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Abstract It is known that visual attention can modulate firing patterns of neurons in
visual cortexes and play important functional roles in visual information processes.
Despite of several decades of studies, mechanisms of visual attention still remain
unclear. Recent neurophysiological studies reported that attention could increase
NMDA and AMPA synaptic strength. To understand how neuronal activity is modu-
lated by attention at the synaptic level, we proposed a three-layer neural network in
this study.Eachneuron receivesAMPAandNMDAcurrents and alsoGABAcurrents.
In the synapse between every twoneurons, neurotransmitters are stochastically bound
with receptors in post-synaptic membranes. In the model, it is hypothesized that
attention could make the binding process less stochastic, and more neurotransmit-
ters are bound with postsynaptic receptors. Our simulation showed that attention
resulted neurons in the model had stronger firing rates and less response variability.
We also found that attention had stronger modulation of neuronal activity in higher
layers than in lower layers. Inhibitory neurons had stronger attention effects than did
excitatory neurons. Overall, our results demonstrated that attention may modulate
neuronal activity by controlling the stochastic binding process.

1 Introduction

Visual attention has crucial roles in the process of visual information. It could selec-
tively enhance neuronal responses to particular visual stimuli (Reynolds et al. 1999;
Treue and Maunsell 1999). Some studies have reported that single neurons could
increase its firing rate and reduce its response variability when attention is in work
(Anton-Erxleben and Carrasco 2013). It was also found that neuronal activities in
higher visual areas are modulated more strongly by attention than those in lower
visual areas, and putative interneurons had stronger attention modulation than did
putative pyramidal cells (Thiele et al. 2016). A recent experiment further reported
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that attention increased the efficacy of neuronal communication between neurons,
and a presynaptic input could more easily to drive a response of a postsynaptic
neuron (Briggs et al. 2013). These experimental observations imply that attention
may affect information transmission between neurons at the synaptic level, which
thereby could change response patterns of neurons in various cortical regions. It
is essential to investigate the underlying mechanism how attention modulates the
efficiency of neural signal transmission.

There are lots of proposed computational models to reveal attentional modulation
on neuronal activities (Lanyon and Denham 2009). The detail methods to model
attentional effects are different in these models. Somemodels have neurons and their
connected microcircuits with detailed biophysical information (Wagatsuma et al.
2013). Some models are constructed with abstract spiking neurons (Itti and Koch
2000) or dynamic rate coded populations (Beuth and Hamker 2015). Some models
only have abstract mathematical descriptions (Reynolds andHeeger 2009). However,
these models have some limitations to analyze synaptic information transmission
modulated by attention. Therefore, the purpose of this study is to reveal how atten-
tion controls the binding processing of neurotransmitters to modulate information
transmission between neurons.

To investigate this issue, a three-layer network model was proposed to study
attentional modulations on neural activities. Each layer has excitatory and inhibitory
neurons. Each neuron receives AMPA, NMDA, and GABA currents. Neurotrans-
mitters are released, transmitted in the synaptic cleft, and finally are bound to recep-
tors in the postsynaptic membrane. This binding process is considered as a random
process (Dobrunz and Stevens 1997). It is hypothesized that the randomness in the
binding process of neurotransmitters with receptors becomes smaller by attention.
In effect, attention enables more neurotransmitters to be bound with receptors in the
postsynaptic membrane.

Themodel could simulate attentionalmodulation on firing rates and response vari-
ability. The simulated results are consistent with observations found in experiments.
Our model demonstrates that attention could control neurotransmitters transmission
in the synapse, which further generates attention-modulated activity patterns.

2 Methods and Materials

As shown in Fig. 1, a three-layer network is prosed to simulate functions of visual
attention. The first layer from the input is labeled as layer 1, themiddle layer is labeled
as layer 2, and the output layer is labeled as layer 3. There are 20 excitatory and 5
inhibitory neurons in each layer. The connections within a layer or between layers
are described as following. Each excitatory neuron has inputs from five inhibitory
neurons and inputs from five excitatory neurons selected randomly; one inhibitory
neuron receives projections from one randomly selected excitatory neuron. An exci-
tatory neuron in the current layer receives inputs from three randomly selected exci-
tatory neurons in the previous layer. Excitatory neurons transmit information from
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Fig. 1 Three-layered
network model of visual
attention. The black triangles
indicate excitatory neurons.
The black circles indicate
inhibitory neurons. The solid
arrows indicate excitatory
connections, and the dashed
arrows indicate inhibitory
connections
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one layer to next layer. Inhibitory neurons do not relay signals between layers. No
signals are feedback from higher layers to lower layers. A sustained external current
is inputted to all neurons in layer 1, and there are no external inputs to neurons in
other layers.

The Hodgkin-Huxley model of single neurons is used in this study. This single-
neuron model could describe in detail spike shapes and properties of excitatory and
inhibitory neurons, respectively.

The membrane potential of an excitatory neuron (e) is the following:
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The membrane potential of an inhibitory neuron is the following:
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In the above equations, IAMPA indicates the AMPA current. It is then described
by the following equation:

IAMPA = gAMPArAMPA(V − EAMPA) (3)
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INMDA is the NMDA current. Its dynamic properties is described by the following
equation:

INMDA = gNMDA fNMDA(V )rNMDA(V − ENMDA) (4)

FNMDA(V ) =
(
1+ e

−V+T f
σ f

)−1

The GABAA current is given by the following equation:

IGABAA = gGABAArGABAA

(
V − EGABAA

)
(5)

The kinetics of the ratio of bound receptors r is characterized by the following
equation:

dri
dt

= α[T ](1− ri ) − βri , i = AMPA,NMDA,GABAA (6)

where [T ] is the concentration of neurotransmitters.
The binding process of neurotransmitter with receptors is stochastic, which was

simulated by one stochastic variable shown in the following equation:

dr inoise(t)

dt
= −1

τ

[
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] +
√
2σ 2

i

τ
χi (t) (7)

i = AMPA, NMDA,GABAA

where χi (t) is the Gaussian white noise of zero mean and unit standard deviation,
and r inoise0 , σi are the average and standard deviation of the random sequence (i =
AMPA, NMDA, GABAA), respectively. τ is the time constant.

In Eq. (7), the parameter σi could control the standard deviation of the stochastic
process. This stochastic variable in Eq. (7) is then added to ri to mimic randomness
in the neurotransmitter binding process. Because we hypothesize that randomness
in this bind process could be reduced by attention, the parameters of σAMPA and
σNMDA are set lager values when attention is unattended (more randomness). And
their values become smaller when attention is attended (less randomness). In this
study, we do not take the attentional effect on GABAA receptors into account, so the
parameter of σGABAA is set a constant regardless of attention conditions.
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3 Results

During simulation, because the binding process was stochastic, the activity pattern
of each neuron varied trial by trial even though the external current to the neurons in
layer 1 was constant. We calculated neuronal activity in 48 trials for each condition.
In each condition, all parameters were set as the same values for each trial, but the
variable in Eq. (7) varies trial by trial. We then averaged firing rates and computed
response variability for each neuron in the model across these 48 trials.

It was found that the mean firing rate of all neurons decreased when the σAMPA

increased. σAMPA was set different values to indicate different attention conditions.
For example, in AMPA channels connecting two excitatory neurons, σAMPA = 0.075
in the attention-attended condition and σAMPA = 0.08 in the attention-unattended
condition. In AMPA channels projecting from excitatory cells to inhibitory cells,
σAMPA = 0.075 in the attended condition and σAMPA = 0.09 in the unattended
condition. These specific values were chosen for the two attention conditions. The
model with these values could simulate results that were similar to experimental
observations.

We did not find that attention significantly alters firing rates of neurons in layer 1
due to the large external current to each neuron (excitatory cells: p= 0.107; inhibitory
cells: p = 0.111, Mann-Whitney U-test between the two attentional conditions for
each type of cells). But firing rates of both excitatory and inhibitory cells in layer
2 and 3 showed significant differences between the two attentional conditions (p <
0.01, Mann-Whitney U-test).

The Fano factor in layer 1 was very small, indicating that these neurons had stable
firing patterns. The Fano factor was not modulated by attention for either excitatory
or inhibitory cells (excitatory cells: p = 0.199; inhibitory cells: p = 0.548, Mann-
Whitney U-test). In layer 2, Fano factors of excitatory cells had significantly smaller
values in the attention-attended condition than in the unattended condition (p < 0.01,
Mann-Whitney U-test). Fano factors of inhibitory cells did not affect by attention (p
= 0.095, Mann-Whitney U-test). Only five inhibitory cells in layer 2 may not have
enough power to reach statistical significance. Fano factors of both excitatory and
inhibitory cells in layer 3 were modulated by attention, showing smaller values in the
attention-attended condition (excitatory cells: p = 0.019; inhibitory cells: p < 0.01;
Mann-Whitney U-test between the two attention conditions for each type of cells).

The randomness in NMDA channels (controlled by σNMDA) also modulated firing
patterns of neurons in layer 2 and layer 3. The firing rate became smaller when
the value of σNMDA became larger. Different values were selected for σNMDA to
indicate different attentional conditions. We chose σNMDA = 0.12 in the attention-
unattended condition and σNMDA = 0.04 in the attended condition for NMDA chan-
nels connecting two excitatory cells. σNMDA = 0.16 (unattended) and σNMDA = 0.04
(attended) were selected for NMDA channels projecting from excitatory cells to
inhibitory cells.
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Neurons in layer 1 showed significantly stronger firing rates in the attention-
attended condition (excitatory cells: p < 0.01; inhibitory cells: p < 0.01; Mann-
Whitney U-test). This is the same case in layer 2; firing rates were increased by
attention (excitatory cells: p < 0.01; inhibitory cells: p < 0.01; Mann-Whitney U-
test). Similar results were found in layer 3, attention increased firing rates of both
excitatory and inhibitory cells (excitatory cells: p < 0.01; inhibitory cells: p < 0.01;
Mann-Whitney U-test).

We did not found that Fano factors in layer 1 were significantly modulated by
attention (excitatory cells: p= 0.561; inhibitory cells: p= 0.548; Mann-Whitney U-
test). Fano factors of both excitatory and inhibitory cells in layer 2 showed significant
smaller in the attention-attended condition (excitatory cells: p< 0.01; inhibitory cells:
p < 0.01; Mann-Whitney U-test to compare the two attentional conditions for each
type of cells). Similar results were found in layer 3. Fano factors became significantly
smaller in the attended condition (excitatory cells: p < 0.01; inhibitory cells: p =
0.015; Mann-Whitney U-test).

Attention-modulated effects on firing patterns were compared for different types
of neurons in different layers. It was found that attention (controlled by σAMPA or
σNMDA) had stronger modulation for inhibitory than excitatory cells in the same layer
and stronger modulation for neurons in layer 3 than layer 2.

4 Discussion

We made the hypothesis that attention may reduce stochastic factors in the neuro-
transmitter binding process, which increase the number of bound receptors located
in the post-membrane. The stochastic factors in AMPA and NMDA channels were
controlled by the values of σAMPA and σNMDA in our model, respectively. On the
basis of this assumption, the network model of visual attention simulated activity
patterns of neurons modulated by attention, increasing their firing rates, reducing
their response variability.

Some experiments have shown that the binding process of neurotransmitters with
receptors is a stochastic process (Gibb 2001). It also reported that variation of firing
rates of neurons was reduced by attention, which might enhance the reliability of
information transmission between neurons (Briggs et al. 2013). This result suggested
that attention may alter spike patterns of neurons by the method of controlling the
stochastic process in neurotransmitter channels. The parameters of σAMPA and σNMDA

in the networkmodel constrain the ratio of boundAMPAorNMDAreceptors, respec-
tively. The ratio of bound receptors would increase with decreasing the values of
σAMPA and σNMDA. This means that more neurotransmitters were bound with recep-
tors. Therefore, the post-synaptic neuron receives larger synaptic currents and has
higher probability to evoke a spike.Meanwhile, when the values of σAMPA and σNMDA

became smaller in the attention-attended condition, stochastic factors in the AMPA
or NMDA binding process reduced. This indicated that in the attention-attended
condition, the post-synaptic neuron had more stable synaptic inputs to induce spikes
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in repeated trials, and its response variation reduced. Visual attention may enhance
efficiency and reliability of information communication among neurons by reducing
stochastic factors in the neurotransmitter binding process.

How does attention control the randomness in the neurotransmitter binding
process in the brain? It is an important question. Till now, we did not find experi-
mental observations that directly support that attention controls the randomness in
the stochastic binding process. Some reports demonstrated that attention enhanced
efficient information transmission, and attention-induced activity modulation was
impaired by block of AMPA or NMDA channels, indicating that attention is engaged
in the synaptic information processing (Briggs et al. 2013; Herrero et al. 2013). In the
literature, computational models of visual attention usually have sophisticated struc-
ture of neurons and consider the attentional signal as an external input to the network
to generate attention-induced activity (Wagatsuma et al. 2013; Beuth and Hamker
2015). However, this external signal is not explained only as the attentional signal; it
may be regarded as other types of signal (e.g., reward signal) but induce attention-like
activity. The assumption in this study is that attention could be a process that controls
stochastic factors in the synapse. The network model had not sophisticated connec-
tion patterns among neurons; the three-layered feed-forward network is enough to
generate attention-modulated activity. Our network model proposes a newmethod to
investigate how attention modulates spike activity underlying synaptic mechanisms.
One experiment in vivo shows that the single-molecule imaging can measure the
dynamic course of bound receptors located in postsynaptic membranes (Ueda and
Shibata 2007). It is possible to use this new technology to measure the dynamical
course of bound AMPA or NMDA receptors when an animal is performing an atten-
tional task. Statistical properties of bound receptors during the dynamical course are
compared between the attention-attended and unattended conditions to verify our
hypothesis.
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