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Abstract For epileptic electroencephalography (EEG) analysis, features extraction
is crucial in seizure detection. In this paper, five methods for phase-amplitude cou-
pling (PAC) were employed to analyze epileptic EEG to verify that PAC can be used
as a biomarker to detect seizures. Specifically, five algorithms of evaluating PACwere
used to compute PAC of seizure activity and seizure-free intervals at nine frequency
band combinations. Then PAC of the EEG in a public dataset computed was clas-
sified by support vector machine (SVM), where the classification performance was
assessed by calculating mean area under curve (AUC) based on receiver operating
characteristic (ROC) with k-fold cross-validation (CV). Moreover, phase-amplitude
comodulogram was applied to the same dataset to confirm intuitively classification
accuracy. Results showed that the classification accuracy at band combination θ − γ

was up to 0.96 and 0.99 for identifying seizure-free and seizure intervals both within
epileptogenic zone and for classifying seizure-free interval EEG not within epilep-
togenic zone and seizure EEG within epileptogenic zone separately. Classification
results of five different PAC methods were similar to each other. Furthermore, it was
shown that there existed significant coupling at band combination θ − γ for EEG
of seizure activities by observing from the comodulograms, which were consistent
with the classification results.
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1 Introduction

Epileptic seizure is defined as a transient occurrence of signs and/or symptoms due to
abnormal excessive or synchronous neuronal activity in the brain by the International
League Against Epilepsy (ILAE) (Fisher, 2014). Electroencephalography (EEG) is
one of the primary diagnostic tools to be used currently in the location and charac-
terization of seizures. Currently, the clinical diagnosis of epilepsy is basically based
on the doctor’s clinical experience by visually observing the patient’s EEG. And due
to the predictability of the seizure, long-term detection of the subject is necessary,
which leads to disadvantages such as long manual detection and low efficiency for
doctors. Therefore, it is necessary to apply signal processing methods for automatic
detection of epileptic EEG in the diagnosis of epilepsy.

Many studies have been reported on epileptic EEG. For example, the classifier
to detect epileptic seizures was optimized by finding an optimal combination of
training sets (Bogaarts et al., 2016). The epileptic seizures were predicted with
the autoregressive (AR) model (Chisci et al., 2010). Moreover, a novel index was
proposed to predict the epileptic seizure (Aksenova et al., 2007). Another work
introduced the measure based on data mining techniques to analyze the epileptic
EEG (Exarchos et al., 2006). Furthermore, another study proposed a methodology
for nonlinear estimation based on bispectral analyses in localizing the epileptogenic
focus side (Villa andTetko, 2010). However,more features need to be used to analyze
the epileptic EEG to obtain more accurate results of detecting epileptic seizures. In
this paper, phase-amplitude coupling (PAC) is introduced to detect epileptic seizures.
The underlying idea behind using PAC is that PAC may be as a candidate biomarker
to characterize the epileptic seizures as it has been proven to be closely associated
with cognitive activity in the brain (Canolty and Knight, 2010).

PAC is defined as the coupling on high-frequency amplitude modulated by low-
frequency phase. Many studies have shown the differences in coupling between
epilepsy zone and normal zone. For example, research has shown that the PAC was
elevated in the seizure onset zone for the children with medically intractable epilepsy
secondary to focal cortical dysplasia (Ibrahim, 2013). And delta-modulated high-
frequency oscillation may provide accurate localization of epileptogenic zone by
identifying the regions of interest for extratemporal lobe patients (Guirgis, 2015).
Moreover, the PAC in seizure onset zone was higher than normal zone (Mina Amiri
et al., 2016).

There are several approaches to evaluate PAC strength. In this paper, five common
PAC methods were employed to compute PAC values between low-frequency phase
and high-frequency amplitude from different aspects, in order to identify EEG of
seizure activity and EEG of seizure-free intervals and compare the performance of
five PAC algorithms. Specifically, Bonn EEG data were filtered into three bands of
low-frequency oscillation and three bands of high-frequency oscillation, and PAC
values for nine groups of band combination were calculated by every PAC method,
respectively. Then PAC features for the EEG of seizures activity and for the EEG
of seizure-free intervals were classified by using support vector machine (SVM).
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Afterward, the classification results were evaluated by calculating mean area under
curve (AUC) value based on receiver operating characteristic (ROC) with k-fold
cross-validation (CV). Final results showed that there existed obvious coupling fea-
tures between θ band phase and γ band amplitude for EEG in seizures, with the
classification result which was up to 0.99 for the EEG of seizures within epilepto-
genic zone and the EEG of seizure-free intervals not in epileptogenic zone, as well
as the classification accuracy was up to 0.96 for the EEG of seizures and seizure-free
intervals within epileptogenic zone. Results also show that the classification accuracy
analyzed by five different algorithms of computing PAC was similar to each other.
Moreover, the phase-amplitude comodulogram confirms intuitively the classification
results.

2 Materials and Methods

2.1 Materials

The epileptic EEG dataset used in this paper is from the Department of Epileptology
at the University of Bonn (Andrzejak, 2001). The dataset is publicly available and
used widely in the research of epileptic EEG data analysis and classification. There
were five sets in the dataset, denoted as set A, set B, set C, set D, and set E. Each of set
contained 100 single-channel EEG segments with recording duration of 23.6 s per
segment. The sampling rate and band-pass filter were set to 173.61 and 0.5340Hz.
In details, set A and set B were surface EEG recordings taken from five healthy
volunteers whowere relaxed in an awake state with eyes open (set A) and eyes closed
(set B). Set C, set D, and set E were intracranial EEG recordings originated from
five patients, in which set C and set D were taken from during seizure-free intervals
from the opposite of the hemisphere of the brain (set C) and within epileptogenic
zone (set D), set E was taken from epileptic seizure activity. In this paper, set C, set
D, and set E were studied.

2.2 Methods of PAC

PAC is explained as that the high-frequency amplitude is modulated by the low-
frequency phase. Low-frequency phase time series and high-frequency amplitude
time series were computed firstly before computing the PAC strength. In this paper,
finite impulse response (FIR) filter and Hilbert transform were used. Take an exam-
ple, for a single-channel time series x(n) (n = 1, 2, . . . , N ), FIR filtered was applied
to extract high-frequency oscillation interested xh(n) and low-frequency oscilla-
tion interested xl(n). Then, the Hilbert transform was used to extract corresponding
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instantaneous phase time series and instantaneous amplitude time series of both
oscillations. Two analytic signals were obtained as

zl(n) = al(n)eiφl (n), al(n) = |zl(n)|, (1)

zh(n) = ah(n)eiφh(n), ah(n) = |zh(n)|, (n = 1, 2, . . . , N ), (2)

where φl(n) and φh(n)were the instantaneous phase time series, as well as al(n) and
ah(n)were the instantaneous amplitude time series of both high-frequency oscillation
and low-frequency oscillation. It is shown in Fig. 1 the process of band-pass filtering
and Hilbert transform before computing coupling strength.

There were five algorithms to be employed to calculate the PAC strength. The first
method was used to estimate PAC strength by taking the mean vector length modu-
lation index (MVL-MI) (Canolty and Edwards, 2006). It firstly defined the complex
variable z(n) = ah(n)eiφl (n) (n = 1, 2, · · · , N ) and then computed the absolute value
of the mean vector based on z(n) and defined the MI as

Mraw =
∣
∣
∣
∣
∣

1

N

N
∑

i=1

z(n)

∣
∣
∣
∣
∣
, (n = 1, 2, . . . , N ). (3)

Low frequency High frequency 

Low frequency 
phase

High frequency 
amplitude

HT HT

Fig. 1 EEG signal preprocessing process. a was one second raw EEG segment x(n) (n =
1, 2, . . . , N ). b and cwere the low-frequency filtered signal xl (n) of 4–8Hz and high-frequency fil-
tered signal xh(n)of 30–40HzprocessedbyFIRfilter.d and ewere the corresponding low-frequency
phase φl(n) and high-frequency amplitude time series ah(n) calculated by Hilbert transform. HT
denotes Hilbert transform. The figure is original.
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Then use surrogate data approach to compute the surrogate zs(n) (n = 1, 2, . . . , N ;
s = 1, 2, . . . , S) by introducing an arbitrary time lag between φl(n) and ah(n). And

compute the mean vector Ms =
∣
∣
∣
1
N

∑N
i=1 zs(n)

∣
∣
∣ of zs(n) according to the definition

of MI. And repeat the above step for s = 1, 2, . . . , S times to obtain the surrogate
values M1, M2, . . . , MS , and compute the mean μ and standard variance σ of these
surrogate values. Finally, compute the normalizedMI to evaluate PAC strengthwhich
is denoted as M , where

M =
∣
∣
∣
∣

Mraw − μ

σ

∣
∣
∣
∣
. (4)

The second method to quantify the PAC is based on phase-locking value (PLV)
(Vanhatalo, 2004; Cohen, 2007; Mormann, 2010). The PLV is defined as

PLV =
∣
∣
∣
∣
∣

1

N

N
∑

n=1

ei(φl (n)−φah (n))

∣
∣
∣
∣
∣
, (5)

where Hilbert transform is applied to ah(n) to get φah (n).
The third algorithm to measure the PAC strength was based on general linear

model (GLM) (Penny and Duzel, 2008). For the algorithm, a new high-frequency
amplitude model by introducing a multiple regression is

ah = Xβ + e, (6)

where X =

⎡

⎢
⎢
⎢
⎣

cos(φl(1)) sin(φl(1)) 1
...

...
...

cos(φl(n)) sin(φl(n)) 1
cos(φl(N )) sin(φl(N )) 1

⎤

⎥
⎥
⎥
⎦

N×3

, (n = 1, 2, . . . , N ), β are regression

coefficients by using least squares solution, and cos(φl(n)) and sin(φl(n)) are the
cosine and sine transform of low-frequency phase time series, respectively. After-
ward, the value rGLM

2 which is defined to quantify the coupling strength is described
as

rGLM
2 = SS(ah) − SS(e)

SS(ah)
, (7)

where SS(Ah) and SS(e) are the sum of squares of high-frequency amplitude time
series ah and the sum of squares of error e.

The fourth method to evaluate the PACwas based on an adaptive of the Kullback–
Leibler distance (KL distance) (Tort, 2010). In this algorithm, φl(t) is divided into
bins in order, and the mean value of ah(t) in each phase bin j is computed, where the
mean value is expressed by 〈ah〉φl

( j). And normalize the mean value 〈ah〉φl
( j) as

P( j) = 〈ah〉φl
( j)

∑Nbins
j=1 〈ah〉φl

( j)
, (8)
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where Nbins is the number of phase bins. Then the new MI is defined as

MI = DKL(P,U )

log(Nbins)
, (9)

where DKL(P,U ) = log(Nbins) − H(P), H(P) = −∑Nbins
j=1 P( j) log[P( j)].

The fifth method to quantify the PAC strength is by redefining the MVL-MI as
(Tolga, 2011)

ρ = 1√
N

× | ∑N
n=1 ah(n)eiφl (n)|

√
∑N

n=1 ah(n)2
(n = 1, 2, . . . , N ). (10)

2.3 Method of Classification

SVM is a supervised learning method based on statistical learning theory (SLT) in
machine learning. The basic model is the linear classifier that defines the largest
interval in the feature space. It maps the vector to the high-dimensional feature space
through nonlinear mapping and then selects the most classified surface to obtain a
hyperplane segmentation, which can separate the two types of modes and ensure the
interval is maximized as shown in Fig. 2.

The hyperplane segmentation H is defined as

wT x + b = 0. (11)

Class 1

Class 2

M
ax

 m
ar

gin
 =

 
2

w

H

H 1

H 2

Support vectors

b
w

wT x + b = 0

wT x + b = 1

wT x + b = − 1

Fig. 2 Principle of binary classification based on SVM. The figure is original.
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Total data 

Iteration 2

Iteration 1

Iteration 3

Iteration k

Validation

Train

AUC1

performance ∑k
i=1 AUCi

k
Mean AUC = 

AUC2

AUC3

AUCk

Fig. 3 Process of classification performance evaluation based on SVM and k-fold CV. The figure
is original.

Then the problem of finding the max margin can be transformed to the following
conditional extreme value problem, defined as

{

min 1
2w

Tw,

s.t. yi (wT xi + b) − 1 ≥ 0.
(12)

2.4 Evaluation of Classifier Performance

In this paper, the classification performance of SVM is evaluated by the mean AUC
based on ROC with k-fold CV. AUC is defined as the area under the ROC curve, and
ROC is the indicator to reflect the relationship between sensitivity and specificity
of variables. Especially, the k-fold CV is employed to reduce bias and get more
information from limited samples, in which k-fold CV is a resampling procedure that
is used to assessmachine learningmodels on limited data samples. The calculation of
mean AUC is shown in Fig. 3. Firstly, the dataset is shuffled randomly and partitions
the original dataset into k equal subsets. Onefold data are retained as the validation
set, and all the remaining k − 1 folds are kept in the CV training set. Secondly, the
CV training set is used to train the machine learning model, and the AUC value of
the model is calculated by validating the predicted results against the validation set.
Thirdly, repeat the step for k times and k AUC values are calculated. Finally, estimate
the accuracy of the model by taking the mean of the AUC derived in all the k cases
of CV.

3 Results

In this paper, set C, set D, and set E of Bonn dataset at nine frequency band combina-
tions were processed by five methods of PAC illustrated above, in which nine band
combinations were δl − α, δl − β, δl − γ , δh − α, δh − β, δh − γ , θ − α, θ − β,
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and θ − γ . Then PAC features were classified using SVM by means of scikit-learn
Pythonmodule “sklearn.svm.SVC” functionwith kernel set to linear (Pedregosa and
Varoquaux, 2011). And the classification performance was described by computing
mean AUC value based on ROC with k-fold CV, in which k = 10. The flowchart of
process is shown in Fig. 4.

From Tables1 and 2, it is intuitively observed that the AUC at band combination
θ − γ is obviously the highest, that is to say, there exits significant coupling of seizure
activity between the phase of θ band and the amplitude of γ band. Specifically, the
classify accuracy of detecting seizures is up to 0.96 at band combination θ − γ within
an epileptogenic zone by using GLM algorithm. Moreover, the accuracy to detect
seizures reaches 0.99 at band combination θ − γ for set C and set E. Furthermore,
the classification results processed by five different methods of computing PACwere
similar to each other.

Moreover, phase-amplitude comodulogram based on MVL1 method was used to
observe intuitively the differences of PAC features of seizure activity and seizure-
free intervals. Phase-amplitude comodulogram is the graphical representation that
exhibits coupling strength among multiple bands. When there is no prior assumption
of frequency bands phase-modulating and the amplitude-modulated, the comodulo-
gram can be used to locate initially the frequency bands where coupling occurs. We

Input: 
Bonn Data

Signal  
Preprocessing

Features  
Extraction

FIR Filter

HT

5 PAC 
Approches SVM

Bandwidth: 0.5 Hz;
HT denotes Hilbert Transform. Low frequency:

δl (0.5 − 2Hz)
δh (2 − 4Hz)
θ (4 − 8Hz)

Frequency band combination
 of PAC features

High frequency:
α (8 − 13Hz)
β (13 − 30Hz)
γ (30 − 40Hz)

Metric: AUC

Fig. 4 Flowchart of Bonn data analysis experiment based on five PAC methods. The figure is
original.

Table 1 AUC of PAC for set D and set E based on five PAC methods at nine band combinations

Bands δl − α δl − β δl − γ δh − α δh − β δh − γ θ − α θ − β θ − γ

MVL1 0.44 0.59 0.63 0.79 0.85 0.84 0.80 0.89 0.92

PLV 0.41 0.72 0.72 0.76 0.85 0.86 0.91 0.93 0.95

GLM 0.54 0.42 0.63 0.77 0.82 0.81 0.91 0.93 0.96

KL-MI 0.44 0.66 0.30 0.73 0.80 0.85 0.92 0.93 0.94

MVL2 0.46 0.50 0.47 0.70 0.78 0.80 0.93 0.92 0.94

It is noted that MVL1 is the first method, and MVL2 is the fifth method
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Table 2 AUC of PAC of set C and set E based on five PAC methods at nine band combinations

Bands δl − α δl − β δl − γ δh − α δh − β δh − γ θ − α θ − β θ − γ

MVL1 0.60 0.72 0.78 0.87 0.92 0.90 0.84 0.97 0.97

PLV 0.60 0.80 0.84 0.85 0.94 0.92 0.92 0.98 0.98

GLM 0.60 0.74 0.73 0.85 0.91 0.89 0.91 0.98 0.98

KL-MI 0.53 0.81 0.89 0.89 0.96 0.98 0.95 0.99 0.99

MVL2 0.56 0.71 0.74 0.82 0.90 0.89 0.95 0.98 0.99
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Fig. 5 Results of mean comodulograms of set C, set D, and set E for Bonn dataset based on MVL1

method. x-axis and y-axis represent frequency of phase and frequency of amplitude, respectively.
PAC values are displayed by pseudo-color plot. The part marked by purple denotes there is strong
phase-amplitude coupling between the phase of θ and the amplitude of γ . The figure is original.

applied comodulogram measure to analyze set C, set D, and set E. For each single
channel of each group, the comodulogramwas obtained by representingMI values of
multiple

[

f A(i), fP( j)
]

pairs, with both f A(i) and fP( j) being calculated in 0.5Hz
steps with 0.5Hz bandwidths in frequency range 0.5–40 Hz. Then, 100 comodulo-
grams for each set were obtained. Hereafter, mean values were taken for each set. As
shown in Fig. 5, compared with mean comodulograms of set C and set E as well as
results of set D and set E, it is significantly shown that there exists strong coupling at
band combination θ − γ for set E, which is consistent with the classification results
illustrated above (Tables1 and 2).

4 Conclusions

In this paper, epileptic EEG of Bonn dataset was analyzed by five PAC algorithms
at nine different frequency band combinations to evaluate the differences of PAC
strength between seizure activities and seizure-free intervals. The coupling strength
features at different band combinations computed by different PAC methods were
extracted and classified by SVM. Classification results were then denoted by AUC
based on ROC with k-fold CV. Final results were shown that the classification accu-
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racy was the highest at band combination θ − γ , which can be explained as that there
existed stronger PAC strength in EEG during seizure activity at the band combina-
tion θ − γ compared with EEG during seizure-free intervals. Hereafter, the results
processed by five different evaluation methods of computing PAC were similar to
each other, which illustrated the coupling results are almost unaffected by the dif-
ference of evaluation methods. Moreover, the results were also visually verified via
phase-amplitude comodulogram. All these summaries indicate that the PAC feature
can be used as a biomarker to detect epileptic seizures. Furthermore, this paper has
a potential limitation that only EEG from ten subjects was analyzed, so in the future
study, more datasets will be collected to certify the generality of the conclusion that
the PAC can be used as one of the biomarkers to detect epileptic seizures.
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