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Abstract For motor imagery (MI)-based brain–computer interface (BCI) systems,
the time latency and length of MI task vary between trials and subjects, due to the
differences between subjects’ reaction time and personal habits. Therefore, the start-
ing and ending time point of each MI task can hardly be determined manually for
different subjects. Fixed time windowmay contain task-irrelevant signals or does not
contain sufficient task-related signals, which will lead to degraded the performance
of MI-based BCI systems. To address this issue, an optimized correlation-based time
window selection (OCTWS) algorithm is proposed for MI-based BCIs. The opti-
mized starting point and length of MI task-relevant signals are determined simul-
taneously based on correlation analysis and performance evaluation. A public EEG
dataset (BCI Competition IV Dataset I) is used to evaluate the proposed OCTWS
method. Experimental results demonstrate that OCTWS helps improve the feature
extraction and classification performance of MI.

1 Introduction

Brain–computer interface (BCI) systems can straightly transform brain signals such
as electroencephalogram (EEG) to control external devices without the involve-
ment of peripheral nerves or muscles (Makand and Wolpaw, 2009). BCIs provide a
new communication/control channel for patients who have lost normal communica-
tion/control abilities due to severe motor impairments, which have gained interest
in neuroscience and rehabilitation engineering (Birbaumerand Cohen, 2007). Motor
imagery (MI) is a mental representation of motor behavior. The tasks associated
with motor imagery can bring variations in the rhythmic activities of the brain elec-
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trophysiological signals which can be expressed as event-related desynchronization
/synchronization (ERD/ERS) phenomenon (Pfurtscheller 1977, 1992), specifically
in mu (8–12Hz) and beta rhythm (13–30Hz) (McFarland et al., 2000; Pfurtscheller
et al., 2006). The corresponding differences in EEG signals can be transformed to
control commands. Such MI-based BCIs are usually more convenient to use than
stimuli-based BCIs since it can be operated without external stimuli (Qiu et al.,
2016). It has shown promising application values in medical rehabilitation (post-
stroke rehabilitation), auxiliary control (e.g., neuroprosthesis control (Müller-Putz
et al., 2005), 2D cursor control (Long et al., 2012), wheelchair control (Tang et al.,
2018), etc.), and social entertainment (Folgieri and Zampolin, 2014; van de Laar
etal., 2013). However, it has reported that many MI-based BCIs users cannot obtain
sufficient accuracy of control commands (Guger et al., 2003). One of the reasons is
that it is hard to accurately extract the features about MI. Thus, an urgent problem
in MI-based BCIs is how to further improve the feature extraction performance.

Various feature extraction methods have been proposed, such as adaptive autore-
gressive model (ARR) (Schlögl et al., 1997), wavelet transform (WT) (Hsu and Sun,
2009), wavelet packet transform (WPT) (Zhou andWan, 2012), and common spatial
pattern (CSP) (Yang and Wu, 2014). Particularly, CSP is always regarded as one
of highly successful algorithms due to its good performance in extracting spatial
domain features (Blankertz et al., 2008), which can extract task-related signal com-
ponents from multi-channel EEG data and suppress uncorrelated signal components
(Ramoser et al., 2000). Commonly, a fixed starting point and length of EEG signals
have been used to extract the MI features in the majority of state-of-the-art MI-based
BCIs (Qiu et al., 2016; Ang et al., 2012; Rodriguez-Bermudez et al., 2013). However,
considering it is hard to determine certainly when participants begin to perform MI
task and how long it lasts, and fixed time window method may lead to low classifi-
cation accuracy because of deficient information or interference from invalid data.
To address this issue, recently, a correlation-based time window selection (CTWS)
algorithm has been proposed and achieved better classification accuracy than fixed
time window method (Feng et al., 2018). In CTWS, the optimized starting point
of MI task-relevant signals was determined based on correlation analysis. However,
CTWS using a fixed window length did not consider the influence of window length
to MI feature extraction.

In this paper, an optimized correlation-based time window selection (OCT-
WS) algorithm is proposed to select the starting point and length of MI task-relevant
time windows simultaneously. In the proposed method, correlation analysis and per-
formance evaluation are used to determine the starting point and length of time win-
dows. The common spatial pattern (CSP) method is used to extractMI features, and a
support vector machine (SVM) with linear kernel is then trained on the selected fea-
tures to classify MI tasks. The proposed method is validated on a public EEG dataset
(BCI Competition IV Dataset I) and compared with fixed time window length-based
CSP and CTWS. Experimental results show that OCTWS achieves more superior
classification performance.
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The remainder of this paper is organized as follows: Sect. 2 describes thematerials
and methods in details; Sect. 3 shows the experimental results; Sect. 4 gives the
discussion; and finally, Sect. 5 serves as conclusion.

2 Materials and Methods

2.1 Materials

The Dataset I from BCI Competition IV was used to evaluate the performance of
proposed method. This dataset consists of EEG signals based on MI, obtained from
seven subjects (numbered by S1–S7), recorded via 59 electrodes with 100Hz sam-
pling frequency. The timing scheme of single trial is shown in Fig. 1 where each trial
lasts for 8 s, including three phases: in preparation phase (0–2 s), a fixation cross
would showon themonitor to remind the subject focusing attention to the task, then in
MI task phase (2–6 s), the subject was asked to perform corresponding MI task (Left
hand/Right hand/Foot) according to the cue, finally, in rest period (6–8 s), a black
screen would appear on the monitor. More details about the dataset can be found
at Web site: https://www.bbci.de/competition/iv/. In this paper, only the calibration
data in total of 200 trials for each subject were used to evaluate the algorithms.

2.2 Methods

CTWS is an effectivemethod for selecting trial-specific timewindow for each subject
that can facilitate effective feature extraction. The main principle of CTWS is to
iteratively adjust the time window of the training data to find the optimized reference
signals based on the maximum correlation between current reference signals and
EEG signals with different starting points, as described in Eqs. (1) and (2).

Fixation cross Motor imagery Black screen

0 2 6 8
t/s

Cue:left/right/foot

Fig. 1 Timing scheme of single MI trial
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cov(Ri j ,Ci j ) = 1

Nt

Nt∑

t−1

(Ri (t) − R̄i (t))(Ci (t) − C̄i (t)), i = 1, 2; j = C3,C4

(1)

V = argmax
k

(cov(Ri3,C
k
i3)) + cov(Ri4,C

k
i4), k = 1, 2, . . . , n (2)

where t is the index of current point in the time window with the length of Nt, i is
the index of class, j is the index of channel (channel C3 and C4 were selected), R is
the reference signal, C is the signal of current sample, R and C are the average value
of R and C over t; V represents the time window with maximum average correlation
value, and n is the number of generated new time windows.

After obtaining the optimized reference signals, the starting points of the time
windows for both training and test samples are adjusted using correlation analysis
by Eqs. (1) and (2). Note that, in CTWS, only the starting point of the time window
is adjusted, while the length of the time window is not considered.

As for the improvement of traditional CTWS, the proposed OCTWS aims to
select optimal starting point and length of time window simultaneously. The CTWS
is used to determine the starting point of the time window, and a wrapper-based
feature selection method (Foitong et al. 2012) is used to select the best length of the
time window. The CSP and SVM are used for feature extraction and classification,
respectively. The procedure of OCTWS can be described as follows:

(1) Firstly, divide the preprocessed EEG samples (X ∈ R
M × N × K, where M,

N, and K denote the number of channels, sampling points, and trials, respectively)
into two parts (training samples and test samples).

(2) Next, for the training samples, set the current window length to the minimum
window length (1000mswas selected in this paper), and perform the CTWS to obtain
the optimized reference signals (OR1 and OR2) of each class; then, adjust the start
time point for test samples with OR1 and OR2 based on Eqs. (1), and calculate the
test classification accuracy.

(3) Then, update the length of the time window (increased by a window change
step, 200 ms was used in this paper), and repeat (1) and (2) until the current window
length reaches the maximum window length (3000 ms was selected in this paper).
If the new classification accuracy is higher than the previous classification accuracy,
replaceOR1 andOR1 with the new reference signals (NOR1 andNOR2). The process
above was repeated ten times with a tenfold cross-validation scheme to evaluate the
average classification accuracies.

(4) Finally, select the OR1 and OR2 corresponding to the highest average classifi-
cation accuracy as the optimized reference signals NOR1 and NOR2, which are then
employed to select the optimal time windows for each raw sample using correlation
analysis through Eqs. (1) and (2).

The pseudocode of OCTWS is given in Table 1.
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Table 1 Pseudocode of OCTWS

Algorithm: Optimized Correlation-based Time Window Selection (OCTWS)

Inputs: Preprocessed EEG samples (X), Minimum window length, Maximum window

length, Window change step.

Outputs: Optimized time window for each sample.

Steps:
1 Initialize Current window length to Minimum window length;

2 while Current window length <Maximum window length

3 Generate reference signal OR1 and OR2 by CTWS with Current window

length for training samples;

4 Adjust start time point for test samples with OR1 and OR2 based on

Eqs.(1) and (2);

5 Calculate classification accuracy for test samples;

6 Current window length = Current window length + Window change step;

7 end
8 Set optimized reference signals NOR1 and NOR2 to OR1 and OR2 with the

highest classification accuracy;

9 Obtain the optimized time window for each sample with NOR1 and NOR2

based on Eqs.(1) and (2).

3 Results

The proposed OCTWS was compared with traditional CSP and CTWS with fixed
window length. For CSP and CTWS, window length is set to 2000 ms according to
(Feng et al. 2018). For all three methods, all samples were filtered by a fifth order
Butterworth filter (frequency band ranging from 8 to 30Hz).

In order to test the performance of the proposed OCTWS, it was combined with
CSP (OCTWS + CSP) to extract feature on BCI Competition IV Dataset I. The
obtained feature distributions by CTWS + CSP and OCTWS + CSP are shown
in Fig. 2, respectively, for seven subjects. The blue and red circles represent the
two different feature classes. It can be clearly observed that compared to the tradi-
tional CTWS combined with CSP (CTWS+CSP)method, the OCTWS+CSPmethod
improves the distinguishing degree of the two classes of EEG signals for each subject.
Especially, subject 3 and subject 6 are of most obvious. Therefore, it qualitatively
shows that the proposed OCTWSmethod provides a better effect on the extraction of
EEG features than the CTWS method, which will promote the pattern classification
of MI-based EEG signals.

The above results of feature distribution indicate that the optimization of time
window length is also an important factor for MI-based BCIs. Figure 3 presents two
examples to show the effects of varying time window length (from 1000 to 3000 ms)
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Fig. 2 Feature distribution of each class extracted by CTWS + CSP and OCTWS + CSP for seven
subjects. a Five subjects tested on right and left hand. b Two subjects tested on right hand and foot

on the average classification accuracy in a tenfold cross-validation for subject 3 (S3)
and 4 (S4). It can be seen that the average accuracy varies with the length of time,
and the optimal time window length is subject specific, for S3 is 1600 ms and for S4
is 2600 ms.

To quantitatively evaluate the performance of the proposed OCTWS algorithm
for time window length optimization, we compared the classification accuracy of
OCTWS + CSP, CTWS + CSP, and CSP method using SVM with linear kernel
as the classifier (Feng et al. 2018). A tenfold cross-validation is implemented to
evaluate the classification performance. The experimental results of classification
accuracy of OCTWS+CSP, CTWS+CSP, and CSP are given in Table 2, for seven
subjects. The first obvious finding is that the classification accuracy of CTWS + CSP
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Fig. 3 Effects of varying time window length on the average classification accuracy for subject 3
(S3) and subject 4 (S4)

Table 2 Classification accuracy (%) of CSP, CTWS + CSP, and OCTWS + CSP, for seven subjects

Subjects CSP CTWS + CSP OCTWS + CSP

S1 64.50 82.50 83.50

S2 51.50 76.00 78.00

S3 53.00 66.00 86.50

S4 89.00 96.00 96.00

S5 93.50 98.00 96.00

S6 46.00 80.00 90.50

S7 66.00 82.00 87.00

Mean±std 66.21±18.56 82.93±11.12 88.21±6.55

(82.93%± 11.12%) andOCTWS+CSP (88.21%± 6.55%) significantly outperform
CSP (66.21% ± 18.56%) with fixed window. Moreover, the average classification
accuracy of OCTWS+CSP method has improved by 5.28% compared to CTWS
+ CSP method (82.93% versus 88.21%). The comparison of classification results
further verifies the superior performance of OCTWS in obtaining the optimal starting
point and length of time window in MI-based BCI system.

4 Discussion

For motor imagery (MI)-based BCI systems, extracting the features matching MI
tasks is a key link to improve the recognition rate. CSP is an effective feature extrac-
tion algorithm, and some improved CSP algorithms have been proposed in recent
studies. In particular, the time window selection of EEG signals has an important
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influence on the feature extraction based on CSP ((Feng et al., 2018)). The study
based on CTWS algorithm has indicated that the starting point time window varies
from one trail to the next among any one individual during motor imagery. However,
the length is also a major factor in determining the time window. As shown in Fig. 3,
the classification accuracy changed as time window length varied for different sub-
jects. Therefore, it is necessary to select the starting point and length of time window
at the same time before feature extraction.

In this study, the proposed OCTWS algorithm further considers the length of time
window based on traditional CTWS algorithm (only considering the starting point
of time window). It has confirmed that CTWS is more superior in feature extraction
than CSP in BCI Computation IV Datasets. But as shown in Fig. 2, we can find that
the distribution of MI feature based on OCTWS algorithm has once again improved.
So overall, the proposed OCTWS algorithm is more conducive to feature extraction
than CSP and CTWS algorithms.

As given in Table 2, the proposed OCTW algorithm also brings about a higher
classification accuracy compared to CSP and CTWS algorithm, which evaluate the
effectiveness and practicality. Of course, in both OCTWS and CTWS algorithms,
only the time window of MI is selected. So in future work, we can further consider
the frequency band selection of EEG signals in order to boost the performance of
OCTWS algorithm.

5 Conclusion

In this paper, we have proposed an optimized correlation-based time window selec-
tion (OCTWS) algorithm for further improving the classification performance of
traditional CTWSwhich can select optimal starting point and length of time window
simultaneously. We incorporated CSP and SVM into the structure of the OCTWS
algorithm for feature extraction and classification on BCI Competition IV Dataset I.
The experimental results demonstrated that the optimization of time window length
was also an important factor for MI-based BCIs besides starting time point. The
features extracted by proposed OCTWS algorithm were easier to classify and could
also achieve better classification performance compared to the traditional CTWS.
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