is depen-
dent on their level to the activation of NF-κB pathway (Zhang et al. 2011; Yu et al.
2013).

Lymphocyte is considered as a mediator of innate and adaptive immunity. Shriner
et al. (2010) reported that pneumococcal polysaccharide could stimulate the prolif-
eration of IL-7-driven B lymphocytes, regulate their cytokine production, and restore
impaired T cell by immune response. Among the specialized cell subsets of the
innate immune system, DCs are the critical sensors via expressing various pattern
recognition receptors (Steinman and Banchereau 2007). In particular, TLRs and
cytosolic sensors for DNA and RNA recognition expressed by DCs use endogenous
host elements carrying microbial components (such as the alarmin HMGB1),
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pathogen associated molecular patterns, and/or nucleic acids to stimulate intrinsic
apoptotic pathways to generate protective immune responses (Peng et al. 2005;
Poeck et al. 2008; Besch et al. 2009). During this process, polysaccharide was
found to regulate the immunity via inducing DC maturation. For example, Astrag-
alus polysaccharides could induce the differentiation of DCs to
CD11chighCD45RBlow DCs by shifting of Th2 to Th1, resulting in the enhancement
of T lymphocyte immune function in vitro (Liu et al. 2011a). Achyranthes bidentata
polysaccharide was reported to enhance DC maturation and function, supplying
extra IL-12 and MHC class II molecules to up-regulating antigen presentation,
activating CD4+ T cell, and thus leading to an enhancement of DC-CD4+ T cell
(Zou et al. 2011). Meng et al. (2011) reported that polysaccharides from Ganoderma
lucidum could promote effective activation of murine DCs in the immune response
via up-regulating the expression of CD86, CD40, and MHC II and down-regulation
of acid phosphatases.

In the past decades, the structure–activity relationships of immunomodulatory
polysaccharides have been studied, indicating the interaction of immunostimulatory
polysaccharides with cell receptors may trigger signaling pathways and thereby
result in the induction of gene transcription (Ferreira et al. 2015a, b). A Houttuynia
cordata pectic polysaccharide (HCP-2) with a linear chain of 1,4-linked α-D-
galacturonic acid residues has been reported to increase the secretion of MIP-1α,
MIP-1β, TNF-α, IL-1β, and RANTES in human peripheral blood mononuclear cells
via regulating TLR-4 mediated signaling (Cheng et al. 2014). Bose et al. (2014)
reported that 1,3-linked β-D-glucans could activate innate immune functions via
regulating Dectin-1 and CR3 mediated signaling pathways. SR has been shown to
be the pattern recognition receptor of fucoidan. Guo et al. (2009) found that a
1,3-linked glucan from spores could be recognized by dectin-1 on macrophages
and thereby possess the biological activities. These results suggested that what is
polysaccharide’s pattern recognition receptor might be determined by the structure
of polysaccharide. Lo et al. (2007) suggested that galactose, mannose, xylose, and
arabinose played an important role in the stimulation of macrophages, but not
glucose. The residues of 1,4-lined β-D-Rhap and 1,5-lined α-L-Araf were reported
to be important for lymphocytes activation (Yang et al. 2012). The 1,4-linked
mannose and glucose was reported to be the important elements for macrophages
activation by a purified Laminaria japonica polysaccharide LJP-31 (Fang et al.
2015).

In recent years, some immunomodulatory peptides have been prepared from food
proteins (Agyei and Danquah 2012). Otani et al. (2003) reported that
phosphopeptides from casein could stimulate gastrointestinal tracts of mice to
release immunoglobulin A. Pan et al. (2013a) revealed that peptide from milk
protein exhibits immunomodulatory property in ICR mice. After modification with
dicarbonyl methylglyoxyl, ovalbumin has the ability to stimulate immune cells to
release tumor necrosis factor (TNF) alpha (Fan et al. 2003). The immunogenic
ovalbumin peptides have been employed to enhance the immune response of
different cancer patients (Vidovic et al. 2002; Goldberg et al. 2003). Some fish
protein-derived immune peptides have also been identified in recent years (Yang
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et al. 2009; Hou et al. 2016). Sheu et al. (2004) have separated an immunomodula-
tory protein from the Jew’s Ear mushroom Auricularia polytricha. Some peptides
extracted from macroalgae were also reported to exhibit immunomodulatory activity
via regulating the nuclear factor kappa B (NF-κB) pathway (Ahn et al. 2011).

2.3 Anti-Oxidation

Oxidative damage of biomolecules triggers not only physiological process of aging,
but also causes various physiological functional disorders, leading to serious health
problem ultimately (Harman 1993). In theory, antioxidants might have a positive
effect on our health because they have ability to clear free radicals from human body.
As is well known, free radicals can attack macromolecules such as proteins, mem-
brane lipids, and DNA, leading to many health problems (i.e., cancer, neurodegen-
erative diseases, and diabetes mellitus) via damaging cells and tissues (Lim et al.
2014). Reactive nitrogen species (RNS) and reactive oxygen species (ROS) are free
radicals that are formed during the normal metabolism of cells, which can be
removed by cellular anti-oxidative defense systems, such as glutathione peroxidase
(GSH-Px) and superoxide dismutase (SOD). Under normal physiological condi-
tions, the generation and elimination of RNS and ROS are balanced. Once this
balance is broken, either by the overproduction of ROS and RNS, or by the damage
in anti-oxidative system, oxidative stress will occur (Klaus et al. 2011; Sun et al.
2010). In food industries, some synthetic commercial antioxidants such as
tertbutylhydroquinone (TBHQ), butylated hydroxytoluene (BHT), butylated
hydroxyanisole (BHA), and propyl gallate (PG) have been extensively used to
reduce the oxidation and peroxidation damage. However, these antioxidants have
potential hazards to human health (Nagaoka et al. 2010). Therefore, screening
antioxidants from natural resources is always a hot topic (Peña-Ramos and Xiong
2002). Natural polysaccharides have attracted extensive attention and are proposed
to be the potential resource of novel antioxidants due to their low toxicity and
excellent anti-oxidation. Algal polysaccharides have been demonstrated as a scav-
enger of free radicals for the prevention of oxidative damage in vivo (Cristina Diaz
et al. 2017).

In general, the polysaccharide eliminates free radicals through four aspect,
including: (1) Hydrogen atoms on the structure of polysaccharides react with free
radicals to form water, and the single electrons generated by the reaction can be
further reduced. (2) Polysaccharides capture free radicals produced in lipid reactions
or chelate with metal ions, which are important factors for the formation of free
radicals. (3) Polysaccharides enhance the activity of some antioxidant enzymes.
(4) Polysaccharides indirectly achieve antioxidant effect by regulating immunity.
As shown in Table 14.2, β-glucan extracted from mushrooms and yeast have been
reported to be the potential antioxidants. Three polysaccharides isolated from
Ganoderma lucidum (GLP-H, GLP-V, and GLP-F) were found to possess the
stronger radical scavenging activities (Fan et al. 2012a, b). Astragalus
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polysaccharides were reported to inhibit the generation of ROS via suppressing the
NF-κB signal pathway (Xue et al. 2015). When the mice were orally administrated
with extracellular polysaccharides of Morchella esculenta, the activity of SOD and
GSH-Px were elevated in the blood, heart, liver, spleen, and kidney of mice (Meng
2010).

It has been reported that some compounds such as proteins, peptides, pigments,
polyphenols, and flavones could bind to polysaccharides. Compared to the poly-
saccharides, these complexes have stronger antioxidant activity. For instance, the
antioxidant effects of tea polysaccharides (TPS)-protein conjugates are dose-
dependent on the protein content (Nie et al. 2008). In addition, the in vivo and
in vitro antioxidant activities of crude tea polysaccharides were found to be better
than that of tea polysaccharide fraction, which can be interpreted by the relatively
higher proportion of tea pigments, vitamins, tea polyphenols, and other antioxidant
components in the cruder fractions (Zhou et al. 2007). Moreover, Zhang et al.
(2016a, b, c) suggested that the antioxidant activity of polysaccharides from
Ganoderma atrum (PSG) was depended on the content of phenolic compounds/
proteins.

It is a fact that the antioxidant activity of polysaccharides is closely correlated
with their structural parameters, such as solubility, degree of substitution, degree of

Table 14.2 Antioxidants activity of β-glucan

Source Antioxidant activity References

Jinqian
mushroom

ABT radical scavenging activity was 63.96% at 5 mg/mL
DPPH scavenging ratio was 89.84% at 5 mg/mL
Iron chelating effect was 14.06% at 5 mg/mL
Hydroxyl radical scavenging activity was 24.30% at 5 mg/
mL

Liu et al.
(2014a, b)

Polyporus
dermoporus

Hydroxyl radicals inhibition was 96% at 267 μg/mL
Lipid peroxidation inhibition was 42.9% at 67 μg/mL
Superoxide inhibition was 83.3% at 67 μg/mL

Dore et al.
(2014)

Saccharomyces
cerevisiae

Decreasing the formation of RBARS in LPS stimulated
human blood platelets
Decreasing the formation of O2 in LPS stimulated human
blood platelets

Saluk et al.
(2013)

Geastrum
saccatum
mushroom

Inhibition of the formation of hydroxyl radicals in a dose-
dependent manner

Guerra Dore
et al. (2007)

Pleurotus
ostreatus

The antioxidant enzymes activity, ferric reducing activity,
and ascorbate concentration in human red blood cells
hemolysates were markedly increased

Pietrzycka
et al. (2006)

Lentinus edodes Inhibition of lipid peroxidation, as well as a strong
hydroxyl radical scavenging activity and superoxide radi-
cal scavenging activity

Feng et al.
(2010)

Yeast The level of glutathione was replenished and
myeloperoxidase activity was suppressed in a rat model of
sepsis

Sener et al.
(2005)

Reproduction with permission from (Nie et al. 2018), Copyright 2018 Elsevier
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branching, molecular weight, monosaccharide composition, solution conformation,
and functional groups. Jing et al. (2009) reported that phosphorylated modification
could enhance the ability of fucoidan to scavenge hydroxyl and superoxide radicals.
The possible mechanism might be that the phosphate is a polyelectrolyte group and
could activate the hydrogen atom of the anomeric carbon.

The acetylated modification was reported to enhance the ability of mushroom
Inonotus obliquus polysaccharides to inhibit lipid peroxidation via affecting the
conformation of polysaccharides (Ma et al. 2012). The carboxymethylated modifi-
cation can increase the water solubility and antioxidant activity of β-(1,3)-glucan
from the sclerotium of Poria coco via changing the flexibility of polysaccharides
chain (Wang and Zhang 2006). Molecular weight was an important factor that can
influence the antioxidant ability of polysaccharides. Yan et al. (2009) used an acidic
solution to hydrolyze the exopolysaccharide from Cordyceps sinensis, giving a
degraded exopolysaccharide. Results showed that the degraded products had much
higher antioxidant activity than that of original polysaccharide.

2.4 Antimicrobial

β-glucans are ubiquitously found in both bacterial and fungal cell walls and have
been implicated in the initiation of antimicrobial immune response. It has been
proved that the (1!3)-β-D glucan with (1!6)-β-D branches could act as antimi-
crobial agent in vivo (Ferreira et al. 2015a, b). Hetland et al. (2000) obtained a
soluble branched β-(1,3)-glucan (SSG) from the culture broth of the fungus
Sclerotinia sclerotiorum IFO9395. Results exhibited that the oral administration of
SSG could help the mice to resist the infection of Streptococcus pneumonia sero type
4 and 6B. Faccin et al. (2007) reported that β-glucan from the fruiting body of
Agaricus brasiliensis mushrooms exhibited an antiviral activity against poliovirus
typ1 in HEp-2 cells. Peter et al. found that oral administration of β-glucan (glucan
phosphate, scleroglucan, and laminarin) at a dose of 1 mg/kg/day could enhance the
survival of mice infected with S. aureus or Candida albicans. In Sharma’s study
(Sharma et al. 2015), it was found that both extracellular polysaccharide (EPS) and
intracellular polysaccharides (IPS) extracted from Cordyceps species exhibited
obvious antimicrobial activities against all pathogenic microorganism tested. More-
over, IPS showed stronger antimicrobial activity than that of EPS. The polysaccha-
rides extracted from Ganoderma species have also been proved to exhibit spectral
antimicrobial activity (Table 14.3). It has been found that the acidic polysaccharide
CS-F2 from green tea had a selective anti-adhesive activity against some pathogenic
bacteria and strongly inhibited the growth of gastric and skin pathogenic bacteria.

More and more evidences exhibited that some proteins and their derived peptides
from plants, mammals, insects, and bacteria also have antimicrobial activity against
eukaryotes, fungi, bacteria, and viruses (Zhu et al. 2019). The first antimicrobial
peptide was found from the moth Hyalophora cecropia in 1981 (Steiner et al. 1981).
A lectin-like peptide from red lentil seeds exhibited antimicrobial activity against
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Mycosphaerella arachidicola (Wang and Ng 2007). The defensin PDC1 peptide, a
fermentation product of corn using Pichia pastoris and Escherichia coli as the mixed
strain, has an ability to inhibit the growth of Fusarium graminearum (Kant et al.
2009). Using Bacillus subtilis sck-2 to ferment soybean paste, a peptide was
obtained and exhibited antibacterial activity against Bacillus cereus (Yeo et al.
2012). These antimicrobial peptides can be considered as the good candidates for
food antisepsis.

2.5 Hypoglycemic

Diabetes mellitus (DM) is a group of metabolic disorders characterized by high
blood sugar levels over a prolonged period. Symptoms of high blood sugar mainly
include frequent urination, increased thirst, and increased hunger. If not treated in
time, diabetes will cause many complications. Acute complications include
hyperosmolar hyperglycemic state, diabetic ketoacidosis, or death. Serious long-
term complications include cardiovascular disease, chronic kidney disease, foot
ulcers, stroke, and damage to the eyes. According to the International Diabetes
Federation (IDF) in 2017, an estimated 425 million individuals are living with
DM. At present, the main treatment of diabetes is oral hypoglycemic drugs and
insulin injection. However, long-term use of these drugs could lead to insulin
resistance and other side effects. Thus, it is quite necessary to develop helpful,
innoxious, and inexpensive drugs for DM patients. As the non-toxic biological

Table 14.3 The antimicrobial activity of polysaccharides

Specie Microorganisms used

Type
of
assay References

Ganoderma
lucidum

Bacillus subtilis, Bacillus cereus, Erwinia
carotovora, Escherichia coli, Penicillium digitatum,
Botrytis cinerea

In
vitro

Bai et al.
(2008)

Ganoderma
applanatum

Acrobacter aerogenes, Acitenobacter aerogenes,
Arthrobacter citreus, Bacillus brevis, B. subtilis,
Corynebacterium insidiosum, Clostridium
pasteurianum, Escherichia coli, Micrococcus
roseus, Mycobacterium phlei, Proteus vulgaris,
Sarcina lutea St

In
vitro

Bhattacharyya
et al. (2006)

Ganoderma
formosanum

Listeria monocytogenes In vivo Wang et al.
(2011)

Glucans Staphylococcus aureus or Candida albicans In
vitro

Rice et al.
(2005)

Schizophyllum Salmonella enterica serovar In vivo Chen et al.
(2008)

Oat Herpes simplex virus 1 In vivo Murphy et al.
(2009)
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macromolecules, natural polysaccharides were observed to have positive effects to
treat DM (Huie and Di 2004; Zhou et al. 2007). Table 14.4 presents the anti-diabetic
effects of different polysaccharides.

A polysaccharide (CSP-1) from Cordyceps sinensis consists of glucose, mannose,
and galactose in a molar ratio of 1:0.6:0.75, and exhibited a significant drop in blood
glucose level in both normal and streptozotocin (STZ)-diabetic animals. These
results could be related to the increase in blood insulin level via the release of insulin
from the residual pancreatic cells and/or CSP-1-induced the reduction of insulin

Table 14.4 The anti-diabetic effects of polysaccharides

Source Model Effects and mechanisms References

Opuntia
dillenii

STZ mice Protecting the liver from peroxidation damage,
maintaining tissue function, improving the sen-
sitivity and response of target cells in diabetic
mice to insulin

Zhao et al.
(2011)

Tremella
aurantia

KK-Ay mice Reducing levels of insulin, total cholesterol and
triglyceride in the mice blood, decreasing the
level of plasma lipoperoxide

Kiho et al.
(2001)

Phellinus
linteus

NOD mice Inhibiting the development of autoimmune dia-
betes by regulating cytokine expression

Kim et al.
(2010)

Morus alba
fruit

T2DM mice Repairing of damaged pancreatic tissues of
diabetic rats.

Jiao et al.
(2017)

Lycium
barbarum

T2DM mice Increasing insulinogenic index Cai et al.
(2011)

Pleurotus
ostreatus

STZ mice Reducing the risk of oxidative damage by
increasing catalase (CAT), glutathione peroxi-
dase (GSH-Px) and superoxide dismutase
(SOD) activities and decreasing malonaldehyde
(MDA) level

Zhang et al.
(2016a, b, c)

Portulaca
oleracea L.

Alloxan-
induced dia-
betic mice

Controlling blood glucose, and modulating the
metabolism of glucose and blood lipid in diabe-
tes mellitus mice

Li et al.
(2009a, b)

Corn silk T2DM Regulating the levels of serum lipid profile,
decreasing the levels of glycated serum protein,
non-esterified fatty acid

Pan et al.
(2017)

Hedysarum
polybotrys

Alloxan-
induced dia-
betic mice

Increasing insulin secretion, inhibiting lipid
peroxidation, promoting the sensitivity to insu-
lin, suppressing gluconeogenesis, and reducing
the biosynthesis fatty acid, cholesterol, and cell
cytokines related to insulin resistance

Hu et al.
(2010)

Taxus
cuspidata

STZ mice Increasing the body weight of diabetic mice, and
reversing the decrease of SOD and the increase
of thiobarbituric acid reactive substances
(TBARS) in kidney and liver of diabetic mice

Zhang et al.
(2012)

Ganoderma
lucidum

T2DM Down-regulation of the hepatic glucose regu-
lated enzyme mRNA levels via AMPK activa-
tion, improvement of insulin resistance and
decrease of epididymal fat/BW ratio

Xiao et al.
(2016)
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metabolism in body (Li et al. 2006a, b). Another two purified polysaccharides
(CS-F30 and CS-F10) from Cordyceps sinensis mycelia was also proved to have
hypoglycemic effects on mice (Kiho et al. 1996, 1999). Compared to CSP-1, these
two polysaccharides have different monosaccharide composition. In recent years,
the hypoglycemic effect of tea polysaccharides (TPS) has also attracted much
attention. Chen et al. (2010a, b) reported that the oral administration of TPS at
150 mg/kg/day can significantly reduce the blood glucose level in non-obese
diabetic (NOD) mice. From TPS, two water-soluble polysaccharide fractions of
TFP-1 and TFP-2 were obtained. The average molecular weight was determined to
be 15.9 � 104 and 1.12 � 104 Da, respectively. Results showed that continuous
administration of TFP-2 could dose-dependently decrease the blood glucose level in
alloxan-induced diabetic mice by inhibiting α-amylase and α-glucosidase (Han et al.
2011a, b). Zhou et al. (2007) isolated a crude tea polysaccharides (CTP) and a tea
polysaccharide fraction (TPF) from green tea. It was found that CTP and TPF have
hypoglycemic effects on alloxan-induced diabetic mice. The hypoglycemic action of
polysaccharides from oolong tea and black tea has also been investigated. Results
exhibited that these tea polysaccharides could alleviate the diabetic mice and
improve diabetes symptoms, indicating tea polysaccharides have good effects on
the prevention of hyperglycemia (Nie et al. 2011).

Food-derived peptides have been reported to have antagonistic effects against
glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1
(GLP-1) in type 2 diabetes via inhibiting the activity of Dipeptidyl peptidase IV
(DPP-IV) (Matteucci and Giampietro 2009). So far, this active peptide has been
isolated from corn, milk, soybean, rice, and other foods (Zhu et al. 2019; Mochida
et al. 2010; Hira et al. 2009; Sanjukta and Rai 2016). The dipeptides and tripeptides
isolated from whey proteins have been used as competitive inhibitors to interact with
DPP-IV substrates (Gunnarsson et al. 2006). Recently, more attention have been
paid on the application of marine bioactive peptides to treat type 2 diabetes. The
peptides from Porphyra dioica were observed to have the inhibitory effect on
DPP-IV (Stack et al. 2017). Three polypeptides (ILAP, LLAP, and MAGVDHI)
with similar bioactivity were also isolated from macroalga Palmaria palmata
(Harnedy et al. 2015).

2.6 Hypolipidemic

Hyperlipidemia is a lipid metabolic disorder characterized by the enhancement of
blood total cholesterol (TC), low-density lipoprotein (LDL), very low-density lipo-
protein-cholesterol (VLDL-C) and triglyceride (TG), with a concomitant decrease in
the level of high-density lipoprotein-cholesterol (HDL-C) in the plasma. With the
improvement of people’s living standard and the change of dietary structure, the
incidence of hyperlipidemia is increasing year by year (Chan et al. 2009). Hyper-
lipidemia is one of the main risk factors for inducting cardiovascular diseases, such
as hypertension, atherosclerosis, and coronary heart disease (Rosenson et al. 2002).

486 K. Liu et al.



In a meanwhile, lipid accumulation in liver (steatosis) can result in oxidative stress
and inflammation, leading to the damage of liver (Esposito et al. 2002). Thus, how to
reduce lipid level is one of most important clinical problems. At the present time,
statins, nicotinic acid, and its derivatives are the most common lipid-lowering
prescribed drugs. Although these drugs help in lowing lipids, their side effects are
also enormous, such as headache, muscle pain, and nausea. Moreover, the long-term
use of these drugs can increase the risk of type 2 diabetes (Hsu et al. 2015). In recent
decades, more and more evidences exhibited that natural polysaccharides had the
function to low lipids. For instance, Enteromorpha prolifera polysaccharides
exhibited a high hypolipidemic action in high fat rats via decreasing the plasma
LDL-C, TC, and TG levels and increasing HDL-C level (Teng et al. 2013).
Ganoderma lucidum β-glucan was also reported to decrease the TC, TG, and
LDL-C levels in the serum of diabetic mice, whereas the HDL-C level was increased
(Li et al. 2011). Recently, significant in vivo studies testing, the efficacy of cereal
β-glucans using animal and human subjects has led to health claims for this material
in many industrialized countries. The soluble dietary fibers (i.e., β-glucan from
cereal grains) are well accepted to be the polysaccharides with the ability to lower
lipids (Pomeroy et al. 2001). Therefore, adding β-glucan-rich fiber products in the
daily diet is now considered as an effective approach to lower lipids. Extensive
efforts have been made to establish the relationship between the structure of cereal
β-glucans and reduction of LDL-C levels (Lazaridou and Biliaderis 2004; Li et al.
2006a, b). Cereal β-glucans are linear homopolysaccharides formed by the linkage of
β-D-glucopyranosyl units via (1!4)-β-linkage and separated by single
(1!3)-β-linkages. They are the main component of water-soluble dietary fibers
from cereals. The physiological activity of soluble β-glucan from cereal is closely
related to its unique structure of (1!3)(1!4)-β-D-glucan. It was concluded that the
LDL-C lowering effect and the ability to control blood glucose of cereal β-glucan
may depend on its viscosity in solution, which is controlled by the MW, structure,
and concentration in the intestine (Wood 2007).

It has been reported that β-glucan can bind to the bile acid in intestinal lumen.
This combination would reduce the circulation of bile acid liver and further stimulate
the production of more bile acids from cholesterol. Moreover, β-glucan could be
fermented in the large bowel by colonic bacteria, and producing the short-chain fatty
acids. The short-chain fatty acids could be absorbed by portal vein, and inhibit
hepatic cholesterol synthesis via regulating the activity of HMG-CoA reductase
(a rate-limiting enzyme required for cholesterol biosynthesis), or increasing catabo-
lism of LDL-cholesterol. Another phenomenon was observed that β-glucan reduced
the concentration of postprandial serum insulin by delaying gastric emptying,
leading to the inhibition of hepatic cholesterol production. It was also reported that
β-glucan could interfere with the absorption of dietary fat via increasing intestinal
viscosity (Bell et al. 1999).
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2.7 Other Activities

Besides the healthy benefits mentioned above, some other bioactivities of poly-
saccharides and protein-related compounds have been studied in recent years,
including antidiarrheal, anti-fatigue, anti-tussive, anti-analgesia, anti-allergic, and
anti-dyszoospermia activities. Baek et al. (2010) evaluated the anti-diarrhea effect of
ginseng polysaccharides in vitro using the model of rotavirus infection. Results
showed that two pectic ginseng polysaccharides dose-dependently rescued the cell
viability from rotavirus infection. Moreover, the prevention of polysaccharide on
rotavirus was attributed to the inhibitory effects of rotaviral attachment to cells. In
recent years, the anti-fatigue effect of polysaccharides extracted from different
materials is gradually accepted by people (Jing et al. 2009). Pimentel et al. (2019)
demonstrated that macroalgae-derived peptides and enzymes have protective effects
on skin via eliminating free radicals and promoting moisture.

3 Structure Features

Chemical structure is the basis of polysaccharides and to exert their biological
activity, including monosaccharide composition, monosaccharide arranging order,
anomeric carbon configuration, glycoside bond types, branches, substituted groups,
and the spatial conformation. It has been reported that most bioactive polysaccha-
rides are mainly composed of glucose, fucose, galactose, arabinose, mannose,
xylose, ribose, glucuronic acid, and galacturonic acid. According to the published
literatures, the fungal derived polysaccharides have been found to be α-mannan,
β-glucans and hetero-β-glucans, α-mannan-β-glucan complexes, heteroglycans, gly-
copeptides or glycoprotein and proteoglycan. The polysaccharides extracted from
plants mainly include glucans, glucomannans, heteroglycans, arabinans,
arabinogalactan, pectins, rhamnogalacturonan, and their sulfated or acetylated
forms. Animal polysaccharides are mainly composed of glycosaminoglycan and
sulfated glycosaminoglycan.

Although it is quite difficult to determine the structural variability of polysaccha-
rides from different resources, a series of analytical methods have been established to
achieve this. The high performance liquid chromatography (HPLC) is often
performed to determine the molecular weight of polysaccharides. The infrared
spectroscopy (IR), ultraviolet spectroscopy (UV), gas chromatography-mass spec-
trometry, NMR spectroscopy, periodate oxidation, partial acid hydrolysis, methyl-
ation, and periodate oxidation-Smith degradation are the common methods to
analyze structural features of polysaccharides (Yang et al. 2009).

The chemical structure of natural polysaccharides is very complex. Table 14.5
showed the structure features of some polysaccharides extracted from different
species. In most cases, one material could contain a variety of polysaccharides
with different structures. Moreover, the same species growing in different places
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could contain different polysaccharides. It is also reported that the polysaccharides in
different organs of the same species is also different in the structures. It has been
observed that polysaccharides extracted from the spores of Ganoderma lucidum
possessed a backbone of (1–3)-β-linked glucans (Bao et al. 2001). However, the
backbone of fruit bodies polysaccharides was composed of 1,3-linked glucose,
1,6-linked glucose, 1,6-linked mannose, 1,4-linked glucose, and 1,6-linked galac-
tose (Bao et al. 2002a, b).

For the preparation of natural polysaccharides, the extraction methods and
extraction parameters are also critical factors affecting polysaccharide’s structures
and properties. For instance, Palacios et al. compared the effects of different extrac-
tion methods on the structure of polysaccharides from Pleurotus ostreatus mush-
room. Results showed that the polysaccharides extracted by cold-water mainly

Table 14.5 Structure features of polysaccharides from various sources. Reproduction with per-
mission from (Nie et al. 2018), Copyright 2018 Elsevier

Source Mw (Da)
Monosaccharide
composition Backbone References

Pleurotus florida 180,000 Glucose (1!6)-linked-β-D-Glcp
(1!3,6)-linked-β-D-Glcp

Maji et al.
(2012)

Auricularia
polytricha

120,000 Glucose 1,3-β-glucan
1,3-α-glucan
1,4-α-glucan

Song and
Du (2012)

Cistanche
Deserticola Y.
Ma

10,000 Glucose 1,4-linked-α-D-glucan Dong et al.
(2007)

Cordyceps sinensis – Glucose, Man-
nose, Galactose

(1!4)-linked-α-D-Glcp Nie et al.
(2011)

Ganoderma lucidum 83,000 Rhamnose,
Galactose,
Glucose

1,4-linked-α-D-Glcp
1,6-linked-β-D-Glcp

Bao et al.
(2002a, b)

Ganoderma lucidum 200,000 Glucose,
Mannose

1,3-,1,4-, 1,6-linked-β-D-
Glcp
1,6-linked-β-D-Manp

Bao et al.
(2002a, b)

Ophiopogon
japonicus

35,200 Arabinose, Glu-
cose, Galactose

1,4-linked-Glcp
1,6-linked-Glcp
1,4,6-linked-Glcp

Chen et al.
(2011)

Lentinus
squarrosulus (Mont.)
Singer

196,000 Galactose, Glu-
cose, Fucose

(1!4)-linked-α-D-Glcp
(1!6)-linked-β-D-Glcp
(1!4,6)-linked-D-Glcp
(1!3,6)-linked-D-Glcp

Bhunia
et al.
(2010)

Dendrobium
huoshanense

73,000 Glucose, Galac-
tose, Xylose

1,4-linked-β-D-Glcp
1,6-linked-β-D-Glcp
1,4,6-linked-β-D-Glcp

Pan et al.
(2013b)

Radix Astragali 1334,000 Rhamnose, Glu-
cose
Arabinose,
Galactose,
Galactose acid

1,4-linked-α-Glcp
1,4-
linked-α-GalAp6Me1,2,4-
linked-Rhap
1,3,6-linked-β-Galp

Yin et al.
(2012)
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consisted of 1–3-α-linked and 1–6-α-linked galactose. The polysaccharide extracted
by hot-water was mainly composed of 1–4-α-linked glucose. However, the fraction
extracted by hot-aqueous NaOH was mainly composed of 1–3-β-linked and 1–-
6-β-linked glucose (Palacios et al. 2012).

In addition to the natural factors, chemical modification can also change the
polysaccharide’s structure, leading to the variation of physicochemical properties
and bioactivities (Fiorito et al. 2018). According to the published literatures, the
acetylation, carboxymethylation, sulfation, phosphorylation, alkylation, and
selenization have been employed to modify the structure of polysaccharides
(Prashanth and Tharanathan 2007). Moreover, some modified polysaccharides
have been developed into drug delivery systems (Shah et al. 2011).

In addition to the natural factors, polysaccharide derivatives also contribute to the
structural diversity, which can also be classified as a semisynthetic polysaccharide. It
has been reported that the effective chemical modification of this natural structure
could improve the bioactivities and some key parameters, including solubility,
bioavailability, and pharmacokinetics (Fiorito et al. 2018). Chemical modification
can control the final structure of polysaccharides, and thus determining the specific
biological functions. In addition, the chemical modification of polysaccharide struc-
ture mainly utilizes the polysaccharide’s reactive groups, such as hydroxyl, car-
boxyl, and amino groups, to chemically introduce new functional groups. Chemical
modification of polysaccharide includes sulfation, carboxymethylation, acetylation,
alkylation, phosphorylation, and selenization. Some semisynthetic polysaccharides
have been developed into various drug delivery systems.

In recent years, a large number of studies have been carried out on the structure–
activity relationship of polysaccharides. Results exhibited that the activity of poly-
saccharides was mainly related to the molecular weight, chemical structure, and
physical properties (Jin et al. 2012). The (1,3)-β-D-glucan from Poria cocos sclero-
tium is a water-insoluble polysaccharide and exhibited low bioactivity. After
carboxymethylation, both the water solubility and bioactivity were enhanced
(Wang et al. 2009). Di et al. (2017) reported that sulfated polysaccharides from
Gracilaria rubra exerted immunologic activity by promoting the proliferation of
RAW264.7 cells. Moreover, the activity was improved with the decrease of poly-
saccharide molecular weight. Chen et al. (2015) demonstrated that sulfated polysac-
charide from Ganoderma atrum has the strongest immunological activity when the
molecular weight was intermediate (4.0 � 10�6 Da). Zhang et al. (2005) found that
the physicochemical property and steric conformation of polysaccharides from
Poria cocos mycelia were changed by the introduction of sulfate groups, leading
to the changes in the bioactivity of polysaccharides. Similarly, sulfated modification
changed the structure and conformation of polysaccharides from Hypsizygus
marmoreus, enhancing the ability of anticancer and immunity (Bao et al. 2010).
The substitution degree of substituent groups also has a great influence on the
biological activity of polysaccharides. For instance, chitosan with different substi-
tution degree of sulfuric acid group exhibited different strength of immunoregulation
ability (Yang et al. 2018). Liu et al. (2017a, b) investigated the structure–activity
relationship of selenium-containing polysaccharide. Results showed that the
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anti-diabetic activity was improved with the increase of selenium content of
Catathelasma ventricosum polysaccharide with triple helical structure. However,
when the tri-helical structure was damaged, the anti-diabetic effect was decreased.
With respect to the structure–activity relationship of proteins, it has been reported
that the bioactivity of proteins was highly related to its structure characteristics, such
as amino acid composition, amino acid sequence, molecular weight, and hydropho-
bicity (Silva et al. 2017).

4 Application

Because natural polysaccharides have wide biological activities and low toxicity,
some of them have been successfully applied in fields of drugs and foods
(Table 14.6). In the field of drugs, some polysaccharides such as Lentinan, Astrag-
alus polysaccharide, Ginseng polysaccharide, Poria polysaccharide, and Chondroi-
tin have been developed into injections, tablets, and capsules. In the field of foods,
some polysaccharides have been used as the additives to endow new nutritional and
healthy functions of foods. For instance, Lycium barbarum polysaccharides (LBPs)
have been processed into different forms of functional foods, such as Goji beverage,
Goji wine, Goji tea, Goji oral liquid, Goji tablet, Goji capsule, and Goji granules.
Among these healthy foods, the Goji capsule and Goji oral liquid were popular in the
public. Long-term use of Goji capsule and Goji oral liquid can enhance the immu-
nity, improve sleep, protect liver, and reduce fatigue (Wu et al. 2018).

Proteins are the important components in foods. Since soybean protein isolate
was produced in large-scale in 1958, the application of food protein becomes more
and more pluralistic. In the field of traditional foods, the soybean protein, milk
protein, egg protein, meat protein, and nut protein have been applied in beverage
food, baby food, baked food, pastry, and meat products. In the field of
non-traditional foods, the protein has been used as a main component to prepare
reproduced foods and simulated foods, such as soybean protein beef, plant protein
chicken, vegetarian ham, vegetarian sausage, and imitation meat hamburger. More-
over, food protein widely applied in cosmetics and biomedicine.

5 Conclusions and Future Prospects

In recent decades, the research of bioactive polysaccharides has made some impor-
tant progress and has been widely used in pharmaceutical, biochemical cosmetic,
and functional food industries. However, due to the limitations of existing experi-
mental methods and the complexity of their structure, research about polysaccha-
rides is still far behind than that of proteins and nucleic acids. Although the
functional properties of polysaccharides have been widely studied, the mechanism
of their actions is still unknown. One of the main reasons is that the structural
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Table 14.6 Practical Applications of Polysaccharides

Applications
areas Polysaccharides

Practical
applications Bioactivities References

Clinical
drugs and
medicines

Astragalus
polysaccharide

Astragalus poly-
saccharide
injection

Immunomodulation;
Antioxidant;
Anti-hypertensive

Xu (2012)
Zhang et al.
(2016a, b, c)

Ginseng
polysaccharide

Ginseng polysac-
charide injection

Anti-tumor
immunity

Xu (2015)

Lentinan
polysaccharide

Lentinan injection;
Lentinan capsules

Immunomodulation;
Anti-tumor

Wang
(2012)
Wang et al.
(2013)

Poria
polysaccharide

Poria polysaccha-
ride oral solution

Anti-gastric cancer Yang et al.
(2017)
Hou and
Luo (2017)

Chondroitin sulfate Chondroitin sul-
fate tablets; chon-
droitin sulfate
capsules

Anti-arthritis;
Anti-
angiocardiopathy

Gacci et al.
(2015)
Liu et al.
(2014a, b)

Fucoidan Active pharma-
ceutical ingredi-
ent;
Antivirus drugs

Hypolipidemic;
Antivirus

Wu and
Yang (2010)
Mandal
et al. (2007)

Ganoderma atrum
polysaccharide

Hypoglycemic
drugs

Hypoglycemic Zhu et al.
(2013)

Heparin Anticoagulant
drugs

Anticoagulant Bai and
Ahsan
(2009)
Dong and
Fang (2001)

Food
industry

Exopolysaccharides Fermented dairy
products

Anti-ulcer;
Immunomodulation;
Anti-tumor

Yang et al.
(2010)

Soybean soluble
polysaccharide

Yogurt; Milk
beverage

Anti-hypertensive;
Reduce weight;
Hypoglycemic

Ron et al.
(2010)
Nakamura
et al. (2006)

Red ginseng
polysaccharide

Noodles, bread, or
cake making

Immunomodulation;
Anti-tumor

Yu et al.
(2012)

Carrageenan Desserts (ice
cream and
puddings)

Antivirus Prajapati
et al. (2014)

Cosmetics
industry

Hyaluronic acid Sodium
hyaluronate
injection

Moisture absorption
and moisture
retention

Zhang et al.
(2008)

Aloe
polysaccharides

Aloe Vera gel Anti-aging;
Versatile skin care

Takahashi
et al. (2009)

Marine algae
polysaccharides

Marine algae deep
moisturizing
cream

Anti-radiation;
Whitening and
moisturizing

Moore
(2002)
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diversity and heterogeneity of natural polysaccharides hamper the research and
product development. Moreover, the polysaccharides extracted from the same raw
material by different preparation methods often have different compositions. There-
fore, the preparation process of polysaccharides needs to be standardized. To reveal
the structure–activity relationship is always the focus of polysaccharides research,
which will disclose the structural basis for polysaccharides to perform their healthy
functions. This is not only necessary to screen and design high-active polysaccha-
rides, but also have important theoretical guiding significance to study the medicinal
mechanism of polysaccharides. In addition, because polysaccharides have a wide
range of biological activities, they will have broad application prospects in func-
tional foods in the future. Therefore, it is also necessary to strengthen the research on
the activity development and mechanism of polysaccharides.
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