
Chapter 12
Replacement of Fat or Starch

Cuixia Sun and Yapeng Fang

Abstract A growing public demand for low-calorie foods is stimulating the
researchers and food manufacturers to develop reduced-calorie products due to the
recognized adverse effects of high energy diet on human health. Fat and starch are
two condensed sources of energy, and reducing their intake is a major dietary goal
for the consumer. Currently a variety of available technological options have been
applied to decrease the content of fat or starch in foods. The development of food
hydrocolloids-based fat or starch replacers is one of the most important approaches
for fat or starch reduction because their functionalities allow them to mimic the oral
and flow properties of fat or starch. However, the replacement of fat or starch is not
trivial because both of them play important roles in determining the nutritional,
physical, chemical, and sensory characteristics of foods. How to achieve the replace-
ment of fat while matching as close as possible all the characteristics of full-fat foods
remains a major challenge. This chapter describes the main challenges for the
reduction of fat from the viewpoint of flavour perception and texture quality. Two
strategies for fat replacement are involved, including food formulation optimization
and food structure design. Various hydrocolloids-based formulations created for the
purpose of starch replacement are introduced and the associated principles
discussed. The commercially available fat replacers and their applications in differ-
ent food products are presented.
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1 Introduction

High calorie food intake is associated with the increased prevalence of numerous
chronic diseases, including obesity, type 2 diabetes, hypertension, cancers, gall
bladder disease, and coronary heart disease. Fat and starch are two major sources
of calories in many processed food products. High levels of certain types of
triacylglycerols in the blood have been related to coronary heart disease and obesity
(Bray et al. 2004; Han et al. 2016). Rapid digestion of starch causes a sudden rise in
blood glucose level, which has been linked to diabetes and obesity (Lustig et al.
2012; Svihus and Hervik 2016). Based on the growing awareness about the adverse
effects of high caloric products through nutrition and health claims, reducing fat or
starch intake is becoming a major dietary goal for the consumer. In addition, our ever
more sedentary life styles serve as a driving force to decline the consumption of
high-energy foods.

The World Health Organization (2003) recommends a daily intake of total fat no
more than 30% of dietary energy, of which <10% should be saturated fatty acids.
The UK Food Standards Agency (2008) published its Saturated Fat and Energy
Intake Programme and recommends that the saturated fat consumption should be
reduced from 13.3% of dietary energy to 11%. The 2015–2020 Dietary Guidelines
for Americans emphasize the restriction of trans and saturated fats intake and
recommend the consumption of low-fat or fat-free foods (DeSalvo et al. 2016).
Food reformulation to reduce the content of fat was included in nutrition action plans
of many European countries (Belc et al. 2019). The United States Code of Federal
Regulations (2014) defines low-fat food as: ‘The food has a reference amount
customarily consumed >30 g and contains 3 g or less of fat per reference amount
customarily consumed (RACC); or the food has a reference amount customarily
consumed of 30 g or less and contains 3 g or less of fat per RACC and per 50 g of
food’. In the USA, a low-fat cheese must contain 6 g or less of fat per 100 g of
cheese, while a reduced-fat cheese requires at least a 25% reduction in fat level from
the traditional fat level of the referenced variety. Fat-free cheese is defined as that
with <0.5 g fat per 100 g of cheese (Johnson 2011).

In such a context, researchers and the food industry are highly sensitive to
consumer perceptions and demands for low-calorie foods. However, the replacement
of fat or starch is not trivial because both of them play important roles in determining
the nutritional, physical, chemical, and sensory characteristics of foods. For exam-
ple, as shown in Fig. 12.1, fat not only provides a concentrated source of energy, but
also supplies essential fatty acids and fat-soluble vitamins (A, D, E, and K). Fat
reduction would result in loss of nutritional benefits or even an unbalanced diet
(Colmenero 2000). Besides, fat provides structure in baked goods, influences the
storage stability, and affects the observed lightness of food products owing to the
impact of the fat droplets on light scattering (Chung et al. 2013a). A direct removal
or simple replacement of fat without compensation for specific functions would
cause a considerable change in the organoleptic characteristics of foods, leading to a
poor food quality. For instance, inulin addition at levels of 100% in cake
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formulations resulted in remarkable loss of different quality attributes, including
higher water activity and baking loss, lower volume, harder texture, darker colour,
and highly asymmetrical shape (Majzoobi et al. 2018). Starch granules are often
used in food products to provide desirable texture attributes, such as ‘thickness’, and
contribute to the physicochemical properties of foods, including the volume, vis-
cosity, gelation, and stability (Ai and Jane 2015). Any ingredients to replace starch
granules should be able to simulate such characteristics normally provided by
conventional starch granules and meanwhile should contribute less calories and
lower glycemic index (McClements et al. 2017).

Consequently, a number of considerations need to be taken into account for the
feasibility of fat- or starch-reduced products in order to maintain the desired phys-
icochemical and sensory attributes of original foods. In this chapter, major chal-
lenges for the development of low-fat or low-starch foods are discussed from the
aspects of scientific problems and technical limitations. A variety of hydrocolloids-
based formulations developed for the purpose of fat or starch replacement are
introduced and the associated principles discussed. The commercially available fat
replacers and their applications in different food products are presented.

Fig. 12.1 Functions of fat in food products
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2 Challenges for Fat or Starch Replacement

Based on either omission or replacement of fat or starch, a variety of available
technological options have been involved to quantitatively reduce fat or starch
content and qualitatively modify the fatty acid profiles. For example, food
reformulation is one of the most important approaches to remove, reduce, and/or
replace different components in order to develop healthy products. However, food is
a typically complex colloid system with common characteristics of multiphase,
multicomponent, and multiscale. Fat droplets and starch granules vary considerably
in their size, shape, charge, and behaviour and endow foods with many desirable
functions. Therefore, they are difficult to replace.

2.1 Challenges for Fat Replacement

The elimination or reduction of fat in foods evidently modifies its composition and
structure and also the expected interactions among components, giving rise in most
cases to clearly perceptible changes in flavour and/or texture. Moreover, although
most taste compounds do not dissolve in fats, when fat content is reduced, the salty,
sweet, sour, and umami tastes will be weakened and the bitter taste enhanced
(Metcalf and Vickers 2002).

2.1.1 Flavour Concerns

Sensory preference for fat appears to be a universal human trait because fat contrib-
utes to numerous sensory characteristics of fatty products, including appearance,
texture, flavour and aroma, and mouthfeel. Flavour as one of the most-important
attributes determines consumer selection and satisfaction with fat-reduced foods.
Reduction or elimination of fat directly affects the processes of flavour release and
perception, modifies the signals received by the brain on consuming a particular
food, and may partially determine its acceptance or rejection.

Flavour Distribution and Release

The term ‘flavour’ refers to volatile components that are sensed by aroma receptors
in the nose and non-volatile components that are sensed by taste receptors in the
mouth (Taylor and Linforth 1996). The overall perceived flavour of a food product
usually involves the integration of information from mouthfeel, taste, and aroma
during mastication (González-Tomás et al. 2008). As an extremely complicated
process, flavour perception is dependent on a combination of physicochemical,
biological, and psychological phenomenon, which is perhaps the most multisensory

412 C. Sun and Y. Fang



of our everyday experiences (Spence 2015). Fat functions as flavour precursors, and
reducing fat content influences both the distribution of the flavour and the kinetics of
flavour release (McClements and Demetriades 1998). The type and concentration of
flavour molecules mainly determine the perceived flavour. For nonpolar flavour,
decreasing fat content would increase in the aqueous phase flavour concentration,
leading to an intense initial taste perception (Roberts et al. 2003). Even if the amount
of flavour compounds is rebalanced in fat-reduced foods to provide the same
maximum aroma intensity as the full-fat products, the low-fat alternatives still fail
to match the same perception. The major reason is that fat has an impact on time-
intensity profile of lipophilic flavour release. The sustained aroma release relies on
the hydrophobicity and fat content of the product, that is, the higher the hydropho-
bicity and fat content, the slow the aroma release into the aqueous phase (de Roos
2006). In full-fat products, a rich flavour sensation is perceived because flavour
compounds with various degrees of hydrophobicity are released at different rates.
On the contrary, in reduced-fat products, lower amount of fat is insufficient to retain
the aroma compounds and thus causes quick flavour disappearance and lack of
richness (van Ruth et al. 2002).

Flavour–Ingredients Interactions

Food matrix ingredients such as proteins, polysaccharides, and lipids can interact
with flavour compounds (Guichard 2002). Modification of the food formulation by
using fat replacers would change such interaction and thus alter the flavour percep-
tion. The development of fat-reduced products with desired flavour will be only
possible if the knowledge of flavour-ingredients interactions has been well under-
stood (Plug and Haring 1994). Flavour-binding behaviour of fat replacers results in
lower volatilities in aqueous systems, which may explain the decreased flavour
intensity in fat-reduced foods (Godshall 1997; Fischer and Widder 1997). For
example, proteins like β-lactoglobulin, casein, gelatin, and egg albumin can interact
with flavour compounds by reversible or irreversible binding, causing lower vola-
tilities in water phase (Maier 1970). More research is required to explore the
mechanisms of flavour–ingredients interactions and the location of the binding
sites, which can provide the necessary information for the selection of suitable fat
replacers in the development of fat-reduced food products.

2.1.2 Texture Concerns

Texture is another important sensory attribute to assess food quality, such as being
hard or soft, cold or warm, oily or juicy, elastic or flaky, heavy, viscous, or smooth. If
the texture attribute fails to meet our expectations, we may reject the food regardless
of the quality of flavour (Engelen and de Wijk 2012). Fat is an important contributor
to texture in different types of foods, such as thickness of liquid foods (Villegas and
Costell 2007), consistency of semisolids (Tárrega and Costell 2006), and firmness of
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solids (Kavas et al. 2004). Fat content has obvious impacts on the food texture in
different ways because fat droplets impart many textural characteristics such as the
viscosity, afterfeel, lubrication, and melting or cooling mouthfeel. Fat reduction
usually results in a dramatic decrease in viscosity, leading to the lower perceived
thickness. The common approach is to add biopolymer or biopolymer mixture to the
aqueous phase to enhance its viscosity. However, biopolymer molecules are not able
to mimic all of the textural characteristics. Particularly, fat has distinctive thermal
properties because of its unique melting point, which contributes the creamy mouth-
feel after the melting of fat crystals at room temperature (Weenen 2005). It was
reported that heat transfer between foods and the oral surface may be an important
factor for fat perception. The perceived food temperature is associated with fat
content, for example, high fat products were perceived as warmer than low-fat
products (Weenen et al. 2003). Therefore, the sensory difference of foods with
different fat contents can be detected based on the fact that lips and tongue are
highly sensitive with the temperature changes (Prinz et al. 2007).

Moreover, numerous sensory characteristics of food emulsions are related to their
rheological properties such as elasticity, viscosity, and viscoelasticity. For example,
the fatty, creamy, smooth, and thick texture of full-fat products is related to the bulk
rheology, thin-film rheology, and colloidal interaction between food and oral surface
(Malone et al. 2003). Removal of fat causes textural problems in reduced or low-fat
ice creams, such as coarseness and iciness, crumbly body, shrinkage, and flavour
defects (Akalın et al. 2008). Cakes presented significantly increased hardness,
elasticity, and decreased specific volume as fat replacement increased above 65%,
leading to lower scores on taste and flavour (Psimouli and Oreopoulou 2013). Fat
reduction is likely to reduce the degree of shear-thinning behaviour, which may have
important implications for the mouthfeel and texture of the product. Therefore, a
thorough understanding of the rheological behaviours and colloidal properties of
foods would provide guidelines for the design of products with the replacement of
fat or starch but without quality loss.

Overall, the functional properties of lipids that must be reproduced include
organoleptic properties, the ability to dissolve lipid-soluble flavours, aeration,
aroma, emulsification, flavour, heat stability, and spreadability. Translating idea
into reality is not a simple task. Hydrocolloids-based fat replacers are generally
polar water-soluble compounds, so it is difficult for them to replace some of the
nonpolar functional characteristics of fats, such as lipid-soluble flavour-carrying
capacity.

2.2 Challenges for Starch Replacement

Starch granules are widely used in foods to create desirable textural attributes
because of its preferable characteristics such as gelling, thickening, and aqueous
solubility. The viscosity is a determining factor for the application of starch in food
products to obtain desirable rheological characteristics (Sarkar et al. 2013).
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Therefore, the challenge for starch replacement is how to develop a food ingredient
with similar functional attributes as starch granules.

2.2.1 Pasting and Gel Texture Properties Control

The replacement of starch with non-starch hydrocolloids influences the properties of
a starch-based paste, gel, or food product. Mixing gelatin (0.5 wt%) with pectin
(0.01 wt%) formed the hydrogel particles with similar dimensions to swollen starch
granules, and these hydrogel microspheres were shown to have similar rheological
attributes as starch pastes (Wu et al. 2014). However, the unsolved technical and
scientific question is that the physicochemical properties of gelatin are highly
susceptible to temperature because it forms a gel at low temperatures. By the
increase of corn starch citrate (CSC) substitution level, the textural parameters of
wheat starch gels were decreased, such as firmness, cohesiveness, springiness,
gumminess, and chewiness (Hedayati and Niakousari 2018). Addition of glutamic
acid or lysine increased gelatinization temperatures of the cross-linked potato
starches and decreased the G0 and G00 moduli of the modified starch gels while
accelerated the retrogradation process (Gałkowska and Juszczak 2019), which may
cause undesirable changes to food and mostly affect the bakery products. The
substitution of kudzu and lotus starches with soybean soluble polysaccharide
(SSPS) reduced the hardness of the starch/SSPS gels, and the mixtures of starch/
SSPS yielded more liquid-like behaviour than the controls did (Liu et al. 2019). The
modified pasting and gel texture properties may change the sensory properties of the
end product. Therefore, how to control the stability and quality of starch-based foods
is the key point for starch replacement. In addition, the amylose content positively
correlated with its cohesiveness and stringiness (Zhang et al. 2019), and amylopectin
molecular size significantly contributes to gel viscoelasticity (Li et al. 2019). Con-
sequently, the pasting and gel texture properties of starch-based foods would be
influenced after starch being replaced by the non-starch hydrocolloids.

2.2.2 Interactions Control

The compositions of starch-based foods are generally complicated, and the interac-
tions of starch with various food components such as proteins and lipids have been
extensively reported. The challenge of starch replacement lies in the understanding
of the interaction mechanisms of starch and non-starch food constituents to achieve
desirable quality of low-starch foods. Starch–protein interactions affect the rheolog-
ical, pasting, gelatinization, textural, and physicochemical properties of food sys-
tems (Villanueva et al. 2015). In general, the inclusion of proteins increased water
absorption capacity, water absorption index, water solubility index, and swelling
power, decreased the viscosity of gels, and increased their stability, with the effect
being more conspicuous for SPI incorporation (Villanueva et al. 2018). The inter-
action between starch and whey protein mainly through hydrogen bonds restricted
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the swelling process of starch granule while accelerated recrystallization after cold
storage (Yang et al. 2019). Complexes between amylose and lipids may significantly
modify the properties and functionality of starch. For example, the solubility of
starch in water is reduced, and the gelatinization temperature is increased after the
complexation with lipids (Copeland et al. 2009). Lipids may prevent gelatinization
by inhibiting hydration of amylopectin chains and retard retrogradation, which
affects starch digestibility (Henry 2009). Starch/carrageenan interactions are espe-
cially involved in dairy products where gelling properties are of primary importance
(Huc et al. 2014). The lower carrageenan charge density, the higher the interaction
between starch and carrageenan (Lascombes et al. 2017). Formation of starch gel is
hindered by the presence of cationic polysaccharide and, therefore, the retrograda-
tion of starch at very early stage can be delayed by addition of chitosan. However,
long-term retrogradation was slightly increased (Raguzzoni et al. 2016).

Overall, a universal starch substitute does not exist. All of the macromolecule
replacers contribute to distinct properties suitable for replicating a limited number of
functions in particular food products.

3 Strategies for Fat Replacement

The traditional dietary advice is to replace fat with low-calorie fruits, vegetables, and
grains, which has not been very effective for reducing fat consumption. Direct fat
removal was evolved as the first strategy to comply with nutritional recommenda-
tions in the 1980s, which worked well for milk, some dairy products, certain
processed meat, but not much else. The approach to fat replacement has changed
in the twenty-first century. Formulation optimization emerged as the second strategy
to reduce fat content in foods, which is one of the most important approaches to
replace fat in modern food technology. The food reformulation refers to the devel-
opment of a range of functional ingredients as fat replacers to reduce fat intake.
There are two large groups of fat replacers: fat substitutes and fat mimetics. In
general, lipid-based fat replacers are fat substitutes, and protein- or carbohydrate-
based fat replacers are fat mimetics (Sandrou and Arvanitoyannis 2000). In addition,
processing technology is the third fat replacement strategy by varying processing
conditions (pH, pressure, ionic strength, time and temperature, mixing order, stirring
speed, etc.) to cause interactions in ingredients or to modify functionalities.

3.1 Food Formulation Optimization

Ideally, fat mimetics should be safe, inexpensive, low calorie, suitable for cooking
applications, yet provide the sensory equivalent of fat texture and flavour, and
maintain the eating quality of foods. The majority of fat mimetics belong to the
groups of polysaccharide and protein hydrocolloids because their functionalities
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allow them to mimic the oral and flow properties of fat. For example, viscosity
enhancement potential is an important feature in the use of hydrocolloids as emul-
sifying, stabilizing, and bodying agents in low-fat foods. Hydrocolloids as fat
mimetics are able to augment the lubrication of aqueous fluids through the three
lubrication regimes via both viscosity modification and by adsorbing to hydrophobic
substrates (Stokes et al. 2011). Hydrocolloids-based fat replacers are usually divided
into protein-based, carbohydrate-based, and lipid-based.

3.1.1 Protein-Based Fat Replacers

Protein-based fat mimetics are typically produced from egg, milk, whey, soy, or
wheat proteins. Using proteinaceous ingredients to replace fat in food emulsions is
mainly because of their emulsifying and stabilizing capacities. The particle size of
hydrocolloids is important in determining both the taste and mouthfeel of fats in
fat-replaced products. Food particles <3 μm in diameter are not detected by the oral
cavity, and instead the substance feels creamy and smooth. The minimum size of
particles above which humans detect the grittiness depends on the hardness and the
shape of particles (Engelen et al. 2005). Therefore, proteins are often
microparticulated by applying a high shearing force during heating of the proteins.
The obtained small spherical (0.1–2.0 μm diameter) protein gel particles are per-
ceived in the mouth and taste buds as similar to fat with a creamy, smooth texture.
Gelatin is commonly used in low-fat yoghurts due to its melting behaviour at body
temperature, as it forms a thermoreversible gel (Alting et al. 2009). The representa-
tive microparticulated whey proteins (MWP) have been produced and applied in
food systems as fat replacers since the 1980s due to its soft lubrication characteris-
tics. MWP increases the lightness and viscosity of products, and almost all of the
MWP-based systems have a creamy white appearance similar to sauces and dress-
ings, indicating their potential application in the manufacture of reduced-fat foods
(Chung and McClements 2014). For example, the improved texture and rheological
properties of low-fat yoghurt were obtained when whey proteins were added as
microparticles rather than conventional whey protein ingredients such as whey
protein isolate (Torres et al. 2018). In addition, the complex of MWP and high-
methoxyl pectin was prepared as a novel fat mimetic in low-fat mayonnaise
(Fig. 12.2), and two possible hypotheses were proposed to explain the interaction
and distribution of MWP, pectin, and droplets (Sun et al. 2018): (1) in low-fat
mayonnaise (upper figure of Fig. 12.2), MWP particles were adsorbed on the surface
of oil droplets by hydrophobic interaction and formed thick and viscous films, and
pectin formed coatings around interfacial proteins to inhibit flocculation of oil
droplets. (2) in non-fat mayonnaise (lower figure of Fig. 12.2), MWP evenly
distributed among the stable three-dimensional network formed by pectin molecules,
and the stable structure of fat mimetic was maintained by hydrogen bonding,
electrostatic force, and van der Waals interactions (Gentès et al. 2010).

It was observed that the friction levels attained with MWP and dairy fat (DF) at
typical speeds involved in oral processing were comparable, hence demonstrating
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the capability of MWP in skim milk dispersions to imitate DF in fluid milk-based
systems from a lubrication point of view (Olivares et al. 2019). Compared with
MWP, superfine MWP (sMWP) exhibited more stable liquid behaviours (Sun et al.
2015a) and could maintain creamy mouthfeel better due to high dispersion stability
of sMWP–pectin–xanthan gum gel mixtures (Sun et al. 2016). In addition, a novel
group of fat globular mimetics (FGMs) was prepared by coating calcium carbonate
particles with a layer of casein–maltodextrin conjugates. Such FGMs were stable in
skim milk during 10-day storage at 5 �C, and increased the desirable turbidity and
viscosity of skim milk, which can be used to simultaneously reduce fat and increase
calcium contents of food products (Qu and Zhong 2017).

Animal proteins are rich in necessary nutrients, particularly the essential amino
acids needed for human body. However, they may have a strong allergic effect and
are not suitable to produce food requiring heat treatment, because high temperatures
induce irreversible denaturation of protein, altering the structure of the final product
(Jing et al. 2011). Besides, the consumption of animal proteins would cause prob-
lems associated with biodiversity, land use, water use, climate, human health, and
animal welfare (Aiking 2011). Natural plant proteins show similar physicochemical
properties to animal proteins like water binding capacity and can serve as fat sub-
stitutes in low-calorie food. Soy proteins are increasingly important in the human
diet because of reported beneficial effects on nutrition and health, including lowering
plasma cholesterol, prevention of cancer, diabetes, and obesity, and protection
against bowel and kidney disease (Friedman and Brandon 2001). The addition of
soy protein isolate improved the textural properties of chopped low-fat pork batters
and lowered the cooking loss (Gao et al. 2015). Soy protein hydrolysates (SPH) and
their blends with xanthan gum (SPH/XG) is an alternative choice as a fat replacer in
the production of reduced-fat ice cream since 50% fat-substituted ice cream with

Fig. 12.2 Schematic representation of interaction among microparticulated whey protein, pectin,
and oil in low-fat and non-fat mayonnaises. Reproduction with permission from (Sun et al. 2018),
Copyright 2018 Elsevier
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SPH/XG (96:4) had an appearance, taste, and texture similar to that of 10% full-fat
ice cream (Liu et al. 2018a). The major limitation of proteins as fat replacers is the
occurrence of molecular interactions between proteins and some volatile com-
pounds, giving rise to unbalanced or even unacceptable sensory profiles (Kühn
et al. 2006).

3.1.2 Carbohydrate-Based Fat Replacers

Carbohydrates are typical fat replacers due to their molecular diversity that gives rise
to various structural and physicochemical properties. For example, carbohydrate-
based fat replacers bind water into a gel-type structure, resulting in lubrication and
flow properties similar to those of fat. Cookies prepared from wheat flour by 15%
supplementation of carbohydrate-based fat replacers showed better attributes in
terms of colour and texture, which were judged to be the best by the panellists
(Majeed et al. 2017). Compared with the relatively limited available choices for
protein-based fat replacers, carbohydrate-based fat replacers include a much larger
family of materials, which can be categorized into digestible polysaccharides
(starch) and non-digestible polysaccharides (gums and cellulose).

Digestible Starch

Among the carbohydrate-based fat replacers, starch is one of the most frequently
used ingredients as it is relatively inexpensive and readily available and capable of
replacing numerous attributes (O’Connor and O’Brien 2011). There are two hypoth-
eses for starch-based fat replacer to mimic the mouthfeel and texture characteristics
of fat. One is that starch would form a three-dimensional gel network structure, and
the water trapped in the gel could provide a fat-like sensation (Alexander 1995). The
other is that the starch could form spherulites with similar size to fat globules
(2–10 μm) during heating and cooling treatment, which provide the lubricating
mouthfeel of fat (Singh et al. 2010). Amylose plays an important role in the
simulation mechanism of starch-based fat replacer because amylose contributed to
the gel structure of starch-based fat replacer (Yang and Xu 2007). With the increas-
ing amylose ratio, spherulites of 2–10 μm diameter, similar to fat globules in size,
started to appear with the increasing amylose ratio, and the potato starch with 85%
amylose ratio presented the better creamy texture (Hu et al. 2019). Starch-based fat
replacers have been applied in a wide variety of low-fat food products including
cheeses, sausages, yoghurt, mayonnaise, and frozen desserts (Peng and Yao 2017).
The concentrations of starch frequently used as fat replacer in cheese normally
ranges from 0.5 to 1.5% (Diamantino et al. 2014).

Different types of starches may present different behaviours as fat replacers.
Compared to native starches, the modified starches produced high paste viscosity
values and showed low retrogradation rates, which can be regarded as promising fat
replacers in cheese (Diamantino et al. 2019). Starch granules remain even after
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heating the aqueous starch suspension, but heating at temperatures higher than
130 �C leads to complete molecular dissociation (Hanselmann et al. 1996). Starch–
water systems can be classified into three states: the intact granular state, the melted
state, and the solution state. When aqueous potato starch suspensions were heated
and then cooled, spreadable particle gels were obtained with a spherulite morphol-
ogy and a cream-like texture, which is currently applied as a fat mimetic (Steeneken
and Woortman 2009). Citric acid treated sweet potato starch showed fat mimetic
properties as its melting temperature (51.44 �C) was close to the melting point of fat
(Surendra Babu et al. 2016). The pasting viscosity of the octenyl succinic anhydride
(OSA) modified mung bean starches (OSA-MS) was found to be higher when
compared with native starch, and cakes prepared from 30% OSA-MS were found
to be highly acceptable by their overall quality score including the best texture,
desirable colour, and mouthfeel (Punia et al. 2019). For acidified milk gels (yoghurt)
with pregelatinized (PG), and both pregelatinized and chemically modified starches,
viscosity/texture values were similar to or higher than those found for full-fat milk
gel (Bravo-Núñez et al. 2019). The corn starch nanocrystals (CSNC) are regarded as
a useful fat replacer/stabilizer for an O/W model emulsion because its addition
resulted in a more solid-like behaviour of the emulsions due to the formation of
nanocrystal network in the continuous phase (Javidi et al. 2019). However, one of
the potential disadvantages of starch-based fat replacer is that it contains calories, so
its overconsumption may lead to problems with overweight and diabetes (Lustig
et al. 2012). Some of these problems may be overcome by using resistant starch
(Parada and Aguilera 2011).

Non-digestible Cellulose Derivatives

Cellulose derivatives show different solubility, emulsifying property, and gelation
characteristics, and they can reassociate with each other to form aggregates that can
be used as fat replacers. Typically, 60–70% of the cellulose microcrystals are
<0.2 mm long, which can form an insoluble dispersion in water. Methylcellulose
(MC) and hydroxypropyl methylcellulose (HPMC) have been used to stabilize air
bubbles, provide lubricity and creaminess, and entrap moisture in a variety of foods,
such as salad dressings and biscuits (Laguna et al. 2014). Microcrystalline cellulose
(MCC) is an uncharged biopolymer with a crystalline structure and could form
a filled particle gel network. Therefore, MCC provides a fat-like mouthfeel and a
softer texture (Fig. 12.3a) when it is added to the ground beef without causing a
disturbance of the protein network. Since carboxymethyl cellulose (CMC) at high
concentrations (>0.5 wt%) is thermodynamically incompatible with meat proteins, it
is not a suitable fat replacer because it weakened the connections within the protein
network (Gibis et al. 2015). As shown in Fig. 12.3b, cellulose nanofibrils (CNFs) at
concentrations of 0.15 and 0.3 wt% were incorporated into low-fat (5 wt%) and
standard ice cream formulations (10 wt%), which improved the sensory properties of
low-fat samples, even after heat shocking the specimens (Velásquez-Cock et al.
2019).
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Non-digestible Inulin

Inulin, typically derived from chicory root, belongs to a class of carbohydrates
known as fructans (Kaur and Gupta 2002). As a non-digestible dietary fibre, inulin
can remain stable during processing and successive heat treatment. It is widely used
in replacing dietary fat in baked products, providing nearly the same sensory
characters as of full-fat products while giving only 25–35% energy as compared to

Fig. 12.3 (a) Suggested mechanisms of interaction of meat proteins with CMC andMCC () and (b)
effect of cellulose nanofibrils (CNFs) at concentrations of 0.15 and 0.3 wt % on the physicochem-
ical properties of low-fat (5 wt%) and standard ice cream formulations (10 wt%). (a) Reproduction
with permission from (Gibis et al. 2015), Copyright 2015 Elsevier. (b) Reproduction with permis-
sion from (Velásquez-Cock et al. 2019), Copyright 2019 Elsevier
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digestible carbohydrates (Keenan et al. 2014). Such fat-substituting property is based
on its ability to stabilize the structure of the aqueous phase, which creates an
improved creaminess. A creamy mouthfeel is achieved when inulin is used as a fat
replacer in dairy products due to its interactions with whey protein and caseinate
(Karaca et al. 2009). Long chain inulin microcrystals could aggregate each other,
interact with water, and eventually agglomerate creating a gel network, thus altering
the product texture and providing a fat-like mouthfeel (Bayarri et al. 2011). The
consumer study revealed that 15% fat replacement by inulin provided acceptable
biscuits, but higher replacement decreased the overall acceptability (Laguna et al.
2014). Inulin addition (2–7%) to replace fat in fresh caprine milk cheese provided a
creamier mouthfeel and added a reasonable flavour with softening effect (Salvatore
et al. 2014). Fermented chicken sausages made with inulin as a partial oil replace-
ment persisted stable without any significant loss of physicochemical, microbiolog-
ical, and sensory characteristics during storage at 4 �C for 45 days (Menegas et al.
2013). It was found that inulin fortification of low-fat set yoghurt significantly
reduced syneresis by 59% over full-fat control yoghurt (Rudra et al. 2017). What
is more, inulin has promising gut health properties due to its prebiotic nature and
may increase absorption of nutrients such as calcium. Therefore, it is recommended
as a reasonably high-level fat replacer in crackers, cakes, biscuits, and muffins
(Shoaib et al. 2016).

Other Non-digestible Gums

The performance of gums as fat replacers is determined mainly by their distinct
chemical composition and structure (Saha and Bhattacharya 2010). The principles
that are taken into account in applying gum as a fat mimetic include the rheological
properties of the gel it forms, the effects of temperature and shearing forces on the
functional properties of the gum, and its compatibility with other ingredients in the
foods. Xanthan gum and carrageenan had large spheres of hydration, provided
slipperiness and viscosity, and mimicked the continuous phase of mayonnaise
(De Ruiter and Rudolph 1997). Locust bean gum (LBG) formed non-dissolved
microparticles at relatively high concentrations (�0.4%), trapping fat droplets within
its hydrogel particles and helping balance the flavour profile of reduced-fat products
(Chung et al. 2013b). Water-extracted okra gum was found to be effective to make
an ice cream comparable with full-fat ice cream and was used to replace the fat in ice
cream at 0, 22, 44, 55, 88, and 100% to produce super premium (18% fat), premium
(14% fat), regular (10% fat), economy (8% fat), low-fat (2% fat), and zero-fat (0%
fat) ice cream (Aziz et al. 2018). The substitution of fat with okra gum increased the
viscous modulus (G”) of the ice cream, and up to 55% replacement of fat was
feasible to achieve satisfactory ice cream properties (Aziz et al. 2018). Addition of
tragacanth gum (A. gossypinus and A. compactus) to sausage formulation effectively
reduced cooking loss and enhanced oxidative stability, and 0.5% tragacanth
(A. gossypinus) showed an acceptable sensory score of the sausage formulation,
suggesting its potential to be a fat replacer in the reduced-fat sausages (Abbasi et al.
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2019). The addition of pectin in ice cream can cause an increase in viscosity,
overrun, and hardness and a decrease in meltdown of the ice cream. When 0.72%
pectin (w/w) was incorporated into ice cream, a prototype product of ice cream with
45% lower fat content compared to the control was prepared (Zhang et al. 2018).
Konjac glucomannan (KGM) as a natural polysaccharide also exhibits functional
properties as a potential fat replacer in dairy products. As shown in Fig. 12.4, KGM
addition in cheese affected the lightness, increased the moisture, lowered firmness,
and increased the stickiness, and such changes were closer to those of full-fat cheese,
suggesting KGM could improve some characteristics of the fat-reduced Mozzarella
cheeses (Dai et al. 2018). Mozzarella cheese with konjac had lower firmness but
higher meltability and less scorching in pizza bake and exhibited a denser casein
matrix with coalesced fat globules (Dai et al. 2019). Sodium alginate was used to
modify the textural and microstructural properties of low-fat Cheddar cheese up to
91% fat reduction (Khanal et al. 2018).

3.1.3 Combination Systems

Individual fat mimetic has limitations in its ability to cover the full functions of fat.
The combination of different fat replacers may show synergistic interactions and
provide better fat-like qualities which are not easy to achieve by individual fat
replacers (Sikora et al. 2008). For example, single carbohydrate-based and protein-
based fat mimetics may suffer from several sensory and functional limitations such
as poor stability and undesirable mouthfeel. The simultaneous addition of protein
and polysaccharides may induce intermolecular interactions that modify or generate
more desirable functional properties (Gulão et al. 2016).

Fig. 12.4 Schematic representation of KGM addition as a potential replacer in Mozzarella cheese.
Reproduction with permission from (Dai et al. 2018), Copyright 2018 Elsevier
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Protein–Polysaccharide Combination

A combination of polydextrose with MWP is the most suitable fat replacers for soft-
type cookies (Zoulias et al. 2000). The MWP in combination with either modified
starch or locust bean gum (LBG), with or without fat droplets (5%), could be used as
fat mimetics to modulate the texture, appearance, and stability of emulsion-based
food products with reduced calorie such as sauces, mayonnaise, dressings, and dips
(Chung et al. 2014). A nonheated whey protein–high methoxyl pectin mixture can be
used as fat replacer in the skim milk formulations, which yielded a yoghurt texture
resembling the full-fat counterpart because the associative interaction of whey pro-
teins with pectin suppressed whey protein aggregation while maintaining the struc-
turing effects of denatured whey protein in yoghurt (Krzeminski et al. 2014).
Biopolymer-based hydrogel particles consisting of a protein-rich core and a
pectin-rich shell were formed by using a segregation–aggregation phase separation
method. Such particles may be suitable as texture modifiers and fat replacers since
they scattered light strongly to give the hydrogel suspensions a milky white appear-
ance and also led to an appreciable increase in viscosity or gel-like characteristics
(Duval et al. 2015). The mixtures of soy protein isolate (SPI) and cellulose nanofibre
(CNF) with a higher CNF proportion showed increased viscosity, storage modulus,
and loss modulus and a higher tendency of gelation. The targeted low fat, low
calorie, anti-melting, and similar textural taste were achieved when SPI–CNF
complex gels with an SPI:CNF ratio of 7:1 were added to ice cream as a fat replacer
(Fig. 12.5), in which 10% fat was replaced (Sun et al. 2015b).

Polysaccharide–Polysaccharide Combination

Polysaccharides such as pectin and alginates can interact with each other to form
more or less permanent junction zones, providing yield stress and gel structure.
Maltodextrin and xanthan gum yielded increased moisture, hardness, and chewiness
in 66% FR (fat replacer) muffins (Khouryieh et al. 2005). The mixtures of guar gum

Fig. 12.5 Soy protein isolate/cellulose nanofibre complex gels as fat substitutes in dairy products.
Reproduction with permission from (Sun et al. 2015b), Copyright 2015 Springer Nature
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(GG) and xanthan gum or citrus fibre simulated the function of oil emulsions and
made the low-fat mayonnaise score the same as the full-fat counterpart with sensory
panels (Su et al. 2010). Synergistic interaction between xanthan and pregel corn
starch and also between xanthan and GG was identified by data analysis (Rahmati
et al. 2015). The addition of xanthan gum and GG in low-fat cheese softened the
structure by interfering the casein–casein interaction and cellulose particles that
function similar to fat globules (Murtaza et al. 2017). Polydextrose and GG were
successful fat replacers in biscuits at a relatively high level of FR (70%), with an
increase in perceived taste, flavour, and consumer acceptance (Chugh et al. 2013).
The combination of gum arabic at concentrations of <75 ppm with GG in the
concentration range of 75–170 ppm provided the softest texture of low-fat Iranian
white cheese (Lashkari et al. 2014). The blend of GG and basil seed gum yielded
better creaminess in low-fat ice cream than GG alone (Javidi et al. 2016). Four
combination sets of carboxymethyl cellulose, gum arabic, carrageenan, and xanthan
were used as fat replacers in Labneh (semi-solid yoghurt with high solid content
23–25%), suggesting Labneh water holding capacity in the following order:
xanthan>gum arabic>carrageenan>carboxymethyl cellulose (Saleh et al. 2018).
Mixture of κ-carrageenan, locust bean, and xanthan gums has been added to milk
to make cheese. Majeed et al. (2017) explored the combined potential of pectin and
banana powder as carbohydrate-based fat replacers in cookies, suggesting that the fat
content was reduced from 29.82% to 17.07% by using 15% such complex fat
replacers. Upon using different concentrations of hydrocolloids, low-fat cheese
showed a significant increase in the physiochemical characteristics, yield, and
moisture. Furthermore, organoleptic properties obtained were both highly acceptable
and comparable to full-fat cheese (Alnemr et al. 2016). The hybrid hydrogel
prepared from sodium alginate and pectin by combining both physical and chemical
cross-linking methods using citric acid as the cross linker was proved to reduce up to
50 vol% fat content in chocolate with the highest melting resistance (80 �C) (Francis
and Ramalingam 2019).

3.1.4 Lipid-Based Fat Replacers

Lipid-based fat replacers are either chemically synthesized or derived from conven-
tional fats and oils by enzymatic modification. They are usually stable at cooking and
frying temperatures.

Emulsions

Wheat gluten-stabilized high internal phase emulsions (HIPEs) could be promising
substitutes for mayonnaise because HIPEs and mayonnaise might have similar
sensory property and perceived texture such as creaminess, smoothness, and slim-
iness (Liu et al. 2018b). Concentrated emulsions prepared by adding a fish gelatin-
gum arabic mixture at pH 5.0 and 3.6 to olive oil at W:O ¼ 30:70 (w/w) were
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designed as novel fat replacers in reduced-fat (15% fat) and low-fat (6% fat) Cheddar
cheeses (Anvari and Joyner 2018). Micron to nano-sized fat emulsions prepared
from sodium caseinate and anhydrous butter were used as a source of fat in low-fat
Cheddar without affecting much the texture, chemical and bio-chemical properties of
cheese (Khanal et al. 2019). Food-grade emulsion (O/W) gels (Fig. 12.6) formulated
with a lipid phase rich in n-3 fatty acids and different emulsifiers (sodium caseinate,
whey protein isolate, and soy protein isolate) showed solid-like structure and their
overall appearance is good enough to be used as animal fat replacers with a lower fat
content (Freire et al. 2018). A multiple emulsion refers to the coexisting of water-in-
oil and oil-in-water morphologies within the same system (Dickinson 2011). Mul-
tiple emulsions of water-in-oil-in-water (W/O/W) are particularly suitable for reduc-
ing the fat content of products because some of the fat within the droplets is replaced
by water (Lobato-Calleros et al. 2008). However, it is difficult to ensure that the
multiple emulsions have sufficient stability for commercial applications (Chung
et al. 2016). Multiple emulsions (W/O/W) prepared with olive oil and sodium
caseinate (SC) by two-step emulsification procedure resulted in reduced lipid,
increased protein content, and modified fatty acid composition and were noted as
promising constituents for beef fat replacement (Serdaroğlu et al. 2016). Multiple
emulsions (W/O/W) with an average droplet size of 32 μm containing native
beetroot juice as inner water phase, sunflower oil as oil phase, and 0.5% whey
protein isolate as outer water phase were used to replace fat (11%) in meat products
and also to enhance the product colour (Eisinaite et al. 2017). The emulsion gel
(EG) prepared with gelling agents (chia flour and/or soy protein isolate, inulin,
carrageenan, sodium caseinate, and sodium tripolyphosphate) resulted in a solid-
like fat replacer, which was utilized as an animal fat replacer to prepare soft Bologna
sausage (de Souza Paglarini et al. 2019).

Fig. 12.6 Emulsion gels prepared with different protein emulsifiers and gelling agents. Reproduc-
tion with permission from (Freire et al. 2018), Copyright 2018 Elsevier

426 C. Sun and Y. Fang



Structured Oils

Unsaturated vegetable oils are often used to reduce saturated fats content in meat
products, which improves the fatty acid profiles and also helps in product stability
(Siraj et al. 2015). Oil structuring, or oleogelation, is the process in which edible
liquid oil is immobilized in a three-dimensional gel network of gelators, conferring
solid-fat functionality to liquid oils (Co and Marangoni 2012). This technology is
relatively simple since it refers to the transformation of a liquid oil into a ‘gel-like’
structure with visco-elastic properties. The schematic representation is shown in
Fig. 12.7 (Jiang et al. 2018). Unlike polymers used for hydrogels, such oleogels
utilize small, amphiphilic molecules that self-assemble via non-covalent interactions
forming fibrillar or platelet crystals (Patel and Dewettinck 2016). The interactions
are responsible for gelation, including hydrogen bonding, π-π stacking, electrostatic
and van der Waals interactions (Okesola et al. 2015).

Over the past decade, oleogels have made significant strides towards emulating
desired sensory traits while maintaining healthy nutritional profile of the oil. In
recent years, structuring techniques for liquid oils have received considerable atten-
tion in different fields including food science. Oleogel technology has shown strong
potential as a way to replace hard-stock fats in meat products. Sunflower oil oleogels
structured with monoglycerides and phytosterols at 15:5 weight ratio were used to
replace 50% of the pork backfat in frankfurter sausages without significantly
compromising their physicochemical, textural, and sensorial characteristics, at the
same time providing an enriched polyunsaturated fatty acids lipid profile (Kouzounis

Fig. 12.7 Schematic representation of the process where liquid oil is first used to prepare an oil-in-
water emulsion stabilized by regenerated cellulose (RC) and carboxymethyl cellulose (CMC),
followed by freeze-drying to selectively evaporate the water phase, where further shearing of the
dried oil results in the formation of an oleogel. Reproduction with permission from (Jiang et al.
2018), Copyright 2018 Elsevier
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et al. 2017). Ethylcellulose (EC) oleogels have been used to replace colloidal fat
crystal networks comprised of saturated fat of frankfurters (Zetzl et al. 2012). A lipid
combination made with olive, linseed, and fish oils stabilized in a konjac gel matrix
was created to reduce pork backfat in pork patties (Salcedo-Sandoval et al. 2015).
Canola oil was structured with foam-structured hydroxypropyl methylcellulose
(HPMC) into solid-like oleogels. Such an HPMC oleogel was used as an animal
fat replacer for saturated fat-reduced meat patty, and the highest sensory acceptabil-
ity was obtained at a 50% replacement level (Oh et al. 2019). Oleogels appeared to
be the most successful fat replacer in cake, with no changes to the sensory qualities at
100% fat replacement (Kim et al. 2017). Overall, the novel approach of structuring
liquid oils would be one of the most promising ways to develop healthy lipid meat
products, which makes it possible to create a solid-like material rich in monounsat-
urated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) and with reduced
saturated fatty acid (SFA) levels and zero trans fatty acids (Jimenez-Colmenero et al.
2015). In addition, as solid-fat replacer, the constructed structured oil systems can be
used in both water-free (shortenings, chocolates, and chocolate pastes) and water-
containing (cooked meat products, margarine, and spreads) products.

3.2 Food Structure Design

While fat replacers have been applied in the development of reduced-fat products, an
attractive strategy for fat reduction is created based on the fundamental structure–
function relationship of food ingredients (Fig. 12.8a) (Campbell et al. 2017). Struc-
tural design principles can be used to mimic some of the desirable physicochemical,
sensory, and physiologic attributes normally associated with fat droplets. A variety
of approaches based on structural design principles that can be used in emulsion-
based products are highlighted in Fig. 12.8b (McClements 2015). For example, the
control of microstructure and physical properties of biopolymer hydrogel particles
can be achieved through modulation of electrostatic interactions, which could be
used to manipulate food formulations to achieve desirable physicochemical or
sensory properties (Chung and McClements 2015).

The potential of controlled aggregation has been used to improve texture prop-
erties for reduced-fat products since the aggregation of emulsion droplets forms a
three-dimensional network that inhibits droplet movement and leads to increased
viscosity and even gel-like structure (Mao and McClements 2011, 2012). The
principle to control emulsion aggregation is through regulating interfacial properties
of the emulsion droplets and induce electrostatic attraction between the colloidal
particles (Mao and McClements 2013). By carefully controlling the pH below,
above, or equal to the protein’s isoelectric point (pI), respectively, the protein-
stabilized emulsion droplets carry positive, negative, or neutral charges. Thus,
droplets self-aggregation can be induced due to the oppositely charged biopolymers
(Wu et al. 2013a). The interactions between negatively charged polysaccharide and
positively charged protein interactions allow efficient approaches to construct food
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structures and improve the stability and textural properties of semi-solid food
colloids (Le et al. 2017). Based on controlled aggregation, model reduced-calorie
food emulsions consisting of fat droplets (5 wt%), starch granules (4 wt%), and
xanthan gum (0–0.02 wt%) were developed with desirable textural and optical
properties at pH 3, and the structural organization of the fat droplets could be
regulated by altering xanthan levels (Wu and McClements 2015a). Alternatively,
ions such as calcium can be added to induce aggregation of negatively charged
droplets, and paste-like materials were produced when the fat droplets formed a
three-dimensional network at a high calcium concentration (Wu et al. 2013b).
Casein–maltodextrin conjugates produced smaller fat globule mimetics and
increased the desirable turbidity and viscosity of skim milk (Qu and Zhong 2017).

4 Strategies for Starch Replacement

High consumption of digestible starch is linked to a number of diet-related diseases.
There is an increasing interest in the development of starch mimetics. Based on the
important physicochemical properties and sensory attributes of foods, starch
mimetics should have at least two essential attributes, being capable of effectively
enhancing the viscosity of solutions and giving a desirable mouthfeel to foods such
as thickness and creaminess (Rao 2014). Food hydrocolloids with a relatively low
calorie density are suitable for creating reduced-calorie starch mimetics as they often
contain large quantities of water, therefore increase the viscosity of starch pastes,
influence the retrogradation rate, and prevent the syneresis of starch (Dolz et al.
2006).

4.1 Non-starch Polysaccharides

Non-starch polysaccharides can interact with starch and impart desired functionality
to the resultant blend for oriented application (Yoshimura et al. 1999; Funami 2009;
BeMiller 2011; Mahmood et al. 2017).Mesona chinensis polysaccharide (MCP) can
improve the thermal stability in the early stage of pasting and enhance the rheolog-
ical properties of wheat starch (Liu et al. 2018c). The addition of gums (xanthan
gum, flaxseed gum, konjac glucomannan, or tamarind seed gum) to starch resulted in
softer binary gels, which are effective in retarding retrogradation of starches
(Pongsawatmanit et al. 2013; Liu and Xu 2019). The presence of basil seed gum
(BSG) led to greater water binding capacity and greater water absorption index of the
starch compared to the free-gum systems and also led to a rise in the viscoelasticity
(G0 and G00) and hardness of the final gels (Matia-Merino et al. 2019). The addition of
pectin increased the storage modulus (G0) and loss modulus (G00) of corn starch while
resulted in a decrease in the starch susceptibility to α-amylase and promoted a
remarkable reduction in the fraction of rapidly digested starch (Ma et al. 2019).
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Modified starch can be replaced by inulin as prebiotic encapsulant matrix of lipo-
philic bioactive compounds (Zabot et al. 2016). Inulin at low concentrations can
effectively restrain the retrogradation of wheat starch (Luo et al. 2017). Rice starch
(RS) can be also partially replaced by inulin because it affects the pasting, thermal,
and rheological properties of RS (Wang et al. 2019). Barley sourced beta glucan
(βG) and microcrystalline cellulose (MCC) could replace starch in meat emulsions.
The maximum inclusion level of MCC and βG that has been previously tested
without detrimentally affecting colour and textural properties of meat emulsions
was 2% (Schuh et al. 2013) and 3% (Mejia et al. 2018), respectively. The combina-
tion of βG (1.5%) and MCC (1.5%) to replace starch resulted in beef emulsions with
less calories, greater insoluble fibre content, and appropriate technological properties
(Mejia et al. 2019).

4.2 Hydrocolloid Microgels

Hydrocolloid microgels have been attracting much attention to produce low-calorie
foods (Norton et al. 2006). Hydrocolloids microgels fabricated by complexation of
cationic proteins and anionic polysaccharides through electrostatic attraction showed
a strong potential to be starch mimetic. Gelatin-pectin-based starch mimetics have
been developed, and the size and morphology of such starch mimetic could be
controlled through manipulation of gelatin/pectin ratio. For example, gelatin at a
fixed concentration of 0.5 wt% can form micro-sized translucent spheroids when
interacting with 0.01 wt% pectin at pH 5, and these hydrogel particles showed
similar dimensions, shape, and rheological properties as swollen starch granules
(Wu et al. 2014). The ionic strength should also be controlled during gelatin–pectin
complex formation, as a too high salt content perturbed the gelatin–pectin interac-
tions through electrostatic screening and ion binding effects (Wu and McClements
2015b). The cross-linking altered the microstructure and rheology of the microgels
under simulated oral processing conditions. The melt-in-the-mouth behaviour of the
hydrocolloid microgels could be made to be similar to that of starch granules by
controlling the degree of cross-linking (Wu andMcClements 2015c). In addition, the
gelatin–pectin microgels designed to dissociate around body temperature may be
useful for imitating the melting properties and/or thickening properties of starch
granules in the mouth, which is also particularly helpful for the development of
elderly foods with improved swallowing ease under oral conditions. Electrostatic
complexation of gelatin and modified (OSA) starch shows potential to modify
texture of food products, suggesting their feasibility to replace starch granules in
foods (Wu and McClements 2015d).
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5 Commercially Available Fat Replacers

Limited studies have been specifically focused on the development of starch
mimetics though there are lots of reports about the design of biopolymer-based
hydrogel particles, so commercial starch mimetics are limited. As a result, commer-
cial fat replacers are mainly introduced in this part.

Fat-reduction ingredients fall into three categories: carbohydrate-based, protein-
based, and lipid-based, in which carbohydrate-based fat replacers are the most
common. Examples of commercially available fat replacers and their applications
and functional properties are shown in Table 12.1 (Mattes 1998). In some cases, the
Food and Drug Administration (FDA) has approved fat-reduction ingredients as
food additives, including carrageenan, olestra, and polydextrose. In other instances,
fat-reduction ingredients are ‘generally recognized as safe’ (GRAS). Most
carbohydrate-based fat replacers are GRAS substances. For example, oatrim gel
made from whole oat flour behaves like shortening, being solid at room and body
temperatures and liquid at cooking temperatures, and imparts fat-like qualities such
as creaminess, moisture retention, bulking, and texture. Oatrim is heat stable in
cooking and baking applications and can replace fat in foods such as frozen desserts,
salad dressings, soups, cheeses, baked goods, meats, and skim milk. Besides, Oatrim
also contains beta glucan, so it offers double health benefit by replacing the fat and
increasing the soluble fibre content of foods (Hahn 1997).

Protein-based fat replacers are not as many as carbohydrate-based ingredients, but
they have a wide range of applications. Commercially available protein-based fat
replacers are Simplesse and Dairy Lois, which are derived from whey protein
concentrates and are generally regarded as safe (Yazici and Akgun 2004). This
category of fat mimetics is suitable for use in dairy products, salad dressings, frozen
desserts, and table spreads. For instance, Dairy Lois incorporated at 5% by weight
has been used to develop an ice cream containing 1% fat.

Lipid-based fat replacers often provide the closest taste and cooking properties of
fat. Salatrim belongs to a group of structured triacylglycerols and has been used as a
fat mimetic in reduced-calorie food products for many years because it provides
approximately half of the calories and has similar physicochemical and organoleptic
properties as those of conventional fats (Smith et al. 1994). A great concentration of
undigested fat within the lower gastrointestinal tract (GIT) remained, indicating that
Salatrim may be an effective fat replacer due to its ability to suppress hunger and
increase fullness (Sørensen et al. 2008). Olestra is a sucrose polyester, in which the
ester bonds are not hydrolysed by lipase in the human GIT because of steric
hindrance effects. As a result, Olestra is not absorbed by the body and is specially
designed to be a zero-calorie fat substitute to replace triglyceride oils in products
such as fried foods, snacks, breads, and fillings (Bimal and Guonong 2006). How-
ever, Olestra may disturb the absorption of fat-soluble vitamins and may be linked to
undesirable GIT symptoms, so its used amount is limited by FDA (Prince and
Welschenbach 1998).
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6 Future Perspective

Nowadays, healthiness and beauty are common interests among people. Reducing
calorie consumption is a major goal for the consumer. Consequently, both food
manufactures and researchers are sparing no effort to develop reduced-fat/starch
food products. The key point is that the replacement of fat or starch should contribute

Table 12.1 Commercially available fat replacers and their applications

Fat replacer Trade name Applications Functions

Protein-based
(microparticulated
protein, modified
whey protein
concentrate)

Simplesse, Dairy Lois,
K-Blazer, Veri-lo,
Power-pro, Versapro,
Ultra-Baketm, Ultra-
Freezetm, Lita

Dairy products, salad-
dressing, margarine- and
mayonnaise-type prod-
ucts, baked goods, coffee
creamer, soups, and
sauces

Mouthfeel,
creaminess,
viscosity

Lipid-based Caprenin, Salatrim,
Dur-Lo, ECT-25, Olestra

Confections, baked
goods, dairy products

Mouthfeel,
stability

Cellulose Avicel cellulose gel,
Methocel, Solka-Floc,
Just Fiber

Dairy products, sauces,
frozen desserts, salad
dressings

Water retention,
texturizer, stabi-
lizer, mouthfeel,
clouding agents

Dextrins Amylum, N-Oil, Stadex Salad dressings, pud-
dings, spreads, dairy
products, frozen desserts

Gelling, thick-
ening, stabiliz-
ing, texturizer

Maltodextrins CrystaLean, Lorelite,
Lycadex, Malitrin,
Oatrim, Stadex, nu-trim

Baked goods, dairy
products, salad dress-
ings, sauces, spreads,
frostings, fillings,
beverages

Gelling, thick-
ening, stabiliz-
ing, texturizer

Gums (guar gum,
gum arabic, locust
bean gum, xanthan
gum, carrageenan,
pectin)

Kelcogel, Keltrol,
Viscarin, Novagel, Jag-
uar, Fibrex, Slendid,
Splendid, Grindsted

Salad dressings, formu-
lated foods such as des-
serts and processed
meats

Water retention,
texturizer,
thickener,
mouthfeel, gel-
ling, stabilizer

Inulin Raftiline, Fruitafit,
Fibruline

Yoghurt, cheese, frozen
desserts, baked goods,
fillings, whipped cream,
fibre supplements

Fibre Opta TM, Oat Fiber,
Snowite, Ultracel TM,
Z-Trim

Baked goods, meats,
spreads, extruded
products

Heat stable

Starch and modified
starch

Amalean I and II, N-Lite,
Fairnex TMVA15 and
VA 20, Instant
StellarTM, Pure-Gel,
Sta-SlimiTM,
OptaGread

Dairy products,
processed meats, salad
dressings, baked goods,
frozen desserts

Bodying agents,
gelling, thicken-
ing, texture
modifiers

Reproduction with permission from (Mattes 1998), Copyright 1998 Elsevier
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low or even zero calorie to food products and should be nondetrimental to their
organoleptic qualities.

Many low-fat products have been based on the use of a wide variety of bio-
polymers, especially hydrocolloids. More basic knowledge of physical, rheological,
chemical, and sensory characteristics, functionality, and fat or starch interactions
with other ingredients is required as to formulating these bases. Further studies are
needed on new food-grade ingredients as potential replacers of fat or starch. Other
approaches are available based upon the use of manufacturing and preparation
procedures that can help to achieve desired product properties such as colour,
texture, and water- and fat-holding abilities. A thorough understanding of the
physicochemical properties and molecular interactions of food-grade ingredients is
necessary for developing innovative fat reduction strategies such as utilizing struc-
tural design approach to control the macroscopic properties.

Currently, the consumer’s unwillingness to give up high-energy foods suggests
that there is a considerable potential market for frequently consumed foods such as
meats which have been reformulated to produce health benefits. It is believed that in
near future, people would adapt to a low-fat or low-starch diet based on the
development of novel advanced technologies for the replacement of fat or starch.
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