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Abstract

Infections by influenza virus constitute a major
and recurrent threat for human health.
Together with vaccines, antiviral drugs play a
key role in the prevention and treatment of
influenza virus infection and disease. Today,
the number of antiviral molecules approved for
the treatment of influenza is relatively limited,
and their use is threatened by the emergence of
viral strains with resistance mutations. There is
therefore a real need to expand the prophylac-
tic and therapeutic arsenal. This chapter
summarizes the state of the art in drug discov-
ery and development for the treatment of influ-
enza virus infections, with a focus on both
virus-targeting and host cell-targeting
strategies. Novel antiviral strategies targeting
other viral proteins or targeting the host cell,
some of which are based on drug repurposing,
may be used in combination to strengthen our
therapeutic arsenal against this major
pathogen.
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CoV Coronavirus
COX Cyclooxygenase
HA Hemagglutinin
IAV Influenza A virus
IFN Interferon
M2 Matrix 2
NA Neuraminidase
NOX NADPH oxidase
NP Nucleoprotein
p09 H1N1 2009-pandemic strain
PA Polymerase acidic subunit
PB1 Polymerase basic subunit 1
PB2 Polymerase basic subunit 2
PPI Protein-protein interaction
RdRP RNA-dependent ribonucleoprotein

complex
RIG-I Retinoic acid-inducible gene-I
TNF-
α

Tumor necrosis factor-α

vRNP Viral ribonucleoproteins
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8.1 Introduction

Infections by influenza virus constitute a major
and recurrent threat for human health. Influenza
viruses are the causative agents of seasonal flu
epidemics, associated with up to 1 billion
infections and 300,000–650,000 deaths world-
wide and consequently with a large economic
price including hospitalization costs and missing
working days [1, 2]. In addition, influenza A
viruses (IAV) have been the cause of several
pandemics in recent human history, from the
Spanish flu H1N1 in 1918 to the more recent
H1N1 2009 pandemic [3].

Together with vaccines, antiviral drugs play a
vital part in the prevention and treatment of influ-
enza virus infection and disease. During a normal
influenza season, antiviral drugs are mainly used
to treat critically ill patients, such as those
hospitalized in intensive care. In a pandemic con-
text, pending the availability of a vaccine,
antiviral drugs are essential both to treat patients
who have been infected and to prevent infection
in those exposed, including healthcare workers.
Today, the number of antiviral molecules
approved for the treatment of influenza, based
on the targeting of viral proteins, is relatively
reduced and threatened by the emergence of
strains with resistance mutations. There is there-
fore a real need to expand the prophylactic and
reinforce the current therapeutic arsenal. This
chapter summarizes the state of the art in drug
discovery and development for the treatment of
influenza virus infections, with a focus on both
virus-targeting and host cell-targeting strategies
(Fig. 8.1). Novel antiviral strategies targeting
other viral proteins or targeting the host cell,
some of which are based on drug repurposing,
may be used in combination to strengthen our
therapeutic arsenal against this major pathogen.

8.2 From Existing Classic Antiviral
Drugs to New Pre-Clinical
Candidates

8.2.1 M2 Ion Channel Blockers
(Amantadine/Rimantadine)

Influenza A M2 is a multifunctional viral homo-
tetramer protein [4]. Its transmembrane
(TM) domain forms a proton channel. This chan-
nel is required for the acidification of the viral
endosome formed after fusion and endocytosis of
the virus within the host cell. This process allows
viral ribonucleoproteins (vRNPs) to dissociate
from the matrix 1 (M1) protein. The proton con-
ductance mechanism relies on the conserved
H37XXXW41 sequence which is responsible for
selectively gating H+ ions [5–8]. Channel
blockers interfere with the proton conductance
mechanism by binding to the transmembrane
pore [9] (Fig. 8.2). When proton conductance
through M2 is blocked by the adamantane drug,
this dissociation is prevented, and the virus is no
longer able to replicate. In recent years,
adamantane drug-resistant mutants have become
prevalent in circulating viruses. The most preva-
lent drug-resistant mutations are S31N, L26F, and
V27A, all of which are located in the transmem-
brane region of M2 [11]. Figure 8.2a shows the
strong interaction of amantadine with V27 in the
upper part of the pore. Upon drug resistance
V27A mutation, this interaction is lost. Recently
developed spiro-amantadyl amine effectively
binds to A27 of the pore (Fig. 8.2b) [10]. Recently,
new amantadine derivatives effective against dou-
ble mutants M2-S31N/L26I and M2-S31N/V27A
viral strains have been developed by
Musharrafieh et al. [12]. The antiviral efficacy of
such compounds is summarized in Table 8.1. As a
consequence of resistance mutations that
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Fig. 8.1 Influenza viral particle and viral cycle; current
state of anti-influenza drug discovery and development.
(a) Influenza A virus (IAV) particle. The IAV genome is
composed of eight ribonucleoprotein complexes (vRNPs),
composed of single-stranded negative-sense viral RNA
(vRNA) encapsidated by viral nucleoprotein (NP) and a
viral polymerase complex (PA, PB1, and PB2) positioned
at the extremity of the vRNA segment. Three viral
proteins, hemagglutinin (HA), neuraminidase (NA), and
ion channel protein (M2), are embedded within the viral
membrane. Matrix protein 1 (M1) holds the vRNPs inside
the virion. (b) The viral particle binds to sialic acid
receptors and enters the cell via receptor-mediated endo-
cytosis. Acidification of the endocytic vesicles leads to
virus uncoating mediated by the M2 ion channel. vRNPs

are then released into the cytoplasm and transported into
the nucleus. There, the viral RNA-dependent RNA poly-
merase complex snatches the host mRNA caps to initiate
the negative vRNA transcription. Transcribed vRNAs then
undergo an mRNA maturation phase, before export to the
cytoplasm to be translated. vRNAs are also replicated in
the nucleus to generate new vRNPs in association with
neosynthesized viral proteins. Progeny vRNPs are
transported toward the cytoplasmic membrane with viral
components to be packaged into new infectious particles
which are formed by cellular envelope budding. Classic
virus-targeting strategies are highlighted in red and virus-
host-targeted strategies in blue. Figure created by
BioRender.com
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appeared in M2 in H1N1/H3N2 circulating
strains, both amantadine and rimantadine were

removed from the WHO list of recommended
anti-influenza agents for clinical use in 2009 [23].

Fig. 8.2 Looking down
the M2 channel in the
presence of inhibitors:
Structure of M2 WT and
VA27 mutant in complex
with amantadine and
spiroamantadine. View
down the pore channel in
(a) WT-amantadine (V27 is
colored in yellow, PDB ID
6BKK [9]) and (b) V27A-
spiroamantadine complexes
(A27 is colored in yellow,
PDB ID 6NV1 [10])

Table 8.1 Summary of the activity and structures of the main antiviral compounds bound to their target, the proton
channel M2 of influenza A or the neuraminidase NA of influenza A and B

Target Compound IC50 PDB ID
Stage year
approval) References

M2 Amantadine 100μM (H1N1 WT)
> 500μM (S31N)
15.7μM (WT channel a,) [13]

6BKK Approved
(1976)

Thomaston et al. [9],
Cady et al. [14]

Rimantadine 0.1μM (H1N1 WT)
> 200μM (S31N)

2RLF Approved
(1994)

Schnell and Chou
[15]

Spiro-adamantyl
amine

18.7μM (WT channela)
0.2μM (V27A a)

6BMZ
6NV1
6OUG

Pre-
clinical

Thomaston et al.
[9, 10]

NA Oseltamivir
(Tamiflu)

0.8 nM (N5 NA) 2HT7 Approved
(1999)

Russell et al. [16]

Peramivir 3.4 nM 2HTU Approved
(2014)

Russell et al. [16]

Zanamivir 0.6 nM (N5 NA) 3CKZ Approved
(1999)

Collins et al. [17]

Chebulinic acid
Chebulagic acid

1.36 � 0.36μM (H1N1 PR8)
(Oseltamivir-resistant and H1N1
pdm09 viruses)
CC50 > 100μM

Pre-
clinical

Li et al. [18]

Oseltamivir
derivatives

0.66μM (H5N1) Docking
150/430
cavity

Pre-
clinical

Ai et al. [19], Jia
et al. [20]; Zhang
et al. [21]

Triazole
oseltamivir
derivatives
C1-modified
oseltamivir
derivatives

0.05–0.15μM (H5N1, H5N2, and
H5N6)
0.1μM (H5N1, H5N6)
0.7μM (oseltamivir-resistant virus)

Docking
430 cavity

Pre-
clinical

Ju et al. [22]

aPatch clamp assays [10]
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8.2.2 Neuraminidase
(NA) and Hemagglutinin
(HA) Inhibitors

8.2.2.1 NA Inhibitors
NA inhibitors competitively inhibit terminal
sialic acid residue removal from glycoproteins
and carbohydrates found at the surface of host
(mammalian) cells and influenza virus particles.
Binding of virions to intact (uncleaved) sialic acid
inhibits virion release. Among these NA
inhibitors, peramivir, zanamivir, and oseltamivir
carboxylate are the most frequently prescribed
drugs and considered standard of care for influ-
enza management (Table 8.1 and Fig. 8.3). Resis-
tance to oseltamivir can be observed
experimentally in a few cell passages and also
found in the clinic. Typically, resistance
originates from substitutions in the viral NA pro-
tein such as H274Y and I223R (predominant in
H1N1 and H5N1 viruses) and E119V, R292K, or
N294S (predominant in H3N2 viruses).
Oseltamivir, peramivir and zanamivir are three
NA inhibitors currently approved worldwide for
the treatment of influenza A and B infections,
oseltamivir being the most widely used. There is
still a lot of debate about the effectiveness and
real impact of inhibitors on the prevention and
treatment of influenza. New oseltamivir
derivatives, targeting either multiple sites or dif-
ferent NA cavities (as the “430” or the “150”
cavity), have been recently developed. Some of
these derivatives are very potent against multiple
IAV and IBV strains, including oseltamivir-
resistant ones (Table 8.1).

8.2.2.2 Hemagglutinin Inhibitors
The surface glycoprotein HA is associated with
viral entry into host cells. HA binding to cell-
surface, sialic-acid-containing glycans further
enables fusion between the viral and host
membranes in endosomal compartments. HA is
composed of head (HA1) and stem (HA2/HA1)
domains. As the regions on HA involved in bind-
ing and fusion are highly conserved, they are
attractive sites for the design of new antivirals
(Table 8.2). The broad-spectrum antiviral drug

arbidol shows efficacy against influenza viruses
by targeting the hemagglutinin (HA) stem region
[24]. This molecule is currently licensed in Russia
and China for the treatment of influenza and other
infections [35]. A challenging strategy aiming at
mimicking antibodies binding sites was success-
fully developed by Wilson et al., targeting the
conserved stem region and more recently at the
interface of the trimeric head region [13, 27, 36]
(Fig. 8.4a). The binding sites of the binding sites
for CBS1117 and JNJ4796 were both found in the
stem region close to the fusion peptide,
highlighting the possibility of further structure-
based designed compounds [29]. De novo design
of high-affinity trimeric proteins called “HA
mini-binders” that bind influenza A hemaggluti-
nin trimer at a conserved region binding site
(Fig. 8.4b) [33]. These molecules were developed
as alternative to antibodies. These and other
compounds are summarized in Table 8.2.

8.2.3 Polymerase/Nucleoprotein/RNA
inhibitors

8.2.3.1 Polymerase/Endonuclease
Inhibitor (Favipiravir, Baloxavir
Marboxil)

Influenza viruses transcribe and replicate their
genome in the nucleus of infected cells by the
means of a hetero-trimeric polymerase, PA, PB1,
and PB2. The polymerase complex function
requires the nucleoprotein NP, a protein
associated with and protecting the segmented
genomic RNA. Therefore, all four proteins are
essential for replication. Whereas replication
requires the generation of complementary posi-
tive polarity RNA intermediates (cRNA) that are
then copied into progeny negative polarity
segments (vRNPs), viral message is directly
synthesized from vRNPs. Since the influenza
virus polymerase is unable to form 50 mRNA
cap structures, its subunit PA is necessary for
the generation of viral mRNAs via its endonucle-
ase activity, transferring host mRNAs 50-capped
RNA primers in a cap-snatching mechanism. The
endonuclease active site of PA-N terminal
comprises a histidine and a cluster of three strictly
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Fig. 8.3 Structures of the
approved NA inhibitors

Table 8.2 Recent antiviral candidates targeting HA, their activity, and structures of their complexes with HA

Target
Compound/binding
site IC50/CC50 PDB ID Stage References

HA Arbidol/stem region 4–12μM
CC50 ¼ 59μM

5T6S,
5T6N

Pre-clinical
and clinical
NCT03787459

Kadam and Wilson [24], Wang
et al. [25], Wright et al. [26]

F0045(S)/stem region 0.5–2μM
(H1 HA)

6WCR Pre-clinical Yao et al. [13]

JNJ4795/stem region 0.01–0.07μM
(H1 HA)

6CF7 Pre-clinical Van Dongen et al. [27]

IY7640/stem region 0.5–7μM
(H1 HA)
CC50 > 800μM

Docking
studies

Pre-clinical Kim et al. [28]

CBS1117/stem region 3μM
For H5 HA

6VMZ Pre-clinical Antanasijevic et al. [29]; [30]);
Hussein et al. [31]

MB2746/stem region 0.3μM
(H1 HA)
CC50 > 100μM

Docking
studies

Pre-clinical Basu et al. [32]

De novo design of
“mini-binder” proteins

0.15–0.19 nM
(H3 and H1 HA)

6KUY Strauch et al. [33]

penindolone HA1 and
HA2

Pre-clinical Wu et al. [34]
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conserved acidic residues (Glu80, Asp108,
Glu119), which coordinate (together with
Ile120) one or two manganese or magnesium
ions [37] (Fig. 8.5a). PB2 binds capped primers,
the enzymatic activity for phosphodiester bond
formation being associated with the PB1 subunit.

Several classes of inhibitors are in the clinics
(Fig. 8.6): baloxavir (PA), favipiravir (PB1), and
pimodivir (PB2, Fig. 8.5b).

8.2.3.2 Pre-clinical Compounds
Targeteinf the Polymerase PA,
PB1 and PA subunits, Escape
Mutations and Resistance

Pre-clinical candidates, some of them being listed
in Tables 8.3 and 8.4, are in development,

benefiting from the recent insight provided by
the structures of PA-PB1, PB1-PB2, and whole
polymerase complex with or without RNA by
X-ray crystallography [71–77] and cryo-electron
microscopy [78–82]. The error-prone nature of
influenza viral replication can rapidly generate
point mutants for the selection of resistance that
have seriously compromised the efficacy of influ-
enza therapeutics. Escape mutations were
identified under the pressure selection of PA
inhibitors: the hotspot mutation for escape from
baloxavir marboxil is located at PA residue
38, including several substitutions (PA I38T/M/
F) [41]. Similarly, escape mutations from
L-742.001 [42] and RO-7 [44] treatments were
also characterized although in laboratory

Fig. 8.4 Structure of some of the pre-clinical candidates
targeting HA: (a) Structure of HA in complex with
JNJ4796 shown in orange (PDB ID 6CF7) [27]. (b)

Structure of trimeric HA in complex with mini-binder
highlighted in yellow (PDB ID 6KUY) [33]
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resistance assays, escape mutants were not
detected after multiple passages for L-742.001.
While very tight affinities have been achieved
by designing metal binding inhibitors to block
the active site of the endonuclease activity in PA
N-terminal (Table 8.2), the appearance of escape
mutants often rapidly decreases their efficacy.
Several recent reviews focus on the development
of PA and polymerase inhibitors [83–86].

Different strategies have been undertaken to
attempt overcoming induced resistance.
Interfering with its proper assembly of the RdRP
polymerase to inhibit function is pursued using
protein-protein interaction (PPI) inhibitors. The

advantage of such an approach is the relatively
large interacting surface between the two proteins
as compared to the binding site of an active-site
ligand. Indeed, inducing simultaneous mutation
of at least one residue on both proteins while
maintaining their interaction is less likely to
develop resistance and suggests that PPI
inhibitors could be less prone to drug resistance
than inhibitors of enzyme active sites. The recent
identification of a single- domain antibody
(nanobody) allowing to disrupt dimerization of
FluA polymerase is among these lines [79]. PPI
inhibitors have been developed based on the
structural insight given by PA-PB1 crystal

Fig. 8.5 Structure of some of the pre-clinical candidates
targeting the polymerase. (a) Active-site PA N-terminal
inhibitor compound 22 [38]; (b) PB2 inhibitor pimodivir
[39] (the numbering is associated with this structure

corresponding to the full-length PB2); (c) nucleozin-NP
oligomeric complex PDB ID 5B7B; monomers A and B
are in cyan and yellow, respectively; (d): naproxen F1-NP
monomeric complex from docking studies [40]
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structures in 2012 [87]. The inhibition of the poly-
merase PA-PB1 subunit interface has become an
active field of research with the goal of remaining
active against resistant strains to amantadine and to
oseltamivir (Table 8.3). Recently, compound
12 was identified by structure-based screening of
compounds targeting the PA-PB1 structure. No
resistant virus was selected in vitro under drug
selection pressure of compound 12a [48]. More-
over, derivatives of cyclothiophene and R151785
were found active against multiple strains of influ-
enza A and B [50–52].

Based on the ability of PA-PB1 to bind viral
RNA, it is likely that novel types of inhibitors

could be developed by structure-based design
[88]. Additionally, inhibitors targeting PA
C-terminal [47] and its interactions with vRNA
or with PolII could be effective targets, based on
the accumulating wealth of structural data [74, 75,
79, 82] and deeper insight in the multi-protein
assembly required during replication/
transcription.

8.2.3.3 Broad-Spectrum Inhibitors
Favipiravir inhibits RNA viruses of the arenavi-
rus, bunyavirus, flavivirus, alphavirus, norovirus,
picornavirus, paramyxovirus, and rhabdovirus
families, in addition to influenza viruses;

Fig. 8.6 Structures of the
approved polymerase
inhibitors and some
pre-clinical candidates
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therefore, it is considered as a broad-spectrum
drug [53]. This drug is incorporated into newly
synthesized RNA by the viral polymerase in place
of purines but not pyrimidines, resulting in
increased frequencies of C-to-U and G-to-A tran-
sition mutations. Although the barrier for resis-
tance is relatively high, this drug seems to present
toxicity issues. N4-Hydroxycytidine (NHC)
inhibits RSV and both highly pathogenic avian
and seasonal influenza viruses as well as SARS-
CoV-2 virus, thus being also a broad-spectrum
antiviral candidate with oral efficacy [55].

8.2.3.4 Pre-Clinical Compounds
Targeting the Polymerase PB2
Subunit

Crystal structure of the PB2 cap-binding domain
has been exploited to develop different
7-methylguanine derivatives [59]. Pimodivir
(VX-787) is an inhibitor targeting the polymerase
PB2 subunit at the m7 GTP-binding site, forming
extensive stacking interactions with several aro-
matic residues His (Figs. 8.5b and 8.6). It inhibits
influenza virus replication and reduced viral load
in animal infection models of H3N2 and H1N1

Table 8.3 Inhibitors of PA, PA-PB1 interactions, and PB1

Target Compound IC50/CC50 PDB ID Stage References

PA Baloxavir marboxil 0.3–1μM (H1N1/H3N2) 6FS6
6FS9

Approved
(2019)
NCT02954354
NCT0294901

Omoto et al.
[41]

L-742,001 3μM (WT H1N1)
24μM (WT H1N1 pdm09)
236μM (H1N1 pdm09 PA F105S)

5CGV
5D9J

Clinical trial
NCT01526785

Song et al. [42]

RO7 16 nM (WT H1N1)
3 nM (H1N1 pdm09)

5VPX Pre-clinical Jones et al. [43];
Kowalinski
et al. [44]

Ana-0 0.8μM Docking Pre-clinical Yuan et al. [45]
Compound 22 110 pM 6E6W Pre-clinical Credille et al.

[38]
N-Acylhydrazone
derivatives

11μM 5EGA Pre-clinical Carcelli et al.
[46]

”312” 37μM
(H1N1, H2N2, and H3N2)

PA–C-
terminal

Pre-clinical Lo et al. [47]

PA-
PB1

Compound 12a 0.9–2.7μM (FluA amantadine-
and oseltamivir-resistant, FluB)

Docking Pre-clinical Zhang et al.
[48]

Amino-acids adducts of
diphenyl-pyridine
derivatives

39 � 2μM (H1N1) Docking Pre-clinical D’agostino
et al. [49]

Cycloheptathiophene-
3-carboxamide

0.2μM–0.7μM H1N1 pdm09,
H1N1 oseltamivir-resistant,
H3N2, influenza B

Docking Pre-clinical Desantis et al.
[50]; Nannetti
et al. [51]

R151785 2.5, 5.0μM
p09, H1N1 oseltamivir- and
amantadine-resistant influenza B

Docking Pre-clinical Zhang et al.
[52]

PB1 Favipiravir Broad-spectrum Approved
(2014)

Yoon et al. [53]

β-d-N4-
Hydroxycytidine/
EIDD-2801

Broad-spectrum influenza, SARS-
CoV2

Clinical trial
NCT04405739

Sheahan et al.
[54]; Toots
et al. [55]
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viruses, although potency was highest against
H1N1 strains [39, 56]. Phase II clinical studies
indicated that this drug is well-tolerated, reduced
viral load, and resulted in slightly faster resolve of
clinical signs. Further derivatives of pimodivir
have been designed [57]. Targeting the
PB1-PB2 interface by PPI inhibitors has been
challenging: although PP7 exhibited antiviral
activities against influenza virus subtypes A pan-
demic H1N1, H7N9, and H9N2, resistances have
been unexpectedly detected in laboratory
assays [60].

8.2.3.5 Pre-Clinical Compounds
Targeting the Nucleoprotein or
the Nucleoprotein-RNA
Interactions

The nucleoprotein associated with viral RNA and
the polymerase complex is essential for transcrip-
tion and replication [77, 89, 90]. The assembly of
NP-RNA oligomers into RNP has been deter-
mined by cryo-electron microscopy studies
[77, 78, 89, 91]. In the X-ray structures of the
NP [92], the protein adopts a trimeric structure.
NP self-association to achieve trimer formation is

Table 8.4 Inhibitors of PB2 cap-binding, PB1-PB2, NP, and NS1

Target Compound/binding site IC50/CC50 PDB ID Stage References

PB2 Pimodivir (VX787) 2.6 nM 4P1U Approved
(2017)

Byrn et al. [56];
Clark et al. [39]

5,7-Difluoroindole derivative of
pimodivir

11 nM 6S5V Pre-
clinical

Mcgowan et al. [57]

D 715–2441 3.6–4.4μM
(H1N1, H3N2, H5N1,
H7N9)

Docking Pre-
clinical

Liu et al. [58]

Cap analogs 7.5μM
H3N2

4CB5 Pre-
clinical

Pautus et al. [59]

PB1-
PB2

PP7 1.4–9.5μM (strain-
specific)

Docking Pre-
clinical

Yuan et al. [60]

NP Nucleozin 0.07μM (H1N1)
0.16μM (H3N2)
0.33μM (H5N1Y287H)

5B7B Pre-
clinical

Kao et al. [61]; Pang
et al. [62]

Compound 3 0.1 μM (H1N1 and
H5N1)

3RO5 Pre-
clinical

Gerritz et al. [63]

2-(4-Chloro-3,5-
difluorophenylamino)thiazole-4-
carboxamide derivatives

0.11μM Docking Pre-
clinical

Shen et al. [64];
Woodring et al. [65]

Naproxen
Naproxen C0 (naproxen
derivative 2)
Naproxen F1 (naproxen
derivative 4)

Broad-spectrum FluA
and Sars-CoV2
16 � 5μM (H1N)
2.9 � 0.3μM (H1N1)
1.8μM (H1N1 pdm09)
1.3 � 0.2μM (H1N1)
0.7μM (H1N1 pdm09,
H3N2, resistant to
oseltamivir)

Docking Pre-
clinical

Dilly et al. [40]; Lejal
et al. [66]; Tarus et al.
[67]

Hydroquinolinone derivatives
(NUD)

1.8–7.0μM (H1N1) Docking Pre-
clinical

Makau et al. [68]

NS1 A22 ffi 1μM (H1N1 PR8) Docking Pre-
clinical

Kleinpeter et al. [69]

ML303 0.7–17μM (H1N1
pdm09, H3N2)

HTS Pre-
clinical

Patnaik et al. [70]
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mediated by a flexible tail loop that protrudes into
a pocket of the adjacent subunit, via the formation
of a critical interaction between R416 of one
subunit and E339 of the adjacent subunit. The
R416A mutant lacking this interaction adopts a
monomeric structure [93]. The native protein can
also be purified in a monomeric form at low salt
and concentration conditions [93–95]. The ability
to modify the oligomeric state of NP is the struc-
tural basis of most NP inhibitors presently devel-
oped. Nucleozin was the first NP inhibitor
developed as a molecule impeding nuclear accu-
mulation. Nucleozin enhanced higher-order
structures [61, 63]. Figure 8.5c shows the
interactions of one of the nucleozin ligands
found in the X-ray structure (PDB ID 5B7B)
stabilizing the interface between two NP subunits
[62]. Escape mutants to nucleozin have been
identified in laboratory assays. The opposite
approach to impede nucleoprotein self-
association has also been pursued by disrupting
the important salt bridge R416-E339 mediating
NP oligomerization [64]. Recently, new
compounds with high affinity for NP were
designed stabilizing monomeric NP [65]. Imped-
ing NP binding to viral RNA has been achieved
by naproxen drug repurposing, naproxen being a
known inhibitor of cyclooxygenase (COX)
[66]. As NP oligomerization is enhanced by the
presence of RNA, naproxen binding to NP
reduced NP oligomers and favored monomeric
NP. Docking and single mutation studies
identified Tyr148, the only aromatic residue
within the RNA binding groove, and residues of
the C-terminal part of NP R355, R361 and
Phe489 being involved in the interaction of
naproxen with NP. Laboratory assays showed
no resistance after eight cell passages infected
with influenza A. Naproxen exhibited antiviral
effects in mice models of influenza A infection
[40, 66] as well as influenza B virus [96]. Further
structure-based design yielded new naproxen
derivatives with improved antiviral effects and
selectivity for NP without COX inhibition
(Figs. 8.5d and 8.6) [40, 67] (Table 8.4). Some
of these derivatives were found inhibiting NP-PA
interactions [40, 97]. Naproxen derivatives also
present antiviral properties against oseltamivir-
resistant strains [40]. Additional compounds

with some similarity of their hydroxyquinoline
scaffold to the methoxynaphthalene scaffold of
naproxen called NUD were designed and were
also found to be resistant in escape mutation
laboratory assays [68].

8.2.4 Drugs Targeting
the Non-structural Protein-1
(NS1)

NS1 has a plethora of strategies to inhibit the host
immune response due to its ability to establish
multiple protein-protein and protein-RNA
interactions. NS1 hampers different pathways
both in the cytoplasm and in the nucleus of
infected cells. NS1 antagonizes interferon-
mediated antiviral host response by binding to
double-stranded (ds) viral RNA, thus protecting
it from cellular factors, by blocking retinoic acid-
inducible gene-I (RIG-I) and NF-kB activation.
One pathway by which NS1 increases virulence is
through the activation of phosphoinositide
3-kinase (PI3K) by binding to its p85β subunit
[98]. NS1 has two structural domains –

RNA-binding domain (RBD) and the effector
domain (ED) – connected by a short linker
(LR) and a disordered C-terminal tail. New
drugs binding to NS1 effector domain have been
designed with low micromolar antiviral efficacy
[69] (Table 8.4).

8.3 Host-Targeting and Drug
Repurposing Approaches
for the Treatment of Influenza

Considerable progress has been made in under-
standing the interactions between influenza
viruses and the host cell in recent years. In this
context, and in light of the emerging problem of
resistance to available classical antivirals, many
studies have focused on targeting host factors to
limit virus replication, but also to modulate host
immune response. The targeting of host factors
and/or signaling pathways makes sense in the
context of virally induced hypercytokinemia
(also known as “cytokine storm”), which is
directly correlated with tissue injury and an
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unfavorable prognosis of severe influenza
[99]. Indeed, approaches to control or attenuate
this disproportionate immune response are of par-
ticular interest and are the subject of numerous
pre-clinical and clinical studies. As with all
viruses, influenza viruses depend on cellular
machinery for their replication and propagation.
Many cellular factors essential for the replication
of influenza viruses have been uncovered through
genome-wide RNA interference approaches
[100–103] but also more broadly through differ-
ent integrated cell biology approaches using
interactome and transcriptome data, for example
[104, 105]. In order to list the different host-
targeting strategies developed, a distinction can
be made between molecules with a mode of
action associated with a relatively well-defined
stage of the viral cycle and molecules associated
with the modulation of signaling pathways. It is
these two main classes that will be described in
the following sections.

8.3.1 Drugs Targeting Host Cell
Component at Different Stages
of Influenza Replication Cycle

The replication cycle of influenza viruses consists
in distinct successive phases, 1) entry, 2) nuclear
import of viral genome (viral ribonucleoprotein;
vRNPs), 3) genome replication and protein syn-
thesis, 4) nuclear-cytoplasmic export of vRNPs,
and 5) plasma membrane transport and budding
of neo-virions (Fig. 8.1). A number of molecules
targeting host factors in these different steps, at
different pre-clinical/clinical development stages,
are known today.

Viral entry is a target of great interest, as it is
likely to allow prophylactic approaches, by
blocking the infection in its early stages. One of
the most advanced strategies consists to target the
viral receptor. DAS181 (Table 8.5) (Fludase,
Ansun BioPharma) is a sialidase fusion protein
that cleaves both the Neu5Ac α(2,3)- and Neu5Ac
α(2,6)-Gal linkages of sialic acid on host cells.
DAS181 is administered as an inhalable dry pow-
der to deliver sialidase to the pulmonary epithe-
lium for cleavage of sialic acids, which renders

the cells inaccessible to infection by virus
[131]. DAS181 was demonstrated to have
broad-spectrum activity, given the conserved
nature of influenza and parainfluenza viruses
binding to respiratory epithelium. Pre-clinical
in vitro and in vivo studies demonstrated that
DAS181 has activity against a number of sea-
sonal influenza strains including those containing
the H274Y mutation (conferring resistance to
oseltamivir), highly pathogenic avian influenza
strains (H5N1), and pandemic 2009 influenza A
(H1N1). This compound was assessed in different
Phase I and Phase II clinical trials
(NCT00527865, NCT01651494,
NCT01037205) with results indicating a signifi-
cant reduction of viral load in treated influenza
patients [106] but with identification of respira-
tory adverse events and rapid clearance of the
drug being consistent with the induction of
antibodies against DAS-181 – this could be a
limitation in the duration and dosages of such
treatment [107]. Other approaches targeting viral
entry have also been described (Table 8.5), e.g.,
targeting the endosome acidification step by inhi-
bition of V-ATPase (e.g., bafilomycin A1,
concanamycin) or inhibition of the internalization
(e.g., Dynasore) or cleavage steps of hemaggluti-
nin (e.g., camostat). Most of these strategies were
primarily evaluated at the pre-clinical stage and
have not been further evaluated as their efficacy
was either limited or accompanied by cytotoxic-
ity. One exception is the protease inhibitor
aprotinin, which was approved as anti-influenza
drug in Russia [112].

The step of nuclear import of vRNPs is a
crucial one, for which there are today very few
molecules with antiviral potential described in
literature. Interestingly, it has been shown
in vitro that ivermectin (Table 8.5), a well-
known anti-parasite drug, was able to inhibit
viral replication via inhibition of importins
(IMPα/β) and therefore the nuclear import of
vRNPs [116].

Targeting the replication stage of the virus is
one of the earliest host-targeting strategies, with
pioneer works on the antiviral efficacy of ribavi-
rin in the 1970s [119]. However, this nucleoside
analogue and its prodrug, less toxic, do not appear
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Table 8.5 Drugs targeting host cell component at different levels of viral cycle stages

Viral cycle
stage Drug name Mode of action

Research
phase References

Viral entry DAS181 Sialidase – Removes sialic acid
receptors

Phase I/II Moss et al. [106],
Zenilman et al.
[107]

Bafilomycin A1 V-ATPase inhibitors – Inhibits
endosomal acidification

Pre-clinical Yeganeh et al.
[108]

Concanamycin Müller et al.
[109]

Diphyllin Chen et al. [110]
Saliphenylhalamide Bimbo et al.

[111]
Aprotinin Protease inhibitors – Inhibit HA0

cleavage
Approved
(2011)

Zhirnov et al.
[112]

Camostat Pre-clinical Yamaya et al.
[113]

Dynasore Inhibition of internalization de Vries et al.
[114]

EIPA
Fattiviracin Harada et al.

[115]
Nuclear import
of vRNP

Ivermectin Inhibits importin-α/β Gotz et al. [116]

Genomic
replication and
protein
synthesis

TG003 CLK1 inhibitors – Regulation of
splicing – Decrease in M2 mRNA
expression

Karlas et al.
[100]

Clypearin Zu et al. [117]
Corilagin
Silvestrol eIF4A inhibitors – Inhibit viral protein

synthesis
Slaine et al. [118]

Pateamine
Ribavirin Nucleoside analogue Approved

(1986)
Durr et al. [119]

Viramidine
(ribavirin prodrug)

Phase III
(HCV)

Sidwell et al.
[120]

Cyclosporin A Inhibits host RNA polymerase II Pre-clinical Liu et al. [58]
vRNP nuclear
export

Inhibits nuclear export of vRNPs
Verdinexor Exportin 1 inhibitors Perwitasari et al.

[121]
DP2392-E10 Chutiwitoonchai

et al. [122]
CI-1040 MEK inhibitor – Nuclear retention of

VRNP complex
Haasbach et al.
[123]

UO126 Pleschka et al.
[124]

PBP10/BOC2 Formyl peptide receptor
2 antagonists – Raf/MEK/ERK
inhibition

Courtin et al.
[125]

Trametinib MEK1/2 inhibitor – Inhibition of
vRNP export

Approved
(cancer)

Schräder et al.
[126]

Dapivirine Reverse transcriptase inhibitor –
Inhibition of vRNP export

Phase III
(HIV)

Hu et al. [127]

(continued)
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to be options being considered for the treatment
of influenza virus infections of influenza viruses,
despite interesting preliminary in vitro and in vivo
results [120] (Table 8.5). Other, more recent
strategies propose to target mRNA splicing.
Influenza viruses are known to hijack cellular
splicing machinery to their benefit, making them
extremely dependent on it [132, 133]. Several
studies show that the inhibition of Cdc2-like
kinase 1 (CLK1), involved in the alternative
splicing of M2 gene of influenza, appears to be
an interesting antiviral option, with several
molecules available (TG003, clypearin, corilagin,
Table 8.5). Of all its molecules, clypearin has
relatively low EC50s and very low toxicity,
making it an attractive potential antiviral candi-
date [100, 117].

While strategies to prevent the nuclear import
of vRNPs are relatively uncommon, paradoxi-
cally there are many more therapeutic approaches
to block the nuclear-cytoplasmic transport of
vRNPs. Indeed, in contrast to the inhibition of
importins, the inhibition of exportin 1 (XPO1) by
verdinexor (XPO1 antagonist KPT-335) allows to
significantly reduce viral production in vitro and
in vivo [121]. Another compound, DP2392-E10,
inhibits nuclear export of both viral NP and
nuclear export protein (NEP). More specifically,
in vitro pull-down assays revealed that DP2392-
E10 directly binds cellular CRM1, which
mediates nuclear export of NP and NEP –

highlighting CRM1 as a target of interest
[122]. With the same objective, other strategies
consist to target the Raf/MEK/ERK signaling
pathway, known to be involved in the export of

vRNPs [134]. Several MEK inhibitor molecules
have been studied for their ability to inhibit the
replication of influenza viruses, such as CI-1040
or U0126 [124, 125]. Interestingly, Schräder and
colleagues have demonstrated that trametinib
(GSK-1120212), a licensed MEK inhibitor used
for the treatment of malignant melanoma, effi-
ciently blocks influenza viral replication of differ-
ent subtypes in vitro and in vivo [126]
(Table 8.5).

Apical transport and budding, the last part
of the last major step of the replication cycle, is
also the object of several antiviral strategies, nota-
bly by blocking the transport of viral proteins to
the plasma membrane (e.g., clonidine; [130]) or
the cholesterol pathway, which would reduce
virion egress (U18666A; [129]). One of the
most advanced strategies is nitazoxanide, which
was first approved for parasite infections’ treat-
ment. Its antiviral properties against influenza
virus were first reported by Rossignol et al.
[128]. Interestingly, the proposed mode of action
of nitazoxanide against influenza clearly differs
from its anti-parasitic effects, acting at the post-
translational level by selectively blocking the
maturation of the viral glycoprotein
HA. Consecutively, it impacted on intracellular
trafficking and insertion into the host plasma
membrane [135]. This drug is a potent antiviral
against a large panel of circulating strains
[136]. A Phase IIb/III trial showed the efficacy
of nitazoxanide in treating patients with
non-complicated influenza [137], with a further,
currently assessed, Phase III clinical trial
(NCT01610245).

Table 8.5 (continued)

Viral cycle
stage Drug name Mode of action

Research
phase References

Apical transport
and budding

Nitazoxanide Anti-parasitic – Inhibition of HA
maturation and transport

Phase III Rossignol et al.
[128]

Ruxolitinib Virion formation and vRNA
incorporation inhibition

Approved
(myelofibrosis)

Watanabe et al.
[105]

U18666A Hydrophobic polyamine – Reduces
plasma membrane cholesterol level
and decreases virion egress

Pre-clinical Musiol et al.
[129]

Clonidine Alpha2-adrenergic receptors
inhibitor – Inhibits transport of HA
transport to plasma membrane

Matsui et al.
[130]
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8.3.2 Drugs Targeting Host Cell
Signaling Pathways and Host
Response that Are Crucial
for Influenza Replication Cycle

Our increased knowledge of signaling pathways
that are crucial in the response to infection and/or
those hijacked by the virus has allowed many
research teams to explore complementary
antiviral strategies that can be described here
(Table 8.6). The targeting of the ref./MEK/ERK
channel, mentioned above, could of course also
have been listed here. At the crossroads of the

regulatory pathways of the immune response and
the stress response, the NF-kB pathway was one
of the first to be studied (Table 8.6). In the context
of cell biology approaches, it was initially shown
that the anti-inflammatory drug acetylsalicylic
acid (ASA) had interesting antiviral effect against
influenza viruses in vitro and in vivo, via inhibi-
tion of the NF-kB activating IkkB kinase
[138, 157, 158]. Several drugs targeting the
NF-kB pathway have been evaluated since then,
such as pyrrolidine dithiocarbamate or SC7574,
with encouraging in vivo results [123, 139,
140]. BAY81–8781/LASAG (D,L-lysine

Table 8.6 Drugs targeting host cell signaling pathway and host responses that are crucial for influenza replication cycle

Host signaling
pathway/response Drug name Mode of action

Research
phase References

NF-kB pathway Acetylsalicylic
acid

Immune dysregulation
Inhibition of caspase/vRNP export
inhibition

Approved Mazur et al. [138]

Pyrrolidine
dithiocarbamate

Pre-
clinical

Wiesener et al.
[139]

SC75741 Pre-
clinical

Ehrhardt et al.
[140]
Haasbach et al.
[123]

LASAG Phase II Droebner et al.
[141]
Scheuch et al. [142]

C-Jun-N-terminal-
kinase

SP600125 C-Jun N-terminal kinase inhibitor –
Immune dysregulation

Pre-
clinical

Nacken et al. [143]

p38 MAPK NJK14047 Immune dysregulation Pre-
clinical

Choi et al. [144]

HMG-CoA Statins Immunomodulation Phase II Fedson [145],
Mehrbod et al.
[146]

TNF-alpha Etanercept Anti-inflammatory drug – Prevents
TNF-mediated lung injury and edema

Pre-
clinical

Shi et al. [147]

Nox2 Apocynin ROS scavenger, inhibits Nox2 activity Pre-
clinical

Ye et al. [148]
Oostwoud et al.
[149]Ebselen ROS scavenger and glutathione

peroxidase mimetic, inhibits Nox2
Pre-
clinical

Lipoxygenase and
COX pathways

Celecoxib Immune dysregulation Phase III
Mesalazine Immune dysregulation Pre-

clinical
Davidson et al.
[150]
Carey et al. [151]
Zheng et al. [152]

Type III IFN
response

Type III IFN Induction of type III IFN response Pre-
clinical

Davidson et al.
[153]
Kim et al. [154]

Diltiazem Phase II Pizzorno et al.
[155, 156]
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acetylsalicylate-glycine) (Table 8.6), a modified
version of ASA, demonstrates in vitro antiviral
activity against several human and avian influ-
enza viruses. In a mouse infection model, inhala-
tion of LASAG reduced lung viral titers and
protected mice from lethal infection [141]. More
recently, a Phase II proof-of-concept trial com-
pared LASAG versus placebo in patients with
severe influenza. Aerosolized LASAG was
demonstrated improving the time to symptom
alleviation compared to placebo, although the
reduction of viral load in LASAG-treated group
was not statistically significant [142].

Based on clinical observations, 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reduc-
tase inhibitors such as statins (Table 8.6),
approved for indication of cholesterol metabolism
regulators, have demonstrated pleiotropic anti-
inflammatory and immunomodulatory properties,
which could increase survival of patients with
severe influenza [145, 146]. However, most
in vivo studies reported so far failed to clearly
demonstrate such a beneficial effect for influenza
patients [159–161]. Nevertheless, an association
between statin treatment with a reduction of mor-
tality in patients hospitalized with laboratory-
confirmed seasonal influenza was highlighted in
observational studies [162, 163]. A randomized
placebo-controlled Phase II clinical trial
(NCT02056340) to evaluate the potential benefi-
cial effect of atorvastatin in improving the status
severely-ill influenza-infected patients is cur-
rently undergoing. The combination of naproxen
with clarithromycin and oseltamivir twice daily
reduced the both 30- and 90-day mortality and
length of hospital stay of patients hospitalized for
A(H3N2) influenza [164]. Other approaches, at
the pre-clinical validation stages, propose to tar-
get the TNF-alpha (etanercept) or NOX2
(apocynin/ebselen) or lipoxygenase/COX path-
way (celecoxib/mesalazine) pathways [147–152,
165]. A Phase III clinical trial is currently
investigating the benefit of celecoxib for the treat-
ment of severe influenza (NCT02108366). These
molecules could be of interest to better control the
inflammatory response, which is a very important
aspect of the pathology.

Modulation of immune and inflammatory
responses is a therapeutic avenue that has been
much explored, but which may present risks
given the ambivalent aspect of these pathways
in relation to viral replication and the evolution
of the pathology. Indeed, such treatment should
stimulate induction of antiviral genes to control
IAV spread, without driving immunopathology.
In this context, IFN-lambda (Table 8.6) appears
as a potent anti-influenza therapeutic, without the
inflammatory side effects of IFN-alpha treatment
[153]. Intranasal administration of IFN-λ2/3 was
shown to significantly suppress infection of vari-
ous influenza strains, including WS/33 (H1N1),
PR (H1N1), and H5N1 in the mouse lung, and
was accompanied by greater upregulation of ISGs
[154]. More recently, using a transcriptome-based
screening approach, we identified and validated
diltiazem, a calcium channel blocker used as an
anti-hypertensive drug, as a very promising host-
targeted inhibitor of influenza infection. Interest-
ingly, the study of the mode of action revealed
that diltiazem was a strong induced or type III
IFN [156]. An ongoing French multicenter
randomized clinical trial is investigating the effect
of diltiazem oseltamivir bi-therapy compared
with standard oseltamivir monotherapy for the
treatment of severe influenza infections in inten-
sive care units (FLUNEXT trial NCT03212716).

8.4 Perspectives and Concluding
Remarks

Among all the molecules listed in this chapter,
some are already available on the market for other
therapeutic indications and fall within the scope
of drug repurposing. This is the case for
naproxen, diltiazem, LASAG, or nitazoxanide,
for example. Drug repurposing bypasses the
long, risky, and expensive pre-clinical studies,
an early clinical evaluation stage conventionally
used for de novo drug development. It takes
advantage of available resources, as extensive
human clinical, pharmacokinetics, and safety
data, as the starting point for the development
[155] All these aspects make the repositioning
of drugs a very interesting approach, in particular
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to enable a rapid response to the need for new
antiviral strategies in the context of the emer-
gence of a virus with pandemic potential.

Another very interesting perspective is the
interest in combining different antiviral
approaches with each other, including classical
approaches targeting the virus with those
targeting the host cell. The concept of combining
therapies has already been used successfully,
notably in the design of antiretroviral treatments
[166]. Combination therapy can have several
objectives, such as reducing the risk of the emer-
gence of resistance by simultaneously targeting
several viral proteins and/or key host factors, but
also increasing the effectiveness of the treatments
by obtaining additive or synergistic effects.

While there is relatively little convincing evi-
dence to support the use of conventional virus-
targeting antivirals in combination [167, 168],
there are interestingly a growing number of
examples of combinations of oseltamivir with
host-targeted approaches. For example, we have
shown that the combination of diltiazem and
oseltamivir provides a much greater reduction in
viral titers in a reconstructed human epithelium
model compared to single treatments [156]. More
recently, Schloer and colleagues have shown that
a combination treatment of an antifungal mole-
cule, itraconazole, with oseltamivir achieves
much greater antiviral activity compared to
monotherapy, making it possible to consider
reducing the concentrations of drugs used and
thus possibly reducing the problems of adverse
effects and emergence of resistance mutations
[169]. These results open up interesting prospects
for the development of future therapeutic
strategies, particularly for the treatment of severe
forms of influenza. The potential arsenal for fight-
ing influenza virus infections is potentially very
extensive, in particular thanks to the combination
of new molecules targeting the virus, resulting
from docking and structure-based design
strategies, with approaches targeting cellular
factors and signaling pathways. In this context,
the quality and relevance of the pre-clinical
models, as well as the quality of the tools for
evaluating combinations of molecules, are impor-
tant critical elements.

Beyond influenza viruses, many of the
antiviral molecules described in this chapter
have the potential for broader-spectrum use.
Indeed, some virus-targeted strategies can target
viral determinants with very strong similarities
between different viruses. This is particularly the
case with naproxen for which we have previously
demonstrated antiviral activity against both influ-
enza viruses and SARS-CoV-2 [66, 170]. This
property is explained by the fact that the
nucleoproteins N of enveloped, positive-sense,
single-stranded viruses coronavirus (CoV) share
with negative-sense single-stranded viruses such
as influenza A virus the ability to bind to and
protect genomic viral RNA without sequence
specificity and to form self-associated oligomers.
Despite their differences, viruses induce and
divert many common cellular pathways. As a
result, host-targeted approaches can identify
molecules with a broad spectrum of antiviral
activity. An example is diltiazem, for which we
have shown antiviral activity against influenza
viruses [156], but which has been shown to be
effective against other respiratory viruses, such as
SARS-CoV-2 [171, 172], due to its mode of
action involving the type III interferon response.
Efforts to identify anti-influenza molecules there-
fore open up very interesting prospects for the
broader development of antivirals. In many
ways, antiviral research on influenza viruses is
pioneering in this area and provides a starting
point for the study of other emerging viruses.
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