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Abstract Common spatial pattern (CSP) is one of effective feature extraction algo-
rithms, which is widely applied to motor imagery (MI)-based brain–computer inter-
face (BCI). However, its performance is susceptible to artifacts and noise. There-
fore, some researchers proposedSub-Alpha-BetaLog-DetDivergences (Sub-ABLD)
algorithm to improve the performance of BCI systems. The performance of Sub-
ABLD algorithm depends on the values of hyperparameters α, β and η. In this study,
a strategy namedPSO-Sub-ABLDwas proposed to select three hyperparameterswith
particle swarm optimization (PSO). Two public BCI competition datasets were used
to validate the effectiveness of the proposed strategy. The results show that compared
with CSP and Sub-ABLD with default hyperparameters, PSO-Sub-ABLD method
gains better classification accuracy.

1 Introduction

Brain–computer interface (BCI) system is a new technologydesigned to create a path-
way that connects the human brain and external devices without peripheral nerves
and muscles (Xu et al., 2018). The BCI system provides a new means of commu-
nication for people with severe neuromuscular disorders by decoding task-related
electroencephalogram (EEG) recordings and translating them into computer instruc-
tions for control and communication with external devices (Wolpaw et al., 2002; Jin
et al., 2011).

So far steady state visually evoked potentials (da Cruz et al., 2015), P300 evoked
potentials (Jin et al., 2015), slow cortical potentials (Mensh et al., 2004), and event-
related desynchronization (ERD) (Pfurtscheller, 1977)/event-related synchroniza-
tion (ERS) (Pfurtscheller, 1992) are neural response patterns commonly used in BCI
systems. Motor imagery (MI)-based BCI systems, which are based on the ERD and
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ERS phenomena, are widely used as it is easier to operate than other systems based
on external stimulus (Qiu et al., 2016).

Common spatial pattern (CSP) has proven to be a very effective feature extraction
method (Ramoser et al., 1998), and its principle is to find spatial filters, to effectively
evaluate discriminant information of MI by maximizing the variances of the pro-
jected signal of one class while minimizing another (Zhang et al., 2015; Blankertz
et al., 2008). Since the EEG signal is very sensitive to noise, outliers caused by
noise will cause poor computation of spatial filters based on the spatial covariance
matrix, which leads to poor classification accuracy (Lotte & Guan, 2011; Thiyam et
al., 2017). To address this problem, a large number of improved algorithms based
on CSP are proposed. Sub-ABLD algorithm is a modified algorithm of CSP, and its
principle is to overcome the problem caused by the non-stationary nature of EEG
data by appropriately scaling the conditional covariance matrix and using different
filter selection strategies (Thiyam et al., 2017). Sub-ABLD algorithm shows a cer-
tain degree of robustness to outliers trials in EEG data (Feng et al., 2018). Three real
hyperparameters α, β, and η affect the performance of Sub-ABLD (Thiyam et al.,
2017), so how to choose better hyperparameters has a greater impact on improving
the performance of Sub-ABLD algorithm. For the selection of hyperparameters, evo-
lutionary algorithms (EA) such as genetic algorithm (GA) (Garrett et al., 2003) and
particle swarm optimization (PSO) often have better effects. Compared with GA,
PSO is widely used because of its advantages of simple programming, few parame-
ters, and global search. Thus, this present study proposed the method of optimization
hyperparameters of Sub-ABLD with PSO (PSO-Sub-ABLD) and compares it with
CSP and Sub-ABLD with default hyperparameters. Two BCI competition datasets
are selected to evaluate the performance.

The remainder content of this article is as follows: Sect. 2 describes the competition
datasets used in this paper. Section3 introduces the proposedmethod. Section4 shows
results. Finally, Sect. 5 concludes this study.

2 Description of the Data

In this paper, two competition datasets are used to evaluate the effectiveness of
optimization parameters with PSO in the MI classification (Fig. 1).

(1) Dataset1 (BCI competition IV datasets I): The dataset was recorded from 4
healthy subjects (named as a, b, f, and g) at 59 electrodes with sampling rate
100Hz, during right hand, left hand, and foot MI tasks with a total of 200 trials
that two classes of three tasks would be selected (Zhang et al., 2012). Each trial
startedwith left, right, or bottomvisual cues on the screen for a duration of 4 s and
the subject completed the motor imagery tasks. More details about this dataset
can be seen in the following website: http://www.bbci.de/competition/IV/.

http://www.bbci.de/competition/IV/
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Fig. 1 Flow diagram of optimizing hyperparameters of Sub-ABLD with PSO

(2) Dataset2 (BCI competition III datasets IVa): The dataset was recorded from 5
healthy subjects (aa, al, av, aw, and ay) at 118 electrodes with down-sampling
rate 100Hz, during right hand and foot MI tasks with a total of 280 trials. The
visual cue for each trial lasts for 3.5 s, in which only the right hand and right foot
cues were displayed in the competition (Novi et al., 2007). More information
about this dataset can be found from the following website: http://www.bbci.de/
competition/iii/.

3 Method

3.1 Data Processing

For two datasets, starting from 0.5 to 2.5 s of EEG segment was selected from each
trial (Song & Epps, 2007). The EEG data were third-order band-pass filtered with
Butterworth band-pass filter of 8–30 Hz in this study (Sun et al., 2010).

http://www.bbci.de/competition/iii/
http://www.bbci.de/competition/iii/


222 F. Yin et al.

3.2 Sub-Alpha-Beta Log-Det Divergences

Sub-ABLD is an improved method of CSP algorithm. Its main purpose is to extract
d expected spatial filters to reduce the impact of outliers contained in the EEG
data on feature extraction. It is mainly divided into the following two steps. First,
the discriminant subspace of the spatial filters is obtained by a robust method, and
then, the EEG signal is filtered by the spatial filter obtained by discriminating the
subspace. In the second step, the features are extracted with CSP algorithm. The
input parameters of Sub-ABLD algorithm are the covariance matricesMj, Nj of two
types of samples, hyperparameters α, β, η and the number of filters. The process of
obtaining the final spatial filter matrix is as follows:

(1) Compute the prior probability p(c1), p(c2) and the average covariance matrix
M , N of each class.

(2) Compute the average covariance matrix Cov(x) of the population (all types of
stimuli) and perform eigenvalue decomposition on it.

Cov(x) = p(c1)M + p(c2)N (1)

Cov(x) = U1�UT
1 (2)

(3) Compute the whitening matrix T :

T = �− 1
2UT

1 (3)

(4) The whitening conversion process is performed on the covariance matrix of
two types of samples and the average covariance matrix of each class to obtain
M̂j, N̂j, M̂ , N̂ .

(5) Compute scaling parameters k:

k =

⎧
⎪⎨

⎪⎩

kinf + ε for kinf ≥ 1

1 for 1 ∈ (kinf, ksup)

ksup − ε for kstup ≤ 1

(4)

(6) Initialize the iteration counter, i = 0;
(7) Initialize the semi-orthogonalization matrix �(i) = In×d , where n refers to the

size of the average covariance matrix of each class, and d is the number of
filters;

(8) Compute robust criterion:
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f (�(i)) = η(p(c1)
1

N1
�

N1
j=1D

(α,β)

AB ((�(i))
T
N̂j(�

(i))||k(�(i))
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�
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+ D(α,β)

AB ((�(i))
T
M̂ (�(i))||k(�(i))

T
N̂ (�(i))) (5)

(9) Compute gradients ∇f (�(i)), tangent matrices �i+1
tg , and projection matrices

�i+1.

∇f (�(i)) = ∂f (�(i))

∂�(i)
− �(i) ∂f (�

(i))

∂�(i)
�(i) (6)

1.�i+1
tg = �i + μ(i)∇f(�(i)) (7)

�i+1 = NLN
T
R (8)

[QL,D,QR] = svd(�i+1
tg , 0) (9)

(10) Increase the iteration counter and determine if it converges, otherwise return
to step 8.

(11) Select the maximum/minimum eigenvector of ((�(imax))T M̂�(imax), (�(imax))T N̂
�(imax)).

(12) Obtain the final spatial filter matrix WT :

WT = VT (�i(max) )TT (10)

After obtaining the final spatial filter matrix WT , the raw EEG data obtained by
the time window interception is projected through the spatial filter matrix, and two
new types of EEG data can be obtained by constructing corresponding features.

The total number d of expected spatial filters is 6 in this study.

3.3 PSO

PSO is a group intelligent optimization algorithm proposed byKennedy and Eberhart
to imitate bird foraging, which has been successfully applied to various optimization
problems (Poli et al., 2007). The basic principle is to randomly initialize a group
containing N particles in a three-dimensional space, each of which is a feasible
solution to the optimization parameters. Mark the ith particle as xi = (xi1, xi2, xi3),
bring it into the evaluation function, and determine the individual optimal position
pti = (xti1, x

t
i2, x

t
i3) and global optimal position ptg = (xtg1, x

t
g2, x

t
g3). At the same time

recording the velocity of the ith particle vi = (vi1, vi2, vi3), its position and velocity
update formula is as follows:
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vt+1
id = wvtid + c1r1(p

t
id − xtid ) + c2r2(p

t
gd − xtid ) (11)

xt+1
id = xtid + vt+1

id (12)

where w (w = 0.1) is the inertia weight proposed by Shi and Eberhart; the size of w
affects the ability of the particle global and local search; r1 and r2 are random con-
stants in (0, 1); and c1(c1 = 1.2) and c2(c2 = 1.2) are learning factors. The velocity
of particles range from −1 to 1 and the range of position is (−2, 2).

4 Results

Subject f of dataset 1 and subject av of dataset 2 are respectively selected, and feature
distributions of CSP, Sub-ABLD, and PSO-Sub-ABLD are compared as shown in
Fig. 2. From the figure, it can be observed clearly that features extracted by PSO-
Sub-ABLD are easier to classify than two other methods for two subjects.

Tables1 and 2 present classification accuracy derived by CSP, Sub-ABLD, and
PSO-Sub-ABLD for all participants with test set of two datasets. For nine subjects
selected in two datasets, PSO-Sub-ABLD improves the classification accuracy com-
pared with two other algorithms and shows good generalization performance.

Table1 summarizes that PSO-Sub-ABLD shows better classification accuracy for
four subjects compared to two other methods. The average classification accuracy

Fig. 2 Feature distribution (subject f of dataset 1 and subject av of dataset 2) of each class extracted
by CSP, Sub-ABLD, and PSO-Sub-ABLD (cyan diamond represents the features of left hands, and
magenta circle represents the features of right hands)
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Table 1 Classification accuracy comparison of CSP, Sub-ABLD (α = β = 1.25, η = 0.25), and
PSO-Sub-ABLD (α = 0.9, β = 1.7, η = 0.5) using BCI competition IV dataset I

Subject Dataset 1 (BCI computation IV dataset I)

CSP (%) Sub-ABLD (%) PSO-Sub-ABLD (%)

a 61.5 68 78

b 51 54.5 56.5

f 45 58 74.5

g 91 88 94.5

Mean 62.1 67.1 75.9

STd 17.7 15 13.6

Table 2 Classification accuracy comparison of CSP, Sub-ABLD (α = β = 2, η = 0.5), and PSO-
Sub-ABLD (α = 0.6, β = 1.9, η = 1.4) using BCI competition III dataset IVa

Subject Dataset 2 (BCI competition III dataset IVa)

CSP (%) Sub-ABLD (%) PSO-Sub-ABLD (%)

aa 78.2 71.4 83.6

al 96.4 96.8 97.5

av 47.9 67.5 70.4

aw 86.0 82.9 90.4

ay 88.2 89.6 92.9

Mean 79.3 81.6 87.0

STd 16.8 12.2 10.5

obtained by PSO-Sub-ABLD (α = 0.5, β = 0.9, η = 1.7) is 75.9%, 13.8% higher
than CSP and 8.8% higher than Sub-ABLD, respectively.

Table2 shows classification accuracy for five subjects of dataset 2. The average
classification accuracy obtained by PSO-Sub-ABLD (α = 1.4, β = 0.6, η = 1.9) is
87%, 7.7% higher than CSP and 5.4% higher than Sub-ABLD, respectively.

5 Conclusion

In this paper, PSO-Sub-ABLD has better robustness to outliers than CSP and Sub-
ABLD to get better classification accuracy. Since default hyperparameters of Sub-
ABLD result in poor generalization ability for different datasets, this study pro-
poses PSO-Sub-ABLD algorithm, and it shows better generalization performance.
In summary, compared with CSP and Sub-ABLD, PSO-Sub-ABLD obtains better
classification performance based on the same classifier.
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In the future work, one of the explorations is to combine channel selection and
feature selection with PSO-Sub-ABLD to achieve better performance and to apply
it to online systems.
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