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Preface

Studying cognition from a dynamic point of view has become a trend currently, and
rapid developments have taken place in nonlinear dynamics and cognitive science. In
order to promote the integration of cognitive science and neurodynamics as a whole,
the 7th InternationalConference onCognitiveNeurodynamics (ICCN2019)was held
in Alghero (Sassari), Italy, from September 29 to October 2, 2019. The conference
was hosted in a building of the Università degli Studi di Sassari. It was precisely in
this university that the famous anatomist Luigi Rolando dedicated himself to those
researches that served as the basis of the neurological studies that would have made
him famous: in Sassari he published, in 1809, his fundamental contribution “Saggio
sopra la vera struttura del cervello dell’uomo e degli animali, e sopra le funzioni del
sistema nervosa” (Essay on the true structure of the human brain and of animals, and
above the functions of the nervous system). This scientific work is part of the line
of studies that applied the experimental method in neurophysiology, following the
path of the Bernese physiologist Albrecht von Haller (1708–1777) who published
in 1753–1755 an essay entitled the “Dissertation on the Irritable and Sensitive Parts
of Animals” (original title: De partium corporis humani sensibilius et irritabilus).
This work was based on numerous experiments of vivisection and on stimulation of
organs using the new knowledge offered to physiology by physics, chemistry and
natural history. With a rudimentary technique of stimulation, Von Haller classified
the parts in irritable, sensible or elastic and noted that the reactions varied between
different parts of the brain. This approach resulted in a turnabout in the university
environment of the eighteenth century.

Supported by the work of Alessandro Volta, Rolando was struck by the analogy
between electric devices and the structure of cerebellum towhich he assigned a role in
locomotion. In addition, Rolando was able to discern regularities in the morphology
of the cerebral cortex and could establish relations between its parts while tracing the
map and assigning them a name. Rolando’s research was based on the metaphysical
assumption that brain organisation had necessarily to be submissive to constant and
recognizable laws. His criticisms directed against the organology concepts of Gall,
then diffused throughout the Occidental world, were not at all dictated by a priori
concepts. Rolando did not underestimate these anatomical studies, but he denounced
on several occasions the absence of objective evidence for distinct organs to the tens of
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mental functions identified by the phrenologists. The link of the University of Sassari
with the neurosciences continued along the twentieth century. Giuseppe Levi, the
histologist who mentored the academic education of two Nobel laureates, Rita Levi
Montalcini (was awarded the 1986 Nobel Prize in Physiology or Medicine jointly
with colleague Stanley Cohen for the discovery of nerve growth factor) and Renato
Dulbecco (was awarded the 1975 Nobel Prize in Physiology or Medicine jointly
to David Baltimore and Howard Martin Temin for their discoveries concerning the
interaction between tumour viruses and the genetic material of the cell), worked and
taught in Sassari from 1909 to 1913. Daniel Bovet—who in 1957 had won the Nobel
Prize in Physiology and Medicine, for his research on synthetic curaries and their
therapeutic application—was nominated chair of pharmacology at the University of
Sassari in 1963. He continued his research on the actions carried out by nicotine at
the brain level and remained in the chair of pharmacology for 6 years.

These historical premises formed the background to host the top-level inter-
national conference in cognitive neurodynamics ICCN 2019. The intrinsic highly
interdisciplinary feature of cognitive neurodynamics depends on the fact that it is
not a science in itself, but represents one of the developments of the neuroheuristic
paradigm. The information processing affected by the brain appears then as a result of
an accordance between Nature (“bottom-up”) and Nurture (“top-down”). Research
strategy based on the “bottom-up” information flow, the preferred view by neurobiol-
ogists, seems potentially necessary and sufficient; however, it is not wholly viable to
actual experimentation considering the impossibility of simultaneously examining,
even in a primitive species, all cellular elements of the brain and all variables that
affect those elements. The “top-down” strategy with the assistance of “dark boxes”
is easier to bring to fulfillment but insufficient and irrelevant in understanding the
mechanisms coordinating the local networks of cellular elements. It seems therefore
that a fusion of the “bottom-up” and “top-down” mechanisms is needed, leading to
the neuroheuristic (or neuristic) paradigm, borrowed from the Greek terms neuron
(nerve) and heuriskein (to find, to discover). Its definition corresponds to that branch
of Science aimed at exploring the assumptions of the neurosciences through an
ongoing process continuously renewed at each successive step of the advancement
towards understanding the brain in its entirety.

The series conferences of ICCN provide very good opportunities for scientists
from various fields to review their achievements, to share their ideas and to promote
the development of this field. The 2019 conference followed those organized in
Carmona, Seville, Spain (August 1–5, 2017), in Sanya, China (June 3–7, 2015), in
Sigtuna, Sweden (June 23–27, 2013), in Niseko Village, Hokkaido, Japan (June 9–
13, 2011), in Hangzhou, China (November 15–19, 2009) and in Shanghai, China
(November 17–21, 2007). Last but not least, this series of conferences has increas-
ingly offered the opportunity to gather and celebrate friendships and promote scien-
tific collaborations by means of a rich set of social activities. In 2019, this tradition
started with a performance of traditional music and dances of Sardinia (on Sunday
29th of September) and an archealogical guided tour to ancient Sardinian acrop-
olis Anghelo Rui and complex nuraghe Palmavera (Tuesday 1st of October) and
continued all along with gastronomic specialties of Sardinian cuisine. In addition,
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we had the great honour to enjoy two performances by the internationally renowned
Japanese violinist Tamamo Ange Saito.

ICCN 2019 was organized as a single-track conference which attracted almost 80
participants from 16 countries (Brazil, China, France, Germany, Israel, Italy, Japan,
New Zealand, Norway, Russia, Spain, South Korea, Sweden, Switzerland, USA and
Uruguay), who made this conference a successful and memorable scientific event.
There were 52 presentations overall including 6 plenary lectures and 9 symposia.
The plenary speakers were Profs. Drs. Masamichi Sakagami (Brain Science Insti-
tute, Tamagawa University, Machida, Japan), Barry J. Richmond (Section on Neural
Coding and Computation, Laboratory of Neuropsychology, NIMH/NIH/ DHHS,
Bethesda, MD, USA), Hans Braun (Institute of Physiology, Philipps University of
Marburg, Germany),MiguelMerchán (Instituto deNeurociencias of Castilla y Leòn-
INCyL, Universidad de Salamanca, Spain), Xiaochuan Pan (Institute for Cognitive
Neurodynamics, East ChinaUniversity of Science andTechnology, Shanghai, China)
and Hiromichi Tsukada and Minoru Tsukada (Brain Science Institute, Tamagawa
University, Machida, Japan).

The broad span of research in cognitive neurodynamics conferred at ICCN 2019 is
presented in this volume organized in the following six sections: (I)Neurophysics and
Analysis of NeuroInformation (eight chapters); (II) Functional Interactions in Neural
Networks (six chapters); (III) Auditory and Multisensory Processing (five chapters);
(IV) Human Brain Dynamics and Motor Control (six chapters); (V) From Neural
Dynamics to Executive Functions: Short Papers (12 abstracts); and (VI) Information
Processing and Transmission in the Cerebral Cortex: Short Papers (11 abstracts).
All submitted papers were peer-reviewed by experts in the field based on originality,
significance, quality and clarity, under the coordination of the contact volume editor
Dr. Alessandra Lintas (LABEX—HEC Lausanne, University of Lausanne, Switzer-
land). We thank all the authors for the outstanding contributions to this conference
proceedings.

Finally,wewish to express our gratitude to all thosewhomade the7th International
Conference on Cognitive Neurodynamics and this proceedings volume possible. In
addition to all the contributing authors, we especially thank Prof. Minoru Tsukada
who kindly designed an original logo for the ICCN series of conference.We acknowl-
edge the helpful assistance of the personnel of the University of Sassari along the
conference and the contribution of Arch. Eugenio Lintas for the artistic design of the
communication material. We gratefully acknowledge sponsorship from the Diparti-
mento diArchitettura,Università degli Studi di Sassari, theEuropeanNeuralNetwork
Society and the Neuroheuristic Research Group of the University of Lausanne. We
thank also the journal “Cognitive Neurodynamics” by Springer for the publication
of this book series.

Sassari, Italy
Lausanne, Switzerland
December 2019

Alessandra Lintas
Alessandro Villa
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Seizure Detection of Epileptic EEG
Based on Multiple Phase-Amplitude
Coupling Methods

Yao Miao, Toshihisa Tanaka, Shintaro Ito, and Jianting Cao

Abstract For epileptic electroencephalography (EEG) analysis, features extraction
is crucial in seizure detection. In this paper, five methods for phase-amplitude cou-
pling (PAC) were employed to analyze epileptic EEG to verify that PAC can be used
as a biomarker to detect seizures. Specifically, five algorithms of evaluating PACwere
used to compute PAC of seizure activity and seizure-free intervals at nine frequency
band combinations. Then PAC of the EEG in a public dataset computed was clas-
sified by support vector machine (SVM), where the classification performance was
assessed by calculating mean area under curve (AUC) based on receiver operating
characteristic (ROC) with k-fold cross-validation (CV). Moreover, phase-amplitude
comodulogram was applied to the same dataset to confirm intuitively classification
accuracy. Results showed that the classification accuracy at band combination θ − γ

was up to 0.96 and 0.99 for identifying seizure-free and seizure intervals both within
epileptogenic zone and for classifying seizure-free interval EEG not within epilep-
togenic zone and seizure EEG within epileptogenic zone separately. Classification
results of five different PAC methods were similar to each other. Furthermore, it was
shown that there existed significant coupling at band combination θ − γ for EEG
of seizure activities by observing from the comodulograms, which were consistent
with the classification results.
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1 Introduction

Epileptic seizure is defined as a transient occurrence of signs and/or symptoms due to
abnormal excessive or synchronous neuronal activity in the brain by the International
League Against Epilepsy (ILAE) (Fisher, 2014). Electroencephalography (EEG) is
one of the primary diagnostic tools to be used currently in the location and charac-
terization of seizures. Currently, the clinical diagnosis of epilepsy is basically based
on the doctor’s clinical experience by visually observing the patient’s EEG. And due
to the predictability of the seizure, long-term detection of the subject is necessary,
which leads to disadvantages such as long manual detection and low efficiency for
doctors. Therefore, it is necessary to apply signal processing methods for automatic
detection of epileptic EEG in the diagnosis of epilepsy.

Many studies have been reported on epileptic EEG. For example, the classifier
to detect epileptic seizures was optimized by finding an optimal combination of
training sets (Bogaarts et al., 2016). The epileptic seizures were predicted with
the autoregressive (AR) model (Chisci et al., 2010). Moreover, a novel index was
proposed to predict the epileptic seizure (Aksenova et al., 2007). Another work
introduced the measure based on data mining techniques to analyze the epileptic
EEG (Exarchos et al., 2006). Furthermore, another study proposed a methodology
for nonlinear estimation based on bispectral analyses in localizing the epileptogenic
focus side (Villa andTetko, 2010). However,more features need to be used to analyze
the epileptic EEG to obtain more accurate results of detecting epileptic seizures. In
this paper, phase-amplitude coupling (PAC) is introduced to detect epileptic seizures.
The underlying idea behind using PAC is that PAC may be as a candidate biomarker
to characterize the epileptic seizures as it has been proven to be closely associated
with cognitive activity in the brain (Canolty and Knight, 2010).

PAC is defined as the coupling on high-frequency amplitude modulated by low-
frequency phase. Many studies have shown the differences in coupling between
epilepsy zone and normal zone. For example, research has shown that the PAC was
elevated in the seizure onset zone for the children with medically intractable epilepsy
secondary to focal cortical dysplasia (Ibrahim, 2013). And delta-modulated high-
frequency oscillation may provide accurate localization of epileptogenic zone by
identifying the regions of interest for extratemporal lobe patients (Guirgis, 2015).
Moreover, the PAC in seizure onset zone was higher than normal zone (Mina Amiri
et al., 2016).

There are several approaches to evaluate PAC strength. In this paper, five common
PAC methods were employed to compute PAC values between low-frequency phase
and high-frequency amplitude from different aspects, in order to identify EEG of
seizure activity and EEG of seizure-free intervals and compare the performance of
five PAC algorithms. Specifically, Bonn EEG data were filtered into three bands of
low-frequency oscillation and three bands of high-frequency oscillation, and PAC
values for nine groups of band combination were calculated by every PAC method,
respectively. Then PAC features for the EEG of seizures activity and for the EEG
of seizure-free intervals were classified by using support vector machine (SVM).
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Afterward, the classification results were evaluated by calculating mean area under
curve (AUC) value based on receiver operating characteristic (ROC) with k-fold
cross-validation (CV). Final results showed that there existed obvious coupling fea-
tures between θ band phase and γ band amplitude for EEG in seizures, with the
classification result which was up to 0.99 for the EEG of seizures within epilepto-
genic zone and the EEG of seizure-free intervals not in epileptogenic zone, as well
as the classification accuracy was up to 0.96 for the EEG of seizures and seizure-free
intervals within epileptogenic zone. Results also show that the classification accuracy
analyzed by five different algorithms of computing PAC was similar to each other.
Moreover, the phase-amplitude comodulogram confirms intuitively the classification
results.

2 Materials and Methods

2.1 Materials

The epileptic EEG dataset used in this paper is from the Department of Epileptology
at the University of Bonn (Andrzejak, 2001). The dataset is publicly available and
used widely in the research of epileptic EEG data analysis and classification. There
were five sets in the dataset, denoted as set A, set B, set C, set D, and set E. Each of set
contained 100 single-channel EEG segments with recording duration of 23.6 s per
segment. The sampling rate and band-pass filter were set to 173.61 and 0.5340Hz.
In details, set A and set B were surface EEG recordings taken from five healthy
volunteers whowere relaxed in an awake state with eyes open (set A) and eyes closed
(set B). Set C, set D, and set E were intracranial EEG recordings originated from
five patients, in which set C and set D were taken from during seizure-free intervals
from the opposite of the hemisphere of the brain (set C) and within epileptogenic
zone (set D), set E was taken from epileptic seizure activity. In this paper, set C, set
D, and set E were studied.

2.2 Methods of PAC

PAC is explained as that the high-frequency amplitude is modulated by the low-
frequency phase. Low-frequency phase time series and high-frequency amplitude
time series were computed firstly before computing the PAC strength. In this paper,
finite impulse response (FIR) filter and Hilbert transform were used. Take an exam-
ple, for a single-channel time series x(n) (n = 1, 2, . . . , N ), FIR filtered was applied
to extract high-frequency oscillation interested xh(n) and low-frequency oscilla-
tion interested xl(n). Then, the Hilbert transform was used to extract corresponding
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instantaneous phase time series and instantaneous amplitude time series of both
oscillations. Two analytic signals were obtained as

zl(n) = al(n)eiφl (n), al(n) = |zl(n)|, (1)

zh(n) = ah(n)eiφh(n), ah(n) = |zh(n)|, (n = 1, 2, . . . , N ), (2)

where φl(n) and φh(n)were the instantaneous phase time series, as well as al(n) and
ah(n)were the instantaneous amplitude time series of both high-frequency oscillation
and low-frequency oscillation. It is shown in Fig. 1 the process of band-pass filtering
and Hilbert transform before computing coupling strength.

There were five algorithms to be employed to calculate the PAC strength. The first
method was used to estimate PAC strength by taking the mean vector length modu-
lation index (MVL-MI) (Canolty and Edwards, 2006). It firstly defined the complex
variable z(n) = ah(n)eiφl (n) (n = 1, 2, · · · , N ) and then computed the absolute value
of the mean vector based on z(n) and defined the MI as

Mraw =
∣
∣
∣
∣
∣

1

N

N
∑

i=1

z(n)

∣
∣
∣
∣
∣
, (n = 1, 2, . . . , N ). (3)

Low frequency High frequency 

Low frequency 
phase

High frequency 
amplitude

HT HT

Fig. 1 EEG signal preprocessing process. a was one second raw EEG segment x(n) (n =
1, 2, . . . , N ). b and cwere the low-frequency filtered signal xl (n) of 4–8Hz and high-frequency fil-
tered signal xh(n)of 30–40HzprocessedbyFIRfilter.d and ewere the corresponding low-frequency
phase φl(n) and high-frequency amplitude time series ah(n) calculated by Hilbert transform. HT
denotes Hilbert transform. The figure is original.
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Then use surrogate data approach to compute the surrogate zs(n) (n = 1, 2, . . . , N ;
s = 1, 2, . . . , S) by introducing an arbitrary time lag between φl(n) and ah(n). And

compute the mean vector Ms =
∣
∣
∣
1
N

∑N
i=1 zs(n)

∣
∣
∣ of zs(n) according to the definition

of MI. And repeat the above step for s = 1, 2, . . . , S times to obtain the surrogate
values M1, M2, . . . , MS , and compute the mean μ and standard variance σ of these
surrogate values. Finally, compute the normalizedMI to evaluate PAC strengthwhich
is denoted as M , where

M =
∣
∣
∣
∣

Mraw − μ

σ

∣
∣
∣
∣
. (4)

The second method to quantify the PAC is based on phase-locking value (PLV)
(Vanhatalo, 2004; Cohen, 2007; Mormann, 2010). The PLV is defined as

PLV =
∣
∣
∣
∣
∣

1

N

N
∑

n=1

ei(φl (n)−φah (n))

∣
∣
∣
∣
∣
, (5)

where Hilbert transform is applied to ah(n) to get φah (n).
The third algorithm to measure the PAC strength was based on general linear

model (GLM) (Penny and Duzel, 2008). For the algorithm, a new high-frequency
amplitude model by introducing a multiple regression is

ah = Xβ + e, (6)

where X =

⎡

⎢
⎢
⎢
⎣

cos(φl(1)) sin(φl(1)) 1
...

...
...

cos(φl(n)) sin(φl(n)) 1
cos(φl(N )) sin(φl(N )) 1

⎤

⎥
⎥
⎥
⎦

N×3

, (n = 1, 2, . . . , N ), β are regression

coefficients by using least squares solution, and cos(φl(n)) and sin(φl(n)) are the
cosine and sine transform of low-frequency phase time series, respectively. After-
ward, the value rGLM

2 which is defined to quantify the coupling strength is described
as

rGLM
2 = SS(ah) − SS(e)

SS(ah)
, (7)

where SS(Ah) and SS(e) are the sum of squares of high-frequency amplitude time
series ah and the sum of squares of error e.

The fourth method to evaluate the PACwas based on an adaptive of the Kullback–
Leibler distance (KL distance) (Tort, 2010). In this algorithm, φl(t) is divided into
bins in order, and the mean value of ah(t) in each phase bin j is computed, where the
mean value is expressed by 〈ah〉φl

( j). And normalize the mean value 〈ah〉φl
( j) as

P( j) = 〈ah〉φl
( j)

∑Nbins
j=1 〈ah〉φl

( j)
, (8)
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where Nbins is the number of phase bins. Then the new MI is defined as

MI = DKL(P,U )

log(Nbins)
, (9)

where DKL(P,U ) = log(Nbins) − H(P), H(P) = −∑Nbins
j=1 P( j) log[P( j)].

The fifth method to quantify the PAC strength is by redefining the MVL-MI as
(Tolga, 2011)

ρ = 1√
N

× | ∑N
n=1 ah(n)eiφl (n)|

√
∑N

n=1 ah(n)2
(n = 1, 2, . . . , N ). (10)

2.3 Method of Classification

SVM is a supervised learning method based on statistical learning theory (SLT) in
machine learning. The basic model is the linear classifier that defines the largest
interval in the feature space. It maps the vector to the high-dimensional feature space
through nonlinear mapping and then selects the most classified surface to obtain a
hyperplane segmentation, which can separate the two types of modes and ensure the
interval is maximized as shown in Fig. 2.

The hyperplane segmentation H is defined as

wT x + b = 0. (11)

Class 1

Class 2

M
ax

 m
ar

gin
 =

 
2

w

H

H 1

H 2

Support vectors

b
w

wT x + b = 0

wT x + b = 1

wT x + b = − 1

Fig. 2 Principle of binary classification based on SVM. The figure is original.
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Total data 

Iteration 2

Iteration 1

Iteration 3

Iteration k

Validation

Train

AUC1

performance ∑k
i=1 AUCi

k
Mean AUC = 

AUC2

AUC3

AUCk

Fig. 3 Process of classification performance evaluation based on SVM and k-fold CV. The figure
is original.

Then the problem of finding the max margin can be transformed to the following
conditional extreme value problem, defined as

{

min 1
2w

Tw,

s.t. yi (wT xi + b) − 1 ≥ 0.
(12)

2.4 Evaluation of Classifier Performance

In this paper, the classification performance of SVM is evaluated by the mean AUC
based on ROC with k-fold CV. AUC is defined as the area under the ROC curve, and
ROC is the indicator to reflect the relationship between sensitivity and specificity
of variables. Especially, the k-fold CV is employed to reduce bias and get more
information from limited samples, in which k-fold CV is a resampling procedure that
is used to assessmachine learningmodels on limited data samples. The calculation of
mean AUC is shown in Fig. 3. Firstly, the dataset is shuffled randomly and partitions
the original dataset into k equal subsets. Onefold data are retained as the validation
set, and all the remaining k − 1 folds are kept in the CV training set. Secondly, the
CV training set is used to train the machine learning model, and the AUC value of
the model is calculated by validating the predicted results against the validation set.
Thirdly, repeat the step for k times and k AUC values are calculated. Finally, estimate
the accuracy of the model by taking the mean of the AUC derived in all the k cases
of CV.

3 Results

In this paper, set C, set D, and set E of Bonn dataset at nine frequency band combina-
tions were processed by five methods of PAC illustrated above, in which nine band
combinations were δl − α, δl − β, δl − γ , δh − α, δh − β, δh − γ , θ − α, θ − β,
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and θ − γ . Then PAC features were classified using SVM by means of scikit-learn
Pythonmodule “sklearn.svm.SVC” functionwith kernel set to linear (Pedregosa and
Varoquaux, 2011). And the classification performance was described by computing
mean AUC value based on ROC with k-fold CV, in which k = 10. The flowchart of
process is shown in Fig. 4.

From Tables1 and 2, it is intuitively observed that the AUC at band combination
θ − γ is obviously the highest, that is to say, there exits significant coupling of seizure
activity between the phase of θ band and the amplitude of γ band. Specifically, the
classify accuracy of detecting seizures is up to 0.96 at band combination θ − γ within
an epileptogenic zone by using GLM algorithm. Moreover, the accuracy to detect
seizures reaches 0.99 at band combination θ − γ for set C and set E. Furthermore,
the classification results processed by five different methods of computing PACwere
similar to each other.

Moreover, phase-amplitude comodulogram based on MVL1 method was used to
observe intuitively the differences of PAC features of seizure activity and seizure-
free intervals. Phase-amplitude comodulogram is the graphical representation that
exhibits coupling strength among multiple bands. When there is no prior assumption
of frequency bands phase-modulating and the amplitude-modulated, the comodulo-
gram can be used to locate initially the frequency bands where coupling occurs. We

Input: 
Bonn Data

Signal  
Preprocessing

Features  
Extraction

FIR Filter

HT

5 PAC 
Approches SVM

Bandwidth: 0.5 Hz;
HT denotes Hilbert Transform. Low frequency:

δl (0.5 − 2Hz)
δh (2 − 4Hz)
θ (4 − 8Hz)

Frequency band combination
 of PAC features

High frequency:
α (8 − 13Hz)
β (13 − 30Hz)
γ (30 − 40Hz)

Metric: AUC

Fig. 4 Flowchart of Bonn data analysis experiment based on five PAC methods. The figure is
original.

Table 1 AUC of PAC for set D and set E based on five PAC methods at nine band combinations

Bands δl − α δl − β δl − γ δh − α δh − β δh − γ θ − α θ − β θ − γ

MVL1 0.44 0.59 0.63 0.79 0.85 0.84 0.80 0.89 0.92

PLV 0.41 0.72 0.72 0.76 0.85 0.86 0.91 0.93 0.95

GLM 0.54 0.42 0.63 0.77 0.82 0.81 0.91 0.93 0.96

KL-MI 0.44 0.66 0.30 0.73 0.80 0.85 0.92 0.93 0.94

MVL2 0.46 0.50 0.47 0.70 0.78 0.80 0.93 0.92 0.94

It is noted that MVL1 is the first method, and MVL2 is the fifth method
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Table 2 AUC of PAC of set C and set E based on five PAC methods at nine band combinations

Bands δl − α δl − β δl − γ δh − α δh − β δh − γ θ − α θ − β θ − γ

MVL1 0.60 0.72 0.78 0.87 0.92 0.90 0.84 0.97 0.97

PLV 0.60 0.80 0.84 0.85 0.94 0.92 0.92 0.98 0.98

GLM 0.60 0.74 0.73 0.85 0.91 0.89 0.91 0.98 0.98

KL-MI 0.53 0.81 0.89 0.89 0.96 0.98 0.95 0.99 0.99

MVL2 0.56 0.71 0.74 0.82 0.90 0.89 0.95 0.98 0.99
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Fig. 5 Results of mean comodulograms of set C, set D, and set E for Bonn dataset based on MVL1

method. x-axis and y-axis represent frequency of phase and frequency of amplitude, respectively.
PAC values are displayed by pseudo-color plot. The part marked by purple denotes there is strong
phase-amplitude coupling between the phase of θ and the amplitude of γ . The figure is original.

applied comodulogram measure to analyze set C, set D, and set E. For each single
channel of each group, the comodulogramwas obtained by representingMI values of
multiple

[

f A(i), fP( j)
]

pairs, with both f A(i) and fP( j) being calculated in 0.5Hz
steps with 0.5Hz bandwidths in frequency range 0.5–40 Hz. Then, 100 comodulo-
grams for each set were obtained. Hereafter, mean values were taken for each set. As
shown in Fig. 5, compared with mean comodulograms of set C and set E as well as
results of set D and set E, it is significantly shown that there exists strong coupling at
band combination θ − γ for set E, which is consistent with the classification results
illustrated above (Tables1 and 2).

4 Conclusions

In this paper, epileptic EEG of Bonn dataset was analyzed by five PAC algorithms
at nine different frequency band combinations to evaluate the differences of PAC
strength between seizure activities and seizure-free intervals. The coupling strength
features at different band combinations computed by different PAC methods were
extracted and classified by SVM. Classification results were then denoted by AUC
based on ROC with k-fold CV. Final results were shown that the classification accu-
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racy was the highest at band combination θ − γ , which can be explained as that there
existed stronger PAC strength in EEG during seizure activity at the band combina-
tion θ − γ compared with EEG during seizure-free intervals. Hereafter, the results
processed by five different evaluation methods of computing PAC were similar to
each other, which illustrated the coupling results are almost unaffected by the dif-
ference of evaluation methods. Moreover, the results were also visually verified via
phase-amplitude comodulogram. All these summaries indicate that the PAC feature
can be used as a biomarker to detect epileptic seizures. Furthermore, this paper has
a potential limitation that only EEG from ten subjects was analyzed, so in the future
study, more datasets will be collected to certify the generality of the conclusion that
the PAC can be used as one of the biomarkers to detect epileptic seizures.
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EEG-Based Emotion Classification Using
Entropy Features and Machine Learning
Techniques

Jianhua Zhang, Peng Chen, and Rubin Wang

Abstract In recent years, emotion recognition has drawn intense interest from
researchers in various fields. Because physiological signals are intrinsically corre-
lated with emotions, emotion recognition method using physiological signals is
objective and insusceptible to intentional disguise of the human subject under study.
In particular, electroencephalogram (EEG) signals are sensitive to variations in
emotional state. In this paper, the 4-class emotion classification problem is investi-
gated. First we employ the data clustering algorithm to determine the actual class
label of each physiological data point. Then, nonlinear dynamics analysis is used
to extract two entropy features (i.e., sample entropy and approximate entropy) from
32-channel EEG signals. Finally, we compare five feature dimensionality reduction
or feature selection algorithms and four types of machine learning classifiers. The
comparative results have shown that the combination of Kernel Spectral Regres-
sion approach for EEG feature dimensionality reduction and random forest (RF) for
multi-class classification leads to promising emotion classification performance.

1 Introduction

Emotion recognition is a principal branch of affective computing. It is an interdis-
ciplinary field that integrates computer science, cognitive psychology, and neuro-
science. Human emotional status can be recognized by the use of facial expressions,
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acoustic signals, behavioral data (i.e., body gesture, posture, etc.), or psychophysi-
ological data (Petrushin, 1999; Anderson & McOwan, 2006; Pantic & Rothkrantz,
2000; Zhong et al., 2017). Nonetheless, the first three methods are subjective in
nature. For example, the experimental subjects might deliberately conceal their true
feelings and their disguised facial expressions or behavior may not correspond well
to their task performance in the experimental or real-world environments. In compar-
ison, the emotion recognition through physiological signals is more objective and
reliable (Wang et al., 2014). EEG signals originate from the central nervous system
(CNS) and respondmore rapidly to changes of emotion than peripheral neural signals.
Furthermore, it has been shown by several studies that EEG signals contain important
emotion-relevant features (Petrantonakis & Hadjileontiadis, 2011; Li et al., 2009).

Picard and her associates at the MIT gathered four types of physiological signals
(electromyography, pulse rate, galvanic skin response, and respiration) to identify
eight classes of emotion (Picard et al., 2001). From those signals, they extracted
both time- and frequency-domain features. They performed feature selection using
forward floating search method, Fisher projection method and the combination of
both. Finally, theKNNalgorithm is used to performclassification. The results showed
that the 3-class (i.e., anger, sadness, and happiness) classification accuracy achieved
88.3%, demonstrating the feasibility of using the physiological signals for emotional
state recognition. In Brady et al. (2016), the authors used visual and auditory cues
to trigger emotions, collected four sorts of physiological signals, including tempera-
ture, galvanic skin response, blood volume, and electrocardiogram (ECG) signal, and
achieved an average classification rate of 61.8%. In Chanel et al. (2006), the authors
used the international emotional picture system to arouse emotions, carried out 100
high- and low-arousal emotion-induction using four subjects, and recorded EEG,
blood pressure, and skin electric response. They extracted the relevant features from
heart rate, temperature, and respiratory signals, and compared the performance of
linear discriminant analysis and Naive Bayes methods for emotion classification. A
classification rate of around 55% was obtained. In Koelstra et al. (2012), the authors
used music videos as the stimuli. Each of the 32 subjects was asked to watch 40 clips
of the music video. They measured the subjective rating, facial expressions, EEG,
and peripheral physiological signals and reported an overall correct classification rate
of 67.7%. In Schmidt and Trainor (2001), the researchers also utilized music to elicit
four classes of emotions and observed that when positive musical stimuli were used,
the EEG activities in the frontal areas of left hemisphere increased, whereas the EEG
activities in the frontal areas of right hemisphere strengthened under the negative
music stimuli. Therefore, it was concluded in their paper that there is a strong corre-
lation between the frontal area of brain and the emotions. In Wagner et al. (2005),
the authors recorded four physiological signals (i.e., ECG, galvanic skin response,
EOG, and respiration). They compared three feature selection algorithms: variance
analysis, Fisher projection method, and sequence forward drifting selection. In addi-
tion, they adopted three classifiers, namely K-nearest neighbor, linear discriminant
analysis, and multi-layer perceptron, to classify the emotions into four states (joy,
happiness, anger, and sadness) and obtained promising emotion classification results.
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In this paper, we consider the emotion recognition problem using EEG signals
and attempt to reveal the complex unknown correlation between EEG signals and
emotional states. First, the subjective assessment data were clustered to deter-
mine the target emotion classes. Then, we perform feature extraction based on
nonlinear dynamics analysis of the EEG signals. We compare the emotion recogni-
tion accuracy of five feature reduction algorithms, i.e., Kernel Spectral Regression
(KSR), Locality Preserving Projection (LPP), Principal Component Analysis (PCA),
minimal-Redundancy-Maximal-Relevance (mRMR), andRelieff, as well as fourML
classifiers, including k-Nearest Neighbor (KNN), Naïve Bayes (NB), Support Vector
Machine (SVM), and Random Forest (RF).

2 Methods

2.1 Dataset and EEG Data Preprocessing

Emotion Elicitation Experiment. This section will describe the DEAP database
used in our emotion classification work. Using the 2D model of emotion, Koelstra
et al. (2012) used 40 music videos for emotion elicitation and 32 subjects (half male
and half female; age 19–37 with a mean age of 26.9 years old) in their experiments.
They measured physiological signals as well as facial expression data. More specif-
ically, they measured 40-channel physiological signals, including 32-channel EEG
signals and other 8-channel peripheral physiological signals (including skin electric
response, respiration, temperature, ECG, blood volume, EMG, and EOG signals).
Figure 1 shows the experimental procedure that they suggested.

There were 40 trials of emotional stimulation experiment for each subject (each
trial corresponding to watching one of the 40 music video clips). Each trial consists
of four steps:

Step 1: Before each video starts, display the current video number for 2 s.
Step 2: Record the 5 s baseline EEG data.
Step 3: Play the 1-min music video.
Step 4: Collect subjective ratings (i.e., self-evaluation) on four rating scales:

arousal, valence, liking, and dominance.
EEGData Preprocessing. EEG signals respond to the change of emotional state

more rapidly than other peripheral physiological signals, therefore in this paper,
we focus on using EEG signals for emotion classification. In the data acquisition
experiment, the original EEG signals were collected at a sampling rate of 512 Hz
and then down-sampled to 128 Hz. The EOG artifact is removed from the EEG
recordings by using a 4–45 Hz band-pass filter. The pre-processed EEG consists
of the 60 s EEG data (during music video watching) and 3 s baseline data (before
the playing of the music video). During the establishment of the DEAP database,
subjects were asked to take 2 min break after watching every two videos.
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Fig. 1 The emotion-induction experimental procedure

In order tominimize the impact of the previous stimulus on the current emotion and
the effect of inter-subject non-stationarity of physiological signals, we subtract the
pre-stimulus baseline EEG features from the post-stimulus ones and then normalize
the resulting difference (or deviation) to the interval [0, 1]. The 60 s EEG signal is
segmented into 15 equal, non-overlapping segments. Here, 4 s is taken as the length
of the time window. After such processing, the number of samples is 40*15 = 600
per subject. For 32 subjects, 32*600 = 19,200 samples are available.

Most of the previous studies considered only a usually small number of emotion
classes. For example, using theDEAPdatabase,many studies on emotion recognition
dealt with the binary emotion (positive vs. negative valence or high vs. low arousal)
classification problem and computed the class labels by oversimplified threshold of
subjective data (Yin et al., 2017; Petrantonakis & Hadjileontiadis, 2011; Daimi &
Saha, 2014; Yoon&Chung, 2013). In order to determine reliably the target emotional
classes,we use the followingmethod.Byperforming k-means clustering of subjective
ratings on the arousal and valence rating scales, we can determine the target emotion
class for eachdata point on the2D (arousal andvalence) emotionplane.The clustering
results are shown in Fig. 2. Figure 3 shows the 2Demotion plane,whereLV represents
low valence (negative emotion), HV represents high valence (positive emotion), LA
represents low arousal, and HA represents high arousal. The cluster centers when k
= 4 are given in Table 1.

When k-means algorithm is used for clustering, it is necessary to set the initial
clusters. The setting of the initial cluster centers depends on if the 2D emotion
model can be accounted for the obtained class labels. Since the true class labels (i.e.,
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Fig. 2 The k-means
clustering result

Fig. 3 A 2D emotion model
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Table 1 The four cluster centers obtained by the k-means algorithm (k = 4)

Emotion class Cluster center Size of class (# of data in each class)

Arousal Valence

Peaceful 3.21 6.61 340

Cheerful 7.48 6.76 354

Upset 6.35 4.05 309

Depressed 3.69 2.55 277

ground truth or golden yardstick) are unknown, we use the Calinski-Harabasz index
to quantify the data clustering performance. The larger the Calinski-Harabasz index
is, the higher the clustering quality turns. The Calinski-Harabasz index (Calinski and
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Harabasz, 1974) is defined by:

sK = N − K

K − 1
· Tr(Bk)

Tr(Wk)
(1)

WK =
K∑

q=1

∑

x∈cq

(x − cq)(x − cq)
T (2)

BK =
∑

q

Nq(cq − c)(cq − c)T (3)

where Bk denotes the covariance matrix of clusters, Wk the covariance matrix of a
single cluster, N is the sample size, K is the number of clusters, cq represents the
center of the q-th cluster, and Nq the size of the q-th cluster.

Figure 4 shows the Calinski-Harabasz index and the corresponding Sum of
Squared Errors (SSE)when k is increased from 2 to 8. It can be seen that the Calinski-
Harabasz index is largest (1180.69) when k = 4. On the other hand, the 2D emotion
plane can be divided into four types of emotions by the threshold method. Therefore,
the number of clusters is set to four.
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Fig. 4 The change of the Calinski-Harabasz index and SSE vs. the number of clusters
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2.2 EEG Feature Extraction

Due to the inherent complexity of EEG signals, it is rather difficult to extract
the complete set of salient emotion features/attributes from them. In recent years,
nonlinear dynamics methods have been used to analyze EEG signals (Zhang et al.,
2014; Vijith et al., 2016; Guido, 2018). Among them, approximate entropy (Pincus,
1991) and sample entropy (Richman&Moorman, 2000) are two important measures
to quantify the complexity of a time series. In this work, we perform nonlinear
dynamics analysis of EEG signals to extract approximate entropy and sample entropy
features.

2.3 EEG Feature Reduction/Selection

EEG feature reduction/selection is crucial for emotion recognition due to the high-
dimensionality of the EEG features extracted. In addition, they are usually needed
for: (1) data visualization; (2) acceleration of the ML classifier training; or (3) alle-
viation of the notorious problem of curse of dimensionality to enhance prediction or
generalization accuracy of the trained classifier.

If ApEn and SampEn are used jointly as the emotion features, the feature dimen-
sionality is 32*2= 64. This paper compares the performance of three-dimensionality
reduction algorithms (KSR, LPP, and PCA) and two feature selection algorithms
(mRMR and Relieff). Here PCA is used as a reference for comparison of other algo-
rithms and the kernel spectral regression (KSR) discriminant analysis algorithm (Cai
et al., 2011) is very effective to deal with big data.

2.4 Classifiers

The constructions of the ML emotion classifier includes such steps as data prepro-
cessing, EEG feature extraction, feature reduction, and optimal classifier design
under predefined performance criteria (Kim et al., 2004). In order to obtain accurate
recognition, we will focus on random forest (RF). The basic idea of RF, an ensemble
learning method, is bagging, i.e., the RF classifier is constructed by combining a set
of decision trees. We can decide the classifier output through voting among those
decision trees (Breiman, 2001).
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3 Results and Discussion

3.1 Comparison of Feature Extraction/Reduction Algorithms

In order to obtain more reliable recognition accuracy, for each subject the samples
were divided into a training set and a test set by 5-fold cross-validation. Therefore,
for each subject, the size of training set is 480 and the size of test set is 120. The
feature dimensionality of approximate entropy and sample entropy is 32 and 32,
respectively. Here, we use the RF classifier. By comparison of different classifiers,
we found that the recognition rate of the RF classifier is higher than that of KNN
and NB and the training speed of RF is higher than that of SVM. Here we compared
five EEG feature reduction algorithms: KSR, LPP, mRMR, Relieff, and PCA. For
the purpose of comparison, the emotion recognition accuracy when using all the
original features, i.e., the case of No Dimensionality Reduction (NDR), is used as
the baseline value.

The parameter setting for each dimensionality reduction algorithm is as follows:
for the KSR and LPP, we select the Gaussian kernel function; for the KSR we select
the L2 norm as the regularization type and set the regularization parameter as 0.01;
for the LPP we set the number of nearest neighbors as 5 and use the Euclidean
distance function; for mRMR and Relieff we set the number of features selected as
20; and for PCA we set the variance contribution to 0.98. There are four classes of
emotions and approximate entropy and sample entropy are extracted as features of
emotion.

The emotion recognition accuracy is shown in Table 2, in which Total means that
both the approximate entropy and the sample entropy are used in the feature set.
From Fig. 5, we can find that when we use KSR algorithm for feature dimensionality
reduction, the joint use of approximate entropy and sample entropy as features led
to a high classification accuracy of 92.8 ± 2.8% and that the classification accuracy
of using different dimensionality reduction algorithms is significantly different. The
KSR and LPP dimensionality reduction algorithms significantly outperform feature
selection algorithms (mRMR and Relieff).

Table 2 The 4-class emotion classification accuracy (%) under different feature reduction/selection
algorithms

Features KSR LPP mRMR Relieff PCA NDR

ApEn 89.9 ± 3.7 82.8 ± 4.1 75.7 ± 4.9 76.2 ± 5.1 82.9 ± 4.2 78.7 ± 5.6

SampEn 87.5 ± 6.3 81.7 ± 6.8 74.7 ± 6.3 75.7 ± 6.2 81.1 ± 7.0 77.4 ± 6.7

Total 92.8 ± 2.8 86.3 ± 6.6 75.2 ± 5.9 76.1 ± 5.7 83.8 ± 6.1 77.4 ± 5.9
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Fig. 5 The comparison of 4-class emotion classification results

3.2 Comparison of ML Classifiers

The classifiers under comparison include KNN, NB, SVM, and RF. The number
of nearest neighbors in KNN is set as 6 by trial-and-error; in the SVM the radial
basis kernel function is used and grid search is performed to find the optimal
penalty factor C and parameter γ in interval C ∈ {2−8, 2−7, · · · 27, 28} and γ ∈
{2−8, 2−7, · · · 27, 28}; for the RF, we empirically set the number of decision trees as
500 and the number of features selected for further splitting each time as

√
m, where

m denotes the feature dimensionality.
Figure 6 shows the comparative results. It can be found that the subject-average

classification accuracy of RF and SVM and KSR is 92.7% and 92.8%, respec-
tively, much higher than that of KNN and NB. However, the tuning of SVM hyper-
parameters is more tedious and time-consuming, while simple use of the empirical
hyper-parameters of RF can obtain comparable classification accuracy.
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Fig. 6 The comparison of 4-class emotion classification accuracy of a combination of five feature
reduction/selection algorithms and four ML classifiers
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4 Conclusion and Future Outlook

In this paper, we study the EEG-based emotion recognition problem using the
DEAP dataset. We consider and compare different feature extraction, feature
reduction/selection, and ML classification methods and finally draw the following
conclusions :

(1) When using the relative change of entropies as the features, rather than the
absolute entropy of the EEG signals under emotional stimuli, the correct
classification rate can be significantly improved.

(2) The classification rate can be increased if the approximate entropy and sample
entropy features are used in combination.

(3) KSR is the best feature reduction/selection algorithm by comparison.
(4) SVM and RF classifiers outperform KNN and NB for EEG-based recognition

of emotions.

The future work is anticipated as follows:

(1) The 3D or even higher-dimensional emotion model can be considered to
determine more classes of emotion.

(2) We need further research on the method of determining the target classes.
It may be also possible to better determine the target classes by taking into
account the content of the emotional stimulus material.

(3) In order to further improve the accuracy of emotion recognition, we need
to combine heterogeneous (multi-modal) physiological signals by certain
data/information fusion methods to realize multi-modal emotion recognition.

(4) In real-world applied task environment, generic emotion classifiers would be
preferred. We need to utilize transfer learning technique to design the subject-
independent classifier so as to achieve a comparable/stable classification rate
across different subjects with marked individual differences in terms of the
recorded EEG signals.
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Optimized Correlation-Based Time
Window Selection Algorithm for Motor
Imagery Based BCIs

Zongmei Chen, Cili Zuo, Hak-Keung Lam, Yangyang Miao, Xingyu Wang,
and Jing Jin

Abstract For motor imagery (MI)-based brain–computer interface (BCI) systems,
the time latency and length of MI task vary between trials and subjects, due to the
differences between subjects’ reaction time and personal habits. Therefore, the start-
ing and ending time point of each MI task can hardly be determined manually for
different subjects. Fixed time windowmay contain task-irrelevant signals or does not
contain sufficient task-related signals, which will lead to degraded the performance
of MI-based BCI systems. To address this issue, an optimized correlation-based time
window selection (OCTWS) algorithm is proposed for MI-based BCIs. The opti-
mized starting point and length of MI task-relevant signals are determined simul-
taneously based on correlation analysis and performance evaluation. A public EEG
dataset (BCI Competition IV Dataset I) is used to evaluate the proposed OCTWS
method. Experimental results demonstrate that OCTWS helps improve the feature
extraction and classification performance of MI.

1 Introduction

Brain–computer interface (BCI) systems can straightly transform brain signals such
as electroencephalogram (EEG) to control external devices without the involve-
ment of peripheral nerves or muscles (Makand and Wolpaw, 2009). BCIs provide a
new communication/control channel for patients who have lost normal communica-
tion/control abilities due to severe motor impairments, which have gained interest
in neuroscience and rehabilitation engineering (Birbaumerand Cohen, 2007). Motor
imagery (MI) is a mental representation of motor behavior. The tasks associated
with motor imagery can bring variations in the rhythmic activities of the brain elec-
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trophysiological signals which can be expressed as event-related desynchronization
/synchronization (ERD/ERS) phenomenon (Pfurtscheller 1977, 1992), specifically
in mu (8–12Hz) and beta rhythm (13–30Hz) (McFarland et al., 2000; Pfurtscheller
et al., 2006). The corresponding differences in EEG signals can be transformed to
control commands. Such MI-based BCIs are usually more convenient to use than
stimuli-based BCIs since it can be operated without external stimuli (Qiu et al.,
2016). It has shown promising application values in medical rehabilitation (post-
stroke rehabilitation), auxiliary control (e.g., neuroprosthesis control (Müller-Putz
et al., 2005), 2D cursor control (Long et al., 2012), wheelchair control (Tang et al.,
2018), etc.), and social entertainment (Folgieri and Zampolin, 2014; van de Laar
etal., 2013). However, it has reported that many MI-based BCIs users cannot obtain
sufficient accuracy of control commands (Guger et al., 2003). One of the reasons is
that it is hard to accurately extract the features about MI. Thus, an urgent problem
in MI-based BCIs is how to further improve the feature extraction performance.

Various feature extraction methods have been proposed, such as adaptive autore-
gressive model (ARR) (Schlögl et al., 1997), wavelet transform (WT) (Hsu and Sun,
2009), wavelet packet transform (WPT) (Zhou andWan, 2012), and common spatial
pattern (CSP) (Yang and Wu, 2014). Particularly, CSP is always regarded as one
of highly successful algorithms due to its good performance in extracting spatial
domain features (Blankertz et al., 2008), which can extract task-related signal com-
ponents from multi-channel EEG data and suppress uncorrelated signal components
(Ramoser et al., 2000). Commonly, a fixed starting point and length of EEG signals
have been used to extract the MI features in the majority of state-of-the-art MI-based
BCIs (Qiu et al., 2016; Ang et al., 2012; Rodriguez-Bermudez et al., 2013). However,
considering it is hard to determine certainly when participants begin to perform MI
task and how long it lasts, and fixed time window method may lead to low classifi-
cation accuracy because of deficient information or interference from invalid data.
To address this issue, recently, a correlation-based time window selection (CTWS)
algorithm has been proposed and achieved better classification accuracy than fixed
time window method (Feng et al., 2018). In CTWS, the optimized starting point
of MI task-relevant signals was determined based on correlation analysis. However,
CTWS using a fixed window length did not consider the influence of window length
to MI feature extraction.

In this paper, an optimized correlation-based time window selection (OCT-
WS) algorithm is proposed to select the starting point and length of MI task-relevant
time windows simultaneously. In the proposed method, correlation analysis and per-
formance evaluation are used to determine the starting point and length of time win-
dows. The common spatial pattern (CSP) method is used to extractMI features, and a
support vector machine (SVM) with linear kernel is then trained on the selected fea-
tures to classify MI tasks. The proposed method is validated on a public EEG dataset
(BCI Competition IV Dataset I) and compared with fixed time window length-based
CSP and CTWS. Experimental results show that OCTWS achieves more superior
classification performance.
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The remainder of this paper is organized as follows: Sect. 2 describes thematerials
and methods in details; Sect. 3 shows the experimental results; Sect. 4 gives the
discussion; and finally, Sect. 5 serves as conclusion.

2 Materials and Methods

2.1 Materials

The Dataset I from BCI Competition IV was used to evaluate the performance of
proposed method. This dataset consists of EEG signals based on MI, obtained from
seven subjects (numbered by S1–S7), recorded via 59 electrodes with 100Hz sam-
pling frequency. The timing scheme of single trial is shown in Fig. 1 where each trial
lasts for 8 s, including three phases: in preparation phase (0–2 s), a fixation cross
would showon themonitor to remind the subject focusing attention to the task, then in
MI task phase (2–6 s), the subject was asked to perform corresponding MI task (Left
hand/Right hand/Foot) according to the cue, finally, in rest period (6–8 s), a black
screen would appear on the monitor. More details about the dataset can be found
at Web site: https://www.bbci.de/competition/iv/. In this paper, only the calibration
data in total of 200 trials for each subject were used to evaluate the algorithms.

2.2 Methods

CTWS is an effectivemethod for selecting trial-specific timewindow for each subject
that can facilitate effective feature extraction. The main principle of CTWS is to
iteratively adjust the time window of the training data to find the optimized reference
signals based on the maximum correlation between current reference signals and
EEG signals with different starting points, as described in Eqs. (1) and (2).

Fixation cross Motor imagery Black screen

0 2 6 8
t/s

Cue:left/right/foot

Fig. 1 Timing scheme of single MI trial



30 Z. Chen et al.

cov(Ri j ,Ci j ) = 1

Nt

Nt∑

t−1

(Ri (t) − R̄i (t))(Ci (t) − C̄i (t)), i = 1, 2; j = C3,C4

(1)

V = argmax
k

(cov(Ri3,C
k
i3)) + cov(Ri4,C

k
i4), k = 1, 2, . . . , n (2)

where t is the index of current point in the time window with the length of Nt, i is
the index of class, j is the index of channel (channel C3 and C4 were selected), R is
the reference signal, C is the signal of current sample, R and C are the average value
of R and C over t; V represents the time window with maximum average correlation
value, and n is the number of generated new time windows.

After obtaining the optimized reference signals, the starting points of the time
windows for both training and test samples are adjusted using correlation analysis
by Eqs. (1) and (2). Note that, in CTWS, only the starting point of the time window
is adjusted, while the length of the time window is not considered.

As for the improvement of traditional CTWS, the proposed OCTWS aims to
select optimal starting point and length of time window simultaneously. The CTWS
is used to determine the starting point of the time window, and a wrapper-based
feature selection method (Foitong et al. 2012) is used to select the best length of the
time window. The CSP and SVM are used for feature extraction and classification,
respectively. The procedure of OCTWS can be described as follows:

(1) Firstly, divide the preprocessed EEG samples (X ∈ R
M × N × K, where M,

N, and K denote the number of channels, sampling points, and trials, respectively)
into two parts (training samples and test samples).

(2) Next, for the training samples, set the current window length to the minimum
window length (1000mswas selected in this paper), and perform the CTWS to obtain
the optimized reference signals (OR1 and OR2) of each class; then, adjust the start
time point for test samples with OR1 and OR2 based on Eqs. (1), and calculate the
test classification accuracy.

(3) Then, update the length of the time window (increased by a window change
step, 200 ms was used in this paper), and repeat (1) and (2) until the current window
length reaches the maximum window length (3000 ms was selected in this paper).
If the new classification accuracy is higher than the previous classification accuracy,
replaceOR1 andOR1 with the new reference signals (NOR1 andNOR2). The process
above was repeated ten times with a tenfold cross-validation scheme to evaluate the
average classification accuracies.

(4) Finally, select the OR1 and OR2 corresponding to the highest average classifi-
cation accuracy as the optimized reference signals NOR1 and NOR2, which are then
employed to select the optimal time windows for each raw sample using correlation
analysis through Eqs. (1) and (2).

The pseudocode of OCTWS is given in Table 1.
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Table 1 Pseudocode of OCTWS

Algorithm: Optimized Correlation-based Time Window Selection (OCTWS)

Inputs: Preprocessed EEG samples (X), Minimum window length, Maximum window

length, Window change step.

Outputs: Optimized time window for each sample.

Steps:
1 Initialize Current window length to Minimum window length;

2 while Current window length <Maximum window length

3 Generate reference signal OR1 and OR2 by CTWS with Current window

length for training samples;

4 Adjust start time point for test samples with OR1 and OR2 based on

Eqs.(1) and (2);

5 Calculate classification accuracy for test samples;

6 Current window length = Current window length + Window change step;

7 end
8 Set optimized reference signals NOR1 and NOR2 to OR1 and OR2 with the

highest classification accuracy;

9 Obtain the optimized time window for each sample with NOR1 and NOR2

based on Eqs.(1) and (2).

3 Results

The proposed OCTWS was compared with traditional CSP and CTWS with fixed
window length. For CSP and CTWS, window length is set to 2000 ms according to
(Feng et al. 2018). For all three methods, all samples were filtered by a fifth order
Butterworth filter (frequency band ranging from 8 to 30Hz).

In order to test the performance of the proposed OCTWS, it was combined with
CSP (OCTWS + CSP) to extract feature on BCI Competition IV Dataset I. The
obtained feature distributions by CTWS + CSP and OCTWS + CSP are shown
in Fig. 2, respectively, for seven subjects. The blue and red circles represent the
two different feature classes. It can be clearly observed that compared to the tradi-
tional CTWS combined with CSP (CTWS+CSP)method, the OCTWS+CSPmethod
improves the distinguishing degree of the two classes of EEG signals for each subject.
Especially, subject 3 and subject 6 are of most obvious. Therefore, it qualitatively
shows that the proposed OCTWSmethod provides a better effect on the extraction of
EEG features than the CTWS method, which will promote the pattern classification
of MI-based EEG signals.

The above results of feature distribution indicate that the optimization of time
window length is also an important factor for MI-based BCIs. Figure 3 presents two
examples to show the effects of varying time window length (from 1000 to 3000 ms)
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Fig. 2 Feature distribution of each class extracted by CTWS + CSP and OCTWS + CSP for seven
subjects. a Five subjects tested on right and left hand. b Two subjects tested on right hand and foot

on the average classification accuracy in a tenfold cross-validation for subject 3 (S3)
and 4 (S4). It can be seen that the average accuracy varies with the length of time,
and the optimal time window length is subject specific, for S3 is 1600 ms and for S4
is 2600 ms.

To quantitatively evaluate the performance of the proposed OCTWS algorithm
for time window length optimization, we compared the classification accuracy of
OCTWS + CSP, CTWS + CSP, and CSP method using SVM with linear kernel
as the classifier (Feng et al. 2018). A tenfold cross-validation is implemented to
evaluate the classification performance. The experimental results of classification
accuracy of OCTWS+CSP, CTWS+CSP, and CSP are given in Table 2, for seven
subjects. The first obvious finding is that the classification accuracy of CTWS + CSP
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Fig. 3 Effects of varying time window length on the average classification accuracy for subject 3
(S3) and subject 4 (S4)

Table 2 Classification accuracy (%) of CSP, CTWS + CSP, and OCTWS + CSP, for seven subjects

Subjects CSP CTWS + CSP OCTWS + CSP

S1 64.50 82.50 83.50

S2 51.50 76.00 78.00

S3 53.00 66.00 86.50

S4 89.00 96.00 96.00

S5 93.50 98.00 96.00

S6 46.00 80.00 90.50

S7 66.00 82.00 87.00

Mean±std 66.21±18.56 82.93±11.12 88.21±6.55

(82.93%± 11.12%) andOCTWS+CSP (88.21%± 6.55%) significantly outperform
CSP (66.21% ± 18.56%) with fixed window. Moreover, the average classification
accuracy of OCTWS+CSP method has improved by 5.28% compared to CTWS
+ CSP method (82.93% versus 88.21%). The comparison of classification results
further verifies the superior performance of OCTWS in obtaining the optimal starting
point and length of time window in MI-based BCI system.

4 Discussion

For motor imagery (MI)-based BCI systems, extracting the features matching MI
tasks is a key link to improve the recognition rate. CSP is an effective feature extrac-
tion algorithm, and some improved CSP algorithms have been proposed in recent
studies. In particular, the time window selection of EEG signals has an important
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influence on the feature extraction based on CSP ((Feng et al., 2018)). The study
based on CTWS algorithm has indicated that the starting point time window varies
from one trail to the next among any one individual during motor imagery. However,
the length is also a major factor in determining the time window. As shown in Fig. 3,
the classification accuracy changed as time window length varied for different sub-
jects. Therefore, it is necessary to select the starting point and length of time window
at the same time before feature extraction.

In this study, the proposed OCTWS algorithm further considers the length of time
window based on traditional CTWS algorithm (only considering the starting point
of time window). It has confirmed that CTWS is more superior in feature extraction
than CSP in BCI Computation IV Datasets. But as shown in Fig. 2, we can find that
the distribution of MI feature based on OCTWS algorithm has once again improved.
So overall, the proposed OCTWS algorithm is more conducive to feature extraction
than CSP and CTWS algorithms.

As given in Table 2, the proposed OCTW algorithm also brings about a higher
classification accuracy compared to CSP and CTWS algorithm, which evaluate the
effectiveness and practicality. Of course, in both OCTWS and CTWS algorithms,
only the time window of MI is selected. So in future work, we can further consider
the frequency band selection of EEG signals in order to boost the performance of
OCTWS algorithm.

5 Conclusion

In this paper, we have proposed an optimized correlation-based time window selec-
tion (OCTWS) algorithm for further improving the classification performance of
traditional CTWSwhich can select optimal starting point and length of time window
simultaneously. We incorporated CSP and SVM into the structure of the OCTWS
algorithm for feature extraction and classification on BCI Competition IV Dataset I.
The experimental results demonstrated that the optimization of time window length
was also an important factor for MI-based BCIs besides starting time point. The
features extracted by proposed OCTWS algorithm were easier to classify and could
also achieve better classification performance compared to the traditional CTWS.
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The Alpha Network Changes Elicited
by Working Memory Training

Junling Ran, Huiling Zhang, Jayang Xu, Tianhao Li, Dong Wang,
and Yin Tian

Abstract In the current study, we utilized EEG coherence and complex brain
network to study the changes of working memory (WM) and constructed differential
statistical networks under alpha rhythms before and after training. The results showed
that the long-range frontoparietal and frontooccipital interactions during WM reten-
tion involved in the alpha frequency network. The findings revealed that the connec-
tions between neurons varied to complete the efficient transmission and processing
of information, indicating the neural plasticity before and after WM training from
the network level.

1 Introduction

Visual working memory (WM) involved neuronal activity in the various cortical
regions including frontal, parietal, occipital, and temporal areas based on functional
magnetic resonance imaging (fMRI). Brain oscillations at different frequencies are
associatedwith cognitive processes such as emotion andmemory (Jay&René, 2004).
And the oscillation synchronization could be used to define interactions between
different brain regions at relatively high temporal resolutions (Li et al., 2015). More-
over, the alpha synchronization prevents external input from interferingwith ongoing
working memory tasks (Ole & Tesche, 2010), implying neural synchronization acti-
vation of alpha oscillations could suppress information processing independent of
WM (Li-Yu et al., 2013). The continuous activity of the brain is strong evidence,
which reflected WM characterization during the delayed period of WM. Many brain
areas of the cortex and subcortex also exhibited similar sustained activity and formed
a brain networks for memory information interaction to support the processing
and delivery of WM retention information (Curtis et al., 2005). EEG coherence
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was primarily a measure of phase consistency, reflecting the functional connec-
tion between paired brain regions (Nolte et al., 2004). Strong coherence reflected
the simultaneous oscillation of neurons, while weak coherence indicated that the
activity between these neural clusters was independent of each other. In brain science
research, graphical theory analysis was widely used in brain network to provide a
theoretical basis for understanding the brain network topology. Studies have shown
that the human brain was a highly interconnected complex network (Langer et al.,
2013). Therefore, we utilized the graph theory analysis method based on EEG coher-
ence to construct a coherence network before and after WM training, and difference
network relied on statistical analysis under different brain oscillations. We hope that
the current study could reveal the plasticity of WM training from the brain network
perspective based on EEG coherence.

2 Materials and Methods

Twenty right-handed normal male subjects (21 years old) participated in the exper-
iment. All subjects did not have any cognitive impairment, history of mental and
neurological diseases. The experiment was approved by the Ethics Committee of
Chongqing University of Posts and Telecommunications. All subjects who partici-
pated in this experiment read the informed consent form in advance and signed it.
After the experiment, subjectswill receive corresponding compensation for their time
and efforts. The experiment was similar to our previous design on working memory
(Yin et al., 2017). Subjects were asked to remain relaxed throughout the experiment
and to suppress as much as possible the wide range of motion. Subjects needed to
perform three task difficulty levels (2, 4, and 8 items) delayed WM tasks consisting
of two sessions. The experimental content of the two sessions was the same. The only
difference was that the subject completed the first session tasks without training, and
completed the task of the second session after receiving the short memory training.
A 64-channel NeuroScan system was used to record subjects’ EEG data during
doing the WM experiment. The offline processing of EEG data mainly included: re-
reference, data segmentation, artifact removal, filtering, and baseline correction. The
coherence of EEG signals reflected the correlation of the time domain signals of the
two brain regions in alpha frequency band. The coherence function between the two
signals as shown in the previous literature (Curtis et al., 2005). The graph analysis
method was used to construct the brain networks before and after WM training, and
the network topological properties were measured by the optimal path length (Lp),
clustering coefficient (CC), local efficiency (Eloc), global efficiency (Eg), degree
(Deg) and small-world properties of the network (Palva et al., 2010).
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Fig. 1 Coherence statistical matrix and statistics network

3 Results and Discussion

For the coherence matrix in alpha brain oscillation, the paired t-test was utilized to
statistically obtain the corresponding elements of the coherence statistical matrix
before and after the training. That is, if there was a significant difference on the
coherence values of WM network between the two nodes before and after WM
training (p < 0.05, FDR correction), the corresponding elements of the statistical
matrix was set to 1. Otherwise, the element of the statistical matrix was set to 0.
Finally, statistical matrix before and afterWM training (binary matrix) was obtained,
and thus the difference statistical network of alpha rhythms was acquired. Figure 1
showed the statistical matrix and difference statistical networks of alpha rhythms
before and after the WM training.

For the difference statistical network of alpha band, the node degrees at the FP2,
P7, P3, Pz, P8, O1, and O2 electrode positions was significantly different before
and after memory training, indicating that the increased coherence between paired
nodes in fronto-occipital network under alpha rhythm after WM training. Moreover,
it involved the long-range integration of the “top-down” information processing
between the frontoparietal, fronto-occipital brain regions, similar to previous study
(Palva et al., 2010).
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Symbolic Neural Dynamics Allow
for Modeling Retrograde Amnesia
as Well as False Memories

Pierre Bonzon

Abstract Symbolic neural dynamics abstracting the functionalities of synaptic plas-
ticity has been proposed as a new approach to modeling brain cognitive capabilities
and used to define the basic mechanisms of an associative memory. This formalism is
extended here to reproduce optogeneticmanipulations, thus defining a computational
model of memory engrams. It is illustrated through simulations of reversible retro-
grade amnesia and false memories of contextual fear conditioning that reproduce the
behavioral schedules of actual experiments. These results support the hypothesis that
separate processes are involved in long-term memory, i.e., the retention of specific
patterns of connectivity between engram cells required for the storage of informa-
tion, on the one hand, and the synaptic strengthening needed for its consolidation and
retrieval, on the other. Defined by a logic program, this simulation platform could be
used to design and predict the results of experiments involving inhibitory/excitatory
loops formed between various brain regions.

1 Introduction

The advent of optogenetic technology (Deisseroth et al., 2006) has opened new doors
toward the investigation of the brain. It is now possible to trace down simple cognitive
processes down to the activation of a group of neuronal cells. Following the seminal
work of Tonegawa and colleagues (Liu et al., 2012; Ramirez et al., 2013; Ryan et al.,
2015; Roy et al., 2017), new ideas about the formation and use of long-term memory
are emerging (Tonegawa, 2015; Trettenbrein, 2016). Briefly, the hypothesis is that
memory storage and retrieval involve two different circuits and mechanisms, i.e.,
the retention of specific patterns of connectivity between engram cells required for
the storage of information, on the one hand, and the synaptic strengthening needed
for its consolidation and retrieval, on the other. These hypotheses are supported
by the observation that various expressions of memory can be obtained by leaving
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connectivity patterns untouched and by acting on synaptic strengths only. These
various expressions can be controlled, observed and measured through optogenetic
manipulations, which in turn allow for the experimental induction of retrospective
amnesia, the direct activation ofmemory engrams and the creation of falsememories.
Silent memory engrams (Roy et al., 2017), defined as memory traces whose access
can be temporarily blocked and then restored at will, stand as the key concept of this
new theory.

These findings are addressed here from a computational point of view, i.e., toward
the goal of defining amodel of such a dualmemory that could lead to simulated exper-
iments. Brain simulations using either artificial neural networks (Hopfield, 1982) or
analytical methods (Izhikevich, 2006; Markram et al., 2015) (i.e., mainly differential
equations modeling electrical currents (Hodgkin & Huxley, 1952)), as customarily
performed today in computational neuroscience, have not been used so far to model
such memories. Symbolic neural dynamic (Bonzon, 2017) abstracting the mecha-
nisms of synaptic plasticity has been proposed as a new approach to modeling brain
cognitive capabilities and used to define the basic mechanisms of an associative
memory with dual store and retrieval processes. This formalism is extended here
to reproduce optogenetic manipulations, thus defining a computational model of
memory engrams.

2 Materials and Methods

This section introduces a formalism that has been previously published (Bonzon,
2017, 2019).

2.1 A New Approach to Modeling Brain Cognitive
Functionalities

In this new formalism, brain processes representing synaptic plasticity are abstracted
through asynchronous communication protocols and implemented as virtual micro-
circuits. The basic units of these microcircuits are constituted by threads, which
correspond either to a single or to a cluster of connected neurons. Contrary to tradi-
tional neuronmodels inwhich incoming signals are summed in some integratedvalue,
thread inputs can be processed individually, thus allowing for threads to maintain
parallel asynchronous communications. Threads can be grouped into disjoint sets,
or fibers to model neural assemblies, and discrete weights (e.g., integer numbers)
can be attached to pairs of threads that communicate within the same fiber. A fiber
containing at least one active thread constitutes a stream.Mesoscale virtual circuits
linking perceptions and actions are built out of microcircuits. Circuits can be repre-
sented either graphically or by sets of symbolic expressions. These expressions can
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 …-P->=>-Q-… 

Fig. 1 Circuit fragment implementing a synaptic transmission. Reproduced from Bonzon (2019)

be compiled into virtual code implications that are used just in time to deduce instruc-
tions to be finally interpreted by a virtual machine performing contextual deductions
(Bonzon, 1997).

To introduce this formalism, let us consider a simple case of synaptic transmission
between any two threads P and Q (NB throughout this text, identifiers starting with
a capital letter stand for variable parameters). This can be represented by the circuit
fragment (or wiring diagram) contained in the simple stream given in Fig. 1, where
the symbol ->=>- represents a synapse.

This circuit fragment can be represented by two symbolic expressions involving
a pair of send/receive processes as shown in Fig. 2.

In Fig. 2, the thread P (e.g., a sensor thread sense(us) with us representing
an external stimulus as in Fig. 4) will fire in reaction to the capture of an external
stimulus, with the send process corresponding to the signal, or spike train, carried
by a presynaptic neuron’s axon. In the thread Q (e.g., an effector thread motor(X),
where the variableX becomes instantiated as the result of the stimulus), thereceive
process represents the possible reception of this signal by a postsynaptic neuron.
The compilation of these expressions will give rise to the execution of virtual code
instructions implementing the communication protocol given in Fig. 3.

This protocol corresponds to an asynchronous blocking communication subject to
a threshold. It involves a predefined weight between the sender P and the receiver Q
that can be either incremented or decremented.On one side, thread P fires thread Q
if necessary and sends it a signal. On the other side, thread Qwaits for the reception of
a signal from thread P and proceeds only if the weight between P and Q stands above
a given threshold. The overall process amounts to opening a temporary pathway

thread(P,[…,send(Q)])
thread(Q,[receive(P),…])

Fig. 2 Thread patterns for a synaptic transmission. Reproduced from Bonzon (2019)

P:  … 
send(Q) activate Q if Q is not active and post a signal for Q

Q: receive(P) wait for a signal from P and proceed if weight(P,Q)>0
   … 

Fig. 3 Communication protocol for an asynchronous communication. Reproduced from Bonzon
(2019)
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sense(cs)-*->=>- 
/|\ | 
ltp +-motor(X)
| | 

sense(us)-+->=>- 

Fig. 4 A circuit implementing classical conditioning. Reproduced from Bonzon (2019)

between P and Q and allows for passing data by instantiating variable parameters
(see example below).

Example

As a simple example, let us consider the classical conditioning of Aplysia californica
(Kandel & Tauc, 1965). In this experiment, a light tactile conditioned stimulus cs
elicits a weak defensive reflex, and a strong noxious unconditioned stimulus us
produces a massive withdrawal reflex. After a few pairings of cs and us, where
cs slightly precedes us, cs alone triggers a significantly enhanced withdrawal
reflex. The corresponding circuit, adapted from a previous similar schema (Carew
et al., 1981), is represented in Fig. 4. In this circuit, the symbol /|\ represents the
modulation of a synaptic transmission, the sign * used in the upper branch indicates
the conjunction of converging signals, and the sign + indicates either the splitting
of a diverging signal, as used in the lower branch, or a choice between converging
signals, as used in the right branch instantiating the thread motor(X), where X is
a variable parameter to be instantiated into either cs or us.

In Fig. 4, the thread ltp (standing for long-term potentiation) acts as a facilita-
tory interneuron reinforcing the pathway between sense(cs) and motor(cs).
Classical conditioning then follows from the application of Hebbian learning (Hebb,
1949), i.e., “neurons that fire together wire together.” Though it is admitted today
that classical conditioning in Aplysia is mediated by multiple neuronal mechanisms
including a postsynaptic retroaction on a presynaptic site (Antonov et al., 2003), the
important issue is that this activity depends on the temporal pairing of the conditioned
and unconditioned stimuli, which leads to implement the thread ltp as a detector
of coincidence as done in the protocol given in Fig. 5.

The generic microcircuit abstracting the mechanism of long-term potentiation is
reproduced in Fig. 5 with its communication protocol. In order to detect the coinci-
dence of P and Q, thread P fires an ltp thread that in turn calls on process join to
wait for a signal from thread Q. In parallel, thread Q calls on process merge to post
a signal for ltp and then executes a send(R) command to establish a link with
thread R. After its synchronization with thread Q, thread ltp increments the weight
between Q and R.

The circuit in Fig. 4 can be represented by the fiber, or set of symbolic expressions,
given in Fig. 6.
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Q---*->=>-R 
/|\ 
ltp
| 

P---+…
 P:   fire(ltp(Q,R))    fire thread ltp(Q,R)
   … 
 ltp(Q,R):  join(Q)     wait for a signal from Q
   increment(weight(Q,R))   increment weight between Q and R

 Q:   merge(ltp(Q,R))    post a signal for ltp(Q,R)
   send(R)     fire thread R and post a signal for R

 R:   receive(Q)     wait for a signal from Q and proceed if weight(Q,R)>0

Fig. 5 Microcircuit and communication protocol for ltp. Reproduced from Bonzon (2019)

thread(sense(us),
[fire(ltp(sense(cs),motor(cs))),
send(motor(us))])
thread(sense(cs),
[merge(ltp(sense(cs),motor(cs))),
send(motor(cs))])

thread(motor(X),
[receive(sense(X)),
effector(motor(X))])

thread(ltp(Q,R),
[join(Q),
increment(weight(Q,R))])

Fig. 6 Fiber corresponding to a circuit of classical conditioning

2.2 A Computational Model of an Associative Long-Term
Memory

The concept of an associative memory has been studied from various perspectives
(Palm, 1980). In our framework, an associative memory extends the mechanism
of long-term potentiation by allowing for two threads P and Q attached to sepa-
rate streams (and thus also possibly active at different times) to be associated in
order to trigger a recall thread R. These two streams are linked together through a
double communication protocol applied to a long-termmemory ltm(P) thread, this
construct being depicted by the symbol -{P}- meaning that P is both stored and
retrievable through the thread ltm(P). This new protocol involves two complemen-
tary long-term storage/retrieval (lts/ltr) threads that allow for the building of a
storage trace and later retrieval of a previously active thread. This is in linewith results
by Rubin and Fusi (Rubin & Fusi, 2007) demonstrating that if the initial memory
trace in neurons is below a certain threshold, then it cannot be retrieved immediately
after the occurrence of the experience that created the memory. The corresponding
microcircuit is given in Fig. 7 together with its communication protocol.

As a distinctive difference from an ltp(Q,R) thread (which gets fired by P and
waits for a signal from Q in order to relate Q and R), an ltr(P,Q,R) thread is fired
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Q--+---*->=>-R 
| /|\ 
| ltr(P,Q,R)
| | 

  P-+---*-{P}-*---
| /|\ 
| lts(P)
| | 
---

 P:  fire(lts(P))     fire thread lts(P)

 lts(P): store(P)     fire thread ltm(P)
   increment(weight(P,ltm(P)))  increment weight between P and ltm(P)

 ltm(P): feed(_)     proceed if weight(P,ltm(P))>0 and open path if not set

 Q:   fire(ltr(P,Q,R))    fire thread ltr(P,Q,R)
   send(R)     fire thread R and post a signal for R

 ltr(P,Q,R): retrieve(P)     wait for an open path from ltm(P)
   increment(weight(Q,R))   increment weight between Q and R

R: receive(Q)     wait for a signal from Q and proceed if weight(Q,R)>0

Fig. 7 Microcircuit and communication protocol for a long-term associative memory

by Q and waits for a path from ltm(P) in order to relate Q and R, thus defining the
basic mechanisms of an associative memory.

2.3 Simulation Platform

A simulation platform has been designed to implement the formalism described
above. Defined by a logic program of about 300 lines, this platform can be run on
any PC equipped with a Prolog compiler, which thus allows for an easy reproduction
of results. It does rely on three fundamental concepts, i.e., the formal notions of

• an object in context represented by symbolic expressions in a logical language
• communicating processes between concurrent threads that is used to model a

network of interactive objects
• a virtual machine interpreting virtual code that differs from a processor’s native

code and thus constitutes the key mechanism allowing for interfacing high-
level abstract objects, e.g., software, with their low-level physical support, e.g.,
hardware.

At its top level, this virtual machine executes a “sense-act” cycle of embodied
cognition as defined in Fig. 8 (see the Supplementary information for its complete
operational specifications).

As a key point, let us point out the ist predicate standing for “is true” and imple-
menting contextual deduction (Bonzon, 1997). Clock register values T are used to
deduce, for each active thread, a possible next instruction. As postulated indepen-
dently (Zeki, 2015), there is no central clock, leading thus to themodeling of the brain
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Let Model represent the state of the virtual machine holding virtual code implica ons compiled from fibers.
A virtual machine run is cons tuted by a loop comprising a sense-react cycle:

run(Model)
loop sense(Model)

react(Model)

Sense corresponds to the capture and input of an interrupt triggered by a spike train directed to a stream:

sense(Model)
if interrupt(Stream(Input))
then input(Model(Stream),Input)

React loops on each thread within each stream to deduce a virtual instruc on at its clock me T and execute it:

react(Model)
for each Stream(Thread),T:Instruction,
such that ist(Model(Stream)(Thread),(clock(T), T:Instruction))
do execute(Model(Stream)(Thread), T:Instruction)

Fig. 8 High-level definition of a virtual machine run. Reproduced from Bonzon (2019)

as a massively asynchronous, parallel organ. Whenever an instruction is executed
successfully, the thread clock is advanced and the next instruction is deduced and
executed, andwhenever it fails, the current instruction is attempted again until it even-
tually succeeds. Before being executed, virtual machine instructions are deduced
“just in time” from circuits which have been compiled into virtual code implica-
tions. The execution of virtual instructions leads to a wiring/unwiring process that
produces model configurations that are akin to plastic brain states. This procedure
matches a fundamental principle in circuit neuroscience according to which inhibi-
tion in neuronal networks during baseline conditions allows in turn for disinhibition,
which then stands as a key mechanism for circuit plasticity, learning and memory
retrieval (Letzkus et al., 2015). This framework thus represents a computing device
that greatly departs from a traditional vonNeumann computer architecture, and could
prove to be close to that of a real brain.

3 Results

3.1 A Mesoscale Circuit Representing a Memory Engram
of Contextual Fear Conditioning

Contextual fear conditioning can be viewed as a case of classical conditioning and
modeled in our framework as represented in Fig. 9 with two parameters, i.e., a first
parameter designating a context (e.g.,a or b) that recruits cells for a second parameter
designating a percept such as fear, where _ stands for the absence of a perception.

Memory engrams have been defined as connected neuronal ensembles that allow
for the recall of information through various types of activations (Roy et al., 2017).
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sense(a,_)----*->=>- 
/|\ | 
ltp +-freeze(X,F)
| | 

sense(b,fear)-+->=>- 

Fig. 9 Microcircuit implementing contextual fear conditioning

sense(Y,_)---+--*->=>-recall(sense(Y,F))
| /|\ 
| ltr(sense(X,F),sense(Y,_),recall(sense(Y,F)))
|  | 

sense(X,F)-+--*--{sense(X,F)}--*--
| /|\ 
| lts(sense(X,F))
|  | 

    -- 

Fig. 10 Microcircuit representing a memory engram of contextual fear conditioning

In our framework, this can be achieved by extending the circuit of Fig. 9 into an asso-
ciative memory as represented in Fig. 7. Replacing threads P, Q and R in Fig. 7 with,
respectively,sense(X,F),sense(Y,_) andrecall(sense(Y,F)gives rise
to the circuit given in Fig. 10. Depending on the application, X and Y can represent
either the same (e.g., in the case of retrograde amnesia) or different (e.g., in the
case of conditioning false memories) contexts. As for the possible projection of
this circuit into actual brain regions, it is suggested that the left part of the circuit,
i.e., the formation of {sense(X,F)}via lts, be identified with the upstream
connections between themedial entorhinal cortex (MEC) and the dentate gyrus (DG)
engram cells, on one side, and the right part, i.e., the possible recall via ltr, with
the downstream connections of the DG with the hippocampal CA3 and basolateral
amygdala (BLA) engram cells, on the other side.

3.2 Experimental Schedule Implementation

Using optogenetic technology (Liu et al., 2012; Ramirez et al., 2013; Ryan et al.,
2015; Roy et al., 2017), memory engram cells can be first tagged by injection
and labeledduring a training session. At will, they can be then blocked, unblocked and
lighted through various injections according to specific experimental schedules. Simu-
lations performed with the circuit of Fig. 10 have reproduced some of the orig-
inal behavioral schedules of actual experiments (Liu et al., 2012; Ramirez et al.,
2013; Ryan et al., 2015; Roy et al., 2017). These schedules have been assembled
from the set of fibers given in Fig. 11 (for the interpretation of instructions such
as tag, label, block, unblock, light, fire, send, receive, see the Supplementary
information section).
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Targeting fiber 
thread(inject(tag,X,F),  [tag(sense(X,Y),recall(sense(X,F)))]).

Training fiber 
thread(sense(X,F), [fire(lts(sense(X,F))),

label(sense(X,F),recall(sense(X,F))),
effector(sense(X,F))]).

Testing fiber
thread(sense(X,F), [fire(ltr(sense(X,F),sense(X,_),recall(sense(X,F)))),

send(recall(sense(X,F)))].
thread(recall(sense(X,F)), [receive(sense(X,F)),

effector(sense(X,F))]).

Closing fiber 
thread(inject(block,X,F), [block(sense(X,F),recall(sense(X,F)))]).

Opening fiber 
thread(inject(unblock,X,F), [unblock(sense(X,F),recall(sense(X,F)))]).

Activating fiber
thread(inject(light,X,F), [light(sense(X,F),recall(sense(X,F))),

effector(sense(X,F))]).

Fig. 11 Fibers for the implementation of behavioral schedules

Each schedule starts with a targeting phase in which the dentate gyrus of trans-
genic mice is tagged with the injection of viruses and implanted with optic fibers.
Active cells are then labeled through a contextual fear conditioning training session
that results in the retention of a specific pattern of connectivity between engram cells
required for the storage of information.A testing phase allows for its retrieval through
natural cues.Memory consolidation can be blocked by an injection that inhibits protein
synthesis and thus closes the pathway to memory consolidation, and subsequently
unblocked . Finally, activating lighted cells demonstrate silent engrams (Ramirez et al.
2013) and the creation of false memories (Roy et al., 2017).

3.3 Simulation Results

Simulations based on the circuit of Fig. 10 and assembled from the fibers of Fig. 11
have reproduced the results of actual experiments (Liu et al., 2012; Ramirez et al.,
2013; Ryan et al., 2015; Roy et al., 2017). Inputs to sensors and injectors are preceded
by a prompt |: and outputs from effectors by �. Additional outputs report about
the successive states of the engram.

Contextual fear conditioning control experiment

In the run of Fig. 12, cells involved in fear conditioning are tagged for any context,
labeled for context b though a training session ending with an upstream synaptic
strength and opened pathway (meaning that protein synthesis for memory consol-
idation is active). The consolidated memory with increased downstream synaptic
strength then allows for a memory recall though natural cues.
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|:targeting([injector(tag,_,_)]). ChR2 injection
tagged(sense(_,_),recall(sense(_,_))) tagged cells

|:training([sensor(b,fear)]).       shock exposure in context b
labeled(sense(b,fear),recall(sense(b,fear))) labeled active cells
path(opened(sense(b,fear)|_)) active protein synthesis
weight(sense(b,fear),ltm(sense(b,fear)))(1) upstream synaptic strength
>>sense(b,fear) freezing reaction in context b

|:testing([sensor(b,_)]). no shock exposure in context b
weight(sense(b,fear),recall(sense(b,fear)))(1) downstream synaptic strength
>>sense(b,fear) freezing reaction in context b

Fig. 12 Execution log of a control simulation run

Reversible retrograde amnesia

Under amnesia, impaired synaptic strengthening prevents the activation of engram
cells by natural recall cues. Toward this end, the training session is directly followed
by a blocking injection that causes a protein synthesis inhibition resulting in a retro-
grade amnesia without memory consolidation, which can be then reversed to allow
for the reactivation of protein synthesis, the consolidation of memory and a freezing
reaction due to memory recall though natural cues (Fig. 13).

Silent engram direct activation

Following retrograde amnesia in context b, the resulting silent engram for context
a gets directly activated with light stimulation leading to a freezing behavior without
memory recall (Fig. 14).

Creation of a false memory

In this experiment (Ramirez et al., 2013), the cells labeled in context a without
shock exposure serve as a conditioned stimulus. They get then artificially stimulated

|:targeting([injector(tag,_,_)]). ChR2 injection
tagged(sense(_,_),recall(sense(_,_))) tagged cells

|:training([sensor(b,fear)]). shock exposure in context b
labeled(sense(b,fear),recall(sense(b,fear))) labeled active cells
path(opened(sense(b,fear)|_)) active protein synthesis
weight(sense(b,fear),ltm(sense(b,fear)))(1) upstream synaptic strength
>>sense(b,fear) freezing reaction in context b

|:closing([injector(block,b,fear)]). anisomycin injection
path(closed(sense(b,_))) protein synthesis inhibited

|:testing([sensor(b,_)]). no shock exposure
weight(sense(b,_),recall(sense(b,_)))(0) no downstream synaptic strength

|:opening([injector(unblock,b,fear)]). PAK1 injection
path(opened(sense(b,fear),recall(sense(b,fear)))) active protein synthesis

|:testing([sensor(b,_)]). no shock exposure in context b
weight(sense(b,fear),recall(sense(b,fear)))(1) downstream synaptic strength
>>sense(b,fear) freezing reaction in context b

Fig. 13 Simulation run of a reversible retrograde amnesia
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|:targeting([injector(tag,_,_)]). ChR2 injection
tagged(sense(_,_),recall(sense(_,_))) tagged cells

|:training([sensor(a,_)]). habituation in context a
labeled(sense(a,_),recall(sense(a,_))) labeled cells
path(opened(sense(a,_)|)) active protein synthesis
weight(sense(a,_),ltm(sense(a,_)))(1) upstream synaptic strength
>>sense(a,_)         no freezing reaction

|:training([sensor(b,fear)]). shock exposure in context b
labeled(sense(b,fear),recall(sense(b,fear))) labeled active cells
path(opened(sense(b,fear)|)) active protein synthesis
weight(sense(b,fear),ltm(sense(b,fear)))(1) upstream synaptic strength
>>sense(b,fear) freezing reaction

|:closing([injector(block,b,fear)]). anisomycin injection
path(closed(_))        protein synthesis inhibited

|:testing([sensor(a,_)]). no shock exposure
weight(sense(a,_),recall(sense(a,_)))(0) no downstream synaptic strength

|:activating([injector(light,a,_)]). light injection with no shock in a
>>sense(a,fear) freezing reaction

|:testing([sensor(a,_)]). no shock exposure
weight(sense(a,_),recall(sense(a,_)))(0) no downstream synaptic strength

Fig. 14 Simulation run of a light-induced direct silent engram activation

by light during the delivery of an unconditioned fear stimulus in context b and subse-
quently express a false fear memory by freezing in context a, but not in a novel
context c (see the Supplementary information for a definition of the lightvirtual
instruction that allows for a displaced memory consolidation) (Fig. 15).

Artificial association of independent memories

In this last example, we reproduce an experiment (Ohkawa et al., 2015) in which
coincident firing of distinct neural assemblies generates an artificial link between

|:targeting([injector(tag,_,_)]). ChR2 injection
tagged(sense(_,_),recall(sense(_,_))) tagged cells

|:training([sensor(a,_)]). no shock exposure for labeling a
labeled(sense(a,_),recall(sense(a,_))) labeled active cells
path(opened(sense(a,_|_)) active protein synthesis
weight(sense(a,_),ltm(sense(a,_)))(1) upstream synaptic strength
>>sense(a,_) no significant freezing reaction

|:testing([sensor(a,_)]). no shock exposure in context a
weight(sense(a,_),recall(sense(a,_)))(1) downstream synaptic strength
>>sense(a,_) no significant freezing reaction

|:activating([injector(light,b,fear)]).     light injection with shock in b
>>sense(b,fear) freezing reaction in b

|:testing([sensor(a,_)]). no shock exposure in context a
weight(sense(a,fear),recall(sense(a,fear)))(1) downstream synaptic strength
>>sense(a,fear) freezing reaction in a

|:testing([sensor(c,_)]). no shock exposure in context b
weight(sense(c,_),recall(sense(c,_)))(0) no downstream synaptic strength

Fig. 15 Simulation run of a false memory
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|:targeting([injector(tag,_,_)]). ChR2 injection
tagged(sense(_,_),recall(sense(_,_))) tagged cells

|:training([sensor(a,_)]). no shock exposure for labeling a
labeled(sense(a,_),recall(sense(a,_))) labeled active cells
path(opened(sense(a,_|_)) active protein synthesis
weight(sense(a,_),ltm(sense(a,_)))(1) upstream synaptic strength
>>sense(a,_) no significant freezing reaction

|:training([sensor(b,fear)]). shock exposure for labeling b
labeled(sense(b,fear),recall(sense(b,fear))) labeled active cells
path(opened(sense(b,fear)       active protein synthesis
weight(sense(b,fear),ltm(sense(b,fear)))(1) upstream synaptic strength
>>sense(b,fear)        freezing reaction

|:activating([injector(light,c,_)]).      light injection in context  c
>>sense(c,_)         no freezing reaction in c

|:testing([sensor(a,_)]). no shock exposure in context a
weight(sense(a,fear),recall(sense(a,fear)))(1) downstream synaptic strength
>>sense(a,fear) freezing reaction in a

Fig. 16 Simulation run of the artificial association of independent memories

distinct memory episodes. This looks similar to the creation of a false memory
modeled above, except that in this case the conditioning occurs through the exposure
to light stimulation, i.e., activating([injector(light,c,_)]) in a third
context c (Fig. 16).

4 Discussion

The simulations that have been presented provide an illustration of how impaired
synaptic strengthening caused by the injection of a protein synthesis inhibitor imme-
diately after contextual fear conditioning prevents the effective activation of engram
cells bynatural recall cues, thus leading to retrograde amnesia. The information stored
in engram cell ensemble connectivity can nevertheless be retrieved by light-induced
direct activation of labeled nodes.Altogether, these results support the hypothesis that
separate processes are involved in long-term memory, i.e., the retention of specific
patterns of connectivity between engram cells required for the storage of information,
on the one hand, and the synaptic strengthening needed for its consolidation on the
other (Tonegawa, 2015; Trettenbrein, 2016). In other words, synaptic connectivity
could provide a substrate for memory storage whereas the potentiation of synapses
would be required for its retrieval.

It is acknowledged today that individual fear memories require engram cells
from multiple brain regions (Tonegawa, 2015). In our simulations, non-instantiated
tagged(sense(_,_),recall(sense(_,_)))expressions are attached to cell popula-
tions whose elements can be indifferently recruited for labeling various contexts
such as a and b. As our framework readily accommodates instantiated tags that
could be used for recruiting specific cells for different contexts or tasks, it can be
used to design and predict the results of finer grain experiments involving multiple
brain regions (Abdou et al., 2018; Oishi et al., 2019).



Symbolic Neural Dynamics Allow for Modeling Retrograde … 53

Competing Interests The author declares no competing interests.

References

Abdou, K., et al. (2018). Synapse-specific representation of the identity of overlapping of memory
engrams. Science, 360(6394), 1227–1231.

Antonov, I., Antonova, I., Kandel, E. R., & Hawkins, R. D. (2003). Activity-dependent presy-
naptic facilitation and hebbian LTP are both required and interact during classical conditioning
in Aplysia. Neuron, 37(1), 135–147.

Bonzon, P. (1997). A reflective proof system for reasoning in contexts. In 14th National Conference
onAmerican Association Artificial Intelligence.www.aaai.org/Papers/AAAI/1997/AAAI97-061.
pdf (1997),

Bonzon, P. (2017). Towards neuro-inspired symbolic models of cognition: linking neural dynamics
to behaviors through asynchronous communications. Cognitive Neurodynamics, 11(4), 327–353.

Bonzon, P. (2019). Symbolic modeling of asynchronous neural dynamics reveals potential
synchronous roots for the emergence of awareness. Frontiers in Computer Neuroscience. https://
doi.org/10.3389/fncom.2019.00001.

Carew, T., Walters, E., & Kandel, E. (1981). Classical conditioning in a simple withdrawal reflex
in Aplysia californica. The Journal of neuroscience, 1(12), 1426–1437.

Deisseroth, K., et al. (2006). Next-generation optical technologies for illuminating genetically
targeted brain circuits. Journal of Neuroscience, 26(41), 10380–10386.

Hebb, D. O. (1949). The organization of behavior. A neuropsychological theory. J. Wiley (1949).
Hodgkin, A., &Huxley, A. (1952). A quantitative description of membrane current & its application
to conduction & excitation in nerve. Journal of Physiology, 17(4), 500–544.

Hopfield, J. J. (1982).Neural networks and physical systemswith emergent collective computational
abilities. Proceedings of the National Academy of Sciences of the USA, 79(8), 2554–2558.

Izhikevich, E. (2006). Polychronization: Computation with spikes. Neural Computation, 18, 245–
282.

Kandel, E. R., & Tauc, L. (1965). Heterosynaptic facilitation in neurones of the abdominal ganglion
of Aplysia depilans. The Journal of Physiology., 181(1), 1–27.

Letzkus, J.,Wolff, S., &Lüthi, A. (2015). Disinhibition, a circuit mechanism for associative learning
& memory. Neuron, 8(2), 264–276.

Liu, X., et al. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory
recall. Nature, 484(7394), 381–385.

Markram, H., et al. (2015). Reconstruction & simulation of neocortical microcircuitry. Cell, 163,
456–492.

Ohkawa, N., et al. (2015). Artificial association of pre-stored information to generate a qualitatively
new memory. Cell Reports, 11, 261–269.

Oishi, N., et al. (2019). Artificial association of memory events by optogenetic stimulation of
hippocampal CA3 cell ensemble. Molecular Brain, 12, 2.

Palm, G. (1980). On associative memories. Biological Cybernetics, 36, 19–31.
Ramirez, S., et al. (2013). Creating a false memory in the hippocampus. Science, 341, 387–391.
Roy DS, Muralidhar S, Smith LM, Tonegawa S. Silent memory engrams as the basis for retrograde
amnesia. Proc Natl Acad Sci U S A.;114,46, (2017).

Rubin, D., & Fusi, S. (2007). Long memory lifetimes require complex synapses & limited
sparseness. Frontiers in Computer Neuroscience, 1, 7.

Ryan, T. J., et al. (2015). Engram cells retain memory under retrograde amnesia. Science, 348,
1007–1013.

Tonegawa, S. (2015). Memory engram storage and retrieval. Current Opinion in Neurobiology, 35,
109–111.

http://www.aaai.org/Papers/AAAI/1997/AAAI97-061.pdf
https://doi.org/10.3389/fncom.2019.00001


54 P. Bonzon

Trettenbrein, P. (2016). The demise of the synapse as the locus of memory: A looming paradigm
shift? Frontiers in Systems Neuroscience, 10, 88.

Zeki, S. (2015). A massively asynchronous, parallel brain. Philosophical Transactions of the Royal
Society B, 370, 20140174.



A New Deep Neural Network Inspired by
Directional Mutual Information Between
Slow and Fast Neural Information Flow

Tao Zhang, Sitong Wang, and Zhuo Yang

Abstract Artificial neural networks are initially inspired by neuronal structures and
connections, given that the neural connection is changed during a learning process.
Yet, it is hard to directly validate that an adaptive structure truly works within com-
plicated animal brains. Sufficient evidences have been given in the level of cells
about the adaptive structure of synaptic plasticity. In the present study, it was found
that the connective pattern of neurons was significantly altered for the period of a
learning process in the level of neuronal groups. By inferring the coupling direction
between slow neural information flow and fast one, a novel artificial neural network
structure with a multi-layer architecture has been proposed, accordingly. The struc-
ture is constructed on the basis of the experimental electrophysiological data and
accordant with the principle of maximum entropy. The potential efficiency may lead
to an inspiration for the future architecture of artificial neural network.

1 Introduction

The artificial neural network (ANN) is a bio-inspired algorithm of machine learning,
taking advantage of simulating a real biological neural network. Through adjusting
the weight of the connection between computational units according to the training
data, the output of ANNs can be optimized accordingly (Palus & Stefanovska, 2003).
In intelligent animals, the connective pattern of neurons is also changed for produc-
ing new memories. Synaptic plasticity is one of its manifestations at the cellular
level. However, it is difficult to directly observe changes in the pattern of neuronal
connections in the complicated animal brain. It is necessary to establish a simple
and concise model for investigating the connective pattern changes during learning,
where a learning process can be controlled and connective patterns of neurons can
be well represented. One of the strategies is that we can govern how much “learning
material” a mouse could take via establishing two different kinds of the housing
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conditions named enriched environment (EE) and social isolation (SI), respectively.
Eachmodel also corresponds to a specific size of “training data” in an artificial neural
network.

In the present study, the enriched environment (EE) and the social isolation (SI)
were introduced as two types of housing conditions, manipulating animal’s learn-
ing process via setting how much “learning materials” a mouse could reach. The
local field potentials (LFPs) in the hippocampal dentate gyrus (DG) were recorded
two months after modeling. The original LFPs were decomposed into two parts, in
which one retained only the low-frequency components and another consisted of
high-frequency components. Conditional mutual information (CMI) measurements
showed that the direction of information flows in the hippocampus DG area was from
the fast oscillations to the slow oscillations. Accordingly, a hypothesis was raised
that the directionality is due to a specific novel structure of neural network, in which
neurons belong to either primary layer or advanced layer. When the information was
transmitted from the primary layer to the advanced layer, the neurons in the primary
layer were activated more frequently, thereby producing the fast oscillations. The
neurons in the advanced layer, on the contrary, may be less frequently employed and
therefore would generate the slow-frequency components of neural oscillations.

2 Materials and Methods

Total twelve male C57 mice at the age of weaning (21days) were randomly divided
into two groups. Mice in the EE group were raised in large (60 × 40 × 35cm) and
multi-layer space andvarious toys such as houses, runningwheels, hammocks, scales,
small bells, ladders and tunnels. Mice in the SI group were raised in standard cages
(36 × 18 × 14cm) with one mouse/cage without objects. The housing conditions,
all but cages, were strictly identical between two groups. Temperature was constant
at 22 ± 2 ◦C. Animals had free access to food and water during the experiment.

After being housed in different cage until 12weeks of age, each mouse was anes-
thetized with 30% urethane. The animals were fixed on a stereotaxic frame (Nar-
ishige, Japan). A recording stainless steel electrode was lowered into the hippocam-
pal dentate gyrus (DG) (0.5mm posterior to the bregma, 3.2mm lateral to midline,
1.5–2.0mm ventral below the dura). The ground and reference electrodes were sym-
metrically placed over the skull and two hemispheres. The spontaneous local field
potentials (LFPs) were recorded at 1 kHz sampling frequency and continued at least
20min.

Conditional mutual information (CMI) is a measurement for detecting informa-
tion flow’s direction, by using the phase information derived from interacting neural
rhythms recorded in related cerebral regions (Palus and Stefanovska, 2003). In the
past cases, the neural oscillations that we adopted for calculating CMI were mainly
recorded at specific pathway like perforant path andCA3-CA1 pathway. In this study,
to find out the hierarchical structure of granule cells, slow and fast oscillations were
extracted from the LFP signals recorded just at dentate gyrus. The phase information
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of both slow and fast oscillations was obtained by Hilbert transformation. The φfast

represented the phase of the envelope of the filtered high-frequency signal’s ampli-
tude and φslow denoted the phase of the filtered low-frequency signal. The conditional
mutual information could be yielded from

I (φslow;�φfast|φfast) = H(φslow|φfast) + H(�φfast|φfast)

−H(φslow,�φfast|φfast)
(1)

I (φfast;�φslow|φslow) = H(φfast|φslow) + H(�φslow|φslow)

−H(φfast,�φslow|φslow)
(2)

The�φwas yielded from�φ = φ(t + τ) − φ(t).We set slidingwindows (length
= 24 s) with 50% overlap and let phase increment τ = 100 ms. The normalized
directionality was defined as follows:

D1→2 = I (φ1;�φ2|φ2) − I (φ2;�φ1|φ1)

I (φ1;�φ2|φ2) + I (φ2;�φ1|φ1)
(3)

3 Results

We obtained local field potentials (LFPs) from the hippocampal DG area in both
the EE group and the SI group. HE staining was performed to verify the location of
the LFPs recording sites (Fig. 1a). A representative example of the power spectrum
density was shown in Fig. 1b. It can be seen that the ∼4Hz theta rhythm (marked as
O.1) is the dominant neural oscillations in the hippocampal DG region. Besides the
theta rhythm, both slow oscillations (marked as O.2) and fast oscillations (marked
as O.3) have also been observed in the power spectrum (Fig. 1b).

A representative example of modulation index (MI) was shown in Fig. 1c. There
were two bright areas in the MI maps. The bright areas on the left side of both panels
showed the coupling between theO.1 andO.2, also known as theta–gamma coupling.
The bright areas on the right side of both panels showed phase-amplitude couplings
between O.2 and O.3. Statistics showed that the strength of O.2–O.3 coupling was
much higher in the EE group than that in the SI group (see Fig. 1d, p < 0.05), sug-
gesting that the enriched environment significantly enhanced the coupling strength
between O.2 and O.3.

We further applied the CMI to infer the direction of the information between O.2
and O.3. Figure2a showed that the directionality D2→3 was shifted from positive
to negative when increasing the frequency of O.3 (fast oscillations), suggesting that
the direction of information flows was from O.3 (fast oscillations) to O.2 (slow
oscillations). In addition, the average value of D3→2, when O.3 ranged from 50
to 100Hz, was much higher in the EE group than that in the SI group (p < 0.05,
Fig. 2b).



58 T. Zhang et al.

Fig. 1 a Location of LFP recording sites. b Examples of the power distribution in DG areas in the
EE and SI groups. c A representative cross-frequency coupling indicated by modulation indexes
(MI). d Average MI between O.2 and O.3. *p < 0.05 and **p < 0.01, when compared with the
EE group

As shown in Fig. 2c, the high-frequency components of neural oscillations can
be understood as a consequence of high-frequency firings in a group of neurons
comprising a primary layer, in which neural information is preliminarily processed
and integrated. Meanwhile, the low-frequency components of neural oscillations
can be regarded as a result of the low-frequency firings in another group of neurons,
defined as an advanced layer, in which the neurons receive the integrated inputs
from the primary layer. With regard to the distribution of power spectrum (Fig. 1b),
it can be seen that there is only a small proportion of power in the high-frequency
components. In other words, despite of a higher firing rate, the total consumption of
power in the primary layer is very limited, that is, because amajority of the functional
tasks in the primary layer are simple and preliminary. On the contrary, due to the
complexity of functional tasks performed in the advanced layer, a large amount of
energy has been consumed even if the firing rate is relatively low in the advanced
layer. Compared with the nervous system of mice, our novel structure of artificial
neural network can be supposed to be practical and realistic to some extent. It is
well known that there are numerous granule cells in the hippocampus DG region,
in which they receive neural information from the entorhinal cortex (EC). After
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Fig. 2 Directionality of cross-frequency couplings between O.2 and O.3. a The representative
directionality D2→3 varying with the frequency range of fast oscillations. Negative values show
that information could be transmitted from O.3 to O.2. b The average D2→3 when O.3 ranges from
50 to 100 Hz. *p < 0.05, when compared with the EE group. c Two layers structures that can
produce slow and fast oscillations. d Illustration of real DG anatomy

processing them, the integrated information is transmitted to the hippocampus CA3
region (Fig. 2d). However, the number of interneurons in the hippocampal dentate
hilus is much fewer than that of granule cells in the GC layer. The axons from the GC
layer to hilus are also relatively fewer than the plentiful paralleled dendrites from EC
to GC layer. Accordingly, it is reasonable to speculate that the neural information
is integrated by a special hierarchical structure of intercommunicating granule cells
in the GC layer. Our observation may be exact one of the manifestations for an
undiscovered hierarchical neuron structure in the granule cell layer.

4 Discussion

In recent years,more andmore studies have been focused on combining deep learning
with brain neural networks, aiming for the intelligence closer to humanity (Gemini-
ani et al., 2018). In the study, a bio-inspired neural network has been proposed, in
which the structure of the model has been constructed on the basis of the experimen-
tal electrophysiological signals. It reports that neurogenesis can sometimes occur in
the adult vertebrate brain (Rakic, 2009). For instance, the granule cells predominate
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in the hippocampus DG region, by which a lifelong neurogenesis ability is main-
tained. A previous study showed that the number of granule cells in the dentate gyrus
significantly increased in the enriched environment (EE) (Kempermann et al., 1997).
Moreover, the enriched environment could also promote themodulations of synapses
with respect of axon sprouting, dendritic arbor growth and formation of dendritic
spine (West & Greenough, 1972. Accordingly, it is safe to say that the granule cells
in the hippocampus DG area form an adaptive neural network, through increasing
the number of neurons and/or modifying the connection patterns. For instance, the
measurement of MI suggests that the correlation between the slow oscillations and
the fast oscillations was strengthened in the EE condition. In addition, the condi-
tional mutual information (CMI) has been applied in measuring the directionality
of neural information flow between the fast-frequency components and the slow-
frequency counterpart in neuronal populations. The data showed that the information
was transmitted from the fast-frequency components to the slow-frequency ones in
the hippocampal DG area. Therefore, we speculate that it is ascribed to a certain
multi-layer structure of neurons in the hippocampus DG region. In the structure of
neural network, the fast-frequency neural activities are associated with the firing of
a primary layer of neurons, while the slow-frequency neural activities are feasibly
related to the firings of an advanced layer of neurons. Consequently, the primary
neuronal populations merely process and integrate the information and then transmit
it to the advanced neuronal populations. Due to the prominent repeatability of signal
processing task, the primary layer of neuronal populations exhibits much more activ-
ities at the higher-frequency components. In contrast, a signal processing task in the
advanced layer may be more complex but less frequently employed. Accordingly,
the advanced layer of neuronal populations shows less frequent activities. Since it
is a very preliminary study, we will test if the structure is suitable for deep neural
network performance in future.
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Nonlinear Fokker–Planck Approach
to the Cohen–Grossberg Model

Roseli S. Wedemann and Angel R. Plastino

Abstract Distributions maximizing the Sq power-law entropies are observed in the
behavior of complex systems arising in a remarkably wide range of disciplines,
including neuroscience. One known effective description of processes leading to
these maximum entropy distributions is provided by nonlinear, power-law Fokker–
Planck equations. In this work, we explore an evolution equation of this type, asso-
ciated with the celebrated Cohen–Grossberg model of neural network dynamics. We
prove that the stationary distributions of this evolution equation have the Sq maxi-
mum entropy form. These distributions are q-exponentials with an argument propor-
tional to the energy function (also known as Liapunov function) corresponding to
the Cohen–Grossberg dynamics. The nonlinear Fokker–Planck equation investigated
here also obeys an H -theorem in terms of a free energy-like quantity that is a linear
combination of the energy function and of an Sq entropy. These findings may help
to understand the origin of the Sq maximum entropy distributions observed in brain
dynamics.

1 Introduction

The McCulloch–Pitts (MP) neuron model was historically the basic element of the
first mathematical description of a neural network and still constitutes a fundamental
paradigm of a computational system. It is at the basis of the Hopfield model for
associative memory (Hopfield, 1984; Hertz et al., 1991) and, consequently, is an
essential tool for the theoretical analysis of themanyfoldmental processes associated
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with memory that are studied by psychology and neuroscience, in both the normal
and the pathological regimes (Kandel, 2005; Cleeremans et al., 2007; Taylor, 2011).
These applications of Hopfield’s version of the MP model rest on neuroscience’s
standard working hypothesis stating that (associative) memory is physically codified
in the architectural structure of the brain’s neural network. Within this theoretical
frame, in recent years, we have developed associative memory neuronal network
models, for the theoretical analysis of various mind-related phenomena, including
neurosis, creativity, and the interaction between consciousness and unconsciousness
(Wedemann et al., 2009, 2011; Carvalho et al., 2003; Wedemann & Carvalho, 2012;
Siddiqui et al., 2018). In these works, in order to simulate memory retrieval, we used
the standard version of the Boltzmann machine (BM) (Hertz et al., 1991), as well
as the generalized simulated annealing (GSA) algorithm proposed by Tsallis and
Stariolo (1996).

The Tsallis–Stariolo GSA algorithm (Tsallis & Stariolo, 1996) is based on the
Sq-thermostatistical formalism (Tsallis, 2009), and is considered to be a q-statistical
generalization of theBM (Hertz et al., 1991). These two schemes share the same basic
features of a simulated annealing (SA) process: in both of them, the probabilities of
transitions between different states of the net are parameterized by a temperature
�, that decreases gradually according to an appropriate annealing schedule. The
transition probabilities TGSA governing the GSA dynamics are different from those
governing the dynamics of the BM. The GSA transition probabilities are (Tsallis and
Stariolo 1996)

TGSA(Si → −Si) =
[
1 − (1 − q)

(E({−Si}) − E({Si})
�

] 1
1−q

, (1)

where q is the Tsallis parameter characterizing the Sq-thermostatistics. In the above
equation, E({Si}) stands for the the energy of the network state {Si} = {S1, . . . , SN },
where the Si ∈ {−1, 1}, i = 1, . . . ,N , represent the individual states of each of
the N neurons that the network comprises. In the discrete Hopfield network, the
energy function isE({Si}) = −(1/2)

∑
ij ωijSiSj, where theweightsωij describing the

interactions between the neurons are assumed to be symmetric,ωij = ωji (without this
symmetry assumption there is no energy function). When q → 1, the GSA transition
probabilities (1) reduce to the standard BM ones. The gist of the SA algorithm
is that, when the system jumps from one state to next, according to the transition
probabilities given by either the BM or the GSA prescriptions, the system’s energy
tends to decrease. Occasional increases of energy may occur, however, allowing the
system to escape from local minima of the energy landscape. As the temperature is
gradually lowered, the probability of these increases in energy become smaller, and
the system tends to end up in a relatively deep energy minimum. Depending on how
the annealing schedule is tuned, it is possible to reach shallower local minima, so as
to simulate more loose (creative) associations in the network.

The Sq-thermostatistics (or nonextensive thermostatistics) is a theoretical frame-
work based on the Sq, power-law entropic measures that has in recent years been
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successfully applied to the study of several types of complex systems (Tsallis, 2009).
The GSA scheme is of relevance because it is a natural dynamics generating the Sq-
maximum entropy distributions, within the context of neural networks with discrete
states (Wedemann et al., 2009; Siddiqui et al., 2018). For example, the avalanches
occurring during the GSA memory retrieval process obey Sq-maximum entropy (q-
MaxEnt), power-law distributions (Siddiqui et al., 2018). These distributions, the
hallmark of the Sq-thermostatistics, have features that are in agreement with those
exhibited by power-lawdistributions recently observed both in numerical simulations
of theoretical models (Papa& da Silva, 1997) and in empirical data from experiments
in neuroscience (see, for instance, (Siddiqui et al., 2018) and references therein).
In particular, the q-MaxEnt distributions are consistent with the results of recently
reported experimental studies (based on fMRI techniques) on the statistics of the
time duration and the spatial reach of signal propagation during brain stimulation.
Power-law and q-MaxEnt behavior is observed also in relation with other features
of the neural models investigated in (Wedemann et al. 2009, 2011). These findings
constitute our motivation to explore further the application of concepts and methods
from the Sq thermostatistical theory to the study of the dynamics of neural network
models.

The neurons in the MP model are regarded as systems admitting a discrete and
finite number of possible states. But real biological neurons in animals (including
humans) are more complex than that. It is more realistic to consider neurons having
a continuous range of possible states and therefore characterized by continuous state
variables (Hopfield, 1984; Cohen & Grossberg, 1983). The dynamics of networks
consisting of neurons with continuous states is described by appropriate sets of
coupled ordinary differential equations. An alternative treatment of the network’s
dynamics, that allows for the inclusion of the effects of noise, is given by the Fokker–
Planck formalism. In this regard, we have recently explored various aspects of the
Fokker–Planck approach in the study of Hopfield neural networks with continuous
variables (Wedemann & Plastino, 2017), and also used the nonlinear Fokker–Planck
formalism to discuss the problem of asymmetric synapses in biological networks
(Wedemann&Plastino, 2016;Wedemann et al., 2016; de Luca et al., 2018). Ourmain
purpose here is to introduce a Fokker–Planck dynamics appropriate for the Cohen–
Grossberg continuous network model and to explore some of its basic features.

The Cohen–Grossberg model of neural networks (Cohen & Grossberg, 1983)
describes a wide family of dynamical systems, consisting of co-evolving, interacting
elements (neurons). In this model of continuous-time evolution of neural networks,
the state of each neuron is described by a continuous variable. Particular instances
of the Cohen–Grossberg model include the Hopfield model. The relevance of the
Cohen–Grossberg model transcends the fields of computational neural networks and
neuroscience because it also comprises, as particular instances, important dynamical
systems central to other areas, such as the celebrated Lotka–Volterra systems in
population dynamics and ecology (Lotka, 1956).

As themain contributionof the presentwork,wepropose and investigate inSects. 4
and 5 a nonlinear Fokker–Planck equation associated specifically with the equations
of motion of the Cohen–Grossberg, neural network model. The nonlinear Fokker–
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Planck equation (NLFPE) that we investigate here admits stationary densities having
the q-MaxEnt shape. The Fokker–Planck dynamics has an associated free energy-
like functional that, for general time-dependent solutions, decreases monotonously
as the system evolves.

The Fokker–Planck dynamics explored here provides plausible mechanisms lead-
ing to the Sq maximum entropy, power-law densities observed in physical or biolog-
ical complex systems that, as occurs with brain networks, are endowed with spatial
disorder and/or non-local interactions (Tsallis, 2009). The dynamics advanced here,
based on a nonlinear Fokker–Planck treatment, can be regarded as a generalization
of the one recently studied by other authors (Yan et al., 2013), which was based on
linear Fokker–Planck equations. This generalization incorporates the thermostatisti-
cal contexts associated with the power-law, Sq entropic measures. It also comprises,
as a special limit situation, the Boltzmann–Gibbs scenario (equivalent to the Tsal-
lis q parameter equal to one) corresponding to the standard, linear Fokker–Planck
equations.

2 Nonextensive Sq Thermostatistics

The Sq-thermostatistics is the focus of intense and increasing attention, and is nowa-
days being applied to the study of a wide range of complex systems in diverse
fields (Tsallis, 2009; Brito et al., 2016; Pluchino et al., 2013). This theoretical, ther-
mostatistical framework is based on the power-law, entropy functional (Tsallis, 2009)

Sq[P] = 1

q − 1

∫
P(x)

[
1 −

(
P(x)

Pc

)q−1
]
dNx , (2)

where P(x, t) is a probability density defined on an appropriate N -dimensional con-
figuration or phase space, whose points are represented by the vector x ∈ �N . The
functional (2) is characterized by the dimensionless parameter q, and by the con-
stant Pc whose dimensions are the same as those of the density P(x). For q → 1,

the Boltzmann–Gibbs (BG) logarithmic entropy, S1 = SBG = − ∫
P ln

(
P
Pc

)
dNx is

recovered. Central to the Sq thermostatistics is the expq(x) function (usually referred
to as q-exponential function) defined as

expq(x) =
{

[1 + (1 − q)x]1/(1−q) , when 1 + (1 − q)x > 0 ,

0 , when 1 + (1 − q)x ≤ 0 .
(3)

This function is ubiquitous in applications of the Sq-thermostatistics, because it
describes the shape of densities optimizing the Sq entropy under constraints (Tsallis,

2009). We shall use also the alternative notation expq(x) = [1 + (1 − q)x]1/(1−q)
+ .
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The q-MaxEnt distributions themselves, and other mathematical aspects of mod-
els inspired on the Sq-statistics, have been applied to fit observational or experimental
data coming from research on an astonishing variety of scientific themes, ranging
from themass distributions of of meteorites (Betzler &Borges, 2020) to the spread of
the COVID-19 pandemic (Tirnakli & Tsallis, 2020). They have also been observed in
numerical data generated by computer simulations of the behavior of diverse types
of complex systems (Siddiqui et al., 2018; Tsallis, 2009). The theoretical frame-
work of nonextensive thermostatistics has thus been applied to the study of problems
in areas such as physics, astronomy, economics, biology, biomedicine, psychology,
cognition, computer science and machine learning, among others. Physical systems
which seem to be the best candidates for a descriptionwith the Sq-thermostatistics are
those endowed with long-range interactions and characterized by long-live, quasi-
equilibrium (or meta-equilibrium) states (Brito et al., 2016), those located at the edge
of chaos (Pluchino et al., 2013), and systems exhibiting a behavior effectively gov-
erned by Fokker–Planck equations with power-law diffusion terms (Plastino & Plas-
tino, 1995; Martinez et al.,1998; Franck, 2005; Malacarne et al., 2002; Schwämmle
et al., 2007). The theoretical links between generalized thermostatistical formalisms
and nonlinear Fokker–Planck dynamics have attracted considerable interest in recent
years. These links are at the core of some of the applications of the Sq-thermostatistics
that are best understood and rest on the firmest theoretical grounds (Schwämmle et al.,
2007).

3 The Cohen–Grossberg Neural Network Model

The equations of motion of the neural network model proposed by Cohen and
Grossberg (1983) are

dxi
dt

= ai(xi)

⎡
⎣bi(xi) −

N∑
j=1

cijdj(xj)

⎤
⎦ , i = 1, . . . ,N , (4)

where xi is the state variable of the ith neuron, the cij’s are constant weights,
and ai(xi)’s, bi(xi)’s, and di(xi)’s are functions satisfying ai(xi)d ′

i (xi) ≥ 0. Differ-
ent choices for the functions ai(xi)’s, bi(xi)’s, and di(xi)’s, correspond to different
particular instances of the Cohen–Grossberg model. For symmetric weights cij = cji,
the model admits an energy function (also referred to as the potential or Liapunov
function), given by (Cohen & Grossberg 1983)

W = −
N∑
i=1

∫ xi

0
bi(εi)d

′
i (εi)dεi + 1

2

N∑
j,k=1

cjkdj(xj)dk(xk). (5)
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The equations of motion (4) can be recast in terms of the partial derivative of W , as

dxi
dt

= −
[
ai(xi)

d ′
i (xi)

]
∂W

∂xi
= Ki(x1, x2, . . . , xN ). (6)

These equations determine the evolution of the dynamical state of the network,
which at each instant in time is described by the set of N phase-space variables
{x1, x2, . . . , xN }. Sometimes, it is convenient to express (6) more compactly as dx

dt =
K(x), with x,K ∈ �N . The system’s state is then represented by a vector x evolving
deterministically according to the phase-space flux field K.

Setting ai(xi) = −1/τi, bi(xi) = xi, cij = ωij, and di(xi) = g(xi), with the τi’s all
constants, in the equations (4), these are reduced to those governing the continuous
Hopfield neural network,

τi
dxi
dt

= −xi +
N∑
j=1

ωijg(xj). (7)

That is, the well-known Hopfield model constitutes a particular case of the Cohen–
Grossberg model.

4 Fokker–Planck Approach to Cohen–Grossberg Neural
Networks

We shall first review basic notions concerning the linear Fokker–Planck equations,
in order to introduce some relevant ideas and fix notation. One individual realization
of the dynamical system, our neural network, when it evolves from one given set of
initial conditions, is governed by the equations of motion (4) and (6). However, when
dealingwith complex dynamical systems of high dimensionality, instead of focussing
on the evolution of a single instance of the system, it is frequently more instructive
and often only feasible to consider the time evolution of a statistical ensemble of
identical systems. For an interesting example of the ensemble approach to neural
network dynamics, see Yan et al. (2013).

The aforementioned ensemble is described by a time-dependent probability den-
sity in phase space P(x1, · · · , xN , t), evolving according to Liouville’s phase-space
continuity equation (∂P/∂t) + ∇ · (PK) = 0. Here, ∇ = (∂/∂x1, . . . , ∂/∂xN ) is the
N -dimensional gradient ∇-operator. To incorporate the effects of noise, which is
often necessary when modeling biological neural networks, one adds a diffusion-
like term to the continuity equation, resulting in the linear Fokker–Planck equation
(FPE)

∂P

∂t
− D∇2P + ∇ · (PK) = 0 , (8)
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where D is a diffusion constant. The term in (8) involving the flux K is usually
called the drift term, and we thus refer to K as the drift field, or equivalently, the
phase-space flux. If K = −∇W , for some potential W (x), then K corresponds to
a phase-space flow that always points “downhill” in the potential landscape given
by W . If one chooses an appropriate energy W (x), the drift fields of the continuous
neural networks considered here have this downhill behavior. Although the flow is
not strictly in the direction of −∇W , it always has a positive projection along this
direction. This can be seen by observing that the components of the vector flow K

are not
(

∂W
∂x1

, . . . , ∂W
∂xN

)
but, instead,

(
a1(x1)

d ′
1(x1)

∂W

∂x1
, . . . ,

aN (xN )

d ′
N (xN )

∂W

∂xN

)
. (9)

The fact that the drift field (phase-space flux) associated with the Cohen–Grossberg
dynamics departs from the gradient will be important in our present developments.
We have already explored in (Wedemann& Plastino 2016,Wedemann et al. 2016; de
Luca et al. 2018) some scenarios involving drift fields not arising exclusively from a
potential. However, in those previous works we focused on non-gradient situations
different from the ones described by Eq. (9). The non-gradient flows appearing in
(Wedemann & Plastino 2016; Wedemann et al. 2016; de Luca et al. 2018) originated
from asymmetric synaptic interactions, which we shall not study here.

When the drift field corresponds to a gradient K = −∇W, the FPE (8) admits
stationary solutions of the BG type,

PBG(x) = 1

Z
exp

[
− 1

D
W (x)

]
, (10)

where the normalization constant Z (also known as partition function) is given by
Z = ∫

exp [−W (x)/D] dNx . As usual, we assume that the potential W (x) is such
that the integral defining Z converges. The probability density PBG maximizes the
entropic functional SBG under the constraints given by the norm of PBG and by the
average value 〈W 〉 = ∫

W (x)P(x) dNx.

4.1 Nonlinear Fokker-Planck Dynamics and q-Statistics for
Cohen–Grossberg Models

The nonlinear Fokker–Planck equation (Franck, 2005) is a versatile tool for the anal-
ysis of various phenomena in complex systems. As already mentioned, it represents
possible dynamical processes giving rise to q-exponential densities. Here, we shall
implement this kind of evolution equationwithin the context of the Cohen–Grossberg
neural network models. In previous contributions, we have already considered the
nonlinear Fokker–Planck approach to neural network dynamics (Wedemann & Plas-
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tino, 2016, 2017; de Luca et al., 2018). However, those works were restricted to the
particular case of Hopfield neural networks, or to linear networks devised to analyti-
cally explore conceptual problems related to the asymmetry of synaptic connections.
A generalization of the linear Fokker–Planck equation (8), introducing a nonlinear
diffusion term is given by

∂P

∂t
= D∇2[P2−q] − ∇ · [PK] . (11)

We now introduce a NLFPE specifically associated with the Cohen–Grossberg
neural network models. Let us consider the Fokker–Planck equation

∂P

∂t
= D

∑
i

∂
∂xi

{(
q−2
q−1

) (
ai(xi)
d ′
i (xi)

)
P ∂

∂xi

[(
P
Pc

)1−q
]}

+∑
i

∂
∂xi

[(
ai(xi)
d ′
i (xi)

)
P ∂W

∂xi

]
. (12)

The quantities

Di = D

(
q − 2

q − 1

)
ai(xi)

d ′
i (xi)

, (13)

appearing in (12), are akin to non-constant diffusion coefficients depending on the
state-variables xi. They can be construed as effective descriptions of the diffusion of
substances generated by processes in localized neurons.

The stationary states of the complex network dynamics are of special interest,
because they may represent stored memories. Understanding properties of these
stationary states, and of the dynamics leading to them, are therefore essential ingre-
dients for the description of mental processes in the brain (Wedemann et al., 2009,
2011; Carvalho et al., 2003; Wedemann & Carvalho, 2012; Siddiqui et al., 2018).
We shall prove that the evolution equation (12) admits stationary solutions having
the q-exponential shape

Pq(x) = PcA[1 − (1 − q)βW (x)]
1

1−q

+ , (14)

with A, β and Pc defined as appropriate constants, such that Pc has the same dimen-
sions as P, as explained in Sect. 2. For a two-neuron circuit, we have shown figures
illustrating the stationary solutions given by probability density (14), where the pair
of neurons tends to have simultaneous firing or non-firing states as the strength of the
connection becomes stronger, which is consistent with biological considerations.

For stationary densities, the nonlinear Fokker–Planck equation (12), associated
with the Cohen–Grossberg model, reduces to

N∑
i=1

∂

∂xi

{(
ai(xi)

d ′
i (xi)

)
P

[
D

(
2 − q

1 − q

)
∂

∂xi

[(
P

Pc

)1−q
]

+ ∂W

∂xi

]}
= 0 , (15)
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which corresponds to setting ∂P/∂t = 0 in (12). It can be shown that, when the
constants A, β and D comply with

(2 − q)DβA1−q = 1 , (16)

the ansatz (14) satisfies

(
ai(xi)

d ′
i (xi)

)
P

[
D

(
2 − q

1 − q

)
∂

∂xi

[(
P

Pc

)1−q
]

+ ∂W

∂xi

]
= 0 , (17)

and consequently is a solution of (15). In summary, our Cohen–Grossberg-related
Fokker–Planck equation (12) has q-exponential, stationary solutions.

5 H-Theorem

We shall now derive an H -theorem for the nonlinear Fokker–Planck equation asso-
ciated with the Cohen–Grossberg dynamics. We shall prove that there exists a func-
tional F , akin to a free energy, that is monotonously decreasing under the time
evolution given by the Fokker–Planck equation (12). Let us consider the quantity

F = 〈W 〉 − DSq̃[P]
=

∫
W (x)P(x)dNx + D

1 − q̃

∫
P(x)

[
1 −

(
P(x)

Pc

)q̃−1
]
dNx , (18)

where q̃ + q = 2. The rate of change of F is given by

dF

dt
=

∫ {
W + D

1 − q̃

[
1 − q̃

(
P

Pc

)q̃−1
]}

∂P

∂t
dNx

=
∫ {

W + D

q − 1

[
1 + (q − 2)

(
P

Pc

)1−q
]}

∂P

∂t
dNx . (19)

Taking advantage of the constancy in time of the norm
∫
PdNx, it is possible to

rewrite dF/dt in the fashion

dF

dt
=

∫ [
W + D

(
q − 2

q − 1

)(
P

Pc

)1−q
]

∂P

∂t
dNx , (20)

which, in turn, can be expressed as



70 R. S. Wedemann and A. R. Plastino

dF

dt
= −

∫
P

N∑
i=1

ai(xi)

d ′
i (xi)

{
∂W

∂xi
+ D

(
q − 2

q − 1

)
∂

∂xi

[(
P

Pc

)1−q
]}2

dNx

≤ 0 . (21)

The steps followed to derive the above result include an integration by parts where,
assuming that P → 0 fast enough when |x| → ∞, one gets vanishing surface terms.
To obtain the last inequality in (21) one has to bear in mind that the quantities
ai(xi)/d ′

i (xi) and P(x) are always non-negative. In summary, our power-law NLFPE
admits the H -theorem,

d

dt

(〈W 〉 − DSq̃[P]) ≤ 0 , (22)

where equality holds for the stationary density. Consequently, the density that mini-
mizes F under the normalization constraint has to be the stationary solution. Equiv-
alently, the density that maximizes Sq̃ under the constraints given by normalization
and by the average of W (x) is the stationary one.

6 Conclusions

We have proposed and explored a nonlinear Fokker–Planck approach to the neural
network model presented by Cohen and Grossberg in (1983). The dynamics inves-
tigated here is governed by a nonlinear Fokker–Planck equation comprising two
terms: a drift term based on the Cohen–Grossberg network’s phase-space flow and a
power-law diffusion (Laplacian) term. The drift term in the Fokker–Planck equation
advanced here inherits the nonlinearities present in the Cohen–Grossberg equations
of motion. It also takes into consideration the non-gradient character of the Cohen–
Grossberg dynamics. More precisely, the structure of the drift term is consistent with
the fact that the Cohen–Grossberg flow is not equal, nor is it proportional, to −∇W ,
in spite of always having a positive projection into −∇W and, consequently, always
pointing downhill in the W (x) landscape.

We proved that there is a functional F , akin to a free energy, that complies with
an H -theorem under the dynamical evolution generated by our model. That is to
say, F decreases as the system evolves. The functional F is expressible as a linear
combination of the non-additive entropic functional Sq̃ and the average value of
the Cohen–Grossberg potential energy function W . The stationary solutions of the
Fokker–Planck equation, for which the time derivative of F vanishes, are given by
maximum Tsallis entropy probability densities. These densities maximize Sq̃ under
the constraints imposed by normalization and the average 〈W 〉 of the potential W .

We hope that these findings may help to consolidate the theoretical foundations
for the application of Sq-thermostatistics (and, in particular, for the application of
q-exponential densities) in neurosciences.
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Equalization Effect in Interpopulation
Spike-Timing-Dependent Plasticity
in Two Inhibitory and Excitatory
Populations

Sang-Yoon Kim and Woochang Lim

Abstract We consider two inhibitory (I) and excitatory (E) populations with I to E
and E to I interpopulation spike-timing-dependent plasticity (STDP). By changing
the noise intensity D, we study the effect of interpopulation STDPs on fast sparsely
synchronized rhythms that appear in the two I- and E-populations. Long-term poten-
tiation (LTP) and long-term depression (LTD) for population-averaged values of
saturated interpopulation synaptic strengths are thus found to take place. Then, the
degree of fast sparse synchronization changes due to the effects of LTP and LTD. In
a broad region of intermediate D, the degree of good synchronization (with larger
synchronization degree) gets decreased. On the other hand, in a region of large D,
the degree of bad synchronization (with smaller synchronization degree) becomes
increased. As a result, an “equalization effect” in interpopulation synaptic plasticity
occurs in each I- or E-population, where the synchronization degree gets nearly the
same in a wide range of D.

1 Introduction

We are interested in fast sparsely synchronized rhythms, related to various cog-
nitive functions (Wang, 2010). This kind of fast sparse synchronization has been
much studied in diverse aspects (Wang, 2010; Fisahn et al., 1998; Brunel & Wang,
2003; Geisler et al., 2005; Brunel & Hakim, 2008). In such previous works, synap-
tic coupling strengths were static. However, in real brains, synaptic strengths may
be potentiated (LTP) or depressed (LTD) to adapt to the environment. This kind of
adjustment of synaptic strength is called the synaptic plasticity which gives the basis
for learning, memory, and development (Abbott & Nelson, 2000).
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Here,we take into consideration, spike-timing-dependent plasticity (STDP) (Song
et al., 2000). For the STDP, the synaptic strengths change depending on the relative
time difference between the post- and the pre-synaptic spike times. In our recent
works (Kim & Lim, 2018), the effects of inhibitory STDP (at I to I synapses) on
fast sparse synchronization have been studied in networks of inhibitory fast spiking
interneurons.

In contrast to the previous work on the I to I intrapopulation STDP, we consider
interpopulation (I to E and E to I) STDPs between the I- and the E-populations. By
changing the noise intensity D, we study the effects of interpopulation STDPs on fast
sparse synchronization. In Sect. 2, the two I- and E-populations with interpopulation
STDPs are described. Then, in Sect. 3, we investigate the effects of interpopulation
STDPs on fast sparse synchronization. Finally, summary and discussion are given in
Sect. 4.

2 Two I- and E-Populations with Interpopulation Synaptic
Plasticity

As in the Ref. (Kim & Lim, 2020), we consider clustered small-world networks
(SWNs) consisting of the I- and E-populations. Each I(E)-population is modeled as
a directed Watts–Strogatz SWN (Watts & Strogatz, 1998), composed of NI (NE )
(NE : NI = 4 : 1) interneurons (pyramidal cells). Connections between the I and
the E SWNs are done in random and uniform way. The Izhikevich inhibitory fast
spiking interneuron (excitatory regular spiking pyramidal cell) model (which is not
only biologically plausible, but also computationally efficient (Izhikevich, 2007))
is chosen as elements in the I SWN (E SWN). Particularly, external noise (i.e.,
background noise) in our model denotes stochastic fluctuations of random external
inputs from other brain regions (not included in the network). It is modeled in terms
of a Gaussian white noise in the governing equations for our system, and its intensity
is controlled by the parameter D. For the whole parameters used in our computations,
refer to Table 1 in Kim and Lim (2020).

The coupling strength of the synapse from the pre-synaptic neuron j in the source
Y -population to the post-synaptic neuron i in the target X -population is J (XY )

i j . Initial

synaptic strengths are normally distributed with the mean J (XY )
0 and the standard

deviation σ0 (= 5); J (I I )
0 = 1300, J (EE)

0 = 300, J (E I )
0 = 800, and J (I E)

0 = 487.5.
The I to I synaptic strength (J (I I )

0 = 1300) is so strong that fast sparse synchronization
may appear in the I-population via balance between strong inhibition and strong
external noise (Wang, 2010; Brunel & Wang, 2003; Geisler et al., 2005; Brunel &
Hakim, 2008). This I-population is a dominant one, since J (I I )

0 is much stronger than
the E to E synaptic strength (J (EE)

0 = 300). Moreover, the I to E synaptic strength
(J (E I )

0 = 800) is so strong, and hence fast sparse synchronization may also occur in
the E-population when the noise intensity D passes a threshold. In contrast, the E to
I synaptic strength (J (I E)

0 = 487.5) is small in comparison with J (E I )
0 , and hence the
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effects of the E-population to the I-population are small. In this way, we consider an
inhibition-dominated case.

Here, we consider only the I to E and E to I interpopulation synaptic plasticity; in
this case, intrapopulation synaptic strengths are static. For the interpopulation synap-
tic strengths {J (XY )

i j }, we take into consideration a multiplicative STDP (dependent
on states) (Kim & Lim, 2018). As the time t is increased, synaptic strength for each
interpopulation synapse is updated with a nearest spike pair-based STDP rule:

J (XY )
i j → J (XY )

i j + δ(J ∗ − J (XY )
i j ) |�J (XY )

i j (�t (XY )
i j )|, (1)

where J ∗ = Jh (Jl) for the LTP (LTD) and�J (XY )
i j (�t (XY )

i j ) is the synaptic modifica-

tion depending on the relative time difference �t (XY )
i j (= t (post,X)

i − t (pre,Y )

j ) between
the nearest spike times of the post-synaptic neuron i in the target X -population and
the pre-synaptic neuron j in the source Y -population. For the values of the lower
and the upper bounds (Jl and Jh) and the update rate δ, refer to Table 1 in Kim and
Lim (2020).

For the I to E STDP, we use a time-delayed Hebbian time window for the synaptic
modification �J (E I )

i j (�t (E I )
i j ) (Haas et al., 2006); refer to Eqs. (13) and (14) for

�J (E I )
i j (�t (E I )

i j ) in Kim and Lim (2020). As in the E to E Hebbian time window, LTP

occurs for �t (E I )
i j > 0, while LTD takes place for �t (E I )

i j < 0. However, the time-

delayed Hebbian time window has delayed maximum and minimum for �J (E I )
i j [see

Fig. 6a in Kim and Lim (2020)], in contrast to the E to E Hebbian time window.
For the E to I STDP, we employ an anti-Hebbian time window for the synaptic

modification�J (I E)
i j (�t (I E)

i j ) (Bell et al., 1997); refer to Eq. (15) for�J (E I )
i j (�t (E I )

i j )

in Kim and Lim (2020). For �t (I E)
i j > 0, LTD occurs, while LTP takes place for

�t (I E)
i j < 0 [see Fig. 6c in Kim and Lim (2020], in contrast to the Hebbian time

window for the E to E STDP (Song et al., 2000).

3 Effects of Interpopulation STDPs on Fast Sparse
Synchronization

We first consider the case without STDP. In this case, fast sparse synchronization has
been found to occur in an wide range (D∗

1 , D
∗
2) of noise intensity D through balance

between strong external noise and strong inhibition (Wang, 2010; Brunel & Wang,
2003; Geisler et al., 2005;Brunel & Hakim, 2008). In our model, when passing the
first threshold D∗

1 (� 91), fast sparse synchronization is found to appear in both the I-
and theE-populations. Such population synchronizationmaybewell visualized in the
raster plot of neural spikes which is a collection of spike trains of individual neurons.
As a collective quantity showing population behaviors, we use an instantaneous
population spike rate which may be obtained from the raster plots of spikes (Wang,
2010; Brunel & Wang, 2003; Geisler et al., 2005; Brunel & Hakim, 2008).
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In the case of fast sparse synchronization, raster plots of spikes in the I- and the
E-populations and the corresponding instantaneous population spike rates RI (t) and
RE (t) are shown for various values of D as shown in Fig. 3b3–b7, c3–c7, and d3–
d7 in Ref. (Kim & Lim, 2020). In the I-population, each raster plot is composed
of spikes (upper black dots) of NI (= 600) fast spiking interneurons, while in the
E-population, each raster plot consists of spikes (lower gray dots) of NE (= 2400)
regular spiking pyramidal cells. Sparse spiking stripes (consisting of spikes and rep-
resenting population sparse synchronization) appear successively in the raster plots
of spikes in both the I- and the E-populations, and the corresponding instantaneous
population spike rates RI (t) and RE (t) also show fast in-phase oscillations.

For quantitative analysis,we characterize the degree of fast sparse synchronization
in each X -population (X = E or I) in terms of synchronization degree S(X)

d , defined
by the time-averaged amplitudes of the instantaneous population spike rate RX (t).
As D is increased, the amplitude of RI (t) decreases monotonically, which results in
monotonic decrease in S(I )

d of the I-population. On the other hand, with increasing
D, the amplitude of RE (t) first increases to its peak at D ∼ 250, and then it becomes
decreased. Thus, S(E)

d for a bell-shaped curve. Due to a destructive role of noise
to spoil fast sparse synchronization, a transition to desynchronization takes place
in both I- and E-populations when passing the second threshold D∗

2 (� 537). In a
desynchronized case, spikes are completely scatteredwithout forming any stripes [see
Fig. 3b8 in Kim and Lim (2020)], and the corresponding instantaneous population
spike rates RI (t) and RE (t) become nearly stationary, as shown in Fig. 3c8, d8
in Kim and Lim (2020). As a result, asynchronous irregular states emerge in the
desynchronized region.

From now on, we take into interpopulation (both I to E and E to I) STDPs and
investigate their effects on fast sparse synchronization by varying the noise intensity
D. Time evolutions of population-averaged I to E synaptic strengths 〈J (E I )

i j 〉 and E to

I synaptic strengths 〈J (I E)
i j 〉 for various values of D are shown in Fig. 7a1, a2, respec-

tively. First, we take into consideration the case of I to E STDP. In each case of inter-
mediate values of D = 110, 250, and 400 (shown in black color), 〈J (E I )

i j 〉 increases
monotonically above its initial value J (E I )

0 (=800), and eventually it converges to a

saturated limit value 〈J (E I )
i j

∗〉 nearly at t = 1500 s. As a result, inhibitory LTP takes
place for these values of D. In contrast, for small and large values of D = 95, 500,
and 600 (shown in gray color), 〈J (E I )

i j 〉 decreases monotonically below J (E I )
0 and

converges to a saturated limit value 〈J (E I )
i j

∗〉. Consequently, inhibitory LTD occurs
in the cases of D = 95, 500, and 600.

We next consider the case of E to I STDP. Due to the effect of anti-Hebbian time
window, time evolutions of 〈J (I E)

i j 〉 are in contrast to those of 〈J (E I )
i j 〉 in the case of

time-delayed Hebbian time window. For intermediate values of D = 110, 250, and
400 (shown in black color), 〈J (I E)

i j 〉 decreases monotonically below its initial value

J (I E)
0 (=487.5), and eventually, it approaches a saturated limit value 〈J (I E)

i j

∗〉 nearly
at t = 1500 s. Consequently, excitatory LTD occurs for these intermediate values of
D. On the other hand, for small and large values of D = 95, 500, and 600 (shown in
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gray color), 〈J (I E)
i j 〉 increases monotonically above J (I E)

0 and approaches a saturated

limit value 〈J (I E)
i j

∗〉. Accordingly, excitatory LTP occurs for D = 95, 500, and 600.
Such saturated limit values in the cases of I to E and E to I STDPs are shown in

Figs. 7b1 and b2 in Kim and Lim (2020), respectively. In the case of I to E STDP,
plot of saturated limit values 〈〈J (E I )

i j

∗〉〉r for a bell-shaped curve. Here, the horizontal
dotted line represents the initial average value J (E I )

0 (= 800) of I to E synaptic
strengths. On the other hand, in the case of E to I STDP, the plot of saturated limit
values 〈〈J (I E)

i j

∗〉〉r (open circles) forms a well-shaped graph, where the horizontal

dotted line denotes the initial average value of E to I synaptic strengths J (I E)
0 (=

487.5). The lower and the higher thresholds, ˜Dl (� 99) and ˜Dh (� 408), for LTP/LTD
(where 〈〈J (E I )

i j

∗〉〉r and 〈〈J (I E)
i j

∗〉〉r lie on their horizontal lines) are denoted by solid
circles.

In the case of a bell-shaped graph for 〈〈J (E I )
i j

∗〉〉r , inhibitory LTP occurs in a broad
region of intermediate D (˜Dl < D < ˜Dh), while inhibitory LTD takes place in the
other two (separate) regions of small and large D [D∗

1 < D < ˜Dl and ˜Dh < D <

D∗
2,inter (� 672)]. We note that inhibitory LTP (inhibitory LTD) disfavors (favors)

fast sparse synchronization [i.e., inhibitory LTP (inhibitory LTD) tends to decrease
(increase) the degree of fast sparse synchronization] because of increase (decrease)
in the mean value of I to E synaptic inhibition.

In contrast, in the case of a well-shaped graph for 〈〈J (I E)
i j

∗〉〉r , excitatory LTD
takes place in a broad region of intermediate D (˜Dl < D < ˜Dh), while excitatory
LTP occurs in the other two (separate) regions of small and large D (D∗

1 < D < ˜Dl

and ˜Dh < D < D∗
2,inter). We also note that the roles of LTP and LTD are reversed in

the case of E to I STDP. ExcitatoryLTP (excitatoryLTD) favors (disfavors) fast sparse
synchronization [i.e., excitatory LTP (excitatory LTD) tends to increase (decrease)
the degree of fast sparse synchronization] due to increase (decrease) in the mean
value of E to I synaptic excitation.

The effects of LTP and LTD at inhibitory and excitatory synapses on population
states after the saturation time (t∗ = 1500 s) may be well seen in the raster plot of
spikes in the I- and the E-populations and the corresponding instantaneous population
spike rates RI (t) and RE (t). Raster plots of spikes in the I- and the E-populations
and the corresponding instantaneous population spike rates RI (t) and RE (t) are
shown for various values of D in Figs. 8b1–b6, c1–c6, and d1–d6, respectively. In
comparisonwith the casewithoutSTDP, thedegrees of fast sparse synchronization for
intermediate values of D (D = 110, 250, and 400) are decreased (i.e., the amplitudes
of RI (t) and RE (t) are decreased) due to increased I to E synaptic inhibition (i.e.,
increase in inhibitory LTP) and decreased E to I synaptic excitation (decrease in
excitatory LTD). On the other hand, for small and large values of D (D = 95 and
500), the degrees of fast sparse synchronization are increased (i.e., the amplitudes
of RI (t) and RE (t) are increased) due to decreased I to E synaptic inhibition (i.e.,
decrease in inhibitory LTD) and increased E to I synaptic excitation (increase in
excitatory LTP).
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We note that a desynchronized state for D = 600 in the absence of STDP is
transformed into fast sparse synchronization through inhibitory LTD and excitatory
LTP. In fact, desynchronized states for D∗

2 (� 537) < D < D∗
2,inter (� 672) in the

absence of STDP become fast sparsely synchronized ones in the presence of inter-
population STDPs, and thus the region of fast sparse synchronization becomes so
much extended. Moreover, we also note that the degree of fast sparse synchroniza-
tion in the I-(E-)population (i.e., the amplitude of RI (t) [RE (t)]) tends to be nearly
the same in an “extended” wide range of ˜Dl < D < D∗

2,inter, except for the narrow
small-D region (D∗

1 < D < ˜Dl). Hence, an equalization effect in the interpopulation
synaptic plasticity occurs in such an extended wide range of D.

Finally, we make quantitative characterization of the degree of fast sparse syn-
chronization in each X -population (X = E or I) in terms of synchronization degree
S(X)
d (defined by the time-averaged amplitudes of the instantaneous population spike

rate RX (t)). In each realization, S(X)
d is obtained through time average over 3000

global cycles of RX (t).
We first consider the case of I-population. Figure1a shows plots of 〈S(I )

d 〉r versus
D. In the gray region of intermediate D [˜Dl (� 99) < D < ˜Dh (� 408)], the degrees
of good synchronization (solid circles) in the absence of STDP get decreased to
lower ones (open circles) via (E to I) excitatory LTD, while in the region of large D
[˜Dh < D < D∗

2,inter (� 672)], the degrees of bad synchronization (solid circles) in
the absence of STDP become increased to higher values (open circles) through (E
to I) excitatory LTP. Consequently, in a wide region of ˜Dl < D < D∗

2,inter (including

both the intermediate and the large D regions), the values of S(I )
d become nearly the

same. This kind of equalization effect may also be well seen in the histograms for

Fig. 1 Characterization of spiking degrees for fast sparse synchronization. Plots of a [(b)] the
synchronization degree 〈S(I )

d 〉r (〈S(E)
d 〉r ) (open circles) versus D in the I(E)-population. For com-

parison, those in the absence of STDP are also denoted by solid circles. Histograms for distribution
of synchronization degrees 〈S(I )

d 〉r (〈S(E)
d 〉r ) in the I(E)-population in the c1 [(d1)] absence and the

c2 [(d2)] presence of interpopulation STDP
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the distribution of 〈S(I )
d 〉r in the region of ˜Dl < D < D∗

2,inter. The gray histogram in
the absence of STDP is shown in Fig. 1c1 and the hatched histogram in the presence
of interpopulation STDP is given in Fig. 1c2. The standard deviation (�12.4) in the
hatched histogram is much smaller than that (� 20.4) in the gray histogram, and
hence equalization effect emerges. Moreover, a dumbing-down effect also occurs
because the mean value (� 23.7) in the hatched histogram is smaller than that (�
27.9) in the gray histogram.

Next, we consider the case of E-population. Figure1b shows plots of 〈S(E)
d 〉r ver-

sus D. In the gray region of intermediate D (˜Dl < D < ˜Dh), the degrees of good
synchronization (solid circles) in the absence of STDP become decreased to lower
ones (open circles) through (I to E) inhibitory LTP, while in the region of large
D (˜Dh < D < D∗

2,inter ), the degrees of bad synchronization (solid circles) in the
absence of STDP get increased to higher values (open circles) via (I to E) inhibitory
LTD. As a result, in a broad region of ˜Dl < D < D∗

2,inter (including both the inter-

mediate and the large D regions), the values of S(E)
d get nearly the same, as in the

case of S(I )
d . This type of equalization effect may also be well seen in the histograms

for the distribution of 〈S(E)
d 〉r in the region of ˜Dl < D < D∗

2,inter. The gray histogram
in the absence of STDP and the hatched histogram in the presence of interpopulation
STDP are shown in Fig. 1d1, d2, respectively. The standard deviation (�0.9) in the
hatched histogram is much smaller than that (�3.1) in the gray histogram, and hence
equalization effect appears. Furthermore, a dumbing-down effect also takes place
because the mean value (� 3.0) in the hatched histogram is smaller than that (� 6.0)
in the gray histogram.

4 Summary and Discussion

We considered clustered small-world networks consisting of I- and E-populations
with interpopulation STDPs. A time-delayed Hebbian time window has been
employed for the I to E STDP update rule. On the other hand, an anti-Hebbian
time window has been used for the E to I STDP update rule. By changing the noise
intensity D, we have studied the effects of interpopulation STDPs on fast sparsely
synchronized rhythms. Thus, LTP and LTD have been found to occur, depending on
D. These LTP and LTD affect the degree of fast sparse synchronization. In a broad
region of intermediate D, the degree of good synchronization (with larger synchro-
nization degree) has been found to get decreased. On the other hand, in the region
of large D, the degree of bad synchronization has been found to become increased.
Accordingly, the degree of fast sparse synchronization becomes nearly the same (i.e.,
a kind of “equalization effect” occurs) in a wide range of D. We note that this kind of
equalization effect is distinctly in contrast to the Matthew effect in intrapopulation (I
to I and E to E) synaptic plasticity where good (bad) synchronization becomes better
(worse) (Kim & Lim, 2018).



82 S.-Y. Kim and W. Lim

Acknowledgements Supported by the Basic Science Research Program through the National
ResearchFoundationofKorea (NRF) fundedby theMinistry ofEducation (GrantNo. 20162007688).

References

Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: Taming the beast. Nature Neuroscience,
3(Suppl), 1178–83.

Bell, C. C., Han, V. Z., Sugawara, Y., & Grant, K. (1997). Synaptic plasticity in a cerebellum-like
structure depends on temporal order. Nature, 387(6630), 278–281.

Brunel, N.,&Hakim,V. (2008). Sparsely synchronized neuronal oscillations.Chaos, 18(1), 015113.
Brunel, N., & Wang, X.-J. (2003). What determines the frequency of fast network oscillations
with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. Journal
Neurophysiology, 90(1), 415–30.

Fisahn, A., Pike, F. G., Buhl, E. H., & Paulsen, O. (1998). Cholinergic induction of network oscil-
lations at 40 hz in the hippocampus in vitro. Nature, 394(6689), 186–9.

Geisler, C., Brunel, N., & Wang, X.-J. (2005). Contributions of intrinsic membrane dynamics to
fast network oscillations with irregular neuronal discharges. Journal Neurophysiology, 94(6),
4344–61.

Haas, J. S., Nowotny, T., & Abarbanel, H. D. I. (2006). Spike-timing-dependent plasticity of
inhibitory synapses in the entorhinal cortex. Journal Neurophysiology, 96(6), 3305–13.

Izhikevich, E. (2007). Dynamical systems in neuroscience. Cambridge: MIT Press.
Kim, S.-Y.,&Lim,W. (2018). Effect of inhibitory spike-timing-dependent plasticity on fast sparsely
synchronized rhythms in a small-world neuronal network. Neural Networks, 106, 50–66.

Kim, S.-Y., & Lim, W. (2020). Effect of interpopulation spike-timing-dependent plasticity on syn-
chronized rhythms in neuronal networks with inhibitory and excitatory populations. Cognitive
Neurodynamics, 14(4), 535–567.

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive hebbian learning through spike-timing-
dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–26.

Wang, X.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cog-
nition. Physiological Reviews, 90(3), 1195–268.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature,
393(6684), 440–2.



Acetylcholine Effects on STDP Induced
on Spatial and Non-spatial Information
in Dentate Gyrus

Eriko Sugisaki, Yasuhiro Fukushima, and Takeshi Aihara

Abstract Spatial and non-spatial information, coming from medial perforant path
(MPP) and lateral perforant path (LPP), respectively, is considered to be integrated
on granule cell in dentate gyrus (DG) to play an important role in learning and mem-
ory. At both connected sites on dendrite, the phenomenon of learning and memory
of spike timing-dependent plasticity (STDP) is known to be induced. Meanwhile,
acetylcholine (ACh) is released from cholinergic terminals in DG when attentional
processes are paid. And there are reports that ACh enhanced STDP in CA1 area.
In order to investigate the ACh effects on STDP and its mechanism in DG, STDP-
inducing protocol was applied to measure STDP on MPP or LPP in the presence of
eserine, furthermore, the changes in baseline amplitude during the STDP protocol
were investigated. As the results, STDPs at both sites were enhanced if ACh receptors
were activated and then clarified that the baseline amplitudewas one of the factors for
the enhancement on MPP. These findings suggest that spatial and non-spatial infor-
mation is strengthened in learning and memory if attentional processes are paid, but
the underlain mechanisms are different.

1 Introduction

Dentate gyrus (DG) granule cells (GC) integrate spatial and non-spatial information.
Spatial information is projecting frommedial entorhinal cortex to medial dendrite of
GC via medial perforant path (MPP) (Fyhn et al., 2004), while non-spatial informa-
tion such as smell is projecting from lateral entorhinal cortex to distal dendrite via
lateral perforant path (LPP) (Hargreaves et al., 2005). Meanwhile, it is known that
acetylcholine (ACh) is released in the DG from the cholinergic terminals coming
from the medial septum (Amaral et al., 2007) when attentional processes are paid,
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and ACh enhances spike timing-dependent plasticity (STDP) induced in the CA1
(Sugisaki et al., 2016). However, how ACh influences on STDP in DG, furthermore,
what mechanisms are functioning on that cholinergically induced STDP are still not
clear. In this study,we clarified the effect ofAChonSTDP induced at dendrite sites on
MPP or LPP, respectively, and then found baseline amplitude was an important factor
for deciding an STDP magnitude on MPP. These results can be useful for clarifying
information integration in the DG during attentional processes in the future.

2 Method

All procedures were approved by the Tamagawa University Animal Care and Used
Committee. Hippocampal slices (400 µm in thickness) were prepared from Wis-
tar rats (20–25 days old), and whole cell patch clamp recordings were made from
the soma of GC. Stimulating electrode was set on MPP or LPP to inject STDP-
inducing protocol consisted of paired pulses (Fig. 1). The magnitude of STDP was
defined as averaged EPSP slopes obtained from 20 to 30min after STDP-inducing
stimulus/averaged baseline EPSP slopes, while the lowest values of each membrane
response induced by the paired pulses at the last 2 s of the STDP protocol were aver-
aged as a baseline amplitude. Depending on the experiments, 2 µM eserine, 1 µM
atropine and 10 µMmecamylamine were added to ACSF 5min. before the applica-
tion of the stimuli until it was finished. 25 µM Picrotoxin was added throughout the
experiments. Analysis of variance (ANOVA) followed by Fisher’s PLSD test was
used for statistical analysis (p < 0.05).

Fig. 1 Stimulus pattern
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3 Results

3.1 ACh Effects on STDP Enhancement

Before performing STDP experiments, MPP was clarified by observing a paired
pulse depression (Petersen et al., 2013). First, STDP was measured and LTP was
induced in the control condition (145.8 ± 10.5%, n=5, p < 0.05; Fig. 2), while
larger LTP was observed if eserine was applied to influence ACh (176.8 ± 6.3%,
n=5, p < 0.01, p < 0.05 vs. control), although no STDP was seen when blocking
nicotinic ACh receptor (nAChR) and muscarinic ACh receptor (mAChR) activation
by mecamylamine and atropine application, respectively, named non-ACh condition
(118.9 ± 7.0%, n=5, N.S., N.S. vs. control, p < 0.01 vs. eserine).

These results show STDP with MPP stimulation was increased depending on
ACh concentration. Then, similar experiments were performed replacing stimulating
electrode on LPP. The position was confirmed by paired pulse facilitation (Petersen
et al., 2013). As the results, LTD was induced in control condition (75.1 ± 8.6%,
n=6, p < 0.01), although STDPs were not observed despite of ACh existence (103.0
± 1.6%, n=5, N.S., N.S. vs. control) or not existence (128.3 ± 1.9%, n=3, N.S.,
p < 0.01 vs. control, N.S. vs. eserine) conditions. Interestingly, small amount of
ACh influenced STDP induction.

3.2 ACh Effects on Baseline Amplitude

AsACh effected on STDP enhancement atMPP stimulation, next baseline amplitude
during the STDP stimulation was evaluated if some changes were occurred due to
AChR activation. Then it was clarified that the baseline amplitude in the presence of

Fig. 2 ACh effects on STDP



86 E. Sugisaki et al.

Fig. 3 ACh effects on baseline amplitude

eserine was higher (2.1 ± 0.4mV, n=5, p < 0.05; Fig. 3) than the one in non-ACh
condition (0.9 ± 0.3 mV, n=5, p < 0.05, p < 0.05 vs. eserine).

These results suggest that the activation of AChRs effected on baseline amplitude.
However, this tendency was not observed if replacing stimulating electrode on LPP
that baseline amplitudes were similar in each condition (non-ACh: 1.2 ± 0.4 mV,
n=3, N.S.; control: −0.06 ± 0.3 mV, n=5, N.S., N.S. vs. non-ACh; eserine: 0.4 ±
0.5 mV, n=5, N.S., N.S. vs. non-ACh, N.S. vs. control). These results suggest that
the baseline amplitudes on LPP stimulation barely cooperated with STDP.

3.3 Contribution of mAChRs and nAChRs

As it was clarified that the ACh contributed to a larger STDP induction on MPP
stimulation, next, the type of highly associated AChRs, mAChR or nAChR, was
specified. Consequently, LTD was induced when only mAChRs were activated by
mecamylamine application (56.5 ± 10.5%, n=4, p < 0.01, p < 0.01 vs. non-ACh;
Fig. 4), though no STDP was observed if nAChRs were activated instead by atropine
application (112.2 ± 5.9%, n=6, N.S., N.S. vs. non-ACh). Surprisingly, none of
mAChRs nor nAChRs seemed to be cooperated with the larger STDP induction as
it was observed in eserine condition (Fig. 2).

4 Conclusion

The direction and the magnitude of STDP in CA1 region are known to be decided by
the postsynaptic Ca2+ level (Nishiyama et al. 2000; Aihara et al., 2007) according to
BCM rule (Bienenstock et al., 1982). Therefore, it is likely that postsynaptic Ca2+
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Fig. 4 Types of AChRs

Fig. 5 BCM rule

level in our results with ACh on MPP stimulation might have been higher than the
one without ACh treatment as shown in Fig. 5. Also, similar fits were observed on
LPP. Taken together, the activation of AChRs facilitated postsynaptic Ca2+ level
according to BCM rule, especially, nAChRs were more responsible for STDP than
mAChRs onMPP. However, the mechanism of STDP enhancement was not clear, so
that we focused on baseline amplitude during the stimulation. Then it was clarified
that the baseline amplitude onMPPwas elevated by the activation ofAChRs resulting
in postsynaptic Ca2+ level elevation along with BCM rule. On the other hand, some
other mechanisms besides the baseline amplitude may have drove on LPP.

In this study, as a first step for simplification, experiments were performed under
interneuron-blocked network. However, if it is excited, nAChRs and mAChRs on
interneurons may be contributed to suppress the magnitude of STDP (Sil’kis, 2003)
to LTD direction due to the excitation of those modulated interneurons. Furthermore,
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it is known that different types of AChRs have different affinity that the concentration
of ACh possibly influences on the magnitude of STDP through the relative strength
of excitation and inhibition. Overall, this study is very important for clarifying the
mechanisms of spatial and non-spatial information integration in accordance with
attentional processes in the DG.
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Context-Dependent Learning and
Memory Based on Spatio-Temporal
Learning Rule

Hiromichi Tsukada and Minoru Tsukada

Abstract Hebbian learning rule (HEB) with recurrent connections has the ability
to stabilize memory patterns, while spatio-temporal learning rule (STLR) has high
ability to discriminate temporal difference of spatial input patterns in spatio-temporal
context. These learning rules are confirmed to coexist in the brain by experimental
study; however, how these learning rules interact each other in memory processing
is still unclear. Here, we constructed a recurrent neural network with two biologi-
cal plausible learning rules (HEB and STLR), and evaluated how spatio-temporal
context information is embedded in the memory by simulation.We found that spatio-
temporal context patterns are embedded stably in thememory space as attractors with
approximate balance of two learning rates and clustered with temporal history. These
findings contribute to the understanding of the fundamental neural mechanisms of
spatio-temporal context learning in the brain.

1 Introduction

From the viewpoint of spatio-temporal contexts in episodic memory, a spatio-
temporal attractor structure is an important one in the neural network. Experimen-
tally, Tsukada et al. (1994, 1996) showed that various spatio-temporal pattern stimuli
can induce long-term potentiation (LTP) in the hippocampal neurons, and based on
these results, they proposed the spatio-temporal learning rule (STLR) consisted of
two factors; cooperative plasticity (coincidence) among presynaptic inputs without
a postsynaptic spike (the destination neuron) and its temporal summation. Tsukada
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et al. (2007) experimentally confirmed that STLR and Hebbian learning rule (HEB)
coexist in hippocampal CA1 circuit. Tsukada and Pan (2005) systematically identi-
fied the functional difference between STLR and HEB in a simple one-layer neural
network by computing their ability to differentiate spatio-temporal sequences. STLR
has high ability in discriminating spatio-temporal pattern, while HEB in pattern com-
pletion.

In the modeling study of memory network, associative memory model (Amari,
1972; Nakano, 1972; Hopfield, 1982), memory model of successive retrieval, so-
called “chaotic itinerancy” (Tsuda et al., 1987; Tsuda, 1992), and transitory memory
retrieval model using biologically plausible neurons (Tsukada et al., 2013) have also
been proposed so far. However, few memory network models have been studied in
relation with the spatio-temporal context and attractors as memory.

Here, we propose a simple artificial memory network for storing spatio-temporal
sequences using two types of unsupervised learning, HEB and STLR. We show
that the interaction between these two learning rules plays an important role in
constructing the context-dependent attractor on the memory network.

2 Models

The network is a single-layered network, which consists of N neurons (pyramidal
cells), with feedforward excitatory connection and excitatory of feedback connec-
tions. Each neuron connects to all source (input) neurons (x1, x2, . . . , xN ) via an
excitatory synapse. An input neuron i (i = 1, 2, . . . , N ) connects an pyramidal (out-
put) neuron j ( j = 1, 2, . . . , N ) through a synaptic weight wi j , and the input pattern
consists of the spatio-temporal pattern, whose spatial snap at one moment corre-
sponds to a spatial frame of N-dimensional binary elements. We implemented two
learning rules, which are Hebbian learning rule (HEB) and spatio-temporal learning
rule (STLR) (Tsuda et al., 1994, 1996), in this network model (Fig. 1).

The internal state of the network model is defined as follows:

si (t) = α

n∑

j=1

wS
i j (t)x j (t) + (1 − α)

n∑

j=1

wH
i j (t)y j (t), (1)

yi (t) = F(si (t) − θ), (2)

where x j (t) is an input and wi j (t) is a synaptic weight from neuron j to neuron i at
time instant t, which is a discrete time. θ is the threshold, and α is a balance rate of
potential between HEB and STLR.

The synaptic weight change �wS
i j of STLR depends on both spatial coincidence

and its temporal summation factors of the input neuron-activity, without the firing
of the output neurons Tsukada et al. (1996, 2007). This is under the subthreshold
condition ofmembrane potentials si (t) in each output neuron. The spatial coincidence
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Fig. 1 Schematic diagram of the network architecture. The network consists of excitatory cells
with feedforward and feedback connections. Five frames of spatial patterns are created and input
them to the network. There are two weight matrices in the network, and each weight is updated by
Hebbian learning rule and spatio-temporal learning rule, respectively

Ii j (t) is a measure of cooperative activity of the input neurons when a spike of input
neuron i arrived on an output neuron j at time t and defined as follows:

Ii j (t) = xi j (t)wi j

n∑

k �= j

xk j (t)wkj (t). (3)

The update rule of STLR is given by

�wS
i j (t + 1) = ηST LRh(Ii j (t)), (4)

h(x) =

⎧
⎪⎨

⎪⎩

1 (x ≥ θ1)

0 (θ1 > x > θ2)

−1 (x ≤ θ2)

, (5)

where θ1 and θ2 are determined byCa2+ influx density viaNMDAchannels, inwhich
the high density induce LTP and the low, LTD. ηST LR is a learning rate coefficient.

The weight modification �wH
i j (t + 1) depends on the coincidence between pre-

vious output and current output and is given by

�wH
i j (t + 1) = ηHEB yi (t)y j (t), (6)

where ηHEB is a learning rate coefficient.
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3 Results

The spatio-temporal pattern used in this simulation consists of five frames of spatial
patterns, i.e., A1, A2, A3, A4, A5 (Ai is a spatial frame). Every frame consists of
N elements (N = 120), and each element is chosen as 1 or 0 randomly. We set
the Hamming distance (HD) between each spatial frame to be 10 bits. In order to
examine whether the network has context-dependent attractors or not, the spatio-
temporal sequences are generated by permutations of A1, A2, A3, A4, A5 in the
initial five steps, and the follow-on steps are randomly selected.

Here, the 120 spatio-temporal context patterns of five frames are applied to the
network as external input, and the differences between output vectors from the net-
work are examined in order to investigate the existence of context dependent attractor.
First, we focused on the influences of learning rate coefficients ηSTLR and ηHEB for
the context-dependent attractor. We calculated bit change rate of output vectors from
the network during the last ten steps for 120 spatio-temporal context input patterns.
The bit change rate with different parameter values of ηSTLR and ηHEB is shown in
Fig. 2a, and after given a threshold (<0.1) is shown in Fig. 2b. Number of different
output vectors for 120 spatio-temporal context input patterns is shown in Fig. 2c, and
after given a threshold (>96) is Fig. 2d. The common area of Fig. 2b, d is plotted in
Fig. 2e. These results indicate that the context-dependent attractors are formed with
the appropriate balance of two learning rate coefficients ηSTLR and ηHEB, and appear
mainly two separate regions.

Fig. 2 Context-dependent attractor in the parameter space of ηSTLR and ηHEB. (a) Stable regions
of the network output vectors. Different color plots show bit change rate during the last ten steps.
(b) Variety of the network output vectors. Different color plots show the number of different output
vectors. (c), (d) These figures show binarized images given a threshold to the results of (a) and (b),
respectively. (e) Regions of context-dependent attractor in the parameter space of ηSTLR and ηHEB
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4 Discussions

We proposed one-layer artificial neural network with feedforward and feedback con-
nections using two types of learning rule. This network structure is based on a basic
anatomical structure commonly existing in the brain memory system such as hip-
pocampus (Klausberger and Somogyi, 2008) and cortex (Kubota, 2014) areas. In
the process, learning rules play important roles to self-organize the dynamics in the
memory neural network. Hebb learning with the recurrent networkmodifies synaptic
weights depending on supra-threshold of destination neurons, which leads to pattern
completion. On the other hand, STLR in feedforward connection modifies synaptic
weights on sub-threshold of post-synaptic neurons, which leads to pattern separation.

We found that spatio-temporal context input patterns are embedded in thememory
space stably as attractors with appropriate balance of two learning rates. Our results
also showed that the context-dependent attractor emergesmainly two areas; however,
how the memory dynamics are different between these two areas is currently under
consideration and future study. These findings contribute to the understanding of the
fundamental neural mechanisms of spatio-temporal context learning in the brain.

Acknowledgements This work was supported by JSPS KAKENHI Grant Numbers JP17K00322
and JP20H04246.
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Time Delayed Effect Can Bring Novel
Hierarchical Complex Dynamics
to Neural Network?

Shigetoshi Nara

Abstract A recurrent neural network model with including time delayed effect is
investigated bymeans of theoretical consideration and computer experiments aswell.
The detailed contents were already published inNeural Computing andApplications,
11 (3 and 4), pp. 137–143 (2003) by Suemitsu, Y., & Nara, S., and this report was
written only for an oral presentation of this work in ICCN2019.

Complex dynamics could play an important role in advanced information pro-
cessing and control in biological systems, particularly in neural(brain)-systems since
(Skarda & Freeman, 1987; Tsuda et al. 1987; Aihara et al. 1990; Nara &Davi, 1992).
Along this viewpoint, a recurrent neural network model with including time delayed
effect is investigated by means of theoretical consideration and computer experi-
ments as well. The proposed model not only works as the conventional associative
memory but also enables us to embed a new kind of memory attractors which are
unable to realize in the model without time delayed effect, for example, chain ring
like attractors or hierarchical structure of memory attractors as shown in Fig. 1. This
is attributed to the fact that time delayed effect makes the available state space expand
to larger dimensions than the given number of neurons and their states. Moreover,
it is discovered that the basin volume for each embedded chain ring like attractor
shrinks, and unstable itinerant orbits in the outer state space of the memory attractor
basins emerge, where the itinerancy in outer space could be chaotic.

Now, let us indicate amodel that time delayed effect explicitly introduced in updat-
ing rule of neuron activity with discrete time and binary state scheme, represented
as

s(t + 1) = Fμ(s(t − τ)) 0 ≤ τ) (1)
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Fig. 1 A schematic description of new-kind attractors in high-dimensional state space, a, b: chain-
ring and c: hierachical, which are able to be designed only with use of time-delayed effect [see Eq.
(3])

where s is defined as a N -dimensional state vector consisting of binary (±1) com-
ponents, and F is certain sign function to describe updating of neuron activity and μ

is a parameter set included in the model. τ = 0 results in conventional model. Once
this formulation of network activity is employed, then

{si (t + q) | i = 1 ∼ N , q = 0 ∼ τ } (2)

is an independent variable (element) set in given τ , so that the total number of inde-
pendent state vectors is τ + 1, and the number of independent variable is (τ + 1)N
in this model. In contrast, the number of independent variable is infinite when con-
tinuous time and state scheme is employed because the cardinality of real number in
0 ≤ t ≤ τ is infinitely dense, which is represented asℵ. These remarkable extensions
of state-space could generate emergent complex hierarchical dynamics in activity of
neural system. In actual neural systems including brain, analogue property of real
number is limited to finite resolution by biological restriction, so that infinite number
of variables would be reduced considerably. Even if so, however, it may account for
why human brain can show extraordinary memory-capacity comparing with specu-
lated capacity from roughly estimated number of neurons concerning memorizing
and recalling function. Moreover, advanced functional processing could be realized
with use of such novel hierarchical complex dynamics with including chaos.

In this paper, based on the abovementioned idea, let us only show a case employed
in the previous paper (Suemitsu and Nara, 2003). It is one of selectable varieties
within this scheme, in which we take τ = 1 and introduce a certain interaction
between the two spaces of τ = 0 and τ = 1, as follows,
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si (t + 1) = sgn

⎛
⎝

N∑
j=1

w(0)
i j s j (t) +

N∑
j=1

w(1)
i j s j (t − 1)

⎞
⎠ (3)

Even in this simplifiedmodel with time delay, the novel properties stated in the initial
paragraph are obtained.

More detailed considerations and computer experiments to develop our ideas will
be given in future.
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A Cortical Network Model for Visual
Attention

Xiaochuan Pan, Tao Zhang, Xuying Xu, and Rubin Wang

Abstract It is known that visual attention can modulate firing patterns of neurons in
visual cortexes and play important functional roles in visual information processes.
Despite of several decades of studies, mechanisms of visual attention still remain
unclear. Recent neurophysiological studies reported that attention could increase
NMDA and AMPA synaptic strength. To understand how neuronal activity is modu-
lated by attention at the synaptic level, we proposed a three-layer neural network in
this study.Eachneuron receivesAMPAandNMDAcurrents and alsoGABAcurrents.
In the synapse between every twoneurons, neurotransmitters are stochastically bound
with receptors in post-synaptic membranes. In the model, it is hypothesized that
attention could make the binding process less stochastic, and more neurotransmit-
ters are bound with postsynaptic receptors. Our simulation showed that attention
resulted neurons in the model had stronger firing rates and less response variability.
We also found that attention had stronger modulation of neuronal activity in higher
layers than in lower layers. Inhibitory neurons had stronger attention effects than did
excitatory neurons. Overall, our results demonstrated that attention may modulate
neuronal activity by controlling the stochastic binding process.

1 Introduction

Visual attention has crucial roles in the process of visual information. It could selec-
tively enhance neuronal responses to particular visual stimuli (Reynolds et al. 1999;
Treue and Maunsell 1999). Some studies have reported that single neurons could
increase its firing rate and reduce its response variability when attention is in work
(Anton-Erxleben and Carrasco 2013). It was also found that neuronal activities in
higher visual areas are modulated more strongly by attention than those in lower
visual areas, and putative interneurons had stronger attention modulation than did
putative pyramidal cells (Thiele et al. 2016). A recent experiment further reported
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that attention increased the efficacy of neuronal communication between neurons,
and a presynaptic input could more easily to drive a response of a postsynaptic
neuron (Briggs et al. 2013). These experimental observations imply that attention
may affect information transmission between neurons at the synaptic level, which
thereby could change response patterns of neurons in various cortical regions. It
is essential to investigate the underlying mechanism how attention modulates the
efficiency of neural signal transmission.

There are lots of proposed computational models to reveal attentional modulation
on neuronal activities (Lanyon and Denham 2009). The detail methods to model
attentional effects are different in these models. Somemodels have neurons and their
connected microcircuits with detailed biophysical information (Wagatsuma et al.
2013). Some models are constructed with abstract spiking neurons (Itti and Koch
2000) or dynamic rate coded populations (Beuth and Hamker 2015). Some models
only have abstract mathematical descriptions (Reynolds andHeeger 2009). However,
these models have some limitations to analyze synaptic information transmission
modulated by attention. Therefore, the purpose of this study is to reveal how atten-
tion controls the binding processing of neurotransmitters to modulate information
transmission between neurons.

To investigate this issue, a three-layer network model was proposed to study
attentional modulations on neural activities. Each layer has excitatory and inhibitory
neurons. Each neuron receives AMPA, NMDA, and GABA currents. Neurotrans-
mitters are released, transmitted in the synaptic cleft, and finally are bound to recep-
tors in the postsynaptic membrane. This binding process is considered as a random
process (Dobrunz and Stevens 1997). It is hypothesized that the randomness in the
binding process of neurotransmitters with receptors becomes smaller by attention.
In effect, attention enables more neurotransmitters to be bound with receptors in the
postsynaptic membrane.

Themodel could simulate attentionalmodulation on firing rates and response vari-
ability. The simulated results are consistent with observations found in experiments.
Our model demonstrates that attention could control neurotransmitters transmission
in the synapse, which further generates attention-modulated activity patterns.

2 Methods and Materials

As shown in Fig. 1, a three-layer network is prosed to simulate functions of visual
attention. The first layer from the input is labeled as layer 1, themiddle layer is labeled
as layer 2, and the output layer is labeled as layer 3. There are 20 excitatory and 5
inhibitory neurons in each layer. The connections within a layer or between layers
are described as following. Each excitatory neuron has inputs from five inhibitory
neurons and inputs from five excitatory neurons selected randomly; one inhibitory
neuron receives projections from one randomly selected excitatory neuron. An exci-
tatory neuron in the current layer receives inputs from three randomly selected exci-
tatory neurons in the previous layer. Excitatory neurons transmit information from
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Fig. 1 Three-layered
network model of visual
attention. The black triangles
indicate excitatory neurons.
The black circles indicate
inhibitory neurons. The solid
arrows indicate excitatory
connections, and the dashed
arrows indicate inhibitory
connections

………

………

………

Layer 1

Layer 2

Layer 3

External Inputs

excitatory inhibitory

one layer to next layer. Inhibitory neurons do not relay signals between layers. No
signals are feedback from higher layers to lower layers. A sustained external current
is inputted to all neurons in layer 1, and there are no external inputs to neurons in
other layers.

The Hodgkin-Huxley model of single neurons is used in this study. This single-
neuron model could describe in detail spike shapes and properties of excitatory and
inhibitory neurons, respectively.

The membrane potential of an excitatory neuron (e) is the following:

Ce dV
e

dt
= −I eNa

(
V e

) − I eK
(
V e

) − I eL
(
V e

) − I eM
(
V e

)

− IAMPA
(
V e, rAMPA

) − INMDA
(
V e, rNMDA

) − IGABAA

(
V e, rGABAA

)
(1)

The membrane potential of an inhibitory neuron is the following:

Ci dV
i

dt
= −I iNa

(
V i

) − I iK
(
V i

) − I iL
(
V i

) − IAMPA
(
V i , rAMPA

) − INMDA
(
V i , rNMDA

)

(2)

In the above equations, IAMPA indicates the AMPA current. It is then described
by the following equation:

IAMPA = gAMPArAMPA(V − EAMPA) (3)
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INMDA is the NMDA current. Its dynamic properties is described by the following
equation:

INMDA = gNMDA fNMDA(V )rNMDA(V − ENMDA) (4)

FNMDA(V ) =
(
1+ e

−V+T f
σ f

)−1

The GABAA current is given by the following equation:

IGABAA = gGABAArGABAA

(
V − EGABAA

)
(5)

The kinetics of the ratio of bound receptors r is characterized by the following
equation:

dri
dt

= α[T ](1− ri ) − βri , i = AMPA,NMDA,GABAA (6)

where [T ] is the concentration of neurotransmitters.
The binding process of neurotransmitter with receptors is stochastic, which was

simulated by one stochastic variable shown in the following equation:

dr inoise(t)

dt
= −1

τ

[
r inoise(t) − r inoise0

] +
√
2σ 2

i

τ
χi (t) (7)

i = AMPA, NMDA,GABAA

where χi (t) is the Gaussian white noise of zero mean and unit standard deviation,
and r inoise0 , σi are the average and standard deviation of the random sequence (i =
AMPA, NMDA, GABAA), respectively. τ is the time constant.

In Eq. (7), the parameter σi could control the standard deviation of the stochastic
process. This stochastic variable in Eq. (7) is then added to ri to mimic randomness
in the neurotransmitter binding process. Because we hypothesize that randomness
in this bind process could be reduced by attention, the parameters of σAMPA and
σNMDA are set lager values when attention is unattended (more randomness). And
their values become smaller when attention is attended (less randomness). In this
study, we do not take the attentional effect on GABAA receptors into account, so the
parameter of σGABAA is set a constant regardless of attention conditions.
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3 Results

During simulation, because the binding process was stochastic, the activity pattern
of each neuron varied trial by trial even though the external current to the neurons in
layer 1 was constant. We calculated neuronal activity in 48 trials for each condition.
In each condition, all parameters were set as the same values for each trial, but the
variable in Eq. (7) varies trial by trial. We then averaged firing rates and computed
response variability for each neuron in the model across these 48 trials.

It was found that the mean firing rate of all neurons decreased when the σAMPA

increased. σAMPA was set different values to indicate different attention conditions.
For example, in AMPA channels connecting two excitatory neurons, σAMPA = 0.075
in the attention-attended condition and σAMPA = 0.08 in the attention-unattended
condition. In AMPA channels projecting from excitatory cells to inhibitory cells,
σAMPA = 0.075 in the attended condition and σAMPA = 0.09 in the unattended
condition. These specific values were chosen for the two attention conditions. The
model with these values could simulate results that were similar to experimental
observations.

We did not find that attention significantly alters firing rates of neurons in layer 1
due to the large external current to each neuron (excitatory cells: p= 0.107; inhibitory
cells: p = 0.111, Mann-Whitney U-test between the two attentional conditions for
each type of cells). But firing rates of both excitatory and inhibitory cells in layer
2 and 3 showed significant differences between the two attentional conditions (p <
0.01, Mann-Whitney U-test).

The Fano factor in layer 1 was very small, indicating that these neurons had stable
firing patterns. The Fano factor was not modulated by attention for either excitatory
or inhibitory cells (excitatory cells: p = 0.199; inhibitory cells: p = 0.548, Mann-
Whitney U-test). In layer 2, Fano factors of excitatory cells had significantly smaller
values in the attention-attended condition than in the unattended condition (p < 0.01,
Mann-Whitney U-test). Fano factors of inhibitory cells did not affect by attention (p
= 0.095, Mann-Whitney U-test). Only five inhibitory cells in layer 2 may not have
enough power to reach statistical significance. Fano factors of both excitatory and
inhibitory cells in layer 3 were modulated by attention, showing smaller values in the
attention-attended condition (excitatory cells: p = 0.019; inhibitory cells: p < 0.01;
Mann-Whitney U-test between the two attention conditions for each type of cells).

The randomness in NMDA channels (controlled by σNMDA) also modulated firing
patterns of neurons in layer 2 and layer 3. The firing rate became smaller when
the value of σNMDA became larger. Different values were selected for σNMDA to
indicate different attentional conditions. We chose σNMDA = 0.12 in the attention-
unattended condition and σNMDA = 0.04 in the attended condition for NMDA chan-
nels connecting two excitatory cells. σNMDA = 0.16 (unattended) and σNMDA = 0.04
(attended) were selected for NMDA channels projecting from excitatory cells to
inhibitory cells.
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Neurons in layer 1 showed significantly stronger firing rates in the attention-
attended condition (excitatory cells: p < 0.01; inhibitory cells: p < 0.01; Mann-
Whitney U-test). This is the same case in layer 2; firing rates were increased by
attention (excitatory cells: p < 0.01; inhibitory cells: p < 0.01; Mann-Whitney U-
test). Similar results were found in layer 3, attention increased firing rates of both
excitatory and inhibitory cells (excitatory cells: p < 0.01; inhibitory cells: p < 0.01;
Mann-Whitney U-test).

We did not found that Fano factors in layer 1 were significantly modulated by
attention (excitatory cells: p= 0.561; inhibitory cells: p= 0.548; Mann-Whitney U-
test). Fano factors of both excitatory and inhibitory cells in layer 2 showed significant
smaller in the attention-attended condition (excitatory cells: p< 0.01; inhibitory cells:
p < 0.01; Mann-Whitney U-test to compare the two attentional conditions for each
type of cells). Similar results were found in layer 3. Fano factors became significantly
smaller in the attended condition (excitatory cells: p < 0.01; inhibitory cells: p =
0.015; Mann-Whitney U-test).

Attention-modulated effects on firing patterns were compared for different types
of neurons in different layers. It was found that attention (controlled by σAMPA or
σNMDA) had stronger modulation for inhibitory than excitatory cells in the same layer
and stronger modulation for neurons in layer 3 than layer 2.

4 Discussion

We made the hypothesis that attention may reduce stochastic factors in the neuro-
transmitter binding process, which increase the number of bound receptors located
in the post-membrane. The stochastic factors in AMPA and NMDA channels were
controlled by the values of σAMPA and σNMDA in our model, respectively. On the
basis of this assumption, the network model of visual attention simulated activity
patterns of neurons modulated by attention, increasing their firing rates, reducing
their response variability.

Some experiments have shown that the binding process of neurotransmitters with
receptors is a stochastic process (Gibb 2001). It also reported that variation of firing
rates of neurons was reduced by attention, which might enhance the reliability of
information transmission between neurons (Briggs et al. 2013). This result suggested
that attention may alter spike patterns of neurons by the method of controlling the
stochastic process in neurotransmitter channels. The parameters of σAMPA and σNMDA

in the networkmodel constrain the ratio of boundAMPAorNMDAreceptors, respec-
tively. The ratio of bound receptors would increase with decreasing the values of
σAMPA and σNMDA. This means that more neurotransmitters were bound with recep-
tors. Therefore, the post-synaptic neuron receives larger synaptic currents and has
higher probability to evoke a spike.Meanwhile, when the values of σAMPA and σNMDA

became smaller in the attention-attended condition, stochastic factors in the AMPA
or NMDA binding process reduced. This indicated that in the attention-attended
condition, the post-synaptic neuron had more stable synaptic inputs to induce spikes
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in repeated trials, and its response variation reduced. Visual attention may enhance
efficiency and reliability of information communication among neurons by reducing
stochastic factors in the neurotransmitter binding process.

How does attention control the randomness in the neurotransmitter binding
process in the brain? It is an important question. Till now, we did not find experi-
mental observations that directly support that attention controls the randomness in
the stochastic binding process. Some reports demonstrated that attention enhanced
efficient information transmission, and attention-induced activity modulation was
impaired by block of AMPA or NMDA channels, indicating that attention is engaged
in the synaptic information processing (Briggs et al. 2013; Herrero et al. 2013). In the
literature, computational models of visual attention usually have sophisticated struc-
ture of neurons and consider the attentional signal as an external input to the network
to generate attention-induced activity (Wagatsuma et al. 2013; Beuth and Hamker
2015). However, this external signal is not explained only as the attentional signal; it
may be regarded as other types of signal (e.g., reward signal) but induce attention-like
activity. The assumption in this study is that attention could be a process that controls
stochastic factors in the synapse. The network model had not sophisticated connec-
tion patterns among neurons; the three-layered feed-forward network is enough to
generate attention-modulated activity. Our network model proposes a newmethod to
investigate how attention modulates spike activity underlying synaptic mechanisms.
One experiment in vivo shows that the single-molecule imaging can measure the
dynamic course of bound receptors located in postsynaptic membranes (Ueda and
Shibata 2007). It is possible to use this new technology to measure the dynamical
course of bound AMPA or NMDA receptors when an animal is performing an atten-
tional task. Statistical properties of bound receptors during the dynamical course are
compared between the attention-attended and unattended conditions to verify our
hypothesis.
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Fractal Structure in Hokusai’s “Great
Wave” and the Memory Neural Network

Minoru Tsukada and Hiromichi Tsukada

Abstract Google used10million natural images as input information andperformed
self-organized learning with a huge neural network with 10 billion synapses, and
neurons with a receptive field resembling a cat’s image appeared in the upper layer.
Hokusai drew “Great Wave” by using his memory with a fractal structure. Which do
you think is “beautiful”: “Google’s cat picture” and Hokusai’s “Great Wave”? I think
Hokusai’s one is beautiful. Because it is based on stunning information compression.
The proposed network in this paper is composed of a one-layer artificial neural
networkwith feedforward and feedback connections. In the feedforward connections,
the spatiotemporal learning rule (STLR) Tsukada et al. (1994, 1996) has high ability
in pattern separation and in the recurrent connections, Hebbian learning rule (HEB)
in pattern completion. The interaction between the two rules plays an important role
to self-organize the context-dependent attractor in thememory network. The context-
dependent attractors depend on the balance between STLR and HEB. The structure
is an important factor of memory networks to hierarchically embed a sequence of
events.

1 Introduction

A cat drawn by Google’s artificial intelligence is shown in Fig. 1a, and a Great Wave
drawn by Hokusai is in Fig. 1b. Google used 10 million natural images as input
information and performed self-organized learning with a huge neural network with
10 billion synapses, and neurons with a receptive field resembling a cat’s image
appeared in the upper layer. It is said that artificial intelligence can recognize cats
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Fig. 1 a Cat drawn by Google’s artificial intelligence. b Great wave drawn by Hokusai

Fig. 2 a Hokusai’s “Pictorial Example”. b “Big Flood” of da Vinci

without teaching the concept of cats. In contrast, for many years, Hokusai had repeat-
edly studied as a painter how to express the natural world, and drew “Great Wave”.

Hokusai’s “Great Wave” shows the shape of the wave drawn by Hokusai as it
would appear when you capture the actual wave with a 1/5000 high-speed camera.
At a speed lower than that, you cannot catch it. Of course, it cannot be seen with the
naked human eye.

So, Hokusai was not able to see the world of 1/5000. How did he draw it? I am
amazed by the clairvoyance of Hokusai. Did Hokusai have the ability to perceive
the natural world intuitively? In case, Hokusai’s “Pictorial Example” (Fig. 2a) was
published. Furthermore, therewas a drawing called “Big Flood” by daVinci (Fig. 2b).
Indeed, it turns out that these are a fractal. These painters had drawn knowing that
the natural world is made of fractal structure! The word “"fractal” is a recent name
coined by Mandelbrot attached, but already the artists had realized the rules of the
formation of the natural world.
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We convert the topic here to the memory experiment and theory that I have been
working on for many years. It is a study of the fractal structure of memory. Exper-
imentally, Tsukada et al. (1994, 1996) showed that various spatiotemporal pattern
stimuli can induce long-term potentiation (LTP) in the hippocampal neurons, and
based on these results, proposed the spatiotemporal learning rule (STLR) consisted
by two factors; cooperative plasticity (coincidence) among presynaptic inputs with-
out a postsynaptic spike and its temporal summation. Tsukada and Pan (2005) sys-
tematically identified the functional difference between STLR and HEB in a simple
one-layer neural network by computing their ability to differentiate spatiotemporal
sequences. STLR has high ability in discriminating spatiotemporal pattern, while
HEB in pattern completion.

Theoretically, Tsuda (2001), and Tsuda and Kuroda (2001, 2004) showed the
possibility that output pattern of CA1 neurons was hierarchically clustered in a
self-similarity manner. In experimental relation, with Fukushima et al. (2007), this
property was significant, observed at two and three time series in the post-synaptic
membrane potential of single CA1 neurons measured by the patch-clamp method.
Furthermore, Yamaguti et al. (2011) showed fractal-like clustering with a hierar-
chical structure which reflects the similarity of the input time series by using the
two-compartment model with two types of conductance via AMPA and NMDA
receptors. Tsukada et al. (2016, 2018) proposed a simple artificial memory net-
work for storing spatiotemporal sequences by unsupervised learning. The network
structure composed of a one-layer artificial neural network with feedforward and
feedback connections. In the feedforward connections, the spatiotemporal learning
rule (STLR) Tsukada et al. (1994, 1996) has high ability in pattern separation and in
the recurrent connections, HEB in pattern completion. The interaction between the
two rules plays an important role to self-organize the context-dependent attractor in
the memory network.

2 Simulation Results

The two learning rules, HEB and STLR, play important roles to self-organize the
dynamics in thememory neural network.HEB in recurrent networks produce increas-
ingly similar output changes by its successive iterations until eventually the outputs
become constant, that is called “pattern completion”. This is closely related to the
dynamic supra-threshold-behavior of output neurons. In contrast, STLR in feed-
forward connections dynamically modify the sub-threshold membrane potential as
internal states, so that the input spatial pattern and its history are reflected in the
membrane potential. The modification creates the pattern sensitivity on the output
space along the time axis from next to next; that is called “pattern separation”. The
context-dependent attractors depend on the balance between STLR and HEB; that of
learning coefficient ηSTLR and ηHEB. The simulation results are shown in Fig. 3. From
the results, context-dependent attractors were identified in two areas; A area (high,
high) and B area (high, low) in (ηHEB, ηSTLR). The time series and PCA results in



110 M. Tsukada and H. Tsukada

Fig. 3 Areas of context-dependent attractors and PCA results of the typical two attractors

Fig. 3 imply the different characteristics in organized structure of context-dependent
attractors. The A attractor (45, 45) has some structure in PCA, while the B attractor
(45, 8) has no structure. Such a structure of A is important as a memory to hierar-
chically embed a sequence of events.

3 Discussions

We see the flow of visual information. Vision has central (foveal) vision and periph-
eral vision. Central vision sends information to the temporal lobe as an object vision
with high spatial resolution and relatively slow propagation speed. The information is
associated with the frontal lobe left brain and partly analyzes the shape and meaning
of the object. In contrast, peripheral vision propagates to the parietal lobe as a space
vision with low spatial resolution but high temporal resolution and high propagation
speed. The information cooperates with the frontal lobe on the right side and the
amygdala and captures intuitive and overall outline image and mental information.
Both pieces of information come in time series to the hippocampus, and information
on the whole and parts is memorized in fractal structure. In short, when you view
pictures, you first grab the overall impression, and then see what is drawn in the
part of interest. In other words, the plane of the painting is spatially divided, and the
information of the whole and the part is integrated with a dynamic line of sight to
appreciate it. It is exactly like drawing a picture by spatial division and dynamics of
the neural network. Figure4 shows the process of drawing pictures of Google’s cats,
and Fig. 5 shows how Hokusai drew Great Wave by using his memory with a fractal
structure. Which do you think is “beautiful”: “Google’s cat picture” and Hokusai’s
“Great Wave”?. I think the picture of Hokusai is beautiful. Because it is based on
stunning information compression.

Finally, there are still many things to learn from the brain. The brain has made
creative evolution over time. The neural network of human memory has acquired a
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Fig. 4 Process of drawing pictures of Google’s cats

Fig. 5 Process of drawing pictures using fractal structures

beautiful brain wear which processes past, present, and future memories by using
space division and dynamics in memory neural networks. Artificial intelligence has
not yet fully utilized the dynamics of the memory of the brain.
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Viewer’s Attention Flow When Watching
Audiovisual Cuts

Miguel Ángel Martín-Pascual, Celia Andreu-Sánchez,
José María Delgado-García, and Agnès Gruart

Abstract Audiovisual works have plenty of cuts, but viewers hardly notice them.
Movie edition creates a discontinuity in audiovisual works. We analyze the effects of
cuts on 36 subjects, using electroencephalography (EEG) techniques. Cuts result in
an increase of attention in viewers by decreasing their eyeblink rate. They also cause
a spread of potentials from the occipital area to the frontal area at around 200ms after
the cut, as the perception of the media content progresses to more-complex areas of
process. Our results are coherent with previous studies on early discrimination of
visual stimuli. The mentioned flow of potential happens differently depending on
the style of edition in which cuts are inserted. Cuts in continuous narrative have a
lower impact on the visual zone than do cuts in chaotic and fragmented narrative.
However, the opposite is found in the prefrontal area, with a higher activity when
continuous and lifelike narrative is being watched. These results can be applied for
the management of attention when creating media content.

1 Audiovisual Cuts

Cinema appeared in the last years of the 19th century (Gubern, 1973). After some
years of experimentation, in the 1910s, the analysis of edition started to become
a topic of great interest in communication studies (Gunning, 1994; Münsterberg,
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1916). Some experiments, such as (Kuleshov, 1974) and Pudovkin (2013), and some
written works, such as (Eisenstein, 1988), showed that cuts and style of edition were
key to the creation of films. Cuts are the most common transition between shots
(Cutting, 2016; Cutting et al., 2011). Many researchers have investigated the impact
that cuts have on the perception of media content (Francuz & Zabielska-Mendyk,
2013; Germeys & d’Ydewalle, 2007; Magliano & Zacks, 2011), proving that the use
of cuts affects the understanding of the meaning of the story (Carroll & Bever, 1976;
Eisenstein, 1977).

The level of attention required to understand narrative content in audiovisual
works can be studied by analyzing viewers’ eyeblink rate (Nakano et al., 2009; Shultz
et al., 2011). Eyeblinks are fast movements that close and open the palpebral fissure
and have the physiological function of wetting and protecting our cornea and the psy-
chological one of managing attention (Cruz et al., 2011). Blinking is something that
we constantly dowithout being aware of.Adecrease of attention produces an increase
of spontaneous eyeblink rate (SBR), while an increase of attention decreases the SBR
(Wiseman & Nakano, 2016; Zheng et al., 2012). In this investigation, we analyzed
how cuts and the style of edition containing them have an impact on viewers’ SBR.

Cuts have also been studied from an electrophysiological viewpoint. In the 1950s,
Gastaut and Bert proposed the study of cinema through electroencephalography
(EEG). They found that any audiovisual content, regardless of how banal it may be,
had an impact able to modify the EEG of a normal adult (Cohen-Séat et al., 1954;
Gastaut and Bert, 1954). Despite those interesting studies not being followed up as
a topic in communication research, there are some concrete studies in neuroscience
developed during the last few decades. Reeves and colleagues showed the presence
of alpha waves in central and occipital areas connected to edits (Reeves et al., 1985).
More recent studies have proven that the relation between the shots that cuts connect
is crucial for the brain activity of viewers (Francuz and Zabielska-Mendyk, 2013;
Geiger and Reeves, 1993; Lang et al., 1993). Here, we also analyze the brain activity
linked to cuts in different styles of edition.

2 Methods

2.1 Stimuli

We presented two stimuli having the same narrative content and the same duration
(198s), but with different style of edition. Both were movies: one followed a con-
tinuous style of edition with smooth transitions and clear presentation of the visual
content, based on theHollywood style of edition rules; the other stimuluswas chaotic,
discontinuous, with a faster style of edition, inspired by musical video clips and their
style of edition—we called this stimulus MTV-style movie. The Hollywood-style
movie had 33 shots with an average shot length (ASL) of 5.9 s, and the MTV-style
movie had 79shots with an ASL of 2.4 s.



Viewer’s Attention Flow When Watching Audiovisual Cuts 117

2.2 Experimental Setup

The stimuli were presented on a 42-inch HDLED display (Panasonic TH42PZ70EA,
Panasonic Corporation), at 150cm from the participants, with Paradigm Stimu-
lus Presentation (Perception Research System Incorporated). Continuous EEG was
recorded using the wireless Enobio® system (Neuroelectrics) (Martín-Pascual et al.,
2018). Twenty electrodes placed according to the International 10–20 System were
used, one of which was for electrooculogram (EOG). Electrodes were referenced
to mastoid electrodes. We also recorded participants’s faces with an HD (1920
width×1080 height pixels) video camera at 25 frames per second (Sony HDR-
GW55VE, Sony Corporation).

2.3 Participants

Thirty-six participants (six women), aged 28–56 (43.97 ± 8.07), with normal
or corrected-to-normal visual acuity, were recruited for this experiment. Written
informed consent was obtained from all participants prior to participating in the
study. All procedures were performed in accordance with relevant guidelines and
regulations for human research. The study had the approval of the Ethics Commis-
sion for Research with Animals and Humans (CEEAH) of the University Autònoma
de Barcelona, Spain.

2.4 Analysis

We used EEGLAB (Swartz Center for Computational Neuroscience, UC San Diego)
(Delorme and Makeig, 2004) open-source software (version 15.3) running on MAT-
LAB R2013a (The Mathworks Inc.) under MacOS version 10.9.5 (Apple Inc.), for
the EEG analysis. For rejecting bad channels, artifacts, and wrong recordings with
continued data with visible movement artifacts, we visually inspected our recorded
data and also used the ADJUST plug-in for EEGLAB (Mognon et al., 2011). We
used the DIPFIT plug-in for EEGLAB to locate dipoles. We analyzed viewers’ eye-
blinks using Brainstorm (Neuroimage, USC) (Tadel et al., 2011) also running on
MATLAB R2013a. We applied Brainstorm’s filers for detecting eyeblinks to the
EOG signal, following Tadel and colleagues (Tadel et al., 2015). The results were
contrasted manually with the blinks of the recordings.
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3 Results

3.1 Decrease of Eyeblinks After the Cuts

We compared the eyeblink rate (blinks per minute) of participants (N = 36) from
the cut to 1 s after it with their eyeblink rate, while they were watching the
rest of the movie. Each participant was exposed to 112 cuts, so we analyzed
responses to 4032 cuts. We found significant differences between the eyeblink
rate 1 s after the cut (11.074min−1± 7.659) and the rate during the rest of the stimulus
(12.328min−1± 7.609), t (35) = −2.719, p = 0.01, Student’s paired t-test. Accord-
ing to our results, cuts decrease viewers’ eyeblink rate during the 1 s after them. We
also found significant statistical differences between those conditions when viewers
watched theHollywood-stylemoviewith inserted cuts (t (35) = −2.513, p = 0.017,
student’s paired t-test). However, no significant differences were found when watch-
ing the MTV-style movie with inserted cuts (t (35) = −1.482, p = 0.147, student’s
paired t-test).

3.2 Spread of Potential from the Occipital to the Frontal Area

We computed ERPs associated to cuts within a time window of 500ms before the cut
and 1000 ms after the cut. We found that as the time after the cut progresses, there is
a spread of potential from the occipital area to the frontal area, see Fig. 1. According
to our results, this process is engaged after each cut is perceived in a media content. It
is coherent with previous studies about visual perception (Hegdé, 2008; Milner and
Goodale, 1995); thus, cuts can be understood as tools for resetting visual perception
in viewers watching media content.

3.3 Styles of Edition Affect the Perception of the Cuts

We found that the style of edition in which cuts are inserted affects the viewers’
processing. The cuts in a Hollywood-style movie result in a higher activation of the
medial and (mostly) frontal areas, while cuts in anMTV-stylemovie produce a higher
potential in occipital areas. Those differences appear after the cut and are maintained
during thewhole second after it, see Fig. 2.We can connect those resultswith previous
studies studying the speed of processing conscious and unconscious stimuli in the
human visual system (Thorpe et al., 1996). Cuts in a continuous narrative present
a lower impact on the visual cortex, while there is a higher conscious processing.
However, cuts in a chaotic and fragmented narrative cause a higher level of potential
in the visual area, with a lower impact on conscious processing.
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Fig. 1 Average ERPs for occipital, medial, and frontal electrodes after the cut

4 Conclusions

Media creators use cuts to present visual content with specific intentions. Some-
times, they want to clearly show what is happening in the scene; at other times, they
want to be deliberately chaotic due to a stylistic or narrative strategy. During the
last few decades, this has evolved, with an increase in stylistic fragmentation (Bor-
dwell, 2002). Approaching the same narratives in different formats affects viewers’
perception (Andreu-Sánchez et al., 2017b; Nakano and Kitazawa, 2010). We know
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Fig. 2 ERPs for Hollywood-style (classic editing rules) and MTV-style movies (such as video
clips), for occipital, medial, and frontal electrodes. Gray shadows indicate statistical differences
found between them (p < 0.05, t-test)
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that narratives in media content affect viewers’ attention (Nakano et al., 2009). We
also know that the different styles of edition used for presenting narratives affect
viewers’ eyeblinks (Andreu-Sánchez et al., 2017a). One of the most important ele-
ments for creating differences in the styles of edition is the cut. We found that cuts
trigger a decrease of eyeblinks in viewers 1 s after them (Andreu-Sánchez et al.,
2018). According to our results, this inhibition of the eyeblinks is clear when cuts
are inserted in Hollywood-style movies, but is not so clear for cuts in an MTV-style
movie. The reason could be related to the average shot length (ASL) in each case.
In the Hollywood-style movie, we used an ASL of 5.9 s (a total amount of 33 shots
presented in a movie of 198s), while in the MTV-style stimulus, the ASL was 2.4 s
(79 shots presented in a movie of 198s). So, since the cuts in the MTV-style movie
do not clearly decrease viewers’ eyeblinks during the following second after them,
we suggest that this is because there are so many cuts that viewers tend to avoid
blinking while watching the whole movie (Andreu-Sánchez et al., 2017a).

Cuts are not always perceived by viewers (Smith and Henderson, 2008), and yet,
we found that they produce a specific spread of brain activity from the occipital area
throughout the visual cortex, to the prefrontal and frontal area,where higher processes
aremanaged.Our results are coherentwith previous studies on early discrimination of
visual stimuli (Thorpe et al., 1996). The most interesting part of this is that whenever
media creators present a different shot in their audiovisual works, they are triggering
the reset of this well-known process of visual perception for any visual stimulus
change. However, this process is different depending on the style of edition in which
cuts are being perceived.We found that cuts in continuous, classical style editing have
a higher impact in prefrontal and frontal areas, while cuts in chaotic-style editing have
more impact in the occipital area. These results would be coherent with the previous
comparison of related with unrelated cuts (Francuz and Zabielska-Mendyk, 2013).
According to that, related cuts have a higher impact in the prefrontal area, while
unrelated cuts have theirs in the occipital area. We suggest that the clear presentation
of related content activates areas of higher processing. The unclear presentation of
unrelated content has a high impact on the visual cortex, but for some unknown
reason, that impact does not flow to higher-processing areas. In future research, it
would be very interesting to contrast the discontinuity caused by the cuts with the
perceptive segmentation of discrete real events and selective attention (Zacks et al.,
2007).

Since the spontaneous eyeblink rate is a predictor of dopamine-related cognitive
function (Iwaki et al., 2019; Jongkees and Colzato, 2016), it would be of interest
for future investigations to understand how dopamine concentration can be different
in viewers based on the style of edition, and how that can have an impact in visual
processing (Silkis, 2007).

The results from this investigation can also be applied in the communication area
to teach media workers how they can manage viewers’ attention by using cuts and
style of edition. We understand that this knowledge is highly valuable for media
professionals and can have a great impact on future audiovisual creation.
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A Possible Mechanism
of Learning-Evoked Reorganization
of Receptive Fields in the Primary
Auditory Cortex: A Role of the Basal
Ganglia, Prefrontal Cortex,
Hippocampus, Acetylcholine
and Dopamine

Isabella G. Silkis

Abstract A hypothetical mechanism is advanced that determines a role of acetyl-
choline and dopamine in the reorganization of receptive fields (RFs) in the primary
auditory cortical areaA1 evoked by learningwith a pure tonewith a frequency F . This
mechanism is based on dopamine- and acetylcholine-dependent long-term changes
in the efficacy of neural connections in the auditory and limbic cortico-basal ganglia-
thalamocortical loops. Dopamine, released in response to the tone F and reinforcing
signal acting at D1 receptors on striatonigral cells of the dorsal striatum promotes
the induction of LTP in the efficacy of inputs from A1 neurons with preferred tuning
frequency (PTF) equal or close to F . As a result, basal ganglia (BG) output more
strongly disinhibits neurons in the MGB with the PTF close to F , thus promoting a
rise in the activity of tonotopically connectedMGB andA1 neurons. Simultaneously,
LTD is induced at other corticostriatal inputs, leading to inhibition of MGB and A1
neurons with PTF different from F . Voluntary attention promotes RFs narrowing
due to a rise in the prefrontal cortex activity and its excitatory input to A1, as well as
by dopamine-dependent disinhibition of MGB neurons by the limbic part of the BG
that includes the nucleus accumbens. Hippocampus is involved in auditory process-
ing due to its connections with the cortex and projections to the nucleus accumbens.
Acetylcholine released by the basal forebrain and pedunculopontine nucleus (that is
also under inhibitory control from the BG) modulates RFs due to activity reorgani-
zation in the whole network. The complex effect of acetylcholine is determined by
location of muscarinic and nicotinic receptors at both pyramidal cell and GABAergic
interneurons. Therefore, it depends on ACh concentration and strength of inhibition.
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1 Introduction

It is known that the receptive fields (RFs) of neurons in the primary auditory cortexA1
are modified during learning. Changes are highly specific, selective, quickly formed,
and can bemaintained during long time, i.e., possess the characteristics of associative
memory (Weinberger, 2007). The cholinergic innervation from the basal forebrain
has a significant effect on the learning-evoked plastic reorganization in the RFs of
A1 neurons. These modifications are also highly specific and have characteristics
of associative memory (Weinberger, 2007). The increase in acetylcholine (ACh)
release in the neocortex has the same effect on the RF changes during learning as
dopamine. Our previous analysis of possible mechanisms for processing of pure
tones indicated that dopamine-dependent activity reorganization in the basal ganglia
(BG) are involved in the creation of RFs of tonotopically connected neurons in
the A1, the ventral part of the medial geniculate body (MGBv), and the central
part of the inferior colliculus (ICc), since neurons of the BG output nuclei inhibit
neurons of the MGBv and ICc (Silkis, 2015). Only a few models consider that
the thalamus is under inhibitory control from the BG and that this inhibition is
important for the information processing of ascending sensory information (Cabessa
& Villa, 2018). In this paper, we introduce our hypothesis that during learning, a
modulation of the cortico-striatal inputs by dopamine, which is released in response
to reinforcement and a conditioning signal (CS), a pure tone with the frequency F , as
well as modulation of neuronal activity in the neocortex, hippocampus and thalamus
by Ach underlie changes in RFs of neurons in the A1 and MGBv.

2 A Hypothetical Mechanism for the Learning-Evoked
Changes in the RFs of the A1 Neurons

2.1 Functional Organization of the Cortico-
BG-thalamocortical Loops Involved in the Processing
of Pure Tones

The information about pure tones entries into the A1 via the ICc andMGBv (bottom-
up pathway), and there is a top-down pathway to A1 from the prefrontal cortex
(PFC) (Fig. 1). Neurons from the A1 project back into the MGBv and also into the
dorsal striatum, where they excite striatonigral (S-N) cells, giving rise to the direct
disinhibitory pathway through the BG. S-N cells inhibit neurons of the ventral part of
output BG nucleus, the substantia nigra pars reticulata (vSNr). Neurons of the ventral
striatum, the nucleus accumbens (NAc) receive excitation from the PFC and contain
both S-N cells and striatopallidal (S-P) cells. S-N cells inhibit the ventro-medial part



A Possible Mechanism of Learning-Evoked Reorganization … 127

Fig. 1 The scheme of neuronal loops providing pure tone processing, shaping RFs, and their
modulation by dopamine and acetylcholine. Cortical areas: A1, PFC, PhC, EC. Thalamic nuclei:
MGBv, MDN, RE, reticular, RN. Basal ganglia nuclei: medio-dorsal striatum, NAc, vSNr,
m-vSNr, VP, STN. Dopaminergic structures: SNc, VTA. Cholinergic structures: NBM, MS/DBB,
PPN. Large light and dark circles, excitatory and inhibitory neurons, respectively; small light, dark
and shaded circles, excitatory, inhibitory, and cholinergic inputs, respectively; small triangles and
squares, potentiated and depressed excitatory inputs, respectively; arrows, dopaminergic inputs;
thick and dashed lines, strong and weak inputs, respectively. Other abbreviations are in the text

of the SNr (v-mSNr), whereas S-P cells, giving rise to the indirect inhibitory pathway
through the BG inhibit the ventral pallidum (VP). The output BG nuclei, SNr and
VP tonically inhibit neurons in thalamic nuclei (Fig. 1). It is important to note that
cortico-BG-thalamocortical (C-B-Th-C) loops are closed and topically organized.

2.2 A Possible Mechanism for the Participation of the BG
and Dopamine in Learning-Evoked Plastic
Reorganizations of the RFs of the A1 Neurons

Sound stimuli evoke the short-latency responses of dopaminergic cells in the sub-
stantia nigra pars compacta (SNc) and ventral tegmental area (VTA) since there are
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inputs from the superior colliculus (SC), pedunculopontine nucleus (PPN), PFC,
and subthalamic nucleus (STN) (Fig. 1). Dopamine, acting at D1 receptors on S-N
cells, promotes induction of LTP of the efficacy of strong cortico-striatal inputs, and
LTD of weak inputs (Silkis, 2001). The strong inputs are formed by those A1 neu-
rons whose preferred tuning frequency (PTF) coincides or is close to F , so they are
initially strongly activated by the stimulus, and their excitation of S-N cells allows
opening postsynaptic NMDA channels. The inputs to other S-N cells from weakly
responsive cortical neurons whose PTF is differed from F are weak, and therefore do
not allow opening the NMDA channels (Silkis, 2015). Due to the topical organiza-
tion of A1-BG-MGBv-A1 loops the dopamine-dependent reorganization of activity
in the BG should lead to a disinhibitory action from the SNr on activity of MGBv
neurons whose PTF is close to F . At the same time, the inhibition of the activity of
MGBv neurons with PTF different from F will be enhanced. As a result, the RFs
of tonotopically connected MGBv and A1 neurons will tend to be narrower. Since
the neurons of the lateral part of the SN are projected into the ICc, the disinhibitory
effect on some of ICc neurons from the BG can enhance the activity of neurons at
the low level of auditory processing.

A class of long-range GABAergic cells (not shown in Fig. 1 to simplify) has
recently been discovered in the auditory cortex and PFC. They send projections to
spiny cells of the dorsal striatum and NAc, and are involved in learning (Lee et al.,
2014; Rock et al., 2016). In the NAc, the inhibitory terminals were observed on both
S-N and S-P cells. We assume that in the presence of such inhibition, the NMDA
channels will be opened on a small number of spiny cells while LTD will be induced
at cortical inputs to many other spiny cells. As a result, many thalamic cells will be
inhibited, and therefore RFs will be narrower.

Since there are reciprocal connections between the MGBv and A1, the output
signals from the BG can influence the efficacy of connections between all elements
of talamo-cortical loops. We have earlier shown in in vivo experiments that micros-
timulation of a group of neurons with PTF F1 leads to a shift towards to F the PTF
of neurons in the adjacent locus of the A1 and in the tonotopically connected MGBv
locus with initial PTF F2. At the same time, we found long-term modification (LTP
and LTD) of monosynaptic connections between elements of the thalamo-cortical
loop (Sil’kis, 1996).

2.3 A Possible Mechanisms for the Participation of Attention
in Plastic Reorganizations of RFs of the A1 Neurons

It is known that learning requires voluntary attention. We proposed that voluntary
attention is a part of sensory processing and is triggered by activation of the PFC
and dopamine release (Silkis, 2007). The effect of the PFC on the A1 neurons is
sufficiently effective. Optogenetic stimulation of the PFC resulted in short-latency
excitation of the A1 neurons, and combined stimulation of the PFC with a sound
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led to an improvement of the representation of this sound in the A1 as well as
sound discrimination (Winkowski et al., 2018). Since attention is normally directed
to reinforced CS with the frequency F , we assume that additional PFC action at A1
neurons with the PTF F will cause an additional rise in activity of these neurons. It
follows fromproposedmechanism that thismust bemanifested in the better narrowed
and intensive RFs of A1 neurons.

2.4 Possible Mechanisms for Participation of the
Hippocampus in Plastic Reorganizations of RFs of the
A1 Neurons

The hippocampus and adjacent parahippocampal cortex (PHC), that includes the
entorhinal cortex (EC) and connects hippocampus with the sensory cortical areas are
considered as a part of the brain involved in the perception. Memory of information
about individual tones correlates with a rise in the interaction between the hippocam-
pus and the inferior frontal gyrus (Kumar et al., 2016). Removing themedial temporal
gyrus led to impaired auditory memory (Fritz et al., 2016). Activity in the hippocam-
pus depends on both the parameters of sound and the source of its location. After
prolonged tone presentation, the activity of the place cells in the hippocampus were
changed (Goble et al., 2009). It is believed that long-range connections between the
auditory cortex, hippocampus, and frontal cortex may underlie the maintenance of
tone mapping in the working memory. Closing the loop connecting the hippocampus
with the BG is carried out through the midline thalamic nucleus reuniens (RE) that
innervates the hippocampal CA1 field (McKenna &Vertes, 2004). The BG influence
hippocampal activity since RE is under inhibitory control from the SNr.

In turn, the hippocampus influencing the functioning of the limbic part of the BG
since it facilitates the passage of signals from the PFC through the NAc. Normally
the spiny cells of the NAc are in the low state of membrane polarization, and the
excitation from the PFC is insufficient to spike generation by NAc cells (O’Donnell
& Grace, 1995). However, simultaneous signal arriving from the hippocampus and
the PFC brings the spiny cells to discharges. Subsequent disinhibition of the RE and
mediodorsal nucleus (MDN) by the BG must lead to an increase in the activity of
some hippocampal and PFC neurons.

3 The Effect of ACh on Changes in RFs of the A1 Neurons
During Learning

The A1 and PFC neurons, as well as the midline thalamic nuclei receive cholinergic
innervation from the nucleus basalis of Meynert (NBM). The hippocampal neurons
are influenced by cholinergic cells of the medial septum and diagonal band of Broca
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(MS/DBB). Sound stimuli statistically significant increased ACh release in both the
hippocampus and neocortex (Inglis & Fibiger, 1995). Cholinergic terminals from
the PPN innervate the ICc and MGB (Schofield, 2010). Latencies of the PPN neu-
ron responses to sound stimuli is less than 80 ms (Vitale et al., 2019). Due to the
direct projections from the PFC to NBM, there is a top-down effect on the Ach
release (Sarter et al., 2005). The A1 neurons influence ACh release due to top-down
projections to the PPN (Fig. 1).

ACh exerts a complex influence on the RFs of pyramidal neurons in the A1 via
muscarinic and nicotinic receptors of various types that are placed on pyramidal cells
and inhibitory interneurons in all structures involved in sound processing. According
to the unified modulation rules that we formulated earlier (Sil’kis, 2003), the acti-
vation of postsynaptic nicotinic receptors and muscarinic M1/M5 receptors should
promote the induction of LTP of efficacy of excitatory inputs to a neuron, whereas
activation of M2–M4 receptors should promote the induction of LTD. The result-
ing effect must depend on the strength of the inhibitory input to a pyramidal target
cell, as well as on the affinity of the cholinoreceptors, and therefore on the ACh
concentration.

During associative Pavlovian learning with a pure tone as the CS, ACh concen-
tration in the A1 consistently increases with the progress of learning. A conditioned
stimulation of the NBM and a tone with a frequency F led to changes in RFs of the
A1 neurons similar to those evoked by classical learning. In these experiments, RFs
of the A1 neurons shifted towards the conditioned tone (Froemke et al., 2007), and
the neural representation of this tone in the A1 was expanded (Weinberger, 2007).
The PTF of neurons in the MGBv and ICc also shifted toward the frequency of the
conditioned tone, the threshold of responses to this tone decreased, and the num-
ber of spikes in the response increased (Zhang et al., 2005; Zhang & Yan, 2008).
Since these effects disappeared after inactivation of the cortex, it can be assumed that
cortico-fugal influence makes a significant contribution to specific rearrangements
of neuronal responses in the MGBv and ICc (Villa et al., 1991). The conditioned
stimulation of the PPN and a tone with a frequency F also led to a significant shift
of the PTF of neurons in the auditory cortex towards the frequency F (Luo & Yan,
2013). Application of muscarinic receptor antagonists has prevented all these effects.
Systemic administration of nicotine also increased the responses of A1 neurons with
determined PTF and narrowed their RFs, and this effect was obtained at the level of
the IC and thalamus (Askew et al., 2017).

However, opposite effects were also observed. In some experiments, the appli-
cation of ACh or activation of muscarinic receptors promoted a decrease in the
responses to the tone matching PTF, and an increase in the responses to tones of
different frequencies (Ashe et al., 1989; McKenna et al., 1989). From the point of
view of the proposed mechanism, in mentioned experiments, the potentiating effect
of ACh on the inhibitory cortical interneurons via M1 receptors prevailed and inhibi-
tion was so strong that it masked the potentiating effect of activation of M1 receptor
on pyramidal cells. Presumably, the ACh concentration was sufficiently high to affect
these receptors.
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4 Conclusion

The proposed mechanism for the functioning of C-BG-Th-C loops differs from con-
ventional models in which only strong inputs to the striatum are taken into account by
default, and transmission via the direct and indirect pathways through the BG leads
to opposite behavioral effects. However, it is inconsistent with the data that S-N and
S-P cells are activated by the same cortical or thalamic neuron (Doig et al., 2010),
and then the BG through the SNr and thalamus affect the same neocortical neuron. In
known models of sensory processing, the RF shaping is explained by plastic reorga-
nizations in the efficacy of connections between neurons in the thalamo-cortical loop,
and by the presence of lateral inhibition in the neocortex. It is ignored that the thala-
mus is under inhibitory control from the BG, and it is unlikely that lateral inhibition
can provide any input-specific effect due to the small number of inhibitory interneu-
rons (a few percent) and the large convergence and divergence of their connections.
In our model, signal transduction through both BG pathways synergistically lead to
disinhibition of one group of connected thalamic and cortical cells, and simultaneous
inhibition of other groups (Silkis, 2013). Shaping RFs is naturally performed due to
the opposite sign of modification of the efficacy of strong and weak cortico-striatal
inputs.

The proposedmechanism of learning-evoked reorganization of RFs in the primary
auditory cortex determines the role of the BG, PFC, and hippocampus in pure tone
processing. This is also in agreement with the role of C-BG-Th-C loops in controlling
the complexity of processing ascending sensory information (Cabessa &Villa, 2014,
2018). Our new model also points out the significant role of CS-evoked dopamine
release in shaping the RFs as well asmodulatory effect of ACh onRFs of A1 neurons.
The understanding mechanism of the effect of these neuromodulators on auditory
processing can help in alleviating hearing impairment in some neurological diseases.
For example, it was shown that nerve growth factor (NGF)-treatment increased fol-
lowing parameters: choline acetyltransferase activity in the septal area, functional
cortico-cortical interactions in the short frequency range, themean firing rate ofMGB
neurons, and interactions between pairs of distant MGB neurons (Villa et al., 1996,
2000). If taken into account that observed high MGB activity must promote firing
of S-N cells and subsequent disinhibition of thalamic neurons via the BG, and that
increased neuronal interactionsmay reflect LTP in the efficacy of cortico-cortical and
thalamo-thalamic connections it is reasonable to assume that NGF has significant
potential for the improvement of auditory processing and memory in patients with
Alzheimer disease that is characterized by deficiency of ACh.
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Auditory Processing During Sleep:
A Clinical Application in Tinnitus

Marisa Pedemonte

Abstract It is known that changes in neuronal activity occur during the sleep-wake
cycle along the entire auditory pathway. Subjective tinnitus is an anomalous auditory
perception resulting from dysfunction of neuronal plasticity. A therapeutic strategy
using acoustic stimulation with sound mimicking tinnitus during sleep was devel-
oped, resulting in decrease in the reported intensity of tinnitus and improvement in
the patients’ quality of life. Since each stage of sleep has different roles in thememory
consolidation process, the impact on the intensity of tinnitus with acoustic stimula-
tion at different stages of sleep was analyzed separately. All patients stimulated at
stage N2 (stage with spindles) showed significant decrement in the tinnitus intensity
the day after stimulation, while nobody stimulated at the stage N3 (slow wave sleep)
showed changes in tinnitus intensity. The results show that brain dynamics associated
with N2 sleep stage is likely to be characterized by the possibility of establishing
interactions with the auditory processing networks, thus resulting in a reduction of
tinnitus intensity. These results are in agreement with other previous results showing
more changes in power spectra and coherence in electroencephalographic waves in
N2 sleep stage when there is sound stimulation.

1 Introduction

The processing of sensory information is constantly present, during the waking sleep
cycle, although with profound modifications. All sensory systems—visual, auditory,
vestibular, somesthetic and olfactory—show changes that depend on the functional
state of the brain, sleep or waking (Velluti, 1997, 2018). There is agreement that dur-
ing sleep the processing of new information and its consolidation as memory occurs,
being the hippocampus an essential structure for them to be carried out correctly.
The main evidence of the functional interactions among the auditory information,
the wake-sleep cycle and the hippocampal theta rhythm will be shown.
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1.1 Background

1.1.1 Auditory Processing During Sleep

Among sensory modalities, audition is particularly important as a telereceptor that
remains open during sleep. The auditory input throughout the day is processed and
consolidated as a memory during sleep. The Central Nervous System (CNS) con-
tinues processing information that enters from the environment, since the auditory
system remains as a sentinel during sleep, capable of receiving information, ana-
lyzing it, and generating a response. Furthermore, auditory contents are reported
in 65% of dreams (Hobson, 1990; McCarley & Hoffman, 1981) and sensory infor-
mation can be incorporated into them (Bastuji & García-Larrea, 2005). Changes in
neuronal activity linked to sleep-wake cycle have been reported along the entire audi-
tory pathway in animals and humans (Issa & Wang, 2008; Pedemonte et al., 1994,
1996; Pedemonte & Velluti, 2005a; Peña et al., 1992, 1999).

Figure1 shows the percentages of changes of unitary evoked activity at different
levels of the auditory pathway on passing from wakefulness (W) to slow wave sleep
(SWS) and from SWS to paradoxical sleep (PS). The subcortical nuclei—cochlear
nucleus, inferior colliculus, and the lateral superior olive—exhibited a higher per-
centage of increasing-decreasing firing neurons. Around 50% of the cortical neurons

W       SWS

SWS      PS

No firing change Increase firing Decrease firing

Auditory
Cortex

Inferior
Colliculus

Lateral
Superior Olive

Cochlear
Nucleus

Fig. 1 Sound evoked neuronal activity changes depending on the moment in the sleep-waking
cycle analyzed. Different levels of the auditory pathway were explored in guinea pigs, in more than
1500 neuronal discharges. W, wakefulness; SWS, slow wave sleep; PS, paradoxical sleep. Guinea
pig percentages unitary evoked activity along the auditory pathway in the sleep-waking cycle. Pie
charts show percentages (%) of neuronal firing shifts on passing from wakefulness to slow wave
sleep and from slow wave sleep to paradoxical sleep. W, wakefulness; SWS, slow wave sleep; PS,
paradoxical sleep. Data from: Peña et al. (1992, 1999), Pedemonte et al. (1994), andMorales-Cobas
et al. (1995). Figure modified from Velluti (2005)
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responded during wakefulness. No silent auditory neurons were detected on passing
to sleep or during sleep in any pathway level.

Also, changes in the receptive field of cortical auditory neurons and in evoked
responses were reported (Edeline et al., 2001; Erwin & Buchwald, 1986; Oster-
hammel et al., 1985). Additionally, hearing loss changes the sleep-wake cycle and
the sleep architecture (Cutrera et al., 2000; Pedemonte et al., 1997). Also patients
with intracochlear implants display differences in sleep architecture and electroen-
cephalographic signals when the implant is switched on or off (Velluti et al., 2010).

1.1.2 Auditory Processing and Hippocampal Theta Rhythm

Many are the internal and external influences thatmodulate the auditory sensory input
all along the waking-sleep cycle. Taking into account the great sensitivity of cochlear
hair cells, it is not difficult to imagine that there are neurons in the auditory pathway
that discharge in response to digestive or respiratory noises. We have demonstrated,
for example, that 40% of the neurons of antero-ventral cochlear nucleus discharge
synchronizedwith vascular flow (Velluti et al., 1994).However, these responses never
end up being a conscious perception. A powerful efferent system constantly controls
afferent input, minimizing the influence of disturbances and tuning into the input
that requires our attention. Nevertheless, all these unconscious influences are surely
at the service of other functions such as maintaining attention levels or collaborating
with homeostatic systems.

The ultradian hippocampal theta rhythm, within the wakefulness-sleep circadian
cycle, may modulate the sensory neuronal activity. It has been postulated as a tempo-
ral organizer for auditory sensory processing (Pedemonte et al., 1996; Pedemonte &
Velluti, 2005a). Previously, recordings carried out in primary auditory cortex, showed
evoked neuronal firing shifts evoked by electrical stimulation of the hippocampus,
indicating that these brain regions are interconnected exhibiting a functional rela-
tionship (Pedemonte & Velluti, 1982). Furthermore, it was found hippocampal theta
rhythm temporal correlationswithmotor activities, in spatio-temporal learning, asso-
ciating distant, discontiguous events, and learning of temporal sequences. A role of
the theta rhythm in learning andmemory has been proposed fromdifferent viewpoints
during all behavioral states (Pedemonte & Velluti, 2005b).

The temporal relationship between neuronal discharges and a certain phase of
the theta rhythm (phase-locking) was demonstrated in the inferior colliculus and the
auditory cortex. This functional correlation appeared and disappeared spontaneously,
having been found in all stages of the sleep-wake cycle (Pedemonte et al., 1996;
Pedemonte & Velluti, 2005a). Since the hippocampus theta rhythm was related to
discontinuous events and sensory changes we began to study the temporal pattern of
neuronal discharges when a change in sensory input was generated.

Figure2 shows an example of auditory unit spontaneous discharge during SWS
where the cross-correlograms did not exhibit phase-locking with the hippocampal
theta rhythm, however, when the sound stimulation started, the neuron began to fire
in close correlation with a particular theta rhythm phase (phase-locked).
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Fig. 2 Relationship between hippocampal theta rhythm and auditory cortical unit during slowwave
sleep, in guinea pig. Left column: raw data showing—from top to bottom—digitized units, sound
stimuli (clicks), hippocampal field electrogram (Hipp), and auditory cortical unitary discharges. The
spontaneous activity is shown at the top and, at the bottom, the activity during sound stimulation
(8/s). Right column, cross correlograms between unitary discharges and hippocampal electrogram.
SWS, slow wave sleep; Cal: Hipp, 1 mV; unit, 50 µV; modified from Velluti et al. (2000)

This temporal relationshipwith the hippocampus theta rhythm that appears related
to a change in the attention process, by a variation in the sensory inputwhen the animal
was habituated, was demonstrated both in wakefulness and during sleep (Liberman
et al., 2009). This complex interaction,whichwould be at the service of the temporary
codingof the sensory input, is another demonstration that the information is processed
during the sleep.
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1.2 Tinnitus, a Misperception

Taking into account everything seen above, we know that we face a sensory system
that works with a precise dynamic balance between low threshold receivers with
high processing precision and the CNS that generates the moment-by-moment sen-
sory perception. When this subtle functional balance is broken, tinnitus occurs. It
is accepted that interactions between altered cochlear inputs and distorted central
auditory processing provoke tinnitus. It is now evident that most forms of subjective
tinnitus are caused by changes in the function of the central auditory nervous system
while these changes are not associated with any detectable anatomical lesion. The
subjective tinnitus may be the result of the expression of neural plasticity and the
anomalies may develop because of decreased or deprivation input from the ear of
sound stimulation, over stimulation, or yet unknown factors. The functional imbal-
ance created in some central neural networks generates the “phantom sensation”,
so-called because it is a perception created by the CNS without a sound source that
causes it. The CNS cannot discern whether this perception is related to a real ambient
sound or an internal creation (Jastreboff, 1990).

1.2.1 Tinnitus Treatment with Sound Stimulation During Sleep

Considering all the antecedents that demonstrate that the auditory system continues
receiving information during sleep, and this is processed by organizing sensory inputs
and consolidating memories, we decided to devise a protocol for the treatment of
tinnitus based on sound stimulation applied during sleep. We proposed the sound
stimulationwith the same characteristics in frequencies and intensity as the tinnitus as
away of reinstalling the normal balance in the central level processing of information,
hypothesizing that tinnitus emerges to replace an input deficit. Our results showed in
two clinical trials have demonstrated the decrement in the tinnitus intensity and, as a
consequence, the quality of life of patients improved (Drexler et al., 2016; Pedemonte
et al., 2010).

The results shown in both trials were that the statistically significant decrease in
the intensity of tinnitus appears in the first fourteen days, continuing a slow decrease
in the following weeks (Fig. 3b). The spontaneous evolution of tinnitus in one week
in these patients was to keep its intensity unchanged (Fig. 3a).

The sound stimulation treatment during sleep was performed all during 3 months
and the result was an average decrease in the intensity of tinnitus of 14.1 dB SPL,
this decrease is perceived by the patient as a reduction of 62% in intensity sound.
In addition, the patients’ sleep improved both in duration and quality (lower latency
to start sleeping and fewer awakenings during the night). The visual analog scale
(VAS) was used to evaluate and quantify the degree of general discomfort produced
by tinnitus. An overall improvement of 61%of the pre-treatment scores was observed
(Fig. 3c).
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Fig. 3 Evolution of tinnitus intensity through 12 weeks. a The box plot shows the averages of tin-
nitus intensity, performed during 7 days of measurements without stimulation. Each box represents
the daily average for 11 patients. No statistically significant changes were observed between any
of the tinnitus intensity averages (p = 0.09, ANOVA). b The box plot shows the average weekly
intensities for 11 patients during three months of stimulation during sleep. “C”, is the “control”,
averaging the tinnitus intensity 7 days previous of stimulation. Tinnitus intensity decreased 14.1 dB
SPL between “C” and week 12. These results are statistically significant (p < 0.001) comparing
values between control versus the 1st week and 12th week (Wilcoxon test). cVisual analog scale for
assessing tinnitus annoyance. This scale was done before starting treatment (pre), in the sixth week
(middle), and twelfth week (post). Box plots show the data of all patients; results are statistically
significant comparing between (pre) and (middle) values (p < 0.001, Wilcoxon test). Modified
from Drexler et al. (2016).

Furthermore, themethod is inmanyways advantageous since sleep provides a long
periodof time for daily treatmentwithout interferingwith the patient daytime activity;
and sound stimulation during sleep decreases tinnitus perception, thus improving
sleep disorders and emotional disturbs caused by tinnitus (Pedemonte et al., 2010).

2 Mechanisms that Underlie the Decrease in Tinnitus
Intensity

Once these beneficial results were obtained for the patients, we began to explore the
changes that could appear in brain activity due to this sound stimulation, to begin
to understand the mechanisms that could cause this improvement (Pedemonte et al.,
2014).
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2.1 Changes in the Electroencephalographic Waves During
Sound Stimulation

2.1.1 Methods

Ten patients from the second clinical trial were studied with the Polysomnography
(PSG) that was carried out with the usual clinical protocol recording ten electroen-
cephalographic channels (EEG, frontals, F3, F4; centrals: C3, C4; parietals: P3, P4;
temporal: T3, T4, T5, T6), following the internationally accepted standard denomi-
nation, electrocardiogram, electromyogram, eye movements, and oxygen saturation.
All EEG recordingsweremonopolar, recorded from scalp electrodes and separate ear
electrodes A1 and A2, with electrodes referenced to linked ear lobes. The sampling
frequency was set 256Hz. The EEG acquisition system is equipped with hardware
high-pass filters with cut-off frequency at 0.5 Hz and hardware low-pass filters with
cut-off frequency 100Hz. Also, there is a selectable notch filter to suppress 50/60 Hz
power line noise. No digital post-processing filters were applied. One researcher
accompanied the patient all night, diagnosing the sleep stages online.

After beginning the night with the usual sound stimulation for tinnitus treatment,
sound are stopped after a minimum of one pass through each of the sleep stages,
N1, N2, N3, and REM sleep. The rest of the night the patients continue to sleep
in silence. Twenty temporal windows (2 s duration each one) were selected in each
sleep stage; ten of them during silence and the other ten during sound stimulation.
Always data were compared in the same patient. The power spectra and the coher-
ence in electroencephalographic waves recorded by electrodes F3, F4, T3, and T4
were analyzed.We compared the power spectra during noiseless (as a “Control”) ver-
sus sound stimulation, exploring different electroencephalographic frequency bands
(delta: 0.5–3.5 cps; theta: 4–7.5 cps; alpha: 8–12 cps) in the same sleep stage.
A comparison between the left and right hemispheres (T3 vs. T4 and F3 vs. F4)
was also carried out.

2.1.2 Results

Our studies showed that the sound applied during the night introduced changes both
in the power spectra of the different EEG frequency bands and in the analysis of both
intra- and interhemispheric coherence.

Analyzing the power spectra of the EEG waves, changes were observed during
all stages of sleep, with the predominance of changes in stages N2 and N3 of slow
wave sleep (36% in each), being lower in REM sleep (28%). The theta frequency
band was the one that showed the most changes (48%), the delta band followed with
36%. The electrodes located in the temporal regions showed greater change than the
electrodes located in the frontal regions (61% vs. 39%). All the mentioned changes
were statistically significant.
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The coherence study, comparing the results during silencewith sound stimulation,
showed statistically significant changes. These changes were observed in both intra-
hemispheric coherence and inter-hemispheric coherence. Each stage of sleep as well
as the different frequency bands was analyzed separately.

The inter-hemispheric and intra-hemispheric differences that arose as a conse-
quence of sound stimulation and were absent while there was in silent were con-
sidered. However, patients showed differences in coherence in silence. These differ-
ences found did not depend on whether the tinnitus was unilateral or bilateral, that
is, we must consider that there are many factors that are conditioning coherence, for
example hemispheric dominance.

N2was the sleep stage that presented themost coherence changeswhen stimulated
with sound. Stage N3, with slow waves, presented fewer changes, and the impact of
sound being even less in REM sleep (Pedemonte et al., 2014).

2.2 Which Is the Stage of Sleep Responsible for the
Improvement of Tinnitus?

Currently, we still cannot say whether the different categories of memories (such
as declarative and procedural) are consolidated in different sleep stages. There is
research that would support the hypothesis that slow wave sleep would be involved
in the generation of declarative memory, while working memory would be processed
mainly during REM sleep. However, other authors have suggested that it is the
appropriate succession of the different stages of sleep that generates the final product
of a new memory and, therefore, learning and change (Cipolli, 2005).

Taking into account that with sound stimulation during sleep our aim was to act
on neuronal plasticity, producing a decrease in the tinnitus intensity, the question
was whether this auditory learning occurred in one or several stages of sleep.

2.2.1 Methods

Patients were selected with the same inclusion and exclusion criteria than in previous
trials. Inclusion criteria were: (1) subjects with subjective idiopathic tinnitus (uni-
lateral or bilateral), (2) with a score in the Tinnitus Handicap Inventory above 17,
and (3) experiencing tinnitus for more than 6 months. The exclusion criteria were:
(1) secondary tinnitus, (2) subjects wearing hearing aids or having hearing loss with
indication of using them, (3) subjects undergoing other treatments for tinnitus, (4) use
of hypnotic or other psychoactive drugs, (5) depression (Hamilton scale test above
13) and (6) sleep disorders other than those caused by tinnitus itself, for example,
patients with apnea, restless legs syndrome, narcolepsy, and insomnia with other
etiology than tinnitus.
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Combinations of pure tones, harmonic tone, white noise, and/or bandpass noise
were designed for matching each patient’s perception by a highly customized sound.
This sound was loaded on an iPod Touch and delivered through personalized head-
phones created for each patient. The stimulus intensity was adjusted to match the
intensity of the tinnitus measured right before falling asleep. The device used was
the same as in the clinical trials (Drexler et al., 2016).

The stage of sleep in which each patient was stimulated was selected at random;
4 patients were stimulated in the Stage N2, 4 in Stage N3, and 3 in REM sleep.
The intensity of tinnitus was measured 10 times during the day prior to stimulation
compared with the intensity of tinnitus measured 10 times the day after stimulation,
and analyzed statistically (paired Student t test). The measurements had at least one
hour of separation between them. The criterion for measuring tinnitus intensity was
the lowest level of sound stimulation reported as indistinguishable from the tinni-
tus perception. This measurement was conducted using the stimulation application,
which can be adjusted within safe ranges, by the patients themselves [according to
the device described by Drexler et al. (2016)].

2.2.2 Results

Figure4a show that all patients stimulated at stage N2 showed statistically significant
decrease in tinnitus intensity the day after stimulation. No patient stimulated in stage
N3 reported changes in the intensity of tinnitus (Fig. 4b). Only one patient out of
three stimulated during REM sleep reported changes (Fig. 4c).

3 Conclusions

Our results suggest thatN2 is the sleep stage inwhich the interaction between auditory
processing and sleep generating networks leads to the strongest reduction in tinnitus
intensity by external sound stimulation. These results are consistent with the previous
ones that showed more changes in electroencephalographic wave’s coherence in N2
sleep stage during sound stimulation. Moreover, sleep spindles, characteristic of N2
sleep stage, are those that change their intra and interhemispheric coherence.

Despite theta rhythm is the one that most increases its power spectrum with the
stimulation of sound,with the greatest increases in stageN3, the exclusive stimulation
at this stage does not act on the intensity of tinnitus (Pedemonte et al., 2014, 2019).
These changes could be contributing to the relearning process by modulating the
state of the brain, since this rhythm is involved in the detection of changes.

The hypothesis based on re-learning an auditory perception through a mechanism
of nocturnal consolidation provides information on how interacts the auditory input
with the CNS in the different stages of sleep. However, this is the beginning of a long
way to understand how the interaction between the auditory input and the sleeping
brain occurs to achieve change in a phantom perception.
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b ca

Fig. 4 Patients stimulated with sound mimicking tinnitus in different sleep stages: a stage N2; b
stage N3; c stage REM. At the top of each panel, 3 s of polysomnographic raw recorded traces
include 8 electroencephalographic channels (EEG centrals: C3, C4; parietal: P3, P4; temporal: T3,
T4, T5, T6; eye movements, EOG; and electromyogram, EMG, masseter muscle). The EEG shows
in panel a the characteristic spindles of stage N2; panel b shows slow waves of stage N3; panel c
shows rapid eyemovements (REMstage),muscle atoniawith twitches, and electroencephalographic
desynchronization. The histograms represent the average and standard deviation of 10 tinnitus
intensities before (pre) and after (post) stimulation. Inset (in panel a, patient C.H.) represents
intensity averages of 5 values in the morning, before and after sound stimulation. Student t test, *
p ≤ 0.05, ** p ≤ 0.01. In panel a, all patients showed significant tinnitus intensity decrement after
N2 sound stimulation. In panel b, no significant changes were found after N3 sound stimulation. In
panel c, one out of three showed significant changes after REM sound stimulation. Modified from
Pedemonte et al. (2019).
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Synchronization and Granger Causality
Associated to Audiovisual Cuts

Celia Andreu-Sánchez, Miguel Ángel Martín-Pascual,
José María Delgado-García, and Agnès Gruart

Abstract We are not aware of the vast majority of the cuts when watching media
content. However, they affect our perception. This research analyzes the effects of
cuts in synchronization (phase locking value, PLV) and Granger causality in 36
subjects, using electroencephalography (EEG) techniques. The PLV was studied as
a phase synchronization index for the cut in theta, alpha, beta, and low gamma bands,
before (from−500 to 0ms) and after (from 0 to 500ms) the cut.We found differences
for the theta band in frontal, central, and occipital areas. We also evaluated the PLV
depending on the style of edition in which cuts are inserted: The style of edition did
not affect brain synchrony. Analyzing Granger causality differences for the 500 ms
before the cut and 500 ms after the cut, we found Granger causality before the cut
higher than after it. The style of edition seems not to affect causality either. This
study proposes a new way to approach the study of media perception.

1 Audiovisual Cuts and Viewers’ Connectivity

The development of how brain manages the perception of audiovisual content started
in the 1950s (Cohen-Séat et al., 1954); however, it has recently got an impulse in
neuroscience research (Cha et al., 2015; Kang et al., 2015; Nakano et al., 2009).
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Many investigations have been focused on finding what are the effects of the frag-
mentation and of the event boundaries of the media works in viewers’ perception
(Andreu-Sánchez et al., 2017a; Francuz & Zabielska-Mendyk, 2013; Germeys &
d’Ydewalle, 2007; Zacks et al., 2010). Some other investigations have approached
synchronization between subjects watching films (Hasson et al., 2004; Lahnakoski
et al., 2014; Nakano et al., 2009). There are also investigations studying the dynamics
of brain networks related to aesthetic appreciation (Cela-Conde et al., 2013).

Here, we propose to study viewers’ connectivity related to watching media works
containing cuts, paying attention to the main styles of edition in which those cuts
tend to appear in our audiovisual works. The brain connectivity variable is addressed
with functional and effective connectivity.

Functional connectivity refers to temporal correlation between two electro/
neurophysiological measurements from different parts of the brain (Friston et al.,
1993). It alludes to the dependence between signals and is defined in terms of cor-
relations or covariance (Friston, 1994). A way to approach functional connectivity
is with a phase synchronization index. In this investigation, we employed the phase
locking value (PLV) for this purpose. PLV uses responses to a stimulus that is pre-
sented repeatedly and looks for latencies with a phase locking (the phase difference
between the signals varies little across trials) (Lachaux et al., 1999).

Effective connectivity is understood as a time-dependent circuit that replicates
the timing relationship between the recorded sources (Aertsen, 1991). Here, we
employed the Granger causality for analyzing the effective connectivity of viewers
when they were watching cuts in media content. This index is based on the idea that
for two simultaneously measured signals, if one signal can be predicted better by
incorporating the past information from the other signal than using only information
from the former, then the latter signal can be called causal to the first (Granger, 1969;
Niso et al., 2013; Wiener, 1956).

2 Methods

2.1 Participants

Thirty-six participants with normal or corrected-to-normal visual acuity partici-
pated in this study. Subjects were aged 28–56 (43.97 ± 8.07) years. The study
had the approval of the Ethics Commission for Research with Animals and Humans
(CEEAH) of the University Autònoma de Barcelona, Spain. All experiments were
performed in accordance with relevant guidelines and regulations. Written informed
consent was obtained from all participants.
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2.2 Stimuli

We analyzed here brain activity associated with cuts. Movies are made up of shots,
continuous short film sequences, spliced together with cuts. The term cut refers to
the interruption of the shot with another shot with a change in space, time, or action,
due to narrative or aesthetic edition requirements. We presented two video stimuli
with the same narrative but different style of edition. Both stimuli had a duration
of 198s. Stimulus 1 had 33 shots, with an average shot length (ASL) of 5.9 s, and
had been edited according to classical rules of edition, based on Hollywood films
(smooth transitions, visual continuity, clear presentation of visual information, and
among others) (Bordwell et al., 1996). Stimulus 2 had 79shots, with an ASL of 2.4 s,
and was edited breaking all the classical rules of edition; it was based on the so-called
post-classic style with a more restless camera, greater number of shots, and framing
jumps (Bordwell, 2002)—well represented in musical video clips that first appeared
on the MTV channel, some decades ago.

2.3 Experimental Setup

The stimuli were presented on a 42-inch HDLED display (Panasonic TH42PZ70EA,
Panasonic Corporation) and synchronized with EEG-recorded data using paradigm
stimulus presentation (perception research system incorporated). Continuous EEG
was recorded using the wireless Enobio® system (neuroelectrics). Twenty electrodes
[(O1, O2, P7, P3, Pz, P4, P8, T7, C3, Cz, C4, T8, F7, F3, Fz, F4, F8, Fp1, Fp2, and
an external electrode used for electrooculography (EOG)] were placed according
to the international 10–20 System and referenced to electronically linked mastoid
electrodes (Martín-Pascual et al., 2018).

2.4 Analysis

We used the open-source toolbox HERMES (Center for Biomedical Technology)
(Niso et al., 2013) running onMATLABR2013a (TheMathworks Inc.) underMacOS
version 10.9.5 (Apple Inc.), for the functional and effective connectivity analysis.
For cleaning the data, EEGLAB (Swartz Center for Computational Neuroscience,
UC San Diego) was used (Delorme &Makeig, 2004). We band passed the EEG data
with filter between 0.5 and 40Hz. Then, we made epochs 500 ms before the cuts and
1000ms after the cuts, removing the baseline. For rejecting artifacts, wrong data, and
bad channels, we visually inspected the data and applied ADJUST plug-in (Mognon
et al., 2011) for EEGLAB.
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As mentioned, to determine functional connectivity, we chose analysis of the
PLV, a phase synchronization index, while for the effective connectivity, Granger
causality was studied. For the PLV analysis, we plotted the averaged connectivity
of PLV in all the participants (N = 36) with 100 surrogates of the original data. We
applied a Wilcoxon test with multiple comparisons with a false discovery rate of
Type 1 (q = 0.1). For the Granger causality analysis, we also did a Wilcoxon test
with 100 surrogates and a false discovery rate correction of type 1 (q = 0.1). More
information about the implementation of these indices can be found in HERMES
(Niso et al., 2013).

3 Results

3.1 Synchronization Associated with Cuts

To approach the PLV, we evaluated the instantaneous phase differences of the sig-
nals generated before and after the cut. The main idea was to evaluate whether
those signals evolve together in time. We also analyzed differences between the
styles of edition in which those cuts were inserted to detect if they affected func-
tional connectivity. The PLV was analyzed in different bands: theta (4–8 Hz), alpha
(8–12 Hz), beta 1 (12–20 Hz), beta 2 (20–28 Hz), and low gamma (28–40 Hz). We
made those approaches for the activity before (from−500 to 0 ms) and after (from 0
to 500 ms) the cuts. We found statistically significant differences in synchronization
between before and after the cut. More synchronization after the cuts was found in
theta and beta 1 bands. A residual synchronization between electrodes P3 and Pz
was also found in low gamma band, see Fig. 1.

We also approached synchronization associated with cuts by studying differences
between the styles of edition inwhich cutswere inserted.Comparing thePLVafter the

Fig. 1 Significant differences (p < 0.05, Wilcoxon test) in theta, beta 1, and low gamma bands
found after (from 0 to 500 ms) the cut in comparison with before the cut (from −500 to 0 ms), in
PLV analysis
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cut (from 0 to 500 ms) in Hollywood-style movie with that in MTV-style movie, we
did not find statistical differences between them. In a second approach, we compared
the PLV in the whole epoch (from−500 to 1000 ms) in both styles of edition. In this
case, we only found residual statistical differences in theta band between T7 and F7.

Overall, these results indicate that brain network activation after the cut in amovie
is more intense than before the cut. However, the style of edition in which cuts are
presented does not affect brain synchrony.

3.2 Granger Causality Associated to Cuts

Effective connectivitywas approached by analyzingGranger causality.We compared
that index between the before (from −500 to 0 ms) and after (from 0 to 500 ms)
conditions. We found Granger causality before the cut was statistically significantly
higher than after the cut, see Fig. 2. According to that result, causality in brain signal
activity decreases as a consequence of the change of shots managed by cuts.

We also wanted to analyze whether the style of edition affected this index. For
that, we first compared the before condition between the styles (Hollywood and
MTV). We found only a very residual higher level of Granger causality in MTV-
style movie than in Hollywood-style movie in left parietal and right frontal areas.
Secondly, we compared the after condition between the styles. Again, we found only
very residual significant connectivity with a higher level in the left parietal area in
Hollywood style and a higher level in left parieto-frontal area in MTV style. As
mentioned, these results were very residual and are not considered to be relevant for
this investigation.

Fig. 2 Granger causality in the cut. Green lines indicate average causal connectivity, while red
lines indicate significant differences found (p < 0.05,Wilcoxon test) when comparing connectivity
before the cut (from −500 to 0 ms) with that after the cut (from 0 to 500 ms)
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4 Conclusions

There are not many studies about connectivity and causality exploring parameters
of the communication process through the cerebral cortex. Most join emotional pro-
cesses or their effects in cortical structures of deep regions of the brain when subjects
are watching media content (Cha et al., 2015; Raz et al., 2016) or making aesthetical
appreciations (Cela-Conde et al., 2013).

In this investigation, we approached viewers’ functional and effective connec-
tivity related to a very specific variable: the cut. Previous studies have proven that
despite viewers not always being aware of cuts (Smith & Henderson, 2008), these
have an impact on their perception (Andreu-Sánchez et al., 2017a, b; Francuz &
Zabielska-Mendyk, 2013). Our results suggest that the cut causes a synchronization
effect. We approached this index through bands, since PLV seems to evaluate the
synchronization better over a whole band (Bruña et al., 2018). We found a higher
phase synchronization after the cut than before it in the theta and beta 1 bands. How-
ever, we found that Granger causality presents greater connectivity before than after
the cuts. This result suggests that with regard to Granger causality, cuts interrupt
connectivity in brain activity.

With the aim of studying differences in connectivity related to the styles of edition,
we also analyzed the PLV and theGranger causality parameters between those styles.
We found that the style of edition in which cuts are inserted seems not to affect
connectivity in viewers’ brain activity.

This investigation brings new insights to learning howmedia content editing styles
and audiovisual cuts affect viewers’ perception. It is also interesting to be aware that
differences in editing of media contents could be used as attentional markers for
creating new experimental approaches. This could be a line of research of interest
for application in different areas in the near future.
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Event-Related Potentials and Fast
Optical Imaging of Cortical Activity
During an Auditory Oddball Task

Manon E. Jaquerod, Ramisha Knight, Alessandro E. P. Villa,
and Alessandra Lintas

Abstract Event-related potentials (ERP) have been repeatedly used to study the
spatiotemporal dynamics of the attentional response in the well-known oddball
paradigm. We combined electroencephalography (EEG) with frequency-domain
near-infrared spectroscopy (fNIRS) of the frontal cortex tomeasure neuronal activity
with a high spatial and temporal resolution. The aim of this study was to determine
the precise chronology of event-related optical signals (EROS) and their consistency
with ERPs. In agreementwith previous studies, the oddball condition produced larger
waveforms for rare (1500 Hz pure tone) with respect to frequent stimuli (1000 Hz),
with N1, P2, N2, P3a, and P3b components. At a latency corresponding to the mis-
match negativity/N2 wave component, EROS showed the organization of a complex
activity in a functional network of frontal areas, with rare tones activating the left
premotor dorsal cortex and the left inferior frontal cortex and decreasing the activity
of the right superior frontal gyrus. Rare tones elicited also a strong N500 (N400-like)
wave component that EROS contributed to localize at the level of the right medial
frontal gyrus by EROS. The simultaneous recording of fNIRS and EEG measure-
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ments with high temporal accuracy over the human prefrontal cortex supports the
potential for this approach to unravel the functional cortical network involved in
cognitive processing.

1 Introduction

A fundamental property of animal behavior is habituation, i.e., the decrement of
response with repeated stimulation, which is a necessary process to detect deviant
or novel stimuli (Blumstein, 2016; Thompson, 2009). A classical paradigm, called
“oddball” paradigm, used to study the responsiveness to a repeated auditory stimulus
consists of a long sequence of repetitive identical stimuli (the frequent stimuli) that
is replaced with a low probability, and at random, by a different stimulus (the rare
stimulus). Brain activity elicited by frequent and rare stimuli has been recorded by
electrophysiologicalmeans to study the brain processes underlying attention switches
to, and involuntary discrimination of, rare among the frequent stimuli. Animal studies
showed that responses at the level of the cerebral cortex are associatedwith attentional
circuits that are strongly affected during anesthesia (Apelbaum et al., 1960; Eriksson
& Villa, 2005; Ruusuvirta et al., 1996).

In humans, the oddball paradigm was implemented in active and passive condi-
tions (Näätänen, 1990; Squires et al., 1975). The active condition is an attentional
task, such that the participant must attend to all stimuli in order to detect the rare
stimuli and generate a motor response, e.g., a key-press. In the passive condition,
the participant is usually instructed to ignore all stimuli and to attend other stimuli,
usually presented in another sensory modality. Maintaining a goal-directed behavior
that requires selective attention, brain responses to the habituation of the frequent
stimuli, and the salient perception of rare stimuli may bring insights about reorien-
tation of attention. The oddball paradigm has been extensively studied by electroen-
cephalography (EEG), i.e., by measuring variations in the electric field at the scalp
induced by the summation of mass neuronal firing rates with a millisecond-level
of resolution. The selective sensitivity of the technique for brain layers with corre-
lated dipoles makes neural activity in sulci far less represented in the EEG signal
than neural activity in gyri (Nunez, 1995). Furthermore, the spatial filtering of fields
by the head volume conductor implies interdependencies of measurements between
electrode sites and strongly restrain the capacity for EEG to depict the precise spa-
tial distribution of patterns of activity (Nunez, 1995). The event-related potentials
(ERPs) are obtained by averaging, over many trials, the EEG signal variations trig-
gered by sensory or behavioral events. Endogenous ERPs are thought to reflect the
neurophysiological correlates of cognitive processes.

In the oddball paradigm, the auditory stimuli elicited ERPs characterized by sev-
eral components (N1, P2, N2, P3) whose latencies and amplitudes differentiated rare
from frequent stimuli (Alexander et al., 1994; Michalewski et al., 1986; Näätänen,
1990). The N1 wave is generated by a stimulus-driven attention-trigger mechanism
(Näätänen & Picton, 1987). A positive component P2 of the ERP is often preced-
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ing the negative component N2 at approximately 250 ms after rare stimuli (Goodin
et al., 1978). This wave may often be dissociated into an earlier fronto-central N2a
component (also known as “mismatch negativity”) and a later, more frontally dis-
tributed, N2b component associated with the allocation of attention to the eliciting
stimulus in the active oddball condition (Näätänen, 1990; Squires et al., 1975). The
mismatch negativity (MMN), characterized by its responsiveness to low probability
stimuli even in the passive auditory oddball condition, may underlie the ability to
discriminate acoustic differences, a fundamental aspect of sensory perception. The
N2 is followed by the P3 (P300) component, with larger amplitude in active than
in passive conditions, formed by a fronto-central wave complex N2-P3a that can
be dissociated from a temporo-parietal P3b wave (Molnár, 1994; Näätänen, 1990;
Polich, 2007; Squires et al., 1975; Verleger, 1988). In addition, at 400–500 ms from
stimulus onset, the rare stimuli elicited a slow frontally maximal negativity, referred
to as N500 (N400-like) (Gaillard, 1976).

Signals recorded by functional magnetic resonance imaging (fMRI) are associ-
ated with the blood-oxygen-level-dependent (BOLD) signal, an hemodynamic indi-
rect measure of neural activity with severe limitations in temporal resolution and
with challenging interpretation to make deductions about the nervous system. The
activation of spatially limited neuronal populations may not be strong enough to
produce significant hemodynamic changes, but still produce a significant ERP wave.
Brain imaging with fMRI has been used to localize the brain areas activated dur-
ing the P3 wave elicited by the oddball paradigm (Linden et al., 1999; McCarthy
et al., 1997; Menon et al., 1997). In fMRI studies, the detection of rare stimuli in
oddball tasks related to BOLD signal increased in the supramarginal (Horovitz et al.,
2002; Mangalathu-Arumana et al., 2012; McCarthy et al., 1997; Menon et al., 1997)
and superior temporal gyri (Mangalathu-Arumana et al., 2012; Opitz et al., 1999),
in agreement with greater wave amplitude of P3b observed at the temporal/parietal
electrode sites of EEG. A significant hemodynamic response was also reported in the
frontal lobe, in particular at the level of the middle frontal gyrus (MFG) (Horovitz
et al., 2002;McCarthy et al., 1997; Stevens et al., 2005), frontalmidline areas (Menon
et al., 1997) an the opercular area of the inferior frontal gyrus (IFG), correspond-
ing to Brodmann area 44 (Linden et al., 1999). The ERP response to the oddball
paradigm is complex and cannot be reduced to its P3 component. Besides the spatial
dependency of its signal on the location of blood vessels, fMRI relies on an indirect
correlate of neural activity which is intrinsically too slow to reveal the complexity
of neurodynamics. Hence, it is likely that BOLD fMRI signal generation reflects the
sustained activity of a large neuronal system triggered by the rare stimuli and that
brief synaptic activity, evoked by those stimuli in dynamic neural circuits, might be
detectable only with methods characterized by signal-to-response dynamics faster
than neurovascular signals.

Transcranial near infrared spectroscopy (NIRS) allows the non invasive differen-
tiation between tissues with different light attenuation or scattering properties and
can provide spectroscopic information on the concentrations of chromophores, in
particular oxy- and deoxy-haemoglobin, HbO2 and Hb (Chance et al., 1993; Delpy
& Cope, 1997; Gratton et al., 1995; Scholkmann et al., 2014; Strait & Scheutz, 2014;
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Torricelli et al., 2014). A slow hemodynamic signal, corresponding to cerebral blood
oxygenation variations, is measured as a function of near-infrared light propagation
through extra-cerebral and cerebral tissue. Both the optical path length and the cere-
brospinal fluid layer affect the measurement, but the geometry of the sulci and the
boundary between the gray and thewhitematter have little effect on the detected light
distribution (Okada et al., 1997). The NIRS hemodynamic signal, which is similar
to the BOLD signal measured by fMRI, is modified by neuronal activity through
neurovascular coupling with latencies of several seconds. In addition to the mea-
surement of changes in light intensity, fNIRS instruments with a frequency-domain
technology of measurement allow the recording of a fast optical signal with a latency
in the order ofmilliseconds (Gratton&Fabiani, 2010). Thismeasurement, made pos-
sible by the modulation of light sources at a high radio-frequency (e.g., 110MHz),
is based on a complex function of the tissue absorption and scattering coefficients to
include changes in light intensitywith distance, phase, andmodulation depth changes
of intensity-modulated light and the temporal dispersion of light from an ultrashort
input light pulse (Gratton et al., 1997; Gratton & Fabiani, 2001; Wolf et al., 2002).
Neural activity can be directly detected by fast fNIRS signal through changes in the
scattering coefficient of the brain tissue. A change in neuronal cell volume following
an action potential discharge is meant to account for subtle, yet measurable, variation
in the scattering properties of the tissue (Lee & Kim, 2010; Steinbrink et al., 2000;
Villringer & Chance, 1997). Although optical imaging with fast fNIRS signals has
the potential for a millimeter-level of spatial resolution, it is limited to brain regions
located only few centimeters below the scalp (Gratton et al., 1997).

The two main cortical associative auditory pathways include a posterior dorsal
stream processing spatial (“where”) information from the posterior superior tem-
poral gyrus (STG) to the parietal cortex, and an anterior ventral stream processing
an object (“what”) from the anterior part of STG to IFG (Ahveninen et al., 2006).
Both pathways send projections to the prefrontal cortex with dorsal (DLPFC) and
ventral (VLPFC) regions involved in different roles during the processing of audi-
tory information with high cognitive load (Plakke&Romanski, 2016). Simultaneous
recording of ERP and the corresponding NIRS response has recently raised consid-
erable interest to complement the study of the spatial distribution of cortical and
subcortical activation during oddball and go-nogo tasks. Source localization based
on the NIRS slower hemoglobin response showed significant oddball activation in
temporal/parietal areas (Kennan et al., 2002)with a gender effect suggesting females’
event-categorization process is more efficient than in males (Jausovec and Jausovec,
2009), and activation ofMFGby tasks that require heavy cognitive processing (Jeong
et al., 2018). Stronger hemodynamic responses were reported in the left prefrontal
cortex when participants were performing an auditory oddball task under mental
stress (Liu et al., 2011), but the response was stronger in the right VLPFC when
attending to stimuli that required higher cognitive load and negatively correlated
with the level of state anxiety (Tseng et al., 2018). The averaging of optical responses
evoked by the repetition of the same stimulus allowed the analysis of event-related
transient optical responses based on continuouswavemeasurements of light intensity
(Kubota et al., 2008; Medvedev et al., 2008) and the development of event-related



Event-Related Potentials and Fast Optical Imaging … 159

optical signal (EROS) analysis by means of frequency-domain instruments, based
on a measurement of phase-shifts of the fast optical signal as the photons migrate
through the brain tissue, which is optically modified by neural activation (Gratton
& Fabiani, 1998). In passive detection of deviant auditory stimuli, source localiza-
tion by EROS reported early activity co-occurring with ERP waves localized in the
auditory areas of STG (Rinne et al., 1999) followed by activation of VLPFC in pre-
attentive auditory change detection (Tse et al., 2013). At a later latency, consistent
with P3 and frontal negativity, EROS data have shown activation in the right MFG
(DLPFC) by rare stimuli during an auditory oddball task (Low et al., 2006).

In this study,weanalyzedERPs andEROS in the frontal cortex elicitedby apassive
two-tone auditory oddball discrimination task. The task consisted of a random stream
of frequent auditory tones (1000 Hz, p = 92%)or an infrequent oddball auditory tone
(1500 Hz, p = 8%) being played at a constant interval of 1600 ms. In this paradigm,
attention is directed away from the acoustic stimuli with an explicit instruction to
fixate on a white cross centered on a screen. Our EROS analysis was mainly based
on changes in the phase delay because it has the advantage of a greater sensitivity for
deeper locations and a greater spatial resolution than light intensity measurements
(Gratton & Fabiani, 2010). These results indicate that the passive auditory oddball
task modulated the brain activity measured by EROS in the frontal cortex within
the same time range as EEG measures. The simultaneous recording of fNIRS and
EEG measurements with high temporal accuracy over the human prefrontal cortex
supports the potential for this approach to unravel the functional network involved
in cognitive processing.

2 Methods

2.1 Participants

Ten healthy volunteers participated in the study (mean age = 28.1 years; 6 women).
All subjects were right-handed and reported normal hearing and normal or corrected-
to-normal vision. Prior to participation, subjects were informed about the procedure
and provided signed informed consent for their participation in line with the Decla-
ration of Helsinki (World Medical Association, 2013) and the recommendations of
ethical and data security guidelines of the University of Lausanne. Two subjects (1
male and 1 female) were treated as pilot data and were excluded from the analysis.

2.2 Procedure

The task consisted of 12 blocks with 120 trials each, following the passive auditory
oddball paradigm. Frequent (1000 Hz at occurrence probability p = 92%) and a
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rare (1500 Hz, p = 8%) computer generated tones, lasting 500 ms, were presented
at approximately 60 dB SPL. Each block consisted of a randomized sequence of
frequent and rare tones where stimuli onsets were separated by 1600 ms. Subjects
were only instructed to watch awhite fixation cross in the center of a computer screen
placed horizontally at 65cm in front of the middle of their eyes. In order to minimize
the noise added by environmental light in the NIRS data, experiments were run with
the lights off and the computer screen background was black.

2.3 Electrophysiological Recording

Continuous EEGwas recorded using 64 scalpAg/AgCl active electrodes (ActiveTwo
MARK II Biosemi EEG System, BioSemi B.V., Amsterdam, The Netherlands), sam-
pled 1024Hz and referenced to the linked mastoids. Impedance was kept below
20 k�. Electrodes were mounted on a head-cap (10/20 layout, NeuroSpec Quick
Cap) that was modified in order to allow the optical equipment to have direct contact
with the scalp (Fig. 1a). Data were preprocessed and analyzed with the EEGLAB
toolbox (MATLAB, The MathWorks, Inc.) (Delorme & Makeig, 2004). EEG data
were then segmented into epochs using markers. Epochs of the continued data with
visible large movement artifacts were removed from the analysis. A poor EEG signal
from a selected electrode was reconstructed by combining signals from neighbor-

a b

Fig. 1 a Schematic representation of the co-localization of the 8 light detectors (red circles) and
22 light sources (blue squares) over prefrontal and premotor areas of the cerebral cortex and the
64-channel electrophysiological setup with the standardized International 10/20 system. b The
photo-multiplier tube detectors and fiber optic bundles placed over the participant’s forehead using
a custom-made mounting system



Event-Related Potentials and Fast Optical Imaging … 161

ing electrodes using interpolation. The EEG signal was decomposed using an Info-
max Independent Component Analysis (ICA) in order to correct eye blink artifacts.
Epochs containing visible artifacts after ICA preprocessingwere rejected. All epochs
kept for the analysis were bandpass filtered between 0.1 and 40Hz before ERPs were
computed.

A grand average of the ERP response to the oddball task was calculated by averag-
ing individual participants’ ERPs. In this study, we report data recorded at electrode
sites Fz, Cz, and Pz, separately for frequent and rare tones. The amplitude was cal-
culated as the voltage difference between a pre-stimulus baseline and the respective
peak. The latency was defined by the lag for the ERP wave to reach its peak ampli-
tude. We focused our topographic analysis on the time windows corresponding to
the main ERP components. The N1/P2 was identified as negative deflection between
120 and 150 ms post-stimulus followed by a positive deflection between 170 and
230 ms post-stimulus. The MMN/N2 was identified as the largest peak occurring
230–260 ms after stimulus presentation, the P3a as the positive deflection between
280 and 300 ms and the P3b as the largest peak occurring 350–400 ms after stim-
ulus presentation. A large negative wave between 460 and 650 ms post-stimulus
characterized the N500 (N400-like) component of the ERP.

2.4 Optical Recording

Optical data were collected using a frequency-domain NIRS system ISS Imagent
(Champaign, Illinois, USA) with 8 detectors and 22 frequency-modulated light
(830nm wavelength modulated at 110MHz) sources. The sources and detectors
were co-located with the EEG setup, as shown in Fig. 1a. In the present study, EROS
was recorded with source-to-detector distances between 20 and 55mm. The fiber
optic bundles connected to the laser diodes emitting light sources and the fiber optic
bundles connected to the detectors (photomultiplier tubes) were held in place using
a custom-built head mounting system (Fig. 1b). Detectors amplifiers’ were modu-
lated at a frequency of 110.005MHz. Hence, a heterodyning frequency (or cross-
correlation frequency) was generated equal to the difference between the frequency
modulation of the sources and detectors, i.e. 5000Hz, thus implying a period of oscil-
lation of 0.2 ms. The photomultiplier output current was Fast Fourier Transformed
(FFT) on four oscillations (i.e., 0.8 ms). One oscillation was skipped in order to avoid
cross-talk between sources, thereby yielding a data acquisition period of 1 ms for
each source. Light sources were time multiplexed in a cycle of eight per sampling
point, which corresponds to an effective time resolution of 8 ms (i.e., an effective
sampling rate 125Hz). Notice that for each data point, wemeasured theDC (average)
intensity, AC (amplitude) intensity, and relative phase delay.
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The locations of each source and detector were digitized with a 3D digitizer (FAS-
TRAK 3Space, Polhemus Inc.). Phase delay measurements in the cross-correlation
signal were corrected off-line for phase wrapping and their mean was adjusted to
zero. The algorithmdescribed inGratton andCorballis (1995)was used to remove the
pulse artifacts from the signal. Only channels with phase standard deviation smaller
than 200 ps were included for further analysis (Gratton et al., 2006). Data were band-
pass filtered between 0.1 and 10Hz before statistical topographical surface projection
maps of fast optical signals were computed using theOpt3D software (Gratton, 2000)
available at the NeuroImaging Tools & Resources Collaboratory (https://www.nitrc.
org/). EROS data were spatially filtered with an 8-mm Gaussian kernel and for each
subject, contrast, and voxels, t-scores were computed and converted to Z -scores.
This approach removes emphasis on larger effects in relation to the smaller effects
and was chosen because of our small sample size (N = 8).

The regions of interests (ROIs, cf. Table1 and Fig. 2) were selected on the basis
of previous studies on auditory deviance detection. The Talairach space boundaries
of our ROIs were kept consistent with anatomical structures and we assigned each
ROI to a Brodmann area with the BioImage Suite software package (http://www.
bioimagesuite.org, Lacadie et al., 2008).

Table 1 Coordinates (x, y, z) are in Talairach space (Talairach & Tournoux, 1988) of the areas
studied here

Region Left Right Broadmann area

Superior frontal gyrus
(SFG)

x ∈ [−35, −15] x ∈ [30, 10] BA 9/BA 8

y ∈ [25, 55] y ∈ [25, 55]

z ∈ [50, 35] z ∈ [50, 35]

Middle frontal gyrus
(MFG) dorsolateral
prefrontal cortex
(DLPFC)

x ∈ [−50, −35] x ∈ [45, 30] BA 46 (/BA 10),
BA 8 / BA 9

y ∈ [25, 55] y ∈ [25, 55]

z ∈ [30, 15] z ∈ [20, 30]

Inferior frontal gyrus
(IFG)

x ∈ [−60,−45] x ∈ [60, 45] BA 44 (/BA 45)

ventrolateral
prefrontal cortex
(VLPFC)

y ∈ [15, 30] y ∈ [15, 30]

z ∈ [15, 30] z ∈ [15, 30]

Dorsal premotor
(PMd) cortex

x ∈ [−40,−15] x ∈ [35, 10] BA 6

y ∈ [25, 55] y ∈ [25, 55]

z ∈ [45, 60] z ∈ [45, 60]

https://www.nitrc.org/
https://www.nitrc.org/
http://www.bioimagesuite.org
http://www.bioimagesuite.org
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a b

Fig. 2 Antero-posterior (a) and left hemisphere lateral (b) views of selected regions of interest
(ROIs). The area in darker grey represents the brain region sampled by the recording montage.
VLPFC: ventrolateral prefrontal cortex; DLPFC: dorsolateral prefrontal cortex; SFG: superior
frontal gyrus; PMd: dorsal premotor cortex

3 Results

3.1 Grand Average ERPs

The sample size for the ERP analysis was N = 7 because one more subject (male)
was excluded due to a technical problem that occurred during EEG data collection.
The frequent and rare tones elicited similar negative ERP component between 120
and 150 ms (N1), followed by a small positive wave P2 (P180), along the midline
sites, somewhat larger in the rare condition and towards frontal areas (Fig. 3a, B1).
A second ERP peak negativity was mainly elicited in the rare tone condition at 230–
260 ms post-stimulus (MMN/N2) at all three midline sites (Fig. 3a). We observed
distinct topographic maps of electrical activity between the conditions during this
time window (Fig. 3B2), but it was significantly different from the frequent tone
ERP only on the frontal site (p < 0.05, Bonferroni-corrected for 64 electrodes). It is
possible that such fronto-centralN2wave is a composite ofN2a andN2b components,
which overlap in time and scalp distribution.

Consistently with the literature, a significant difference between the two condi-
tions (p < 0.05, Bonferroni-corrected for 64 electrodes) appeared for a large positive
deflection elicited with a lag of approximately 300–400 ms (P300) after rare tones at
all reported electrode sites. This positive wave included a fronto-central component
P3a (Fig. 3B3) peaking between 280 and 330 ms and a second component P3b with
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Fig. 3 aGrand average ERPwaveforms (mean± 2× SEM) at electrode sites Fz, Cz and Pz (N = 7
participants). Each plot is followed by the result of a paired t-test between the frequent (dashed blue)
and rare (red) tones (Bonferroni-corrected for 64 electrodes, in red when p < 0.05). b Topographic
maps of scalp potential distribution at the main ERP components. B1: N1 at 120–150 ms post-
stimulus; B2: MMN/N2 at 230–260 ms; B3: P3a at 280–330 ms; B4: P3b at 350–400 ms; B5: N500
(N400-like) at 475–525 ms
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a posterior maximum (Fig. 3B4), peaking between 350 and 400 ms. A large frontal
negativity observed between 450 and 600 ms (N400-like/N500) was characterized
by maximal response over midline frontal electrodes (Fig. 3B5).

3.2 EROS

The data acquisition problem encountered during EEG recording of one participant
did not affect fNIRS, therefore the sample size for the EROS analysis was N =
8. The spatiotemporal profile of the optical signal response corresponded to the
topographical maps on group-level Z statistics of a ‘differential EROS response’,
which resulted from the contrasts conducted within the ROIs for each condition
separately relative to pre-stimulus baseline and for rare versus frequent tones, to the
three time points of the peak contrasts, i.e. at 40, 256, and 480 ms (Fig. 4).

Rare tones elicited less bilateral activation compared to frequent tones between
32 and 40 ms following the stimulus onset (Fig. 4A). In the left hemisphere, the
negative peak voxel activity was located in the Brodmann Area BA46 (DLPFC,
ROI in blue in Fig. 2, Talairach coordinates x = −43, y = 27) and did not reach
(Z = −2.135) the level of significance (p = 0.05) when averaging the voxels within
the ROI (Zcrit(0.05) = −2.60). The right negative peak voxel activity belonged to the
posterior part of BA8 (x = 24, y = 27) across superior frontal gyrus (ROI in green in
Fig. 2) and did not reach the ROI significance criterion (Z = −2.169 > Zcrit(0.05) =
−2.85).

At 256 ms post-stimulus, Fig. 4b shows the statistical maps resulting from dif-
ferential EROS responses and Fig. 5 shows also the responses in the rare and fre-
quent tone conditions, representing a complex pattern of activity co-occurring with
N2 component of the ERP. Between 240 and 272 ms in the rare tone condition,
we observed greater activation (Z > 2) in the ROI corresponding to the left PMd
(ROI in red in Fig. 2, x = −21, y = 12, BA6) with a peak voxel activity at 256 ms
(Z = 2.263 < Zcrit(0.05) = 2.67). Between 240 and 264 ms, we observed a reduced
differential EROS response in the right SFG (BA8, x = 24, y = 29) with a peak
voxel activity at 256 ms (Z = -2.368 > Zcrit(0.05) = −2.89). Those two effects were
very close to their ROI criterion of significance at p = 0.05.

Broca’s area (VLPFC, ROI in yellow in Fig. 2, y = 22, z = 22), correspond-
ing to BA44 contained and limited by pars opercularis of the left inferior frontal
gyrus, was characterized by a greater activation in the rare tone condition in the
interval 248–264 ms with a significant peak voxel activity at 264 ms (Z = 2.234
> Zcrit(0.05) = 2.20). This ROI was activated almost exclusively during the rare
tone condition, as emphasized by the significant contrast (maximum at 272 ms,
Z = 2.245 > Zcrit(0.05) = 2.19) of this condition with the baseline between 248 and
280 ms (Fig. 5b, sagittal projection). In the left hemisphere, it is interesting to notice
also an activation at the level of the auditory cortex in the postcentral gyrus (BA 43)
only after frequent tones (Fig. 5c). This activation fell below a significant contrast
(Z < 2) and was not visible in the differential EROS response (Fig. 5a).
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Fig. 4 Spatial maps based on group-level (N = 8) Z statistics for the EROS data contrasting rare
versus frequent tones in the passive auditory oddball task relative to the pre-stimulus baseline.
The area in light grey represents the brain region sampled by the recording montage. a Projection
of EROS data to the axial surface at 40 ms after stimulus onset. The differential EROS response
shows that superior frontal gyrus was activated after frequent tones by the dorsal spatial (“where”)
processing stream, BA46 in the left hemisphere and BA8 in the right hemisphere. b Spatial maps
of the EROS data projected to the axial (top) and left sagittal (bottom) surfaces of significant ROIs
at 256 ms after stimulus onset, co-occurring with N2b ERP wave. Notice the complex pattern of
response, see Fig. 5 for more details. c Projection to the axial (top) and right sagittal (bottom)
surfaces of significant ROIs at 480 ms after stimulus onset, co-occurring with N500 (N400-like)
ERP wave. In the right hemisphere, notice the strong activation of DLPFC after rare tones at the
level of BA9 (axial projection) and BA46 (sagittal projection)

In the rightmiddle frontal gyrus (Fig. 4C), at the level ofBA9ofDLPFC (Talairach
coordinates x = 32, y = 39), a greater activation was observed between 464 and
520 ms in the rare tone condition with a peak voxel activity at 488 ms (Z = 2.361 <

Zcrit(0.05) = 2.97). This activation co-occurred with the N500 (N400-like) ERPwave.
A more anterior part of DLPFC, corresponding to BA46 (see the right hemisphere
sagittal view of Fig. 4c), was also activated by the differential EROS response during
this interval, but it was located outside the predefined ROIs.

4 Discussion

We report results on the neural dynamics of frontal cortex response to a passive
auditory oddball task studied by simultaneous recording of fast optical signals with
high temporal resolution (EROS) and ERPs. To the best of our knowledge, no other
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Fig. 5 Spatial maps based on group-level (N = 8) Z statistics for the EROS data at 256 ms after
tone onset, co-occurring with N2b ERP wave, projected to the axial (top) and left sagittal (bottom)
surfaces. a Response contrasting rare versus frequent tones compared to pre-stimulus baseline,
same as Fig. 4b. b Response to rare tones separately contrasted with pre-stimulus baseline. Notice
the same ROIs visible in panel (a), although with a different significant voxel density. c Response
to frequent tones contrasted with pre-stimulus baseline. Notice a small activation in the postcentral
gyrus, at the border of the area under investigation

study has yet combined EROS with a similar temporal resolution (i.e. 8 ms sampling
time)with a 64-channelEEGsystem in an auditory oddball task. Electrophysiological
recordings revealed all the ERP components (N1, P2, N2, P3) well described in the
literature (Alexander et al., 1994; Michalewski et al., 1986; Näätänen, 1990). We
observed also several commonalities and some differences regarding the brain areas
and the response timing with the few previous studies reporting EROS analyses in
auditory and visual oddball tasks (Low et al., 2006; Proulx et al., 2018; Tse&Penney,
2008; Tse et al., 2006, 2013).Despite controversial observation about the significance
of fast optical signals measured by fNIRS (Steinbrink et al., 2005; Syré et al., 2003),
the co-occurrence of optical signals and ERP waves found here confirms that such
a methodological approach carries the potential for investigating neurodynamics of
cognitive activity in a wide range of tasks (Gratton et al., 2018). However, there
are several limitations that should be acknowledged in our results. First, this study
may be considered somewhat preliminary because of the small sample size (N = 7
for ERP and N = 8 for EROS analyses), although the statistical analyses showed
suitable effects. Additional data are being collected and a final report with a larger
sample will be soon completed. Second, fast optical signals suffer from a low signal-
to-noise ratio and the response signal is limited to a few centimeters below the scalp
(Gratton & Fabiani, 2010). It is important to underline that complementary studies
using different and independent measures of brain activity are necessary to gain
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further insights of the spatiotemporal patterns of brain dynamics while performing
behavioral tasks.

After the stimulus onset, the earliest response observed in this study is an optical
signal in the differential EROS response, appeared as early as between 32 and 40 ms
post-stimulus showing a bilateral activation that is larger for frequent than rare stim-
uli, thus suggesting a short latency input from the auditory system. The localization
of the signal at the level of BA46 of DLPFC in the left hemisphere and at the level
of BA8 of the superior frontal gyrus in the right hemisphere suggests that the input
is not from the sensory ascending subcortical pathway. The DLPFC is the end point
for the dorsal stream that transmits spatial (“where”) information (Ahveninen et al.,
2006; Plakke & Romanski, 2016).

The next evoked activity response was an ERP component with a negative peak
observed along the midline, mainly fronto-central sites, between 120 and 150 ms
post-stimulus followed by a smaller positive wave. The profile and the latency of this
wavewas similar after frequent and rare tones, although the amplitude after rare tones
tended to be larger. The latency and localization of this peak is in agreement with
the N1/P2 (N100-P200) complex reported for the auditory oddball task with strong
generators in the auditory areas of the STG and with association with a stimulus-
driven attention-trigger mechanism (Näätänen & Picton, 1987; Rinne et al., 1999).
In previous imaging studies coupled with EEG, the N100 component during auditory
tasks co-occurred also with a signal in the anterior cingulate cortex (ACC) (Esposito
et al., 2009; Walz et al., 2013). At this latency, we could not observe any significant
optical response in our ROIs of the prefrontal cortex. This is likely due to the fact
that our fNIRS montage was not designed to record neither from the auditory cortex
nor from ACC.

The typical event-related response to the stimulus presentation observed in the
auditory oddball task is the N2/P3 (P300) wave complex (Alexander et al., 1994;
Fabiani & Friedman, 1995; Näätänen & Picton, 1987; Squires et al., 1975). This
wave is characterized by several components, which may overlap in time and scalp
distribution. We observed a fronto-central N2b-P3a component (Fig. 3B2 and B3)
between 230 and 330 ms post-stimulus, followed by a P3b component with a parietal
maximum (Fig. 3B4), peaking between 350 and 400ms. Source locations determined
from fMRI showed that the ACC was the principal generator of N2b-P3a ERP wave
following dipolemodeling of ERPs (Crottaz-Herbette&Menon, 2006).We observed
fast optical signals correlated with the timing of this wave, but their latency was
different (up to approximately 100ms later) than the lag reported from other oddball-
related EROS analyses (Low et al., 2006, 2009; Proulx et al., 2018; Tse et al., 2006,
2013; Tse & Penney, 2008). Differences in the protocol of our passive oddball task
with respect to previous studies might explain differences in the temporal profile
of the response. The current occurrence probability of rare (i.e., deviant) stimuli
was p = 8% compared to p = 20% (Low et al., 2006, 2009; Proulx et al., 2018),
which could suggest that in our protocol rare tones were likely to be much more
unattended. The duration of our tones was 500 ms, that was much longer than usual
stimuli duration in oddball studies, i.e. 70–100 ms (Ruusuvirta et al., 2007; Tse &
Penney, 2008; Tse et al., 2006, 2013), and longer than 400 ms used in similar EROS
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settings (Baniqued et al., 2013; Low et al., 2006, 2009). Moreover, we 1500Hz
instead 500Hz for the rare tone frequency pip and 60 dB SPL instead of 70 db
SPL for the loudness (Low et al., 2006, 2009; Proulx et al., 2018). Hence, our
protocol might have triggered a different dynamics or slightly different processes
that we observed in our EROS analysis. Filtering parameters are very important for
the detection of fast optical signals with a low signal-to-noise ratio (Maclin et al.,
2003). In this study EROS was bandpass filtered in the range 0.1–10 Hz, compared
to 0–5 Hz (Low et al., 2006, 2009), 0.5–10 Hz (Baniqued et al., 2013), 1–10/12 Hz
(Tse & Penney, 2008; Tse et al., 2006, 2013), and 2–20 Hz (Proulx et al., 2018) of
the other studies.

The differential EROS response occurring at the same time of the N2/P3 ERP
showed an activation in the inferior frontal gyrus at the level of left PMd (BA6) for
the rare tones. Both action control and action observation require premotor functions
and left PMd participates to mapping external action parameters onto the appropriate
motor repertoire (Moisa et al., 2012; Stadler et al., 2012). In addition to the premotor
functions, our finding supports the hypothesis that the activation of the left PMd
may reflect encoding of the semantic features of actions (i.e., cognitive aspects of
the sensorimotor sequences associated with the detection of deviant stimuli) (Press
et al., 2012). Around at the same time, a pattern of activation opposite to this one
for PMd was observed for EROS in the superior frontal gyrus at the level of BA8,
near the border of BA46 in the DLPFC. This area was slightly activated by frequent
tones, but it was strongly deactivated by rare tones compared to baseline activity.
This signal was not observed by Low et al. (2006), but in their study rare tones were
less unattended (20% of the total number of stimuli vs. 8% in our protocol). BA46 is
mostly related with the executive control of language production (Ardila et al., 2016)
and we suggest that the source of the observed signal was rather BA8. This area of
right DLPFC is involved in pitch and memory processing of the auditory stimulus
(Kumar et al., 2015; Schaal et al., 2017). Hence, our results might suggest that in the
passive oddball task this part of BA8 would be more active when a retrieval attempt
of the frequent tone succeeded than when it failed.

We observed an optical signal in the left VLPFC (BA44, Broca’s area) occurring
with N2 ERP component, in agreement with previous studies (Linden et al., 1999;
Medvedev et al., 2010; Tse et al., 2006). The activation in BA44 was strong after
rare tones and occurred about at the same time of a lesser activated area in the left
postcentral gyrus (BA43) after frequent tones. The anterior ventral stream that brings
information about the stimuli’s characteristics (i.e., processing an object “what”
information) projects toVLPFC (Ahveninen et al., 2006; Plakke&Romanski, 2016).
Broca’s area (BA44 in the left VLPFC) is involved in semantic tasks, in the motor
aspect of speech, and in music perception (Bezgin et al., 2014; Flinker et al., 2015;
Levitin & Tirovolas, 2009). The activation of BA43 and surrounding areas in STG
was reported for abstract auditory representations and mental imagery of speech
(Chiang et al., 2013; Tian et al., 2016). The differential spatial pattern of response
observed in our results, between BA44 and BA43, might suggest that the oddball
task could engage inhibitory processes triggered by deviant stimuli, as suggested in
the literature in association with theta band oscillations (Harper et al., 2014; Jonides



170 M. E. Jaquerod et al.

et al., 1998; Proulx et al., 2018). We did not analyze here these oscillations, but this
is certainly an interesting analysis to be developed in our extended experiment and
future studies.

Previous studies have shownERPnegativewaves at a latency between 300 and 500
ms post-stimulus elicited in target detection and oddball tasks (Codispoti et al., 2006;
Kiehl et al., 2006; Low et al., 2006; Stevens et al., 2005), which was observed in our
results as a large N500 (N400-like) wave. Our ERP analysis showed that N500 was
almost exclusively elicited by rare tones and its amplitude was much larger for Fz, in
agreement with the frontal and right hemisphere topographical distribution reported
in those previous studies. The N400-like component has been usually reported with
a spatial distribution over centro-parietal or centro-posterior sites in lexical decision
tasks and in relation to predictability of stimuli and in the inferior frontal regions,
if the effect reflected integration difficulty (Kutas & Hillyard, 1984; Kutas & Fed-
ermeier, 2000; Lau et al., 2008; Rossi et al., 2013). Our EROS analysis showed an
activation at the level of DLPFC, more specifically in the right hemisphere for two
close regions across the Brodmann areas BA9 and BA46. Neuroimaging analysis by
fMRI reported that the DLPFC corresponding to the areas BA9/BA46 in the right
middle frontal gyrus was involved in maintaining integrated information (Collette
et al., 2005; Prabhakaran et al., 2000), associated with the acquisition of abstract
rules (Monte-Ordoño & Toro, 2017; Sun et al., 2012) and accompanying conscious
experience of abstract auditory percepts (Brancucci et al., 2016).

5 Conclusion

The data of the current study demonstrate that cognitive neural dynamics or pre-
frontal cortical activity during a passive auditory oddball task can be studied by a
non-invasive fast optical imaging technique (EROS) with co-localized EEG mea-
surements. We identified significant co-occurrences of EROS and ERP responses to
rare tones. By combining high spatial and temporal resolution we observed that left
and right pre-frontal structures were differentially affected. The left dorsal premo-
tor cortex and Broca’s area in the left VLPFC were activated by rare tones during
the mismatch negativity and N2 ERP components, whereas frequent tones activated
a small area in the right superior frontal gyrus involved in memory processing of
the auditory stimulus. Moreover, our results showed a significant N500 (N400-like)
wave associated with the activity of DLPFC after rare tones, likely related with the
maintenance of integrated information.
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Synchronization and Beta Oscillations in
Globus Pallidus: Role of the Striatum

Ying Yu, Kaijie Liang, and Qingyun Wang

Abstract Striatum, the main entrance of cortical afferents to the basal ganglia,
plays an important role in the Parkinson’s disease, and it is often overlooked in
the study of Parkinson’s disease. In this paper, we add globus pallidus externus
(GPe), globus pallidus internus (GPi), and subthalamic nucleus (STN) nuclei on
the basis of the striatum-inhibiting microcirculation and build a striatum-GP-STN
model. Numerical analysis results show that increasing the synaptic connections of
medium spiny neurons (MSNs) to GPe and GPi neurons results in a pathological
synchronization of GPe and GPi neurons, and the power spectral density indicates
a significant increase in beta-band energy. This is likely to be a potential source of
beta-band in the Parkinson’s disease. The expansion of the striatum-GP-STN model
also provides new ideas for studying Parkinson’s disease in the future.

1 Introduction

The effect of the striatum-inhibitingmicrocirculation in Parkinson’s disease (PD) has
been increasingly recognized. The striatum, as the main entrance of cortical affer-
ents to the basal ganglia (BG), plays an important role in cognitive processes such as
behavioral selection, motor planning, and decision making (Wu et al., 2017). In the
current study, the model of the striatum microcirculation mainly includes medium
spiny neurons (MSNs) expressing dopamine D1 receptors (D1 MSNs) and MSNs
expressing dopamine D2 receptors (D2 MSNs), as well as fast-firing interneurons
(FSIs). MSNs receive inhibitory effects from FSIs and other MSNs and receive exci-
tatory projections from the cortex (Damodaran et al., 2015). FSIs receive convergent
inputs from multiple cortical regions, and they are interconnected by gap junctions
(GJ), which increases the synchronicity of FSI firing (Damodaran et al., 2015). How-
ever, the effect of the striatum microcirculation on the rest of the BG is unclear. In
particular, the role of the striatum microcirculation in PD remains unknown.
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Mathematical models provide useful tools for studying dynamic behaviors such
as abnormal oscillations of neurons, especially the study of the cortical-thalamic-
basal ganglia (BGTC) loop. van Albada et al. proposed a mean-field model of the
BGTC based on physiology and anatomy to study the mechanism of PD (van Albada
& Robinson, 2009). Humphries et al. constructed a new three-dimensional model
of the striatal microcircuit’s connectivity by using the Izhikevich model (Humphries
et al., 2009). Recently, Cabessa and Villa studied the complexity of the attractor
dynamics of the basal ganglia cortex network Boolean model, which is more suitable
for studying brain models with complex connections (Cabessa & Villa, 2018). Here,
we use the conductivity-based Hodgkin–Huxley (HH) model for modeling analysis
(So et al., 2012). Based on the striatum-inhibiting microcirculation, we add the
globus pallidus externus (GPe), globus pallidus internus (GPi), and subthalamic
nucleus (STN) nuclei to build a striatum-GP-STNnetworkmodel. It is known that the
increased beta-band (14–30 Hz) oscillations and abnormal synchronous oscillations
of neurons are themain features of PD (McCarthy et al., 2011). As shown in Fig. 1, we
analyze the effects of three conditions on synchronization andbeta oscillations energy
of GPi and GPe neurons. Previous studies have shown that the desynchronization of

Part I

Parkinsonian
imbalance

Part II

Part II
Part III 

Parkinsonian
imbalance

Parkinsonian
imbalance

Fig. 1 Striatum-GP-STNnetwork. FSI: fast-firing interneurons;D1:D1MSNs;D2:D2MSNs;GPe:
globus pallidus externus; GPi: globus pallidus internus. STN: subthalamic nucleus. Part I means the
effect of removing GJ connections on GPe and GPi neurons. Part II and Part III represent the effects
of increasing synaptic connection of FSIs to D2 MSNs and increasing the synaptic connections of
MSNs to GPi and GPe, respectively
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FSIs firing is sufficient to alter balancedfiringbetweenD1andD2MSNs (Damodaran
et al., 2014), so Part I means the impact of removing GJ connections on GPe and
GPi neurons. In addition, Gittis et al. proposed that there is a selective increase in
FSIs-D2 MSNs connectivity in the PD (Gittis et al., 2011), and the balance between
direct and indirect channels is closely related to PD, so Part II and Part III represent
the effects of increasing synaptic connections of FSIs to D2 MSNs and increasing
the synaptic connections of MSNs to GPi and GPe, respectively. Simulation results
show that when we change the output of D1/D2 MSNs to the GPi/GPe, the level
of synchronization and the energy of the beta-band of globus pallidus (GP) neurons
increase significantly. Increasing the connection strength of FSIs to D2 MSNs will
enhance the synchronization level of D2MSNs and also cause the beta oscillations in
GP. Our results provide new insights into the role of striatal inhibitory microcircuits
in Parkinson’s disease.

2 Models and Methods

2.1 Models of Each Neuron

Themodel we used for GPe, STN, and GPi neurons is established by So et al. (2012),
which is the conductance-based model HH neurons. It can be described by a set of
ordinary differential equations as follow:

Cm
dVSTN

dt
= −IL − IK − INa − IT − ICa − IAHP − Isyn + Iapp (1)

Cm
dVGP

dt
= −IL − IK − INa − IT − ICa − IAHP − Isyn + Iapp (2)

where IK , IL , INa, IT , ICa, and IAHP are the potassium current, the leak current,
the sodium current, the low-threshold T-type calcium current, the high-threshold
calcium current, and the after hyperpolarization potassium current, respectively. Iapp
is the applied constant current, which can adjust the neuron firing property. The
specific formulas and parameters for these ion currents can be found in the previous
works (Damodaran et al., 2014). Isyn is the synaptic current. For STN neurons, the
synaptic currents is the inhibitory projections from GPe neurons. For GPi neurons,
the synaptic currents include from GPe (IGPe→GPi), STN (ISTN→GPi) and D1 MSNs
(ID1→GPi), and the synaptic currents for GPe neurons include IGPe→GPe, ISTN→GPe

and ID2→GPe. Similar to the previous studies, the modeling of synaptic currents also
can be considered as a first-order dynamical differential equation (So et al., 2012).

For the HH model of MSNs, we consider the potassium current, the leak current,
the sodium current, and M-current. The interaction between M-current and GABAa
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current can produce a robust beta-band oscillation in the striatum (McCarthy et al.,
2011). In the previous studies, loss of dopamine is simulated by varying the conduc-
tance of the M-current. So the voltage change of MSNs can be described as:

Cm
dVMSN

dt
= −IL − IK − INa − IM − Isyn + Iapp (3)

where the synaptic currents Isyn of D1/D2 MSNs include the effects from FSIs and
D2/D1 MSNs. Here, we only consider the interaction between D1 and D2 MSNs.
For D1 MSNs and D2 MSNs, the Isyn include ID2→D1, Ifs→D1 and ID1→D2, Ifs→D2,
respectively. Here, Iapp = 6. Except the strength of the connection between neurons,
the detail formulas of ionic currents and parameter values can be found in the works
of McCarthy et al. (2011).

FSIs are modeled in the same ways of MSNs except the M-current. And we add
the electrical connection between a FSI and its two nearest neighbors. So the formula
of FSI can be considered as:

Cm
dVFSI

dt
= −IL − IK − INa − IGJ − Isyn + Iapp (4)

where IGJ = gGJ(V − Vpre) is the electrical connection, the gGJ is the connection
strength, and Vpre is the membrane potential of the last neuron. We consider the
chemical synaptic connections and electrical connections of FSIs. Here Iapp = 5.
For the parameters of FSI, we refer to the works of Nomura et al. (2003).

2.2 The Network.

Another important problem of modeling is the network connection. The establish-
ment of the connection mode is similar to the work of So et al. (2012). This network
is composed of six equally sized group of FSIs, D1 MSNs, D2 MSNs, STN, GPe,
and GPi. Here, due to the robustness of MSNs connections (McCarthy et al., 2011),
we consider a relatively sparse connection type. Each nucleus is represented by ten
neurons, and there is a periodic structure, so the first neuron and the tenth neuron are
adjacent. As shown in Fig. 2, each D1 MSN inhibits two immediate neighboring D2
MSNs, as well as sends inhibitions to the three immediate neighboring GPi neurons.
Each D2 MSN can send inhibitions to the nearest three D1 MSNs and three GPe
neurons. Each FSI projects inhibitions to two adjacent D1 and D2 MSNs simultane-
ously and has electrical and chemical synaptic connections to two the nearest FSIs.
Each GPe neuron inhibits two the nearest GPi neurons, two STN neurons, and two
GPe neurons. Each STN neuron sends excitations to two GPe neurons and two GPi
neurons. The external input acts on each neuron.
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FSI

D2
MSN

D1
MSN

GPe

GPi

External input

STN

Fig. 2 Striatum-GP-STN network connection diagram. Different colors indicate different synaptic
currents. For example, a red arrow indicating the inhibitory current output of D2 to GPe. Each
nucleus is represented by ten neurons, and each neuron satisfies the connection shown in the figure.
The external input is mainly from the cortex, which acts on each neuron

2.3 The Connection Parameters

Based on the connection data from the previous studies (Damodaran et al., 2015;
Gittis et al., 2011; Wu et al., 2017), we define the synaptic strengths of the networks
as given in Table1. gab is the synaptic strength fromb to a. gfsfsgaba means the chemical
synaptic connection strength between FSIs, and gfsfsgap means the gap connection
strength.

3 Results

Table 1 Synaptic strengths of the networks

Connection Connection

gd2d1 0.01 mS/cm2 gfsfsgap 0.1 mS/cm2

gd1d2 0.03 mS/cm2 gfsfsgaba 0.1 mS/cm2

gd1fs 0.1 mS/cm2 gged2 0.15 mS/cm2

gd2fs 0.06 mS/cm2 ggid1 0.15 mS/cm2

ggesn 0.15 mS/cm2 ggisn 0.15 mS/cm2

gsnge 0.5 mS/cm2
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Abnormal synchronization is a major characteristic of PD (Fan & Wang, 2015). To
fully understand the effects of the striatum on downstream structures, we consider
the changes in the synchrony of GPe, GPi, and STN neurons. Figure3 represents
the spike rasters for the four nuclei in the network. As shown in Fig. 3a, in the
healthy state, these neurons exhibit a random discharge state. Figure3b shows the
case of removing GJ. We can see that GPe and GPi neurons seem to have a syn-
chronous tendency, especially GPi neurons, but this trend is not obvious. Figure3c
represents that the connection strength of FSIs to D2 MSNs increases and the con-
nection strength to D1MSNs is unchanged, i.e., gd1fs = 0.1, gd2fs = 0.12. Due to the
increased inhibition of FSIs, it can be seen that D2 MSNs synchronization level is
increased significantly, which is consistent with previous experimental results (Gittis
et al., 2011). The synchrony of GPe and GPi is also increased, and it is a state of
out-of-phase synchronization. Figure3D shows the increase in synaptic strength of
the striatum to GPe and GPi neurons, and here, we define the ggid1 = gged2 = 0.3.
GPe and GPi neurons exhibit significant strong bursting synchrony, which is also a
characteristic of the Parkinsonian state. It can be seen that the increase in the output
of the striatum to GPe and GPi is also responsible for the synchronization of these
neurons. However, the changes of STN neurons are not very obvious, and the dis-

a

b

c

d

Fig. 3 Spike rasters of striatum-GP-STN network. a Normal state. b Remove GJ. c Increase the
inhibitory synapses of FSIs to D2 MSNs, i.e., gd2fs = 0.12. d Increase in synaptic strength of the
striatum to GPe and GPi, i.e., gd1fs = 0.2, gd2fs = 0.1
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GPi GPea b

Fig. 4 Power spectral density of GPe and GPi neurons under the four conditions

charge rate is significantly increased only when the inhibitory effect of MSN on GP
increased.

Another important feature of PD is the excessive abnormal oscillation of beta-
band (McCarthy et al., 2011). So we consider the power of the beta-band in the
three pathological conditions and compared them with the state of health. As shown
in Fig. 4, the power spectral density of GPe and GPi neurons is displayed. In the
healthy state, we can see that there are no distinct peaks in the beta-band. Removing
the electrical synapse connection results in a small increase in beta-band power.
Previous studies have mentioned that removing GJ will cause a beta oscillation in
MSNs (Damodaran et al., 2015), so the beta-band in GPe and GPi neurons are
likely to be derived from D1 and D2 MSNs. Increasing the connection strength
of FSIs to D2 MSNs also leads to a distinct peak at 28Hz in GP, which indicates
that it is in the Parkinsonian state (Damodaran et al., 2015). It is worth noting that
changing the synaptic connections of the striatum to the downstream structures leads
to the power of beta-band increase dramatically. This excessive inhibition breaks the
internal balance of the GPi and GPe neurons and causes the neurons fire in burst-like
manner. Spectral analysis of the spike times of GPi and GPe neurons reveals that the
output balance of the striatum to GP plays an important role in PD.

4 Conclusion

The striatum is an important nucleus in theBG.Changing the internal parameterswill
cause a pathological beta oscillation, which is closely related to Parkinson’s disease.
By increasing the output parameters of the striatum to the downstream nuclei, we find
that the GPe and GPi neurons exhibit a pathological synchronization phenomenon,
and the power spectral density indicates a significant increase in the energy of the
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beta-band. At the same time, increasing the connection strength of FSIs to D2MSNs
also has an impact on GPe and GPi neurons.

The model can be further extended to a more complete BGTC loop model in the
future. The first is the improvement of the interior of the striatum. In addition toMSNs
and FSIs, there are cholinergic interneurons and low-threshold spiking neurons in the
striatum. Cholinergic interneurons play an important role in the functioning of not
only theMSNs viamuscarinic receptors but also inhibitory interneurons via nicotinic
receptors. In addition to dopamine, muscarinic receptor antagonists are commonly
used to treat Parkinson’s disease. It was also shown that altered striatal cholinergic
tone differentially modulates distinct beta sub-bands (Pittman-Polletta et al., 2018).
Secondly, the overall loop structure also can be improved in future studies. Previ-
ous studies have shown that pallido-striatal afferents innervate not only MSNs but
also interneurons, thus providing inhibition and disinhibition, respectively (Saun-
ders et al., 2015). Such reciprocal inhibition must strongly influence the frequency
of oscillations in the network. Besides, neocortical cells also modulate striatal output
neurons and motor activity (Melzer et al., 2017). Therefore, the striatum-GP-STN
network provides a new idea for the future study of Parkinson’s disease, and the
development of a more complete model of the cortical-thalamic-basal ganglia will
help us better understand the pathogenesis of Parkinson’s disease.
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ERPs in Controls and ADHD Patients
During Dual N-Back Task

Alessandra Lintas, Sarah K. Mesrobian, Michel Bader,
and Alessandro E. P. Villa

Abstract Attention Deficit/Hyperactivity Disorder (ADHD) is a behavioral disor-
der of childhood and adolescence characterized by symptoms that include impul-
siveness, inattention, hyperactivity, impaired decision making, and primary deficits
of executive functions. In a vast proportion of the diagnosed adolescents, the clini-
cal symptoms may persist into adulthood and ADHD patients are characterized by
Working Memory (WM) impairment. In the present study, we analyze brain dynam-
ics by EEG recordings during the dual n-back task in a population of young adults
with ADHD and healthy controls. The WM capacity and attention span are tested
by n-back task, and divided attention is tested by running the task in the visual and
auditory modalities concurrently. We analyzed the event-related potentials (ERPs)
triggered by the onset of the audio-visual stimuli. In ADHD the amplitude of N200
wave component was only slightly reduced and the peak latency was unaffected. The
amplitude of P300 peak was reduced in ADHD with respect to controls at all sites
along the midline. The latency of P300 peak in ADHD was reduced at Fz and Cz.
In particular, at Fz the latency of ADHD was reduced after a response that required
matching the visual cue 1 or 2 trials back in time. These results support the hypoth-
esis that the P300 component, associated with a cognitive workload, peaked earlier
in the ADHD than in controls and it may be used to follow the outcome of cognitive
training.
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1 Introduction

Attention deficit/hyperactive disorder (ADHD) is a persistent neurobiological dis-
order reflecting a complex interplay between genetic, neurobiological, and envi-
ronmental risk factors affecting brain networks, leading to emotional and behav-
ioral disturbances, as well as functional impairments and academic failures (Faraone
et al., 2015). Patients with ADHD are characterized by inattention, hyperactivity,
impulsivity and a multiple range of associated disorders. Working memory (WM)
dysfunction has been proposed as one exemplar process involved in ADHD with
adverse functional consequences for learning and everyday life activities that might
lead to academic failures (Kasper et al., 2012; Rogers et al., 2011). College students
with ADHD traits showed deficiency in verbal WM, possibly due to difficulties in
memory updating or attentional allocation (Kim & Kim, 2016).

The hypothesis that cognitive training might improve the symptoms in ADHD
patients suggested that key brain networks dynamics impaired in ADHD can be
recovered through controlled exposures to information processing tasks (Ansari,
2015; Keshavan et al., 2014; Sonuga-Barke et al., 2014; Vinogradov et al., 2012).
The dual n-back task is a particular WM training aimed at increasing the demand
for cognitive processes with the potential of leading to the expansion of resources,
i.e. the stimulation of neural plasticity, associated with cognitive functioning (Lilien-
thal et al., 2013; Lövdén et al., 2010; Salminen et al., 2016). Dual n-back working
memory training has demonstrated to improve performance gains in tasks such as
digit span and reading span, but the transfer to measures of fluid intelligence is yet
a controversial issue (Au et al., 2015; Blacker et al., 2017).

Electroencephalography studies are necessary for a deeper level of insight in the
underlying cognitive and neural processes involved during cognitive training. An
increase in mental workload has been reported to be correlated with a decrease in
the EEG power spectrum in the alpha band, an increase at frontal sites in the power
of the theta band and a decrease in the P300 amplitude (Brouwer et al., 2012; Gevins
& Smith, 2000; Käthner et al., 2014; Roy et al., 2016). A study involving college
students during WM training has reported that the ADHD group tended to be less
accurate and showed lower posterior EEG power in the alpha band compared to
healthy peers (Liu et al., 2016). Poor performance during a WM task in a group of
adult subjects with ADHD was associated with inaccuracy in the discrimination of
stimulus categories and specific ERPs (Stroux et al., 2016). Functional MRI studies
showed decreased activation of the dorso-lateral prefrontal cortex in patients with
ADHD for high-load visuospatial WM. These studies showed also greater reliance
on posterior spatial attention circuits to store and update spatial position than healthy
controls (Bédard et al., 2014).

Impaired decision making is another characteristic of subjects with ADHDwhich
leads them to choose riskier options with unfavorable outcomes in economic and
financial settings (Barkley & Fischer, 2010). We have recently tested risk-taking
activity of young adult ADHD and we observed that frontal sites were most affected
during a probabilistic gambling task, whereas global brain activity was likely to be
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affected in controls (Mesrobian et al., 2018a). We have also provided evidence that
WM training affects both performance and cortical activity during the gambling task
(Mesrobian et al., 2018b). In the current study, for the first time, we present ERPs
recorded in ADHD and controls during the dual n-back task. The working memory
capacity and attention span are tested by n-back task. During this task, participants
were required to store a series of letters inmemory until they decided towhether or not
press a key based on one of those letters during a later trial.We tested also the divided
attention by running the n-back task in the dual modality, i.e. running visual and
auditory modalities concurrently. The brain activity was analyzed by ERPs triggered
by the onset of the sensory cues to be remembered for 1-back and 2-back trials. The
spatiotemporal distribution of ERP amplitudes and latencies is different for ADHD
and control participants. These results suggest that, beyond cognitive training, the
dual n-back task can be used to assess the behavioral deficits characteristic of ADHD.

2 Experimental Protocol

2.1 Participant Recruitment

This study was carried out with written informed consent from all participants in
accordance with the Declaration of Helsinki (World Medical Association, 2013)
and the recommendations of ethical and data security guidelines of the University
of Lausanne. The protocol was approved by the Cantonal Ethics Committee of the
Canton Vaud (Switzerland). The sample of participants included in this study was
formed by young adults, aged between 18 and 29 years. After an initial screening
to ensure that they were fulfilling the DSM-IV-TR criteria for inattentive, hyperac-
tive/impulsive or mixed subtypes (American Psychiatric Association (APA), 2000),
ADHD patients (number of participants N = 45, 21.8 ± 0.5 years, mean ± SEM)
were recruited amongpatients clinically referred either by thePsychiatricDepartment
of the University Hospital of Lausanne or at a psychiatrist’s practice in collaboration
with the University Hospital. All participants of the ADHD sample were free of
any drug prescription. The ADHD sample was tested against healthy age-matched
controls (N = 42, 21.9 ± 0.5 years) recruited after a short structured diagnostic
interview assessing any major potential psychiatric disorder.

The median (mean ± SEM) ADHD Index corresponding to the normalized T -
score of the Conners’ Adult ADHD Rating Scales-Self Report (Screening Version,
CAARS-S:SV) (Conners et al., 1999; Fumeaux et al., 2016) was equal to 57.0
(57.3± 1.3) and 47.0 (47.8± 1.2) forADHDand controls, respectively. TheDSM-IV
Inattentive Symptoms Subscale (CAARS-A), the DSM-IV Hyperactive-Impulsive
Symptoms Subscale (CAARS-B) and the DSM-IV Total ADHD Symptoms Sub-
scale (CAARS-C) in the ADHD and control groups were equal to 74.0 (71.0±1.9)
and 53.0 (52.8±1.6), 61.0 (61.2±1.7) and 46.5 (47.3±1.5), 69.0 (68.8±2.2), and
51.5 (50.6±1.5), respectively.
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2.2 Dual n-back task

The dual n-back task was adapted in French from the task proposed by Jaeggi et al.
(2008). The task consisted of 20 blocks of 20+n trials. The participants had to press
a key to start a block of trials. In order to test the divided attention, each trial was
composed of an auditory and a visual stimuli presented simultaneously. Participants
were asked to store a series of auditory and a visual stimuli in memory. They were
instructed to maintain their gaze on a white fixation cross at the center of a 19-
inch computer screen at a viewing distance of about 70cm. The visual stimuli were
represented by 3.8× 3.8cm blue squares, taking place at one of 8 possible locations
on the center of the computer screen. Participants were required to press the keyboard
key “A” whenever the currently presented square was at the same position as the one
n stimuli back in the series, depending on level n of difficulty. The auditory stimuli
were one of 8 letters (Q, D, H, G, K, M, R, and Z) pronounced by a female voice.
In a way similar to the visual stimuli, participants were required to press the “L” key
whenever the auditory stimulus matched the cue that was presented n stimuli back
in the sequence.

The task consisted of congruent conditions, under which the current stimulus
is the same as the cue presented n trials earlier, and incongruent conditions, under
which the current stimulus is not the same as the cue presented n trials earlier. The
participants were asked to store both series of stimuli in memory and to press the
key corresponding to the modality of either congruent stimulus. No active responses
were required for non-targets, i.e. if a stimulus was not matching the corresponding
cue n trials back in the sequence. Figure1 illustrates a dual 2-Back task with the four
possible conditions. If both stimuli matched the cues, the participant had to press
keys “A” and “L” simultaneously and the response was termed AcVc, i.e. auditory
and visually “congruent” stimuli (response R6 in Fig. 1). If only the auditory stimulus
matched the cue to be remembered, the participant had to press only key “L” and
the response was termed AcVi, i.e. auditory “congruent” and visually “incongruent”
stimuli (response R4 in Fig. 1). Conversely, if the matched cue was only in the visual
modality, the participant had to press the key “A” and the response termed AiVc,
i.e. auditory “incongruent” and visually “congruent” stimuli (response R3 in Fig. 1).
If both auditory and visuospatial stimuli were not matching the cues, the correct
response was to refrain pressing any key and let the trial finish 3000ms after its onset,
which corresponds to AiVi response, i.e. auditory and visually “incongruent” stimuli
(response R5 in Fig. 1). Notice that in our implementation of the dual n-back task,
the value of nwas always the same for visual and auditory stimuli. The task included
the four possible conditions described above, irrespective of the level n of difficulty.

At the beginning of the session, the goal of the task was to compare the currently
presented cues with the stimuli presented in the previous trial, i.e. 1 trial back in time
thatwas a dual1-back task. If the responsewas correct, a greenwarning light switched
on, otherwise a red light indicated a wrong response. The level of difficulty was
adjusted as a function of the performance (adaptive difficulty). In one block of trials,
a participant had to perform less than 3 mistakes in each modality to raise the level
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Fig. 1 Experimental design of the dual 2-back Task. At each trial, the participants were asked to
press the “A” key for the visual modality and/or the “L” key for the auditory modality if the stimulus
in either modality is identical to the cue presented 2-trials back in time. This example illustrates
the four response conditions occurring in the task: R3: AiVc (auditory “incongruent” and visually
“congruent” stimuli); R4: AcVi (auditory “congruent” and visually “incongruent” stimuli); R5:
AiVi (auditory and visually “incongruent” stimuli); R6: AcVc (auditory and visually “congruent”
stimuli)

of difficulty by 1 in the next block (e.g., from 1-back to 2-back). Conversely, 5 errors
in any modality provoke a decrease by 1 in the level of difficulty of the next block. In
any other case, the level of difficulty remained unchanged between two successive
blocks of trials. Each trial lasted 3000ms after the stimulus onset. The visual stimulus
was presented for 500 ms together with the auditory stimulus. The participants had
to give an answer during 2500 ms before the next trial, otherwise accounted as no
response. The overall duration of the dual n-back task was approximately 30min,
depending on the level of difficulty of the blocks and on the pauses taken by the
participants between the blocks.

2.3 Electrophysiological Recordings

During the entire duration of a session, electrophysiological signals were recorded
using 64 scalp Ag/AgCl active electrodes (ActiveTwo MARK II Biosemi EEG Sys-
tem, BioSemi B.V., Amsterdam, The Netherlands), mounted on a headcap (extended
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international 10/20 layout, NeuroSpec Quick Cap) and referenced to the linked ear-
lobes. Electrode impedances were checked and kept always below 20 k� for all
channels before starting the continuous recording of the EEG. Vertical and hori-
zontal ocular movements were recorded using two pairs of bipolar electrodes and
Independent Component Analysis (ICA) was used to remove ocular artifacts (Jung
et al., 1997; Mesrobian, 2015). The data acquisition (DC amplifiers and software
by Biosemi, USA) was set with a sampling rate 1024Hz at 24 bits resolution and
band-passed filtered with a lower cutoff at 0.05 Hz and an upper cut-off 200Hz.
The brain signals were preprocessed and analyzed with BrainVision Analyzer 2.0.4
(Brain Products, Gilching, Germany). Recorded epochs with incorrect behavioral
responses were excluded from the analysis. During the n-back task performance,
previous studies have shown that the signals recorded by the midline electrodes Fz,
Cz, and Pz provided the most significant ERP wave components, more specifically
the P300 (Mahncke et al., 2006; Watter et al., 2001). Hence, we decided in this study
to analyze ERPs over these sites. The analyses presented here are limited to the N200
and P300 wave components on individual and grand-averaged ERPs. The N200 was
defined as the most negative peak observed in the 125–250 ms time window after
stimulus onset. The P300 was defined as the most positive peak observed in the
280–500 ms time window after stimulus-onset. For both wave components we mea-
sured the peak amplitudes, in µV, and the peak latencies, in ms.

2.4 Statistical Analysis

We used the R framework for statistical computing (R Core Team, 2013; Venables
& Ripley, 2002) for all statistical analyses. The median and the mean±SEM are
reported for most variables. All statistical hypotheses were tested with a level of sig-
nificance of p=0.05, unless otherwise reported. For normally distributed variables
we used Student’s t-test to assess comparisons between groups. Nonparametric anal-
ysis (Mann-Whitney-Wilcoxon test) were performed in the other cases. The effect
size was computed for all tests with Cohen’s d for Student’s t-test and the corre-
sponding r for the Mann-Whitney-Wilcoxon test.

3 Results

3.1 Behavioral Performance

During the dual n-back task, all participants of both ADHD and control groups
reached at least level 2 (i.e., a 2-back task). The index levels for ADHD and controls
were equal to 1.80 (1.89 ± 0.07) and 2.00 (2.06 ± 0.08), respectively. These values
were not normally distributed and we ran a Mann-Whitney’s U -test to evaluate the
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difference in the index levels. We found no significant difference between the index
levels of the two groups (U = 1137, Z = −1.63, p = 0.10, d = 0.18). We merged
blocks of levels 1-back and 2-back trials in a unique merged block of (1, 2)-back
trials.

The reaction times (RTs) to the auditory and visuospatial stimuli were measured
as the interval between the onset of the stimulus and the key-press for the corre-
sponding modality. The distributions of the RTs were not Gaussian. For the audi-
tory stimuli, the RTs for (1, 2)-back trials were 1168.0 ms (1167.6 ± 23.3) and
1062.8 ms (1122.3 ± 21.9) for ADHD and controls, respectively. For the visu-
ospatial stimuli, the RTs for (1, 2)-back trials were 1195.5 ms (1201.1 ± 22.9)
and 1156.8 ms (1200.3 ± 28.1) for ADHD and controls, respectively. We found
no significant difference between the RTs of the two groups neither for the audi-
tory (U = 3303, Z = 1.44, p = 0.15, d = 0.11) nor for the visuospatial stimuli
(U = 3597.5, Z = 0.55, p = 0.58, d = 0.04).

3.1.1 Event-Related Potentials

Figure2 shows the grand average ERPs triggered by either stimulus in correct trials
during performance of the dual (1, 2)-back task. In the upper panels of this figure we
show that the topographic maps of N200 and P300 are similar for controls (CNTL)
and ADHD. The color scales in the topographic maps emphasize that the differences
between the groups are mainly in the amplitudes of the signals, as shown in the lower
panels by the ERP curves recorded at Fz, Cz and Pz.

Amplitudes and latencies of N200 and P300 reported in Table1 show that at the
frontal site Fz the amplitude of both wave components are significantly reduced in
the ADHD group. The amplitude of P300 evoked by the dual (1, 2)-back task was
reduced in ADHD patients along all the midline sites, but at the central location Cz
the difference did not reach the criterion of significance. Table1 shows also that the
latency of N200 peak was not different between groups, but P300 peaked earlier in
ADHD at frontal and central sites.

The presentation of two independent streams of stimuli challenged the participant
to focus the working memory on a divided attention task. In order to assess the effect
of each sensory modality and the combination of both modalities, we have analyzed
further in detail the ERPs recorded after correct responses to the four possible combi-
nations, i.e. AcVc (auditory “congruent” and visually “congruent”), AcVi (auditory
“congruent” and visually “incongruent”), AiVc (auditory “incongruent” and visually
“congruent”) and AiVi (auditory “incongruent” and visually “incongruent”). Table2
shows the values of the N200 and P300 peak amplitudes and peak latencies measured
in the four response conditions at the Fz location. Figure3 shows the ERPs for all
(1, 2)-back trials recorded at the midline sites.

Notice that for theN200wave component at site Fz (Table2), the amplitude tended
to be lower in ADHD than in controls for all the response conditions, in particular
after a correct auditory and visual “congruent” response (AcVc), but the difference
did not reach the level of significance p < 0.05. On the opposite, the latencies of
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Fig. 2 Grand-averaged ERPs in control and ADHD participants triggered by the stimuli onset in
the dual (1, 2)-back task. The upper panels show the topographic maps of N200 (time window
125–250 ms) and P300 (time window 280–500 ms). The lower panels show the ERPs recorded at
Fz, Cz, and Pz sites for controls (blue curves) and ADHD (dashed red curves). The grey shaded
areas correspond to N200 and P300 wave components

N200 peak at Fz tended to be approximately the same in both groups for all response
conditions. At the frontal site Fz, the P300 peak amplitude was always significantly
lower inADHD than in controls for all response conditions (Table2). The latencies of
the P300 peak tended to be shorter in ADHD, in particular, if the response condition
included a visual “congruent” component (AcVc andAiVc conditions). During these
conditions, the latency of the P300 peak for ADHDwas approximately 20 ms shorter
than in controls.
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Table 1 Peak amplitudes and latencies of N200 and P300 wave components
Mesurement Electrodes N200 P300

ADHD CNTL Stat ADHD CNTL Stat

Amplitude
(µV)

Fz 2.35 3.61 0.05 3.10 4.84 .004

2.77±0.37 3.58±0.34 (0.21) 2.95±0.46 5.07±0.58 (0.30)

Cz 2.46 3.26 .07 5.38 7.00 0.07

2.91±0.50 3.94±0.40 (0.20) 5.33±0.58 7.37±0.73 (0.19)

Pz 3.68 4.03 .08 6.89 9.39 0.05

3.74±0.54 4.48±0.39 (0.19) 7.34±0.60 9.30±0.70 (0.21)

Latency
(ms)

Fz 165.8 168.8 0.22 344.2 357.4 .07

167.3±2.9 172.0±2.9 (0.13) 347.6±5.0 359.5±4.9 (0.19)

Cz 168.2 169.8 .42 338.1 355.0 0.05

168.5±2.6 171.7±2.8 (0.09) 347.2±5.5 360.0±5.1 (0.21)

Pz 187.3 181.4 .29 367.7 373.1 .40

186.7±2.5 182.8±2.2 (0.11) 370.2±5.1 376.9±4.4 (0.09)

At each electrode site, the reported values are median, mean ± SEM; the comparisons between
groups are assessed by the Wilcoxon-Mann-Whitney test and the statistic reported here are the p
value and the effect size (r ), in parenthesis

Table 2 Peak amplitudes and latencies of N200 and P300 wave components at electrode site Fz
for the correct trials corresponding to four conditions of the dual (1, 2)-back taska

Condition Measurement N200 P300

ADHD CNTL Stat ADHD CNTL Stat

AcVc Amplitude 2.40 4.05 .06 2.81 5.81 .02

(µV) 2.84±0.50 4.00±0.52 (0.20) 3.66±0.68 5.94±0.72 (0.26)

Latency 163.1 167.5 .62 342.8 368.2 .05

(ms) 164.5±3.9 167.8±3.8 (0.05) 352.4±7.9 369.3±7.1 (0.21)

AcVi Amplitude 2.78 4.25 .12 3.00 3.99 .04

(µV) 3.33±0.49 4.11±0.43 (0.17) 2.84±0.57 4.73±0.57 (0.22)

Latency 167.0 170.4 .26 339.8 348.1 .51

(ms) 170.4±3.6 175.2±3.5 (0.12) 350.7±7.9 354.9±6.8 (0.07)

AiVc Amplitude 2.27 2.54 .21 1.94 4.78 .01

(µV) 2.42±0.41 3.22±0.42 (0.14) 2.72±0.56 4.92±0.59 (0.27)

Latency 162.1 167.0 .10 331.1 355.0 .04

(ms) 162.9±3.6 171.8±4.0 (0.17) 342.6±7.5 363.7±8.1 (0.22)

AiVi Amplitude 2.08 2.98 .24 1.99 4.15 .01

(µV) 2.48±0.37 2.99±0.36 (0.13) 2.58±0.47 4.59±0.58 (0.28)

Latency 168.0 167.5 .62 336.9 347.2 .28

(ms) 171.2±3.9 173.3±4.0 (0.05) 344.6±6.9 350.0±5.2 (0.12)

The reported values are median, mean ± SEM; the comparisons between groups are assessed by
the Wilcoxon-Mann-Whitney test and the statistic reported here are the p value and the effect size
(r ), in parenthesis
a Response conditions. AcV c Auditory and visually congruent stimuli; AcV i Auditory congruent
and visually incongruent stimuli; AiV cAuditory incongruent and visually congruent stimuli; AiV i
Auditory and visually incongruent stimuli
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Fig. 3 Grand-averaged ERPs for channels Fz, Cz, and Pz elicited by audio-visual congruent (AcVp,
thick grey curves), mixed (AcVi, orange curves; AiVc, blue curves) and incongruent (AiVi, dashed
black curves) stimuli for ADHD(left panels) and healthy controls (right panels) triggered by the
onset of the dual (1, 2)-back task

A factorial analysis of N200 and P300 peaks values was performed with factors
group (2 levels: ADHD and controls), response condition (4 levels: AcVc, AcVi,
AiVc, AiVi) and electrode sites (3 levels: Fz, Cz, Pz). We used a robust version
of three-way ANOVA with default trimming level tr = 0.2 (Wilcox & Schönbrodt,
2016). For N200 we observed a significant main effect of the electrode site for
the peak amplitude, F(2) = 10.782, p < 0.01, and for the peak latency, F(2) =
150.228, p < 0.001, but no main effect of the group of participants. However, for
N200 peak latency we observed a main effect for the group F(1) = 28.494, p <

0.001 and a significant interaction between group× electrode, F(1, 2) = 6.359, p <

0.05. The factorial analysis of P300 peak latencies showed a main effect for group,
F(1) = 17.545, p < 0.001, electrode site, F(2) = 41.057, p < 0.001, and for the
response condition, F(3) = 16.372, p < 0.01, but no effect of interactions between
factors. For P300 peak amplitudes we observed also significant main effects for
group, F(1) = 33.696, p < 0.001, electrode site, F(2) = 129.444, p < 0.001, and
for the response condition, F(3) = 10.865, p < 0.05, but no effect of interactions
between factors.

4 Discussion

This study investigated, for the first time to our knowledge, the electrophysiological
correlates of the activity evoked by complex auditory/visual stimuli during the dual
n-back task in young adults with ADHD and age-matched healthy controls. In this
study, we observed that performance declined as cognitive load was increased for
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both groups. Controls tended to score slightly better than ADHD (a higher level n of
difficulty in the task), but the difference was not statistically significant as shown by
other studies (Bédard et al., 2014; Karatekin et al., 2009; Massat et al., 2012; Mies
et al., 2018; Roberts et al., 2012).

During a visual verbal n-back task (i.e., the stimuli are letters displayed on a
computer screen), Bayerl et al. (2010) observed that mean RTs were significantly
higher in ADHD subjects. Other previous studies in a visual verbal n-back task
emphasized that RT variability was higher in ADHD than controls (Epstein et al.,
2011; Feige et al., 2013; Forns et al., 2014). No data of ADHD performance to pure
auditory n-back task is reported in the literature, to our knowledge. In the dual n-back
task of this study, we observed, in both groups, that RTs increased with the level n
of difficulty and we observed that RTs to the congruent auditory stimulus tended to
be faster than RTs to the congruent visual stimulus. However, the absence of group
differences in RTs found in our results supports the hypothesis that in presence of
divided attention the fluctuations of attention are not characteristic of ADHD. It is
interesting that this is in line with a recent report that children with ADHD shows
less impaired performance when performing the double task (Elosúa et al., 2017).

Abnormal cognitive event-related potentials (ERPs) components were reported
in ADHD patients tested with visual and auditory cues other than those of the dual
n-back task (Barry et al., 2003). Then, even in presence of a behavioral performance
that was little impaired, if any, it is likely that early sensory processing is altered in
ADHD patients. The N200 is a fronto-central wave component elicited during the
dual n-back task known to be associated with retrieval of memory representations
of a presented stimulus with conflict processing, but it was only slightly affected by
cognitive training in healthy subjects (Oelhafen et al., 2013). In line with a visual
verbal n-back task, we observed that the amplitude of N200 peak was reduced in
ADHD, in particular at the frontal sites, without a significant effect on the latency of
this peak (Stroux et al., 2016). The N200 is assumed to be an index of interference
control when incorrect response preparation must be monitored (Folstein & Van
Petten, 2008) and a reduction of its amplitude, although to a lesser extent than reported
by Stroux et al. (2016), may suggest reduced interference control abilities in ADHD.
However, this is still controversial and other findings do not support the hypothesis of
WMand response inhibition representing one integral phenotype ofADHDmediated
by the prefrontal cortex (Schecklmann et al., 2013).

The literature reports that under a congruent condition P3 amplitudes were larger
and P3 latencies were shorter than under an incongruent condition McEvoy et al.
(1998). Higher cognitive demands are associated with a decrease in P300 amplitude
in several tasks that evaluate WM, including the n-back task, in particular at parieto-
central sites (Barker&Bialystok, 2019;Chuang et al., 2019;Käthner et al., 2014;Kim
& Kim, 2016; Mun et al., 2017). In both controls and ADHD, we found amplitudes
at Pz larger than at Cz, and at Cz larger than at Fz. For all stimuli conditions we
observed significantly smaller P300 amplitudes in ADHD, which is consistent with
previous studies with ADHD patients (Kim & Kim, 2016). The P300 waveform is
thought to reflect general processes of attentional control, stimulus categorization,
and processing capacity (Watter et al., 2001). The P300 latency in a high-load task is
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shorter than in a low-load task (Dong et al., 2015). In ADHD, the cognitive demand
is larger and our results show, in agreement with Kim and Kim (2016), that even in
the frontal region the latency of P300 is shorter for visuospatial congruent stimuli,
and the difference was statistically significant. Thus, P300 showed that classification
of congruent stimuli through the comparison of a current stimulus with the one
presented n trials earlier is also reflected in the pre-frontal region.

In conclusion, our overall results do not contradict evidence that executive func-
tioning deficits in ADHD underlies impaired emotion regulation, attentional prob-
lems, and cognitive deficits (Barkley & Fischer, 2010; Rogers et al., 2011), but the
behavioral results alone, in the absence of cognitive training, did not provide evidence
for mental effort problems in young adults with ADHD. The subtle electrophysiolog-
ical effects, however, suggest that ADHD patients may allocate effort in a different
way than controls.
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Emotion Analysis Based on Multi-class
Common Spatial Features of Scalp EEG

Peiyang Li, Tingyi Tan, Wenxia Qian, Gang Liu, and Yin Tian

Abstract Emotion analysis has earned much attention in affection computing and
clinics.

Emotion analysis has earned much attention in affection computing and clinics
(Cowie et al., 2001). Especially, major results from EEG-based emotional recog-
nition converge to a consistent conclusion that power distribution difference of EEG
signals holds close relation with different emotional states (Mantini et al., 2007),
which can be served as discriminative features for emotional recognition. Previous
studies mainly utilize power spectra density (PSD) to analyze different emotion
states. However, PSD is hard to capture the discriminant features that represent the
activation difference between different emotional states efficiently. In the essence,
the discern of emotion states based on power spectra is due to the difference existing
in the spatial power spectra distribution on scalp for different emotion states. There-
fore, the methods which can integrate energy distribution information may further
improve the recognition accuracy. Comparing with traditional power spectral anal-
ysis, common spatial pattern is capable of assigning higher weights to the chan-
nels holding powerful discriminant information between different emotional states
(Winkler et al., 2010). Motivated by the above merits of CSP, we designed a hierar-
chical structure (one to one, one to many, etc.) based on CSP so as to extract features
capable of representing the discriminative information between different emotional
states from scalp EEG.
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1 Methods

1.1 EEG Recordings

24 healthy students were recruited to listen to 132 music clips and scored them
according to their feelings. Based on the score distributions along valence dimension,
nine music clips for three different emotions were selected. Each emotion has three
music clips.

Five participants, different from those in the preliminary study, participated in the
experiments. All of them are the students in the University of Electronic Science and
Technology of China. The EEG data were recorded during the music listening. In
each trial, approximately lasting 7–12 s, one of the nine music segments is randomly
played for subjects. The interval between two consecutive trials is about 10 s. The
experiment consists of 81 trials, with 9 trials for each music segment.

1.2 Multi-CSP for Emotional Feature Extraction

The basic idea of CSP is to find a group of spatial filters that maximize the variance
of band-pass filtered EEG signals from one class (Blankertz et al., 2008; Daly &
Wolpaw, 2008; De la Torre & Black, 2003), while the variance from the other class
gets minimized. However, CSP is mainly designed to handle two-class problem, and
it might be keenly for multi-class in emotion recognition. In this work, we exploited
one-to-one strategy and expanded binary CSP to multi-CSP. The processing steps
are illustrated in Fig. 1.

2 Results

2.1 Spatial Pattern for Different Emotions

Following the training procedure, three kinds of spatial filters could be generated for
each concerned frequency band. In order to better understand the association between
EEG activities and emotional responses, Fig. 2 illustrates the scalp distribution of
spatial filters for gamma bands in three different emotional states for one subject.
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Fig. 1 Training process for CSP-based emotional feature extraction

2.2 Classification Accuracy

Table 1 integrated the average classification accuracies when both multi-CSP and
PSD are used to extract features from the EEG signals mentioned in Sect. 2. Table
1 demonstrates that CSP-based approach significantly improved the emotion recog-
nition accuracy compared with the traditional power spectrum-based approach (p <
0.05).
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Fig. 2 Training process for multi-CSP-based emotional feature extraction

Table 1 Classification
results for different features
in delta band

Classification accuracy Methods

PSD Multi-CSP

Mean 0.79 ± 0.06 0.95 ± 0.07

3 Conclusion

This study developed the CSP-based emotion recognition, which can extract the
common spatial information to differentiate the concerned emotions based on scalp
EEG. The conducted study revealed that the significant accuracy improvement can
be achieved by CSP-based recognition.
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Alterations of Brain Networks Before and
After Surgery in Temporal Lobe Epilepsy
Patients with Hippocampal Sclerosis

Chuanzuo Yang, Guoming Luan, and Qingyun Wang

Abstract Patients with temporal lobe epilepsy (TLE) are often potential candidates
for surgery. Characterizing brain networks before and after surgery can be beneficial
for understanding the mechanism of seizure termination and future treatment. In this
paper, electroencephalograph (EEG) recordings in the inter-ictal stage before and
after surgery (IIB and IIA, respectively) and ictal stage before surgery (IB) were col-
lected from 15 TLE patients with hippocampal sclerosis. Permutation Disalignment
Index (PDI) was used to reveal the alterations of brain networks. The results sug-
gested that the brain network in the IB had highermean strength or lower entropy than
that in the IIB, while the network in the IIA was reversed. Furthermore, the network
in the IB was more regular, and the postoperative network was further away from
that. This may provide potential application in the prediction of surgical outcomes.

1 Introduction

Temporal lobe epilepsy (TLE) is by far the most common type of drug-resistant
epilepsy in patients referred for surgery (Asadi-Pooya & Rostami, 2017). The pro-
portion of patients rendered seizure-free after anterior temporal lobectomy remains
suboptimal, with a seizure-free rate at short-term follow-up between 66 and 70%
(Zhou et al., 2018). And the prediction of surgical outcomes is significant for further
strategy of treatment. In this study, we aim to investigate the alterations of brain net-
works before and after surgery in temporal lobe epilepsy patients with hippocampal
sclerosis. It may provide additional insights into surgical effects from the network
perspective.
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Electroencephalograph (EEG) is always an important clinical tool for diagnosis
and treatment of epilepsy (Tatum et al., 2018). The previous research mainly focused
on the frequency and duration of epileptiform discharge, which were thought to be
associated with postoperative seizures (Janszky et al., 2003; Malter et al., 2016).
Furthermore, multiple abrupt changes of spectral features were able to provide early
warning of seizures (Mammone et al., 2017). However, epilepsy is increasingly
understood to be the result of network disorder, and the evolution of epileptic process
is always accompanied with alterations of brain networks. In recent years, there
have been many methods proposed to quantify interactions between multi-channel
recordings (Aksenova et al., 2007). Among these, Permutation Disalignment Index
(PDI) was introduced to measure the nonlinear coupling, which was also robust to
noise (Villa & Tetko, 2010). Herein, combined with graph theory, PDI was used to
investigate the overall and local characteristics of functional brain network. To further
interpret these results, random network was introduced to understand the difference
in network structure.

2 Materials and Methods

2.1 Materials

Fifteen temporal lobe epilepsy patients (nine females, ages 28.2 ± 4.8 years) with
hippocampal sclerosis were recruited from Sanbo Brain Hospital of Capital Med-
ical University in Beijing. All patients underwent surgical treatment and seizure
frequency during clinical follow-up 3–12 months postoperatively was significantly
decreased. EEG recordings in the inter-ictal stage before and after surgery (IIB and
IIA, respectively) and ictal stage before surgery (IB) were collected using a setup
with 19 electrodes, which were positioned according to the 10–20 international sys-
tem. These recordings were uniformly down-sampled 256Hz and band-pass filtered
between 1 and 30 Hz to remove baseline drift and reduce high-frequency artifacts.
Independent component analysis (ICA) based on EEGLAB toolbox was performed
to exclude additional artificial activity, namely eye movements and cardiac artifact.
This study protocol was approved by the Ethics Committee of Sanbo Brain Hospital
of Capital Medical University, and all subjects were written informed consent.

2.2 Permutation Disalignment Index

Permutation Disalignment Index (PDI) was developed as a symbolic descriptor to
measure the nonlinear correlation between time series. Given two time series x and
y both with N samples, they can be projected into an m-dimensional space:
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Fig. 1 Projections of the times series x and y into the motif space. When the embedding dimension
m is 3, there exist six possible motifs

{
Xt = [x(t), x(t + L), . . . , x(t + (m − 1)L]T
Yt = [x(t), x(t + L), . . . , x(t + (m − 1)L]T (1)

where m is the embedding dimension and L is the time lag. For a given embedding
dimensionm, there existm! possible motifs, as shown in Fig. 1. If Xt and Yt have the
same motif πk (k = 1, . . . ,m!), the corresponding frequency n(πk) will be counted.
By this means, a coinstantaneous occurrence rate Px,y(πk) of each motif πk can be
defined as:

Px,y(πk) = n(πk)

N − (m − 1)L
(2)

Similar to the definition of permutation entropy, PDI can be computed as:

PDI(x, y) = 1

1 − α
log

[
m!∑
k=1

Px,y(πk)
α

]
(3)

In order to reveal the nonlinear correlation intuitively, it can be normalized:

nPDI(x, y) =
√
PDI(x, x)PDI(y, y)

PDI(x, y)
(4)

The more coupled time series x and y are, the higher the nPDI is expected to be. In
this study, the parameters m = 3, L = 1 and α = 2 are adopted.
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2.3 Brain Connectivity

Changes in brain function are often associated with the alterations of brain networks.
Based on the nPDI, the relationships between multi-channel recordings can be rep-
resented by a weighted full connection network. Graph theory is further employed
to reveal the characteristics of functional brain connectivity.

The average of nondiagonal elements M indicates the overall strength of connec-
tions, and information entropy E can describe the weight distribution.

M = 1

K (K − 1)

K∑
i �= j

nPDI(i, j) (5)

E = −
∑
i

p(i) log2 p(i) (6)

where K is the number of channels and p(i) is the probability of falling into the i th
interval.

In order to capture the activity changes between regions in different states, the
density D and clustering coefficient C of weighted networks are calculated. They
can provide additional insights into the dominant alterations and involved regions.

D(i) = 1

(K − 1)

∑
j, j �=i

nPDI(i, j) (7)

C(i) =
∑

j,t
3
√
nPDI(i, j)nPDI( j, t)nPDI(t, i)

(K − 1)(K − 2)max(nPDI)
(8)

where max(nPDI) represents the maximum elements of nondiagonal elements.
To deeply understand these network structures, it is significant to investigate their

network characteristics relative to random network. However, many randomization
methods for weighted networks are not convincing, and the results may be uninter-
pretable (Stahn & Lehnertz, 2017). As a result, we transformweighted networks into
binary networks through a reasonable static threshold to further reveal relative net-
work characteristics, such as relative shortest path and relative clustering coefficient.

3 Results

3.1 Overall Distribution

The overall characteristics of weighted networks in the IIB, IB and IIA are reflected
through the comparison of the mean strength M and the entropy of weight distribu-
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Fig. 2 Overall characteristics of weighted network. a, b The difference of mean strength and
entropy of weight distribution between the IIB and IB. Characteristics from the same patient are
paired. c, d The difference of mean strength and entropy of weight distribution between the IIB
and IIA. e The distribution of overall characteristics in M–E plane during the IIB and IB. f The
distribution of overall characteristics in M–E plane during the IIB and IIA. These exceptions are
dotted in red

tion E (Fig. 2a–d). Paired t-tests were performed to identify the significant changes
between stages. Compared with the IIB, the mean strength in the IB is significantly
higher (p value = 0.0014), while the mean strength in the IIA has no significant
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difference (p value > 0.05). The entropy of weight distribution cannot character-
ize different stages, either. However, the differences between stages can be distin-
guished in the M − E plane (Fig. 2e, f). Compared with the IIB, the IB has higher
mean strength or lower entropy (except for 1 patient), while the IIA has lower mean
strength or higher entropy (except for two patients). It suggests that the alterations
of brain networks between stages mainly depend on the adjustment of edge strength
or the distribution of weighted edges.

3.2 Local Characteristics

Each electrode records the corresponding local activity, which plays different roles
in the epileptic process. The density D and clustering coefficient C are calculated to
capture the changes in local characteristics. Compared with the IIB, the number of
patients with increased D and C in the IB and the number of patients with decreased
D and C in the IIA are counted in Fig. 3a, b. When seizures occur, the local activity

Fig. 3 a Compared with the IIB, the number of patients with increased density D and clustering
coefficient C in the IB for each electrode. b Compared with the IIB, the number of patients with
increased density D and clustering coefficient C in the IIA for each electrode. c Relative shortest
path in the IIB, IB and IIA for each patient. d Relative clustering coefficient in the IIB, IB and IIA
for each patient
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in bilateral temporal, parietal and occipital lobes usually increases, while electrical
activity in the frontal lobe decreases. The difference between the IIB and IIA is not
significant, which may be related to individual brain network.

3.3 Relative Characteristics

To further understand the network structure, binary random networks with the same
number of nodes, number of edges and degree distribution with transformed network
from weighted network are introduced. Relative shortest path and clustering coef-
ficient are used to characterize the network efficiency (Fig. 3c, d). Compared with
the IIB, the IB has longer relative shortest path and higher relative clustering coef-
ficient, indicating that brain network in the IB is more regular. It is consistent with
the previous studies (Mammone et al., 2008). The postoperative network is further
away from that in the IB, which may interpret the favorable surgical outcome.

4 Conclusion

Permutation Disalignment Index combined with graph theory is used to investigate
the alterations of brain networks before and after surgery in temporal lobe epilepsy
patients with hippocampal sclerosis. When seizures occur, the brain network has
higher mean strength or lower entropy, and the increased local activity in bilateral
temporal, parietal and occipital lobes plays a dominant role in the process. Further-
more, the network in the IB seems more regular. After surgical treatment, brain con-
nectivity is further away from the epileptic network, which may provide promising
application in the prediction of surgical outcomes.
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PSO-Sub-ABLD-Based Parameter
Optimization for Motor-Imagery BCI

Feiyu Yin, Yangyang Miao, Xingyu Wang, and Jing Jin

Abstract Common spatial pattern (CSP) is one of effective feature extraction algo-
rithms, which is widely applied to motor imagery (MI)-based brain–computer inter-
face (BCI). However, its performance is susceptible to artifacts and noise. There-
fore, some researchers proposedSub-Alpha-BetaLog-DetDivergences (Sub-ABLD)
algorithm to improve the performance of BCI systems. The performance of Sub-
ABLD algorithm depends on the values of hyperparameters α, β and η. In this study,
a strategy namedPSO-Sub-ABLDwas proposed to select three hyperparameterswith
particle swarm optimization (PSO). Two public BCI competition datasets were used
to validate the effectiveness of the proposed strategy. The results show that compared
with CSP and Sub-ABLD with default hyperparameters, PSO-Sub-ABLD method
gains better classification accuracy.

1 Introduction

Brain–computer interface (BCI) system is a new technologydesigned to create a path-
way that connects the human brain and external devices without peripheral nerves
and muscles (Xu et al., 2018). The BCI system provides a new means of commu-
nication for people with severe neuromuscular disorders by decoding task-related
electroencephalogram (EEG) recordings and translating them into computer instruc-
tions for control and communication with external devices (Wolpaw et al., 2002; Jin
et al., 2011).

So far steady state visually evoked potentials (da Cruz et al., 2015), P300 evoked
potentials (Jin et al., 2015), slow cortical potentials (Mensh et al., 2004), and event-
related desynchronization (ERD) (Pfurtscheller, 1977)/event-related synchroniza-
tion (ERS) (Pfurtscheller, 1992) are neural response patterns commonly used in BCI
systems. Motor imagery (MI)-based BCI systems, which are based on the ERD and
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ERS phenomena, are widely used as it is easier to operate than other systems based
on external stimulus (Qiu et al., 2016).

Common spatial pattern (CSP) has proven to be a very effective feature extraction
method (Ramoser et al., 1998), and its principle is to find spatial filters, to effectively
evaluate discriminant information of MI by maximizing the variances of the pro-
jected signal of one class while minimizing another (Zhang et al., 2015; Blankertz
et al., 2008). Since the EEG signal is very sensitive to noise, outliers caused by
noise will cause poor computation of spatial filters based on the spatial covariance
matrix, which leads to poor classification accuracy (Lotte & Guan, 2011; Thiyam et
al., 2017). To address this problem, a large number of improved algorithms based
on CSP are proposed. Sub-ABLD algorithm is a modified algorithm of CSP, and its
principle is to overcome the problem caused by the non-stationary nature of EEG
data by appropriately scaling the conditional covariance matrix and using different
filter selection strategies (Thiyam et al., 2017). Sub-ABLD algorithm shows a cer-
tain degree of robustness to outliers trials in EEG data (Feng et al., 2018). Three real
hyperparameters α, β, and η affect the performance of Sub-ABLD (Thiyam et al.,
2017), so how to choose better hyperparameters has a greater impact on improving
the performance of Sub-ABLD algorithm. For the selection of hyperparameters, evo-
lutionary algorithms (EA) such as genetic algorithm (GA) (Garrett et al., 2003) and
particle swarm optimization (PSO) often have better effects. Compared with GA,
PSO is widely used because of its advantages of simple programming, few parame-
ters, and global search. Thus, this present study proposed the method of optimization
hyperparameters of Sub-ABLD with PSO (PSO-Sub-ABLD) and compares it with
CSP and Sub-ABLD with default hyperparameters. Two BCI competition datasets
are selected to evaluate the performance.

The remainder content of this article is as follows: Sect. 2 describes the competition
datasets used in this paper. Section3 introduces the proposedmethod. Section4 shows
results. Finally, Sect. 5 concludes this study.

2 Description of the Data

In this paper, two competition datasets are used to evaluate the effectiveness of
optimization parameters with PSO in the MI classification (Fig. 1).

(1) Dataset1 (BCI competition IV datasets I): The dataset was recorded from 4
healthy subjects (named as a, b, f, and g) at 59 electrodes with sampling rate
100Hz, during right hand, left hand, and foot MI tasks with a total of 200 trials
that two classes of three tasks would be selected (Zhang et al., 2012). Each trial
startedwith left, right, or bottomvisual cues on the screen for a duration of 4 s and
the subject completed the motor imagery tasks. More details about this dataset
can be seen in the following website: http://www.bbci.de/competition/IV/.

http://www.bbci.de/competition/IV/
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Fig. 1 Flow diagram of optimizing hyperparameters of Sub-ABLD with PSO

(2) Dataset2 (BCI competition III datasets IVa): The dataset was recorded from 5
healthy subjects (aa, al, av, aw, and ay) at 118 electrodes with down-sampling
rate 100Hz, during right hand and foot MI tasks with a total of 280 trials. The
visual cue for each trial lasts for 3.5 s, in which only the right hand and right foot
cues were displayed in the competition (Novi et al., 2007). More information
about this dataset can be found from the following website: http://www.bbci.de/
competition/iii/.

3 Method

3.1 Data Processing

For two datasets, starting from 0.5 to 2.5 s of EEG segment was selected from each
trial (Song & Epps, 2007). The EEG data were third-order band-pass filtered with
Butterworth band-pass filter of 8–30 Hz in this study (Sun et al., 2010).

http://www.bbci.de/competition/iii/
http://www.bbci.de/competition/iii/
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3.2 Sub-Alpha-Beta Log-Det Divergences

Sub-ABLD is an improved method of CSP algorithm. Its main purpose is to extract
d expected spatial filters to reduce the impact of outliers contained in the EEG
data on feature extraction. It is mainly divided into the following two steps. First,
the discriminant subspace of the spatial filters is obtained by a robust method, and
then, the EEG signal is filtered by the spatial filter obtained by discriminating the
subspace. In the second step, the features are extracted with CSP algorithm. The
input parameters of Sub-ABLD algorithm are the covariance matricesMj, Nj of two
types of samples, hyperparameters α, β, η and the number of filters. The process of
obtaining the final spatial filter matrix is as follows:

(1) Compute the prior probability p(c1), p(c2) and the average covariance matrix
M , N of each class.

(2) Compute the average covariance matrix Cov(x) of the population (all types of
stimuli) and perform eigenvalue decomposition on it.

Cov(x) = p(c1)M + p(c2)N (1)

Cov(x) = U1�UT
1 (2)

(3) Compute the whitening matrix T :

T = �− 1
2UT

1 (3)

(4) The whitening conversion process is performed on the covariance matrix of
two types of samples and the average covariance matrix of each class to obtain
M̂j, N̂j, M̂ , N̂ .

(5) Compute scaling parameters k:

k =

⎧
⎪⎨

⎪⎩

kinf + ε for kinf ≥ 1

1 for 1 ∈ (kinf, ksup)

ksup − ε for kstup ≤ 1

(4)

(6) Initialize the iteration counter, i = 0;
(7) Initialize the semi-orthogonalization matrix �(i) = In×d , where n refers to the

size of the average covariance matrix of each class, and d is the number of
filters;

(8) Compute robust criterion:
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f (�(i)) = η(p(c1)
1

N1
�

N1
j=1D

(α,β)

AB ((�(i))
T
N̂j(�

(i))||k(�(i))
T
N̂ (�(i))))

− η(p(c1)
1

N1
�

N1
j=1D

(α,β)

AB ((�(i))
T
M̂j(�

(i))||k(�(i))
T
M̂ (�(i))))

+ D(α,β)

AB ((�(i))
T
M̂ (�(i))||k(�(i))

T
N̂ (�(i))) (5)

(9) Compute gradients ∇f (�(i)), tangent matrices �i+1
tg , and projection matrices

�i+1.

∇f (�(i)) = ∂f (�(i))

∂�(i)
− �(i) ∂f (�

(i))

∂�(i)
�(i) (6)

1.�i+1
tg = �i + μ(i)∇f(�(i)) (7)

�i+1 = NLN
T
R (8)

[QL,D,QR] = svd(�i+1
tg , 0) (9)

(10) Increase the iteration counter and determine if it converges, otherwise return
to step 8.

(11) Select the maximum/minimum eigenvector of ((�(imax))T M̂�(imax), (�(imax))T N̂
�(imax)).

(12) Obtain the final spatial filter matrix WT :

WT = VT (�i(max) )TT (10)

After obtaining the final spatial filter matrix WT , the raw EEG data obtained by
the time window interception is projected through the spatial filter matrix, and two
new types of EEG data can be obtained by constructing corresponding features.

The total number d of expected spatial filters is 6 in this study.

3.3 PSO

PSO is a group intelligent optimization algorithm proposed byKennedy and Eberhart
to imitate bird foraging, which has been successfully applied to various optimization
problems (Poli et al., 2007). The basic principle is to randomly initialize a group
containing N particles in a three-dimensional space, each of which is a feasible
solution to the optimization parameters. Mark the ith particle as xi = (xi1, xi2, xi3),
bring it into the evaluation function, and determine the individual optimal position
pti = (xti1, x

t
i2, x

t
i3) and global optimal position ptg = (xtg1, x

t
g2, x

t
g3). At the same time

recording the velocity of the ith particle vi = (vi1, vi2, vi3), its position and velocity
update formula is as follows:
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vt+1
id = wvtid + c1r1(p

t
id − xtid ) + c2r2(p

t
gd − xtid ) (11)

xt+1
id = xtid + vt+1

id (12)

where w (w = 0.1) is the inertia weight proposed by Shi and Eberhart; the size of w
affects the ability of the particle global and local search; r1 and r2 are random con-
stants in (0, 1); and c1(c1 = 1.2) and c2(c2 = 1.2) are learning factors. The velocity
of particles range from −1 to 1 and the range of position is (−2, 2).

4 Results

Subject f of dataset 1 and subject av of dataset 2 are respectively selected, and feature
distributions of CSP, Sub-ABLD, and PSO-Sub-ABLD are compared as shown in
Fig. 2. From the figure, it can be observed clearly that features extracted by PSO-
Sub-ABLD are easier to classify than two other methods for two subjects.

Tables1 and 2 present classification accuracy derived by CSP, Sub-ABLD, and
PSO-Sub-ABLD for all participants with test set of two datasets. For nine subjects
selected in two datasets, PSO-Sub-ABLD improves the classification accuracy com-
pared with two other algorithms and shows good generalization performance.

Table1 summarizes that PSO-Sub-ABLD shows better classification accuracy for
four subjects compared to two other methods. The average classification accuracy

Fig. 2 Feature distribution (subject f of dataset 1 and subject av of dataset 2) of each class extracted
by CSP, Sub-ABLD, and PSO-Sub-ABLD (cyan diamond represents the features of left hands, and
magenta circle represents the features of right hands)
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Table 1 Classification accuracy comparison of CSP, Sub-ABLD (α = β = 1.25, η = 0.25), and
PSO-Sub-ABLD (α = 0.9, β = 1.7, η = 0.5) using BCI competition IV dataset I

Subject Dataset 1 (BCI computation IV dataset I)

CSP (%) Sub-ABLD (%) PSO-Sub-ABLD (%)

a 61.5 68 78

b 51 54.5 56.5

f 45 58 74.5

g 91 88 94.5

Mean 62.1 67.1 75.9

STd 17.7 15 13.6

Table 2 Classification accuracy comparison of CSP, Sub-ABLD (α = β = 2, η = 0.5), and PSO-
Sub-ABLD (α = 0.6, β = 1.9, η = 1.4) using BCI competition III dataset IVa

Subject Dataset 2 (BCI competition III dataset IVa)

CSP (%) Sub-ABLD (%) PSO-Sub-ABLD (%)

aa 78.2 71.4 83.6

al 96.4 96.8 97.5

av 47.9 67.5 70.4

aw 86.0 82.9 90.4

ay 88.2 89.6 92.9

Mean 79.3 81.6 87.0

STd 16.8 12.2 10.5

obtained by PSO-Sub-ABLD (α = 0.5, β = 0.9, η = 1.7) is 75.9%, 13.8% higher
than CSP and 8.8% higher than Sub-ABLD, respectively.

Table2 shows classification accuracy for five subjects of dataset 2. The average
classification accuracy obtained by PSO-Sub-ABLD (α = 1.4, β = 0.6, η = 1.9) is
87%, 7.7% higher than CSP and 5.4% higher than Sub-ABLD, respectively.

5 Conclusion

In this paper, PSO-Sub-ABLD has better robustness to outliers than CSP and Sub-
ABLD to get better classification accuracy. Since default hyperparameters of Sub-
ABLD result in poor generalization ability for different datasets, this study pro-
poses PSO-Sub-ABLD algorithm, and it shows better generalization performance.
In summary, compared with CSP and Sub-ABLD, PSO-Sub-ABLD obtains better
classification performance based on the same classifier.
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In the future work, one of the explorations is to combine channel selection and
feature selection with PSO-Sub-ABLD to achieve better performance and to apply
it to online systems.
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Stochasticity Versus Determinacy
in Neurodynamics—And the Questions
of the “Free Will”

Hans Albert Braun

Abstract “We do not do what we want, we want what we do.” This is the logical
consequence if one accepts that all our decisions are based on processes of our brain
under deterministic natural laws. In recent years, this idea has received new nour-
ishment through spectacular neurophysiological experiments demonstrating that the
subjective experience of decision-making is preceded by unconscious brain activity.
In the following, these experiments and especially their conclusions will critically
be examined and contrasted with other experiments that seriously question one of
the foundations of the above assertion, the determinacy of neuronal information
processing.

1 Introduction

Attacks against the free will have been known since ancient times. Nowadays,
such attacks do not necessarily come from professional philosophers. Rather, it is
renowned representatives of the neurosciences who have been repeatedly question-
ing the free will of humans for a number of years. Of course, it is not a surprise that
the neuroscientists contribute to this discussion. In fact, it is their task to investigate
the functions of the nervous system which also includes the question of the neuronal
basis of higher mental and cognitive processes and their disorders as, for example,
manifested in psychiatric diseases. A fundamental problem, which one inevitably
encounters in such investigations, concerns the question of the connection between
mind and matter, known as body-mind problem (Bateson, 1970). It is about the ques-
tion in which way mental and spiritual concepts like fear and joy, aggression and
love, but also thoughts—and even a will—are connected with physical processes that
can be grasped materially, at least in principle. The generally accepted presupposi-
tion is, also of all experimentally based attacks against the free will, that neuronal
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processes are at least a necessary (although not necessarily a sufficient) condition of
cognitive functions. The possibility of free decisions could actually be regarded as an
empirically well-proven fact if there would not be the assumption that these every-
day experiences of free will are nothing more than an illusion. It is claimed that our
decisions are determined before we even perceive them as our own will. Since these
decisions are made in the brain whose functions are subject to deterministic laws of
nature, they are determined. As far as determinacy is concerned, it has by no means
been brought into play only recently by the neurosciences. One does not necessarily
need the experimental findings from brain research if one wants to argue against free
will assuming a universal determinism. The validity and above all the relevance of
such an absolute determinism have been discussed for a long time but in specific
parts, e.g., concerning Laplace’s demon, ascribed to metaphysics (Russell, 1967).
Often, the discussion between researchers from different fields is still characterized
by many misunderstandings and mutual ignorance (Kotchoubey et al., 2016).

2 Determinacy

From the viewpoint of a neuroscientist, it is, of course, near at hand to argue from a
neurophysiological basis. The following arguments against determinism refer to basic
neurophysiological findings of which also neuroscientific advocates of determinism
should be aware. These are experimental measurements of the opening and closing
ion channels (Hille, 1978) as they have been carried out hundreds or even thousands
of times since the introduction of the patch-clamp technique (Neher & Sakmann,
1976) on a wide variety of ion channels of different neurons. The neuroscientific
justification of determinism refers to experiments on a completely different level
which first are briefly compiled below subjected to critical examination.

2.1 Attacking the Idea of the Free Will

What has neuroscience contributed to the discussion about freedom of will with new,
additional arguments? In experimental terms, it is actually only the proof of temporal
delays in the conscious perception of a free decision in relation to measurable signals
from the brain that can be associated with this decision. Such time delays were first
proven in the famous Libet experiments with measurements of the electroencephalo-
gram (EEG) (Libet et al., 1993). Even more significant time delays were recently
demonstrated in a slightly modified experimental setup using more modern methods
of functional magnetic resonance imaging (fMRI) (Soon et al., 2008).

If one assumes that arbitrary motor activity is controlled by the brain,
temporal delays between brain activity and motor actions must be expected, as they
have already been proven earlier in the form of readiness potentials (Kornhuber
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& Deecke, 1965). The activity will spread over the motor cortex and ganglia, the
spinal cord and then into the peripheral motor nerve to the innervated muscle with
corresponding time delays.

The question is: How is such an arbitrary, non-reflexive movement initiated, i.e.,
how does the will to move arise and can a neuronal correlate be found for this?
Now, indeed, one seems to have actually found such a neuronal correlate of will
formation, which can be measured in the form of EEG or fMRI signals. This is
spectacular, but not surprising, at least for a neurophysiologist. The really surprising
thing was that the signals of will formation can be seen in the brain much earlier
than the subject even becomes aware of the process of will formation. In the Libet
experiments (Heisenberg, 2009; Libet et al., 1993), these were only a few hundred
milliseconds, which left room for doubting the results due to possible measurement
errors. Since the fMRI measurements of the Haynes group (Soon et al., 2008) this is
hardly possible anymore. The so-called BOLD signals in the fMRI appear up to 7 s
(!) earlier than the subject realizes that he/she has decided to press a certain button.
It is even possible to predict, albeit with considerable uncertainty, which button the
subject will choose.

Under the assumption that all events in this world are based on causal connections,
one can argue that physical-chemical laws of nature determine the will of decision-
making, which only later becomes conscious to us—and which we then erroneously
regard as the result of our own free will.

2.2 Attempts to Save the Free Will

For most people, free will only as an illusion is not a particularly pleasant idea
(Smith, 2011). All kinds of objections were raised against the experiments and their
interpretation with both philosophically and neurobiologically justified counterar-
guments. From a neurophysiological point of view, the following main arguments
are put forward against the interpretation of the above-mentioned experiments as
signs of deterministic will formation: (1) The experiments are still far from rep-
resenting real and usually far more complex situations of will formation. (2) The
experiments show no more than that unconscious processes contribute to our will
formation, which will not surprise anyone. The crucial factor is that we can reflect on
our decisions (Heisenberg, 2009). Both lines of arguments thus refer to reflection as
a necessary component of more complex processes of decision-making. But this is
not necessarily the end of determinism. The above-mentioned experiments are just a
beginning. Who knows whether further improved experimental techniques will soon
be able to detect more complex processes of will formation in neurophysiological
experiments.

The authors of the fMRI studies (Soon et al., 2008) are rather cautious and speak,
at least in their scientific publications, only of unconscious determinants of will
formation. Also Libet himself has tried to distance himself somewhat from his con-
clusions, but not always with convincing arguments. If he and several others grant
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a veto right as a signature of a free will (Libet, 2005) one may ask where this veto
shall come from. Is the decision to veto against a previous decision superior to brain
activity? If not, why should the decision to veto be free while the previous decision
is determined?

Also the Haynes’ group came back to the veto issue demonstrating that pressing
a button can be prevented when the beforehand already detected readiness potential
lightens a red lamp (Schultze-Kraft et al., 2016). However, this veto works only
outside a time window of 200 ms—which is in the range or even beyond the reaction
time on a light signal.

Another repeatedly used argumentation to save the free will as, e.g., discussed in
“The Volitional Brain” (Libet et al., 1999) and also addressed in Stephen M. Koss-
lyn’s foreword refers to deterministic chaos as a possible source of fundamental
uncertainties in contrast to a completely determined world. However, one should
keep in mind that this is “deterministic” chaos. Also such a chaotic system, although
unpredictable for the longer-term run, reacts in a fully determined way, even when
it is disturbed by a signal when this comes from a deterministic world. Real uncer-
tainties can only be introduced by really uncertain mechanisms, i.e., by stochasticity.
This is the point to come back to another, already well-known source of neuronal
stochasticity, the opening and closing of ion channels.

3 Stochasticity

Indeed, life seems to be full of uncertainty and stochasticity. The problem is that
one never can be sure whether random events are really random or just appear to be
random because of the manifold of unknown and uncontrollable influences which
may lead to a seemingly random event, eventually even quite unlikely to happen.

In neurophysiology, the EEG belongs probably to most unpredictable signals,
easy to explain by the billions of neurons that are involved. However, even the spike
trains of a single neuron show unpredictable fluctuations, and a given neuron never
reacts in exactly the same way even on an exactly defined stimulus what can be
addressed to the manifold of randomly opening and closing ion channels. However,
to what uncertainties can single-channel openings and closings be related? Here, we
come to a point where nothing more than principle uncertainties from the physical
world is needed.

3.1 Ion Channels—Harnessing Stochasticity

Already at the beginning of the 1950s, Hodgkin and Huxley introduced so-called rate
constants in their groundbreakingworkon themathematical simulationof their exper-
imental registrations of membrane potentials and ion currents (Hodgkin & Huxley,
1952), thus implicitly anticipating the statistical transition probabilities of the open-
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ings and closings of ion channels. Later, by the introduction of the patch-clamp
technique with the possibility to measure single channels, the inherent stochasticity
of ion channel activation could be experimentally proven (Neher & Sakmann, 1976).
Nowadays, knowledge of these interrelationships is basic knowledge of neurophys-
iology, which should not only be mastered by all neuroscientists, but also by all
students of the life sciences. A tutorial on the analysis of patch-clamp data (Alvarez
et al., 2002) begins with the sentence: “Ion channels open and close in a stochastic
fashion, following the laws of probability. However, distinct from tossing a coin or a
die, the probability of finding the channel closed or open is not a fixed number but can
be modified (i.e., we can cheat) by some external stimulus, such as the voltage.” The
figure which here is shown to illustrate these connections is also part of a teaching
software (see http://www.virtual-physiology.com, SimNeuron, Applets). It shows
the opening and closing of an ion channel as a function of membrane voltage, sim-
ulated with random numbers corresponding to the rate constants already postulated
by Hodgkin and Huxley.

The upper diagram Fig. 1a shows the Boltzmann function, which in this exam-
ple reflects the voltage-dependent activation of an ionic current. In addition, two
exponential functions are drawn, which represent the transition probabilities (rate
constants) from the open to the closed and from the closed to the open state. Their
parameters are chosen so that they explicitly lead to the Boltzmann function accord-
ing to the equations given by Hodgkin and Huxley (Holmgren Hopkins et al., 2018)
Up to this point, the whole system is still completely deterministic.

The dots in Fig. 1 indicate the percentage of the “open” states of a single channel
when its transitions are simulated by random transitions according over a certain
period of time as shown in Fig. 1b for selected membrane potentials. The transition
probabilities are chosen according to the exponential function from Fig. 1a. Accord-
ingly, the values of the open states follow the course of the Boltzmann function quite
well—however with a certain dispersion. It is only by chance when these points
exactly hit the Boltzmann function. The scattering becomes smaller the more one
approaches a permanently open or permanently closed state. Also with a longer sim-
ulation time or if you sum up over a larger number of ion channels, the scatter will of
course be smaller. This is basic statistics. Figure1c shows the fluctuations of a total
current, summed up over 100 and 1000 ion channels. Stochasticity is manifested as
noise. All attempts elucidating certain rules of channel transitions in a given state
have so far failed. This type of randomness does not need quantum uncertainty. Ther-
modynamics, i.e., Brownian motion, is sufficient to introduce principle uncertainty
already at the lowest level of neurodynamics which is additionally supported by the
pronounced temperature sensitivity of ion channel transitions (Dilger et al., 1991)
and further underlined by the fact that ion channel activation can best be fitted by
Boltzmann functions.

http://www.virtual-physiology.com
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Fig. 1 a Curve of ion
channel activation
probability (p) determined
by the exponential activation
and inactivation curves α and
β also providing the random
numbers taken for computer
simulations to calculate the
open states at different
voltages (dots). Examples
are shown in (b) and (c).
Fluctuations of open states
(channel noise) are shown for
the half activation potential
on the basis of 100 and 1000
ion channels, respectively

3.2 Propagation of Ion Channel Stochasticity Toward Higher
Functional Levels

Quantumuncertainty from the lowest level of physicsmay hardly have amacroscopic
effect in the real world. One may expect that also ion channel stochasticity from the
lowest level of neuronal functions is quickly averaged out toward higher functional
levels. This can happen, but it can also be just the opposite, a dramatic amplification
of even microscopic randomness. The decisive components for the amplification of
randomness are the nonlinearities on which biological functions are built up. Co-
operative effects of noise and nonlinear dynamics can lead to particular phenomena
which would never be expected from a purely deterministic system, especially in the
multiply meshed nonlinear feedback loops of which biological systems typically are
composed.

Such co-operative effects of randomness and nonlinearities cannot only be shown
by computer simulations with realistically implemented channel noise (Tchaptchet
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et al., 2013) but are also manifested in a manifold of experimental data. Most well
known are probably the “stochastic resonance” phenomena (Wiesenfeld & Moss,
1995), which can be detected in biology up to the levels of behavioral reactions
(Russell et al., 1999). There are even neuronal transduction systems of exquisite
sensitivity, the shark electroreceptors, that would not function at all without the
interaction of nonlinear dynamics and noise (Braun et al., 1994).

At higher functional levels, it is becoming more and more difficult to decide
whether an observed randomness is not simply due to the manifold of unknown
influences. At the level of neuronal networks, synaptic transmission is often consid-
ered as a possible source of stochasticity arising from the unmanageable high number
of transmitter molecules that are released (Heisenberg, 2009). This will be difficult
to prove while one should not forget that also synaptic transmission is controlled by
ion channel openings and closing at several points at the pre- and post-synaptic site
(Postnova et al., 2010). Hence, there is principally no need to search for additional
sources of randomness. Ion channel stochasticity can still be sufficient to decide
whether pre-synaptic action potential can excite the postsynaptic neuron or not.

Indeed, stochasticity can play an important role in various physiological func-
tions. For example, neuronal network synchronization should never be complete and
always temporary. Thismeans that the networks should also be able to go out of a syn-
chronized state for which a disturbance is required, e.g., noise (Holmgren Hopkins
et al., 2018; Postnova et al., 2009).

4 Summary and Conclusions

Neurophysiological experiments pretending to demonstrate that human decision is
pre-determined by brain functions based on deterministic natural laws, suggesting
that free will is an illusion, have critically been examined coming to the conclusion
that these data cannot add significant new arguments against a free will. Several
attempts to save the free will on basis of similar experiments appear even less con-
vincing, partly exhibiting misunderstandings of fundamental concepts of theory of
science. These experiments have been confronted with basic neurophysiological
data demonstrating that stochasticity comes into play already at the lowest level of
neuronal information processing, the opening and closing of ion channels which,
transformed into noise, as the temporal aspect of stochasticity, can propagate and
even can be enhanced toward higher functional levels of information processing.
The background lies in co-operative effects of noise with the system’s nonlinearities
which seem to be much more frequent and pronounced in the animated than in the
physical world.

Stochasticity, of course, is not a proof of a freewill but determinism is, for sure, not
a good argument against. Anyhow, neuronal stochasticity may be a main prerequisite
to keeping the brain in a flexible state, also for decision-making. Stochasticity allows
to “generate many possible solutions to environmental challenges” (Noble & Noble,
2018).



236 H. A. Braun

It seems to be omnipresent in biological systems playing a significant role also in
context with other functions, e.g., in the immune system down to epigenetics (Noble
& Noble, 2017). This does not need a specific form of biological stochasticity. The
background is assumable of general, physical nature. Life is only compatible with
temperatures far above absolute zero where molecules have kinetic energy which
generates random movements, particularly well harnessed by the nonlinearities of
biological function (Noble, 2017). It seems again to be the combination of chance
and necessity (Monod, 1970) determining the functions of life.
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Temperature Effects on Action Potential
Propagation in Myelinated Axons

Xinlin Song, Hengtong Wang, Yong Chen, and Yingcheng Lai

Abstract Temperature is the important factor of the activity of the biological sys-
tem. Especially, temperature affects the action potential propagation along themyeli-
nated axon. We use Hogking–Huxley-like cortical model as the node of Ravier and
the internode conductance κ as the characteristic of the myelinated axon to describe
the action potential propagation under temperature. The critical κ could exit to make
the action potential propagate along the myelinated axon and rise with increasing
temperature. Thus, the optimum of temperature exiting with different internode con-
ductance κ is investigated to show that the information propagating on the neural
system has the suitable temperature.
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The Spontaneous Spiking in Up
and Down Oscillations and Its
Energy Feature

Xuying Xu, Yihong Wang, and Rubin Wang

Abstract Up and down oscillations of membrane potentials are viewed as one kind
of significant spontaneous periodic activities. This kind of oscillation always shows
that membrane potentials make spontaneous transitions between two preferred states
called up and down states, which characterized by some features as follows in level
of membrane potentials: bistability, directivity, spontaneity, synchronicity and spon-
taneous spikings. Here, we focus on the spontaneous spiking and its energy feature.
We studied the influence of the intrinsic characteristics and synaptic transmission of
spontaneous spiking during up and down activities. The simulated results showed
that persistent sodium current was critical to spontaneous fluctuation without any
stimulus, while the fast sodium current had the dominant position in generation of
spontaneous neural firing. Considering the noise, we found the role of persistent
sodium current was partially replaced by oscillation of noise. And energy consump-
tion of neurons in spontaneous activities also shows bistable feature and bimodal
distribution as same as the membrane potential, which indicated that the energy
consumption can encode up and down states in this kind of activities.
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Dynamic Neural Interactions Revealed
by the State-Space Ising Model

Hideaki Shimazaki

Abstract Stimulus information and cognitive states of an animal are represented
by correlated population activity of neurons. The maximum entropy method pro-
vides a principled way to describe the correlated population activity using much less
parameters than the number of possible activity patterns. This method successfully
explained stationary spiking activity of neural populations such as in vitro retinal
ganglion cells. Modeling activity of cortical circuitries in vivo, however, has been
challenging because both the spike rates and interactions among neurons can change
according to sensory stimulation, behavior, or an internal state of the brain. To cap-
ture the non-stationary interactions among neurons, we augmented the maximum
entropy model (Ising model) using a state-space modeling framework, which we call
the state-space Ising model. We will demonstrate that applications of the state-space
Ising model to activity of cortical neurons reveal dynamic neural interactions, and
how they contribute to sparseness and fluctuation of the population activity as well
as stimulus coding.
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Initial Topology in Hierarchically
Organized Evolvable Neural Networks
Determines the Emergence of Synfire
Chains

Paolo Masulli and Alessandro E. P. Villa

Abstract We investigate the effects of network topology on the dynamical activity
of a hierarchically organized network of simulated spiking neurons. With a fixed
basic two-by-two grid structure of processing modules each composed by almost
6000 leaky integrate-and-fire neurons and different connectivity schemes in between
these modules, we study how the activation and the biologically inspired processes
of plasticity on the network shape its topology using invariants based on algebro-
topological constructions. By definition, a clique is a fully connected directed sub-
network that means there is one source and one sink in the subnetwork. We define
‘k-clique hub cells’ for a positive integer k any cell which is sink and source cell of
at least k 3-cliques. We show that there is a statistically different distribution of in-
and out-degrees between clique hubs and other cells. Furthermore, we show that by
identifying ‘clique hub cells’ we can find synfire chains that are involved in spatio-
temporal firing patterns. Hence, the results suggest a link exists between an initial
topological structure characterized by subnetworks cliques and a functional connec-
tivity emerging at a later stage as the outcome of synaptic plasticity mechanisms.
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Nonlinear Neural Dynamics
of Mutual Inhibition Circuit
in a Real-Life/Computer Model
Hybrid System

Naoki Kogo, Felix B. Kern, Thomas Nowotny, Raymond van Ee,
Takeshi Aihara, and Richard van Wezel

Abstract To process ambiguous and noisy images, often experienced in our daily
life, the neural system has to actively select and organize the input signals. For a per-
cept to emerge it has been assumed that there are selection processes of competing
neural pools. Theoretical research assumed amutually inhibiting neural circuit under-
lying the competition and successfully modeled bi-stable perception that occurs in
response to ambiguous images. We developed an experimental system to record two
real life-pyramidal neurons (in vitro) connected bymodeled mutual inhibition circuit
(in silica). We show that simultaneous stimulations of the two pyramidal neurons in
this hybrid system evoked bi-stable activity. Furthermore, the effect of adding noise
and changing stimulus strength showed similar characteristics known from bi-stable
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perception, suggesting a fundamental role of the non-linear dynamics in perceptual
organization.



A CNN-Inspired Model for Degradation
Mechanism of Retina to V1

Haixin Zhong and Rubin Wang

Abstract The visual system is under heated investigation in the field of neuroscience
and computer vision (CV). In alignment with the implementation of some large brain
projects across the world such as those in China, Europe, the USA and Japan, the
intersection of visual system in these two fields has been promoted. Therefore, as the
most important source of human perception towards the objective world, research on
mechanisms of the visual information processing bears great significance for explor-
ing biological vision and developing CV. However, there is a scarcity of soundly
established and widely accepted theory that can be used to explain the mechanisms.
Specifically, what remains unknown is the degradation mechanism of visual infor-
mation data during the topological mapping between retina and V1. Hence, in view
of the characteristics of convolutional neural network (CNN), this paper draws on
the concept of convolution algorithm to propose an edge detection model based on
retina to V1 (EDMRV1), which is built on the pathway of photoreceptors-ganglion
cells-LGN-V1 in the functional channel of image features detection. The results not
only match the neurobiological experimental data but also show that the image edge
features of visual information are detected by the convolution algorithm according to
the function of synaptic plasticity, when visual signals are hierarchically processed
from low-level to high-level in visual cortex. Findings are expected to lay a solid
foundation for revealing the mechanisms of the visual information processing in
future research. In CV, applying the model to the scenes with different brightness
has a better performance on the edge features detection than that in the traditional
algorithms, providing an intelligent basis for breakthroughs. This research also opens
up opportunities for the integration of CV and neuroscience.
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Mathematical Modelling for Functional
Differentiation

Ichiro Tsuda

Abstract One of the most striking characteristics of the developing brain is func-
tional differentiation, while emerging interactions develop between networking dif-
ferentiated areas. To clarify the neural mechanism of functional differentiation, we
constructed a mathematical model of self-organization with constraints. By cast-
ing different constraints, we investigated the mathematical structures of functional
differentiation and obtained the following specific behaviors. (1) We observed the
genesis of a neuron-like unit in the developmental process of networking dynamical
systems. (2) We observed the genesis of neuron-like units that respond specifically
to visual and auditory stimuli, respectively. (3) We observed the genesis of func-
tional modules from randomly uniform networks of oscillations, where the modular
organization can be interpreted as the differentiation of a higher cognitive area and
a lower motor area interacting with the body. In all cases, the appearance of chaos
and chaotic itinerancy in the whole network system brings about the generation of
functional elements via an acceleration of symmetry breaking.
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The Maximum Information Principle
of Place Cell Activity

Yihong Wang, Xuying Xu, and Rubin Wang

Abstract Spatial cognitive function is crucial for the animal’s survival. However,
the formation of place codes in different dimensional spaces cannot be uniformly
explained. In this paper, a constrained optimization model based on information the-
ory is constructed to explain the formation of place cell activity in different dimen-
sional spaces across species. The question is proposed as, using limited amount of
neural energy, how to design the place field to obtain the most efficient spatial infor-
mation representation? Variational techniques are applied and the results suggest
that the place field will comply with a certain centralized distribution (normally is
Gaussian form) automatically to convey the largest amount spatial information per
spike, under the constraint of limited neural energy. The animal’s natural habitat
property and locomotion experience statistics also affected the spatial codes. These
findings not only answer whether the spatial codes of place cell are isotropic in differ-
ent dimensional spaces, but also provide an insight about the maximum information
principle of the place cell activity.
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Neural Coding of Reward Value in Richly
Modulated Spike Patterns in Monkey
Ventrolateral Prefrontal Cortex

Rossella Falcone, Mariko McDougall, David Weintraub, Tsuyoshi Setogawa,
and Barry Richmond

Abstract Monkeys with lesions of the lateral prefrontal cortex lose the ability to
integrate the reward value information across multiple domains. We recorded neu-
ronal responses from the area 9/46 of ventrolateral prefrontal cortex (vlPFC) of two
monkeys while they were performing a task in which in each trial was offered a
reward. The reward value, signaled through its association with a visual cue, was
constructed by combining one of 3 reward sizes (2, 4 or 6 drops of water) with one
of 3 discounting delays (1, 5 or 10 s after the choice). The monkeys accepted or
refused the offer by releasing the bar after the appearance of the go signal. They
were increasingly likely to accept offers as the reward became larger and the delay
became shorter. We observed that the reward values were well described by a sim-
ple reinforcement learning model for the discounted value of the rewards. In the
period soon after the visual cue was presented to the animal, 69% (117/170) of the
neurons modulated their firing rate according to the reward size and/or delay. We
asked whether vlPFC neurons modulated their activity according to the value that the
animal assigned to each offer. The estimated discounted values from the reinforce-
ment model from the behavior were used to correlate with the mean firing rate for
each offer, for each neuron. We found that 35% (41/117) of the neurons increased or
reduced their firing rate linearly in relation to the discounted value measured from
the behavior. The other neurons clearly showedmodulation according to both reward
size and delay, very few neurons were sensitive to only one factor. Some vlPFC neu-
rons had a strong pulse after value cue appeared, others showed a strong pause, and
still others showed three phase responses (small pulse followed by a pause followed
by a strong pulse). Despite these striking patterns of responses, principal component
analysis showed that the value-related information was encoded in the spike count.
This analysis showed, however, that the period with the strong value related coding
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was restricted to a window that began and ended during cue’s presence before the
imperative target (a small yellow or purple spot) appeared.



Comparing Working Memory in Old
World Monkeys and Humans

Barry J. Richmond

Abstract There are two types of neural phenomena that have been called working
memory. The first is a selective, attention demanding process. In this first process,
until the attention is interrupted, the memory trace has high fidelity over time. The
second is a non-selective, non-attention demanding process where all events seem
to form a memory traces each decaying with time. The first process is generally
thought of as true working memory in humans. We started out to study the substrates
of these working memory types in monkeys. To our surprise (frustration?) we found
that monkeys rely primarily on the second type of working memory even when put
in situations where it seems most efficacious to use the first type. The monkeys
make large numbers of false positive responses related to the time in the past when
a visual stimulus was presented in a sequential string of visual distractors. By way
of comparison, humans heavily favor the first type of working memory; they make
almost no false positive responses when asked to remember a single index stimulus.
I will review our results and show how selective damage to different parts of the
monkey brain thought important for supporting normal working memory function,
prefrontal cortex, hippocampus, and different parts of lateral inferior temporal cortex,
selectively interfere with different aspects of workingmemory. For physiologists this
raises a problem: how do we study mechanisms of working memory using monkeys
if monkeys use different strategies to solve working memory tasks?

.
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Evolution of Primate Multilevel Social
Systems: Proboscis Monkey Society as
Complex System

Ikki Matsuda, Ikuma Adachi, and Hiroki Koda

Abstract Great apes like chimpanzees often provide referential models to under-
stand evolutional trajectories of human behaviour, cognition, morphology and social
system as humans and chimpanzees shared a common ancestor only ∼5–7 million
years ago (Mya). However, there are other lesser known non-human primates which
are phylogenetically far to humans, but sharing similar traits with humans in terms of
social system, i.e., multilevel societies. Among primate social systems, themultilevel
society, in which smaller levels of social organization aggregate into larger units, is
one of the most complex, though its origins and function are still poorly understood.
Proboscis monkeys (Nasalis larvatus), one of the rare primate species reported mul-
tilevel social system, belong to the odd-nosed colobines, and are a large, sexually
dimorphic and primarily arboreal species. We will overview what/how multilevel
society in proboscis monkeys and discuss proximate mechanisms maintaining and
the selective factors underlying their social system. Investigation on primate mul-
tilevel social systems would not only provide insights into the evolutionary history
of human social system but also possibility develop our understanding how brain
encodes the spatial position of others in such a complex society.
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Social Network and Collective
Intelligence Under Non-stationary
Uncertain Environment

Aoi Naito, Naoki Masuda, and Tatsuya Kameda

Abstract Collective intelligence in the highly-connected, uncertain world is a topic
of major interests across various social and natural-science disciplines. Here we
report results of a behavioral experiment with a total of 250 human participants and
a computer simulation about emergence of collective intelligence in a non-stationary
uncertain environment.

1. We define “collective intelligence” as an emergent propertywhereby social inter-
action yields group-level performance superior to individual-level performance
on some objectively-definable dimension.

2. Here, we focus on collective performance in a non-stationary uncertain environ-
ment. Specifically, we are interested in how well a group of people can track
temporal changes in environment, the issue common in social foraging by ani-
mals where resource-levels of several patches may change over time.

3. We implemented a two-armed bandit (2AB) task in a laboratory, where the
expected rewards of the two options were changing over time. We then observed
how a group of 10 people could track the changes through social interaction
in a centralized or decentralized network. Participants could learn how their
neighbors in the network had decided in a preceding round.
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4. Results confirmed that participants in the social networks could track the environ-
mental changes more precisely than when working alone. Yet, the overall effect
of network structure was minimum. Participants generally elevated reliance on
individual learning, which reduced the effects of network structure. A computer
simulation, incorporating parameter values from the experiment, showed that this
pattern would be robust across various social network structures. Implications
of these findings for network and social sciences will be discussed.



On the Neurodynamics of Intention,
Decision and Free Will

Hans Liljenström and Azadeh Hassannejad Nazir

Abstract What is the role of consciousness in volition and decision making? Are
our actions fully determined by brain activity preceding our decisions to act, or can
consciousness instead affect the brain activity leading to action? This has been much
debated ever since the famous experiments by Benjamin Libet in the 1980s, where
the current most common interpretation is that conscious free will is an illusion.
Intentionality, which can be seen as a precursor to conscious (free) will, is central
in Freeman neurodynamics of the action-perception cycle, where intention would
precede our conscious decision to act. Consciousness may be seen as an emergent
property of the neural activity of the brain, but in order for consciousness to play
any role in our (choice of) actions, we must also consider downward causation in the
nervous system. In addition, there may be circular causation in the action-perception
cycle, and hence it is crucial to study causal pathways in the brain during volition. In
this presentation, I will describe a newly started project, where neuroscience, compu-
tational modeling and philosophy will be applied to elucidate the ancient enigma of
free will. Computational modeling of brain parts involved in intention, decision, and
action will complement experimental studies with EEG, MEG and fMRI to explore
and map the causal relationships. Already, we have developed a neurocomputational
model of the neurodynamics involved in decision making, involving both emotional
and rational processes. In addition to individual experiential decision making, we
also study the influence of the social and natural environment on human decisions.
Our results so far confirm the notion that if decisions have to be made fast, emotional
processes and aspects dominate, while rational processes are more time consuming
and may result in a delayed decision. From some recent experiments in our consor-
tium it appears that the readiness potential found in Libet’s experimentswith arbitrary
choices are not found for more deliberate choices, where free will is more likely to
come into play.
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Information Processing and Transmission
in the Cerebral Cortex: Short Papers



Representation of Real and Imagined
Actions in the Early Visual Cortex

Simona Monaco, Giulia Malfatti, Jody C. Culham, Luigi Cattaneo,
and Luca Turella

Abstract Recent evidence shows that the role of the early visual cortex (EVC)
goes beyond visual processing and into higher cognitive functions (Roelfsema and
de Lange in Annu. Rev. Vis. Sci. 2:131–151, 2016). Further, neuroimaging results
indicate that action intention can be predicted based on the activity pattern in the
EVC (Gallivan et al. in Cereb. Cortex 29:4662–4678, 2019; Gutteling et al. in J.
Neurosci. 35:6472–6480, 2015). Could it just be imagery? Further, can we decode
action intention in the EVC based on activity patterns elicited by motor imagery,
and vice versa? To answer this question, we explored whether areas implicated in
hand actions and imagery tasks have a shared representation for planning and imag-
ining hand movements. We used a slow event-related functional magnetic resonance
imaging (fMRI) paradigm to measure the BOLD signal while participants (N = 16)
performed or imagined performing actions with the right dominant hand towards
an object, which consisted of a small shape attached on a large shape. The actions
included grasping the large or small shape, and reaching to the center of the object
while fixating a point above the object. At the beginning of each trial, an auditory
cue instructed participants about the task (Imagery,Movement) and the action (Grasp
large, Grasp small, Reach) to be performed at the end of the trial. After a 10-s delay,
which included a planning phase in Movement trials, a go cue prompted the partic-
ipants to perform or imagine performing the action (Go phase). We used standard
retinotopicmapping procedures to localize the retinotopic location of the object in the
EVC. Using multi-voxel pattern analysis, we decoded action type based on activity
patterns elicited during the planning phase of real actions (Movement task) as well
as in the Go phase of the Imagery task in the anterior intraparietal sulcus (aIPS) and
in the EVC. In addition, we decoded imagined actions based on the activity pattern
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of planned actions (and vice-versa) in aIPS, but not in EVC. Our results suggest a
shared representation for planning and imagining specific hand movements in aIPS
but not in low-level visual areas. Therefore, planning and imagining actions have
overlapping but not identical neural substrates.
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Quantifying Information Dynamics in
CNS Networks

Paul E. Rapp, Christopher J. Cellucci, and David Darmon

Abstract We present a generically applicable four-step process for quantifying
information movement in complex networks. (1) Construction of local entropy rate
and specific entropy rate. Local entropy rate is a continuous, time-dependent mea-
sure that quantifies the information gained at time t on observing x(t) given the
recent past. There is a statistically responsible procedure for specifying “recent”.
Specific entropy rate is a related time-dependent locally determined measure that
gives an estimate of uncertainty at time t . (2) Construct specific transfer entropy (i.e.,
a time-dependent generalization of epoch-determined transfer entropy) that gives a
state- and time-resolved quantification of the predictive input of a candidate input
system on a candidate output system. (3) Construct a time-dependent network adja-
cency matrix. Specific transfer entropy can be used to populate the adjacency matrix
characterizing a network. In the case of multichannel EEG/MEG recordings, the
nodes are electrodes, and specific transfer entropy quantifies information movement
between electrodes. In this analysis, the adjacencymatrix is real, time-dependent and
asymmetric. Any of a large number of measures commonly used to characterize an
adjacencymatrix can be used. The result�(t) is a scalar function of time. (4) Identify
hierarchical transition chronometries in �(t). The simple directive “find transitions
in �(t)” is unacceptably naive. Dynamically meaningful transitions are timescale-
dependent. In this analysis, �(t) is embedded and the structure of this embedded
object is examined by quadrant scans of the corresponding recurrence diagram. A
hierarchy of transitions can be identified by manipulating the embedding dimension.
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We note that �(t) can serve as the order parameter in phase transition experiments
in which time is the tuning parameter.



Causal Interactions Among Cortical
Regions During Sleep Based on fNIRS
Recordings

Takeshi Abe, Yoshiyuki Asai, Masashi Dotare, Takahide Hayano,
Stephen H. Perrig, Manon Jaquerod, Alessandra Lintas,
and Alessandro E. P. Villa

Abstract Functional connectivity between cerebral cortical regions during natural
sleep has attracted a keen interest from both cognitive and clinical neuroscientists
because of its importance in understanding the default mode network of human
brain. Multiple recordings of functional near-infrared spectroscopy (fNIRS) in sev-
eral sleep phases make it possible for us to detect potential differences of direc-
tional interactions between cortical areas from healthy subjects and patients with
ADHD or sleep disorders. Namely we propose a computational method to estimate
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time-domain Granger causality among fNIRS time series using a Kolmogorov–
Smirnov test based on F-statistics. In order to validate indication of directional inter-
actions, we also apply convergent cross-mapping to the time series as an alternative
approach to causality based on state space reconstruction of dynamical systems.
Comparing the averaged heatmaps of significant causal pairs of regions, we show
that the map of directional interactions varies for each sleep phase, e.g., REM, of
the same subject. The observation suggests an unexplored source for non-invasive
classification benchmark of the above cognitive disorders.



Unsupervised Analysis of EEG Signals
Reveals Common Personality Traits
During an Iterated Ultimatum Game

Qinyue Zheng, Sihao Liu, Alessandro E. P. Villa, and Alessandra Lintas

Abstract Decision-making is considered the most essential phase in volitional act,
and in the “Theory of the Consumer” it is assumed that rational individuals maxi-
mize the consumption of real goods given a limited availability of nominal goods
(money). The ultimatum game (UG) is a two-player game, in which Player_1 (P1)
has a certain sum of money at his disposal and offers a share to Player_2 (P2). If
P2 accepts the proposal, the share is done accordingly, but in case of rejection both
players end up with nothing. If players were selfish income maximizers, P2 should
accept any amount and P1 should offer small amounts Experimental results show that
most humans do not behave like that. What happens in the brain while the game is
ongoing?Decisionsmust be the result of a sort of calculation of costs and benefits that
a human is capable of performing rather quickly. The working hypothesis is that the
dynamics of the interactions within the brain network underpin decision-making and
its investigation can be achieved by recordings brain signals.We study the correlation
between unsupervisedmachine learning analysis of event-related potentials recorded
during the whole decision-making process (N = 50 participants) with personality
traits measured by the HEXACO questionnaire and with the brief mood introspec-
tion scale. Unsupervised feature extraction of ERPS found two very robust clusters
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of participants: (i) associated with emotionality, characteristic of people showing a
greedy behavior; (ii) associated with honesty and agreeableness, for people express-
ing willingness-to-share. This approach is likely to open the way to new studies of
the neural basis of where and how a “decision” is taken in the brain.



Towards the Intelligent Detection and
Multimodal Rehabilitation for Cognitive
Disabilities

Zengguang Hou

Abstract The ageing of the population drives the rapid increase of cognitive disor-
ders, which cause a heavy burden for families and nations. It is important to screen
and interfere with cognitive disorders at the earlier stage, but we are short of afford-
able and effective approaches. In this talk, we will discuss our attempt in the design
of the multi-mode detection and rehabilitation methods for cognitive disorders using
computational intelligence algorithms, wearable devices and rehabilitation robots.
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Resting-State fMRI Investigation
in Patients with Cervical Spondylotic
Myelopathy

Guangsheng Li and Yong Hu

Abstract Cervical spondylotic myelopathy (CSM) is a common degenerative neu-
rological disorder, usually influence on thewalking abilitywith balance problem. The
balance control during walking is a problem of motor and sensory function deficits,
as well as cognitive impairs. Brian resting-state fMRI is a promising tool to investi-
gate the cognitive-behavioral function in patients with CSM. In this study, a total of
20 CSM patients (age = 62 ± 14 years, male/female = 15/5, duration of symptom >
1year, compression position range from C3 to C6 segment) were recruited to com-
pare with a group of 30 healthy controls (age = 36± 12 years, male/female = 18/12).
Most CSM patients presented walking disability if balance. Graph theory analysis of
resting-state fMRI brain was performed to calculate the level of global intensity and
local intensity. Results revealed that global intensity did not show significant differ-
ence betweenCSMpatients and healthy controls. CSMpatientswithwalking balance
problem have significantly higher cerebellum local intensity than healthy controls.
Furthermore, the cerebellum local intensity firstly increased, then decreased, and
finally maintained at a certain level as the symptom of walking disturbance getting
worse, indicating the finite ability of cerebellum functional plasticity. Findings of this
study could enrich our understanding on the treatment and rehabilitation training of
CSM patients with walking disturbance.
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Training Parameters with Dual N-Back
Task Affect the Outcome of the
Attentional Network Task in ADHD
Patients

Masashi Dotare, Yoshiyuki Asai, Sarah K. Mesrobian, Michel Bader,
Alessandro E. P. Villa, and Alessandra Lintas

Abstract Patients affected by attention-deficit/hyperactivity disorder (ADHD) are
characterized by impaired executive functioning and/or attentional deficits. Our study
is aimed to determine whether the outcomes measured by the attentional network
task (ANT), i.e., the reaction times (RT) to specific target and cueing conditions
and alerting, orienting, and conflict effects, are affected by cognitive training with a
dual N-Back task. We considered three groups of young adult participants: ADHD
patientswithoutmedication, ADHDwithmedication (MADHD), and age/education-
matched controls (CTL). Working memory training began the day after the pretest.
Participants were asked to perform 20 trainings composed of 20 blocks during an
entire month. They were told that they would have to practice the dual N-Back task
for about 30min per day during the week and to rest for two days in the weekend.
Each experimental group was randomly assigned into two conditions, the first with
a progressive level (PL) of difficulty training, while the second was blocked at the
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level 1 during the whole training phase (baseline training). We observed that PL
training was beneficial with reduced RTs in all groups and reduced conflict effects.
MADHD showed a positive effect already with baseline training, whereas ADHD
showed no significant reduction of neither RTs nor conflict effect after baseline
training. No group showed any effect of training on alerting and orienting effects.



Experimental Study on Transcranial
Magneto-Acoustic Coupling Stimulation

Xiaoqing Zhou, Huiqin Wang, Ren Ma, Tao Yin, Zhuo Yang, and Zhipeng Liu

Abstract In this paper, we present a novel electrical stimulation method, which can
achieve high spatial resolution electrical stimulation in the deep brain region. We
name it transcranial magneto-acoustic stimulation (TMAS)method. In this study, we
obtained a 2 mm spatial resolution TMAS system and applied this neuromodulation
technique to hippocampal stimulation in living mice for the first time. The effect
of TMAS has been evaluated and analyzed. Firstly, the magneto-acoustic (MA)
coupling electric field generated by TMAS was calculated by theoretical model.
The TMAS experimental system for small animals was built, and its MA electric
fields were tested. The results showed that the TMAS system can obtain the spatial
resolution of 2 mm both in the cortex and hippocampus of the mouse. Next, the
system was used to conduct TMAS in vivo experiments in healthy and PD mice, and
the stimulation location was the hippocampus. Because the transcranial ultrasonic
stimulation (TUS) is inevitably involved in the TMAS process, we added the TUS
groupwith the same parameter on the basis of the TMAS group and the control group
to explore the effect of the focused ultrasound field on the TMAS.We used behavioral
and electrophysiological data to assess the effects of nerve stimulation on each group
of mice. The experimental results showed that the learning and memory abilities of
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the healthy-TMAS group and the PD-TMAS group mice were significantly better
than those of the control groups, respectively, which verified the safety and usefulness
of the TMASmethod. Moreover, it was found that the learning and memory abilities
of the TUS group mice, include healthy and PD group, were also better than those of
the control groups, but far less than those of the TMAS groups, respectively, which
verified the contribution of ultrasound field in TMAS. It can be seen that TMAS
is actually a compound stimulation containing two orthogonal physical fields: the
MA electric fields and the ultrasound field. And the assessment of TMAS proposes
should consider the bioelectric effect and the mechanical force.



Permanent Deafness. A Perfect Storm
in Brain Sensory Cortex

M. A. Merchan

Abstract In order to build the perceptual scene, the brains of mammals have devel-
oped neural circuits, specialized in analyzing andmixing different sources of sensory
information. This ability requires a dynamic multimodal interchange of information
along all stations of the sensory pathways from the brainstem to the cerebral cortex.
When one sensory system fails, the brain cortex reorganizes its neural networks to
preserve intermodal processing, what is known as cross-modal plasticity. In deafened
ferrets, “de novo” emerging somatosensory responses have been shown by single unit
recording in the auditory cortex (AC), undoubtedly demonstrating a multimodal sen-
sory conversion in the brain cortex after sensory deprivation (Allman et al., 2009).
Since receptive fields involve inhibitory GABA interactions, as demonstrated by
iontophoresis (Tremere et al., 2001), such sensory conversion may reflect imbal-
anced cortical multimodal neurotransmission. Our results in a model of bilateral
long-term deafness indicate that hearing deprivation induces an altered functional
intermodal interaction which involves increased activation of the visual cortex (VC).
Also, in humans, VC overactivation after permanent and long-term deafness has been
demonstrated using visual evoked potentials (Neville et al., 1983). It is known that
cross-modal balance for sensory processing between primary cortices is the result of
a combination of thalamic drivers’ activation, horizontal polymodal connections, and
intrinsic microcircuit elaboration of neuronal responses in the cortical columns. Data
will be presented in this talk pointing out that after chronic and permanent deafness
in the rat, a cross-modal reorganization is triggered by changes in inhibitory circuits.
Such rebound of inhibition has been shown by increases in gene expression and
immunoreactivity for GAD 65 and GAD 67 as well as by increases in parvalbumin
positive (PV) fast-spiking interneurons. Overactivation of the VC in our model, as
demonstrated by changes in activity-dependent early immediate expression genes
c-Fos and Arc/Arg 3.1 and VEPs recordings (Pernia et al., 2017), is generated by
imbalancedhorizontal interactions as indicated by restricted changes of immunocyto-
chemicalmarkers in layers 2/3. However, such imbalance does not equally affect both
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primary cortices. Because GABA interneurons specifically increase in primary AC,
greater inhibition of cortical column microcircuits could be expected (fast-spiking
control). Our results also indicate that two homeostatic mechanisms actively work
for a dynamic compensation of the out-of-balance bimodal relationship after deaf-
ness: (1) Increases in the expression and protein synthesis of AMPA receptors in the
AC (which indicates an effort to compensate changes in its thalamic drivers’ activa-
tion), and (2) the up-regulation of Arc/Arg3.1 shown by us in the VC which supports
a reactive mechanism to compensate overactivation in the VC. In sum after pro-
longed deafness, cross-modal reorganization at long term induces the overactivation
of neighboring sensory cortices (in particular VC) as a result of a dynamic compen-
sation of the horizontal feedbacks. We have recently shown that anodal continuous
current stimulation allows restricted over-activation of the AC (Colmenárez-Raga
et al., 2019). A restricted stimulation with anodal currents (activation) in the ACmay
be able to rebalance cross-modal reaction, potentially improving cortical processing
after cochlear implantation. New strategies of directional restricted neuromodulation
of sensory cortices by electric fields by using the novel method of non-invasive deep
brain stimulation via temporally interfering electric fields (Grossman et al., 2017)
will be also discussed in this talk.
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An Exception to Contralateral
Dominance of Cerebral Cortex: From
Abstract to Concrete

Yoshikazu Isomura

Abstract The cerebral cortex usually governs contralateral body parts in sensation
and movements. The rule of contralateral dominance of cerebral cortex is well estab-
lished on the basis of a long history of human and animal experiments. We also
confirmed the rule for the primary (M1) and secondary (M2) motor cortices control-
ling unilateral forelimb movements in behaving rats. However, we found that their
posterior parietal cortex (PPC) neurons preferentially represent ipsilateral forelimb
movements, in contrast to the contralateral preference of M1 andM2 neurons. More-
over, our optogenetic activation of PPC neurons evoked ipsilaterally biased forelimb
movements. Even weak PPC activation affected their task performance of ipsilat-
eral forelimb movements. I will talk about our interpretation on these paradoxical
observations from the point of view of an evolutional difference between rodents and
primates.
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The Enhancement of the Reward
Prediction Error Signal in the Midbrain
Dopamine Neuron by the Cost Paid for
the Reward

Masamichi Sakagami, Shingo Tanaka, and John O’Doherty

Abstract Themidbrain dopamine (DA) neuron plays a key role in reward processing
and codes signals associated with the reward prediction error (RPE) to update the
value of options. Here, we examined whether these RPE signals are modulated by
the cost paid to obtain the reward. After focussing a fixation point, two macaque
monkeys were required to make a saccade to a condition cue, then a target appeared.
In the high cost condition, long fixation to the target was required. In the low-cost
condition, only a short fixation was required. After fixation on the target, the subjects
made a saccade to the reward cue. Choice trials between condition cues and between
reward cues were inserted randomly to test if the subjects showed a preference. Free
reward and free air-puff trials were inserted randomly to determine whether each DA
neuron was of a salience or motivation subtype. A cue signaling a costly action to be
performed triggered less response inDAneuronswith respect to a cue signaling a less
costly action, but DA neuron responses to cues predicting reward and to the delivery
of rewards were found to be enhanced after themonkey had performed a costly action
compared to a less costly action. These findings suggest that DA neurons incorporate
the cost of performing an action into the prediction error signal, and that RPEs are
enhanced following the performance of a costly action. This finding suggested that
monkeys would be faster to learn stimulus-reward associations after performing a
costly action compared to a less costly action. A subsequent behavioral experiment
confirmed this hypothesis. Information about action cost is processed in the DA
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reward system in a manner that amplifies the DA RPE signal, thereby producing
more rapid learning under situations of high cost.



Cerebellar Regulation of Motor Timing
and Coordination

Yifat Prut

Abstract In human and non-human primates, motor timing is considered to be
dictatedby cerebellar control ofmotor cortical activity, relayed through the cerebellar-
thalamo-cortical (CTC) system. This supposition relies on studies that documented
motor impairments in cerebellar patients and in animal models. However, we know
very little about the way cerebellar information is integrated by cortical circuitry to
affect motor cortical commands. We addressed this question by probing the CTC
system in a primate model. We found that a brief activation of this pathway effi-
ciently recruits motor cortical cells throughout the motor and premotor cortex. How-
ever, cortical response was dominated by a powerful inhibition that truncated the
early excitation. At movement onset, CTC input transiently synchronized neighbor-
ing neurons. Blocking the CTC pathway produced motor impairments similar to
the symptoms of cerebellar ataxia. The motor deficits were preceded by changes in
neural activity that included local and global desynchronization. It is suggested that
the excitation–inhibition interplay triggered by CTC input shapes the response pro-
file of a distributed network of motor cortical neurons as required to initiate and
coordinate movements.
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Multiple Control of Absence Seizures
in the Brain: A Computational Study

Daqing Guo

Abstract As a typical generalized epilepsy, absence epilepsy can be easily identified
during absence seizures (AS) based on the electrophysiological hallmark that syn-
chronous 2–4Hz spike and wave discharges (SWDs) widely observed in the clinical
electroencephalography (EEG). Inspired by animal experimental studies thatASmay
be regulated by neural circuits within and outside the corticothalamic (CT) network,
we employed computational models to further dissect the underlying biophysical
mechanisms. Simulations show that in the CT network, enhancing the thalamic feed-
forward inhibition can effectively abateSWDs. Interestingly, the inhibitionsmediated
by GABAA and GABAB in the pathway from the thalamic reticular nucleus (TRN)
to the specific relay nuclei of thalamus (SRN) play different roles in controlling AS.
Specifically, unlike GABAB inhibition, GABAA inhibition has more influences on
the dominant frequency of neural oscillations. On the other hand, the basal ganglia
(BG) output pathways from the substantia nigra pars reticulate (SNr) to the TRN and
SRN have been demonstrated to contribute to suppressing AS. Note that the control
mechanism underlying the SNr-TRN pathway is mainly due to the collision in the
TRN, whereas the weakened GABAB inhibition is responsible for the suppression
of AS via the SNr-SRN pathway. More importantly, the competition between the
two output pathways can induce BG bidirectionally controlling AS. Besides these
observations, we further found that AS can also be terminated by the newly identi-
fied inhibitory pallido-cotrical pathway in our model. These findings highlight the
neural circuits that have close associations with the CT network, including internal
and external pathways, may have functional roles in regulating AS and may provide
a novel insight into the treatment of absence epilepsy.
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