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Preface

Since centuries, our ancestors employed microbes for preparing several traditional
fermented products that at the time were considered health promoting. Although at
that time the presence or importance of these microbes was not much realized, but
with the passage of time the vital role played by these microorganisms in the
evolution of life on earth and in maintenance of environmental health and our
lives was highly acknowledged.

With the knowledge of integrative medicine, we have understood the direct
relationship existing between heath and diet. Hence, the significance of probiotic
microbes, which exist mainly in our gut, has become the spotlight and forefront of
vast research, gasping the attention of academics, students, industrialists, and most
importantly consumers.

In this book, we have focused on the health aspects of probiotic microbes and
their postbiotic metabolites, either added as an adjunct to food (dairy or nondairy
foods) or in animal feed or as a supplement for human use with some health claims.
Several metabolites produced by lactic acid bacteria have been known to improve
the flavor, texture, and sensory characteristics of fermented foods with positive
health impacts on the host when consumed in adequate amounts. The book also
reviews the use of these microbes having metabolic functions, for the development
of novel functional foods and functional pharmaceuticals. This book covers different
aspects of probiotic bacteria and their metabolites in terms of their therapeutic and
technological applications and benefits. We had put our maximum efforts to provide
current knowledge and a holistic review of the related topics considering their wide
use in plants, animals, and man, and it is our hope that the provided information
compiled by the expert authors who contributed in this book would prove a signifi-
cant contribution to the expanding knowledge of probiotics and postbiotics.

In the end, I highly acknowledge and appreciate the contributing authors not only
for sharing their knowledge and expertise but also for their high sense of
co-operations, patience. I express my sincere gratitude to all those who dedicated
their time and energy in preparing these chapters.

Karaj, Iran Naheed Mojgani
Karaj, Iran Maryam Dadar
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Bacillus spp. in Aquaculture - Mechanisms
and Applications: An Update View 1
Hien Van Doan

Abstract

Probiotics have been widely applied in aquaculture industry as sustainable and
environmentally friendly tools to sustain host’s health and the well-being. Among
probiotics, Bacillus species have great potential applications in aquaculture
because they can form the spores that makes them able to survive in the harsh
environmental conditions. Moreover, they are nonpathogenic and nontoxic to
aquacultural environments and animals. In addition, Bacillus species are able to
produce antimicrobial substances making them more suitable candidates com-
pared to other probiotics. In this chapter, we discussed the role of Bacillus in
sustainable aquaculture as alternative strategies to enhance growth performance,
disease resistance, and immune response of different aquaculture farmed animals.

Keywords

Bacillus · Aquaculture · Probiotics · Disease resistance

1.1 Introduction

Aquaculture is one of the world’s fastest growing food sectors (Willer and Aldridge
2019). It is necessary to meet the global seafood demand, which is being accountable
for 50% of the world’s seafood consumption (Gómez et al. 2019). However,
sustainable development of aquaculture industry is constantly defeated by the
outbreak of diseases, which is considered as main obstacles to the economical
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profitability of the industry (FAO 2020). The outbreak of diseases is also linked to
application of antibiotics, posing a significant danger to the public health (World
Health Organization 2014). Thus, new and natural alternatives that prohibit the
incidence of diseases and improve human and animal health are urgently needed.
The use of probiotics, “live organisms that can give a health benefit to the host when
administered in the appropriate amounts,” is a potential alternative to boost the
global health (FAO/WHO 2001). The scientific community has been searching for
the environmentally friendly solutions to prevent aquacultural disease, where
probiotics emerged as crucial alternative to antibiotics due to advert effects of
antibiotics, such as the modulation of microbiota in the aquaculture systems and
the development of resistance bacteria (Kuebutornye et al. 2019; Resende et al.
2012; Ringø 2020; Wang et al. 2019a). Consequently, wide range of probiotics, such
as Bacillus, Enterococcus, Lactobacillus, Lactococcus, Micrococcus, Pediococcus,
Enterobacter, Vibrio, Pseudomonas, Rhodopseudomonas, Roseobacter, and
Shewanella, have been found and applied to improve growth performance, immune
response, and disease resistance of farmed fish and shellfish (Abd El-Rhman et al.
2009; Adel et al. 2017; Feng et al. 2019; Kuebutornye et al. 2019; Li et al. 2006; Li
et al. 2020; Ringø 2020; Yang et al. 2019). In aquaculture, probiotics have been
applied as functional feed additives to boost host’s health and well-being via
increasing growth, supplying nutrient, modulation gut microbiota, enhancing immu-
nity, improving feed efficiency, increasing digestive enzyme activities and digest-
ibility, and controlling diseases (Kuebutornye et al. 2019; Ringø 2020; Selim and
Reda 2015).

Bacillus species are one of the most commonly used probiotics in the aquaculture
industry because of their ability to form endospores, which is a benefit for industrial
applications without losing their characteristics (Hong et al. 2005; Kuebutornye et al.
2019; Cutting 2011; Hai 2015). In addition, Bacillus is known to generate natural
antimicrobial compounds, which are able to prohibit the proliferation of harmful
bacteria in the aquaculture systems and host’s intestines (Abriouel et al. 2011;
Caulier et al. 2019; Sumi et al. 2015). Similarly, Bacillus species are known to
stimulate the digestive enzymes, antioxidant enzymes, relative immune gene expres-
sion, and stress-related genes, which in turn improve disease resistance of the host
against pathogenic bacteria (Elshaghabee et al. 2017; Nayak 2010; Soltani et al.
2019). Bacillus species also increase the use of feed in fish, contributing to better
growth rates (Mukherjee et al. 2019; Nair et al. 2020; Xia et al. 2020). Therefore,
these chapters gather recent data on the role of Bacillus species in promoting growth
performance, disease resistance, and immune response in aquaculture.

1.2 Mode of Action of Probiotics in Aquaculture

Probiotics can affect the host’s immune responses, as well as the interrelationship
between these responses and their gastrointestinal microflora (Hemarajata and
Versalovic 2013; La Fata et al. 2018; Yan and Polk 2011). Over the past decades,
extensive researches on probiotics have provided insight into the significance of
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probiotics and their modes of action and numerous mechanisms have been suggested
(Santacroce et al. 2019; Shi et al. 2016).

1. Probiotics improve feed efficiency and growth rate of farmed fish and shellfish
(Ringø 2020; Romano 2021). They also enhance the host’s appetite and feed
digestion via decomposition of indigestible components, enhance vitamin
productions, and detox diet’s substances (Ashaolu 2020; Cencic and Chingwaru
2010; Hoseinifar et al. 2018).

2. Probiotics could compete the exclusion of gastrointestinal harmful bacteria via
the secretion of peroxide, bacteriocin, siderophore, and lysozyme enzymes
(Vieco-Saiz et al. 2019; Yang et al. 2014). The physiological and immunological
effects are considered as one of the most essential modes of action of probiotics
(Klaenhammer et al. 2012; Plaza-Diaz et al. 2019; Vieco-Saiz et al. 2019).

3. Probiotics could enhance aquaculture animal’s disease resistance to stress caused
by various environmental threats during aquaculture activities (Hlordzi et al.
2020; Mohapatra et al. 2013; Reverter et al. 2020).

These mechanisms display the favorable impacts of probiotics in farmed fish and
shellfish. Future studies, however, on the relationship between probiotics and hosts,
including metagenomics and proteomic studies, is important to clarify mode of
action of probiotics.

1.3 Bacillus Applications in Aquaculture

1.3.1 Improve Growth Performance

The utmost target of aquaculture practice is to acquire the rapidest growth and lowest
production cost. To achieve this goal, several means have been established to boost
growth rate and feed consumption by adding functional feed additives and growth
natural growth promoters (Hernández et al. 2016; Katya et al. 2014). Probiotics are
potential tools to maintain the normal growth, health, and well-being of farmed fish
and shellfish because they serve as nutrients source, vitamins, and digestive
enzymes. These substances for their part will contribute significantly on feed
consumption, nutrients uptake, and host’s growth rate (Lauriano et al. 2016; Nath
et al. 2019). Probiotics consumption have been speculated to improve the host’s
appetite or boost organisms’ digestibility (Irianto and Austin 2002). Probiotics can
improve feed efficiency of fish and shellfish by stimulating the excretion of digestive
enzymes and maintaining the balance of intestinal microbes, which lead to the
improvement of nutrients absorption and utilization, as well as the survival and
growth of the host (Ibrahem 2015; Irianto and Austin 2002). Studies on diets
containing probiotics revealed the possible involvement of these probiotics on the
improvement of intestinal microflora balance and the production of extracellular
enzymes to elevate the feed efficiency and growth of cultured species as growth

1 Bacillus spp. in Aquaculture - Mechanisms and Applications: An Update View 3



promoters (Giri et al. 2013; Ringø et al. 2018). Most of the studies using Bacillus in
aquaculture focus on growth performance and survival rate (Table 1.1).

1.3.1.1 Tilapias
During past decades, Bacillus spp. have been intensively applied in Nile tilapia
aquaculture. Han et al. (2015) indicated that 10 weeks feeding trial with
B. licheniformis significantly enhanced growth performance. However, there were
no significant discrepancies in survival rate and feed conversion ratio (FCR) and in
villi length and muscular layer thickness of anterior intestine among the treatments.
In contrast, Iwashita et al. (2015) reveal that administration of the probiotic had no
significant effect on the growth rates of Nile tilapias, although the fish fed probiotics
had better feed conversion. Likewise, no significant difference in growth perfor-
mance and FCR was observed in Nile tilapia fed Bacillus amyloliquefaciens (Silva
et al. 2015). This can be explained due to the low temperatures during experimental
period. Marcusso et al. (2015) reported that the homeostasis of Nile tilapia rearing at
temperatures below 24 �C could be affected, enhancing the susceptibility to bacterial
infections and impairing the growth performance. No effects were observed on the
growth performance of Nile tilapia fed Bacillus subtilis (Aqua NZ and AP193) and
Bacillus subtilis strains (Addo et al. 2017a, 2017b). These results are not unexpected
given the short duration of this trial. This statement agrees with Apún-Molina et al.
(2009) who observed a tendency toward improved growth in Nile tilapia fry (0.14 g)
only after 75 d of feeding with diets composed of Bacillus or Lactobacillus
probiotics. On the contrary, dietary inclusion of Bacillus subtilis significantly
improved body weight, percent weight gain, specific growth rate, and feed conver-
sion ratio (Liu et al. 2017). It is well documented that Bacillus exoenzymes are very
efficient at metabolizing a large variety of carbohydrate, lipids, and proteins (Liu
et al. 2009). The exoenzymatic activity of Bacillus spp. is one of the main reasons for
its ability to improve digestive enzyme activities (Han et al. 2015). Higher enzyme
activities in the digestive tract enhance digestive capability and growth performance
of the host. It is widely accepted that the level of digestive enzyme activity is a useful
comparative indicator of food utilization rate, digestive capacity, and growth perfor-
mance of the host (Suzer et al. 2008; Ueberschär 1995). Liu et al. (2017) also
reported that 4-week B. subtilis HAINUP40 diet supplementation significantly
increased protease and amylase activities of tilapia. This is because B. subtilis
HAINUP40 could secrete exoenzymes; the improvement of indigestive tract enzyme
activities may be partially due to enzymes synthesized by the bacteria. However, the
proportion of enzymes contributed by bacteria cannot be assessed since the probiotic
may also stimulate the production of endogenous enzymes in the fish (Dawood et al.
2016; Suzer et al. 2008; Wu et al. 2012; Ziaei-Nejad et al. 2006). In the same trend,
supplementation of B. subtilis and B. licheniformis or B. subtilis and Bacillus
licheniformis (BS) combined with traditional Chinese medicine (TCM) significantly
enhanced weight gain and specific growth rate of Nile tilapia and Mozambique
tilapia (Abarike et al. 2018b; Abarike et al. 2018a; Gobi et al. 2018). It is known
that an increase in the body weight gain in fish fed with probiotic supplemented
diets, could contribute to the increase in digestive enzyme activity, increase in
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appetite, increase in the production of vitamin, breakdown of indigestible
components, as well as possible improvement of intestine morphology (Irianto and
Austin 2002). In addition, Bacillus spp. could secret several digestive enzymes like
protease, amylase, and lipase (Cai et al. 2019; Caulier et al. 2019).

1.3.1.2 Shrimps
Shrimp is a commercially important aquatic species with high economic value and
good flavor, which has been widely farmed in the world, particularly in some Asia
countries (Chen et al. 2020a). However, the shrimp industry has suffered severe
economic losses because of the frequent outbreaks of diseases such as early mortality
syndrome (EMS) and white spot syndrome virus (WSSV) (Alavandi et al. 2019;
Castex et al. 2009; Chang et al. 2012). Chemotherapeutant and antibiotics are
usually applied to settle this problem. Unfortunately, prolonged use of
chemotherapeutant and antibiotics could lead to severe outcomes such as resistant
bacteria, drug residues, and toxins, which pose a substantial threat to human beings
and environment (Dash et al. 2015). Therefore, to seek an alternative way to solve
this threat has caused increasing concern (Huynh et al. 2018). Probiotics have been
widely applied in shrimp aquaculture. Jamali et al. (2015) revealed that dietary
enrichment with B. licheniformis and B. subtilis significantly enhanced growth
performance and survival rate of Pacific white shrimp, Litopenaeus vannamei.
Elevation of growth performance has been demonstrated as the Bacillus could
colonize shrimp digestive tract. In P. monodon, Bacillus, when used as a probiotic,
was able to colonize both the culture water and the shrimp digestive tract; the
Bacillus also was able to replace Vibrio spp. in the gut of the shrimp, thereby
increasing shrimp survival (Rengpipat et al. 1998), via out-competing other bacteria
for nutrients and space by producing antibiotics (Moriarty 1998; Verschuere et al.
2000). Similarly, significant improvement in growth performance of L. vannamei
supplemented with Bacillus spp. has been reported in previous studies (Sadat
Hoseini Madani et al. 2018; Sánchez-Ortiz et al. 2016; Swapna et al. 2015). Also,
Amoah et al. (2019) indicated that dietary inclusion of B. coagulans significantly
improved growth performance and feed utilization of Pacific white shrimp. The
nutritive values as reported by Vijayavel and Balasubramanian (2006) is highly
dependent on their biochemical constituents such as crude protein, crude lipid, ash
content, and moisture, which also is noted to be an indication of improved meat
quality. In addition, higher inclusion levels of probiotic BC at 1� 108 CFU g�1 feed
in diets could modulate gut microflora of L. vannamei (Amoah et al. 2019), which
play an ardent role in the digestive enzyme activities and the intestinal health. It has
been well documented that digestive enzymes are known to break down food and
absorb nutrients (Gobi et al. 2018). The digestive enzymes including amylase,
lipase, and trypsin (Rawlings and Barrett 1994; Svendsen 2000) in this study
significantly increased in the treated group compared to the untreated. Similar results
of improved digestive enzyme activities in Litopenaeus vannamei (Zokaeifar et al.
2012) and Fenneropenaeus indicus (Ziaei-Nejad et al. 2006) have been established.
Verschuere et al. (2000) in their work also noted that, Bacillus genus secrets a wide
range of exoenzymes which aid in the nutritional enhancement of the host. More
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recently, significant increase in growth performance, villus number, villus height,
thicker submucosa, and propionic acid content has been reported in L. vannamei fed
different Bacillus species (B. licheniformis, B. cereus, and B. subtilis) singularly or
combined with other probiotics (Pediococcus acidilactici, P. pentosaceus, and
Lactococcus lactis) (Chen et al. 2020a; Chen et al. 2020b; Khademzade et al.
2020; Won et al. 2020a).

Dietary supplementation of Bacillus coagulans on growth and feed utilization of
freshwater prawnMacrobrachium rosenbergii showed that growth performance and
feed utilization were found to be significantly higher (P < 0.05) in prawn fed
109 cfu g�1 diet. In addition, the specific activities of protease, amylase, and lipase
digestive enzymes were significantly higher (P < 0.05) for 109 cfu g�1 diet (Gupta
et al. 2016).

In Marron (Cherax cainii), Ambas et al. (2017) found that synbiotic use of
B. mycoides and organic selenium (OS) significantly improved some immune
parameters of marron, particularly the glutathione peroxidase, and to some extent
total hemocyte counts. However, the synbiotic feed did not synergistically improve
marron growth; in fact, the use of B. mycoides-supplemented diet alone
demonstrated significantly higher growth in marron compared with the growth of
marron fed on other test diets. A study conducted by Ock Kim et al. (2020), it was
indicated that strain Bacillus subtilis isolated from the gut of Penaeus indicus and
added at 2 � 102 CFU 100 g�1 as probiotics in feed, resulted in weight gain of the
juvenile shrimp (16.8� 0.11 g) after 40 days. The weight gain was 16.8� 0.11 CFU
100 g�1 at 10 � 102 CFU 100 g�1 probiotic concentration.

1.3.1.3 Catfish
To the best of our knowledge, there were few studies regarding the use of Bacillus
spp. on this fish. Afrilasari and Meryandini (2016) reported that Bacillus megaterium
PTB 1.4 increased the activity of digestive enzymes and the growth of catfish. It is
known that isolate PTB 1.4 is B. megaterium, where Bacillus spp. group is known to
have ability to produce extracellular enzymes (Moriarty 1998). Probiotic bacteria are
capable of producing digestive enzymes that help fish use feed nutrients and digest
(Bairagi et al. 2002). Generally, endogenous enzyme can be produced by fish, but
the presence of probiotics can improve digestive enzyme. Probiotics improve diges-
tive enzyme activity by stimulating the synthesis of endogenous enzyme in the
digestive tract (Mohapatra et al. 2012). Similarly, combination of B. subtilis,
B. amyloliquefaciens, B. cereus, and a commercial B. amyloliquefaciens signifi-
cantly improved growth performance of C. gariepinus (Reda et al. 2018). This
improvement could be attributed to the production of amylase and protease by the
same strain (Selim et al. 2019). In addition, Bacillus sp. are capable to detoxify the
harmful substance in feed, produce essential vitamins such as vitamin B12 and
biotin, and increase the intestinal villus heights (Ramirez and Dixon 2003; Reda
and Selim 2015; Sugita et al. 1992).

In hybrid catfish (C. macrocephalus � C. gariepinus), Meidong et al. (2017)
indicated that Bacillus siamensis strain B44v, selectively isolated from Thai pickled
vegetables (Phak-dong), displayed a high potential as a probiotic in catfish culture.
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Fish fed diet containing strain B44v (107 CFU g�1 feed) displayed not only no
mortality but also growth improvement. The potential probiotic B. siamensis strain
B44v could produce cellulase and protease, whereas the Bacillus sp. strain B51f
produced protease and amylase enzymes. Ability to produce some hydrolytic
enzymes is beneficial to the host. Enzymes increase the digestion of macromolecules
in animal feed and improve feed intake by reducing digesta viscosity and increasing
nutrient absorption in host animals (Ray et al. 2012).

For striped catfish, Pangasianodon hypophthalmus, the mixture of probiotics
(B. amyloliquefaciens 54A and B. pumilus 47B) isolated from striped catfish at
concentrations of 1 � 108, 3 � 108, and 5 � 108 CFU g�1 was added to the fish
feed and conducted for 90 days. Truong Thy et al. (2017) reported that AWG
(476.6 � 7.81 g fish�1) of fish fed probiotics at 5 � 108 CFU g�1 was significantly
higher than the control (390 � 25.7 g fish�1) after 90 days of feeding, but there was
no significant (P > 0.05) effect of probiotics on FCR and SGR. However, in basa
fish, Pangasius bocourti (Meidong et al. 2018) reported that the administration of
strain B81e isolated from the fish’s gut (1 � 107 CFU g�1) for 60 days had
significant effects ( p < 0.05) on weight gain, specific growth rate, and feed utiliza-
tion efficiency of P. bocourti. This growth improvement might be related to the
capability of the putative probiotics in producing extracellular protease and lipase
within fish gut and thus exert beneficial effects to the digestive processes of the host
fish as bacterial enzymes can help degrade the proteinaceous and lipid substrates
(Ramesh et al. 2015; Ray et al. 2012). The significant reduction in FCR indicated
that the fish utilized dietary nutrients more efficiently when feed was supplemented
with strain B81e.

1.3.1.4 Japanese eel (Anguilla japonica)
Bacillus spp. supplementations have been recently applied in Japanese eel. Lee et al.
(2017) indicated that dietary supplementation of Bacillus subtilis WB60 at
108 CFU g�1 in diet of Japanese eel (Anguilla japonica) resulted in better weight
gain, feed efficiency, and protein efficiency ratio compared to the control and
Lactobacillus plantarum diets. Similar results were observed in Japanese eel fed
Bacillus subtilis WB60 and mannanoligosaccharide (MOS), as well as (Bacillus
subtilis or licheniformis) and (mannan or fructooligosaccharide) (Lee et al. 2018;
Park et al. 2020). There is growing evidence that gastrointestinal bacteria facilitate
the decomposition of nutrients in the host organism and provide physiologically
active materials, such as enzymes, amino acids, and vitamins (Cencic and
Chingwaru 2010; Morowitz et al. 2011; Wang et al. 2020a). These materials can
positively influence the digestive tract and improve feed digestion and utilization
(Bairagi et al. 2004; Dawood et al. 2019; Ramirez and Dixon 2003; Wang et al.
2020b).

1.3.1.5 Sea Cucumber (Apostichopus japonicus)
Supplementation of Bacillus cereus EN25 at 0 (control), 105, 107, and 109 CFU g�1

for 30 days showed no significant effects on growth of sea cucumbers A. japonicus
(Zhao et al. 2016). Growth performance of sea cucumbers was one of the important
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indices to evaluate the effects of potential Bacillus spp. on culturing of sea
cucumbers. Previous studies had proved that dietary Bacillus spp., such as indige-
nous B. subtilis T13 (Zhao et al. 2012), indigenous B. cereus (Yang et al. 2015), and
commercial B. subtilis (Zhang et al. 2010), could improve the growth performance of
sea cucumbers at suitable doses. This difference could be attributed to the differences
in Bacillus strains, sizes of sea cucumbers, sources of sea cucumbers, experimental
period, and experimental conditions. The present study was conducted with the same
source of sea cucumbers at the same experimental period and conditions with Zhao
et al. (2012), except Bacillus strain and initial sizes of sea cucumbers. Recently, Liu
et al. (2020) indicated that dietary supplementation of B. baekryungensis MS1 at
107 cfu g�1 for a total of 60 days significantly improved the growth performance of
the sea cucumber cultured under low temperature. This is related to the mode of
action of probiotics, including the production of digestive enzymes, the production
of antibacterial substances, immune stimulation, and interference of quorum sensing,
all of which depend on the long-term growth and reproduction of probiotics. Studies
have also shown that probiotics work by managing community assembly of the
water and gut microbiota (Selim and Reda 2015; Wang et al. 2017a).

1.3.1.6 Tambaqui (Colossoma macropomum)
Dietary inclusion of Bacillus subtilis (109 UFC g�1) and Saccharomyces cerevisiae
(109 UFC g�1) showed that no differences were found for the growth parameters
between the treatments with probiotics (da Paixão et al. 2017). Although probiotics
are supposed to be beneficial, the literature mentions possible synergistic effects.
The total replacement of indigenous populations with probiotics may not be desir-
able to improve growth performance (Merrifield et al. 2010). The control of the
endogenous balance between pathogenic and beneficial bacteria is still the target of
many studies. According to Merrifield et al. (2010), the lack of improvements
regarding growth and feed use may be explained by the level of gastrointestinal
colonization that could be too high and any possible synergistic effect with the
normal gut microbiota was negated. Thus, it is expected that the beneficial effects of
probiotics for tambaquis are not on its performance but on its health and welfare.
However, in another study with tambaqui, Dias et al. (2018) indicated that the use of
the autochthonous bacteria B. cereus improves the growth performance, productiv-
ity, hematological profile, and survival of tambaqui juveniles. This enhanced growth
performance of fish supplemented with probiotics is probably due to an improve-
ment in digestion as well as an increase in the synthesis and absorption of nutrients
(Hoseinifar et al. 2017). Similar results were obtained by El-Haroun et al. (2006)
reporting increased growth performance and feed efficiency in tilapia fed the
probiotics Bacillus licheniformis and Bacillus subtilis. According to these authors,
the added probiotics improved digestibility, dietary protein, and energy utilization.
These positive effects can be attributed to the capacity of the probiotics to promote
an increase in the gut absorbent surface area, and stimulate and/or produce several
enzymes on the intestinal tract, which improve digestibility and nutrient retention,
leading to higher growth rates (El-Haroun et al. 2006; Ibrahem 2015).
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1.3.1.7 Carp Species
Dietary administration of BioPlus 2B, a probiotic containing Bacillus licheniformis
and B. subtilis, and Ferroin solution indicate that the combination of probiotic and
Ferroin solution represents an effective dietary supplement for improving carcass
quality, growth performance, and hematological parameters in kutum fry (Azarin
et al. 2015). In mrigal fingerlings, Cirrhinus mrigala (avg.wt. 2.5� 0.20 g) were fed
with three different doses (2 � 104, 2 � 105, and 2 � 106 CFU) of Bacillus sp. PP9
admixed with 100 g feed for a period of 60 days. It was found that the feed with
Bacillus concentration of 2 � 104 CFU exhibited significantly higher growth and
lower food conversion ratio compared to the control and other supplemented diets
(Bandyopadhyay et al. 2015). More recently, Qin et al. (2020) found that dietary
inclusion of B. licheniformis at the low-dose 1 � 105 cfu g�1 and the high-dose
(HD) group with 1 � 106 cfu g�1 led to significantly ( p < 0.05) improved percent
weight gain (PWG) and specific growth rate (SGR) parameters. The improvement of
growth performance parameters such as PWG and SGR with increasing
concentrations of supplemented B. licheniformis FA6 observed in this study is in
agreement with Han et al. (2015) observed a significant increase in the growth
performance of tilapia fed with B. licheniformis. The increase in the growth perfor-
mance of grass carp may due to the secretion of digestive enzymes by
B. licheniformis, which improves feed digestibility (Kuebutornye et al. 2019).

In Pengze crucian carp, Carassius auratus, dietary supplementation with
prebiotics β-glucan (BG group) and probiotics Bacillus subtilis (BS group) resulted
in better growth performance than other groups whereas feed efficiency was unaf-
fected by dietary treatments. The textures of muscle in terms of hardness, springi-
ness, cohesiveness, gumminess, chewiness, and resilience were higher in BG and BS
groups than the control group. Supplementation of β-glucan and B. subtilis acted as a
hypolipidemic in terms of decreasing the total cholesterol, high-density lipoprotein,
and low-density lipoprotein, whereas increased the immune responses in serum
measured by acid phosphatase, alkaline phosphatase, and catalase activities. Dietary
supplementation of β-glucan and B. subtilis significantly improved the fold height
and microvillus height in contrast to basal diet. Moreover, β-glucan could signifi-
cantly increase digestive capacity observed in terms of an increase in amylase and
trypsase activities, and B. subtilis significantly increased amylase and lipase
activities in intestine (Cao et al. 2019).

1.3.1.8 Trout
A commercial probiotic (4.2 � 109 CFU g�1 of additive) was supplemented to the
experimental diets at 0% (control), 0.03% (P1; 6 � 103 CFU g�1of diet), or 0.06%
(P2; 1.5 � 106 CFU g�1 of diet) and fed to brown trout (Salmo trutta) and rainbow
trout (Oncorhynchus mykiss) for 9 and 20 weeks, respectively. Rainbow trout
showed significantly better growth performance than brown trout, regardless of the
dietary treatment. No effect of dietary probiotic supplementation was detected on
growth performance and body composition (Ramos et al. 2017). However, in
Caspian Brown Trout (Salmo trutta caspius)Aftabgard et al. (2019) found that the
combined effects of IMOS, a prebiotic, and BetaPlus®, a probiotic containing
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B. subtilis and B. licheniformis, demonstrated a better performance of select growth
indices, including BWI and FCR, than fish that were fed the control diet; these
results were probably due to improved nutrition and digestive processes (Cerezuela
et al. 2011).

1.3.1.9 Other Aquacultured Species
Two probiotics (Virgibacillus proomii and Bacillus mojavensis) were used to study
their effects on the digestive enzyme activity, survival, and growth of sea bass,
Dicentrarchus labrax at various ontogenetic stages in three separate experiments
(Hamza et al. 2016). The results indicated that the two probiotics V. proomii and
B. mojavensis were adequate for improved growth performance and survival and for
healthy gut microenvironment of the host (Hamza et al. 2016).

In the study of Hauville et al. (2016) Florida pompano (Trachinotus carolinus)
larvae were fed either live feed enriched with Algamac 3050 (Control), Algamac
3050, and probiotics (PB), or the previous diet combined with a daily addition of
probiotics to the tank water (PB+). The results indicated that a mix of Bacillus
sp. can promote growth through an early maturation of the digestive system during
the early larval stages of pompano and snook.

In grouper Epinephelus coioides (Yan et al. 2016, juveniles (14.6 � 0.2 g) were
fed either a basal control diet (without probiotic) or the basal diet supplemented with
1.0 � 108 CFU g�1 live (T1) and heat-inactivated B. pumilus SE5 (T2). The results
indicated that the heat-inactivated probiotic significantly improved the final weight,
weight gain (WG), and specific growth rate (SGR) at day 60 and significantly
decreased the feed conversion ratio (FCR) at day 30 and 60, while the viable
probiotic significantly decreased the FCR at day 60 (P < 0.05). This suggested
that live and heat-inactivated B. pumilus could promote the efficient utilization of
dietary nutrients. Interestingly, significant increased growth was only observed in
fish fed the heat-inactivated B. pumilus containing diet for 60 days, but not in fish fed
the live B. pumilus containing diet. Likewise, Hoseinifar et al. (2011) observed that
dietary supplementation of 20 g kg�1 inactive brewer’s yeast Saccharomyces
cerevisiae var. ellipsoideus significantly improved the growth performance in juve-
nile beluga sturgeon (Huso huso). In rock bream, Oplegnathus fasciatus, Kim et al.
(2017), revealed that supplementation of B. amyloliquefaciens spores at a concen-
tration of 1.4 � 106 colony-forming units per gram (CFU g�1) of feed for 90 days
resulted in significant improvements in body weight (BW), weight gain (WG),
specific growth rate (SGR), and food conversion ratio (FCR) when compared with
control group fish.

In hybrid sturgeon, Acipenser schrenckii ♂ and Acipenser baerii ♀, fish were fed
with Bacillus amyloliquefaciens (GB-9) and Yarrowia lipolytica lipase2 (YLL2):
Diet 1 (0-control), Diet 2 (5.0 g kg�1 GB-9), Diet 3 (4.0 g kg�1 YLL2), and Diet
4 (5.0 g kg�1 GB-9 + 4.0 g kg�1 YLL2), respectively (Fei et al. 2018). The results
indicated that supplementations of GB-9 + YLL2 resulted in a significant increase in
final weight, Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) con-
centration, compared with that of control ( p < 0.05). This might be because the
DHA and EPA hydrolyzed by YYL2 improved the poor establishment of the GB-9
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in the gastrointestinal tract of hybrid sturgeon and might have promoted the growth
of GB-9 (Menni et al. 2017). Similarly, combination of B. licheniformis and
B. amyloliquefaciens indicated up to 2.5 times higher survival with probiotic addi-
tion, as well as 20% higher survival 7 days following a transport event. These
benefits could not be explained by faster larval growth. In fact, CONT larvae were
significantly longer than probiotic-treated larvae, likely due to decreased competi-
tion for food in CONT tanks which exhibited significantly lower survival. The other
differing morphometric in this study was oil globule volume which was lowest in
CONT larvae, suggesting that CONT larvae were consuming their endogenous
reserves more quickly than probiotic-treated larvae. Retention of oil globules allows
for a longer transition time to exogenous feeding, and studies indicate larvae that
retain their endogenous reserves longer demonstrate increased survival (Avila and
Juario 1987; Berkeley et al. 2004). The probiotic may alter development of the
digestive tract and thus the start of exogenous feeding, as has been demonstrated in
previous studies involving Bacillus probiotics and common snook (Hauville et al.
2016).

Dietary supplementation of B. subtilis has been reported to improve the growth
performance, feed utilization, amylase, protease, and lipase enzymes of parrotfish
(Oplegnathus fasciatus) and red sea bream (Pagrus major) (Liu et al. 2018;
Zaineldin et al. 2018). The observed improvement in growth performance might
be ascribed to the enhanced intestinal digestive enzyme activity and beneficial
intestinal microbiota (Dawood et al. 2014; Liu et al. 2009; Sun et al. 2010). Bacillus
sp. can produce certain essential micronutrients to promote better growth and feed
utilization of hosts (Sanders et al. 2003). Further, Bacillus species may participate in
digestion processes to break down nutrients such as carbohydrates, proteins, and
lipids by producing extracellular enzymes (Liu et al. 2009; Sun et al. 2010). In
abalone, Haliotis discus hannai, Gao et al. (2018) indicated that the food containing
105 cfu mL�1 Bacillus licheniformis promoted food intake and growth of abalones.
Bacillus licheniformis is an aerobic nonpathogenic bacterium that inhabits the
intestinal microbial community in the form of spores, which can reduce intestinal
pH, reduce ammonia concentration, and promote decomposition of starch and
cellulose. Thus, it is generally considered to be a relatively stable probiotic (Hong
et al. 2005; Vine et al. 2006).

1.3.2 Increase Disease Resistance

Probiotics have been proven as an effective tool for disease prevention in aquacul-
ture (Hoseinifar et al. 2018). Probiotics can interact with or antagonize other enteric
bacteria by resisting colonization or by directly inhibiting and reducing the incidence
of opportunistic pathogens (Chiu et al. 2017). They can also improve host’s health
and well-being via physiological or immune modulation (Butt and Volkoff 2019).
Probiotics can produce effective molecules that have bactericidal activity on intesti-
nal pathogenic bacteria of the host, providing a barrier against the proliferation of
opportunistic pathogens (Martínez Cruz et al. 2012; Seghouani et al. 2017). The
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functional molecules produced during the bactericidal activity are antibiotics,
bacteriocins, siderophores, enzymes and/or hydrogen peroxide as well as the alter-
ation of the intestinal pH due to the generation of organic acids (Verschuere et al.
2000). The inhibition of intestinal related diseases has been reported in several
cultured species by probiotic incorporation in aquafeeds (Ringø et al. 2018; Serra
et al. 2019; Wanka et al. 2018). Thus, it can be confirmed that the ability of aquatic
animals to avoid the infectious diseases mainly depends on the immunomodulatory
effect that happened due to the administration of beneficial bacterial cells.

1.3.2.1 Tilapias
Dietary inclusion of B. licheniformis at 0%, 0.02%, 0.04%, 0.06%, 0.08%, and 0.1%
containing live germ 2 � 1010 CFU/g for 10 weeks significantly increased disease
resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae (Han
et al. 2015). Bacillus strains supplementation in diet could increase disease resis-
tance in fish through the stimulation of both the cellular and humoral immune
function, such as phagocytic activity, lysozyme activity, and complement activity
(Arena et al. 2006; Queiroz and Boyd 1998; Sookchaiyaporn et al. 2020; Zhou et al.
2010). It was reported that Bacillus bacteria are able to outcompete other bacteria for
nutrients and space and can exclude other bacteria through the production of
antibiotics, and as usually lead to the enhanced immunity of fish (Cha et al. 2013).
Similarly, dietary inclusion of B. licheniformis Dahb1 at 107 cfu g�1 could improve
disease resistance of Mozambique tilapia (Oreochromis mossambicus) against
A. hydrophila (Gobi et al. 2018). In terms of Bacillus subtilis HAINUP40, H. Liu
et al. (2017) reported that dietary supplement of B. subtilisHAINUP40 at 108 cfu g�1

can effectively enhance disease resistance of Nile tilapia against Streptococcus
agalactiae. In addition, combination of B. subtilis with S. cerevisiae and
A. oryzae; Bacillus subtilis with Aqua NZ and AP193; Bacillus subtilis strains
SB3086, SB3295, SB3615 with AP193; B. subtilis and B. licheniformis, and Bacil-
lus subtilis and Bacillus licheniformis (BS) combined with traditional Chinese
medicine (TCM) A. hydrophila and S. iniae. Higher intestinal Bacillus spp. counts
can regulate the gut microbiota of fish, selectively stimulate other beneficial probi-
otic bacteria, and depress some potential harmful bacteria (Yang et al. 2012).

1.3.2.2 Shrimps
The efficiency of these isolates in controlling pathogens, which is a key factor in
selecting appropriate bacteria as probiotics, was evaluated (Kesarcodi-Watson et al.
2008). Based on in vitro laboratory results, B4, B6, and B12 inhibited
V. parahaemolyticus; however, only B. subtilis AQHPS001 (B12) showed the
highest antagonistic property against VPAHPND strains. However, among the
VPAHPND strains, there were different sizes of the inhibitory clear zone, and
VPAHPNDAQH3.2 was the only strain that resisted B12. This suggests that there are
varieties of VPAHPND and that each strain may employ different mechanisms in
response to the target B12 (Kewcharoen and Srisapoome 2019). Previous reports
found that Bacillus spp. could produce many kinds of bacteriocins, such as subtilin,
subtilosin, coagulin, megacin, bacillin, bacillomycin, mycosubtilin, toximycin, and
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xanthobacidin, which could reduce pathogen colonization by directly inhibiting
pathogens while having no resulting effects on the virulence resistance genes of
pathogenic bacteria (Desriac et al. 2010; Hammami et al. 2012; Joseph et al. 2013).
Zhao et al. (2015) also reported that Bacillus spp. could secrete quorum-quenching
enzymes, which are expected to be quorum-sensing blockers to reduce disease
infection. These results suggest that B. subtilis AQAHBS001 possesses more effec-
tive characteristics that are important for controlling the various harmful VPAHPND
strains than other candidates. For these reasons, it was further chosen to study its
application on a laboratory scale. Similarly, dietary inclusion of Bacillus subtilis
WB60, Pediococcus pentosaceus, and Lactococcus lactis at 108 CFU g�1 could
improve disease resistance of whiteleg shrimp Litopenaeus vannamei against Vibrio
parahaemolyticus (Won et al. 2020b). Generally, administration of probiotics in the
shrimp diet was shown to decrease mortality rates compared to the CON diet
(Balcázar et al. 2007; Sapcharoen and Rengpipat 2013; Zhang et al. 2009). Previous
studies demonstrated that probiotic supplementation can be used for modulating fish
health and disease resistance (Wang et al. 2018; Zuo et al. 2019). Indeed, probiotics
can beneficially influence the disease resistance of fish to pathogen bacteria by
producing antimicrobial substances and competing with pathogens for physical
occupation of space (Lim et al. 2020). As a result, the enhanced survival and
cumulative survival rates could be due to probiotic supplementation. Chen et al.
(2020a) recently indicated that dietary MOS and/or B. licheniformis supplementation
could positively increase ammonia resistance of Litopenaeus vannamei. According
to Chen et al. (2012), immune parameters decrease after ammonia stress, yet these
parameters recover faster when they were initially stimulated by a probiotic. Faster
recovery of immune parameters might have contributed to the increased survival
after ammonia stress for the Rps. palustris fed shrimp.

1.3.2.3 Catfish
Meidong et al. (2017) revealed that Bacillus siamensis strain B44v and Bacillus
sp. strain B51f, derived from indigenous fermented foods, displayed strongly antag-
onistic activity against the bacterial fish pathogens, A. hydrophila and S. agalactiae.
Both strains effectively inhibited Gram-positive and Gram-negative bacteria,
indicating their broad spectrum as a useful antagonistic property as the two most
striking bacterial fish pathogens in aquaculture in Thailand belong to the genera the
Aeromonas and Streptococcus (Maisak et al. 2013). Besides fish pathogens, the
bacteriocin-like substance from B. siamensis strain B44v inhibited several foodborne
pathogens suggesting potential applications in human foods (Sivamaruthi et al.
2018). Likewise, Reda et al. (2018) showed that supplementation of three autoch-
thonous Bacillus strains (B. subtilis, B. amyloliquefaciens, and B. cereus) and a
commercial B. amyloliquefaciens at a dose of 1 � 1010 CFU kg�1 significantly
increased disease resistance of African catfish against Aeromonas sobria. This may
be returned to the ability of Bacillus spore to resist gastrointestinal conditions,
survive and transit cross gastrointestinal tract, germinate and vegetate with heterolo-
gous antigen expression before being excreted (Duc et al. 2003). In striped catfish,
Truong Thy et al. (2017) indicated that the mixed probiotics of Bacillus
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amyloliquefaciens 54A and B. pumilus 47B isolated from striped catfish
(Pangasianodon hypophthalmus) intestine significantly enhanced disease resistance
of the fish against Edwardsiella ictaluri and ammonia tolerance. Antimicrobial
activity of probiotics has been demonstrated on many in vitro and in vivo studies
in animals. The study of Corr et al. (2007) reported trial mice received protection
from Lactobacillus salivarius against Listeria monocytogenes involved bacteriocin
produced by L. salivariusUCC118. Additionally, antimicrobial activities of
probiotics against pathogens include secretion of hydrogen peroxide (Pridmore
et al. 2008), lactic acid (Fayol-Messaoudi et al. 2005), competitive exclusion (Lee
et al. 2003), and stimulation of immune system (Ryan et al. 2009). The positive
effect on barrier function of probiotics is to protect the host intestine by prevention of
pathogen attachment to epithelial cells on gut surface (Mennigen et al. 2009). In basa
fish, Pangasius bocourti, Meidong et al. (2018) found that B. aerius B81e has
beneficial effects on growth performance, innate immunity, and disease resistance
of P. bocourti against Aeromonas hydrophila and Streptococcus agalactiae. Bacte-
rial co-aggregation has considerable significance in the host gut as co-aggregation
ability of bacterial probiotics might interfere with the ability of pathogenic bacteria
to infect the host and can prevent colonization of the pathogens (Spencer and
Chesson 1994). In addition, B. aerius B81e has an absence of hemolysin and is
susceptible to most of the common antibiotics tested which demonstrated that it is
likely a nonpathogen and has an inability to transfer antibiotic-resistant genes to
recipient bacteria in the host gut, thus preventing the development of antibiotic-
resistant pathogens (Meidong et al. 2018).

1.3.2.4 Japanese eel (Anguilla japonica)
The combination of Bacillus subtilis WB60 and Lactobacillus plantarum
KCTC3928 or Bacillus subtilis WB60 and mannanoligosaccharide (MOS) signifi-
cantly improved disease resistance of Japanese eel against V. anguillarum (Lee et al.
2017, 2018). Similarly, Park et al. (2020) reported that dietary inclusion of B. subtilis
with FOS (BSF) and B. licheniformis significantly increased disease resistance
against Aeromonas hydrophila. Significant increase in disease resistance in these
works may be attributable to the stimulation of cellular and humoral immune
function.

1.3.3 Sea Cucumber (Apostichopus japonicus)

Zhao et al. (2016) indicated that the cumulative mortality after V. splendidus chal-
lenge decreased significantly in sea cucumbers fed with EN25 at 107 CFU g�1

(P < 0.05). The present study confirmed dietary B. cereus EN25 at 107 CFU g�1

could significantly improve disease resistance in juvenile A. japonicus. Recently, Liu
et al. (2020) showed that B. baekryungensisMS1 significantly reduced the mortality
of sea cucumbers infected with Vibrio splendidus. By regulating the expression of
immune-related genes and signaling pathways, B. baekryungensis MS1 improved
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the immunity of sea cucumber in winter and effectively controlled the infection of
pathogenic bacteria such as V. splendidus.

1.3.4 Tambaqui (Colossoma macropomum)

da Paixão et al. (2017) indicated that supplementation of two probiotics Bacillus
subtilis and Saccharomyces cerevisiae at 109 UFC g�1 significantly increased
disease resistance of tambaqui, Colossoma macropomum, against Streptococcus
agalactiae. Similarly, Dias et al. (2018) reported that B. cereus (4.2 � 104,
3.9 � 106 and 3.3 � 108 CFU g�1) supplemented as probiotics to C. macropomum
for 120 days significantly increased disease resistance against Aeromonas
hydrophila. The probiotic promoted a nonspecific response against bacterial infec-
tion, increasing fish survival after challenge with A. hydrophila.

1.3.5 Other Species

In rock bream, Oplegnathus fasciatus, Kim et al. (2017) demonstrated the benefit of
incorporation of B. amyloliquefaciens as a feed supplement to improve the health
status of Oplegnathus fasciatus challenged with Streptococcus iniae. The enhance-
ment of the innate immune response with a B. amyloliquefaciens enriched probiotic
diet and decreased mortality rate, thereby protecting the fish against S. iniae. Simi-
larly, dietary inclusion of B. subtilis at 108 CFU kg�1 significantly increased disease
resistance of parrotfish, Oplegnathus fasciatus, against Vibrio alginolyticus (Liu
et al. 2018). The growth performance and health status improvement of aquatic
animal might be involved with the gut microbiota change after probiotic administra-
tion. The previous study has also demonstrated the positive effects of B. subtilis E20
in terms of intestinal presence and subsequent health benefits for L. vannamei (Liu
et al. 2009; Tseng et al. 2009) and E. coioides (Liu et al. 2010). In the same trend,
dietary inclusion of Bacillus licheniformis significantly improved disease resistance
of abalone, Haliotis discus hannai Ino., against V. parahaemolyticus and grass carp,
Ctenopharyngodon idella, against A. hydrophila (Gao et al. 2018; Qin et al. 2020).

1.4 Immune Effects of Bacillus

Enhancement of host immunity is one important benefit of probiotic diet supple-
mentation (Kuebutornye et al. 2019). As stated by Verschuere et al. (2000),
probiotics can modulate innate immunity through the modulation of humoral
immune responses and expression of immune-related genes. Effects of Bacillus on
immune response of different fish and shellfish are displayed in Table 1.2.
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1.4.1 Tilapias

Selim and Reda (2015) found that Bacillus amyloliquefaciens spores supplementa-
tion at concentrations of 1 � 106 (G3) and 1 � 104 (G2) colony-forming units per
gram (CFU g�1) of feed significantly enhanced serum killing, serum nitric oxide,
serum lysozyme activities, as well as IL-1 and TNF αmRNA levels in the kidneys of
Nile tilapia,O. niloticus. The cell wall components of both Gram-positive and Gram-
negative bacteria are able to stimulate cytokine production (Henderson et al. 1999).
Probiotic bacteria colonize in the gut and are involved with the gut-associated
lymphoid tissue to stimulate systemic signals that end with cytokine production
(Kesarcodi-Watson et al. 2008; Rangavajhyala et al. 1997; Rescigno et al. 2001;
Ringø 2011). Similarly, dietary inclusion of B. subtilis singularly or B. subtilis
combined with S. cerevisiae and A. oryzae; B. subtilis with B. licheniformis;
B. subtilis and Bacillus licheniformis (BS) combined with traditional Chinese medi-
cine (TCM), and B. subtilis with Aqua NZ and AP193 significantly enhanced innate
immune response, growth, relative immune, and antioxidant gene expressions of
Nile tilapia (Abarike et al. 2018a; Abarike et al. 2018b; Addo et al. 2017a, 2017b;
Iwashita et al. 2015; Liu et al. 2017; Wang et al. 2020a). Dietary inclusion of
B. licheniformis has been found to increase alkaline phosphatase, myeloperoxidase,
lysozyme, reactive oxygen species, reactive nitrogen species, superoxide dismutase,
and glutathione peroxidase of Mozambique tilapia (Oreochromis mossambicus)
(Gobi et al. 2018). Also, supplementation of Bacillus licheniformis HGA8B signifi-
cantly improved lysozyme activity and content of complement C3 (Han et al. 2015).
It is well documented that, the immune system can be nonspecifically modulated by
probiotics (Hoseinifar et al. 2015; Lazado and Caipang 2014; Nayak 2010). More-
over, colony formation and adhesion of probiotics in the intestine of fish are
necessary to enhance the immune responses (Ausubel 2005). Interaction between
probiotic cells and immune system are through microbe associated molecular
patterns (MAMPs) consisting of specific cell wall polysaccharides, peptidoglycan,
lipoprotein anchors, and lipoteichoic acids (Hosoi et al. 2003). Cells or components
of immune system can interact with MAMPs by pattern recognition receptor such as
toll-like receptors, C-type receptor, and nucleotide oligomerization domain-like
receptors (Bron et al. 2012; Kleerebezem et al. 2010). This fact may indicate that,
addition of fresh culture of B. licheniformis to the diet maintains a high level of
probiotics in the diet and improve the immune responses in fish. Similar results have
been reported in Nile tilapia fed B. cereus and B. pumilus (Srisapoome and Areechon
2017; Wang et al. 2017b).

1.4.2 Shrimps

In shrimp, B. licheniformis has been intensively applied in Pacific white shrimp
(Litopenaeus vannamei). Amoah et al. (2019) indicated that dietary inclusion of
1 � 108 CFU g�1 feed significantly enhanced activity of lysozyme (LYZ), acid
phosphatase (ACP), superoxide dismutase (SOD), total protein (TP), albumin (ALB)
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in serum, glutathione peroxidase (GSH-Px) in serum and liver of Nile tilapia.
Similarly, dietary administration of B. licheniformis significantly upregulated the
expression of catalase, glutathione peroxidase, superoxide dismutase (SOD),
penaeidin-3a (Pen-3a), and heat shock protein (Hsp-70) genes of Pacific white
shrimp, Litopenaeus vannamei (Chen et al. 2020a, 2020b). In addition, the combi-
nation of B. licheniformis with B. subtilis significantly enhanced lysozyme and
hemocyte cell count and upregulated the expression of proPO, LvToll1 and SOD,
Hsp70, and TGase genes (Sadat Hoseini Madani et al. 2018; Sánchez-Ortiz et al.
2016). Likewise, dietary inclusion of B. subtilis E20 singularly or combined with
other probiotics significantly innate immune response and related immune gene
expression of Pacific white shrimp, Litopenaeus vannamei (Chien et al. 2020;
Won et al. 2020a). Also, Khademzade et al. (2020) reported that dietary inclusion
of Bacillus cereus and Pediococcus acidilactici significantly enhanced total hemo-
cyte count, total protein, and lysozyme activities of L. vannamei. Similar results were
found in tiger shrimp and freshwater pawn fed Bacillus sp. and Bacillus coagulant
where significant increase in total heterotrophic count, amylolytic, cellulolytic, and
proteolytic bacterial counts, phagocytic, lysozyme, and respiratory burst activities
was recorded (De et al. 2018; Gupta et al. 2016). At molecular levels, Sánchez-Ortiz
et al. (2016) indicated that dietary supplementation of Bacillus spp. resulted in
upregulation of proPO, LvToll1, SOD genes, except the TGase gene expression.
Similarly, Tepaamorndech et al. (2019) revealed that dietary inclusion of Bacillus
aryabhattai TBRC8450 significantly upregulated C-type lectin, penaeidin-3, and
heat shock protein 60 genes, as well as enhanced thioredoxin, ferritin,
phenoloxidase, and total antioxidant activities of Pacific white shrimp, Litopenaeus
vannamei. However, no significant increase in total hemocyte count, and superoxide
dismutase were observed (Tepaamorndech et al. 2019).

1.4.3 Carps

In mrigal, Cirrhinus mrigala, Bandyopadhyay et al. (2015) indicated that dietary
inclusion of Bacillus sp. PP9 significantly improved hemoglobin percentage, total
erythrocyte count, total leukocyte count, corpuscular hemoglobin, total serum pro-
tein, albumin globulin ratio, and serum bactericidal activity. Similarly, dietary
supplementation of B. subtilis singularly or combined with other Bacillus sp. and
prebiotics significantly stimulated hematological, antioxidant, and immunological
parameters of Labeo rohita (Ramesh and Souissi 2018); Labeo catla, Catla catla
(Sangma and Kamilya 2015); common carp, Cyprinus carpio (Wang et al. 2017a);
grass carp, Ctenopharyngodon idellus (Zhao et al. 2020), and Pengze crucian carp,
Carassius auratus var. Pengze (Cao et al. 2019). At gene level, Yin et al. (2018)
found that supplementation of B. subtilis resulted in higher protective effects against
lead toxicity, superoxide dismutase, catalase and glutathione, lysozyme and IgM
levels, as well as immune-related genes of gibel carp, Carassius auratus gibelio.
Likewise, dietary inclusion of B. amyloliquefaciens significantly stimulated innate
immune response, antioxidant, and relative immune gene expressions of roho labeo,
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Labeo rohita (Nandi et al. 2018); Indian major carp, Catla catla Singh et al. (2017),
and grass carp, Ctenopharyngodon idella (Qin et al. 2020).

1.4.4 Sea Cucumber (Apostichopus japonicus)

Supplementation of B. cereus singularly or combined with B. subtilis significantly
enhanced total coelomocytes count, acid phosphatase, phagocytosis, respiratory
burst, total nitric oxide synthase, catalase, phenoloxidase, and superoxide dismutase
activities (Li et al. 2015). Recently, Liu et al. (2020) indicated that dietary adminis-
tration of B. baekryungensis significantly enhanced superoxide dismutase, catalase,
alkaline phosphatase, acid phosphatase, nitric oxide synthetase, phagocytosis, respi-
ratory burst activities, and ubiquitin-mediated proteolysis pathway. Ubiquitin-
mediated proteolysis plays an important role in the dynamic regulation of host
defense against pathogen infection. It has been reported that a number of key joint
molecules in the natural immune and antiviral signaling pathways can be modified
by ubiquitination to regulate the antiviral immune response of the body (Chuang and
Ulevitch 2004; Liu and Chen 2011). Ubiquitination plays an important role in the
Toll-like receptor (TLR) signaling pathway. The activation of this pathway leads to
the upregulated expression of Toll-like receptors and enhances nonspecific immu-
nity (Bhoj and Chen 2009). The upregulation of TLR in this study is consistent with
the above theory. In the immune system, mTOR signaling plays an important role in
maintaining immune homeostasis, for example, the survival and migration of natural
immune cells and the secretion of inflammatory factors (Katholnig et al. 2013;
Weichhart et al. 2008). Studies have found that the mTOR signaling pathway
negatively regulates nonspecific immune responses (Weichhart et al. 2008). There-
fore, the downregulation of the mTOR pathway in sea cucumber is beneficial to
improve sea cucumber immunity.

1.4.5 Catfish

In striped catfish, Pangasianodon hypophthalmus, Truong Thy et al. (2017) reported
that dietary inclusion of B. amyloliquefaciens and B. pumilus significantly enhanced
phagocytic, respiratory bursts, and lysozyme activities. Similar results were
observed in basa fish, Pangasius bocourti fed B. aerius (Meidong et al. 2018).
Likewise, combination of B. subtilis, B. amyloliquefaciens, B. cereus, and
B. amyloliquefaciens (Reda et al. 2018).

1.4.6 Japanese eel

Dietary inclusion of B. subtilis and Lactobacillus plantarum significantly enhanced
lysozyme, superoxide dismutase (SOD), myeloperoxidase (MPO), level of intestine
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat shock protein 70, 90,
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and immunoglobulin (IgM). Similarly, dietary inclusion of B. subtilis and
mannanoligosaccharide (MOS) significantly improved nonspecific enzymatic
activities, heat shock protein 70 mRNA levels, and immunoglobulin M expressions
(Lee et al. 2018). More recently, Park et al. (2020) indicated that dietary inclusion of
B. subtilis or B. licheniformis and mannan or fructo oligosaccharide upregulated heat
shock protein 70 and immunoglobulin M genes.

1.4.7 Other Species

Dietary inclusion of B. subtilis singularly or combined with B. licheniformis, Bacil-
lus cereus toyoi, and isomaltooligosaccharides significantly stimulated hematologi-
cal, innate immune response, antioxidant, and gene expression of parrotfish,
Oplegnathus fasciatus (Liu et al. 2018); red sea bream, Pagrus major (Zaineldin
et al. 2018); turbots, Scophthalmus maximus (Fuchs et al. 2017); rainbow trout,
Oncorhynchus mykiss and brown trout, Salmo trutta (Ramos et al. 2017), and
Caspian brown trout, Salmo trutta caspicus (Aftabgard et al. 2019). Regarding B.
amyloliquefaciens, dietary inclusion of B. amyloliquefaciens singularly or combined
with Yarrowia lipolytica lipase 2 (YLL2), B. licheniformis significantly enhanced
innate immune response, antioxidant, and gene expression of rock bream,
Oplegnathus fasciatus (Kim et al. 2017); hybrid sturgeon, Acipenser schrenckii
♂and Acipenser baerii ♀ (Fei et al. 2018), and zebrafish, Danio rerio (Lin et al.
2019).

In juvenile Atlantic salmon (Salmo salar L.), Wang et al. (2019a) reported that
B. velezensis V4 and Rhodotorula mucilaginosa compound led to an increase in acid
phosphatase, IgM, nitric oxide, glutamic pyruvic transaminase, glutamic oxalacetic
transaminase, lysozyme, total superoxide dismutase malondialdehyde, glutathione,
glutathione peroxide, total antioxidant capacity, and malondialdehyde. Similarly,
dietary inclusion of Bacillus licheniformis significantly enhanced hematological,
innate immune response, and Mn-SOD gene expression (Gao et al. 2018). Also,
significant increase in innate immune response and relative immune gene
expressions were observed in grouper, Epinephelus coioides, fed Bacillus pumilus
(Yan et al. 2016) and in olive flounder, Paralichthys olivaceus, fed Bacillus
sp. SJ-10 plus β-glucooligosaccharides (Hasan et al. 2018).

1.5 Conclusion

This chapter addressed the role of Bacillus probiotics in sustainable aquaculture.
Although a wide range of researches have indicated beneficial effects of Bacillus
species on grow rate, immunity, and disease resistance of farmed fish and shellfish,
the investigated effects were species specific. In order to evaluate in vivo adherence
and colonization of Bacillus bacteria within the complex microbial ecosystem of the
intestine, detection of green fluorescence protein (GFP) tagged strains or fluores-
cence in situ hybridization (FISH) targeting 16S rRNA to identify the probiotics on
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the mucus surface must be carried out. Furthermore, mucus-associated (autochtho-
nous) microbiome must be investigated by next-generation sequencing (NGS),
transcriptomic, metagenomics or proteomic profiling, and not the allochthonous
microbiome; mostly investigated per sc. In addition, we recommend that gnotobiotic
approaches are used in future studies, as the gnotobiotic approaches have been
reported to have important roles to understand the function of gut microbiota on
numerous biological processes of the host. Moreover, data is needed to understand
the mechanisms by which the immune system of the intestinal mucosa discriminates
between pathogenic, probiotics, and commensal microorganisms.
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Immunity and Gut Microbiome: Role
of Probiotics and Prebiotics 2
T. R. Keerthi, Rakhie Narayanan, K. Sreelekshmi, and
C. Honey Chandran

Abstract

The chapter comprises the role of gut microbiome and beneficial bacteria (probi-
otic) to boost the overall health. The GI tract is described as the body’s largest
immune organ. The intestinal microbiota has a vital role in the body’s defence
system. The most important factor that determines gut health is the microflora or
gut flora. Our gut comprises diverse and hundreds of trillion bacteria and it comes
in both good, i.e. beneficial bacteria, and bad, i.e. harmful bacteria. So it is
mandatory to keep the beneficial bacteria for a better health. Microbes considered
to be beneficial usually ferment carbohydrates, do not produce toxins and may
have a range of potential benefits for the host. Such microbes include
Bifidobacterium, Eubacterium and Lactobacillus. These beneficial bacteria are
called probiotic. To get flourish good bacteria in the gut we need to feed it with a
proper nutrient called prebiotic. A prebiotic is a special type of soluble
non-digestible plant fibres that nourish the beneficial good bacteria in the gut.
The synergy of the probiotic and prebiotic components in the gut provides a
stable and relatively uniform gut microbiome and thereby boost the gut health and
immune system.

Supplementations of prebiotics improve the establishment of microbial com-
munity which benefits the overall health. By metabolizing these fibres gastroin-
testinal tract community produces short-chain fatty acids which elicit many
immune pathways and recruit immune cells to the gut. The pattern recognition
receptors of immune cells recognize the pathogen-associated molecular pattern
and initiate a cascade of immune pathways that ends in production of cytokines or
helps in recruiting more immune cells. However, the specialized macrophages
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and neutrophils of gut regulate the overexpression of inflammatory cytokines and
help to protect the gut lumen from inflammation.

Keywords

Gut microbiota · Immunomodulation · Probiotics · Prebiotics · Synbiotics ·
Postbiotics

2.1 Introduction

In human body, the gastrointestinal (GI) tract represents the largest contact area
between the body and the external environment. GI tract is the natural habitat of
trillions of microflora collectively known as gut microbiota or microflora. Microflora
coevolved in a symbiotic relationship with the human intestinal mucosa in such a
way that the indigenous microbiota is essential for gut homeostasis. So, the
microbiota is considered as ‘Super organisms’ and is an integral part of the GI tract.

The GI tract harbours millions of bacteria which continuously stimulate the
immune system both by its own structural component and by the metabolic products.
The gut flora elicits not only a local immune response but also systemic response,
thereby affecting whole body. Use of microorganisms that can contribute to a
healthy gut, the probiotics, is common nowadays. The micro organisms inhabiting
the gut environment act as immune eliciting agents and also their metabolites. Both
cell-mediated and humoral immune systems get upregulated. But the gut immune
system has a capacity to regulate the immune response to commensal bacteria.

Nutrients also affect gut immunity, and strategies that restore a healthy gut
microbial community by affecting the microbial composition are being developed
as new therapeutic approaches to treat several inflammatory diseases. The use of
probiotics and prebiotics is a promising strategy for the reduction and prevention of
GI infections. One of the main differences between probiotics and prebiotics is that
probiotics are viable food supplements whereas prebiotics are nonviable food
component. Prebiotics are non-digestible oligosaccharides, remain intact through
the digestive system, and act as nutrients for already established microflora. These
are oligosaccharide that overcomes several limitations of introducing probiotic
bacteria into the GI tract. Therefore, using prebiotics is possibly a more practical
and efficient way to manipulate the gut microflora. Prebiotics are defined as func-
tional components of food which are metabolized by particular commensal bacteria
in the gut conferring various health benefits to the host. Prebiotics reach the large
intestine without changing their chemical and structural properties. Prebiotics are
capable to escape the digestive processes in the upper part of the gut due to their
molecular and structural composition, which makes them essentially resistant to our
digestive enzymes.

Most of the studies about prebiotics have been focused on fructans, such as inulin,
fructo- oligosaccharides (FOS) and galacto-oligosaccharides (GOS). They are also
valuable functional ingredients for the food industry with the potential to improve
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the sensory properties of food. Other important prebiotics include lactulose,
Xylooligosaccharides (XOS) and Mannan-oligosaccharides (MOS). These
prebiotics stimulate the growth of bacteria in the colon, where lactobacilli and
bifidobacteria are respectively preferred. As a product of the beneficial fermentation,
short-chain fatty acid (SCFA) are produced, mainly the butyrate. The most studied
SCFA is butyrate. Butyrate is the major energy source of colonic epithelial cells that
affect the proliferation and barrier function of the colonic epithelium and reduce
DNA damage. Other roles of prebiotics include reducing the level of cholesterol,
reducing constipation, stimulating immune system, reduction of antibiotic-
associated diarrhoea, reduction in inflammation and symptoms associated with
inflammatory bowel disease, protective effects for prevention of colon cancer, and
increasing the uptake of minerals, including calcium, magnesium iron, etc.

Numerous studies prove that a number of mechanisms mediating the health
benefits of beneficial bacterial cells require viability. However, recent evidence
suggests that bacterial viability is not necessary to attain the health-promoting
activity. The newest member of biotic family (including probiotic, prebiotic,
synbiotic, postbiotic,), the postbiotics also known as metabiotics, or simply
metabolites, can confer health promotion in the host. The cell-free supernatants
(CFS) refer to soluble factors (products or metabolic by products) secreted by live
bacteria or released after bacterial lysis. These by-products offer physiological
benefits to the host by providing additional bioactivity. Such soluble factors have
been collected from different bacterial strains; examples include SCFAs, enzymes,
peptides, teichoic acids, peptidoglycan-derived muropeptides, endo and
exopolysaccharides, cell surface proteins, vitamins, plasmalogens, and organic
acids.

Synbiotics refer to nutritional supplements combining probiotics and prebiotic
food ingredients and in a form of synergism that improves the survival and implan-
tation of live microbial dietary supplements in the GI tract, either by stimulating
growth or by metabolically activating the health-promoting bacteria. Synbiotics
products offer the potential to develop prebiotics targeted at specific probiotic strains
to optimize health benefits.

This chapter mainly focused on the effects of dietary components, commensal
bacteria and their metabolites in host immune system.

2.2 An Introduction to Gut Microbiome

The human GI tract harbours very complex population of microorganisms collec-
tively called the gut microbiome that influences the host metabolism, homeostasis
and pathogenesis. The gut microbiota has evolved with host and forms a mutually
beneficial relationship and their number has been estimated to exceed 1014 (Cani
et al. 2008). The colonization of gut is generally believed to begin from birth
onwards and the members colonized immediately depend on the mode of delivery.
Vaginally delivered infants harbour abundant Lactobacilli and Bifidobacteria during
the first few days which is an indication of its abundance in vagina (Aagaard et al.
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2012; Dominguez-Bello et al. 2010) while infants of caesarean session harbour
Clostridium sp. The gut of a healthy adult is predominantly constituted by phylum
Firmicutes and Bacteroidetes followed by Actinobacteria and Verrucomicrobia. Gut
microbiota exhibits great variation in their distribution throughout the GI tract
(Ramakrishna 2007). Streptococcus is the dominant genus in the oesophagus,
duodenum and jejunum. In addition to Streptococcus, Prevotella, Veillonella and
Rothia inhabit the stomach. A few number of Helicobacter pylori is also seen as a
commensal in stomach. Besides Firmicutes and Bacteroidetes, human colon also
inhabits pathogens like Salmonella, Vibrio, E. coli and camphylobacter but
constitutes less than 0.1% of the entire gut microbiome. The intestinal microbiota
exhibits an axial difference from intestinal lumen to mucosal surface.
Bifidobacterium, Enterobacteriaceae, Enterococcus, Clostridium, Lactobacillus,
Ruminococcus, Streptococcus and Bacteroides predominate in the lumen while
Lactobacillus, Enterococcus, Clostridium and Akkermansia predominate in mucosal
layer (Jandhyala et al. 2015). Age, diet, antibiotic consumption, host genetics, and
life events are some of the factors which alter the normal gut microbiota.

2.3 Gut Immune System

Gut is the primary interface between the environment and immune system. It is
important that the gut immune system must eliminate invading pathogens and
simultaneously maintain self-tolerance to avoid autoimmunity. The homeostasis
between the two is essential to maintain host health (Chassaing et al. 2014).

2.3.1 Immune Barriers in the Gut

Gut interacts with all other organs and it is the connection link between external
environment and internal organs. Many microorganisms including pathogens and
food antigens are ingested along with food. It is the gut which determines what
needed and what not. The gut plays a major role in preventing the pathogens. At the
same time the immune systems get boosted. The lining of the gut, mucus itself is a
barrier and it is the first line of defence against pathogens and antigens throughout
the gut. But in Helicobacter pylori infection, gastric neoplasia, colorectal polyps and
cancer, the composition of mucin has altered (Jass and Walsh 2001). The next line of
physical barrier is the gastrointestinal epithelium. It is primarily composed of
enterocytes which selectively transport nutrients, electrolytes and water to underly-
ing cells by various pumps and thereby eliminating the antigens entering into
immune system (Chassaing et al. 2014). Beyond a physical barrier, intestinal
epithelial cells (IEC) secrete cytokines and chemokines which regulate chemotaxis
of both innate and adaptive immune cells. Neutrophils are recruited to the gut by
epithelia derived chemokine IL-8 and epithelial neutrophil attractant 78. The mono-
cyte chemotactic protein (MCP 1), RANTES/CC L5 and macrophage inflammatory
protein (MIP1 α) regulate the chemotaxis of monocytes. T cells are recruited by
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interferon inducible protein (IP-10) and interferon γ. IEC also secretes
proinflammatory cytokines TNF-α and IL-6, nitric oxide synthase, cyclooxygenase
and reactive oxygen species (ROS). Another structural component is Paneth cells
which contain defensin-rich granules (defensin 5 and 6) and can regulate composi-
tion and number of microbes. They also secrete antibacterial peptides like lysozyme
and secretary phospholipase A2. The microfold cells or M cells in the epithelium are
the main site of invasion of pathogens and normal microbiota. The main function of
M cells is antigen sampling that is the uptake of antigen and microorganisms and
presentation to lymphoid follicle. Hence they are also the site of immunological
functions. Intestinal macrophages play an important role in gut immune homeosta-
sis. They do not respond to TLR ligand and secrete proinflammatory cytokines or
generate ROS or nitric oxide. But they express high levels of CD 36 which facilitates
phagocytosis and apoptosis. Intestinal macrophages differ from other tissue
macrophages in its property of “inflammation anergy” in which macrophage
maintains the overexpression of proinflammatory cytokines to normal flora
(Smythies et al. 2005). Intestinal dendritic cells are also distinguishable from other
tissues. They also maintain a tolerogenic immune response by decreased expression
of pattern recognition receptors, increased levels of anti-inflammatory cytokine
IL-10, low level of antigen presentation by reducing co-stimulatory molecules, and
favouring differentiation of Treg and IgA secreting B cells (Coombes and Powrie
2009). Secretary IgA gives protection against Vibrio cholera, Salmonella, rotavirus,
and Escherichia coli. Another obstacle to activation of gut immune system is the
controlled activation of pattern recognition receptors (PRR). TLR-2 (Toll like
receptor 2) and TLR-4, specific for bacterial peptidoglycan and lipopolysaccharide
(LPS), respectively, are abundant in IEC when they are migrating to the surface
epithelium but are barely expressed once they reach the surface. Moreover, the
cofactors for TLR 4 activation, LPS binding protein, CD 14, and myeloid
differentiating factor are also limited in the intestine. Likewise, TLR 5, specific for
flagellin is expressed only on the basolateral side to respond only if invaded by
flagellated microorganisms (Vamadevan et al. 2010; Carvalho et al. 2012). In
addition to all the microbial metabolites especially short-chain fatty acids produced
by gut microbes play a vital role in intestinal immunity by regulating Treg cells
(Smith et al. 2013).

2.4 Gut Microbiota and Immunity

The gut microbial community can regulate local as well as systemic immune
responses. As the gut contains commensal and beneficial bacteria as well as oppor-
tunistic pathogens, the immune system always maintains a balance that will not
disturb the beneficial bacteria, but when there is any increase in pathogens or
antigens it will act immediately to eliminate the effect. The normal flora of the gut
has a profound role in shaping the immune system. Its effect not only confines to gut
but also to other organs.
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2.4.1 Gut-Associated Lymphoid Tissue (GALT) Development

The role of microbiota in GALT development was evident from studies in germ-free
(GF) mice. GALT includes Peyer’s patches, crypt patches and isolated lymphoid
follicle (ILF). Microbial stimulation is required for the development of these tissues.
It was observed that the maturation of ILF was incomplete in mice deficient of PRRs
like TLR2, TLR3, NOD2 (nucleotide binding oligomerization domain 2) and
MyD88 (myeloid differentiation primary response protein 88) suggesting the role
of microbial stimulation for proper development of an immune system (Hendricks
et al. 2014).

2.4.2 Modulation of Innate Immune Cells

As mentioned earlier, antigen-presenting cells (APCs) of gut have co-evolved with
gut microbiota and develop the ability to protect from invading pathogens but
maintaining tolerance to normal flora. The dendritic cells (DCs) of Peyer’s patches
produce high levels of anti-inflammatory cytokine IL-10 when compared to splenic
dendritic cells (Iwasaki and Kelsall 1999). Likewise, the intestinal macrophages
developed the inflammation synergy, the non-inflammatory profile. However,
experiments in GF animal showed a reduction in the number of intestinal dendritic
cells but colonization with E. coli was sufficient for recruiting DCs to intestine.
Similarly, macrophage activity was reduced in GF mice and major histocompatibil-
ity complex class II was also absent (Mikkelsen et al. 2004). The gut flora influences
the neutrophil activity also. The peripheral blood neutrophils of GF rats exhibited
decreased phagocytic activity and impaired generation of free radicles (Ohkubo et al.
1999). The role of gut microbes in systemic immune system is evident from the
enhanced activity of bone marrow neutrophils when cytosolic receptor–nucleotide
oligomerization domain 1 (NOD 1) gets activated by peptidoglycans of gut
microbiota (Clarke et al. 2010). Overall for the complete maturation and activation
of phagocytic cells microbial stimulation is required either the whole organism or the
structural components (antigens). Natural killer (NK) cells produce IFN γ and
perforins to eliminate damaged and infected cells. But the specialized NK cells,
NKp46+ of intestine is limited in its production; instead they express IL-22 and the
nuclear hormone receptor retinoic acid receptor-related orphan receptor gamma
t (RORγt). The absence of this NKp46+ in GF mice explains the role of microbes
in gut for its development (Yan and Polk 2002). Mice lacking IL-22 producing
NKp46+ cells were susceptible to pathogenic infection. An important immune
barrier in gut is IECs. They produce various antimicrobials among which defensins
and cathelicidins are important. There are two types of defensins, alpha and beta.
Human β-defensin 1, 2, and 3 and mice β-defensin 2/3 can regulate the chemotaxis of
immature DCs and memory T cells. Human β-defensin 3 enhances the expression of
co-stimulatory factors CD 40, CD 80 and CD 86 on monocyte and myeloid DCs.
The major function of cathelicidins is antibacterial activity. It shows broad activity
towards gram positive and gram negative bacteria. Other antimicrobials secreted by
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IECs include antimicrobial C-type lectins, angiogenin 4, phospholipase A2 type IIA
and lysozyme C (Muniz et al. 2012). But in GF mice a lower cell proliferation and
expression of genes for these antimicrobial was observed (Reikvam et al. 2011).

2.4.3 Modulation of Adaptive Immune System

CD4+ cells are the most important component of adaptive immune system. Upon
stimulation by microbiota CD4+ cells in Lamina propria (LP) differentiates into its
subtype Th1, Th2, Th17 and Treg cells. In GF mice there is a decrease in CD4+ cells
of LP and defects in spleen and mesenteric lymph nodes were observed. The
polysaccharide A of Bacteroides fragilis induces a Th1 systemic response and also
suppresses Th17 response by signalling through TLR 2 on Treg cells. Conversely,
segmented filamentous bacteria induce LP Th17 cell response (Macpherson et al.
2002). Similarly, CD8+ cells, commonly seen in intraepithelial compartment of gut,
are also minimal in GF mice indicating the critical role of microbial stimulation for
maintaining CD8+ population. Gut microbiota also stimulates the cytolytic activity
of γδT cells, the connecting link between innate and adaptive immunity and their
number is very high in intestine compared to lymph node and spleen. Peyer’s
patches are rich in IgA secreting plasma cells but are considerably low in GF
mice. To induce IgA production in GF mice a large dose of bacteria approximately
109 CFU/ml was required (Hapfelmeier et al. 2010).

2.5 Communication of Gut Microbiota to Other Organs

Gut microbiota communicates to other organs mainly through metabolic, endocrine,
autonomous nervous system and immune pathways. Bacterial fermentation in intes-
tine produces many metabolites. Fermentation of dietary fibres produces many
SCFA like acetate, propionate, butyrate, etc. SCFAs have profound role in many
signalling pathways. The GALT comprises 70% of the body’s immune system and
can be considered as the largest immune organ of the body. Enterohormones,
metabolites, immune cells and cytokines derived from this complex mucosal and
submucosal network have systemic impacts on other organs such as the kidney,
cardiovascular system, bone marrow and brain via the circulation (Yang et al. 2018).
Here we mainly discuss on the immune axis between gut microbiota and other
organs (Fig. 2.1).

The gut lung axis is bidirectional. The metabolites produced by gut microbes
enter the blood stream and reach the lungs, and the immune factors from lungs also
elicit an immune response in gut. The immune cells induced by antigens move
through the lymphatic system between gut and lungs and thereby elicit immune
response in both organs. Kalliomäki et al. (2001) showed that reduction in
Bifidobacteria and increase in Clostridia in gut are associated with asthma. Respira-
tory tract infection by influenza virus reduces Lactobacilli and Lactococci and
increases Enterobacteriaceae. A study in Canadian children whom at the risk of
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asthma showed decreased number of Veillonella, Rothia, Lachnospira and
Faecalibacteria (Arrieta et al. 2015). The gut microbiota not only modulates gut
immune system but also immune progenitor cells in bone marrow. Renal
dysfunctions have been seen in patients receiving bone marrow transplants which
indicate the role of bone marrow in kidney inflammation. In the immune pathway,
immune cells originating from the bone marrow encounter dysbiotic microbiota and
become overactivated within the intestine. Inflammatory cells, cytokines and soluble
urokinase plasminogen activator surface receptor (suPAR) generated in the gut
contribute to renal inflammation via the circulation (Hingorani et al. 2007; Hahm
et al. 2017).

Nutrients and bacterial components reach liver by portal circulation. LPS of gram
negative bacteria circulating through blood triggers low-grade inflammation by TLR
signalling. Besides, they also enhance accumulation of liver fat but this is not evident
in mice lacking LPS receptor CD14/TLR4 (Cani et al. 2008). Duparc et al. (2017)
demonstrated that a deletion of Myd88 in hepatic cells affects gut microbiota.
Administration of Bifidobacterium longum plus inulin type fructans significantly
reduces inflammatory markers (TNF- α and C-reactive proteins), Steatosis and
non-alcoholic steatohepatitis index (Malaguarnera et al. 2012). In alcoholic liver
disease, gut permeability increased due to disruption of tight junction by alcohol and
aldehyde causes the entry of LPS, endotoxin and bacterial DNA into circulation and
thereby enters liver. As a result, the Kupffer cells in liver produces proinflammatory
cytokines through TLR4 or TLR9 (Yoon-Seok and Ekihiro 2013).

Gut microbiome also improves cardiovascular diseases. The accumulation of
foam cells in subendothelium constitutes the first step in arteriosclerosis. The gut
microbiome derived trimethylamine N-oxide (TMAO) increases the expression of

Fig. 2.1 Communication of gut to other systems. Microbial products or microbially derived host
metabolites exerts effect on different organs in different ways
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the receptor SR-A and CD 36 which can ultimately lead to the formation of foam
cells. TMAO can also activate NLRP3 inflammasome (Wright et al. 2000; Duewell
et al. 2012). Also impaired Treg cell increases the incidence of arteriosclerosis
(Duewell et al. 2012). The gut invasion by probiotic can prevent arteriosclerotic
coronary diseases.

A comparative study in GF and conventionally raised mice showed that conven-
tionally raised mice with gut colonization were prone to become obese than GF mice
when consumed with high carbohydrate high fat diet. The proposed mechanism
is that the SCFAs produced by gut bacteria binds with GPR41 (G-protein coupled
receptor) and GPR43 (FFAR3 and FFAR2) and promotes nutrient uptake and
adipose tissue development. GPR41 also induces the secretion of pancreatic peptide
YY (PYY) which increases the transit time. As the transit time increases, more
nutrients will be absorbed, mainly glucose, which also contributes to obesity
(Samuel et al. 2008). A similar study by Schéle et al. (2013) also showed weight
gain in conventionally raised mice. They showed a reduced expression of two genes
for antiobesity peptide, brain derived neurotrophic factor (Bdnf) and proglucagon
(precursor of glucagon like peptide 1, GLP-1). In the presence of gut microbiota,
leptin signalling inhibitor SOCS-3 was upregulated, thereby reducing the sensitivity
to leptin. Since the leptin signal was not received by hypothalamus, mice became
obese. Leptin is a neurohormone which is secreted by adipocytes. Its level is
proportional to fat mass. As the size of adipocytes increases, more leptin is secreted.
Leptin has proinflammatory properties and upregulates TNF-α, IL-16 and IL-12.
This might be a reason of low-grade inflammation in obese persons. Leptin is also
involved in innate and adaptive immunity. It significantly increases CD4+ and CD8+

cells and is also involved in DC maturation, proliferation of monocytes, neutrophil
chemotaxis, reactive oxygen species generation, NK cell proliferation and activation
of various pathways (IRS-1, PI3k/Akt, NF-kB and STAT-3) for production of
interleukins (Naylor and Petri Jr 2016).

Gut microbiota communicates to the brain directly or indirectly through microbe-
derived products. The gut brain axis involves neural, immune and endocrine
pathways. The metabolic products of gut bacteria interact with ganglionated plexus
of enteric nervous system and aids in peristalsis. Inflammation of GI tract increases
anxiety like response and anorexia. It is clear that dysbiosis of the gut causes such
behavioural changes. The gut microbe modulates CNS by neuroimmune and neuro-
endocrine pathways through metabolites like SCFA, bile acids and tryptophan
metabolites. In addition, the microbiota produce or can stimulate the production of
γ-aminobutyric acid, norepinephrine, dopamine and serotonine. The bile acids
induce the production of fibroblast growth factor (FGF19), enter the circulation
and cross blood brain barrier, and activate arcuate nucleus of hypothalamus which
regulates glucose and energy metabolism (Tomlinson et al. 2002). Gut microbes
contribute to the development and function of microglial cells in CNS. Defective and
compromised glial cells found in GF mice can be normalized by SCFA supplemen-
tation or colonization with microbes (Erny et al. 2015). SCFAs also aid in the release
of norepinephrine by activation of GPR 41 (Kimura et al. 2011). Serotonin
(5-hydroxytryptamine, 5-HTP) is an important neurotransmitter which has immune
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functions also. Above 90% of body’s 5-HTP is present in enterochromaffin cells of
intestine. The indigenous spore-forming bacteria of gut, Clostridium sp. promotes
the biosynthesis. The SCFA produced by fermentation induces TPH1 gene expres-
sion and leads to the utilization of tryptophan for 5-HTP. It regulates cytokine
secretion in macrophages and monocytes and reduces the level of TNF-α, IL-1β
and also neutrophil recruitment to the inflammation site and T cell activation (Yano
et al. 2015).

2.6 Probiotics in Immunomodulation

The composition of gut microbiota may vary with age, clinical status, diet, mental
stress, antibiotic consumption, etc. Thus, a dysbiosis of gut leads to impaired
immune system which ultimately leads to inflammatory bowel disease (IBD) and
polyps in gut. The scope of probiotics lies here. Probiotics are live microorganisms
which when administrated in adequate amounts confer a health benefit to the host
(FAO/WHO 2001). The use of microorganisms for improving health was first
appeared in the book of Ilya Ilyich Metchnikof in early twentieth century. Now
probiotics are available in many fermented dairy and non-dairy products as well as
capsules and probiotic drinks. Health benefits of probiotics are numerous. It can be
exploited for all gut-related problems as evident from recent studies.
Antipathogenicity, immunomodulation and anticancer effects of probiotics are the
major research areas. Probiotics exert their beneficial effects through their
metabolites, competitive exclusion of pathogens and by boosting innate and adaptive
immunity of the host.

Most extensively studied organisms in immunomodulation are Lactobacillus and
Bifidobacteria, the classic probiotics. The commercial strain Lactobacillus
rhamnosus GG can be used to treat inflammatory bowel disease (IBD) since it
showed equal effect as that of mesalazine, the drug for IBD (Zocco et al. 2006),
and also exhibits anti-apoptotic property by activating Akt/protein kinase
B. Lactobacillus casei can induce IL-12 production by TLR-2, TLR-4 or TLR-9
deficient mcrophage but not by MyD88 deficient macrophage (Ichikawa et al. 2007).
Another Strain, L. casei DN114001, downregulates TNF-α production by inflamed
mucosa in Crohn’s disease (CD) patients (Borruel et al. 2001). Dietary supplemen-
tation of L. rhamnosus HN001 and L. casei Shirota enhances the number and
cytolytic activity of NK cells in the peripheral blood in adults (Dong et al. 2010;
Gill et al. 2001). The mutant strain of L. acidophilus NCK2025 lacking normal
lipoteichoic acid lowers the level of IL- 12 and TNF α but enhanced IL-10 in DCs
than its wild type (Gill et al. 2001). Administration of B. lactis, L. rhamnosus and
B. breve can upregulate Treg cells, thereby reducing allergic response (Sagar et al.
2014).

An improvement in lung cancer was observed when Enterococcus hirae and
Barnesiella intestinihominis were given along with chemotherapeutics (Daillère
et al. 2016). The colon cancer cell lines CaCO-2 and HT-29 secrete IL-8 when
stimulated by TNF–α. But pretreatment of CaCO-2 by L. rhamnosus GG reduces the
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level of IL-8 and inhibited the secretion of IL-8 in HT-29 when treated with
Bifidobacterium genomic DNA. Clinical trials in humans proved the efficiency of
various probiotics in IBD treatment. Administration of probiotic tablet VSL#3
(consisting of L. plantarum, L. delbrueckii subsp. bulgaricus, L. casei,
L. acidophilus, Bifidobacterium breve, B. longum, B. infantis, and Streptococcus
salivarius subsp. thermophilus) for 9 months reduced the relapse rate of pouchitis.
Similarly, fermented milk containing Bifidobacterium improves ulcerative colitis
(Gionchetti et al. 2000). Oral administration of a combination of Lactobacillus
helveticus R0052 and Bifidobacterium longum R0175 for a period of one month
has been reported to improve depression, anxiety, and lower the level of the stress
hormone cortisol in humans (Messaoudi et al. 2011). A three-week consumption of a
probiotic-containing milk drink that contained Lactobacillus casei Shirota showed
improved mood in healthy volunteers (Benton et al. 2007).

The commensals as well as probiotics have profound effect on the overall
homeostasis of the body. The survivability of these beneficial organisms in gut can
be increased by administration of additional substances called prebiotics.

2.7 Prebiotics

The human gastrointestinal microbiota is one of the most densely populated micro-
bial communities that provide metabolic, immunological and protective functions
that play an important role in human health (Jumpertz et al. 2011; Goldsmith and
Sartor 2014; Wang et al. 2011). Genetics, host physiology (Age of host, diseases,
stress, etc.), and environmental factors including living conditions and use of
medications are the number of factors influenced by the gastrointestinal microbiota
(Wang et al. 2011; Greenblum et al. 2012; Wang et al. 2012a; Goodrich et al. 2014).
However, the key environmental factor is a diet that mediates the composition and
metabolic function of the gastrointestinal microbiota. Actually, the consumption of
specific dietary ingredients, fibre and prebiotics is an important strategy that
stimulates the functions of gut microbiota. Some dietary fibres can also be classified
as prebiotics. Prebiotics are widely defined as a food ingredient that is composed of
oligosaccharides, that are non-digestible by the host and has a beneficial effect on
host health through selective stimulation of the growth and activity of specific
members of the gut microbiota (Vieira et al. 2013). These types of food supplements
have innumerable and composite effects on the intestinal microbiota and gut immune
system. The US recommended daily fibre intake is 25–38 g but only an average of
15 g is consumed (American Dietetic Association), recommending dietary prebiotics
could positively influence total fibre intake.

The major source of prebiotics is dietary fibre. They occur naturally in fruits and
vegetables including chicory root, Jerusalem Artichokes, Raw dandelion Greens,
Garlic, Leeks, Onion, Asparagus, Wheat Bran, Banana, Barley, Oats, Apple, Konjac
root, Cocoa, Burdock root, Flaxseeds, Yacon root, Jicama root, sea weeds, etc. But
they are present in the form of nutritional supplements for maximum health benefits.
Prebiotics are also found in human milk, cow’s milk, and yoghurt in the form of
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galactooligosaccharides. The most important prebiotic, inulin, is generally found in
plants, bacteria and some fungi. It is known in more than 36,000 fruits and
vegetables (Chicory, Banana, Onion, etc.). Soybean oligosaccharides (SOS) are
another type of naturally occurring oligosaccharides present in soybean, which
consist of raffinose and stachyose.

Another major naturally occurring prebiotics is acacia gum. More than 20 studies
have been performed since the late 1970s to understand the relationships between
acacia gum and the colonic microflora. It is a soluble dietary fibre obtained from the
stems and branches of Acacia Senegal and Acacia seyal. It is composed mainly of
complex polysaccharides (95%) that consist of highly branched galactan polymers,
with galactose and/or arabinose side chains, possibly terminated by rhamnose or
glucuronic acid residues (Cherbut et al. 2003b). It is present in different names
including gum Arabic, Gum Hashab, Kordofanian gum and Acacia gum. 80% above
production is used by the food industry for various applications such as food
additives, emulsification, encapsulation, coating, gum cadies, thickener, demulcent,
suspension agent, and foam stabilizer in cosmetics, bath and body products, and
other skincare applications, etc. Gum is traditionally consumed by African and
Indian population to improve digestive comfort and intestinal transit. Acacia gum
induces bifidogenic effect, specific stimulation of SCFAs production and high gut
tolerance. Guar gum, in its intact state, is a gel-forming galactomannan made from
the endosperm of the plant Cyamopsis tetragonolobus, and is composed primarily of
high molecular weight polysaccharides ([1,4]-linked β-D-mannopyranosyl units
with [1,6]-linked α-D-galactopyranosyl side-chain residues (Kolida et al. 2000).
Guar is commonly used in dairy, bakery, cereal and meat products.

Besides a range of naturally occurring prebiotics, there are synthetic prebiotics
including Lactosucrose (LS) produced by combining lactose and sucrose using
β-fructofuranosidase, Lactulose produced from lactose (it is not hydrolysed and
absorbed in the small intestine), and Isomaltooligosaccharide (IMO) produced
from starch (it can be digested in the small intestine) (Mudgil et al. 2014).
Glucooligosaccharides are synthesized with glucosyl transferase, which is produced
by Leuconostoc mesenteroides or may be extracted from β-glucan of oak tree. XOS
can be hydrolysed by Bifidobacteria and Lactobacilli are found to be more effective
than FOS in increasing the population of the probiotics and in decreasing the number
in harmful bacteria.

Prebiotics provide nutrition to the host, inhibit the growth of potential pathogens
and promote beneficial microbiota. The latter causes fermentation of non-digestible
fibres, saves energy, synthesizes vitamin B and K, produces SCFA and polyamines,
leads to improvement in gastrointestinal motility and function, reduces the level of
cholesterol and stimulates the immune system. Other benefits of prebiotic consump-
tion include reduction in the prevalence and duration of infectious and antibiotic-
associated diarrhoea, reduction in inflammation and symptoms associated with
inflammatory bowel disease, protective effects for prevention of colon cancer,
enhancement of the bioavailability and uptake of minerals, including calcium,
magnesium and possibly iron, lowering some risk factors for cardiovascular
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diseases, promotion of satiety and weight loss and prevention of obesity, reduced
constipation and gas formation, etc. (Tomar et al. 2015).

2.7.1 Role of Prebiotics in Gut Immunity

Non-digestible carbohydrates of plant origin are the main substrates of gut micro-
flora and include resistant starch as well as non-starch polysaccharides such as
cellulose, hemi cellulose, pectin and inulin which are referred to as dietary fibre.
But breakdown of dietary fibres is different, based on the matrix and the type of
polysaccharides present. Mucus, slough epithelial cells, lysed bacteria, etc. are the
other principal substrates of the gut microflora. These substrates provide carbon and
energy for growth of the gut microorganisms.

The bacterial metabolism in the human colon is primarily anaerobic, because
more than 99% of the bacteria encountered in an adult’s faecal flora are strict
anaerobes (Moore and Holdeman 1974). The available substrates are broken down
to the SCFAs acetate, propionate, butyrate and the gases hydrogen (H2) and carbon
dioxide (CO2). Formate, Valerate and Carporate are formed in small amounts only.
Lactate, ethanol and succinate are intermediate which are also converted to SCFAs.
The most studied SCFAs is butyrate. The major energy source of colonic epithelial
cells is butyrate that affects the proliferation and barrier function of the colonic
epithelium and reduces oxidative DNA damage (Gibson et al. 1999; Wang et al.
2012b). This energy source is transported into cells via monocarboxylated
transporters, such as MCT–1107 (Ritzhaupt et al. 1998). Butyrates modulate the
immune system in different ways. Initial studies using primary human leukocytes
found that butyrate inhibits IL-12 production by S. aureus stimulated human
monocytes (Säemann et al. 2000). The same study also found that in anti-CD3
stimulated monocytes, butyrate enhanced IL-10 and IL-4 secretion, but inhibited
IL-2 and IFN-gamma release, presenting an anti-inflammatory profile for butyrate.
Other in vitro studies have found that butyrate inhibits vascular cell adhesion
molecule (VCAM-1)-mediated leukocyte adhesion to endothelial cells (Menzel
et al. 2004). Ex vivo studies in mice found that butyrate suppresses colonic immune
activation through Fas-mediated apoptosis of T cells through histone deacetylase
(HDAC) 1-dependent Fas upregulation. This work also provided evidence that
butyrate inhibits IFN-γ-mediated inflammatory signalling, particularly through
STAT1 and iNOS, and that loss of butyrate signalling induces increased expression
of inflammatory genes in mice (Zimmerman et al. 2012). Other in vitro findings
demonstrate that butyrate inhibits the IFN-α/STAT1 axis (Klampfer et al. 2003),
which is important because enhanced activation of STAT1 occurs in CD patients
(Schreiber et al. 2002). Human ex vivo studies found that butyrate was able to
decrease pro-inflammatory cytokine (TNF-β, IL-1b, IL-6) mRNA expression as well
as TNF secretion in intestinal biopsies and peripheral blood mononuclear cells of CD
patients, through inhibition of NFκB (Segain et al. 2000).

Acetate is the second most abundant short-chain fatty acids in the colon. Many
researchers reported the anti-inflammatory effects of acetate on the inflammatory
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response (Maslowski et al. 2009; Kim et al. 2013; Smith et al. 2013), but most
studies mainly focused on butyrate. The receptors GPR41 (Ffar1), GPR109A and
GPR43 (Ffar2) were identified as receptors of butyrate, propionate and acetate,
respectively (Brown et al. 2003). GPR41 is primarily expressed by adipose tissue
and is also present at very low levels in peripheral blood mononuclear cells
(PBMCs). GPR43 expression is entirely related to the immune system and is
particularly high on polymorph nuclear cells (eosinophils and neutrophils).
Maslowski et al. (2009) showed that mice that lack the Gpr43 gene have increased
inflammation and a poor ability to resolve inflammation because their immune cells
cannot bind to SCFAs. Hence they were more susceptible to IBD. However, the
effect of activation of acetate/Gpr43 helps to increase the clinical and inflammatory
response in experimental mice. Intestinal bacteria are useful in the elevation of
human health, but certain components of microflora in genetically susceptible
individuals contribute to various pathological disorders, including inflammatory
bowel disease (IBD). A change in gut microbiota composition is considered as one
of many factors involved in the pathogenesis of either inflammatory bowel disease or
irritable bowel syndrome. For these reasons, the use of prebiotics in IBD such as
Crohn’s disease, ulcerative colitis and pouchitis is very important because they
restore the balance of GI microflora, reducing and preventing intestinal inflammation
(Cherbut et al. 2003a; Schultz et al. 2004; Furrie et al. 2005; Kelly et al. 2005). These
diseases are characterized by persistent mucosal inflammation at different levels of
the GIT (Guarner 2007). In the GIT, the inflammatory capacity of commensal
bacteria varies because some bacteria are pro-inflammatory, whereas others attenu-
ate inflammatory responses.

Prebiotics fermentation in large intestine also produces propionate that shows
anti-inflammatory effects with respect to colon cancer (Makivuokko et al. 2009).
Acetate is largely produced in the colon but reaches a high concentration in the
blood, so we could observe systemic anti-inflammatory effects of this SCFA in other
diseases, such as asthma and arthritis and also decrease in the luminal pH. A low pH
can stimulate the growth of Lactobacilli and Bifidobacteria which are adapted to low
pH. While a low pH suppresses growth of harmful bacteria. SCFAs may play an
important role for the optimal functioning of the colonic epithelium and the absorp-
tion of various cations including Ca2+, Mg2+ and Fe2+.

Recent study investigated the effects of prebiotic oligosaccharide on microbiota
composition and immune function (NK cells, phagocytosis and cytokines) in healthy
elderly volunteers. The study also found significant positive effect on immune
response, evidenced by an improvement in NK cell activity and phagocytosis,
increased secretion of the anti-inflammatory cytokines, IL-10, and decreased secre-
tion of proinflammatory cytokines (IL-6, IL-1β and TNF-α) (Vulevic et al. 2008).
Oral lactulose increases stool water content (Hebden et al. 1999) and increases stool
frequency in constipation (Bass and Dennis 1981; Freedman et al. 1997). This
beneficial effect arises out of a combination of increased bacterial mass, increased
stool water as well as increased colonic tone resulting in accelerated transit (Jouet
et al. 2006). Numerous other poorly absorbed storage carbohydrates are used for
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their laxative effect with important effects on gut microbiota although their specific
mechanism of action is less well worked out than for lactulose.

Prebiotics can administer along with live bacteria (probiotics) that are most able
to utilize that energy source to improve the health benefits to the host. The synergis-
tic combinations of probiotics and prebiotics are called synbiotics. Probiotics,
prebiotics and synbiotics can influence the intestinal microbiota and modulate the
immune response. In the study on the effect of the synbiotic product containing a
blend of probiotics (Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus
thermophilus, Bifidobacterium breve, Lactobacillus acidophilus, Bifidobacterium
longum, Lactobacillus bulgaricus) and fructooligosaccharides, 52 adults
participated for 28 weeks. It was found that supplementation with the synbiotic
resulted in the inhibition of NFκB and reduced production of TNF-a (Eslamparast
et al. 2014). The use of a synbiotic containing five probiotics (Lactobacillus
plantarum, Lactobacillus delbrueckii spp. bulgaricus, Lactobacillus acidophilus,
Lactobacillus rhamnosus, Bifidobacterium bifidum) and inulin as a prebiotic in adult
subjects with NASH (non-alcoholic steatohepatitis) confirmed a significant reduc-
tion of IHTG (intrahepatic triacylglycerol) within six months (Wong et al. 2013). It
is also known that lipopolysaccharides (LPSs) induce proinflammatory cytokines,
such as the tumour necrosis factor alpha (TNF-a), playing a crucial role in insulin
resistance and inflammatory cell uptake in NAFLD (non-alcoholic fatty liver dis-
ease). Other beneficial effects of synbiotics include improved hepatic function in
patients suffering from cirrhosis, prevention of bacterial translocation and reduced
incidence of nosocomial infections in patient post-surgical procedures and similar
intervention.

2.8 Postbiotic Modulation of Immune System

2.8.1 Postbiotics and Host Microbiota

Mechanism of actions of postbiotics is not fully elucidated. One of the possible
immunomodulatory effects by postbiotics in humans could be derived from an
in vitro experiment showing the innate response of macrophages to non-viable
Lactobacillus casei cells. Heat killed bacterial cell suspension increases in expres-
sion of proinflammatory cytokines and increases the transcription of Toll-like
receptors (TLR-2, TLR-3, TLR-4 and TLR-9) (Wang et al. 2013). But the heat
treated Bifidobacterium cells induce cellular immune and anti-inflammatory
responses by inhibiting IL-8 secretion in intestinal epithelial cells obtained from
patients with ulcerative colitis (Imaoka et al. 2008).

The postbiotic compounds from Lactobacilli spp. can exert immunomodulation
activity by increasing levels of Th1-associated cytokines and reducing
Th2-associated cytokines (Ou et al. 2011). Likewise, retinoic acid produced by
L. reuteri 17,938 influences the phenotype and function of mucosal like dendritic
cells and also increases the level of IL-10, CD103 and CD1d and downregulates
inflammation-associated genes like NFκB and TNF (Haileselassie et al. 2016).
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Similar findings were reported in another research conducted by Sokol et al. (2008),
who reported that increased IL-8 levels in Caco-2 cells when exposed to intracellular
extracts and the supernatant fraction of Faecalibacterium prausnitzii. Cultural
supernatants of Lactobacillus rhamnosus GG collected at different stages of growth
(middle and late exponential, stationary, and overnight) were able to protect human
colonic smooth muscle cells (HSMCs) against lipopolysaccharide (LPS)-induced
myogenic damage. Increased level of protective effect was observed with
supernatants of the late stationary phase, which reverted 84.1% of LPS-induced
cell shortening, and inhibited 85.5% of acetylcholine-induced contraction and 92.7%
LPS-induced IL-6 secretion (Cicenia et al. 2016).

Exopolysaccharides and extracellular vesicles (EV) are two important fermenta-
tion products that are associated with health benefits. Exopolysaccharide from
Lactobacillus plantarum 70,810 was found to function as antitumor agents in vitro
by inhibiting the proliferation of HepG-2, BGC-823 and HT-29 tumour cells (Wang
et al. 2014). Extracellular vesicles are spherical lipid bilayer structures that can be
secreted by both gram negative and gram positive bacteria. Extracellular vesicles
have ability to carry a different type of compounds such as nucleic acids, proteins,
phospholipids, polysaccharides and glycolipids. EVs can be differentiated into two;
they are outer membrane vesicles (OMVs) for gram negative bacteria and membrane
vesicles (MVs) for gram positive bacteria. EVs derived from Akkermansia
muciniphila and commensal Escherichia coli have shown respectively to decrease
gut permeability and activate signalling through the intestinal epithelial barrier
in vitro (Chelakkot et al. 2018; Fábrega et al. 2016). However, human clinical trials
are needed to establish safety and potential for the use of EVs as therapeutic agents in
humans.

The potential of innate and adaptive immunity to trigger inflammation in response
to abundant microbial compounds including lipoteichoic acids and S-layer proteins
was elucidated by Konstantinov et al. (2013). The major metabolite of gut bacteria,
the SCFA, has numerous health-promoting activities such as butyrate enhances the
intestinal barrier function and mucosal immunity and butyrate and small amount of
propionate act as histone deacetylase (HDAC) inhibitors, etc. As a result, they
promote anti-inflammatory and immune effects through suppression of lamina
propria macrophages and cause differentiation of dendritic cells from bone marrow
stem cells (Koh et al. 2016; Johnstone 2002; Singh et al. 2010; Lukovac et al. 2014).
SCFAs can also activate some SCFAs specific G-protein-coupled receptors (GPRs)
present on gut epithelial cells and others. It helps to modulate cellular activity (Gill
et al. 2018). SCFAs have antitumor effects, anti-inflammatory effects on the colonic
epithelium, protection from development of immune disorders and control of obe-
sity. Table 2.1 illustrates the important gut bacterial products/metabolites which
elicit an immunomodulatory effect. All these studies suggest that postbiotics have
ability to increase health by providing better and specific physiological effects,
although the exact mechanisms remain to be elucidated.

76 T. R. Keerthi et al.



2.9 Conclusion

Gut is the largest immune organ of the body and it is considered as the second brain
due to the complex enteric, endocrine, neuron and immune networks. The food and
microbiota in the gut influences all organs through these networks. If the
microorganisms inhabiting the gut are beneficial, body homeostasis will be
maintained; otherwise it gets disrupted. Administration of probiotic is an alternative
to a dysbiotic gut. Prebiotics are given along with probiotics for their establishment
and survival. The synergistic effects of both improve gut health. Fermentation of

Table 2.1 Gut microbial metabolites or postbiotics and their role in immunity

Postbiotic metabolites/
compounds Immunomodulatory functions Reference

Butyrate Boost extra thymic Treg cell generation in mice Arpaia et al.
(2013)

Differentiation of colonic Treg cells Furusawa et
al. (2013)

Downregulation of LPS induced
proinflammatory mediators like NO, IL-6 and
IL-12 in macrophages in vitro

Chang et al.
(2014)

Butyrate and propionate Downregulation of proinflammatory cytokines
IL-6, IL-12p40, CCL3, CCL4, CCL5, CCL-9,
CCL10, CCL11 in human monocyte derived DC

Nastasi et al.
(2015)

Butyrate and acetate Increased GPR43 expression and decreased
proinflammatory monocyte chemoattractant
protein MCP-1, IL-β and inhibit oxidative stress
in high glucose treated glomerular mesangial
cells

Huang et al.
(2017)

Aryl hydrocarbon receptor
ligand

Necessary for the postnatal expansion of RORγt Kiss et al.
(2011)

Polyamines Increased production of sIgA in rats Buts et al.
(1993)

Enhances the integrity of IECs Chen et al.
(2007)

Modulates adaptive immunity by accelerating the
maturation of CD4+ and CD8+ T cells

Pérez-Cano
et al. (2010)

Polysaccharide A Anti-inflammatory effect by increasing the levels
of IL-10

Round et al.
(2011)

Maintains balance between TH1 and TH2 cells in
GF mice

Mazmanian
et al. (2005)

Formyl peptides Helps in recruiting leukocytes and production of
proinflammatory cytokines

Liu et al.
(2014)

D-glycero β-D-Manno-
heptose-1,7-bisphosphate

Stimulates innate immune response by activating
NFκB pathway

Gaudet et al.
(2015)

LPS lipopolysaccharide, NO nitric oxide, IL interleukin, CCL chemokines, DC dendritic cells,
RORγt retinoic acid receptor related orphan nuclear receptor gamma, sIgA secretary
immunoglobulin A, IEC intestinal epithelial cells
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prebiotics in gut produces metabolites which circulates through the body and
activates different systems. Usage of synbiotics is an approach to prevent aberrations
in the gut. The latest trend in the biological modulation of immunity is the adminis-
tration of microbial by-products, metabolites or inactivated cells itself. Upon further
studies and clinical trials, the postbiotics can be used as non-specific immune
boosting vaccines which can activate the low-immune children as well as adult.

It is important to maintain proper health and immunity through natural means,
since we are facing new challenges day by day. In current pandemic COVID
19, several positive cases were asymptomatic or they may be immune. Boosting
immunity through functional food helps in preventing infection and staying healthy.
As this chapter indicates, consuming healthy food always improves the health
through the nutrients and metabolites that are present in it or by the by-products of
gut microflora. Age and health status of an individual are always a critical factor that
increases the severity of infection, but a proper diet and hygiene does help improving
the condition.
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Abstract

The significant increase in food allergy severity and prevalence stresses the need
for efficient preventive strategies to reduce life-threatening allergic reactions,
particularly among children. At present, there is no cure for food allergy and
the eviction of triggers remains the main preventive strategy. The gut microbiome
was found to play a key role in the development and pathogenesis of food allergy,
opening new therapeutic possibilities. Differences in gut microbiomes were
reported between allergic and healthy individuals, suggesting that imbalances in
the gut microbial environment likely precede the development of food allergy.
The administration of probiotics and prebiotics has been proposed as a safe
non-allergen specific therapy with promising outcomes for food allergy treat-
ment. Although numerous studies support the effective role of the probiotics and
prebiotics against different allergy conditions, these beneficial impacts appeared
to be highly strain specific and particularly observed in pediatric studies. This
chapter tries to address the potentials of prebiotics and probiotics in the preven-
tion or treatment of food allergy in the light of preclinical and clinical
investigations.
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3.1 Introduction

According to the National Institute of Allergy and Infectious Diseases and
Guidelines for the Diagnosis and Management of Food Allergy promoted by the
National Institutes of Health (NIAID/NIH) in the United States, food allergy is
described as an unfavorable immune response to food properties that affects approx-
imately 5% of adults and 8% of children (Sicherer and Sampson 2006; Boyce et al.
2011). It impacts negatively the life quality of millions of people worldwide,
significantly contributes to morbidity, and is related to important medical costs
(Rona et al. 2007; Boyce et al. 2011). The significant increase in food allergy
severity and prevalence stresses the need for efficient preventive strategies to reduce
life-threatening allergic reaction, chiefly among children with 0–14 years old
(Sicherer and Sampson 2014). The immediate symptoms affecting the respiratory,
skin, cardiovascular, or gastrointestinal systems are mainly the result of immuno-
globulin (Ig) E-mediated food allergic reactions (Boyce et al. 2011; Sicherer and
Sampson 2014). Numerous epidemiological investigations reported an important
increment in hospital admissions for severe food-allergic reactions in children in the
USA, the UK, Australia, Iran, and Italy over the last 10 years (Ahanchian et al. 2016;
Canani et al. 2013; Mullins et al. 2015; Nocerino et al. 2015; Paparo et al. 2019;
Turner et al. 2015). Although more than 170 food allergens have already been
described, the most common and serious allergic reactions are caused by a restricted
list of food including egg, tree nuts, peanuts, milk, shellfish, fish, soy, wheat, and
seeds, with national and geographical variations (Boyce et al. 2011; Sicherer and
Sampson 2014; Chafen et al. 2010). At present, there is no specific cure for food
allergy and the diagnosis of the offending allergen (s) allowing the eviction of
triggers remains the main preventive strategy. However, the accidental consumption
of food allergens is not uncommon and the treatment of symptoms with
glucocorticoids, antihistamines, or epinephrine in case of systemic reactions is
often recommended (Burks et al. 2018; Oyoshi et al. 2014; Sicherer and Sampson
2014). On the other hand, in the past decade, potential therapeutic alternatives for
food allergy have been advocated. These emerging therapies are concentrated on
suppressing Th2 effector cells, increasing levels of allergen-specific IgA or IgG,
decreasing levels of allergen-specific IgE, or increasing regulatory T cells by differ-
ent allergen nonspecific and allergen-specific approaches (Berin 2014; Paparo et al.
2019). Considering the variable efficacy and safety of allergen-specific therapies
(subcutaneous, epicutaneous, sublingual, oral immunotherapy and heat treatment of
food), strict risk evaluation and mitigation strategies are required when using these
methods. Among numerous uncertainties reported for these approaches, we can
mention the observation of adverse events, the onset of eosinophilic esophagitis,
desensitization without proper immunological tolerance, the lack of long-term
efficacy and difficulties to determine optimal dose and duration (Rachid and Keet
2018).

Besides, the gut microbiome was found to play a key role in the development and
pathogenesis of food allergy, opening new therapeutic possibilities. Differences in
gut microbiomes were reported between allergic and healthy individuals, suggesting
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that imbalances in the gut microbial environment likely precede the development of
food allergy (Bunyavanich 2019). In this respect, pioneer studies revealed that the
commensal gut microbiota function and composition significantly affect the immune
tolerance mechanisms following antigen exposure and its dysregulation may lead to
the development of food allergy (Paparo et al. 2019). Recently, the administration of
probiotics and prebiotics has been proposed as a novel non-allergen specific therapy
with promising outcomes for food allergy treatment. Probiotics are described as live
microorganisms that when consumed in adequate amounts as oral supplements or as
a food component induce a health benefit on the host by regulating its microbiota
(Hill et al. 2014). The functions of probiotics are commonly regulated through the
toll-like receptors or TLRs (innate immune system), inducing the production of
regulatory cytokines (TGF-beta and IL-10), improvement of T helper1 differentia-
tion, increased intestinal release of IgA (Rautava et al. 2012), although these impacts
could be different according to the food matrix, probiotic strain, timing, and dose
(Heine 2018). This chapter tries to highlight the potentials of prebiotics and
probiotics in the prevention or treatment of food allergy in the light of preclinical
and clinical investigations.

3.2 Safety of Probiotics and Prebiotics

The safety of probiotics is an important asset leading to its widespread consumption
in various forms (Castellazzi et al. 2013). A wide range of people around the world
ingest probiotics daily because of their purported health benefits and the global
market of probiotic products is steadily expanding (Novik and Savich 2020).
Lactobacilli, lactococci, and bifidobacteria have been recognized as safe (GRAS)
by the United States Food and Drug Administration (FDA). This designation
indicates that these bacteria are considered safe to be added to food, thereby
exempting them from usual tolerance requirements for food additives. Several safety
properties have been taken into account such as the absence of associated disease,
including endocarditis or bacteremia, the absence of antibiotic resistance gene
transformation in the gastrointestinal flora, as well as the absence of metabolic or
toxic impacts on the gastrointestinal system (Aureli et al. 2011). Principally, the safe
properties of a probiotic strain are associated with the absence of virulence factors
and the absence of clinical or veterinary resistance to antibiotics (Daliri et al. 2019).
Besides, the Italian Ministry of Health along with the Scientific Committee on
Animal Nutrition of the EU (SCAN) and the EFSA panel on additives, products
and substances used in animal feed (FEEDAP) proposed to add “the absence of
evidence regarding the possible transfer of genes related to antibiotic resistant” as an
essential parameter for microorganism safety confirmation (Ahanchian et al. 2016;
Snydman 2008). Furthermore, the confirmation of safety and efficacy of probiotic
strains is important for different bacterial strains of the same species which may
reveal variable effects on the host immune system (Aureli et al. 2011). In recent
years, the administration of probiotic products has increased in different medical
conditions, because of their efficacy and safety in clinical practice. However,
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although limited, there are also some risks related to the consumption of probiotics
such as an inappropriate immune response in vulnerable populations, the capability
of some strains to transfer antibiotic resistance genes to pathogens and deleterious
metabolic activities and/or production of host-deleterious metabolites (Daliri et al.
2019). These risks are considerably reduced by the use of prebiotics which represent
the substrate that is selectively utilized by beneficial host microorganisms (Gibson
et al. 2017). Thus, prebiotics are used as nutrients for favorable microorganisms
found in the host such as resident microorganisms and specific probiotics
(Monteagudo-Mera et al. 2019). It is supposed that prebiotics could stimulate
modifications in the gut environment toward a different host microbial ecosystem
through their selective employment by host microorganisms. The effects of
prebiotics on various functional pathways including immunomodulatory effects,
inhibition of pathogenic bacteria, induction of metabolic function and barrier func-
tion have been repeatedly emphasized (Quigley 2019). The fructo-oligosaccharides,
galactooligosaccharides and inulin are considered as safe prebiotics because of their
long history of safe use in many countries (Cremon et al. 2018; Quigley 2019).
However, new prebiotic and probiotic components with different effective impacts
on the host immune system have emerged. Some of these components have been
designated as ‘novel foods’ in the EU. These novel foods are evaluated on a case-to-
case basis and different production methods or sources might be reported as novel
(Kumar et al. 2015).

3.3 Probiotics/Prebiotics and Immunity

The terms probiotics and prebiotics are comprehensive, and various genera, species,
and strains show differential effects on the immune system (Bron et al. 2012).
Several important cofounding factors such as commensal bacteria and diet could
influence the gut immune system. Although specific metabolites/food components
(prebiotics) and live microorganisms (probiotics) may regulate and restore the gut
microbial composition, an accurate knowledge of the associated molecular pathways
behind their impacts on the immune system may provide insights into therapeutic
potential for many diseases, such as allergy (Vieira et al. 2013). Several
investigations showed that TLRs, Nod-like receptors (NLRs), and pattern recogni-
tion receptors (PRRs) play a key role in the development of immune tolerance
mediated by probiotics (Abreu 2010; Kamada et al. 2013). The outcomes of TLRs
stimulation result into the overexpression of pro-inflammatory regulators that facili-
tate the responses of host’s immune systems. Furthermore, some cytoplasmic
proteins, NLRs, could modulate the activation of PRRs and inflammatory responses
through the commensal microbiota that is directly involved in the gut homeostasis
(Yeretssian 2012). However, disorders in the interactions of PRR-microbiota, in gut
mucosal compartment and various cell types, often lead to the development of
diseases and intensified inflammation (Lavelle et al. 2010; Maynard et al. 2012).
The beneficial effects of probiotics in the host have been supported by a plethora of
in vivo studies based on clinical experiments or animal models, suggesting their
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effectiveness in the necrotizing enterocolitis; post-antibiotic-related diarrhea; certain
pediatric allergic disorders; prevention or treatment of acute viral gastroenteritis; and
inflammatory bowel disease (IBD) (Cruchet et al. 2015). The efficient role of
probiotics in the alleviation of numerous dysfunctions of the gastrointestinal system
has also been reported (Vieira et al. 2013). One of the major mechanisms by which
probiotics may decrease gut disorder symptoms is through the elevation of short-
chain fatty acids (SCFAs) production in the colon that decrease the intestinal
permeability and the invasion of pathogenic microorganisms (Morais and Jacob
2006; Szajewska and Kołodziej 2015). Several probiotic effector molecules such as
the cell wall components of bacteria including lipoteichoic acid and peptidoglycan
along with specific proteins effectively contribute to the immune response
(Klaenhammer et al. 2012). Moreover, the regulation of several receptor-mediated
signaling cascades playing a key role in the modulation of the human immune
system is considered as one of the most important functions of these probiotic
effector molecules (Bron et al. 2012). Probiotics also regulate the function of
epithelial cells, natural killers and dendritic cells (Yahfoufi et al. 2018). These
beneficial bacteria could stimulate the Treg cells and polarize the immune pathways
toward Th1.

Prebiotics as not digestible food ingredients are composed of oligosaccharides
that show several profitable impacts on host health by selective induction of the
growth and/or function of particular microbes present in the gut microbiota (Gibson
1998). Fiber carbohydrates such as gums, pectin, cellulose, lignin, and beta-glucan
are not digested in the upper gastrointestinal tract. However, residential gut bacteria
selectively ferment these components into SCFAs, especially propionate, acetate,
lactate, and butyrate which are fermented when reaching the colon (Horrocks and De
Dombal 1978). The majority of the bacteria in the colon are severe anaerobes getting
energy from fermentation. The other profitable role of prebiotics is the stimulation of
the immune system through the regulation of beneficial microbes’ population in the
gut, particularly bifidobacteria and lactic acid bacteria. Also the expression of
cytokines is another important pathway influenced by the consumption of specific
probiotics and prebiotics (Shokryazdan et al. 2017). The mechanism for the benefi-
cial impact of prebiotics on immune system is still largely unknown. Interestingly,
the prebiotic metabolites are involved in the modulation of Treg cells, cytokines, and
chemokines (Yahfoufi et al. 2018), while prebiotic fibers, by promoting short-chain
fatty acids (SCFA) like propionate, lead to the regulation of hepatic lipogenic
enzymes. In addition, it was found that inulin supplementation led to increased
SCFA levels in the caecum of treated animals (Vieira et al. 2013; Artiss et al.
2006). Other possible effects of prebiotics are the modulation of mucin production,
an increase in the number of lymphocyte and/or leucocyte in gut-associated lym-
phoid tissues (GALT) and peripheral blood, as well as elevated IgA secretion by
the GALT.
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3.4 Food Allergy and Microbiota

Numerous microorganisms localized in the gastrointestinal tract influence the func-
tion and shaping of host adaptive and innate immune responses. Several studies
based on both clinical and animal experimentation showed that abnormalities in the
microbiota composition (dysbiosis) can lead to allergic disorders through their
effects on immune system. Food allergies are reported frequently in preschool
children of developing and developed countries with a prevalence reaching 7%
and 10%, respectively (Prescott et al. 2013). However, the etiology of food allergy
is complex. The environmental/developmental/genetic combined effects involved in
the food allergy may explain the global rising trends in recent decades. The key role
of microbiome in the development of food allergy is now well documented
(Bunyavanich 2019). A changed susceptibility to allergic disorders could thus be
linked to the microbial exposure in early childhood (Cahenzli et al. 2013). Further-
more, the comparison of genetically similar populations in Finland and Russia
provided more insights into the close interactions between the host microbiome,
food allergy, and environment (Haahtela et al. 2015). Experiments on animals
revealed that mice with food allergy have a particular gut microbiota signature that
could be responsible for increased allergic susceptibility (Rivas et al. 2013). It has
thus been suggested that a particular microbiota composition related to food allergy
could lead to allergic sensitization and life-threatening anaphylaxis reaction. Several
investigation data proposed that dysregulations in the composition of intestinal
microbiota in infants are involved in the food allergy pathogenesis, although the
precise composition and structure of the intestinal microbiota in human with food
allergy still need to be clarified (Matsui et al. 2019). A study using high-throughput
454 sequencing to target hypervariable V1-V3 regions of the 16S rRNA gene in the
feces investigated the microbial composition and diversity of 34 infants with food
allergy. The results of this study confirmed remarkable modifications in the fecal
microbiota of infants suffering from food allergy, showing a significant association
with the development of food allergy (Ling et al. 2014). In the food allergy popula-
tion, the abundance of Firmicutes phylum dramatically increased, while the concen-
tration of Proteobacteria, Actinobacteria, and Bacteroidetes phyla significantly
decreased. Furthermore, the phyla of Clostridiaceae organisms were commonly
found in infants suffering from food allergy. Detailed analysis of microbiota com-
munity suggested that the dysbiosis of fecal microbiota is associated with several
food allergy-related key phylotypes and may play an effective role in the develop-
ment of food allergy. Another study also revealed that mice and infants with food
allergy had increased IgE and decreased IgA binding to fecal bacteria (Abdel-Gadir
et al. 2019). Interestingly, bacteriotherapy stimulated the expression of the transcrip-
tion factor ROR-γt by Treg cells in a MyD88-dependent manner. These results were
of importance as the transcription factor ROR-γt was found to be deficient and
ineffectively produced by the microbiota of infants and mice affected by food
allergy. Protection by bacteriotherapy is, however, abrogated following the deletion
of Myd88 or Rorc in Treg cells. Thus, by activating a MyD88/ROR-γt pathway in
nascent Treg cells, commensal microbiota is able to protect against food allergy,
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while, inversely, microbial imbalance and dysbiosis may promote disease (Abdel-
Gadir et al. 2019; Aitoro et al. 2017). Comparison of fecal microbiota in a mouse
model of food allergy showed that the development of the disease could be related to
a specific microbiota composition (Diesner et al. 2016; Hussain et al. 2019).
Different animal studies investigated the possible association of food allergy with
intestinal microbiota. For example, a study reported that Germ-free (GF) mice are
more likely susceptible to oral sensitization with cow’s milk protein and ovalbumin
compared to wild-type control mice (Cahenzli et al. 2013). Moreover, mice with
antibiotic-related modifications in their microbiota were more severely affected by
food allergy when compared to untreated mice (Bashir et al. 2004). Interestingly, the
regulation of the microbiota of GF mice with commensals such as Bacteroides
fragilis and Clostridia or short-chain fatty acids and prebiotics promoted the induc-
tion of Treg cells and reduced allergic sensitization (Geuking et al. 2011; Smith et al.
2013; Lathrop et al. 2011). Surprisingly, significant reduction in allergic diarrhea
and increased levels of Treg cells were also reported among mice exposed to the
human microbiota, thereby suggesting that protection or susceptibility to food
allergy could be transmitted (Atarashi et al. 2013). In human, the pathogenesis of
food allergy, atopic dermatitis, and asthma has been associated with altered
microbiota composition (Marrs et al. 2013). However, further investigations are
needed to determine implicated microbial species and their influence on the devel-
opment of allergies. Preclinical and clinical studies on the efficacy of different
probiotics and prebiotics on food allergy are addressed in the rest of the chapter.

3.5 Preclinical Studies on the Efficacy of Probiotics
and Prebiotics in Food Allergy

As discussed above, gut microbiota and its metabolites such as short-chain fatty
acids play a key role in immune tolerance (Paparo et al. 2019). In vivo benefits of
probiotics are difficult to assess through in vitro studies as the extrapolation of the
results is not possible (Berni Canani et al. 2012). The first in vivo studies on the
effect of probiotics on food allergy were performed in Finland and revealed that
hydrolysis of caseins with L. casei GG-derived enzymes resulted in molecules with
suppressive effects on lymphocyte proliferation. These preliminary results suggested
that intestinal bacteria can promote the downregulation of hypersensitivity reactions
to ingested proteins in patients with food allergy (Sütas et al. 1996). It was found that
the probiotic effects on immune tolerance to food allergens could be due to the
regulation of gut microbiota function and composition through the elevation of
butyrate production (Canani et al. 2016) and immune tolerogenic pathways through
the induction of beta-defensins, sIgA production (Hardy et al. 2013), cytokines
regulation and through improving the mucus thickness and gut permeability (Kim
et al. 2008; Niers et al. 2005; Turner et al. 2015). Furthermore, the evaluation of
probiotic and prebiotic impacts on immune cell responses has been performed by
in vitro induction of mononuclear cells in human peripheral blood under selected
strains of probiotics and prebiotics. The treatment of mononuclear cells of human
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peripheral blood with lactic acid bacteria (LAB) strains such as Bifidobacterium
adolescentis and Lactobacillus plantarum induced the production of IFN-γ by T
cells and the regulatory cytokine IL-10 by dendritic cells and monocytes (Cross and
Gill 2001; Karlsson et al. 2004; Mohamadzadeh et al. 2005). The incubation of
mononuclear cells of human peripheral blood with a mixture of probiotics including
L. acidophilus W55, B. infantis W52, L. casei W56, L. salivarius W57, L. lactis
W58, B. lactis W18, and B. longum W51 in children with food allergy induces the
production of Th1 and regulatory cytokines and proliferation of T cell (Flinterman
et al. 2007). Furthermore, after 3 months of incubation with these mixture, the
increase in B and T cell proliferation and a decrease in production of IgE were
also reported in children with food allergy (Flinterman et al. 2007). In addition, a
mixture of probiotics L. rhamnosus GG and B. breve regulated the function of IL-23
and IL-17 inflammatory cytokines, resulting in a decrease in histone acetylation and
an increase in DNA methylation in a 3D coculture model of mononuclear cells
from human peripheral blood and intestinal epithelial cells used as an in vitro model
of the intestinal mucosal immune system (Ghadimi et al. 2008). Animal models for
food allergy were also regularly applied as experimental approaches to assess
probiotics and prebiotics effects. Differential effects of oral ingestion of three LAB
strains including B. infantis 11.322, L. plantarum 08.923 (Lp), and B. coagulans
09.712 (Bc) in a murine model induced by shrimp allergen were reported on
the reduction of Th2-driven intestinal inflammation and other symptoms related to
food-induced anaphylaxis (Fu et al. 2017). Oral supplementation of these probiotics
remarkably increased the population of CD4+ FoxP3+ T cells and alleviated ana-
phylaxis symptoms in sensitized mice by FoxP3 upregulation, GATA-3
downregulation, and mTORC inhibition (Fu et al. 2017). The therapeutic and
preventive effects of oral Clostridium butyricum CGMCC0313-1 on anaphylactic
symptoms in sensitized mice by a β-lactoglobulin (BLG) showed that this bacteria
could increase CD4+ CD25+FoxP3Treg cell and sIgA and alleviate anaphylaxis
symptoms in the spleen of sensitized mice (Zhang et al. 2017). Another study
showed that casein immunogenicity after oral sensitization to cow’s milk could be
induced in neonatal monocolonization of germ-free mice by L. casei BL23 (Maiga
et al. 2017). It was also revealed that oral ingestion of B. infantis improved the
allergic conditions through the reduction of the Th2 cytokines release in the spleen
and ovalbumin-specific IgG1 and IgE contents in the sera of ovalbumin-
sensitized mice. Furthermore, the analysis of gut microbiota showed that the
probiotics-regulated protection was induced by overexpression of Rikenella and
Coprococcus at genus level (Yang et al. 2017). A decrease in IgE, IL-4, and IL-13
levels was reported following the administration of B. infantis CGMCC313-2 in
BLG-sensitized mice (Liu et al. 2017). Another study reported that oral ingestion of
VSL# 3 probiotic-mixture remarkably ameliorate the anaphylactic reactions through
the decrease of the Th2 immune responses in sensitized mice (Sicherer and Sampson
2018). Also, the treatment of probiotic mixture with mouse spleen cells in sensitized
mice increased the production of IL-10 and IFN-γ, while decreasing the allergen-
induced IL-5 and IL-13 production (Schiavi et al. 2011). An oral supplementation of
Lactobacillus rhamnosusGGwith cholera toxin B-subunit as adjuvant decreased the
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cow’s milk allergy in the sensitized Balb/C mice through the regulation of immune
responses by shifting Th2-dominated trends toward Th1-dominated responses
(Thang et al. 2011). Similar studies have been showed that the oral administration
of Lactobacillus rhamnosus GG induced a remarkable decrease of allergic reaction
and of specific production of IgE and IL-4, IL-5, IL-13, in a BLG-sensitized mouse
model (Aitoro et al. 2017). Probiotics also ferment prebiotics or fiber-rich diets to
SCFAs, including acetate, propionate, and butyrate. Evidence data proposed that
SCFAs, especially butyrate, are involved in the homeostasis of mucosal system by
the modulation of epithelial barrier integrity and stimulation of Tregs (Canani et al.
2015). The deficiency of butyrate has been reported in patients with food allergy
symptom (Canani et al. 2016). Therefore, it is possible that various kinds of
dysbiosis led to similar impacts in SCFAs or other production of microbiota-derived
metabolites resulting in allergy occurrence. Clostridia species are known as the main
source of SCFAs in the colon that has been involved in the modulation of
proportions and activation of Tregs functions in the colon (Arpaia et al. 2013;
Smith et al. 2013). SCFAs also stimulate G-protein-coupled receptors involved in
the induction of colonic macrophages and dendritic cells, the secretion of IL-10 and
increase Tregs in the mesenteric lymph nodes. Tregs are a prominent source of
tolerogenic cytokines, like TGF-β and IL-10 that control inflammatory and allergic
responses (Paparo et al. 2019). Another study also reported that dietary vitamin A
together with fiber/SCFAs in a healthy gut microbiota could protect the food allergy
development through the conservation of a tolerogenic mucosal environment and
increase function of tolerogenic CD103+ dendritic cells, resulting to heighten
differentiation of Tregs. In addition, mice lacking GPR109A or GPR43 receptors
for SCFAs showed fewer CD103 + dendritic cells and increased food allergy
symptom (Tan et al. 2016). These researches suggest that the effective role of
different prebiotics on food allergy could be related to their direct effects on the
gut microbiota.

3.6 Clinical Data on the Probiotics Efficacy in Food Allergy

The pioneer studies suggesting the potential of probiotic bacteria to prevent allergic
diseases and regulate the immune response originate from Finland (Majamaa and
Isolauri 1997). There are several investigations on the importance of the gut
microbiota composition in the food allergy pathogenesis that have been supported
by clinical research on the effective role of the probiotics against allergy conditions.
These protective impacts appeared to be strain specific and particularly reported in
the pediatric age (Paparo et al. 2019). On the other hand, tolerance and safety of
prebiotic-containing starter infant formula supplemented with Lactobacillus
paracasei and Bifidobacterium animalis have been reported to be an effective
approach to improve the beneficial bacteria in the intestine to develop a gut flora
(Vieira et al. 2013). However, in a randomized double-blind placebo-controlled trial,
it has been reported that 12 months administration of hydrolyzed formula of B. lactis
BB12 and L. casei CRL431 could not affect the immune tolerance responses to
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cow’s milk proteins in infants with cow’s milk allergy (Hol et al. 2008). Conversely
another study showed that the supplementation of hydrolyzed casein formula
(EHCF) with the L. rhamnosus strain GG is capable to increase the immune
tolerance acquisition in infants with cow’s milk allergy (Berni Canani et al. 2012).
After 12-month treatment period, the group receiving EHCF+ L. rhamnosus strain
GG (78.9%) showed higher proportion of children acquiring tolerance to cow’s milk
proteins when compared to other groups (Canani et al. 2013). More confirmation of a
lower incidence of other atopic manifestations as well as a better resolution of
IgE-regulated cow’s milk allergy also was reported after treatment with EHCF+
L. rhamnosus strain GG after 3-year follow-up in pediatric cohort study (Canani
et al. 2017). These beneficial effects could be because of regulation of L. rhamnosus
strain GG-related immune functions by different pathways such as mast cells,
enterocytes, monocytes, Tregs cell, and DCs (Canani et al. 2013; Ghadimi et al.
2008; Mileti et al. 2009) and by an expansion of butyrate-producing gut microbiota
(Canani et al. 2016). Accordingly, supplementation of EHCF with L. rhamnosus
strain GG in infants with eczema and/or CMA resulted in beneficial effects on the
reducing of inflammation and gastrointestinal symptoms (Isolauri et al. 2000;
Kalliomäki et al. 2010). Furthermore, it has been showed that the administration
of L. rhamnosus strain GG for 4–12 weeks could significantly reduce in atopic
dermatitis score in children aged 4–48 months. These children expressed less
Scoring of Atopic Dermatitis (SCORAD) in the three components, including area
of affected skin, intensity of atopic dermatitis, and patient symptoms, with a signifi-
cant decrease in the mean change of intensity from baseline compared with placebo
(Wu et al. 2017). Moreover, the combination of a prebiotic (galactooligosaccharides)
with four probiotics (L. rhamnosus strain GG, L. rhamnosus LC705, B. breve Bb99,
and Propionibacterium freudenreichii ssp. shermanii) decreased the incidence of
atopic eczema and eczema and tended to decrease IgE-related diseases by
modulating the infant’s gut microbiota (Kukkonen et al. 2007). The same combina-
tion of probiotics without prebiotic did not show any significant impacts (Viljanen
et al. 2005). The addition of prebiotic may have been the critical difference, although
clear evidence of its bifidogenic effect is still lacking. Probiotics have been also
proposed to reinforce the effectiveness of immunotherapy (Rachid and Keet 2018).
Another randomized double-blind placebo-controlled trial study in 62 children
(1–10 years) with peanut allergy showed that the probiotic L. rhamnosus CGMCC
1.3724 and peanut oral immunotherapy (PPOIT) could show effective impacts on
the regulation of the peanut-specific immune response (Tang et al. 2015). For a total
of 18 months, children received a fixed dose of probiotic (or placebo) along with
peanut oral immunotherapy (or placebo) once daily. PPOIT induced high rates of
desensitization (90%) and was related to decreased peanut-specific IgE levels and
peanut skin prick test responses and increased levels of peanut-specific IgG4.
Further investigations comparing food allergy with probiotic and prebiotics in
different situation will be hotly demanded to evaluate associated mechanisms and
relative contributions of probiotics versus prebiotics.
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3.7 Conclusion

The key role of microbiome in the development of food allergy is now well
documented and numerous investigations highlighted the importance of the gut
microbiota composition in the food allergy pathogenesis. Microbial exposure was
found to influence the development of oral tolerance, particularly in childhood.
Dysbiosis and low diversity of gut microbiota have been linked to the pathogenesis
of food allergy. The therapeutic strategy of the prebiotics and probiotics administra-
tion is to restore the gut microbiota in order to improve the microbiome immune
support leading to a better tolerance to allergens. Numerous studies assessed allergy-
preventive capacity of probiotics and prebiotics in food allergy and some very
promising results were obtained following the administration of specific probiotic
strains. Prebiotics also represent an interesting and safe alternative to some
probiotics in allergy prevention, but more studies on various types and combinations
of prebiotics are needed in the context of rigorous clinical investigations. Although,
the use of probiotics in the prevention of food allergy and eczema among children
led to new therapeutic perspectives, many variables such as the duration and mode of
delivery, feeding type, optimal dose and strain combination merit to be addressed in
future studies to confirm their effectiveness in the primary prevention of allergic
disease.
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An Overview of Dairy Microflora 4
Deeba Noreen Baig and Samina Mehnaz

Abstract

An assembly of bacterial and fungal communities in the milk and dairy products
presents a complete picture of dairy born microflora. Fermentation and pasteuri-
zation processes are crucial for the maintenance of microflora. Chemical compo-
sition and initial colonization of bacteria and fungi define the mutualistic pattern
of microbial communities. The abundance and variety of microbial communities
in milk are highly variable and depend upon many factors ranging from the health
of milking animals to the milking practices, storage, and transportation methods.
Probiotics are beneficial microbes, specifically lactic acid bacteria such as
Lactobacilli and Bifidobacteria are generally regarded as safe (GRAS)
microorganisms that benefit the host physiology upon ingestion. Lactic acid
bacteria are the predominant group in all dairy microbiota that display a diverse
range of strains associated with the milk from different animals. Few dairy
microbes behave as pathogens as well as the cause of food spoilage. Human
diseases from milk-borne pathogens are usually due to raw milk or products made
from raw milk. However, the enormous medicinal and health-promoting impact
of microbes and their additives overcome the limited effects of few harmful
bacteria in the dairy environment. In addition to the known advantages of dairy
bacteria, the phenomenon of psychobiotics is introducing a new therapeutic
channel for the treatment of many psychological disorders.
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4.1 Introduction

Dairy microflora refers to the assemblage of microorganisms present in milk and its
associated products. Milk is an important food for human consumption and was
considered as a drink of ancient times that aided in the survival of generations. For
centuries it has served as a cure for a variety of diseases and as an instant source of
energy (Shori 2012). Today, it is considered to host a complex microbial community
with great diversity. The microbial quality of milk products is highly dependent on
their initial microflora colonization. Each kind of milk and dairy products develops a
specific microflora composition. The most common dairy associated microflora
includes Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus,
Pediococcus, Propionibacterium, and Leuconostoc bacterial genera, and Saccharo-
myces and Aspergillus yeast genera (Abushelaibi et al. 2017; Amara and Shibl 2015;
Ogier and Serror 2008).

Fermentation is one of the common and primitive methods for processing and
preservation of the microbial community that has been used worldwide. This method
conserves the food and makes sure that the food is safe for human consumption by
boosting their desired microbial composition. As a source of probiotics, raw and
fermented forms of milk are well known around the world. A combination of fresh
and lyophilized, one or more pure microorganisms (starter cultures) are routinely
used for the fermentation of dairy products (Ahmed and Kanwal 2004; Lourens-
Hattingh and Viljoen 2001; Vinderola et al. 2000). Sugars are metabolized into lactic
acid, which enables food preservation by providing an acidic environment that is
hostile for spoilage microorganisms (Hati et al. 2013). The diversity of
microorganisms is highly varied in raw and fermented milk, as well as in dairy
products like yogurt, cheese, kefir, and dahi. The quality of dairy products entirely
depends on the viable count of microbiota in fresh milk, breeding area, nutritive
condition, breed type, age of the animal, stage of lactation, and milking practices
(Khaskheli et al. 2005). Milk microbiota exploration relies on both culture-
dependent and molecular culture-independent approaches, including sequencing of
16S rRNA clone libraries and metabolomics, based on 16S rRNA gene amplicon
sequencing (Gill et al. 2006; Verdier-Metz et al. 2012).

4.2 Different Sources of Milk Microbes

Various bovine and non-bovine milk sources have been reported in the account of
diverse microflora. Generally, all types of milk carry a variety of bacterial and fungal
strains in its raw and fermented forms. However, complete specie level identification
and accurate count of viable and non-viable microorganisms in pasteurized and
fermented forms are not known yet. Modern high-throughput sequencing
technologies (including second- and third-generation sequencing and combinations
thereof) enabled the detection and inventory of animal-specific complex microbial
communities. Milk microbiota is well documented in various hosts like cows (Addis
et al. 2016; Falentin et al. 2016; Oikonomou et al. 2014), goats, sheep, camel,

102 D. N. Baig and S. Mehnaz



donkeys, buffalo, deer, reindeer, mice (Catozzi et al. 2017; De Los DoloresSoto et al.
2017; McInnis et al. 2015; Quigley et al. 2013; Treven et al. 2015), and human (Hunt
et al. 2011; Jost and Lacroix 2013; Fitzstevens et al. 2017). Nevertheless, significant
differences have been reported in the milk bacterial communities of different
ruminants, such as water deer, reindeer, and goat, suggesting host-microbial adapta-
tion, although the influence of environment and herd management should not be
excluded. Recently, a comparison of bovine and human milk microbiota exhibited
the clear metataxonomic picture and revealed the presence of common genera
including Bifidobacterium, Staphylococcus, Pseudomonas, Streptococcus,
Propionibacterium, Corynebacterium, Bacteroides, and Enterococcus which are
among the most reported taxa in scientific reports related to bovine and human
microbiota (Fig. 4.1) (Oikonomou et al. 2014).

4.2.1 Cow Milk

Culture-independent approaches described cow milk microbiota as one of the
complex and diverse community comprised of 146 bacterial strains, with
Bacteroides, Bifidobacterium, Corynebacterium, Enterococcus, Propionibacterium,
Pseudomonas, Staphylococcus, and Streptococcus being the predominant taxa
(Addis et al. 2016; Boix-Amorós et al. 2016; Cabrera-Rubio et al. 2012;
Derakhshani and Naghizadeh 2018; Hoque et al. 2019; Jiménez et al. 2015; Murphy
et al. 2017; Oikonomou et al. 2014; Urbaniak et al. 2016). Similar milk bacterial
profiles were noticed through the shotgun metagenomic approach (Jiménez et al.
2015; Pärnänen et al. 2018) and described the presence of fungal, protozoal, and
viral DNA. Colostrum microbiome depends on the lactation number and major

Fig. 4.1 Milk-associated microbiota in humans, cow, water buffalo, sheep, and goat. Major taxa,
Red and orange taxa are shared between all human and animal species or present in three species out
of five, respectively. For humans and bovines, taxa size reveals citation frequency
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taxonomic profile; and diversity of primiparous colostrum microbiome includes the
presence of Staphylococcus, Prevotella, Ruminococcaceae, Bacteroidales,
Clostridiales, and Pseudomonas (Lima et al. 2018).

4.2.2 Buffalo Milk

Differential microbial communities and diversity in buffalo milk include major taxa
of Micrococcus, Propionibacterium, Solibacillus, Staphylococcus, Aerococcus,
Facklamia, Trichococcus, Turicibacter, Clostridium, Acinetobacter, Psychrobacter,
and Pseudomonas through Ion Torrent 16S rRNA gene sequencing (Catozzi et al.
2017).

4.2.3 Sheep Milk

Sheep milk is reported to have various genera of lactic acid bacteria. These genera
are identified as Bacillus, Enterococcus, Lactobacillus, Lactococcus, and
Leuconostoc. The species identified for these genera are Bacillus shackletonii,
E. casseliflavus, E. durans, E. faecium, Lactobacillus rhamnosus, Lactobacillus
acidophilus, Lactobacillus plantarum, Lactobacillus casei, Lactobacillus
delbrueckii, Lactococcus lactis ssp. cremoris, Lactococcus lactis ssp. lactis,
Lactococcus lactis subsp. biovar diacetylactis, and Leuconostoc spp. (Acurcio
et al. 2014; Aziz et al. 2009; Medina et al. 2011; Patil et al. 2019).

4.2.4 Goat Milk

Lactic acid bacteria isolated from the goat milk belonged to the genera Enterococ-
cus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Streptococcus.
Isolated species are identified as Enterococcus faecium, Enterococcus durans,
Enterococcus faecalis, Enterococcus hirae, Enterococcus avium, Lactobacillus
acidophilus Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus fermentum,
Lactobacillus lactis subsp. lactis Lactobacillus paracasei, Lactobacillus plantarum,
Lactobacillus rhamnosus, Lactobacillus reutei, Lactobacillus casei, Lactobacillus
bulgaricus, Lactobacillus brevis, Lactobacillus curvatus, Leuconostoc
mesenteroides subsp. mesenteroides, Leuconostoc mesenteroides subsp.
dextranicum, Lactococcus plantarum, Lactococcus lactis subsp. lactis, Lactococcus
raffinolactis, Pediococcus pentosaceus, Streptococcus thermophiles, Streptococcus
salivarius subsp. thermophillus (Medina et al. 2011; Mittu and Girdhar 2015; Perin
and Nero 2014; Pisano et al. 2019).
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4.2.5 Camel Milk

Nowadays an increasing attention is being focused towards consumption of camel
milk. Its composition is closer to human milk than cow’s milk; therefore it is better
for humans especially for infants and children. Camel milk is an enriched source of
Lactococcus, Lactobacillus, Enterococcus, Streptococcus, Weissella, and
Pediococcus. Isolated strains belonged to Enterococcus durans, Enterococcus
faecium, Enterococcus gallinarum, Lactobacillus brevis, Lactobacillus salivarius,
Lactobacillus reuteri, Lactobacillus fermentum, Lactobacillus plantarum, Lactoba-
cillus pentosus, Lactobacillus helveticus, Lactococcus garvieae, Lactococcus lactis,
Leuconostoc pseudomesenteroides, Leuconostoc mesenteroides, Pediococcus
pentosaceus, Pediococcus acidilactici, Weissella sp. t4r2c13, Weissella
paramesenteroides,Weissella confusa, Streptococcus infantarius subsp. infantarius,
Streptococcus equinus, and Str. thermophilus (Abushelaibi et al. 2017; Amara and
Shibl 2015; Bin Masalam et al. 2018; Edalati et al. 2019; Fguiri et al. 2015; Ogier
and Serror 2008; Rahmeh et al. 2019).

4.3 Sources of Contaminant Microbes in Milk

The microbiological quality of dairy products reflects good hygienic practices during
the milking process; raw milk contamination may occur in diseased or infected
animals with environmental bacteria (Kongo et al. 2008). The detection of
mesophilic aerobes and total coliforms is a clear indication of E. coli contamination;
in addition to this the presence of L. monocytogenes and Salmonella spp. revealed
poor microbiological quality of dairy products and cause interference with the native
microbiota of milk. The predominant bacterial species isolated at the dairy farm
comes from the water, feedstuffs, and milking equipment. In this context, Bacillus
licheniformis and Bacillus pallidus act as entry points being in the form of highly
heat-resistant spores in raw milk. The contamination risk of such aerobic spore-
forming bacteria could lead to spoilage of milk and dairy products. The fecal
material attached to the udder skin of milking animals is another source of contami-
nation. Many species of Lactobacillus and Enterococcus are major fecal genera in
the milk from rural and farm animals.

4.4 Indigenous Bacterial Community Composition

4.4.1 Raw Milk

The abundance and variety of microbial communities in raw milk varies and depends
upon many factors ranging from the health of milking animal, to the milking
practices, storage, and transportation methods (Kable et al. 2019; Skeie et al.
2019). The immediate cold storage of fresh milk reduces the bacterial growth and
keeps milk in its native load of microflora (Li et al. 2018). The breeding practices,
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lactation period, and availability of feeding plants in specific geographic location of
herd are important factors for the change of microbial community patterns in the
milk (Kable et al. 2019; Li et al. 2018; Parente et al. 2020; Skeie et al. 2019).

Modern high-throughput metagenomic sequencing of milk is a robust tool for the
identification and estimation of indigenous microbiota of milk (Ercolini 2013; Zhang
et al. 2019). Recently, Li et al. (2016) reported Proteobacteria as predominant group
in fresh buffalo milk; however the population of abundance of Firmicutes increased
and Proteobacteria and Bacteroidetes decreased significantly during the 24 h of cold
storage. Looking at the genera-level microbial population pattern, Streptococcus,
Lactococcus, and Pseudomonas were found in the fresh milk, and after 24 h of
refrigeration the abundance of Lactococcus and Streptococcus populations increased
significantly (P < 0.05), with the Lactococcus population contributing up to 38.6%
of the total microflora (Li et al. 2016). One of the noticeable aspects was the robust
growth of Pseudomonas and Acinetobacter genera (62%) in 72 h of cold storage
(Fig. 4.2; Li et al. 2016).

4.4.2 Pasteurized Milk

Due to risk of pathogen contamination in milk produced from healthy animals under
sanitary milk conditions, pasteurization of milk prior to consumption destroys
pathogens, and provides hygienic milk (Fusco et al. 2020; Melini et al. 2017).
Occasionally, human illness has been linked to pasteurized milk products but these
cases usually have been a result of contamination of the product after pasteurization
or due to improper pasteurization.

Despite the pasteurization process, a diverse bacterial population is a key charac-
teristic feature of milk. According to Li et al. (2016), Paenibacillus is a dominated
taxon at genus level in the microbial population. Other predominant bacterial
populations appeared after prolonged storage, were psychotropic in nature, and
were mostly associated with the spoilage of dairy products (Li et al. 2016). However,
pasteurization appeared sufficient for eliminating contaminants from the Pseudomo-
nas and Acinetobacter genera. However, there is a crucial need for developing novel
technologies for controlling the proliferation of Paenibacillus to extend the shelf life
of pasteurized milk products (Doll et al. 2017; Li et al. 2016).

Pasteurized milk bacterial composition did not significantly change during a
storage period of 7 days; however the population of Lactococcus increased, while
Streptococcus reportedly decreased (Li et al. 2016). At phylum level, Firmicutes and
Proteobacteria contributed to more than 90% of the microbial composition after
7 days of storage. However, after 14 days of storage period, there was a significant
increase in the population of Firmicutes, with a decrease in the population of
Proteobacteria (Li et al. 2016). The analysis of the pasteurized milk after 21 days
of storage showed that the Firmicutes increased and contributed to 90% of the total
composition, along with Paenibacillus which increased to 80% in the bacterial
population (Fig. 4.3; Li et al. 2016).

106 D. N. Baig and S. Mehnaz

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bacterial-communities


100
R

el
at

iv
e 

ab
u

n
d

an
ce

 (
%

)

90

80

70

50

30

20

10

0
R2 R24 R48 R72

40

60

others

Proteobacteria

Bacteroidetes

Fusobacteria

Acidobacteria

Actinobacteria

Firmicutes

100b

a
R

el
at

iv
e 

ab
u

n
d

an
ce

 (
%

)

90

80

70

50

30

20

10

0
R2 R24 R48 R72

40

60

others

Halomonas

Butyrivibrio

Turicibacter

Cetobacterium

Ruminococcus
Escherichia

Clostridium

Haloanella
Hylemonella

Staphylococcus
Corynebacterium

Enhydrobacter

Acinetobacter

Paenibacillus

Streptococcus
Lactococcus

Pseudomonas

Leuconostoc

Lactobacillus
Finegoldia

Psychrobacter

Fig. 4.2 Composition of the indigenous microflora, at the phyla (a) and genus (b) levels, in raw
milk samples stored under refrigerated temperatures. Data represent the mean percentage from the
metagenomics analysis of three separate raw milk samples. R2 ¼ raw milk samples stored for 2 h,
R24 ¼ raw milk samples stored for 24 h, R48 ¼ raw milk samples stored for 48 h, R72 ¼ raw milk
samples stored for 72 h (Li et al. 2016)
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4.4.3 Fermented Milk

Fermented milk and its associated products are the richest and traditional source of
probiotic microorganisms (Bernardeau et al. 2006). Naturally fermented milk has a
variable microbial diversity in each of the resultant products, which contributes to
their taste and texture (Zhong et al. 2016). Fermentation results in the functionally
active microbial population to increase the bioavailability of nutrients for the
consumers, while degrading toxic components to enhance the safety and
bio-preservation of the final product (Tamang et al. 2016a). Low pH, fermented
environment is an ideal medium to flourish beneficial microbial population
(Savadogo et al. 2006; Sun et al. 2020). Fermented milk associated lactic acid
bacteria (LAB) include Enterococcus, Lactobacillus, Lactococcus, Leuconostoc,
Pediococcus, Weissella, Bifidobacterium, etc. these species of these genera are
widely present in all types of milk (Axelsson et al. 2012; Tamang et al. 2016b).

Gao et al. (2017) reported Lactococcus as most predominant and Lactobacillus as
subdominant genera in the milk samples collected in different times of year. Other
genera found are Leuconostoc, Streptococcus, Enterococcus, Chryseobacterium,
Acetobacter, Weissella, Dysgonomonas, Macrococcus, Xenophilus,
Pseudoclavibacter, and Corynebacterium in variable proportions. Among fungal
genera, Pichia, Kluyveromyces, and Geotrichum are found predominantly in the
milk through the year. However, Naumovozyma and Hanseniaspora are subdomi-
nant genera (Fig. 4.4; Gao et al. 2017).

4.5 Types of Microbes

4.5.1 Beneficial Microbes

Beneficial bacteria are well known as “Probiotics” (usually lactic acid bacteria such
as Lactobacilli and Bifidobacteria) that benefit the host physiology upon ingestion.
Food and Agriculture Organization (FAO) and World Health Organization (WHO)
defined probiotics as “Live microorganisms which when administered in adequate
amount confers a health benefit on the host”. They have become very popular over
the past two decades due to their countless benefits to human health and for this
reason they have been incorporated in many food-related products, mainly
fermented products. Probiotic strains are marketed in the form of capsules, powder,
or fermented products. The global market of probiotics is rapidly increasing annually
due to consumers’ interest in optimizing their health with functional foods (Di Cerbo
and Palmieri 2015).

Lactic acid bacteria are generally regarded as safe (GRAS) microorganisms and
are gram positive, facultative aerobes or anaerobes with bacilli, coccobacilli, or cocci
morphology. These are non-respiratory, catalase-negative, acid-tolerant, and non-
spore-forming bacteria, grouped on the basis of physiological, morphological, and
metabolic constellation. These bacteria are normally associated with human and
animal healthy mucosal surfaces and are a part of various animal and plant niches.
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Historically, the core genera of lactic acid bacteria include Pediococcus, Lactobacil-
lus, Streptococcus, and Leuconostoc; however, nowadays there are 20 taxonomic
revised genera. The significant LAB genera from food technology point of view are
Lactococcus, Leuconostoc, Lactobacillus, Enterococcus, Pediococcus, Aerococcus,
Carnobacterium, Tetragenococcus, Vagococcus, Oenococcus, and Weissella
(Makarova et al. 2006).

Fermented milk associated LAB play a crucial role in the production of fermented
beverages and other dairy products. They are strictly fermentative and produce lactic
acid as a major product during the course of sugar fermentation. They are classified
into two major groups based upon their fermentation potential, e.g.,
homofermentative or heterofermentative. Homofermentative LAB produces twice
the energy from glucose fermentation as compared to heterofermentative.
Homofermentation occurs through Embden Meyerhof Parna’s pathway, whereas
heterofermentation occurs either through hexose monophosphate or pentose phos-
phate pathway. The end product in the former case is mainly lactic acid, while in the
latter ethanol/acetic acid and CO2 are also significantly produced (Bassyouni et al.
2012; Çetin 2011; Rattanachaikunsopon and Phumkhachorn 2010).

A higher intake of fermented dairy products would reduce the risk of immune and
metabolic disorders that will reduce the risk of obesity. Metabolizable nutrients and
beneficial microorganism are incorporated due to the intestinal microbiota
flourishing with the consumption of fermented dairy products. Yogurt is one of the
dairy products that is well known for its numerous health benefits due to the
probiotics. The intestinal health is maintained with the restoration of healthy balance
between the good and bad bacteria from the probiotic intake. Moreover, it enhances
the humoral and cellular immunity (Borchers et al. 2009). Despite general gut
microenvironment, every individual’s gut has a unique pattern of microbial commu-
nity, and thus the response towards the use of probiotics is different.

Flu-like symptoms and upper respiratory infections are decreased with consump-
tion of probiotics, as there is an immunity boost with the production of IgA
antibodies, T lymphocytes, and natural killer cells. Crohn’s disease, colorectal
cancer, celiac disease, ulcerative colitis, and irritable bowel are some of the diseases
that are improved with the use of yogurt. The severity of diarrhea is reduced with the
use of probiotics, as it is among the side effects of consuming antibiotics. Therefore,
doctors have suggested the use of yogurt for patients taking an antibiotic course to
prevent the risk of antibiotic associated diarrhea. A study showed how certain strains
of good bacteria present in the probiotics will help reduce the time of infectious
diarrhea (Kechagia et al. 2013).

Another interesting research shows how the probiotics impact the mental health,
as there is link between the brain and gut called the gut-brain axis (Mayer et al.
2014). Yogurt has proven to help reduce anxiety and stress which further improves
the mental health of the individual. The Bifidobacterium and Lactobacillus strains
for 1–2 months have been proven to positively affect the memory, obsessive
compulsive disorder, autism, depression, and much more. Probiotic supplements
introduced in the diet for 8 weeks decreased 40 patient’s depression levels along with
C-reactive protein that causes inflammation.
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Probiotics have been declared to be healthy for all those suffering from chronic
heart illnesses, such as angina, cardiovascular disease (CVD), heart attack, etc. due
to their potential to reduce pressure and cholesterol by lowering the low-density
lipoproteins (LDL). Moreover, probiotic microbes help with digestion, as the cho-
lesterol is broken down into bile, which adds digestion. The benefit of having
probiotics is the prevention of the reabsorption of the broken-down cholesterol in
the blood. Studies suggest the reduction of allergies and eczema in children and
infants with the consumption of probiotics in the form of milk or yogurt.

The health-promoting properties of conjugated linoleic acid (CLA) include
anticarcinogenic, antiatherogenic, anti-inflammatory, and antidiabetic activity, as
well as the ability to reduce body fat (Sosa-Castañeda et al. 2015). Although it is a
native component of milk, the amount consumed in foods is far from that required in
order to obtain desired beneficial effects. Thus, increasing the CLA content in dairy
foods through milk fermentation with specific LAB offers a promising alternative.
An effective way to increase CLA uptake in humans is to increase its level in dairy
products by using strains with high production potential.

4.5.2 Pathogenic Microbes

Mammary glands of milking animal are natural reservoirs of microbes. Many of
these bacteria are not harmful to humans, but some may be harmful to humans even
though the animals are not affected and appear healthy. As listed in Table 4.1, the
bacteria present in dairy products may cause disease or spoilage. Human diseases
from milk-borne pathogens are usually due to the consumption of raw milk or
products made from raw milk such as fresh cheeses. Till now, major dairy
microorganisms are predominately associated with Brucella spp., Campylobacter
jejuni, Coxiella burnetii, Salmonella enterica, Listeria monocytogenes, Mycobacte-
rium bovis, Mycobacterium paratuberculosis, Yersinia enterocolitica, and
Escherichia coli O157:H7 (Table 4.1).

4.5.2.1 Brucella spp.
Brucella species (spp.) are found in many animal species including cattle, sheep, and
goats. Brucella spp. are destroyed by pasteurization. Brucella spp. cause illness with
symptoms that are flu-like and include fever, sweats, headaches, back pain, and
physical weakness. In some cases, long-lasting symptoms of fever, joint pain, and
fatigue may occur.

4.5.2.2 Campylobacter jejuni
Campylobacter jejuni is found in the intestinal tract, udder, and feces of cattle, in
poultry and wild birds, and in contaminated water sources. C jejuni is destroyed by
pasteurization. C. jejuni is one of the most common bacterial causes of diarrheal
illness. C jejuni generally causes illness 2–5 days after exposure, and illness typi-
cally lasts 5–10 days. Symptoms of campylobacteriosis include diarrhea, bloody
diarrhea, abdominal pain, cramping, nausea, vomiting, and fever. Patients with
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Campylobacteriosis usually recover without specific treatment other than fluid and
electrolyte replacement. In some persons with a compromised immune system,
C. jejuni infection can lead to the more serious diseases like Guillan-Barré syndrome
and Reiter syndrome. Guillan-Barré syndrome is a disorder that results in temporary
neuromuscular paralysis, although 20% of those infected may have long-term
disability and it may cause death. Reiter syndrome is a reactive arthritis that may
affect multiple joints, particularly the knee joint. The prevalence of C jejuni is very
widespread. It has been reported in bulk tank raw milk samples in Illinois, Michigan,
Minnesota, Ohio, Pennsylvania, South Dakota, Tennessee, Virginia, and Wisconsin,
suggesting that the organism is ubiquitous. In these studies, C jejuni was found in
0.4–12.3% of the bulk tank milk samples (Facciolà et al. 2017; Jayarao et al. 2006).

4.5.2.3 Coxiella burnetii
Coxiella burnetii is a pathogen shed in the milk, urine, and feces of cattle, goats, and
sheep. C. burnetii is considered to be the most heat-resistant, non-spore-forming
pathogen commonly found in milk, and the established conditions for milk pasteuri-
zation are specifically designed to destroy this organism. C. burnetii causes Q fever,
an illness characterized by a sudden onset of high fever, severe headache, nausea,
vomiting, diarrhea, abdominal pain, chest pain, chills, sweats, sore throat,
non-productive cough, and general malaise. Fever can last for 1–2 weeks. Most
patients recover without any treatment, although C. burnetiimay result in death. The
prevalence of Coxiella burnetii was >94% in raw milk samples from the
North-eastern, Midwestern, and Western regions of the USA tested between 2001
and 2003 (Kim et al. 2005).

Table 4.1 Dairy pathogenic bacteria and associated diseases

Organism
Source of
microorganism Disease condition Reference

Campylobacter
jejuni

Intestinal tract and
feces

Gastroenteritis Facciolà et al.
(2017)

Coxiella burnetii Infected cattle, sheep,
and goats

Q fever

Escherichia coli
O157:H7

Intestinal tract, and
feces

Gastroenteritis, Hemolytic
uremic syndrome (HUS)

Listeria
monocytogenes

Water, soil, and
environment

Listeriosis Radoshevich
and Cossart
(2018)

Mycobacterium
bovis or
tuberculosis

Infected animals Tuberculosis Lan et al. (2016)

Mycobacterium
paratuberculosis

Infected animals Johne’s (ruminants) Whittington
et al. (2019)

Salmonella spp. Feces, and
environment

Gastroenteritis, Typhoid
fever

Yersinia
enterocolitica

Environment, water,
and infected animals

Gastroenteritis Sabina et al.
(2011)
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4.5.2.4 Escherichia coli O157:H7
Escherichia coli O157:H7 is one strain in a large family of bacteria. Strains of E. coli
are considered fecal coliforms. Most strains of E coli do not cause illness and live in
the intestinal tracts of healthy humans and animals. E. coli O157:H7 is found in the
intestinal tract and feces of cattle and destroyed by pasteurization. E. coli O157:H7
produces toxins that cause illness in humans. Symptoms of illness include bloody
diarrhea and abdominal cramps. In some cases, particularly in young children,
E. coli O157:H7 infection causes hemolytic uremic syndrome, which destroys red
blood cells and causes kidney damage or failure, and in some cases death. The
prevalence of E. coli O157:H7 and Shiga-toxin producing E. coli have been reported
for bulk tank raw milk samples in Minnesota, Pennsylvania, South Dakota,
Wisconsin, and Ontario. E. coli O157:H7 was found in 0.87–10% of the bulk tank
milk samples tested (Jayarao et al. 2001, 2006).

4.5.2.5 Listeria monocytogenes
Listeria monocytogenes is found in soil and water and has been isolated from a large
number of environmental sources. It is destroyed by pasteurization, but if food
products are contaminated after pasteurization, it can grow at refrigerator
temperatures. Illness can occur as sporadic events or larger outbreaks.
L. monocytogenes typically causes illness in pregnant adults, newborns, the elderly,
and patients with compromised immune systems, but healthy adults and children
may also become infected. Symptoms of Listeriosis include flu-like symptoms,
fever, muscle aches, stiff neck, headache, septicemia, meningitis, miscarriage, still-
birth, premature delivery, abortion, or death. The prevalence of L. monocytogenes
has been reported for bulk tank raw milk samples in individual states (or grouped by
region) for California, Colorado, Florida, Idaho, Illinois, Indiana, Iowa, Kentucky,
Massachusetts, Michigan, Minnesota, Missouri, Nebraska, NewMexico, New York,
Ohio, Pennsylvania, South Dakota, Tennessee, Texas, Washington, Wisconsin,
Vermont, Virginia, and in Alberta and Ontario, Canada. Listeria monocytogenes
was found in up to 12% of the bulk tank milk samples tested (Jayarao et al. 2001,
2006; Van Kessel et al. 2004) illustrating the widespread presence of
L. monocytogenes in unpasteurized milk.

4.5.2.6 Mycobacterium bovis and Mycobacterium tuberculosis
Mycobacterium bovis and Mycobacterium tuberculosis are found in infected cattle
worldwide. Both of these organisms are destroyed by pasteurization.Mycobacterium
bovis and Mycobacterium tuberculosis cause tuberculosis, a lung disease. Tubercu-
losis in the USA is not very common today, although historically milk was a
common source of tuberculosis. Tuberculosis is a concern in many parts of the
world.Mycobacterium paratuberculosis causes Johne’s disease in cattle. It has been
suggested that M. paratuberculosis may be associated with Crohn’s disease, an
intestinal disorder, in humans, but this has not been confirmed (Peden 2000;
Whittington et al. 2019).
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4.5.2.7 Salmonella spp.
Salmonella species (spp.) contain several strains that cause illness in humans; the
most common are the serotypes Enteriditis and Typhimurium. Salmonella has been
found in the intestinal tracts of all warm-blooded animals including humans. Salmo-
nella is destroyed by pasteurization. Salmonella spp. causes illness that can develop
12–72 h after exposure, and can last 4–7 days. Symptoms of Salmonellosis include
diarrhea, abdominal cramps, and fever. Most people recover without treatment other
than fluid and electrolyte replacement. Some cases may be severe and require
hospitalization. A small number of people may develop Reiter syndrome, which is
a reactive arthritis that may affect multiple joints, particularly the knee joint. The
prevalence of Salmonella spp. has been reported for bulk tank milk samples in
individual states (or grouped by region) for California, Colorado, Florida, Idaho,
Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, New Mexico,
New York, Ohio, Pennsylvania, South Dakota, Tennessee, Texas, Washington,
Wisconsin, Vermont, Virginia, and Ontario, Canada. Salmonella spp. were found
in 0.17–8.9% of the bulk tank milk samples tested (Jayarao et al. 2001, 2006; Van
Kessel et al. 2004), indicating the widespread presence of Salmonella in
unpasteurized milk.

4.5.2.8 Yersinia enterocolitica
Yersinia enterocolitica is found in the intestinal tract of farm animals, especially
pigs, and in the environment. Y. enterocolitica is destroyed by pasteurization, but if
food products are contaminated after pasteurization, Y. enterocolitica can grow at
refrigerator temperature. Yersinia enterocolitica causes illness with symptoms of
fever, abdominal pain, and diarrhea. The prevalence of Yersinia enterocolitica has
been reported for bulk tank milk samples in Michigan, Minnesota, Pennsylvania,
South Dakota, Tennessee, Wisconsin, Virginia, and Ontario, Canada. Yersinia
enterocolitica was found in 1.2–18% of the bulk tank milk samples tested (Jayarao
et al. 2001, 2006; Sabina et al. 2011).

4.5.2.9 Other Pathogens
Coliforms are a large group of bacteria that are found in the intestines of warm-
blooded animals. Most coliforms are not pathogenic, but their presence indicates
contamination, usually from fecal sources. Coliforms are destroyed by pasteuriza-
tion. The prevalence of coliforms was detected in 62–95% of the raw bulk tank milk
tested in regions that included California, Colorado, Florida, Idaho, Illinois, Indiana,
Iowa, Kentucky, Michigan, Minnesota, Missouri, New Mexico, New York, Ohio,
Pennsylvania, South Dakota, Tennessee, Texas, Washington, Wisconsin, Vermont,
and Virginia (Jayarao et al. 2001, 2006; Van Kessel et al. 2004).

Psychotropic bacteria are capable of growing at 44.6 �F (7 �C) or less. This group
of microbes is a concern in dairy products because they grow at refrigerator
temperature and cause spoilage, often resulting in off-flavors. The most common
psychrotrophs are in the genus Pseudomonas. These organisms are killed by pas-
teurization, but may occur in milk from contamination after pasteurization. Some
bacterial pathogens are psychrotrophic, including Listeria monocytogenes, Yersinia
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enterocolitica, some E. coli strains, and some Bacillus strains (Radoshevich and
Cossart 2018; Sabina et al. 2011).

4.6 Microbial Additives

Milk itself is a natural source for a variety of bacteria; the group of lactic acid
bacteria is one of the prime sources of microbial additives. Many health-promoting
effects are achieved from bioactive molecules produced by dairy fermented
products. In contrast to the conventional concept of probiotic (ingestion of alive
bacteria for the production of metabolites within human gut), a biologically func-
tional food concept is based on the endogenous production of healthy metabolites in
the fermented products, as a result of the metabolic response of bacterial machinery.
The main biologically active molecules produced by LAB during dairy fermentation
are vitamins, gamma-aminobutyric acid, bioactive peptides, bacteriocins, enzymes,
conjugated linoleic acid, and exopolysaccharides.

4.6.1 Bioactive peptides

In the process of milk fermentation, lactic acid bacteria digest many proteins into
short peptides through proteolytic activity. These peptides are biologically func-
tional and exhibit antioxidative, antimicrobial, antihypertensive, immunomodula-
tory, and antithrombotic properties (Nongonierma and FitzGerald 2015). One of the
most important bioactive peptides is Angiotensin-I-converting enzyme (ACE) inhib-
itory peptides. ACE inhibitory peptides display strong antihypertensive features and
have been reported from a number of dairies (Fitzgerald and Murray 2006; Pritchard
et al. 2010). Initially, ACE-inhibitory peptides, Ile-Pro-Pro (IPP), and Val-Pro-Pro
(VPP) were extracted from milk fermented by L. helveticus (Slattery et al. 2010).
Later on, other lactic acid bacteria including L. rhamnosus, L. plantarum,
L. delbrueckii, L. acidophilus, Lactococcus lactis, and S. thermophilus were
reported as dairy starter cultures in the industry as a source of inhibitory peptides
of ACE (Hafeez et al. 2014). β-casein (SLVYPFPGPI) is another bioactive peptide
produced by L. delbrueckii in fermented milk (Qian et al. 2011). Similarly, two short
peptides are produced by the hydrolysis of α-S2 casein during the process of
fermentation; both peptides are antimicrobial and display protective function against
many human pathogens including Saccharomyces thermophilus, E. coli,
Helicobacter pylori, Staphylococcus aureus, Streptococcus pyogenes, and Listeria
monocytogenes (Nagpal et al. 2011). Lactoferrin is another source of antimicrobial
peptides (Zivkovic et al. 2013). Peptic digestion of lactoferrin produces short
peptides that displayed antimicrobial activity against a broad range of bacteria
including E. coli, Listeria, Salmonella, Campylobacter, and many fungal strains,
however, non-toxic to Bifidobacterium (Quintieri et al. 2013; Shah 2007).
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4.6.2 Bacteriocins

Bacteriocins are major ribosomal antimicrobial peptides known to inhibit adhesion
and invasions of pathogens through direct microbial interaction or by altering the
exterior environment leading to slow to no growth of microbes (Hernández-Ledesma
et al. 2014). Different types of ribosomal short peptides and their respective immu-
nity proteins are produced by many lactic acid bacteria, which provide a broad range
of antimicrobial activity against major human pathogens. Thus, bacteriocin
producers are a potential alternative to pharmaceutically synthesized antibiotics
and offer a means of controlling pathogen-induced inflammation (Cotter et al.
2013). Many lactic acid bacteria are generally regarded as safe (GRAS) for human
consumption. These are the ideal source of bacteriocin production on a commercial
scale (Nes et al. 2007). Because of the strong antimicrobial characteristics of
bacteriocin, the producing strains also use as natural food-preservatives.

Nisin is the most used for food preservation due to its antimicrobial effect against
spoilage and disease-associated bacteria like Listeria and clostridia spores.
Plantaricin C is another broad-spectrum peptide produced by L. plantarum and
documented as an immunomodulator for dendritic cells (Meijerink et al. 2010).
Briefly, the use of bacteriocins directly or bacteriocin-producing bacteria as a starter
culture for the generation of bacteriocins through fermentation became an efficient
health-promoting strategy. Similarly, the use of lacticin-producing strain of
Lactococcus lactis greatly inhibits the growth of Listeria monocytogenes in Cheddar
cheese (Chen and Hoover 2003). Many other lactic acid bacteria like L. acidophilus,
Pediococcus acidilactici, and Leuconostoc mesenteroides known for their specific
bacteriocins can be added as an adjunct in many food fermentations processes as
food preservatives (Anjum et al. 2014). Besides the production of antimicrobial
peptides, these bacteria pose many other advantages to enhance flavor, texture, and
nutritional value of the product (Gaggia et al. 2011; Jiang et al. 2012; Grosu-Tudor
et al. 2013; Mitra et al. 2010; Khan et al. 2010; Tamang et al. 2009).

4.6.3 Enzymes

Many Lactobacillus, Lactococcus, and Streptococci species can ferment milk by
producing hydrolytic enzymes. The proteolytic machinery of lactic acid bacteria
(LAB) comprises membrane-bound aminopeptidases, endopeptidases, and
proteinases for the production of hydrolysates. Fermentation-associated microbes
depend on the degradation of milk proteins to get free amino acid residues and short
peptides required for their growth. Yogurt and other conventional fermented dairy
products associated with bacteria reduce lactose intolerance and improve lactose
digestion by degrading lactose through the activity of microbial β-galactosidase
(De Vrese et al. 2001; Patel et al. 2013).
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4.6.4 Vitamins

Although milk contains many vitamins, however, in the fermented milk the vitamin
producer lactic acid bacteria enhance the nutritional value of the product. Many
species of Lactobacillus and Bifidobacterium genera secrete vitamin B complex (B1,
B2, B7, B9, B12) during the fermentation process. Dietary depletion of vitamin B1
(thiamine) and vitamin B2 (riboflavin) can dysregulate glucose metabolism in the
brain and lead to both skin and liver diseases, respectively (Russo et al. 2014). Some
Propionibacteria and lactic acid bacteria can produce cobalamin, folic acid, and
biotin, such as L. casei richly produce thiamine and riboflavin in fermented milk
(Hugenholtz et al. 2002; Drywień et al. 2015).

Vitamin B7 (Biotin) deficiency can be genetic or dietary that affects the skin and
hair health. Starter culture of lactic acid bacteria, e.g., L. helveticus and
Propionibacteria, ferment and produce biotin-enriched milk products (Patel et al.
2013). The deficiency of vitamin B9 (Folate) is linked to neural tube impairment and
cardiac issues. Limited strains of lactic acid bacteria including Streptococcus
thermophilus CRL803/CRL415, L. amylovorus, and L. bulgaricus are designated
as vital for dairy folate enrichment (Laiño et al. 2014). Among Bifidobacteria,
B. catenulatum is known as rich folate producer.

Plants, animals, and fungi are unable to produce, thus bacteria are the exclusive
source of vitamin B12 (cobalamin) (LeBlanc et al. 2011). It has been demonstrated
that vitamin B12 cobalamin can be synthesized by some bacteria such as L. reuteri,
Propionibacterium freudenreichii, and B. animalis (Gu et al. 2015; Moslemi et al.
2016; Patel et al. 2013; Van Wyk et al. 2011). Propionibacterium freudenreichii is
able to secrete vitamin B12 and the pseudovitamin B12 isoforms during the milk
fermentation process. Pseudovitamin B12 converts into vitamin B12 to enhance the
bioavailability of cobalamin (Deptula et al. 2017).

Vitamin K is essential for arterial de-calcification to reduce the risk of cardiovas-
cular disorders. Its deficiency can cause medical ailments such as osteoporosis and
hemorrhage (LeBlanc et al. 2011). Vitamin K in nature exists in the forms of
phylloquinone (vitamin K1) and menaquinone (vitamin K2). Menaquinone is micro-
bial vitamin synthesized by Lactococcus lactis, a common starter culture for the
industrial production of sour cream, cheese, kefir, and buttermilk (Walther et al.
2013).

4.6.5 Gamma-Aminobutyric Acid

Gamma-aminobutyric acid (GABA) is one of the exclusive inhibitory
neurotransmitters (INT) of the central nervous system (CNS). Glutamate decarbox-
ylase (GAD) catalyzes glutamate in the process of α-decarboxylation and
synthesizes GABA (Tajabadi et al. 2015). Interestingly, Bacteroides genus is the
largest GABA producer group; for example, Bacteroides fragilis produces GABA,
polysaccharide A, and sphingolipids; the latter two are evident for the health of
immune and gut systems (Tan et al. 2019; Troy and Kasper 2010). In addition to
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Bacteroides, several lactic acid bacteria have been reported as the source of GABA
producers including Lactococcus lactis, Lactobacilli (L. paracasei, L. brevis,
L. delbrueckii, L. plantarum, L. helveticus, L. buchneri), Streptococcus
thermophilus, and Bifidobacterium spp. (Barrett et al. 2012; Li and Cao 2010)
which are most promising candidates.

Few strains, S. salivarius fmb5, L. casei Shirota, and L. plantarum NDC75017,
were selected for commercial production of GABA-enriched fermented milk drink
(Chen et al. 2016; Inoue et al. 2003; Shan et al. 2015). Similarly, yogurt and cheese
enriched with GABA were produced by using the strain S. thermophiles APC151,
L. brevis OPY-1, and Lactococcus lactis (Linares et al. 2016; Park and Oh 2007;
Pouliot-Mathieu et al. 2013).

4.6.6 Conjugated Linoleic Acid

Polyunsaturated fatty acids (PUFA) are important metabolites of lactic acid and
bifidobacteria bacteria such as conjugated linoleic acid (CLA) produced by conver-
sion of linoleic acid. Many LAB and bifidobacterial strains like L. casei,
L. plantarum, Lactococcus lactis, L. rhamnosus, L. acidophilus, B. bifidum, and
B. animalis were reported to produce CLA in dairy products (Florence et al. 2009;
Sosa-Castañeda et al. 2015; Van Nieuwenhove et al. 2007; Yang et al. 2015). These
strains also used to add extra CLA contents in cheese and yogurt as adjunct cultures
(Van Nieuwenhove et al. 2007).

4.6.7 Exopolysaccharides

Exopolysaccharides (EPS) are complex carbohydrates produced by a group of lactic
acid bacteria, Propionibacteria, and bifidobacteria in the form of secretions during
the fermentation process of dairy products and support the immune system by
promoting host beneficial microflora (Salazar et al. 2016). Lactic acid bacteria
including L. delbrueckii, L. mucosae, Lactobacillus kefiranofaciens, Lactococcus
lactis, and S. thermophilus are predominant EPS-producing species in the yogurt and
cheese and boost immune-stimulatory effects and reduce cholesterol levels
(Darilmaz and Gumustekin 2012; Makino et al. 2016; Ryan et al. 2015). Specifi-
cally, Lactobacillus kefiranofaciens produce EPS metabolites, which dramatically
inhibit the invasion of pathogens like Listeria monocytogenes and Salmonella
enteritidis in the enterocytes (Jeong et al. 2017; Medrano et al. 2008). Antimicrobial
effects of these metabolites may extend to other microbial species in the gut
microflora.

In addition to health-promoting effects, EPS greatly enhance the quality, sensory
and rheological features of dairy products. For example, Bifidobacterium longum
and S. thermophiles are well known for immune-modulatory effects and high EPS
production that directly reduces syneresis and improves the texture and viscosity of
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fermented ice-cream and yogurt (Dertli et al. 2016; Han et al. 2017; Hidalgo-
Cantabrana et al. 2012; Prasanna et al. 2013).

4.6.8 Other Bio-Functional Molecules

Carbohydrate-fermenting microbes also secrete many neuroactive molecules includ-
ing Clostridia metabolites, short-chain fatty acids, histamine, and diacylglycerol
kinase (Karl et al. 2018; Shaw 2017). Mycelial fungi Aspergillus, Actinomucor,
Monascus, Amylomyces, Mucor, Rhizopus, and Neurospora also produce various
carbohydrate enzymes including ß-galactosidase, α-amylase, pectinase, maltase,
cellulase, amyloglucosidase, hemi-cellulase as well as lipase and proteases.

4.7 Industrial Importance of Dairy Microbes

The dairy starter culture is used on a large scale in the food industries for the
manufacturing of butter, cheese, yogurt, kefir, sour cream, and other fermented
milk products. The principle purpose of the starter culture is to convert lactose and
other sugars present in milk to lactic acid. The industrially important lactic acid
bacteria are used as a starter culture for the preparation of many important food
products and they impart various sensory characteristics to them, i.e., aroma, texture,
viscosity, and flavor; henceforth, an increase in the use of LAB probiotics has been
observed in the recent years. Dairy industry has become an integral part of food
industries worldwide. Henceforth, the demand for starter culture is growing by leaps
and bounds over the past few years. Lactic acid bacteria have also been reported to
play a crucial role in the cheese ripening and giving it perfect consistency, flavor, and
aroma (Hannon et al. 2003). Apart from this, many antimicrobial short peptides,
exopolysaccharides, and enzymes are associated with dairy microbes to enhance
nutritional value and shelf life of product.

The growth of the dairy starter culture market is driven by the growth of dairy
industry. The overall increase in the production of dairy products and growing
demand for dairy-based products is expected to boost the demand for the dairy
starter culture globally.

4.8 Nutraceutical Properties of Milk Microbiota

Milk proteins exhibit a wide range of nutraceuticals and biological properties. Most
of the dairy proteins are specific in biological functions and display many health-
promoting effects. These short peptides are inactive within the endogenously secret-
ing proteins and can be cleaved by proteolytic activity of gastrointestinal enzymes
upon ingestion of milk or fermentation process. Proteins are the essential
components of dairy products that have a variety of applications in several food
industries.
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4.8.1 Antihypertensive

Although many fermented food products exhibit medicinal characteristics, however,
fermented dairy products are exceptional in the nutraceutical contents. Regular
consumption of fermented dairy products displayed anticholesterol and antihyper-
tensive properties, thus reducing the risk of cardiovascular diseases. In addition to
milk proteins, fermented milk-associated probiotic bacteria secrete some proteins
and metabolites and exert an overall positive impact on the health of the consumer.
Kefir and Calpis contain many short peptides that are responsible for hypotensive
effects. Some lactic acid bacteria functionally antihypertensive such as
L. rhamnosus, L. plantarum, L. delbrueckii ssp. bulgaricus, Lactococcus Lactis,
L. acidophilus, and S. thermophilus in fermented milk are the commercial source of
ACE inhibitory peptides (Hafeez et al. 2014), and thus greatly reduces elevated
blood pressure (Shah 2015).

4.8.2 Anticarcinogenic

Many dairy raw and fermentation-associated bacteria like L. acidophilus inhibit the
conversion of paracarcinogenic molecules into carcinogenic forms by reducing
specific enzymes including azoreductase ß-glucuronidase, and nitroreductase in
human, hence, trigger and boost body immunity. In this context, South Asian
fermented milk product dahi (yogurt) is the most known anticarcinogenic dairy
product. Daily use of yogurt can reduce the risk of cervical, bladder, and colon
cancer (Mohania et al. 2014).

4.8.3 Gastrointestinal Support

Many fermented dairy lactic acid bacteria significantly reduce a load of gastrointes-
tinal diseases (Verna and Lucak 2010). Intake of Lactobacillus species in the food
improves the symptoms of ulcerative colitis, paucities, and inflammatory bowel
disease (Orel and Trop 2014). Similarly, L. rhamnosus specifically treat severe
diarrheal issue (Szajewska et al. 2007). Moreover, probiotics in fermented dairy
products manifest immunomodulatory effects and thus inhibit the growth of
pathogens in the gastrointestinal tract (Balamurugan et al. 2003).

4.8.4 Anti-allergic Effects

Lactobacillus kefiranofaciens has an anti-allergic effect. In the process of fermenta-
tion, cleavage, and degradation of casein proteins of allergenic reactivity thus
increases tolerance (Alessandri et al. 2012). Several species of Lactobacillus cap-
tured attention because of their ability to produce interleukins and interferons, and
thus significantly reduce allergic reactions due to food or dermatitis. Yogurt is a rich
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probiotic supplement that increases glucose tolerance and reduces oxidative stress,
hyperglycemia, dyslipidemia, hyperinsulinemia, indicating a lower risk of diabetes
(Yadav et al. 2007).

4.8.5 Alleviation of Lactose Intolerance

Lactose intolerance both in children and in adults arises because of the unavailability
of ß-D-galactosidase (Shah 2015). Lactic acid bacteria including L. delbrueckii and
S. thermophilus strains are capable to secrete high contents of ß-D-galactosidase
which improve the symptoms of lactose malabsorption in lactose intolerant people.
Consumption of fresh yogurt (with live yogurt cultures) has demonstrated better
lactose digestion and absorption than with the consumption of a pasteurized product.
Kefir can minimize the symptoms of lactose intolerance by providing an extra source
of β-galactosidase (Hertzler and Clancy 2003).

4.8.6 Brain Gut Axis Aid

Many mental conditions including psychiatric, neurodevelopmental and neurode-
generative disorders can be potentially treated with the psychobiotic microbes.
These bacteria include many species of Lactobacillus, Lactococcus,
Bifidobacterium, Streptococcus and few species of Bacillus and Clostridium genera.
Appropriate dose management of these microbes display psychotropic potential by
the production of neuroactive molecules, such as neurotransmitters (GABA, seroto-
nin, norepinephrine, acetylcholine, glutamate), neuropeptides (neuropeptide Y,
glucagon-like peptide-1 and 2, Tyr-Tyr peptide), and other molecules like
cholecystokinin and substance P for the regulation of brain-associated protein like
brain-derived neurotrophic factor (BDNF). The regulation of neuronal proteins is
important to modulate specific behavior types. Psychobiotics employ antidepressant,
antianxiety, and antidepressant properties, and improve sleep quality and energy
metabolism of brain through enteric neural network, systemic, humoral, and meta-
bolic mechanisms in the body and establish a brain gut axis. The bacteria-brain
communication is important in the modulation of behaviors related to the central
nervous system (Hao et al. 2019).

4.9 Dairy Psychobiotics

Lactobacillus and Bifidobacterium have reportedly shown potential psychobiotic
activity when present in higher numbers in the human gut microbiome. Dairy
products which undergo fermentation have proven to be a chief reliable source of
Lactobacillus species. Species of Lactobacillus are reported to produce a variety of
neurotransmitters, and their precursors in vitro. The gut microflora plays an impor-
tant role in the regulation of bioavailability of the precursor molecules for
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neurotransmitters. In the brain, dopamine is converted to norepinephrine through an
enzyme known as dopamine-β-hydroxylase. The inhibitors of this enzyme
4-hydroxyphenylacetate, and 4-cresol, are metabolites produced by Clostridia, a
class of Firmicutes. Similarly, the microbes that ferment carbohydrates produce a
short-chain fatty acid, known as butyrate that has been reported to impact the
intestinal entero-chromaffin cells by stimulating them to synthesize serotonin
(5-HT). As shown in Table 4.2, these precursor molecules for neurotransmitters
and other metabolites produced by the probiotic microbes are neuroactive molecules,
and have an influence on the modulation of enteric nervous system signaling, which
in turn impacts the gut-brain axis (Yong et al. 2020).

4.9.1 Lactobacillus rhamnosus

Lactobacillus rhamnosus has been a commercially available probiotic for quite some
time. It has been reported that L. rhamnosus is able to metabolize glutamate and
gamma amino-butyric acid (GABA), which are the excitatory and inhibitory
neurotransmitters, respectively. L. rhamnosus in vitro has reportedly utilized micro-
bial enzymes glutamate decarboxylase to produce GABA and glutaminase to pro-
duce glutamate. Studies on mice models have shown that an intervention of
L. rhamnosus in the diet resulted in alleviation of anxious and depressive behaviors.
The alteration was brought about in the expression of mRNA of the receptors of
GABA. However, the reduced anxious and depressive behavior of the mice was also
dependent on the neural signaling from the intact vagus nerve. GABA produced by
the gut microbiota is reported to utilize the H+/GABA symporter to cross the
intestinal barrier in vitro. The enteric neurons and the vagus afferents have a large
number of GABA receptors and transporters, since it is a chief inhibitory neuro-
transmitter. These GABA receptors and transporters are possibly utilized by GABA
molecules which are produced by microbes, such as L. rhamnosus (Bravo et al.
2011; Nielsen et al. 2012; Lin 2013; Yong et al. 2020).

4.9.2 Lactobacillus casei

Lactobacillus casei has a potential for maintaining gut health, and is known for its
industrial value as a starter culture for fermentation. A dietary intervention of milk
containing L. casei resulted in a reportedly uplifted mood in individuals. In the
analysis of saliva collected from individuals who reported to be stressed, it was
found that cortisol levels were high. Consequently, the high cortisol levels resulted
in abdominal disturbances and flu symptoms. However, in the clinical trials, an
intervention with L. casei reportedly alleviated the abdominal and flu symptoms, and
reduced the stress frequency by lowering the cortisol levels. Similar to L. rhamnosus,
L. casei was also able to produce GABA, which is involved in inhibition
mechanisms. The presence of L. casei in a probiotic comprising a mixture of similar
species resulted in a reduction in the depression levels of individuals diagnosed with
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Table 4.2 The neurotransmitters produced by probiotics and their regulatory functions

Neurotransmitter Regulatory functions Probiotics References

Gamma-
aminobutyric acid
(GABA)

• Hippocampal neurogenesis
• HPA axis regulation
• Mood

L. brevis
L. rhamnosus
L. reuteri
L. paracasei
L. plantarum
L. bulgaricus
L. helveticus
L. casei

Barrett et al. (2012),
Oleskin et al.
(2014)

Serotonin (5-HT) • Impulsivity
• Aggression
• Appetite
• Circadian rhythm
• Learning
• HPA axis regulation
• Mood

L. plantarum
L. helveticus

Oleskin et al.
(2014)

Dopamine (DA) • Motivation
• Concentration
• Psychomotor speed
• Ability to experience
pleasure
• Mood

L. plantarum
L. helveticus
L. casei
L. bulgaricus

Oleskin et al.
(2014)

Norepinephrine
(NE)

• Aggression
• Cognitive function
• Sleep
• Sympathetic activity
• HPA axis regulation
• Mood

L. helveticus
L. casei
L. bulgaricus

Oleskin et al.
(2014)

Glutamate (Glu) • Gastrointestinal reflexes
• Intestinal motility
• HPA axis regulation
• Mood

L. rhamnosus
L. reuteri
L. plantarum
L. paracasei
L. helveticus
L. casei
L. bulgaricus

Oleskin et al.
(2014)

Histamine • Motivation
• Learning
• Memory
• Appetite
• Sleep
• Sympathetic activity
• Mood

L. plantarum
L. reuteri

Acetylcholine
(ACh)

• Cognition
• Synaptic plasticity
• Analgesia
• Sleep
• HPA axis regulation
• Mood

L. plantarum
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clinical depression, and those exhibiting depressive symptoms. The production of
microbial GABA by L. casei shows that there is a possibility to have similar
mechanisms, and the resultant antidepressant effect like L. rhamnosus (Kato-
Kataoka et al. 2016; Oleskin et al. 2014; Takada et al. 2016; Yong et al. 2020).

4.9.3 Lactobacillus brevis

Lactobacillus brevis has a possible overlap in the underlying mechanisms for GABA
production, with L. rhamnosus and L. casei, though reportedly the central
GABAergic system remains uninfluenced by its presence. L. brevis utilizes the
microbial glutamate decarboxylase to produce GABA. An increase in the total
GABA content was observed in a quantitative analysis of milk fermented with a
starter culture of L. brevis. A study on rat models for depression found that L. brevis
exhibited antidepressive potential, much like fluoxetine, after a dietary intervention
of milk fermented with L. brevis. Since GABA is the primary inhibitory neurotrans-
mitter, it plays an important role in sleep quality and REM cycle, and hence its
imbalance may result in sleep disorders. Sleep disorders such as insomnia are mostly
treated by an increased dosage of GABA through diet, or by treatment with phar-
macological benzodiazepine which targets GABA receptors. In mice models, the
presence of L. brevis in the diet has reportedly improved the quality of sleep;
therefore it shows great potential to be a therapeutic intervention for treatment of
insomnia in people suffering from major depressive disorder (Ko et al. 2013;
Miyazaki et al. 2014; Yamatsu et al. 2015; Yong et al. 2020).

4.9.4 Lactobacillus reuteri

Lactobacillus reuteri is a probiotic that enhances the immune system. L. reuteri is
reported to have anti-inflammatory effects on the human body. Hydrogen peroxide is
a chief metabolite produced by L. reuteri, that inhibits the activity of indoleamine 2,3
dioxygenase through peroxidase-mediated catalyzed reactions. Indoleamine 2,3
dioxygenase is reported to impact levels of kynurenine, and the microbial hydrogen
peroxide can possibly cross the intestinal epithelial lining, and reduce the activity of
indoleamine 2,3 dioxygenase. Hence, the suppressed activity of this key enzyme
lowers the kynurenine levels. L. reuteri utilizes microbial histidine decarboxylase to
produce histamine from the metabolism of dietary L-histidine. Diacylglycerol kinase
is also a microbial enzyme produced by L. reuteri, which metabolizes diacylglycerol
to phosphatidic acid which plays a role in the microbial histamine anti-inflammatory
activity. Both the microbial histamine and the enzyme diacylglycerol kinase pro-
duced by L. reuteri have been reported to interact with the histamine receptors and
enhance the immune response by reducing the inflammatory cytokines in the
gastrointestinal tract (Jang et al. 2019; Réus et al. 2015; Yong et al. 2020).
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4.9.5 Lactobacillus plantarum

Lactobacillus plantarum has been reported to utilize fatty acid synthase
II-thioesterase to synthesize butyrate following a butyrogenic pathway mediated
by glutamine. Studies on mammals have reported that a dietary intervention of
L. plantarum has antidepressive effects. It has also been reported that there was an
overall increase in levels of butyrate, as L. plantarum not only produces butyrate as a
metabolite, it also favors the colonization of Bacteroidetes, Lactobacillus, and
Roseburia which are also butyrate-producing bacteria. Supplements containing
L. plantarum have exhibited the enhancement of hippocampal brain-derived
neurotrophic factor. Similarly, analysis of butyrate levels from the cecum showed
an elevation after the administration of L. plantarum (Botta et al. 2017; Dhaliwal
et al. 2018; Yong et al. 2020).

4.9.6 Lactobacillus gasseri

Lactobacillus gasseri is known for its anti-inflammatory effect on the immune
system. Heat-killed or live form of L. gasseri, both have the ability to alter the levels
of gut microbiome by favoring the colonization of few microbes over others in the
gastrointestinal tract. A study reported that consumption of milk containing
probiotics including L. gasseri showed an altered gut microflora composition in
stressed individuals. L. gasseri is reported to produce gassericins which have
antibacterial properties against possible pathogens present in the gastrointestinal
tract. An introduction of live L. gasseri resulted in reduced growth of inflammatory
bacterial populations such as Enterobacteriaceae, Clostridium cluster IV group, and
Veillonella, along with altered levels of short-chain fatty acids. The heat-killed form
of L. gasseri reportedly increased the population of Dorea longicatena, while
decreasing Bacteroides vulgatus. L. gasseri when administered in heat-killed form
across multiple studies showed that it does not have a unique microbial target, but
alters the gut microflora composition towards a favorable anti-inflammatory envi-
ronment (Nishida et al. 2017; Sawada et al. 2017; Yong et al. 2020).

4.9.7 Lactobacillus helveticus

Lactobacillus helveticus is a probiotic that imparts multiple health benefits to the
human body. L. helveticus has been reported to increase immunity by protection
against pathogenic bacterial colonization, along with prevention of diseases of the
gastrointestinal tract. In patients diagnosed with clinical depression and symptoms
related to depression, a probiotic intervention was introduced which included
L. helveticus and Bifidobacterium longum, and a positive result was observed as
depressive symptoms were reduced. In a study involving cognitively impaired
rodent models, it was reported that an intervention of L. helveticus enhanced
cognitive performance and memory. Similarly, L. helveticus introduced as a dietary
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intervention improved cognition abilities such as attention, memory, and learning as
reported by studies on animal models and human participants (Liang et al. 2015;
Oleskin et al. 2014; Yong et al. 2020).

4.9.8 Lactobacillus paracasei

Lactobacillus paracasei belongs to the Lactobacillus casei group which also
includes L. rhamnosus and L. casei. The Lactobacillus casei group is the most
used Lactobacillus species, and is used as a potential therapeutic agent for health,
along with being of industrial and commercial use. Lactocepin is a protein that is
produced by L. paracasei, it is a serine protease, and hence is sensitive to high
temperatures. However, studies have demonstrated that whether alive or heat-killed,
L. paracasei exhibits antidepressive and mood uplifting mechanisms. Reportedly
while an intervention of heat-killed L. paracasei resulted in elevated levels of
dopamine in the brain, introduction of live L. paracasei increased the levels of
serotonin. In a study on mice models, where depression was induced by corticoste-
rone, oral administration of both forms of L. paracasei demonstrated potential for
antidepressive agents in par with fluoxetine. Similarly, in a study done on healthy
individuals in stressful times, a dietary intervention of L. paracasei in its heat-killed
form kept the mood stable and prevented it from deteriorating (Chunchai et al. 2018;
Réus et al. 2015; Wei et al. 2019; Yong et al. 2020).

4.9.9 Lactobacillus kefiranofaciens

Lactobacillus kefiranofaciens is reported to have a variety of physiological
alterations as a result of its administration. In a study on chronically stressed
depressive mice models, the oral administration of L. kefiranofaciens showed a
marked improvement in their behavior: alleviated depressive and stress-related
mood. L. kefiranofaciens is reported to affect the Tryptophan/Kynurenine metabolic
pathway by increasing the levels of tryptophan in circulation in the body, and hence
reducing the Kynurenine/Tryptophan ratio. The presence of L. kefiranofaciens also
favors the abundance of beneficial gut microbiome such as Akkermansia,
Bifidobacteriaceae, and Lachnospiraceae, while reducing the abundance of
Proteobacteria in the gastrointestinal tract. L. kefiranofaciens impacts the immune
system by increasing the level of splenic IL-10, and decreasing the levels of splenic
IL-6 and IFN-γ levels. The exopolysaccharide is being considered the potential focal
point for future researches, as it seems to play a role in the L. kefirofaciens’ ability to
mediate the hypothalamus-pituitary-axis, the immune system, the tryptophan/
kynurenine metabolic pathway, and the colonization of gut microbiome (Jeong
et al. 2017; Sun et al. 2020; Yong et al. 2020).
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4.9.10 Bifidobacterium breve

Bifidobacterium breve is a probiotic widely known for its antidepressant potential.
There has been no widely reported success in understanding and clarifying the exact
mechanism of action of B. breve. However, a metabolite produced by B. breve,
benzoic acid, was reported in a study to play a role in the antidepressive mechanism.
B. breve introduced to schizophrenic patients showed reduced depressive symptoms,
and hence is prescribed as an antidepressive agent. It was also reported that B. breve
uplifted mood, and enhanced cognition in cognitively impaired elderly individuals
(Okubo et al. 2019; Yong et al. 2020).

4.9.11 Clostridium butyricum

Clostridium butyricum belongs to Clostridia which are a class of bacteria responsi-
ble for fermenting free sugars and carbohydrates. C. butyricum, as the name
suggests, produces a metabolite known as butyrate as a result of carbohydrate
fermentation. Similar to L. paracasei and B. infantis, C. butyricum has a potential
to upregulate the central BDNF-5HT system through a mechanism involving its
metabolite, butyrate. This microbial butyrate-mediated upregulation results in
reduced depressive symptoms. Despite being a potential antidepressant agent, not
all strains of C. butyricum are safe for consumption, as few are reportedly pathogenic
and can cause gastrointestinal complications (Anderberg et al. 2016; Cassir et al.
2016; Yong et al. 2020).

4.10 Conclusions

Conclusively, total dairy microflora presents a complete profile of differential
bacterial and fungal communities that predominately depends on the chemical
composition of milk. Lactic acid bacteria are the most versatile group in all dairy
microbiota that display a variety of strains associated with the milk of different
animals. The health-promoting advantages of microbes and their additives are
overwhelming the few effects of few harmful bacteria in the dairy environment.
Despite many benefits of dairy associated bacteria, the emergence of psychobiotics is
directing a new avenue towards personalized treatment of many psychological
disorders and enhancing the need to explore new microbes with therapeutic potential
(Table 4.2).
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Remarkable Metabolic Versatility
of the Commensal Bacteria Eubacterium
hallii and Intestinimonas butyriciproducens:
Potential Next-Generation Therapeutic
Microbes

5
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Abstract

Our gastrointestinal tract is host to a wide variety of bacteria, together referred to
as the microbiota. These bacteria influence our health and well-being through
many different mechanisms. Most of these effects are the result of metabolites
that are being produced by these bacteria or through triggering the expression of
metabolites by the host. In this chapter we will highlight two bacterial species that
have remarkable metabolic features that make them prime candidates for the
development as next-generation probiotics. The first is Eubacterium hallii, a
bacterium that is capable of producing two important short-chain fatty acids
(SCFAs), propionate and butyrate. The other bacterium is Intestinimonas
butyriciproducens, a bacterium that is capable of producing butyrate from not
only sugars but also lysine and even glycated lysine. Both species also can
produce pseudovitamin B12. We will discuss conditions that can result in the
production of specific metabolites and the implications this can have on human
health.
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5.1 Introduction

The human body is host to trillions of microorganisms, mostly bacteria. These
microorganisms can be found on every surface that is in contact with the outer
world such as our skin, our digestive tract, the lungs, and even the eye (Willcox
2013). By far the largest bacterial community is found in our gut. The importance of
these bacteria in relation to our health has long been overlooked, but even
Hippocrates, who by many is seen as the founding father of modern medicine,
apparently already claimed “all disease begins in the gut.”

The first person in more recent times who recognized that bacteria might play an
important role in health was the Russian biologist Elie Metchnikoff. While his theory
on how to improve health by manipulating the intestinal microbiota with host-
friendly bacteria in yoghurt (probiotics) caught the attention for a while
(Metchnikoff 1907), in the coming years it would drift out of attention, largely due
also to the difficulty of growing gut bacteria in the lab.

Someone whose contribution should not go unmentioned is Carl Woese, an
American microbiologist who, together with George Fox, defined the Archaea as a
separate kingdom from bacteria, based on 16S ribosomal RNA sequence (Woese and
Fox 1977). With the emergence of modern technologies such as polymerase chain
reaction and next-generation DNA sequencing came the possibility to quickly
distinguish different bacteria on the basis of 16S rRNA sequence and detect and
identify bacteria that could not be detected before by classical growth experiments.
Not only the identification of bacteria has made considerable progress, also cultiva-
tion conditions have evolved and as a result over 1000 different, mainly anaerobic
species from our gut can now be cultivated in vitro (Rajilić-Stojanović and de Vos
2014).

In the wake of research that followed, it became increasingly clear that the
bacterial populations that surround us produce many substances essential to our
bodies and thus play a major role in health and disease. From that came the
realization that there is an intricate relationship between the food that we eat, the
microbes in our gut, the metabolites they produce, and how they affect our body
(Fig. 5.1, Holmes et al. 2012; Patterson et al. 2014). The main metabolites produced
by the bacteria in our gut are the short-chain fatty acids acetate, propionate, and
butyrate (Den Besten et al. 2013). Acetate, the most abundant SCFA from our gut, is
a primary carbon source for other gut bacteria, who convert this to either propionate
or butyrate (Bui et al. 2014; Moens et al. 2017; Schwab et al. 2017). Of all SCFA
acetate is the one that is systemically most available (Boets et al. 2017). Propionate
plays an important role in glucose metabolism through the liver and is thought to
lower lipogenesis and serum cholesterol levels, although most studies for this have
been conducted in rodents and would need confirmation for humans (Lin et al.
1995). Butyrate is taken up directly by the colonocytes that line our gut for which it
serves as a direct source of energy. As a result, butyrate directly contributes to a
healthy gut. In addition, these SCFA have an important role as signaling molecules,
thereby affecting many factors such as satiety, secretion of hormones, and glucose
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metabolism (Den Besten et al. 2013; Bolognini et al. 2016; Morrison and Preston
2016).

Other important metabolites that can be produced by gut bacteria are vitamins
(notably K and B) and several neuroactive molecules that can either directly serve as
or induce the expression of neurotransmitters and hormones (Oleskin and Shenderov
2019).

Following the elucidation of the human genome, analysis of the genetic compo-
sition of the microbiota, the microbiome, revealed its vast genetic potential. Whereas
the human genome encodes approximately 23,000 genes, the gut microbiome
encodes over ten million genes (Li et al. 2014). This not only reflects genetic
power, but also a high level of flexibility. The ten million genes are divided in
over 1000 different bacterial species, countless viruses and fungi and yeasts. Each
individual will carry an estimate amount of 400 different bacteria and the composi-
tion of this is highly diverse between individuals (Qin et al. 2010). Remarkably, the
genetic composition is less variable, allowing the microbiota to execute all of its
functions, regardless of its species composition.

Within this high variety there are a number of key species that are shared by all
individuals. These bacteria perform functions that serve our body, but also contribute
to the stability of the highly complex ecosystem which they are part of. Here we
describe one of those key species, Eubacterium hallii that has recently been renamed
to Anaerobutyricum spp. but for simplicity we keep the original name. E. hallii has a
remarkable metabolic versatility and produces metabolites that do not only serve its
host but are also important for maintenance of a stable microbiota. We also include
another species, Intestinimonas butyriciproducens that is highly specialized and
adapted to the nutrients that are provided by its hosts.

Fig. 5.1 Microscopic picture of E. hallii. Swellings, appearing in the form of vacuole-like
structures under certain growth conditions, can clearly be observed
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5.2 Eubacterium hallii

5.2.1 General Description

Eubacterium hallii is a member of the Lachnospiraceae and based on 16S rRNA
sequence analysis belongs to Clostridium cluster XIVa (Collins et al. 1994; Harmsen
et al. 2002), a cluster that comprises many of the most prominent butyrate-producing
bacteria in the gut. It has been detected as common commensal in human microbiota
and recognized as a core species due to its frequent presence in all humans (Shetty
et al. 2017). It is a common gut bacterium that can be detected in at least 63–81% of
the population (Engels et al. 2016). With a diameter of 0.8–2.4 μm and 4.7 to more
than 25 μm in length (De Vos et al. 2009) these bacteria are among the larger bacteria
that can be found in our gut. Subterminal and terminal swellings can be observed,
but cultures do not survive heating at 80 �C for 10 min (Fig. 5.1).

Because of its high metabolic flexibility E. hallii can easily adapt to the different
conditions that are found in the gastrointestinal tract. As a result, this bacterium can
be found in the small intestine as well as in the colon. Its metabolites can be used by
other bacteria and as such E. hallii takes a central role in the microbiota, defining it as
a key species. Also, it produces metabolites that are essential to human health. The
role of butyrate and propionate in this respect are well documented. Moreover,
E. hallii plays an important role in insulin resistance. In a double blinded study
that was performed in The Netherlands, where volunteers that were diagnosed with
metabolic syndrome received either fecal matter from lean donors or fecal matter of
their own through a nasal duodenal tube, an improvement in peripheral insulin
sensitivity could be observed in the former group. This improved insulin sensitivity
was accompanied by an increase in the abundance of E. hallii that was observed in
small intestinal biopsies (Vrieze et al. 2012). In subsequent animal trials, where mice
were fed live E. hallii, a similar improvement of insulin sensitivity could be
observed (Udayappan et al. 2016). Studies on the mode of action to explain this
improvement are ongoing.

The omnipresence of this bacterium and its involvement with insulin resistance
shows the importance of these bacteria. Through its metabolic diversity it is able to
interact both with other members of the microbiota and its host. In the next section,
the remarkable versatility of this bacterium is further explained.

5.3 Metabolic Diversity

E. hallii is a metabolically versatile species in the gastrointestinal tract. As E. hallii is
not able to grow on complex polysaccharides this bacterium is mainly involved in
secondary fermentation of simple compounds that arise as metabolites from other
gut bacteria (Duncan et al. 2004; Schwab et al. 2017). E. hallii can grow very well in
dietary-derived sugars such as glucose, fructose, galactose, sucrose, maltose, man-
nose, and sorbitol with butyrate as the major end metabolite of fermentation. In
addition, E. hallii has been shown to metabolize the mucin-derived substrate
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N-acetylglucosamine (Belzer et al. 2017), thus facilitating the interaction with mucin
degrading bacteria. Compared to other butyrate-producing bacteria, E. hallii has a
relatively broad spectrum of substrates for its growth which is one of several
advantages for E. hallii to survive in the gut where competition is high, especially
for simple substrates. In addition, E. hallii is able to efficiently convert both D- and
L-lactate to butyrate in the presence of acetate (Duncan et al. 2004; Louis et al.
2010). This can be a of mechanism to prevent lactate accumulation in the gut (Shetty
et al. 2018). Accumulation of lactate has been observed in patients with gastrointes-
tinal conditions (Hove et al. 1994) and the capability of removing access of lactate by
E. hallii can therefore be an important factor in maintaining intestinal health.

E. hallii has been proposed to contribute to propionate production in the gut via a
conversion of 1,2-propanediol (Engels et al. 2016). E. hallii is capable of converting
1,2-propanediol to propionate using 1,2-propanediol metabolic pathway. Although
this metabolic pathway has been detected in several other bacteria, including
Flavonifractor plautii, Intestinimonas butyriciproducens, and Veillonella spp.
(Engels et al. 2016). The conversion of 1,2-propanediol to propionate has been
demonstrated experimentally only for E. hallii and Lactobacillus reuteri (Gänzle
2015; Engels et al. 2016).

5.3.1 Butyrate Pathway

Genomic analysis of E. hallii revealed the presence of a glycolytic pathway for
conversion of sugars to pyruvate while employing butyryl-CoA transferase pathway
for butyrate production (Fig. 5.2a). This pathway differentiates from the other
butyrogenic pathways at the terminal step which involves butyryl-CoA:acetate
CoA transferase for butyrate production. This CoA transferase transfers CoA
group from butyryl-CoA to acetate to form butyrate and acetyl-CoA as end products.
Either CO2/H2 or formate is also produced along this pathway which might confer an
opportunity for cross-feed with hydrogenotrophic microbes. In addition, in order to
use lactate E. hallii first converts it to pyruvate and follow all other steps in butyryl-
CoA:acetate CoA transferase to make butyrate. The energy is mainly conserved via
the conversion from crotonyl-CoA to butyryl-CoA which involves butyryl-CoA
dehydrogenase electron-transferring flavoprotein complex that generates a proton
gradient via a membrane-associated NADH-ferredoxin oxidoreductase (Li et al.
2008).

5.3.2 Propionate Pathway

E. hallii is known to not only produce butyrate but also propionate. An entire
adenosylcobalamin-dependent dehydratase PduCDE operon was found in the
genome which confers the ability to convert 1,2-propanediol to propionate
(Fig. 5.2b). This conversion is relatively fast and obtains only a small amount of
energy via a last step from propionyl-phosphate to propionate. Remarkably, the
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propanediol pathway was found to be widely spread in several intestinal taxa and
contribute to approximately 31% of propionate turnover in the gut (Engels et al.
2016). This is indicative of the notable role of E. hallii on formation of propionate in
the gut.

5.3.3 Additional Metabolites

Next to the generation of two significant short-chain fatty acids, E. hallii is capable
of producing several other interesting metabolites. Strikingly, it was found that
E. hallii was able to convert glycerol to 3-hydroxypropionaldehyde (reuterin) via
the same dehydratase PduCDE as is used for the conversion of 1,2-propanediol to
propionate (Fig. 5.3b). Reuterin is known as antimicrobial compound and toxic to
bacteria. In spite of that, E. hallii was able to metabolize a small amount of produced
reuterin relatively fast (Engels et al. 2016), which might be important to eliminate the
toxicity of this compound at small quantities in the gut.

In addition, it was found that E. hallii was capable of producing pseudovitamin
B12 (Belzer et al. 2017). Vitamin B12 is known as a modulator in shaping the
structure and function of human gut microbial community (Degnan et al. 2014). It is
believed that pseudovitamin B12 cannot be used efficiently by humans and other
animals. Moreover, the receptors necessary for vitamin B12 absorption are only

Fig. 5.2 Metabolic pathways of E. hallii for butyrate (a) and propionate (b) production
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found in the small intestine (Seetharam and Alpers 1982). However, animal
experiments suggest that pseudovitamin B12 delivered orally may be bioavailable.

Finally, E. hallii was found to be able to transform the carcinogenic heterocyclic
amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) to noncarcino-
genic PhIP-M1 (Fekry et al. 2016). PhIP is a component that is found in well-
cooked meats and is believed to contribute to the carcinogenicity of processed meats.

5.3.4 Interaction with Other Commensals

E. hallii has been reported to interact with many different commensal bacteria. This
includes the production of butyrate by E. hallii from the metabolites resulting from
starch/fructose-oligosaccharides degradation by Bifidobacterium adolescentis
(Duncan et al. 2004; Belenguer et al. 2006). Another example is the utilization by
E. hallii of sugars, released from mucin degradation by Akkermansia muciniphila to
produce butyrate (Belzer et al. 2017). Conversely, E. hallii is capable of producing
pseudovitamin B12, which is used for metabolizing 1,2 propanediol to propionate
but can also be used by A. muciniphila to activate the methylmalonyl-CoA pathway,
converting succinate to propionate. It has been shown that E. hallii might compete
with Desulfovibrio for lactate consumption in the gut (Marquet et al. 2009) as lactate

Fig. 5.3 Metabolic pathway of Intestinimonas butyriciproducens for butyrate production
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is mainly fermented to butyrate in the gut (Bourriaud et al. 2005). It was observed
that E. hallii converted 1,2-propanediol produced by infant bifidobacteria from
L-fucose and fucosyllactose to propionate (Schwab et al. 2017). In parallel,
E. hallii also used intermediate lactate/acetate produced by bifidobacteria to produce
butyrate.

5.4 Intestinimonas butyriciproducens

5.4.1 General Description

In a bid to identify commensals that are capable of utilizing noncarbohydrate sources
for their carbon needs, mouse fecal samples were prepared and cultured on reduced
agar medium, containing yeast extract, rumen fluid, and lactic acid as main energy
and carbon sources. One specific strain was identified that was only distantly related
to any at the time know recognized species. This species was close related to the
butyrate-producing bacterium Flavonifractor plautii (>94.5% similarity for 16S
rRNA sequence), but clustered as a separate genus and was designated
Intestinimonas butyriciproducens (Kläring et al. 2013). It was the first species that
was found to produce butyrate from lysine. Moreover, it was found that
I. butyriciproducens was able to convert the Amadori product fructoselysine to
butyrate. Amadori products such as fructose-lysine have become part of our food
since we are able to cook our foods and are formed through heating of reducing
sugars with amino acids in a nonenzymatic Maillard reaction. An interesting ques-
tion that arises from this is if this bacterium has evolved as part of our microbiota
since we started consuming cooked foods. Hence it would be of interest to see if
other mammals (apart from human and laboratory mice), who do not normally
consume cooked foods, would also harbor I. butyriciproducens. To date no
examples are known.

5.4.2 Metabolic Diversity

I. butyriciproducens is not able to degrade polysaccharides or disaccharides. This
species grew poorly in hexose sugars, but the growth was much enhanced in the
presence of acetate. I. butyriciproducens was able to ferment glucose, galactose, and
arabinose to mainly butyrate and minor amounts of ethanol and lactate while no
growth was observed on mannitol, cellobiose, raffinose, xylose, D-mannose,
sucrose, or sorbitol (Bui et al. 2016). Growth on lactate and acetate was also
observed (unpublished data). No hydrogen was detected on any substrate. Genomic
analysis showed the presence of a complete glycolysis and butyryl-CoA transferase
pathway. In accordance to this, it was shown that associated proteins were
overproduced when growing on glucose (Bui et al. 2015). Of this pathway, the
conversion of crotonyl-CoA to butyryl-CoA involved a butyryl-CoA dehydrogenase
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(Bcd) electron-transferring flavoprotein (Etf) complex that generates a proton motive
force via a membrane-integrated Rnf complex (Li et al. 2008).

Remarkably, I. butyriciproducens grew much better on lysine as a primary carbon
source, converting it to equimolar amounts of butyrate and acetate. The entire lysine
pathway was detected in the genome. It has been reported that the lysine to butyrate
pathway is the second abundant pathway for butyrate synthesis in the gastrointesti-
nal tract (Vital et al. 2014), suggesting a key role of Intestinimonas in colonic
butyrate turnover.

The lysine metabolic pathway consists of a sequence of reactions from lysine to
L-3-aminobutyryl-CoA which are performed by proteins of which the coding genes
are located in a single operon. The conversion from crotonyl-CoA to butyryl-CoA is
a major step for generation of energy. Generally, for butyrate formation from
butyryl-CoA the butyryl-CoA:acetate CoA transferase pathway is used. For the
butyrate formation pathway from lysine, however, it was found that butyryl-CoA:
acetoacetate CoA transferase is also used, which transfers CoA from butyryl-CoA to
acetoacetate to form butyrate. When growing on fructoselysine, these two pathways
are operating simultaneously (Bui et al. 2015). These pathways are depicted in
Fig. 5.3. Fructoselysine is first converted to fructoselysine-6-phosphate and subse-
quently cleaved to lysine and glucose-6-phosphate. While glucose-6-phosphate is
used via glycolysis and butyryl-CoA pathway, lysine is further metabolized via
lysine pathway. Butyrate, acetate, and ammonium were all detected as major end
products. Lactate was formed in small amounts. Several strains of
I. butyriciproducens have been isolated from different hosts, all of which shared
the same metabolic activities for lysine and fructoselysine.

Similar to E. hallii, I. butyriciproducens produces pseudovitamin B12, which is
beneficial for intestinal microbes and, either directly or indirectly, for the host.

Interestingly, an entire dehydratase PduCDE operon was also found on the
genome of I. butyriproducens, indicating the potential capability of converting
1,2-propanediol to propionate (Engels et al. 2016). This still needs to be proven
experimentally.

5.5 Probiotic Potential

Both I. butyriciproducens and E. hallii show features that are reminiscent of human
lifestyle. As mentioned previously, the conversion of fructoselysine to butyrate
could be an adaptation to the consumption of Amadori products, which are the
result of thermo treatment of food products. Similarly, the capability of E. hallii to
convert PhIP, a component that is derived from well-cooked meat, could well be an
adaptation of our microbiota to food that is normally confined to humans. The
Amadori products have been associated with the aging process and chronic diseases
(Deppe et al. 2011). Fructoselysine is among the most common Amadori products
and also a precursor of Advanced Glycation Endproducts (AGEs). AGEs are
implicated in the development of cancer and diabetic complications (Brownlee
1994) and therefore the removal of (predecessors of) AGEs could be an important
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step in reducing the risk of cancer and diabetics. Similarly, reducing levels of PhIP
could have a reducing effect on the risk of cancer development (Fekry et al. 2016).

These anticarcinogenic properties are just two reasons why E. hallii and
I. butyriciproducens are prime candidates for the development as potential therapeu-
tic strains. Another reason is that both strains produce butyrate, a short-chain fatty
acid that has also been associated with lowering the risk of (colonic) cancer and a
number of other beneficial health traits, including maintenance of blood glucose
levels (McNabney and Henagan 2017). Indeed, E. hallii has been identified as a
bacterium that can have a positive influence on insulin resistance (Vrieze et al. 2012;
Udayappan et al. 2016). Simultaneously propionate is also linked to glucose metab-
olism and insulin production (Chambers et al. 2015; Pingitore et al. 2017),
suggesting that the effects on glucose metabolism observed with E. hallii could
also result from its ability to produce propionate.

E. hallii is also a keystone species as it has vast interactions with other bacteria
from the microbiota. On the one hand, it uses the metabolites acetate and lactate that
are produced by other bacteria from the fermentation of complex carbohydrates; on
the other hand, it produces certain metabolites that can have a profound influence on
the stability of the microbial ecosystem. As mentioned previously, (pseudo) vitamin
B12 is essential for metabolic processes of several other bacteria such as
Akkermansia muciniphila (Belzer et al. 2017), while reuterin is a bacteriocin that
affects the composition of its close surroundings by killing bacteria.

A complicating factor in developing human gut-derived bacteria as potential
probiotics is the ubiquitous presence of specific antibiotic resistance genes. These
have emerged in the bacterial population as a result of widespread use of antibiotics
over the last decades and bear the inherent risk of being spread to invading
pathogens, complicating the treatment of infections (Thiemann et al. 2016).
Preselecting of strains that have a preferred antibiotic resistance profile can therefore
be a tedious step and might not always be successful. Notably tetracycline resistance
genes are omnipresent in the human microbiota of all geographic regions (Hu et al.
2013). Indeed, E. hallii L2-7 also carries an active TetO gene. To be able to use this
strain for probiotic purposes we used a mutagenic approach for the selection of
naturally occurring tetracycline-sensitive strains (unpublished results).

Concluding it can be stated that the high versatility of these strains makes them
prime candidates to be developed as next-generation therapeutic strains. First and
foremost, both bacteria produce butyrate which has proven health implications. In
addition, Intestinimonas has a high potential because of its ability to reduce the
burden of Amadori products that could potentially develop into carcinogenic AGEs
and turn it into a beneficial compound (butyrate). E. hallii has an even wider scope of
use as it can influence the health of the host through a direct interaction by producing
butyrate and propionate as well as its ability to transform the carcinogenic dietary
compound PhIP to PhIP-M1. Indirectly, it can influence the health of its host by
influencing the health state of the microbiota through the production of
pseudovitamin B12 and reuterin.
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More recently another potential application became apparent where the presence
of E. hallii was associated with protection against Clostridioides difficile infection
(Crobach et al. 2020).
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Anticarcinogenic Potential of Probiotic,
Postbiotic Metabolites and Paraprobiotics
on Human Cancer Cells

6
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Abstract

The performance of probiotic bacteria and their metabolites in the control and
treatment of various cancers has been shown by a number of clinical studies.
Among probiotic bacteria, lactic acid bacteria are well known for their beneficial
role in colonic health, where they also exert anticarcinogenic effects. These
beneficial bacteria can inhibit the occurrence of cancer by (1) lowering PH,
(2) reducing the level of pro-carcinogenic enzymes, (3) enhancing cell prolifera-
tion by inhibiting normal cell apoptosis and by promoting cell differentiation and
cytoprotective activities, (4) suppressing inflammation-induced cell apoptosis,
(5) enhancing innate immunity, (6) promoting various gut homeostasis, and
(7) displaying antioxidant activity. Several research findings showed that probi-
otic metabolites (postbiotics) can regulate cell proliferation in colorectal cancer
and might be considered a therapeutic alternative for treating chemoresistant
colorectal cancer. These metabolites including short-chain fatty acids,
exopolysaccharides, vitamins, bacteriocin, H2O2, etc. are known to be involved
in decreasing the viability of cancer cells and the induction of apoptosis by
influencing different signaling pathway. Despite the general definition that
probiotics are live microorganisms, a variety of biological responses have been
reported from administering dead and frequently heat-killed (Paraprobiotic)
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probiotic bacterial cultures to various mammalians. The preparations of dead cells
have also been fractionated and various cellular components shown to produce a
range of biological responses. Many of the biological responses found with the
heat-killed probiotic bacterial cells are not antimicrobial effects but are, rather,
immunomodulating effects. Owing to the fact that probiotics, paraprobiotics and
metabiotics or postbiotics metabolites are the most widely studied biological
therapeutic alternatives for the treatment of cancer; hence in this chapter their
functions and mechanism of action would be elucidated.

Keywords

Probiotics · Paraprobiotics · Postbiotics · Metabiotic · Bacteriocin ·
Exopolysaccharide · Short-chain fatty acids · Biosurfactants · Cancer

6.1 Introduction

Despite the fact that cancer risk indisputably depends on genetic factors, and
immunological conditions of the host, but most important of all the gut microbiome
has known to play considerable role in cancer cases. According to reports, any
imbalance in the gut microbiome compositions might result in disorders such as
cancer, malignancy, inflammatory bowel disease (IBD), irritable bowel syndrome
(IBS), fatty liver diseases, obesity, type 2 diabetes mellitus, asthma, cardiovascular,
psychiatric disorders, and immune-mediated diseases (Barteneva et al. 2017;
Marques et al. 2017). Such modification of the gut microbiota is referred to as
dysbiosis is of paramount importance as they play potential role in initiation and
progression of several diseases in humans and animals (Azad et al. 2018). Vast
population of these bacteria present in the digestive tract of the host could either
prevent cancer cell growth or slow down the process.

Gut microbiota is occupied by members of bacteria belonging to the family
Bacteroidetes and Firmicutes. Among these, lactic acid bacteria (LAB) are the
most dominant flora residing in the gut of a healthy individual that are recognized
as GRAS (generally recognized as safe). Majority of the LAB species are widely
used as probiotics in a number of food products and supplements. The term probiotic
refers to the live microorganisms that provide health benefits to the host when
consumed in sufficient amounts (Liu et al. 2015; Lüke et al. 2016; Maghsood
et al. 2018; Voigt et al. 2009). Some of the therapeutic effects of probiotic LAB
are their antitumor activities that inhibit the carcinogens present in the gastrointesti-
nal tract by stimulating the immune response. Owing to their immune modulating
role, these bacteria are also known as “immunobiotics” (Bedada et al. 2020;
Ghanavati et al. 2020; Kumar et al. 2012; Sharma and Shukla 2016). According to
reports, the occurrence of cancer is usually prevented by these bacteria by (1) lower-
ing pH, (2) reducing the level of pro-carcinogenic enzymes (Kahouli et al. 2013),
(3) enhancing cell proliferation by inhibiting normal cell apoptosis and by promoting
cell differentiation and cytoprotective activities (Sivamaruthi et al. 2020),
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(4) suppressing inflammation-induced cell apoptosis (Kumar et al. 2010), (5) enhanc-
ing innate immunity, (6) promoting various gut homeostasis (dos Reis et al. 2017),
and (7) displaying antioxidant activity (Kaur and Kaur 2015).

Apart from probiotic bacteria, the dead cells of these bacteria are shown to
demonstrate variety of biological responses. These nonviable probiotic bacterial
cells are regarded as “Paraprobiotics” or “Probiotic ghost cells” (Sharma and
Singh Saharan 2014). Similar to live probiotic cells, the dead cells of probiotic
bacteria are known to bring about a number of biological responses in the hosts.
Although their exact mechanism of action is yet not fully explored, they are believed
to provide health benefits by the ability of their cell wall and other cellular
components to boost the immune system, and inhibit the pathogens by adherence
to the intestinal walls, etc. (Fujiki et al. 2012). Furthermore, the responses exerted by
these live and dead bacteria might also be due to the secretory metabolites released in
the cell free supernatant fluids by either the live bacteria or released after the cell
lysis, respectively (Aguilar-Toalá et al. 2018). These secretory metabolites released
by the probiotic bacteria are often termed as “postbiotics” or “metabiotics” and are
known to exert beneficial effects in the gastrointestinal tract of the host (Sharma and
Shukla 2016). Organic acids, bacteriocin, and H2O2 are some of these metabolites
from probiotic bacteria that have significant role in decreasing the viability of
colorectal cancer cells and the induction of apoptosis by influencing different
signaling pathway (Jacouton et al. 2017).

6.2 Cancers

Abnormal growth of cells that harms an organ of the body is defined as cancerous
cells. Cancer usually arises from the transformation of normal cells into tumor cells
in a multistage process that generally progresses from a pre-cancerous lesion to a
malignant tumor. The most common types of cancers include the following:

• Lung (2.09 million cases)
• Breast (2.09 million cases)
• Colorectal (1.80 million cases)
• Prostate (1.28 million cases)
• Skin cancer (nonmelanoma) (1.04 million cases)
• Stomach (1.03 million cases)

While the most common causes of cancer death include cancers of:

• Lung (1.76 million deaths)
• Colorectal (862,000 deaths)
• Stomach (783,000 deaths)
• Liver (782,000 deaths)
• Breast (627,000 deaths)
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These changes are the result of the interaction between a person’s genetic factors
and three categories of external agents, including:

• Physical carcinogens, such as ultraviolet and ionizing radiation
• Chemical carcinogens, such as asbestos, components of tobacco smoke, aflatoxin

(a food contaminant), and arsenic (a drinking water contaminant)
• Biological carcinogens, such as infections from certain viruses, bacteria, or

parasites.

Aging is another fundamental factor for the development of cancer. The incidence
of cancer rises dramatically with age, most likely due to a build-up of risks for
specific cancers that increase with age. The overall risk accumulation is combined
with the tendency for cellular repair mechanisms to be less effective as a person
grows older (WHO).

Use of tobacco and alcohol, unhealthy diet, and physical inactivity are major
cancer risk factors worldwide and are also the four shared risk factors for other
noncommunicable diseases. Some chronic infections are risk factors for cancer and
have major relevance in low- and middle-income countries. Approximately 15% of
cancers diagnosed in 2012 were attributed to carcinogenic infections, including
Helicobacter pylori, Human papillomavirus (HPV), Hepatitis B virus, Hepatitis C
virus, and Epstein-Barr virus.

According to WHO reports, Hepatitis B and C virus and some types of HPV
increase the risk for liver and cervical cancer, respectively. Infection with HIV
substantially increases the risk of cancers such as cervical cancer.

A correct cancer diagnosis is essential for adequate and effective treatment
because every cancer type requires a specific treatment regimen that encompasses
one or more modalities such as surgery, radiotherapy, and chemotherapy. The
primary goal is generally to cure cancer or to considerably prolong life. Improving
the patient’s quality of life is also an important goal. This can be achieved by
supportive or palliative care and psychosocial support and most important of all by
healthy diet. In this context, probiotic food products are of high importance as the
beneficial bacteria in these products can manipulate the microbiome of the gut in a
manner leading to desired health outcomes. Hence, the use of these bacteria for the
prevention and treatment of various types of cancers has been of key research
interest (Dicks et al. 2018; Zhong et al. 2014).

6.3 Anticancer Effects of Probiotic Bacteria

Probiotics are nonpathogenic live microorganisms that provide health benefits when
are consumed in sufficient amounts (Mehra et al. 2012). Probiotic bacteria and yeasts
are known to colonize, multiply, and produce variety of bioactive substances that
accounts for their beneficial effects in the gastrointestinal tract of the host (Forsyth
et al. 2009). Probiotics may be highly beneficial to the host as it has been described
that they can maintain epithelial integrity, compete for adhesion and nutrition with
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pathogens, and stimulate cell-mediated immunity, IgA production, and gut
associated lymphoid tissue (Goldin and Gorbach 1980).

These beneficial bacteria are vastly studied for their anti-inflammatory effects
(Jacouton et al. 2017), playing significant role in the treatment of variety of cancer
types (Fig. 6.1). The underlying mechanisms for the anticancer effects of probiotic
bacteria are versatile including suppression of the growth of microbiota implicated in
the production of mutagens and carcinogens, alteration in carcinogen metabolism,
and protection of DNA from oxide damage as well as regulation of immune system
(Jacouton et al. 2017). In addition, they have been shown to change expression of
different genes participating in cell death and apoptosis, invasion and metastasis,
cancer stem cell maintenance, as well as cell cycle control. Probiotic actions such as
adhesion of lactic acid bacteria or their components to epithelial cells as well as
release of soluble factors have been proposed to be important for the suppression of
neoplastic cells (Oelschlaeger 2010).

Diet is known to play a major role in the pathogenesis of cancer especially colon
cancer, among which red meat and animal fats are the main enemies. On the other
hand, reports have indicated that fruits and vegetables might have preventive effects
on such types of cancers. With the recognition of importance of diet in the control
and prevention of a number of diseases, the demand for functional foods that are
claimed to have health benefits are highly sought for.

Goldin and Gorbach (1980) were among the first to demonstrate the association
between a diet enriched with Lactobacillus and a reduced incidence of colon cancer
(40% vs. 77% in controls). In another study, a traditional fermented milk product
was shown to inhibit in vitro proliferation of MCF-7 breast cancer cells, but not
normal mammary epithelial cells.

Generally, the importance of probiotics has been shown in different in vitro,
in vivo animals and clinical trials in humans (Tables 6.1 and 6.2). In a recent study
we were able to demonstrate in vitro and in vivo anticancer effects of a live and heat-
killed L. casei strain isolated from local dairy product (Noorozi et al. 2021). While,
previously, Orlando et al., 2009 had reported antiproliferative effects of L.GG on
gastric and colon cancer cells. They found that the highest concentrations of L.GG
homogenate and cytoplasm extracts reduced the percentage of cell viability to nearly
55% and 65% in DLD-1(colon) and HGC-27 (gastric) cancer cell lines
(Oelschlaeger 2010).

Special attention has been given to the effects of probiotics in reduction of
invasion and metastasis in cancer cells. Invasion and metastasis have been regarded
as important hallmarks of malignant cells which are endowed to them through
diverse and complex genetic or epigenetic aberrations as well as extrinsic signals,
such as those relayed from their microenvironment (Górska et al. 2019).

While, during in vivo studies conducted by Jacouton et al. it was shown that dairy
strain of probiotic L. casei BL23 possessed potential anti-inflammatory and
antitumor effects when administered orally to 6–8 weeks old female mice. The
protective effect demonstrated by this probiotic strain was through reduction in
cell proliferations and apoptosis induction. Apoptosis or programmed cell death is
necessary in the treatment of cancer (Jacouton et al. 2017).
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Fig. 6.1 Summary of the possible applications of probiotic bacteria in the treatment and prevention
of cancer (Górska et al. 2019), downwards arrow depicts decrease, upwards arrow depicts an
increase; ACF aberrant crypt foci; MPL multiple plaque lesions
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The immunomodulatory potential of L. casei BL23 is mediated through IL-22
cytokine downregulation, and an antiproliferative property, mediated through Bik,
caspase-7, and caspase-9 upregulation (Tiptiri-Kourpeti et al. 2016).

During an in vitro and in vivo study, it was shown that live L. caseiATCC393 and
its components exert potent antiproliferative, growth inhibitory, and pro-apoptotic
effects. These researchers reported that oral administration of live L. casei ATCC
393 and its components to the mice displayed antiproliferative effects, and suggested

Table 6.1 General effects of probiotics on cancer cells (in vitro studies)

Probiotic strain/details of
experiment Cell line Effect Reference

Lactobacillus rhamnosus GG,
Bifidobacterium lactis Bb12

Caco-2 " Apoptosis Altonsy et al.
(2010)

Lactobacillus casei ATCC 393 HT29
and
CT26

Induction of apoptosis Tiptiri-
Kourpeti
et al. (2016)

Lactococcus lactis NK34 HT-29,
LoVo,
AGS

>80% # Cell proliferation

Bifidobacterium infantis,
Lactobacillus paracasei,
Bifidobacterium bifidum

MCF7 # Cell proliferation Han et al.
(2015)

Lactobacillus paracasei IMPC2.1,
Lactobacillus rhamnosus GG/heat
killed/

DLD-1 # Cell proliferation
Induction of apoptosis

Orlando et al.
(2012)

Lactobacillus pentosus B281,
Lactobacillus plantarum B282/cell
free supernatant used/

Caco-
2 and
HT-29

# Cell proliferation
Cell cycle arrest (G1)

Oelschlaeger
(2010)

Lactobacillus casei CRL431 # Cell proliferation Saxami et al.
(2016)

Bacillus polyfermenticus/AOM
stimulation/

NMC460 # Cell colony formation in
cancer cells(N/E on normal
colonocytes)

Ma et al.
(2010)

Bacillus polyfermenticus KU3 LoVo,
HT-29,
AGS

# Cell proliferation Lee et al.
(2015)

Lactobacillus rhamnosus,
Lactobacillus crispatus/cell-free
supernatant used/

HT-29 " Apoptosis

Lactobacillus gasseri and
Lactobacillus crispatus/cell-free
supernatant used/

Hela,
HNCF

# Cell proliferation Motevaseli
et al. (2013)

Lactobacillus lactis IL-17A TH17 " Apoptosis Jacouton
et al. (2017)

# Decrease; " increase; N/E no effect. Human colonic cancer cells: Caco-2, HT-29, SW1116,
HCT116, SW480, DLD-1, LoVo, Human colonic epithelial cells: NMC460. Human gastric adeno-
carcinoma cells: AGS Mus musculus colon carcinoma cells: CT26.Cervical cancer:Hela. Head and
neck cancer:HNCF.Lung cancer:TH17
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that the mechanisms underlying this effect were tumor necrosis factor related
apoptosis-inducing ligand TRAIL upregulation and surviving downregulation
(Tiptiri-Kourpeti et al. 2016).

Lactobacilli can stimulate immune cells of the host including dendritic or natural
killer (NK) cells or T helper type 1 (TH1) response, which participates in precancer-
ous or anticancerous cell. Oral administration of probiotic L. acidophilus isolated
from traditional homemade yogurt and neonatal stool reduces tumor growth by
immune response modulation or changing the cytokine milieu reducing growth
rate of tumor, increasing proliferation of lymphocyte, protecting TH cells, and
activating antitumoral cell in in vivo breast cancer murine model, 8–10-week-old
Balb/C female mice (Fujiki et al. 2012).

Notably, gut L. acidophilus activates NK cells, a major source of interferon
(IFN)-γ and play vital role in antitumor immunity. Thus, the mechanism by which
L. acidophilus prevents tumor growth is by innate anticancer cells activation.
L. acidophilus produces IFN-γ from splenocyte to increase anticancer property,
antiangiogenesis, and NK activity (Fujiki et al. 2012). Additionally, probiotic
Lactococcus lactis (L. lactis) NK34 with a dose 106 CFU was shown to possess
strong anticancer and anti-inflammatory effects by inhibiting the proliferation of
cancer cells such as human lung carcinoma cell line (SK-MES-1), human colon
adenocarcinoma cell line (DLD-1, HT-29), human colon adenocarcinoma cell line
(LoVo), human stomach adenocarcinoma cell line (AGS), and human breast adeno-
carcinoma cell line (MCF-7 cells). L. lactis NK34 demonstrated anti-inflammatory
property by inhibiting lipopolysaccharide-induced RAW 264.7 cells that produce

Table 6.2 General effects of probiotics in tumor-induced animal models (in vivo studies)

Probiotic strain
Animal
model Induction Treatment Result Reference

Lactobacillus acidophilus,
Lactobacillus casei

Rat DMH 40 weeks # TI # TV
# TM

Arvind and
Sinha (2009)

Bifidobacterium lactis
KCTC 5727

SPF
C57BL
rat

19 weeks # TI # TV Kim et al.
(2010)

Bacillus polyfermenticus CD-1
mice

DLD-1
cells
injection

20 weeks # TI # TV Ma et al.
(2010)

Lactobacillus plantarum BALB/
c mice

CT26
cells
injection

14 weeks #TV,
Induction
of necrosis

Hu et al.
(2015),
Walia et al.
(2015)

Lactobacillus plantarum
(AdF10), Lactobacillus
rhamnosus GG

SD rats DMH
4 weeks

12 weeks # TI # TV
# TM

Lactobacillus casei BL23 C57BL/
6 mice

DMH 10 weeks # TI Tiptiri-
Kourpeti
et al. (2016)

# Decrease, TI tumor incidence, TV tumor volume, TM tumor multiplicity, DMH 1,2 dimethylhy-
drazine dihydrochloride
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nitric oxide, and proinflammatory cytokines such as interleukin-18, tumor necrosis
factor-α, and cyclooxygenase-2 were decreased (Tiptiri-Kourpeti et al. 2016). Pro-
biotic L. lactis has been used as a fermentation starter in dairy or fermented foods and
is considered as a safe microbe with GRAS (Generally recognized as safe) status.

Fast acidifying lactic acid bacteria, Streptococcus thermophilus (S. thermophilus)
M17PTZA496 and S. thermophilus TH982 have been reported to possess probiotic
properties, anticancer activity, and folate-producing ability in vitro. Of most com-
mercially available strains of probiotics, thermophilic S. thermophiles is extensively
used as starter culture for many dairy products next to L. lactis (Bedada et al. 2020).
According to these studies, S. thermophilus MTH17CL396, TH982, and
M17PTZA496 inhibited HT-29 cells significantly. The significant antiproliferative
potential of these strains on HT-29 cancer cells was concluded to be the result of
lactic acid produced by these bacteria. Various mechanisms are revealed as to how
lactic acid bacteria prevent colon cancer, such as carcinogens binding and degrading,
immune response increment, antimutagenic compounds production, and physico-
chemical conditions change in the colon (Bedada et al. 2020; Sanders et al. 2018).
Probiotics are used to fight against cancer by enhancing immune response or
protecting against gastrointestinal infections. A pro-inflammatory cytokine,
interleukin-17A is produced by TH17-cells and used in autoimmune disease and
host defense. Recombinant L. lactis IL-17A produced and secreted cytokine,
Interleukin-17A in murine fibroblasts 3 T3 L1 cells line and human papilloma
virus induced cancer in mouse allograft model. This indicates the role of IL 17A
in cancer (Kumar et al. 2010; Sanders et al. 2018). Figure 6.1 summarizes most
significant findings from in vitro and in vivo studies regarding anticancer effects of
probiotic bacteria and the therapeutic options (Górska et al. 2019).

6.4 Anticancer Effects of Postbiotic Metabolites Produced by
Probiotic Bacteria

Probiotics colonize, multiply, and produce variety of bioactive substances termed
“metabiotics,” accounting for their beneficial effects in gastrointestinal tract (GIT)
diseases. These metabolites produced by probiotics help in maintaining homeostasis
in the gut and enhance the growth of friendly bacteria that inhibit the conversion of
procarcinogens into carcinogens by decreasing harmful enzyme levels such as
nitroreductase, β-glucuronidase, and β-glucosidase enzymes (Sharma 2019).
Postbiotics are defined as the soluble factors (products or metabolic byproducts),
secreted by live bacteria during metabolism, like hydrogen peroxide, active ribo-
somal proteins like bacteriocins, exopolysaccharides, etc. or released after bacterial
lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived
muropeptides, polysaccharides, cell surface proteins, and organic acids. A variety
of these metabolites, such as plantaricin, exopolysaccharides (EPS), lactic acid,
acetic acid, and γ-aminobutyric acid, have been shown to possess the ability to
enhance body immunity, antitumor, and antisepsis activity (Dicks et al. 2018; Kaur
and Kaur 2015; Sharma 2019). Apart from these, the short-chain fatty acids (SCF) in
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the postbiotics are known to induce chemopreventive enzymes glutathione S trans-
ferase and glutathione transferase pi and impart genetic stability to colon cells. Some
most important biological functions of postbiotic metabolites are shown in Fig. 6.2.

Molecules and metabolites derived from probiotic bacteria can prevent tumor
development through modulation of immune systems of the host. For instance,
bacterial lipopolysaccharide (LPS), a key component of gram-negative bacteria
outer membrane, activates toll-like receptor 4, consequently activating immune T
cell-mediated response against tumor cells (Sanders et al. 2018; Sharma 2019).

In the last decade, the postbiotic metabolites extracted from beneficial bacteria
especially LAB have gained immense importance owing to their clear chemical
structure, safety dose parameters, long shelf life, and the content of various signaling
molecules that might have anti-inflammatory, immunomodulatory, anti-obesogenic,
antihypertensive, hypocholesterolemic, antiproliferative, and antioxidant activities.
As pointed out by Zhang et al., L. acidophilus and L. casei produce compounds that
inhibit the growth of breast cancer cell line, MCF7. L. acidophilus 606 prevents the
proliferation of human pancreatic tumor cell line by soluble polysaccharides pro-
duction. These properties suggest that postbiotics may contribute to the improve-
ment of host health by improving specific physiological functions, even though the
exact mechanisms have not been entirely elucidated (Dicks et al. 2018; Kaur and
Kaur 2015).

6.4.1 Short-Chain Fatty Acids (SCFAs)

The potential therapeutic role of probiotic bacteria in the gut is linked to their ability
to produce a number of metabolites including short-chain fatty acids (SCFA) like
lactic acid, acetic acid, butyric acid, propionic acids, etc. (Kahouli et al. 2013;
Sharma and Shukla 2016).

SCFAs, conjugated linoleic acid and other anticarcinogenic products produced by
Lactobacilli extracts induce apoptosis in cancer cells. In a report, the antiproliferative

Fig. 6.2 Some biological functions of postbiotic metabolites produced by probiotic bacteria
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potential of probiotics L. fermentum NCIMB 5221, 2797, and 8829 was linked to
their ability to produce SCFAs in vitro and their ability to persist in an intestinal fluid
(Kahouli et al. 2013).

In another research report, SCFAs metabolites produced by probiotic
Propionibacterium freudenreichii was shown to damage colorectal adenocarcinoma
cells by producing apoptosis in vitro. Similarly, probiotics Pediococcus pentosaceus
FP3, Lactobacillus salivarius FP35, Lactobacillus salivarius FP25, and E. faecium
FP51 also inhibit proliferation of colon cancer cells by SCFAs bioproduction, mostly
propionic and butyric acids. Similarly, conjugated linoleic acids produced by probi-
otic bacteria have the ability to form anticarcinogenic effects in vitro and in vivo.
Another probiotic strain, L. reuteri NCIMB 701,359 has demonstrated
anticarcinogenic effects owing to its ability to produce propionate (Kahouli et al.
2013; Sharma and Shukla 2016; Sivamaruthi et al. 2020).

Butyrate produced by fermentation of high amylose starch was reported to reduce
the overall oxidative stress in gut and may also activate different procarcinogen
metabolizing enzymes to aid in colon cancer prevention (Kahouli et al. 2013;
Sharma and Shukla 2016; Sivamaruthi et al. 2020). Butyrate acts as the preferred
source of energy for colonocytes and has anti-inflammatory and anticancerous
properties (Fig. 6.3). Butyrate participates in the mobility of the colon, reduces
inflammation, increases visceral irrigation, induces apoptosis, inhibits the progres-
sion of tumor cells, and contributes with the prevention of colorectal cancer
(Williams et al. 2003). Unlike butyrate, acetate has been reported to be an instigator
of cancers including liver, brain, prostate, and breast cancer. In cancer cells, acetate
can serve as a source of nutrition required for lipid biosynthesis and can acetylate
histones, leading to epigenetic modifications. It can also lead to the considerable
posttranslational modification of proteins, altering their functions (Schug et al.
2016).

Immunosurveillance

Apoptosis

Inflammat
 
ionAngiogenesis

Proliferat ion Butyrate

Fig. 6.3 Potential mechanisms by which the antineoplastic actions of butyrate may be mediated
(Williams et al. 2003)
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6.4.2 Bacteriocins

The potential use of bacteriocins in anticancer therapy is due to their inhibition of
DNA and membrane protein synthesis, inducing apoptosis or cytotoxicity in tumor
cells. Bacteriocins are ribosomally synthesized cationic peptides that are produced
by almost all groups of bacteria. The first bacteriocin was discovered in the year
1925 by Gratia from Escherichia coli and later named as colicin. Since then, large
number of bacteriocins have been identified from a diverse group of bacterial strains.
Their physiological functions in bacteria seem to inhibit the growth of competing
microorganisms in a particular biological niche by killing them. Microorganisms
colonizing the gut may produce bacteriocins in an attempt to outcompete pathogens.
Production of bacteriocins in a harsh and complex environment such as the gastro-
intestinal tract (GIT) may be below minimal inhibitory concentration (MIC) levels.
At such low levels, the stability of bacteriocins may be compromised. Despite this,
most bacteria in the gut have the ability to produce bacteriocins, distributed through-
out the GIT. Most bacteriocins are extremely potent, exhibiting antimicrobial activ-
ity at nanomolar concentrations, as opposed to the peptide antimicrobials produced
by eukaryotic cells, which normally have 102–103-fold lower activities. Interest-
ingly, the producer cells are immune to their own bacteriocins. The classification of
bacteriocins has been revised from time to time. The latest classification arranges
bacteriocins into three major classes based on their structural and physicochemical
properties (Aguilar-Toalá et al. 2018; Kaur and Kaur 2015).

Several studies have shown that some bacteriocins have anticancer properties and
demonstrate selective action toward cancer cells. Although the exact mechanism of
the cancer cell specificity has not been studied, the various factors that could account
for the selective action of these bacteriocins could be explained based on the
generalized cell surface variations of cancer cells from the normal cells. Bacteriocins
have a higher affinity for cancer cells due to the general negative charge of cancer
cells. This could be explained by the fact that, the bi-layered phospholipid membrane
of normal mammalian cells is asymmetric with respect to the distribution of
phospholipids on the inner and outer surface. However, in cancer cells there is loss
in asymmetry with respect to phospholipid types. Cancer cell membrane is known to
carry a predominantly negative charge due to high levels of the anionic
phosphatidylserine, O-glycosylated mucins, sialylated gangliosides, and heparin
sulfates. Bacteriocins are cationic peptides by nature and thus they preferentially
bind to negatively charged cell membrane of cancer cells as compared to normal cell
membranes which are neutral in charge. Secondly, the selective binding of
bacteriocins to cancer cells can be explained due to differences in the membrane
fluidity of cancer cells. Cancer cells have higher membrane fluidity as compared to
normal cells and this facilitates easy membrane destabilization. Lastly, the
membranes of cancer cells contain a significantly higher number of microvilli
compared to normal cells that increases the surface area of cancer cells, which results
in the binding of a greater number of antimicrobial peptides to the cancer cell
membrane as compared to normal cells (Dicks et al. 2018; Kaur and Kaur 2015).
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Nisin is a food grade bacteriocin that has been used as bio-preservative in dairy
products. In a study, head and neck squamous cell carcinoma (HNSCC) cells treated
with nisin showed that this agent induced DNA fragmentation and apoptosis on three
different cancer cell lines. Apoptosis in NHSCC cells, caused by nisin, is associated
with calcium influx and upregulation of CHAC1 (cation transport regulator and
apoptosis mediator). In another study, the size of tumors in mice with oral cancer
was reduced when treated with nisin. The authors concluded that the selective action
of nisin was due to structural differences in the composition of the plasma
membranes between HNSCC cells and primary keratinocytes (Dicks et al. 2018).
Table 6.3 depicts anticancer effects of some bacteriocins produced by gram-negative
and gram-positive bacteria.

The class IIc human defensins like bacteriocin, laterosporulin 10, displays cyto-
toxic effects against several cell lines and causes necrotic and apoptotic cell death at
high and low concentrations, respectively. According to these studies, at high
concentrations (10 mM), more than 95% of normal prostate epithelial cells remained
viable, whereas 80% of cancer cells lost their viability. As with cytotoxicity against
normal cells, the concentrations used to be effective against cancerous cells may be
higher than the levels crossing the GBB (gut–blood barrier). However, the higher
affinity for cancerous cells may result in bacteriocins targeting these cells. Immune
priming by bacteriocins may also assist in the elimination of cancer cells. The
possibility of bacteriocins crossing the GBB is intriguing, and from the literature,
it is clear that they are capable of effecting the host if they do cross. However, if they

Table 6.3 Some well-known bacteriocins having anticancer activities against various cancer cell
lines

Bacteriocin
Producer
organism Cancer cell lines References

Colicin E3 E. coli HeLa, HS913T Fuska et al. (1979), Šmarda
et al. (1978)

Colicin A E. coli HS913T, SKUT-1, BT474,
ZR75, SKBR3, MRC5

Chumchalova and Šmarda
(2003)

Colicin E1 E. coli MCF7, HS913T Chumchalova and Šmarda
(2003)

MicrocinE492 K. pneumonia Hela, Jurkat, RJ2.25 Hetz Flores et al. (2002)

Pediocin
PA-1

P. acidilactici
PAC1.0

A-549, DLD-1 Beaulieu et al. (2007)

Pediocin
K2a2-3

P. acidilactici
K2a2-3

HT2a, HeLa Villarante et al. (2011)

Pediocin CP2 P. acidilactici HeLa, MCF7, Sp2/0-Ag14,
HepG2

Kumar et al. (2012)

Pyocin S2 P. aeruginosa
42A

HepG2, Im9HeLa, AS-II,
mKS-ATU-7

Abdi-Ali et al. (2004),
Watanabe and Saito (1980)

Nisin L. lactis MCF7, HepG2 Paiva et al. (2011)

Bovicin S. bovis HC5 MCF7, HepG2 Paiva et al. (2012)

Plantaricin A L. plantarum
C11

Jurkat, GH4, Reh, Jurkat,
PC12, N2A, GH4

Sand et al. (2007, 2010,
2013), Zhao et al. (2006)
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do cross and if they exert an effect requires further investigation (Dicks et al. 2018;
Kaur and Kaur 2015).

6.4.3 Exopolysaccharides

Exopolysaccharides (EPS) are biological high-molecular long-chain extracellular
polysaccharides surrounding the envelope of most bacteria. EPS are mainly involved
in cell adhesion and protection, and often covalently bound to the cell surface in the
form of capsules, or secreted into the extracellular environment in the form of slime
(Sivakumar et al. 2012). EPS constitutes rhamnose, galactose, glucose, arabinose,
and mannose. The diversity in the sugar composition, chain linkage, and molecular
weight of EPS are known to be responsible for their antiproliferative activities
(Ismail and Nampoothiri 2013; Wang et al. 2014a). Possible mechanism by which
EPS exert their anticancer activity includes: (1) prevention of tumorigenesis,
(2) induction of cancer cell apoptosis, and (3) immune modulation.

During last decade, several LAB have been investigated for their EPS-producing
ability and their health benefits such as immunomodulatory, antitumor, antibiofilm,
and antioxidant activity analyzed (Angelin and Kavitha 2020; Degeest et al. 2002).
EPS extracted from probiotics plays a fundamental role in prevention and treatment
of cancer. As Fig. 6.4 depicts, EPS of probiotic LAB have antimicrobial, immuno-
modulatory, anti-inflammatory, antioxidant, antitumor, antiviral, antidiabetic, anti-
ulcer, and cholesterol lowering activities (Hussain et al. 2017; Patel et al. 2012;
Angelin and Kavitha 2020)).

Several scientific data indicate that lactic acid bacteria found in the gut have a role
in regression of cancer through their effect on immunomodulation. These bacteria

Fig. 6.4 Biological activities of exopolysaccharides produced by LAB
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can activate phagocytes to remove early-stage tumor cells. In a recent report, Wu and
his colleagues (2021) reported that EPS extracted from LAB are noncytotoxic to
normal cells while promote tumor cell apoptosis and cell cycle arrest (Wu et al.
2020). The antitumor and antioxidant properties of EPS produced by L. acidophilus,
L. gasseri, L. plantarum, and L. rhamnosus have been reported earlier (Adesulu-
Dahunsi et al. 2018; Sungur et al. 2017).

In a study, the EPS of L. fermentum Lf2 given orally to BALB/c mice mixed with
yoghurt samples was shown to increase SCFA concentrations such as acetate and
butyrate. As mentioned in earlier section, these fatty acids are volatiles produced by
gut microbiota and have intestinal anti-inflammatory properties (Ale et al. 2019).

Reports from Sungur and his colleagues (2017) showed that 400 μg/mL of EPS
G10 extracted from L. gasseri could significantly inhibit HeLa cell line
proliferations. According to these researchers, the enhanced antiproliferative activity
observed was related to upregulation of BAX in HeLa cells and an increase in
Caspase 3 protein expression that activates apoptosis (Sungur et al. 2017). Similar to
these findings, EPS (MSR101) extracted from L. kefiri showed apoptotic effect on
HT-29 cancerous cells via upregulation of the expression of cytochrome-c, BAX,
BAD, caspase-3, caspase-8, and caspase-9 (Rajoka et al. 2019). L. acidophilus
20,079 EPS has a direct cytotoxic effect on the tumor cells by mechanisms of
apoptosis, immune response stimulation, and NF-κB inflammatory pathway inacti-
vation. The effect of L. acidophilus 20,079 extracted EPS on colon is a promising
therapeutic target for cancer. Cell wall components of L. acidophilus and L. casei act
as anticancer substances. L. plantarum 70,810 extracted EPS prevents the prolifera-
tion of hepatocellular carcinoma cell line. Additionally, EPS produced by probiotic
lactic acid bacteria such as L. plantarum GD2, L. rhamnosus E9, L. brevis LB63
isolated from healthy infant feces and Lactobacillus delbrueckii sp. bulgaricus B3
isolated from yogurt has shown anticancer effect on colon cancer cells (HT-29)
(Sharma and Shukla 2016). Lactobacilli EPS induces apoptosis in CRC in vitro
through Caspase 3 and 9 and BAX increased expression and decreased Bcl-2 and
survivin. Vital molecular pathways target and different forms of cell death induction
by components of probiotic yeasts are considered as potential therapeutic tools
against CRC. EPSs produced by probiotic Kluyveromyces marxianus
(K. marxianus) and Pichia kudriavzevii (P. kudriavzevii) inhibit various colon cancer
cell lines (Dicks et al. 2018; Sharma and Shukla 2016).

Moreover, probiotic Bifidobacterium breve (B. breve) lw01 EPS improves
immune development and possesses anticancer and anti-inflammation effects
(Sharma and Shukla 2016). According to these researchers EPS shows anticancer
property against head and neck squamous cell carcinoma cell line by controlling
apoptosis and cell cycle arrest. The investigators suggested that B. breve lw01 EPS
can be used to assist genetic and metabolic engineering and might play role in
application of functional food or drug industries.
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6.4.4 Biosurfactants

Several studies reported the prospective of LABS as biosurfactant producers and
their potential role in biomedical and food research (Fariq and Saeed 2016; Fracchia
et al. 2012; Thavasi et al. 2011). Biosurfactants (BS) are the diverse polymeric
molecules synthesized during the late log or early stationary phase of the growth
cycle of an organism, secreted extracellularly or cell wall-bound. These compounds
are generally localized on the microbial surface and made of amphiphilic molecule,
comprising both hydrophobic and hydrophilic moieties (Banat et al. 2010). As
shown in Table 6.4, the major group of biosurfactants comprises phospholipids,

Table 6.4 Structural composition of biosurfactants derived from various LAB strains

No Bacteria Biosurfactant produced References

1. L. acidophilusRC14 Rich in protein, high amount of
polysaccharides and Phosphate content

Velraeds et al.
(1996)

2. S. thermophilus Glycolipid Busscher and Van
der Mei (1997)

3. L. acidophilus Surlactin Velraeds et al.
(1996)

4. S. mutans NS Rhamnolipid like van Hoogmoed
et al. (2004)

5. S. thermophiles A Glycolipid Rodrigues et al.
(2006)

6. L. casei Glycoprotein Goŀek et al. (2009)

7. L. lactis Xylolipids Saravanakumari
and Mani (2010)

8. L. acidophilus Glycoprotein Tahmourespour
et al. (2011)

9. L. plantarum Glycolipids Sauvageau et al.
(2012)

10. L. plantarum Glycoprotein Madhu and
Prapulla (2014)

11. L. pentosus Glycolipids Vecino et al. (2014)

12. L. casei MRTL3 Glycolipids Sharma et al. (2014)

13. E. faecium MRTL9 Xylolipids Sharma et al. (2015)

14. L. helveticus
MRTL91

Glycolipids (Xylolipids) Sharma et al. (2015)

15. L. pentosus Glycolipopeptide Vecino et al. (2015)

16 L. gasseri P65 and
L. jensenii P6A

Glycolipioproteins Morais et al. (2017)

17 L.lactis53 Glycoprotein Rodrigues et al.
(2006)

18 L. paracasei Glycoprotein Gudina et al. (2010)

19 L. pentosus Glycoprotein Moldes et al. (2013)

20 Bacillus subtilis
ATCC 6633

Lipopeptide Dehghan-Noudeh
et al. (2005)
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fatty acids, glycolipids, lipopeptides, lipoproteins, polymeric surfactants, and partic-
ulate surfactants.

These bioactive compounds have recently emerged as promising molecules for
their structural versatility, novelty, and diverse properties that are potentially useful
for many therapeutic applications. One of the most important therapeutic effects of
biosurfactants is their anticancer actions and their ability to regulate cancer progres-
sion processes (Gudiña et al. 2013).

The ability of these biomolecules to interact with cell membranes of several
organisms and/or with the surrounding environments can be viewed as potential
cancer therapeutics (Rodrigues 2011). The glycoproteins derived from L. paracasei
were shown to have antitumor activity against breast cancer cell lines. According to
the results of these researchers, the biocompound produced by the mentioned
probiotic LAB was able to decrease cell viability after 48 h and reported cell cycle
arrest in the tested cell lines. Lipopeptides have also been extensively studied for
their potential antitumor activity. In another report, growth inhibition activity of
mannosylerythritol lipids against human leukemia cells was stated (Isoda and
Nakahara 1997).

Cao et al. (2010, 2011) demonstrated that surfactin induces apoptosis in human
breast cancer MCF7 cells through a ROS/JNK-mediated mitochondrial/caspase
pathway (Cao et al. 2010; Cao et al. 2011). While Kim et al. (2007) evaluated the
effect of surfactin on the human colon carcinoma cell line LoVo and showed that the
lipopeptide presents a strong growth inhibitory activity by inducing apoptosis and
cell cycle arrest (Kim et al. 2010). Lee et al. (2012) demonstrated that surfactin
inhibited the growth of MCF7 human breast cancer cells in a dose-dependent manner
(Lee et al. 2012). In addition, several other lipopeptides (isoforms of surfactin and
fengycin) were also found to have potent cytotoxic effects against the human colon
cancer cell lines HCT15 and HT29 (Sivapathasekaran et al. 2010). While Durate and
his colleagues were able to show the effect of biosurfactants on viability and
proliferation of human breast cancer cells (Duarte et al. 2014).

However, an important drawback of using surfactin as a chemotherapeutic agent
is its hemolytic activity (Dehghan-Noudeh et al. 2005) that has been reported for
concentrations above 0.05 g/L. Since surfactin has never been tested in humans, to
prevent future complications several strategies have been explored envisaging its use
as a safe therapeutic agent. Symmank et al. (2002) reported several minor
modifications of the surfactin molecule by altering surfactin synthetase. These
modifications changed the molecule toxicity profile, resulting in a “new” lipopeptide
with improved activity and not revealing any signs of toxicity or hemolytic activity.
Another interesting approach consists in the incorporation of surfactin in
nanoparticles in order to provide a directed as in order to provide a directed
administration and in situ release of the cyclic peptide (Symmank et al. 2002).

Since there is an enormous diversity of microbial surfactants, the attention of the
scientific community in the search for new molecules with interesting antitumor
activities is continuously increasing, as well as in looking deeply into their
mechanisms of action. Therefore, clinical applications of specifically probiotic
biosurfactants yet need to be explored. In addition, further research is required to
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unravel the mechanism of their action in human body which would assist in their
target sited applications without interfering with other body microflora. Moreover,
investigation on genetics of probiotic bacteria in regulation of biosurfactants is vital
for their optimum production and potential applications in health sector.

6.5 Anticancer Effects of Paraprobiotics (Dead Probiotic Cells)

In contrast to probiotics, paraprobiotics are defined as dead or nonviable probiotic
bacterial cells or cell components that confer health benefits when administered in
adequate doses. They are also referred to as ghost or inactivated probiotics and
mainly constitute ruptured cell components of probiotic cells such as teichoic acids,
peptidoglycan-derived muropeptides, pili, fimbriae, flagella, polysaccharides,
biosurfactants, etc. Some paraprobiotic products have been commercialized and
present in the market with the trade name of Lactéol Fort® from PUMC Pharmaceu-
tical Co., Ltd. and Fermenti Lattici Tindalizzati® from Frau, AF United Spa
(Taverniti and Guglielmetti 2011).

The anticancerous activity of paraprobiotics has been reported by many; in fact,
the suppressive potentials of dead probiotic have been shown to be superior to live
probiotic. According to these statements, administration of high doses of dead
probiotic reduced a number of tumors considerably compared with pure live probi-
otic. Dead probiotics showed fewer colonic tumors, longer colons, and less weight
loss compared with pure live probiotic L. plantarum (Taverniti and Guglielmetti
2011; Wang et al. 2014b). This property was due to the effects of inflammation
suppression, apoptosis, and enhanced IgA secretion. Figure 6.5 dictates some
proposed mechanism of action of paraprobiotics (Fig. 6.5).

Fig. 6.5 Diagrammatic representation of mechanism of action of paraprobiotic; the inactivated or
dead probiotic bacterial cells are known to exert their effects by immunomodulation of T cells by
dendritic cells, stimulating their differentiation into Th1 cells, promoting the production of anti-
inflammatory cytokines. Another proposed mechanism includes inhibition of signaling pathways
related to LPS stimulation, resulting in a reduction of proinflammatory mediators, like IL-8 (Batista
et al. 2020)
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In a study, combined administration of live and dead probiotics was shown to
significantly reduce proinflammatory cytokines and inflammatory genes
overexpression, and suppressive potentials than separate administration of either
groups. All the experimental AOM/DSS control animals group possessed colon
tumors, but administration with dead L. plantarum suppressed the development of
neoplasty significantly. The mechanism by which dead probiotic sustains the status
of mucosal immune system is by increasing levels of secretory IgA. This indicates
that the antitumor property of dead probiotic is related with the easier uptake of dead
probiotic by more cells than pure live probiotic and the stronger secretory immune
responses (Sharma and Shukla 2016).

Recent report indicated that, the application of heat-inactivated probiotic Entero-
coccus faecalis (E. faecalis) protects against dextran sodium sulfate-induced CRC
and ameliorates intestinal inflammation severity in wild-type mice. E. faecalis
paraprobiotic fractions provided protection to experimental animals against dextran
sodium sulfate-induced colitis and CRC by reducing intestinal inflammation severity
through phagocytosis attenuation. It was concluded that heat-killed probiotic
E. faecalis is safe and useful for inflammation-associated colon carcinogenesis
attenuation by inhibition of IL-1β secondsretion induction in macrophages (Sharma
and Shukla 2016).

6.6 Conclusions

Probiotics are known to exert various health benefits such as immunomodulation,
inactivation of carcinogens, and maintenance of gut integrity, but the present review
represents their role in cancer prevention and treatment. However, owing to their
viable status these beneficial bacteria might impose some adverse effects in certain
immunosuppressed individuals, which in turn might limit their use. Thus, attempts
are being made to the dead counterpart (paraprobiotics) of these viable bacteria or
their secretory substances (postbiotic metabolites/metabiotics) that might be safer
alternative and effective bio-interventions. The significant role of these metabolites
has been shown to possess remarkable antimutagenic, anti-inflammatory,
antiproliferative potentials attributed to their epigenetic effects in one or the other
way, and may target cancer at different stages. Hence, paraprobiotic and metabiotics
independently or in conjunction with other approaches could be considered as a
potent prophylactic/or therapeutic modulator for cancer or other diseases in the post-
antibiotic era. However, there is a high need for human/clinical trials focusing on the
validation of health claims of these bioactive molecules. The trials in immunocom-
promised subjects would be further augmentable to investigate the tolerance of
immunocompromised subjects on these biomolecules. On the other hand, there is
a lack of knowledge regarding the stability of paraprobiotics and postbiotics under
in vitro and in vivo digestive conditions to comprehend specific mechanistic actions
by interacting with the ligands. These biomolecules may eliminate the adverse
effects and reduce the difficulties in the maintenance of viability of probiotics, but
yet enough information regarding their human clinical trials is not available that
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could elucidate their mechanism of action and propose their safe use in human
especially for the treatment of variety of cancer.
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Postbiotic Metabolites of Probiotics
in Animal Feeding 7
Teck Chwen Loh, Hooi Ling Foo, and Hui Mei Chang

Abstract

The gut is consistently exposed to broad harmful pathogens from the external
environment. It also acts as a barrier against infections, involves in digestion,
nutrient absorption, and immune response. Any disruption and dysfunction in the
gut microenvironment can cause huge implications on the general well-being of
the host. Hence, a good gut health, which is an integral component of the diet, gut
microbiota, and intestinal mucus layer, is vital to maintain the normal function of
physiological and metabolic activities in the body. In this chapter, we highlighted
the positive effects of supplementation of dietary postbiotic on growth perfor-
mance, gut microbiota, intestinal morphology, immune response, meat quality,
and expression of genes related to the barrier function and immunity in livestock.
The inclusion of antibiotic growth promoters to achieve good intestinal health and
performance which led to the emergence of antibiotic resistance gene and
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antibiotic residue level in the food product as well as beneficial compounds
detected in the postbiotic are discussed in more detail.

Keywords

Probiotics · Postbiotics · Gut microbiota · Animal feeding

7.1 Introduction

The gut is a vital organ involved in nutrient digestion and absorption, metabolism,
and immunity. It is highly exposed to the extrinsic pathogens (Yegani and Korver
2008). Failure or disruption on the digestion and nutrient absorption could affect
the optimum performance and health of the birds. The intestinal mucosal is one of
the critical determinants in the gut health and performance of the birds; it protects the
internal environment against various harmful agents from the external environment,
aids nutrient absorption, and acts as lubricant and site for microflora colonization
(Rinttila and Apajalahti 2013).

The main factor that is responsible for the gut health and performance in a poultry
flock is the gut microbiota. Even though it helps to shape the gut structure and
morphology, which aid in the digestion and nutrient absorption, a good colonization
of commensal microflora also protects against the pathogenic invasion and immune
response (Sugiharto 2016). Also, a well-balanced intestinal mucosal barrier function
is associated with the internal homeostasis between the mucus layer, epithelial cells,
gut microflora, and immune cells (Schenk and Mueller 2008). The diet, nutrition,
and infectious disease agents have been identified as the prominent factors that
interrupt with the mucin dynamics in the gut. In turn, it will affect the well-being
and performance of the birds (Yegani and Korver 2008).

Antibiotic growth promoter (AGP) has been included sub-therapeutically in the
feed extensively to achieve optimum gut health. The extensive application of AGP in
livestock nutrition may produce public health consequences as the resistance
develops in many pathogenic bacterial species in exposed animals. It was reported
that E. coli isolated from pigs’ faeces were resistant to various commonly used
antibiotics such as neomycin, oxytetracycline, nalidixic acid, and chloramphenicol
(Loh et al. 2013). Similar findings were also reported in the Netherlands (Van de
Bogaard et al. 2001). AGP has been widely used to maintain the equilibrium of the
gut ecosystem as well as to improve the growth performance of birds (Huyghebaert
et al. 2011).

Nonetheless, the usage of AGP for long periods has led to the emergence of
antibiotic resistance gene (Shazali et al. 2014) and exceeded permitted residue levels
in animal products (Van de Bogaard et al. 2001). Genes encoding for this resistance
can also be transferred to other formerly susceptible bacteria, thereby posing a threat
to both animal and human health (Montagne et al. 2003). Due to the rising concern of
food safety and security from the public, the inclusion of AGP in animal feed is
either restricted or outright banned in many countries (Ohimain and Ofongo 2012).
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However, with the ban and restriction to the use of AGPs in poultry nutrition, other
natural and safe alternatives are required to maintain the well dynamic gut
microbiota in chickens (Sugiharto 2016).

Another natural alternative to replace AGP is the postbiotic. Unlike probiotic
which deals with living cells, postbiotic is the secondary metabolic or the molecules
secreted by the probiotic during the metabolic activity (Tsilingiri and Rescigno
2013). The postbiotic contains bacteriocin, enzymes, and other unelucidated protein
compounds. It also contains organic acids such as lactic acid, acetic acid, and other
short-chain fatty acids (Lee et al. 2019). It has been proven that postbiotics have
antimicrobial and anti-inflammatory functions, prevent the proliferation of
pathogens by lowering the pH in the gut environment (Kareem et al. 2014), stimulate
cytotoxicity effect on cancer cells (Chuah et al. 2019) and act as an antioxidant agent
(Humam et al. 2019; Izuddin et al. 2020). In the in vitro studies, the metabolites
produced from Lactiplantibacillus plantarum (L. plantarum) were able to inhibit the
growth of pathogenic bacteria such as Listeria monocytogenes, Salmonella
typhimurium, Escherichia coli, and Vancomycin-Resistant Enterococci and
Paediococcus acidilactici (Kareem et al. 2014; Loh et al. 2010). Furthermore,
enhancement in the growth performance, faecal lactic acid bacteria, intestinal mor-
phology and immune status were observed when metabolite combinations were
added to the feed of broilers (Thanh et al. 2009), laying hens (Choe et al. 2012),
pigs (Thu et al. 2011), and lambs (Izuddin et al. 2020).

7.2 Postbiotics

Postbiotics, the metabiotics or metabolites are the cell-free extracts or soluble factors
(metabolic by-products) secreted by live bacteria or released after bacterial lysis
(Aguilar-Toala et al. 2018). The hosts are benefitted physiologically by the capacity
of the metabolites to induce additional bioactivity (Cicenia et al. 2014). Substances
such as organic acids, bacteriocins, enzymes, cell surface proteins, peptides,
polysaccharides (endo- and exo-), and plasmalogens are few examples of soluble
factors that are commonly found in postbiotic metabolite (Lee et al. 2019; Thu et al.
2011; Aguilar-Toala et al. 2018; Lim et al. 2019; Malashree et al. 2019; Toe et al.
2019). Furthermore, their broad inhibitory activities against several pathogenic
bacteria have been reported. For instance, reduced colonization of pathogenic
bacteria such as E. coli, Salmonella, and Enterobacteriaceae in the gastrointestinal
tract was reported in poultry following supplementation with various lactic acid
bacteria (LAB) metabolites (Humam et al. 2019; Izuddin et al. 2020; Thanh et al.
2009; Choe et al. 2012; Loh et al. 2009; Kareem et al. 2016a).

Although the underlining mechanisms regarding the beneficial implications of
postbiotics on livestock health are not well understood, there is scientific-based
evidence to show that these metabolites possess various functional characteristics
such as antimicrobial, immunomodulatory antioxidant, and other unconfirmed
properties. Currently, these properties are known to influence gut microbiota and
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metabolic pathways associated with physiological, immunological, and hormonal
functions (Foo et al. 2019; Yang et al. 2019).

7.3 Implications of Postbiotic Supplementation on Growth
Performance

The growth performance in poultry is measured using parameters such as total feed
intake, feed conversion ratio (FCR), body weight gain (BWG), as well as factors
relating to egg production and meat quality. Postbiotic efficacy is determined by
various mechanisms involved in their ability to increase the beneficial bacteria
population to protect mucosal surfaces from pathogens, which include direct com-
petition between them for adhesion and the rate of regeneration (Aguilar-Toala et al.
2018). Also, postbiotics have both bactericidal and bacteriostatic properties, thus
reducing the proliferation of pathogenic bacteria in the gastrointestinal tract (Loh
et al. 2010; Rosyidah et al. 2011; Loh et al. 2014; Kareem et al. 2016b). The
L. plantarum postbiotics have been documented to exert an antimicrobial effect on
different pathogenic bacteria (Thanh et al. 2009). Thu et al. (2011) used the inhibi-
tory activity test to assess such a relationship with the application of P. acidilactici as
an indicator microbe. Their findings showed that postbiotic combinations (TL1,
RG14, RG11, and RS5) have stronger inhibitory activity as compared with a single
strain. Presence of a large amount of lactic acid and acetic acid, as well as
bacteriocins inhibitory compound, is suggestive of contributing to such event.
These mechanisms of actions enhance better growth performance in poultry.

Based on the inhibitory activities observed on the pathogens using postbiotics
from L. plantarum (Thanh et al. 2010), an experiment was conducted to investigate
the effect of a different combination of postbiotics on growth performance in broiler
chickens (Thanh et al. 2009). Postbiotic treatment groups had greater BW, WG,
ADG, and the best FCR compared to the negative control (fed basal diet only).
Based on the improved growth performance found after postbiotic supplementation
in piglets (Thu et al. 2011), the authors also evaluated if such beneficial effects could
be replicated in laying hens (Loh et al. 2014). There was a significant reduction in
faecal pH and specific pathogenic bacteria and improvement in faecal LAB follow-
ing the addition of postbiotics, whereas there was no significant difference in overall
feed intake, egg mass, and FCR among the treatment groups. The use of postbiotics
combinations of L. plantarum strains in laying hens resulted in significantly higher
laying performance and other parameters relating to gut microbiota and small
intestine histomorphology (Choe et al. 2012). Thus, the latter study indicated the
need for further evaluation on the potential benefits of various postbiotics combina-
tion on growth performance and immune response in poultry. Metabolite
combinations and single strains of postbiotics could confer varying impact on the
growth performance of broiler chickens. Kareem (2016) investigated the growth
performance in broiler chickens after supplemented with a combination of postbiotic
and inulin. Through the study, it showed that such combination could lower the FCR
compared to the group without adding any feed additive. Another benefit of
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postbiotic is shown in the ruminal fermentation and growth performance of lambs
(Izuddin et al. 2018; Izuddin et al. 2019a; Izuddin et al. 2019b). Majority of the
research on postbiotics in poultry have established their positive impact on growth
performance.

7.4 Implications of Postbiotic Supplementation on Gut
Microbiota and pH

The gut microbiota in poultry chickens is vital for general health and productivity
(Yang et al. 2019; Shang et al. 2018). The beneficial effects of postbiotic supple-
mentation on the gut microbiota have been determined in several studies (Thanh
et al. 2009; Choe et al. 2012; Thu et al. 2011; Loh et al. 2014; Kareem et al. 2016b).
In poultry, such studies assess the population of pathogenic and non-pathogenic
microorganisms following postbiotic supplementation in feeds (Thanh et al. 2009;
Choe et al. 2012; Loh et al. 2014). Broilers supplemented with combinations of basal
diet, inulin, and varying concentration of postbiotic L. plantarum RG14 promoted
the proliferation of total caecal bacteria and Bifidobacterium compared to the
negative control group (Kareem et al. 2016b). Also, the non-treatment group had
greater counts of E. coli and Enterobacteriaceae, whereas no effect of diet on
Lactiplantibacillus, Enterococcus (ENT), and Salmonella population in broilers
fed postbiotic with prebiotic. Similar findings were reported following the supple-
mentation of broiler feed with the combination of various postbiotics and inulin
(a prebiotic) (Kareem et al. 2016b). Thanh et al. (2009) observed increased faecal
LAB population after supplementing broilers feed with different strains of
L. plantarum derived metabolites. The LAB counts and mesophilic microbial popu-
lation increased significantly following dietary supplementation with combined
fermentative products of LAB (bacteriocins and organic acids) in Ross broilers
(Fajardo et al. 2012). A similar result was reported using the postbiotics in layer
hens (Choe et al. 2012). These works reinstate that intestinal microbiota maturation
index could serve as an important parameter when comparing the efficacy of feed
additives on poultry microecology.

The feeding of L. plantarum postbiotic to livestock has been proven to shift the
gut microbiome towards the proliferation of good bacteria. Kareem (2016) revealed
that supplementation of L. plantarum RG14 combined with inulin enhanced the
colonization of Bifidobacterium while lowered the population of E. coli and
Enterobacteriaceae compared to control groups. Similarly, broiler and layer birds
fed with a combination of L. plantarum postbiotics had a higher faecal LAB
population (Thanh et al. 2009; Choe et al. 2012). Humam et al. (2019) reported
that the supplementation of postbiotic to broiler chicken reared under heat stress
environment recorded higher counts of caecum total bacteria, Lactiplantibacillus
and Bifidobacterium but with a significantly lower population of pathogenic bacteria
such as Enterobacteriaceae, E. coli, and Salmonella compared to the control groups.
It also has been shown that caecal pH correlates with the bacteria counts. The
presence of various organic acids in the postbiotic lowers the pH of the caecum.

7 Postbiotic Metabolites of Probiotics in Animal Feeding 183



Subsequently, this inhibits the growth of the low acidic tolerant pathogenic bacteria
such as Enterobacteriaceae, E. coli, and Salmonella and stimulates the proliferation
of beneficial bacteria such as Lactiplantibacillus and Bifidobacterium. In lambs, the
inclusion of L. plantarum postbiotics in feed improved fibre degrading bacteria but
with a reduction in total protozoa and methanogens in the rumen (Izuddin et al.
2019b).

7.5 Implications of Postbiotic Supplementation on Gut
Morphology and Immune Response

Maintenance of the integrity of the GIT is a prerequisite for optimal physiological
function. Such maintenance enables a stable microbial population and conditions to
protect against offending substances (Yang et al. 2009; Adedokun and Olojede
2019; Dudek-Wicher et al. 2018). Majority of the studies investigate the relationship
between postbiotics and gut morphology by focussing on the height and depth of the
intestinal villi and crypts, respectively, since they are the portals for the absorption of
nutrients (Choe et al. 2012; Gao et al. 2019). Accordingly, gut health can be assessed
based on the condition of the villus height and crypt depth (Uni et al. 1995).

Postbiotic supplementation in laying hens was reported to improve nutrient
digestibility based on the maintenance of villus height and crypt depth of mucosal
architecture (Choe et al. 2012). Increment in villi height and reduced crypt depth
are optimal for efficient nutrients absorption to take place across the intestine into the
systemic circulation (Markovi et al. 2009). The addition of a combination of
postbiotics obtained from L. plantarum strains also increased small intestinal villus
height in broilers (Loh et al. 2010; Thanh et al. 2009; Kareem et al. 2016a) and pigs
(Loh et al. 2013; Thu et al. 2011). Likewise, the addition of six per cent liquid
metabolites obtained from the same bacteria showed enhancement on villus height in
layers (Choe et al. 2012). Moreover, Izuddin et al. (2019a) reported that addition of
postbiotic postweaning lamb feed had increased the villus height. Improvement was
also detected in the small intestine morphology (higher villi height and lower crypt
depth) when the broiler chickens were supplemented with postbiotic (Humam et al.
2019). Based on the information generated by Markovi et al. (2009) the positive
effect of probiotic supplementation on intestinal villi and crypt depth could be one of
the reasons for better health and growth in broiler chickens when supplemented with
postbiotic.

It is assumed that associations between postbiotic supplementation and improved
health and productivity, as shown in several studies, are connected to underlying
mechanisms that activate a protective immune response against offending
pathogens. Many studies have reported that inclusion of postbiotic in the diets
improves the immune response in the broilers (Kareem et al. 2016b) and lambs
(Izuddin et al. 2019a) and the gut health for animals.

184 T. C. Loh et al.



7.6 Implications of Postbiotic Supplementation on Meat
Quality

There is limited published data on the meat quality of broiler chickens fed with
postbiotics. However, one study showed that broiler chickens fed a combination of
postbiotics and inulin showed reduction of drip loss and better breast muscle
lightness (Kareem et al. 2015). Other parameters, such as shear force, cooking
loss, and related bone attributes, were not affected by the in-feed supplementation
of the combination, as mentioned earlier (Kareem et al. 2015). Another study
conducted by Humam et al. (2020) revealed that when postbiotic was added to the
feed of heat-stressed broiler chickens, there was an increased of breast meat pH but
decreased in the shear force, lightness, drip loss, cooking loss, and yellowness. The
prevention of pH drop might contribute to the results, improved antioxidant activity
and reduced corticoid hormone levels (Sato et al. 2010; Hao and Gu 2014; Zaboli
et al. 2019).

7.7 Implications of Postbiotic Supplementation and Gene
Expression Related to the Gut Barrier Function
and Immunity

Exploring expression of gene information regarding postbiotic supplementation
could assist in better understanding of the mechanisms underlining their effect in
poultry birds. The gene expression includes immune response and reactions relating
to the impacts on the gut microbiota and barrier function, as well as processes
involved in arresting pathogenic bacteria. Another study conducted by Kareem
et al. (2016a) evaluated the ileal cytokine expression in birds fed with postbiotic
(RG14) and prebiotic (inulin). The birds fed with diet not containing the metabolites
had higher expression of interferon (IFN) and the tumour necrosis factor alpha
(TNF-α) when compared with all the other treatment groups. Also, the mRNA
expression of IL-6 (interleukin-6) had significantly higher expression in the group
fed various percentages of the metabolite combination than the basal diet and
antibiotic-treated groups. In another study, the liver of broilers fed with various
postbiotics (metabolites from the LAB) combined with inulin had significantly
up-regulated the IGF-1 expression compared to other treatments groups (Kareem
et al. 2016b). Moreover, the group fed RG14 and inulin had greater GHR mRNA
expression compared to other treatments. Izuddin et al. (2019b) found out the
addition of in feed postbiotic of postweaning lambs led to an increase in the IL-6
mRNA and decrease of IL-1β, IL-10, TNF gene expression. Postbiotics increased
the gene expression of IGF-1 in the liver and MCT-1 in the rumen of the postwean-
ing lambs (Izuddin et al. 2019b).

There are intrinsic associations between gut microbiota and IGF-1 production as
established in experiments conducted in mice (Yan et al. 2016). Accordingly, mice
supplemented with short-chain fatty acids (SCFA) recorded increased secretion of
IGF-1 in both the adipose and liver. This effect (increased SCFA production) was
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successfully found in broiler chickens following the combined dietary supplementa-
tion using L. plantarum metabolites and prebiotics (Kareem et al. 2016a) and heat
stress broiler chickens (Humam et al. 2019).

The effects on antioxidant enzyme-related gene expression due to supplementa-
tion of L. plantarum postbiotics can be detected in postweaning lambs. The study
carried out by Izuddin et al. (2020) showed that the postweaning lambs fed with
postbiotics had up-regulated the expression of hepatic glutathione peroxidase (GPX1
and GPX4) and Cu/ZN SOD genes. Besides, the same group of lambs received
postbiotic supplementation affected the gene expression of TJP1, OCLD, CLDN1,
and CLDN 4 in the rumen and zonula occludin-1 in broiler chickens under heat
stress (Humam et al. 2020). As mucin secretion affects the gut permeability, immune
status, and nutrient absorption in the intestine, the postbiotic of L. plantarum has
been proven to improve the expression of intestinal mucin in livestock. Humam et al.
(2020) showed that postbiotic RI11 up-regulated the expression of MUC2 with the
increased inclusion level in feed.

7.8 Implications of Postbiotic Supplementation
on Antioxidant Activities

During heat stress condition, there is an increased production of reactive oxygen
species such as hydroxyl free radical and superoxide anions which posed harmfully
and even damaging effect on the animal tissues (Akbarian et al. 2016; Altan et al.
2003). In poultry, antioxidants are substances synthesized by related enzymes such
as superoxide dismutase, glutathione peroxidase, and catalase as defensive products
to mitigate the effects of reactive oxygen species by making them non-toxic (Surai
2015). Humam et al. (2020) revealed that postbiotic supplementation RI11 improved
the activity of total-antioxidant capacity, catalase, and glutathione while lowered the
level of alpha-1-acid-glycoprotein and ceruloplasmin in the blood plasma when the
broiler chickens were raised under heat stress condition. However, no significant
changes were observed in plasma corticosterone and heat shock protein 70 between
all the treatments. On the other hand, Izuddin et al. (2020) revealed that the
glutathione peroxidase and thiobarbituric acid reactive substance activities in the
blood serum were affected due to the supplementation of postbiotic.

7.9 Conclusions

A good and efficient gastrointestinal tract is essential for nutrient digestion and
absorption besides protecting the animals from various infections and stress by
secreting immune-related compounds. The feed additives such as antibiotics were
included since a long time in broilers to enhance the gut health and boilers produc-
tivity. However, excessive usage of antibiotics contributed to the emergence of
antibiotic-resistant bacteria and residual effects in the ecosystem and food product,
which could have a harmful influence on both broiler and human health. Several
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alternatives to antibiotics such as ascorbic acid and probiotics were used to promote
the broilers health and productivity. However, some probiotics own antimicrobial
resistance genes which can be transferred to other living organisms. Therefore, this
limitation may compromise the expected health consequences exhibited by the
probiotic. For these consequences, it becomes necessary to find safe and effective
alternatives to antibiotics and probiotic. Postbiotics are the metabolites produced by
probiotic and exert antimicrobial activity due to the presence of antimicrobial
compounds, for example, bacteriocins and organic acids. This characteristic leads
to better gut health. Postbiotics have been documented to enhance gut health and
growth performance and production in livestock such as poultry, lambs, and pigs.
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Probiotics Application: Implications
for Sustainable Aquaculture 8
Milad Adel and Mahmoud A. O. Dawood

Abstract

Probiotics, known as beneficial microorganisms, are being proposed as an effec-
tive and eco-friendly alternative to antibiotics. They were first applied in aqua-
culture species more than three decades ago, but considerable attention had been
given only in the early 2000s. Probiotics defined as live, dead, or a component of
the microorganisms which act under different modes of action in conferring
beneficial effects to the host or its environment. Several probiotics have been
characterized and applied in fish, and a number of them are of host origin. Unlike
some disease control alternatives being adopted and proposed in aquaculture
where actions are unilateral, the immense potential of probiotics lies on their
multiple mechanisms in conferring benefits to the host fish and the rearing
environment. The staggering number of probiotics papers in aquaculture
highlights the multitude of advantages from these microorganisms and conspicu-
ously position them in the dynamic search for health-promoting alternatives for
cultured fish. The present review provides an update on the use of probiotics in
finfish aquaculture, mainly focusing on their modes of action. It explores the
contemporary understanding of their spatial and nutritional competitiveness,
inhibitory metabolites, environmental modification capability, immunomodula-
tory potential, and stress-alleviating mechanism.
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8.1 Introduction

The aquaculture industry is rapidly growing and is now considered a significant
contributor to global food production. According to the United Nations Food and
Agriculture Organization, the growth of the aquaculture sector is higher than any
other types of animal food production systems (www.fao.org). To meet the global
demand, aquaculture production practices have been intensified to a greater extent
both in technological and practical measures (Tuan et al. 2013; Dawood et al.
2020a). However, the growth of the aquaculture industry is hampered by unpredict-
able mortalities which are caused by pathogenic microorganisms. Bacterial diseases
have been attributed as biological production bottlenecks in intensive aquaculture,
hence necessitating the use of chemicals such as drugs and antibiotics in health
management strategies (Newaj-Fyzul and Austin 2014; Ringø 2020). The antibiotic
application had been an effective strategy in the beginning, but the residuals
remaining in the rearing environment exerted selective pressure for long periods
and became a big challenge (Lakshmi et al. 2013; Soltani et al. 2019). The indis-
criminate use resulted in the emergence of antibiotic-resistant bacteria in aquaculture
environments, in the increase of antibiotic resistance in fish pathogens, in the transfer
of these resistance determinants to bacteria of land animals and human pathogens,
and in alterations of the bacterial flora both in sediments and in the water column
(Dawood et al. 2018). These alarming disadvantages prompted the aquaculture
industry to explore and develop strategies that are as equally effective as antibiotics,
eco- and consumer-friendly, and most importantly sustainable (Standen et al. 2013;
Lazado et al. 2015a, b).

Probiotics are one of the identified alternatives that can lessen the dependence of
the aquaculture industry to antibiotics (Verschuere et al. 2000; Nayak 2010; Lazado
and Caipang 2014a, b; Akhter et al. 2015). Probiotics have several mechanisms in
conferring their benefits to the host fish (Fig. 8.1). Such a feature makes probiotic
research in aquatic animals a very dynamic field. The results demonstrating the
multitude of ways in delivering benefits to the host have immensely expanded the
traditional understanding of probiotics as a modifier of the microbial community in
the host. This paper discusses the immense potential of probiotics as a health-
promoting alternative through the identified different modes of action of probiotics
following their application in finfish aquaculture. It focuses more on how they
improve the quality of the rearing environment, protect fish from biological hazards,
and modulate physiological processes that eventually promote the health and welfare
status of fish in culture. The synthesis provided here collates our current understand-
ing of how probiotics are beneficial to fish and how we can utilize these
microorganisms in fostering a more sustainable aquaculture practice.

192 M. Adel and M. A. O. Dawood

http://www.fao.org


8.2 Probiotic Definition

Several definitions of probiotics have been put forward since the first definition was
given by Lilly and Stillwell (1965), but the most widely used is the definition by
World Health Organisation’s (WHO); “live microorganisms that when administrated
in adequate amounts, confer a health benefit to the host.” The word probiotic
originated from the Greece words “pro” and “bios” which collectively mean “for
life,” hence being widely regarded as beneficial microorganisms. For some time,
Fuller’s definition of probiotics as “a live microbial feed supplement which benefi-
cially affects the host animal by improving microbial balance” was the adapted
understanding of the probiotic concept in many cultured animals (Fuller 1989).
Interestingly, the results of probiotics research in aquaculture have opened numerous
possibilities on the benefits of this group of microorganisms. Recently, Lazado and
Caipang (2014a, b) proposed that probiotics under an aquaculture understanding be
defined as “alive or dead, or even a component of the microorganisms that act under
different modes of action in conferring beneficial effects to the host or its environ-
ment.” This contemporary definition reflects all the advances in probiotics research
in aquaculture for over three decades since its first application.

Fig. 8.1 General mechanism of action of probiotics. 1. Competitive exclusion—probiotic organ-
ism colonizes the gut, thereby inhibiting colonization of pathogenic bacteria. 2. Probiotic organisms
produce certain inhibitory substances which hinder pathogenic organism. 3. Competition for
nutrients—probiotic body utilizes the nutrients causing unavailability of nutrients to the pathogens.
4. Substances produced by probiotics act as an antagonist for quorum sensing mechanism.
5. Improved immunity—increase macrophage activity and antibody level
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8.3 Regular Probiotics in Aquaculture

In the last three decades, several probiotic microorganisms have been identified,
characterized, and applied in aquaculture. These beneficial microorganisms can be of
host or non-host origin (Lazado et al. 2015a; Lazado and Caipang 2014b). In a recent
review paper, it was highlighted that host-associated microorganisms offer a great
prospect as a source of probiotics with diverse biochemical features (Dawood and
Koshio 2016; Lazado et al. 2015a). Bacteria obtained from intestine of aquatic as
well as terrestrial animals are commonly used as probiotics in aquaculture (Hai and
Fotedar 2010). Several bacterial species such as Vibrio and Pseudomonas spp.
isolated from marine fishes are being proposed as probiotics. Different species of
probiotics used in aquaculture and their beneficial effects are enumerated in
Table 8.1. There is no united stand as to what the best source of probiotics is to be
applied for fish. Probiotics from the terrestrial environment have been documented
conferring numerous benefits to the cultured animals. On the other hand, probiotics
of host origin offer several advantages as well, uniquely leverage in some biotechni-
cal concerns (i.e. temperature, salinity, the familiarity of the environment).

Various factors impose a decisive role in the selection of a suitable probiotic for
aquatic species. Different features like the type of probiotic (i.e. bacteria, fungi or
algae), host from which they are derived (i.e. host or non-host), single strain
probiotic or multi-strain, viable or non-viable organisms as probiotic and also use
of spore formers or non-spore formers (Nayak 2010; Dawood et al. 2019). These are
some of the reasons why having probiotics of universal application seem
impractical.

The most commonly used probiotic species include genera Lactobacillus,
Bifidobacterium, Aeromonas, Plesiomonas, Bacteroides, Fusobacterium,
Alteromonas, Carnobacterium and Eubacterium and strains of Bacillus, Enterococ-
cus, Bacteroides, Clostridium, Agrobacterium, Pseudomonas, Paenibacillus,
Brevibacterium, Microbacterium, Staphylococcus, Streptomyces, Micrococcus, Vib-
rio, Psychrobacter, Carnobacterium, Phaeobacter, Pediococcus,
Pseudoalteromonas, Rhodosporidium, Saccharomyces,Debaryomyces, Aeromonas,
Tetraselmis, Roseobacter, Weissella and Aspergillus (Balcazar et al. 2006; Nayak
2010; Lakshmi et al. 2013; Tuan et al. 2013; Lazado et al. 2015b; Zorriehzahra et al.
2016; Dawood et al. 2019; Ringø 2020).

8.4 Modes of Action

8.4.1 Competition for Space

Many of the pathogenic bacteria require attachment to the mucosal layer of the host
gastrointestinal tract to initiate the development of a disease (Zorriehzahra et al.
2016). An essential mechanism of action in probiotic bacteria is competition for
adhesion sites, also known as “competitive exclusion” (Boaventura et al. 2012). The
ability of bacteria to colonize the gut and adhere to the epithelial surface and
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Table 8.1 The application of different species of probiotics in aquaculture

Probiotics Species Positive effects References

Aeromonas
hydrophila

Rainbow trout
(Oncorhynchus mykiss)

Aeromonas salmonicida
infection reduced

Irianto and
Austin
(2002a, b)

Aeromonas media
A199

Crassostrea gigas
(Pacific oyster)

Reduced Vibrio
tubiashii infection

Gibson (1999)

Aeromonas sobria
GC2

Rainbow trout Protection against
Lactococcus garvieae
and Streptococcus iniae

Pieters et al.
(2008); Brunt
and Austin
(2005)

Agarivorans albus
F1-UMA

Haliotis rufescens
(abalone)

Survivability increased Silva-Aciares
et al. (2011)

Alteromonas CA2 Pacific oyster Survivability increased Douillet and
Langdon (1994)

Alteromonas
macleodii 0444

Perna canaliculus
(Greenshell mussel)

Controls Vibrio
splendidus infection

Kesarcodi-
Watson et al.
(2010);
Kesarcodi-
Watson et al.
(2012)

Pecten maximus
(scallop)

Controls Vibrio
coralliilyticus and
V. splendidus

Burkholderia
cepacia Y021

Crassostrea
corteziensis (Cortez
oyster), Nodipecten
subnodosus (lions-pay
scallop)

Increased growth and
survival

Granados-
Amores et al.
(2012)

Enterobacter
amnigenus

Rainbow trout Increased resistance
towards
Flavobacterium
psychrophilum

Burbank et al.
(2011)

Neptunomonas
0536

Perna P. canaliculus
(Greenshell mussel)

V. splendidus infection
controlled

Kesarcodi-
Watson et al.
(2010, 2012)

Pseudomonas
aeruginosa,
P. synxantha

Penaeus latisulcatus
(Western king prawns)

General health and
immune status
improved

Hai et al. (2009)

Pseudomonas
sp. (GP21) and
Psychrobacter sp.

Atlantic cod (Gadus
morhua)

Immune response Lazado and
Caipang (2014b)

Shewanella
putrefaciens

Sparus aurata L.,
(Gilthead Sea bream)

De la Banda
et al. (2012)

Gordonia
bronchialis

Rainbow trout
(Oncorhynchus mykiss)

Growth performance,
intestinal histology and
biochemical parameters

Shabanzadeh
et al. (2016)

Arthrobacter XE-7 L. vannamei (Pacific
white shrimp)

Alters intestinal
microbes

Li et al. (2008)

Bacillus circulans
PB7

Labeo rohita (Rohu) Act as immune
stimulant and protects
against A. hydrophila

Ghosh et al.
(2003);
Bandyopadhyay
and Das

(continued)
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Table 8.1 (continued)

Probiotics Species Positive effects References

Mohapatra
(2009)

Bacillus subtilis and
Bacillus
licheniformis

Rainbow trout Protects against
Yersinia ruckeri, FCR
and growth improved

Raida et al.
(2003)

Bacillus coagulans Pacific white shrimp Stress tolerance and
disease resistance

Cai et al. (2019)

Bacillus subtilis Labeo rohita (Indian
major carp)

Controls A. hydrophila Kumar et al.
(2006)

White shrimp Immunity increased and
resistance against
V. harveyi increased

Zokaeifar et al.
(2012)

Ictalurus punctatus
(channel cat fish) and
Pangasianodon
hypophthalmus (striped
cat fish)

Decreased mortality rate
due to Edwardsiella
ictaluri

Ran et al. (2012)

Bacillus subtilis
UTM 126

Litopenaeus vannamei
(White shrimp)

Protection against
vibriosis

Das et al. (2006)

Bacillus subtilis E20 Litopenaeus vannamei
(White shrimp)

Growth improved;
mortality reduced

Liu et al. (2010);
Tsai et al. (2019)

Bacillus
megaterium

Shrimp Immunity improved,
intestinal microbes
altered and resistant to
white spot syndrome
virus

Li et al. (2009)

Bacillus pumilus P. japonicus Improved larval
survival

El-Sersy et al.
(2006)

O. niloticus (Tilapia) Immunity increased and
survivability increased
against A. hydrophila
challenge

Aly et al.
(2008a)

Bacillus P64 L. vannamei (white
shrimp)

Immunostimulant Gullian et al.
(2004)

Bacillus 48 Centropomus
undecimalis (common
snook)

Growth improved Kennedy et al.
(1998)

Brevibacillus brevis Dicentrarchus labrax
(sea bass)

Prevent vibriosis and
improve growth

Mahdhi et al.
(2012)

Brochothrix
thermosphacta
BA211

Rainbow trout Protect against
A. Bestiarum

Pieters et al.
(2008)

Clostridium
butyricum

Rainbow trout Protect against vibriosis
and also from
A. hydrophila and
V. anguillarum
infections

Sakai et al.
(1995)

Miichthys miiuy
(Chinese drum)

Increased immunity and
disease resistance

Pan et al. (2008)

(continued)
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Table 8.1 (continued)

Probiotics Species Positive effects References

Carnobacterium
divergens

Gadus morhua (Atlantic
cod), Atlantic salmon
(Salmo salar) and and
rainbow trout

Protects against
V. anguillarum
infection

Gildberg et al.
(1997);
Robertson et al.
(2000)

Enterococcus
faecium SF 68

Anguilla Anguilla
(European eel)

Prevents against
Edwardsiellosis

Chang and Liu
(2002)

E. faecium MC13 P. monodon (shrimp) Protects against
V. harveyi and
V. parahaemolyticus

Swain et al.
(2009)

Enterococcus
faecalis

P. monodon (shrimp) Improved growth
performance and levels
of glutathione
peroxidase (GPs)

Guzmán-
Villanueva et al.
(2020)

Enterococcus
casseliflavus

Rainbow trout
(Oncorhynchus mykiss)

Improved resistance
against Streptococcus
iniae infection

Safari et al.
(2016)

Kocuria SM1 Rainbow trout Protects against
V. anguillarum and
V. ordalii

Sharifuzzaman
and Austin
(2010)

Lactobacillus
acidophilus

Nile tilapia Immunity increased and
protects against
P. fluorescens and
S. iniae

Aly et al.
(2008b)

Lactobacillus
acidophilus

Clarias gariepinus
(African catfish)

Growth performance,
haematological
parameters and
immunoglobulin
concentration

Al-Dohail et al.
(2009)

Lactobacillus
paracasei spp.
paracasei
(06TCa22)

Japanese pufferfish
(Takifugu rubripes)

Disease resistance Biswas et al.
(2013)

Lactobacillus
rhamnosus ATCC
53101

Rainbow trout Reduction in mortality
caused by
A. salmonicida

Nikoskelainen
et al. (2001)

L. rhamnosus O. niloticus Protects against E. tarda
infection

Pirarat et al.
2006

Lactobacillus
fructivorans and
L. plantarum

S. aurata (sea bream) Increase in production
of HSP70 thereby
increasing heat
tolerance

Carnevali et al.
(2004); Rollo
et al. (2006)

Lactococcus lactis Litopenaeus vannamei Improved growth and
immunity

Adel et al.
(2017b)

Lactococcus lactis
AR21

Rotifers Improved growth and
protects against
V. anguillarum
infection

Harzevili et al.
(1998)

(continued)
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Table 8.1 (continued)

Probiotics Species Positive effects References

Lactobacillus
sporogenes

Macrobrachium
rosenbergii (freshwater
prawn)

Boosts the survival,
growth and levels of
biochemical
constituents

Seenivasan et al.
(2012)

Leuconostoc
mesenteroides
CLFP 196 and
L. plantarum CLFP
238

Rainbow trout Mortality due to
L. garvieae was reduced

Vendrell et al.
(2008)

Lactobacillus brevis Macrobrachium
rosenbergii

Growth promotion Karthik and
Bhavan (2018).

Micrococcus luteus O. mykiss (rainbow
trout)

Infection due to
A. salmonicida was
reduced

Irianto and
Austin (2002a)

Micrococcus
MCCB 104

M. rosenbergii (fresh
water prawn)

Different bacteria
inhibited

Jayaprakash
et al. (2005)

Pediococcus
pentosaceus

Red sea bream (Pagrus
major)

Growth performance,
feed utilisation and
blood characteristics

Dawood et al.
(2016a, b, c)

Pediococcus
pentosaceus

White shrimp
(Litopenaeus vannamei)

Increase the amylase,
protease and lipase
activities

Adel et al.
(2017a)

Pediococcus
acidilactici

Rainbow trout fry Vertebral column
compression syndrome
(VCCS) was reduced

Aubin et al.
(2005)

Rhodococcus SM2 Rainbow trout Immunity improved and
protection against
V. anguillarum

Sharifuzzaman
et al. (2011)

Streptococcus
phocae P180

P. monodon Growth increased and
protects against
V. harveyi infection

Swain et al.
(2009)

Streptococcus
faecium

Oreochromis niloticus
(Nile tilapia)

As growth promoters Lara-Flores et al.
(2003)

Streptococcus
faecium

Cyprinus carpio (carp) Improves growth and
intestinal micro flora

Bogut et al.
(1998)

Streptomyces P. monodon Growth improved and
water quality was also
increased

Das et al. (2006);
Newaj-Fyzul
et al. (2014).

Vagococcus fluvialis Sea bass Protection against
V. anguillarum
infection

Sorroza et al.
(2012)

Weissella hellenica
DS-12

– Protects against several
fish pathogens

Byun et al.
(1997); Cai et al.
(1998)

Phages of family
Myoviridae and
Podoviridae

Plecoglossus altivelis Protection against
Pseudomonas
plecoglossicida

Park et al. (2000)

(continued)
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consequently interfere with the adhesion of pathogens is a desirable criterion in the
selection of probiotics (Lazado et al. 2011; Balcazar et al. 2006). Non-pathogenic
intestinal microbes such as Lactobacilli compete with the pathogens for adhesion
sites on the intestinal surfaces, particularly on intestinal villus and enterocytes
(Brown 2011).

Probiotic addition is being suggested as an early stage husbandry practice in
larviculture because the feature of competitive exclusion for attachment sites could
provide favourable rearing conditions (Irianto and Austin 2002a). Attachment of
probiotics may be non-specific based on the physicochemical agents or specific
based on the adhesion of the probiotics on the surface of the adherent bacteria and
receptor molecules on the epithelial cells (Salminen et al. 1996; Lazado et al. 2015a).

8.4.2 Production of Inhibitory Substances

Probiotic bacteria produce substances with bactericidal or bacteriostatic effects such
as bacteriocins, hydrogen peroxide, siderophores, lysozymes, and proteases
(Panigrahi and Azad 2007; Servin 2004; Tinh et al. 2007). Besides, some bacteria
produce organic acid and volatile fatty acids (e.g. lactic, acetic, butyric, and
propionic acids) that can result into the reduction of pH in the gastrointestinal
lumen, thus preventing the growth of opportunistic pathogenic microorganisms
(Tinh et al. 2007; Boaventura et al. 2012).

Recently, a compound called indole (s,3-benzopyrrole) with potent inhibitory
activity against pathogens was identified in some bacteria known to have anti-
bacterial and anti-fungal activities (Gibson 1999; Lategan et al. 2006).

Table 8.1 (continued)

Probiotics Species Positive effects References

Microaglae
Tetraselmis suecica

Penaeids Protection against
bacterial pathogen

Austin and Day
(1990)

Dunaliella
tertiolecta

Artemia Protection against
Vibrio campbellii and
V. proteolyticus

Marques et al.
(2006)

Phaffia rhodozyma,
Saccharomyces
cerevisiae and
Saccharomyces
exiguous)

Penaeids Protection against
vibriosis

Scholz et al.
(1999)

Vibrionaceae 51M6
and Pdp11

Rainbow trout
(Oncorhynchus mykiss)

Immune responses Choi and Yoon
(2008)
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8.5 Probiotics vs. Antibiotics

One of the most vulnerable points of aquaculture is the fish’s mortality related to
infectious diseases (10–20% of total mortality). Infectious diseases are often a
consequence of stress conditions as an excessive density of fish in tank or basin,
hypoxia, high nitrite, ammonia concentrations, etc. So, antibiotics are used in the
aquaculture industry to prevent or treat bacterial diseases in farmed fish and shellfish
(Adel et al. 2018).

Today, with the increasing population, access to healthy food resources has
become one of the main concerns for human beings (Zaineldin et al. 2018). Protein
from different sources and especially red and white meats plays a vital role in human
daily nutrition. However, due to the prevalence of various cardiovascular diseases in
today’s society, which occurs following the excessive consumption of unhealthy
foods, including red meat, consumers are increasingly inclined to white meat
consumption like seafood. On the other hand, natural fish and shellfish products
are restricted, and therefore aquaculture tries to meet this demand. But intensive and
highly intensive aquaculture has caused many infectious diseases and force the
farmers to use antibiotics and chemical compounds (Dawood et al. 2016c). The
presence of drug residues in fish and fish products threatens public health. Moreover,
antibiotic misuse and overuse can promote antibiotic resistance.

The use of healthy or pathogen-free fish, balanced diet, high water quality,
biosecurity plans in managing fish farms can substantially prevent disease entrance
and transmission into the farm. Despite the above points, antibiotics are widely used
to reduce the complications and symptoms of diseases. In some countries, antibiotics
are widely used as a routine procedure for treating different types of diseases in
aquaculture. Therefore, residues of antibiotics in fish meat and roe will have harmful
and destructive impacts on the health of consumers. Studies have shown that
antibiotic residues can change the resistance of normal microbial flora in the
human body to a specific group according to the antibiotics type. Also, it may
cause resistance to the antibiotics used in the treatment of humans and other animals,
which is why attempts are now being made to use alternatives to antibiotics.

8.5.1 Antibiotics Action

The antibiotics mechanism of action seems to be based on the selective action on
intestinal bacteria (Fig. 8.2). Antibiotics are used in the aquaculture industry to
accelerate the growth performance, treat diseases, reduce mortality, increase meat
production, increase the absorption of nutrient in the gastrointestinal tract, and
increase the neutralization of toxins produced by harmful intestinal bacteria. For
optimal effectiveness of antibiotics, they should be available in high concentrations
in the body for a few days.
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8.6 Overview of the Effect of Probiotic on Aquatic Animals

8.6.1 Antibacterial Activity

Several probiotics in aquaculture have been documented possessing antibacterial
activity against known pathogens. For example, probiotic L. lactis RQ516 that is
being used in tilapia (Oreochromis niloticus) exhibited inhibitory activity against
A. hydrophila (Zhou et al. 2010). It was also shown by Balcázar et al. (2008) that
probiotic L. lactis had antibacterial activity towards two fish pathogens, namely,
A. salmonicida and Yersinia ruckeri.

Zapata and Lara-Flores (2013) found that Leuconostoc mesenteroides was able to
inhibit the growth of pathogenic fish bacteria in Nile tilapia (O. niloticus). Ghosh
et al. (2008) found that B. subtilis significantly reduced the amount of motile
Aeromonads, presumptive Pseudomonads, and total Coliforms in ornamental fishes
(Newaj-Fyzul and Austin 2014). Moosavi-Nasab et al. (2014) also reported that
lactic acid bacteria (Lactobacillus buchneri, Lactococcus lactis, Lactobacillus aci-
dophilus, Lactobacillus fermentum, and Streptococcus salivarius) isolated from the
intestine of Spanish mackerel (Scomberomorus commerson) were able to inhibit the
growth of Listeria innocua. Dhanasekaran et al. (2008) reported that several
Lactobacilli isolated from the intestine of catfish (Clarias orientalis), Hari fish
(Anguilla sp.), Rohu fish (Labeo rohita), Jillabe fish (Oreochromis sp.), and

Fig. 8.2 Mechanism of action of antibiotic
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Gende fish (Puntius carnaticus) showed remarkable antibacterial activity against
Aeromonas and Vibrio sp.

The potential of probiotics including Lactobacillus plantarum (LP1, LP2), Sac-
charomyces cerevisiae (SC3), Candida glabrata (CG2), Lactococcus lactis subsp.
lactis (LL2), and Staphylococcus arlettae (SA) isolated from an indigenous fish
sauce in Malaysia showed high inhibitory activity on Staphylococcus aureus and
Listeria monocytogenes.

8.6.2 Antiviral Activity

The knowledge of the antiviral activity of probiotics has been raised in recent years
(Lakshmi et al. 2013). For example, Pseudomonas, Vibrio, Aeromonas spp., and
Coryneforms had antiviral activity against infectious hematopoietic necrosis virus
(IHNV) (Kamei et al. 1988). Li et al. (2009) demonstrated that feeding with a
B. megaterium strain increased the resistance to white spot syndrome virus
(WSSV) in the shrimp Litopenaeus vannamei. It was documented that probiotics,
like Bacillus and Vibrio sp., positively protect shrimp Litopenaeus vannamei against
WSSV (Balcazar 2003). Application of Lactobacillus probiotics as a single strain or
mixed with Sporlac improved disease resistance against lymphocystis viral disease
in olive flounder (Paralichthys olivaceus) (Harikrishnan et al. 2010).

8.6.3 Antifungal Activity

There are few studies regarding the antifungal effect of probiotics. Lategan et al.
(2004) isolated Aeromonas media (strain A199) from eel (Anguilla australis) culture
water and was observed to have a strong inhibitory activity against Saprolegnia
sp. In a separate study, Pseudomonas sp. M162, Pseudomonas sp. M174, and
Janthinobacterium sp. M169 enhanced immunity against saprolegniasis in rainbow
trout (Heikkinen 2013). Atira et al. (2012) demonstrated that Lactobacillus
plantarum FNCC 226 exhibited inhibitory activity against Saprolegnia parasitica
A3 in catfish (Pangasius hypophthalmus).

8.6.4 Competition for Chemicals or Available Energy

The existence of any microbial population depends on its ability to compete for
chemicals and available energy with the other microbes in the same environment
(Verschuere et al. 2000). Many microorganisms, including the known probiotic
group lactic acid bacteria, consume the nutrients that are essential for the growth
of several pathogens (Dawood et al. 2016a, b; Brown 2011).

For example, siderophores are low-molecular-weight ferric iron chelating agents
that can dissolve precipitated iron or extract it from iron complexes, then making it
available for bacterial growth (Neilands 1981). Siderophore-producing bacteria can
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be used as probiotics because they can sequester ferric iron in an iron-low environ-
ment, hence making it unavailable for the growth of pathogenic bacteria (Tinh et al.
2007). Gram et al. (1999) showed that a culture supernatant of Pseudomonas
fluorescens, grown in iron-limited conditions, inhibited growth of Vibrio
anguillarum. It has been revealed that P. fluorescens can competitively inhibit the
growth of the fish pathogen Aeromonas salmonicida, by competing for free iron
(Smith and Davey 1993; Gram et al. 1999). It was also revealed that GP12 and
GP21, candidate probiotics from Atlantic cod, are capable of releasing siderophores,
and this ability had been implicated for their beneficial use (Lazado et al. 2011).

8.6.5 Positive Effects on Rearing Water Quality

Interactive effects between aquaculture environment and aquatic species have been
confirmed for sustainable aquaculture (Dawood et al. 2019). Application of Gram-
positive bacteria, such as Bacillus spp., is beneficial in improving the quality of the
water system. Bacillus spp. have a more efficient ability in converting organic matter
into carbon dioxide in comparison to the Gram-negative bacteria, which converts a
higher proportion of organic matter into bacterial biomass or slime (Mohapatra et al.
2012; Balcazar et al. 2006). Certain probiotic bacteria possess significant algicidal
effect as well, particularly on several species of microalgae (Fukami et al. 1997).
Ammonia and nitrite toxicity can be eliminated by the application of nitrifying
cultures into the fish environment (Mohapatra et al. 2012). Besides, probiotics are
beneficial as they can increase microbial species’ composition in the water and
modify its quality (Elsabagh et al. 2018; Mohapatra et al. 2012). The temperature,
pH, dissolved oxygen, NH3, and H2S in rearing water were found to be of higher
quality when probiotics were added, hence maintaining a positive, healthy environ-
ment for shrimp and prawn larval in green water system (Aguirre-Guzman et al.
2012; Banerjee et al. 2010; Dawood et al. 2020b). Dalmin et al. (2001) reported that
the using of an indigenous Bacillus spp. in the rearing water of giant tiger prawn was
able to maintain optimum transparency and low organic carbon of the pond.
Mohamed et al. (2013) approved that applications of commercial probiotics to saline
tilapia (Oreochromis mossambicus) could improve the growth performance, phyto-
plankton production, and water quality.

8.6.6 Nutrients and Enzymatic Contribution

Some microorganisms have a positive effect on the digestive processes of aquatic
animals (Dawood et al. 2017; Balcazar et al. 2006). It has been shown that some
bacteria contribute to the digestion process by producing extracellular enzymes, such
as proteases, lipases, as well as growth-promoting factors (Wang et al. 2000).

Reports are demonstrating that some probiotics, especially from Bacteroides and
Clostridium sp., are capable of supplying vitamins, fatty acids, and essential amino
acids to the host (Balcazar et al. 2006; Tinh et al. 2007). Gnotobiotic oyster larvae
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(Crassostrea gigas), fed with auxenic algae (Isochrysis galbana) supplemented with
a bacterial strain CA2, showed not only improved growth performance but efficient
nutrient utilization as well (Douillet and Langdon 1994). Yeasts are well known in
animal nutrition because they can produce polyamines, which enhance intestinal
maturation. Besides bacterial probiotics, many strains of yeast have been used as
dietary supplements in several fish species (Tinh et al. 2007).

8.6.7 Interference of Quorum Sensing

Quorum sensing is defined as the regulation of gene expression in response to
fluctuations in cell-population density. Many bacteria are using this system to
communicate and regulate a diverse array of physiological activities (Miller and
Bassler 2001). The disruption of quorum sensing (QS) is considered a potential anti-
infective strategy in aquaculture (Defoirdt et al. 2004).

Halogenated furanones, which are produced by the marine red alga Delisea
pulchra (Manefield et al. 1999), have been investigated as a promising QS antago-
nist. These compounds, added at adequate concentrations, protected Brachionus,
Artemia, and rainbow trout from the harmful effects of pathogenic Vibrios (Rasch
et al. 2004; Defoirdt et al. 2006; Tinh et al. 2007). Also, some probiotic bacteria such
as Lactobacillus, Bifidobacterium, and B. cereus strains degrade the signal
molecules of pathogenic bacteria by enzymatic secretion or production of
autoinducer antagonists (Brown 2011). It was demonstrated by Medellin-Pena
et al. (2007) that L. acidophilus secretes a molecule that inhibits the QS or interacts
with a bacterial transcription of E. coli O157 gene.

8.6.8 Immunostimulants

8.6.8.1 Fish
Probiotics by stimulation of immune system of hosts, including the stimulation of
pro-inflammatory cytokines on the activity of immune cells, increasing the phago-
cytic activity of leucocytes (Pirarat et al. 2006), increasing the levels of antibodies,
acid phosphatase, lysozymes (Lara-Flores and Aguirre-Guzman 2009), complement
(Balcazar et al. 2007), cytokines (interleukin-1 (IL-1), IL-6, IL-12, tumor necrosis
factor α (TNF- α), gamma interferon (IFN-γ), IL-10 and transforming growth factor
b) (Nayak 2010) and antimicrobial peptides (Mohapatra et al. 2012), and also by
improving the intestinal microbial balance, inhibition of the colonization of fish
pathogens in the digestive tract, production of inhibitory compounds such as
bacteriocins, siderophores, lysozymes, proteases, hydrogen peroxides (Saurabh
et al. 2005), increasing the digestive enzymes activity (amylase, protease and lipase)
(Ringø 2020) and production of fatty acids, vitamins (Sakata 1990) and essential
amino acids that are useful for lactic acid bacteria (Ringø and Gatesoupe 1998) could
improve the growth performance, immune system and increased resistance on
common pathogens in fish (Fig. 8.3) and shrimp (Lakshmi et al. 2013).
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The administration of probiotics in tilapia (Oreochromis niloticus) caused an
increase in lysozyme activity, neutrophil migration, bactericidal action, and finally
enhanced resistance of fish to infection of Edwardsiella tarda (Taoka et al. 2006b).
Also, Gomez et al. (2007) used Vibrio alginolyticus strains as probiotics in white
shrimp (Litopenaeus vannamei) and observed increased survival and growth in
shrimp (Zhou et al. 2009).

Harikrishnan et al. (2011a) reported that administration of probiotics (Lactoba-
cillus sakei BK19) with herb (Scutellaria baicalensis) in tilapia (O. fasciatus)
reduces the mortality, altered haematological parameters, and enhances innate
immunity against Edwardsiella tarda. The same researchers repeated this experi-
ment in olive flounder (Paralichthys olivaceus) against Streptococcus parauberis
and found growth, blood biochemical constituents, and non-specific immunity
improved in the groups treated with probiotics and herbals mixture supplementation
diet (Harikrishnan et al. 2011b). Irianto and Austin (2002a) reported that feeding
with Gram-positive and Gram-negative probiotics resulted in the stimulation of
cellular rather than humoral (serum of mucus antibodies) immunity. There was an
increase in the number of erythrocytes, macrophages, and lymphocytes, and
enhanced lysozyme activity during feeding with probiotics. Feeding with diets
containing single or mixed isolated probiotic bacteria for O. niloticus showed
different results in survival rates and highest with fish fed diets supplemented with

Fig. 8.3 Overall beneficial effects of probiotics in aquaculture. The green arrow indicates additive
effects. Red lines indicate inhibitory effect
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B. pumilus, followed by a mixture of probiotics (B. firmus, B. pumilus, and
C. freundii), and then C. freundii.

Avella et al. (2010) used a mixture of Bacillus probiotic bacteria including
B. subtilis, B. licheniformis and B. pumilus in the diet of the gilthead seabream
(Sparus aurata) larviculture and observed apparent effects on survival, growth, and
general welfare.

Assessment of mRNA levels of several immune parameters like cytokine IL-8 in
the intestine of the control and L. plantarum groups by using real-time PCR showed
that IL-8 gene expression was significantly up-regulated by L. plantarum after
Lactococcus garvieae infection (Pérez-Sánchez et al. 2011). Standen et al. (2013)
evaluated the probiotic effect of Pediococcus acidilactici on Nile tilapia
(Oreochromis niloticus) and suggested that the probiotic treatment may cause
up-regulation of the gene expression of the proinflammatory cytokine TNF-α in
the probiotic fed fish. Presence of Bacillus subtilis C-3102 in the diets of hybrid
tilapia juvenile (O. niloticus � O. aureus) caused up-regulation of cytokines such as
IL-1β, TGF-β, and TNF-α in the intestine of fish (He et al. 2013). Lactobacillus
delbrueckii ssp. delbrueckii (AS13B) added in diet of gilthead sea bream resulted in
lower transcription of proinflammatory cytokine genes such as IL1β, IL10, cox2, and
TGF-β in the intestine of treated group (Picchietti et al. 2009).

8.6.8.2 Shrimp
Use of probiotics in different species of shrimps has improved the innate immunity
(natural or non-specific immunity) (Fig. 8.4). Several studies have demonstrated that
by using probiotics the production of cellular components such as phagocytosis,
encapsulation, the formation of nodules and humoral components including

Fig. 8.4 Model of immunomodulation in shrimp by probiotics (Lazado et al. 2015b)
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anticoagulant proteins, agglutinins, phenoloxidase enzyme (Lakshmi et al. 2013;
Song et al. 2014), antimicrobial peptides (defensins and chemokines), an
antiapoptotic protein, free radicals, bacteriocins, siderophores, monostatin,
lysozymes, proteases, hydrogen peroxide, gramicidin, polymyxin, tyrotricidin, com-
petitive exclusion and organic acid was increased. The transcription of several
immune-related genes can also be modulated by probiotic treatment (Antony et al.
2011). These stimulated immune defences to play a crucial role in the responses and
eventual protection during pathogen exposure. Probiotics have an essential role in
enhancing the resistance of shrimps against common diseases such as vibriosis,
white spot disease and Aeromonas hydrophila infection (Ahilan et al. 2004; Ma et al.
2007; Harikrishnan et al. 2009; Liu et al. 2010; Zokaeifar et al. 2014).

It was also confirmed by RNA interference (RNAi) assay that the immunity of
shrimps was increased against viral diseases using probiotics (Kawai and Akira
2006). Rangpipat et al. (2000) showed that Bacillus sp. (strain S11) protected against
infection by activating the Penaeus monodon immune system.

8.6.8.3 Immunomodulation of the Gut Immune System
The immune system of the gut is related to gut-associated lymphoid tissue (GALT)
(Nayak 2010; Lazado and Caipang 2014a, b), and there are some differences in
respect of Peyer’s patches, secretory IgA, and antigen-transporting M cells in the
intestine of piscine and mammal gut immune system (Nayak 2010). Although
lymphoid cells, macrophages, granulocytes, and mucus IgM were observed in the
intestine of fish (Bakke-McKellep et al. 2007).

There is limited knowledge about the application of probiotics and their ability in
stimulating the piscine gut immune system (Nayak 2010; Lazado and Caipang
2014a, b; Mamun et al. 2019). The present knowledge is mostly associated with
humans and terrestrial vertebrates (Lazado and Caipang 2014a, b). However, studies
indicated that probiotics could stimulate the piscine gut immune system, increasing
the number of Ig+-cells and acidophilic granulocytes (AGs) (Picchietti et al. 2007,
2008, 2009; Salinas et al. 2008). For example, it has been reported that the supple-
mentation of LAB (Lactobacillus rhamnosus GG, human origin) in the diet of
tilapia, Oreochromis niloticus could modulate the population of the intestinal
immune cells. Also, the amount of intraepithelial lymphocytes and acidophilic
granulocytes (AGs) enhanced significantly in the probiotic-fed group (Pirarat et al.
2011). Addition of probiotic-containing Lactobacillus fructivorans (host origin) and
Lactobacillus plantarum (human origin) to the diet of larval gilthead sea bream,
Sparus aurata by live vectors affected the extent of Ig+-cells and acidophilic
granulocytes mostly the MAb G7(+) phagocytic population in the gut (Picchietti
et al. 2007).

Picchietti et al. (2009) used rotifers and artemia in the administration of Lactoba-
cillus delbrueckii ssp. delbrueckii (AS13B) as the live vectors to the larval sea bass,
Dicentrarchus labrax. They observed that the population of T cells and acidophilic
granulocytes in the intestinal mucosa significantly increased in probiotic-fed fish.

In a study, rainbow trout (Oncorhynchus mykiss) were fed by diets supplemented
with probiotics such as L. Lactis spp. lactis, L. mesenteroides, and L. sakei. In the
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end, an enhancement was observed in the phagocytic activity of mucosal leucocytes
by the LAB group (Balcazar et al. 2006). Pediococcus acidilactici was used by
Standen et al. (2013) in the feeding of Nile tilapia (Oreochromis niloticus).

8.7 Amelioration of the Effects of Stress

Stress might be regarded as a physical or chemical agent, causing reactions that may
result in disease and death (Rottmann et al. 1992). Any change in water parameters
may have a side effect on the physiological and behavioural aspect of aquatic
animals (Dawood 2021). Different types of stress that may have adverse effects on
fish include thermal (Das et al. 2005; Logan and Somero 2011), nutritional, high
density (Lupatsch et al. 2010), anoxia, hypoxia, chemical, and toxins (DeMicco et al.
2010). Many harmful agents for fish exist in their environments like the water, soil,
air, or even their own body (Smith et al. 2012). In intensive systems of aquaculture
where the high density is an essential factor for the outbreak, in stressful conditions,
aquatic animals are more susceptible than wild fishes. Application of probiotic
bacteria, both as a feed supplement and water quality, can prevent stressful
conditions, enhancing the immune system and therefore reducing the harmful effects
of various stressors (Taoka et al. 2006a).

Any situation that enhances reactive oxygen species (ROS) concentration is
called oxidative stress that can lead to disturbing cellular metabolism and its regula-
tion, thereby damaging cellular constituents (Jia et al. 2011; Lushchak 2011). ROS
production is nearly related to antioxidant responses (Lesser 2006; Bidhan et al.
2014). The alterations of temperature and other environmental parameters can
severely affect the physiological activities of aquatic animals (Wabete et al. 2008).
Also, a wide range of contaminants (xenobiotics), UV-radiation, hypoxia, and other
environmental physicochemical parameters may cause oxidative stress in the animal
(Mohapatra et al. 2012). Feeding with probiotics may ameliorate the effects of these
oxidative stress factors by increasing the antioxidant status (Mohapatra et al. 2012).

Blood glucose, cortisol, and the RNA/DNA ratio of the different tissues is used as
valid biochemical stress indicators to study the fish stresses, growth, and health
status (Sivaraman et al. 2012). Another way to assess stress tolerance in fish involves
subjecting them to heat shock (Cruz et al. 2012).

Taoka et al. (2006a) grew flounder (Paralichthys olivaceus) under stress
conditions and evaluated the effects of probiotics on growth, stress tolerance, and
non-specific immune response in fish. Plasma lysozyme activity in the probiotic diet
group and the water supply group was significantly higher than in the control group.
In heat shock stress tests, flounder in the probiotics-treated groups showed higher
heat tolerance. Koninkx and Malago (2008) demonstrated that under stress
conditions, normal intestinal microflora taken as probiotics were able to enhance
the defence system by increasing specifically the putative heat shock protein (HSP).

Some probiotic bacteria have been found to decrease several biochemical stress
indicators. There is a report regarding the decrease in cortisol level on supplementa-
tion of Lactobacillus delbrueckii ssp. delbrueckii in the diet of European sea bass
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(Dicentrarchus labrax) compared to the controls during temperature stress
(Carnevali et al. 2006).

Gomes et al. (2008, 2009) found that administration of Bacillus spp. during
transport reduced handling stress by influencing the cortisol level. Varela et al.
(2010) carried out probiotic administration studies on gilthead seabream (Sparus
auratus) and concluded that there was improved tolerance to stress with this
treatment under high stocking density. Castex et al. (2009) evaluated the
antioxidative effect of Pediococcus acidilactici MA 18/5 in shrimp, Litopenaeus
stylirostris. Results showed the modulation of the activities of antioxidant enzymes
such as superoxide dismutase and catalase. It has been reported that administration
of Lactobacillus plantarum could enhance the antioxidant state in shrimp
Litopenaeus vannamei and consequently improve resistance to V. alginolyticus
infection (Chiu et al. 2007).

Chai et al. (2016) investigated the effects of Bacillus bacteria isolated from the
intestine of healthy, wild shrimps on the growth of Pacific white shrimp and showed
that probiotics reduced shrimp culture risks from stressful conditions.

8.8 Side Effects

Probiotics are generally considered safe and well tolerated (Boyle et al. 2006). One
theoretical concern associated with probiotics includes the potential for these viable
organisms to move from the gastrointestinal tract and cause systemic infections
(Snydman 2008). Another theoretical risk associated with probiotics involves the
possible transfer of antibiotic resistance from probiotic strains to pathogenic bacte-
ria; however, this has not yet been observed (Martin et al. 2013). Also, the
possibilities of change in intestinal microflora, emerging diseases, mutagenesis, or
recombination of DNA of bacteria may result into systemic infections and economi-
cal losses in fish farms (Ringø et al. 2010).

8.9 Maximizing the Benefit of Probiotics

To maximize the competitive advantage of probiotics, early delivery notably before
first feeding improved the chances of producing persistent fish population (Ringo
et al. 1997). Choosing the right probiotic, appropriate concentrations of probiotic,
sufficient feeding time, and feeding status are several important parameters that are
necessary for maximizing the benefit of probiotics.

8.10 Conclusion Remarks and Future Consequences

Despite doing many studies about efficiency and mechanisms of probiotics, many
questions are not yet clear. Additional and future studies can be directed to
transcriptome and proteome profiling of gut microbiota, host/microbe interactions,
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interactions between gut microbes, the intestinal epithelium, gut immune system,
antioxidant status, lipid level of hosts, antagonistic and synergist activity or probably
side effects of probiotics.

Use of probiotics is a useful alternative sustainable source of beneficial microbes
with bactericidal or bacteriostatic effect on pathogenic bacteria, with anti-bacterial,
anti-viral and anti-fungal activity, immunomodulatory capabilities of promoting
health and welfare to improve the growth performance, augment the immune system,
disruption of quorum sensing (QS) as a new anti-infective strategy, ameliorate the
harmful effects of oxidative stress factors and increased resistance for common
pathogens in fishes for controlling potential fish pathogens. An interactive approach
among academicians, scientists, producers and fish sector owners is required to focus
and explore the specific aspects of bacterial host interactions conferring the possible
favourable changes in diverse immune responses elicited by different bacterial
strains to propose clinically useful, bacteria-based strategies to promote the health,
production and economic growth of the aquaculture industry.

In future studies on probiotics in shellfish aquaculture, bio-floc culture system
using probiotics should be investigated on growth performance, immune response,
gut microbiome and disease resistance as only some information are available on this
topic. Also, more studies are needed to investigate the fate of probiotic organisms in
the environment and the shellfish.

The probiotic formulation should be viable on a large scale at low operational
cost. They should not be treated as “elixir of life”; instead they should be used as a
supplement to balance the diet to avail and maintain the sound health free of
infections and disease-causing microorganisms.
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Honeybee Gut: Reservoir of Probiotic
Bacteria 9
Samira Tootiaie, Mojtabah Moharrami, and Naheed Mojgani

Abstract

Honeybees are the most important crop pollinators that contribute significantly to
agricultural productivity and profitability worldwide. Microbiota accounts for up
to 1–10% of the insect’s biomass. The intestine of European Honeybees, Apis
mellifera, have diverse microbiota and are known to be occupied by approxi-
mately 70% Gram-negative bacteria, 27% Gram-positive bacteria, and 1% yeast.
The native microbiota of the honeybees is known to contribute to their nutrition,
growth, digestion, pathogens defense, and insecticide resistance. As with other
humans and animals, intestinal dysbiosis might greatly influence these insects’
health status posing a threat to their safe existence. Lactic acid bacteria (LAB)
have been discovered in abundance in the honeybee gut and are believed to be of
great importance to the honeybee health. Among several symbiotic LAB species
isolated from the digestive tract of honeybees, it is found that some of them have
the potential to be developed as probiotics. One of the most important health
benefits of probiotic LAB in honeybees is their ability to protect against several
bee pathogens and contribute to honey’s antimicrobial properties. Hence, the use
of probiotics in beekeeping could prevent diseases, enhance bee health, and
consequently increase honey production. Although probiotic bacteria isolated
from different sources could be used for honeybees, using the host bacteria, i.e.,
the bacteria from the honeybees’ gut microbiome community would be more
desirable for their own health. In this review study, we discuss the important
aspects related to Apis mellifera gut microbiome such as composition, perturba-
tion, fermentation, and most important of all, the probiotic bacterial community,
mainly LAB species residing in the gut of these insects.
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9.1 Introduction

Apis mellifera (A. mellifera) or European honeybee could colonize virtually all
habitable biomes on Earth and adapt to diverse bioclimatic conditions. A. mellifera
has been classified as a member of the order Hymenoptera and the superfamily
Apoidea (Alatawy et al. 2020). They have been divided into six evolutionary
lineages including A lineage (Africa), M lineage (western and northern Europe), C
lineage (southern and eastern Europe), O lineage (Caucasus, Turkey, Middle East,
Cyprus, Crete), Y lineage (Ethiopia), and S lineage (Syria and Lebanon) (Tihelka
et al. 2020). As A. mellifera is an essential pollinator species for natural ecosystems
and agricultural production, its health status and, consequently, continuous existence
is of great importance.

As obvious from numerous research reports, Apis mellifera depends on its gut
microbiome to perform its basic functions and survival. Bacterial communities living
in symbiosis with their hosts, also known as probiotics, are essential factors in
maintaining host health (Zeinali et al. 2020). Additionally, a close association
between Honeybee colony productivity and increased bacterial diversity was dis-
covered recently. Hence, an improved understanding of the honeybees’ gut
microbiome can help manage modern challenges to these insects’ health and
production.

The gut of the honeybee is a continuous tube starting from mouth to anus and
demarcated into foregut (stomodeum), midgut (mesenteron), and the hindgut
(proctodeum). In many insects, the hindgut is the gut region bearing the largest
microbial populations. In particular, the ileum (the region between the proximal
pylorus and distal rectum) is a relatively benign environment, in that it lacks the
digestive enzymes of the midgut and, for many terrestrial insects, the desiccation
stress of the distal hindgut, where water is actively resorbed from the lumen into
insect tissues. Microbial function and growth may also be favored by the ions and
metabolites delivered to the hindgut in the filtrate from the Malpighian tubules
(Huang et al. 2010). On the contrary, due to midgut epithelium actively secreting
immunologically active enzymes as well as several antimicrobial peptides, the
midgut shows a hostile environment for microorganisms. Besides, the midgut also
contains a region of pH < 3 that mediate many microbial cells degradation (Engel
and Moran 2013; Shanbhag and Tripathi 2009).
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9.2 Gut Microbiome Composition

In the last couple of years, marked deterioration in honeybee hives’ colony health
has been reported that has raised worldwide concerns (Meixner 2010). One of the
major reasons for such depurations of honeybee colonies is due to the effect of
several honeybee diseases (Genersch et al. 2010). In this context, the honeybee gut’s
microbial ecosystem has known to play an essential role in maintaining their health
and survival. Thus, understanding the microbial community residing in the gut of
different honeybee species could lead us to better health management of the bees that
would consequently result in enhanced agriculture productivity and human well-
being.

The bee gut microbial community is far simpler than the mammalian microbiota
and contains a distinctive community of bacterial species. The composition of the
gut bacterial communities of these social insect insects has been shaped by coevolu-
tion. These insects’ social behavior provides favorable conditions for the exchange
of the symbiont microbes, and a number of these microorganisms are efficiently
transmitted between bee colony members and their different generations (Engel and
Moran 2013).

The composition of microbial communities in the honeybee gut varies enor-
mously within and between species. Honeybees acquire gut microorganisms from
the natural environment via foods, such as nectar, pollen, and water. Hence,
honeybees’ gut flora varies according to seasonal or geographical differences in
food sources, even among individual honeybees from the same colony (Mohr and
Tebbe 2006; Moran et al. 2012).

A.mellifera gut microbiota is dominated by only nine bacterial species clusters
that are specific to bees and are transmitted through social interactions between
individuals (Fig. 9.1). According to available information, there are five main
bacterial groups in the honeybees gut including (i) Gram-negative bacteria group
(Snodgrassella alvi and Gilliamella apicola), (ii) phylum Proteobacteria to Gram-
positive bacteria, Firmicutes (Lactobacillus Firm-4 and Lactobacillus Firm 5 groups),
(iii) phylum Actinobacteria (Bifidobacterium asteroids), (iv) a small number of
Proteobacteria species (Frischella perrara, Bartonella apis, Parasaccharibacter
apium), and (v) Gluconobacter-related species group designated Alpha2.1 (Bottacini
et al. 2012; Kwong and Moran 2016).

As seen in Table 9.1, honeybee microbiota occupies distinct metabolic niches in
the A. mellifera gut. According to reports, the abundance of Snodgrassella alvi,
Frischella perrara, Gilliamella apicola, and Bartonella apis is seen in the ileum
while Lactobacillus Firm-4, Lactobacillus Firm-5, as well as Bifidobacterium pre-
dominantly reside in the rectum (Kwong and Moran 2016).

Many factors are known to affect the gut microbiota composition and profile of
the honeybees, including the age and physiological condition of honeybees.
Martinson and Moran in 2012 reported that newly emerged honeybee workers
have no or very few gut bacteria, while they uptake bacteria later via contact with
the collected honey and bee bread and through trophallactic exchange with
nestmates (Martinson et al. 2012). In other research findings, it was stated that
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larvae’s gut microbial composition differs vastly due to the differences in the bee
bread microbial communities (Martinson et al. 2012; Mohr and Tebbe 2006). The
observation that certain gut bacteria are maintained in all of the developmental stages
of an adult bee, irrespective of differences between species, colonies, and
individuals, suggests that distinctive gut bacteria are transferred between generations
by eusocial behaviors, such as food exchange between the honeybee populations in a
hive (Martinson et al. 2011; Martinson et al. 2012; Vásquez et al. 2012).

Zhi-Xiang Dong and his colleagues, through the use of 16 s rRNA gene sequenc-
ing analysis, found that 0-day postemergence (dpe) did not harbor core gut flora in
the gut, and the critical points for colonization of the core gut flora were around 1–3
dpe. For example, colonization of Frischella, Gilliamella, and Snodgrassella
occurred at 1dpe, while Bifidobacterium, Commensalibacter, and Lactobacillus
colonization were significantly detected at 3 dpe (Dong et al. 2020). It is worth
mentioning that type of overwintering sugar also influences honeybee gut
microbiota. Wang et al. in 2020 via 16 s rRNA sequencing determined bacterial
communities in honeybee midguts and hindguts before winter and after bees were
fed honey, sucrose, and high-fructose syrup as winter-food. In the midgut, the
sucrose group’s microbial diversity was higher than that of the honey and high-
fructose syrup groups, but in the hindgut, the microbial diversity of the honey and
high-fructose groups was higher than that in the sucrose group. Sucrose increased
the relative abundance of Actinobacteria (Bifidobacteriales) and

Fig. 9.1 Bacterial groups present in honeybees
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Alphaproteobacteria of honeybee midgut, and honey enriched the Bacteroidetes and
Gammaproteobacteria in honeybee hindgut. High-fructose syrup increased the rela-
tive abundance of Betaproteobacteria of the midgut. Furthermore, they introduce
sucrose as an appropriate overwintering food for honeybee. In this manner, the
relative abundance of the dominant microbiota significantly altered with the different
sugar types and seasons (Wang et al. 2020).

In another research report, Christina Geldert et al. investigated the effect of
phytochemical supplementations on the microbiome diversity and abundance of
A. mellifera. They disclosed that phytochemical supplementations are able to
enhance gut microbial diversity and significantly increase the abundance of the
most represented bacterial genera such as Snodgrassella spp. and Lactobacillus
spp. (Geldert et al. 2020).

9.3 Gut Microbiome Perturbation

Exposure to an environmental stressor, including antibiotics as well as the herbicide,
is one of the major sources of perturbation to the microbiome that has a detrimental
effect on A. mellifera health. Antibiotic treatment of bee colonies has been widely
used for over 50 years to prevent bee larvae’s bacterial disease. Some of the most
frequently used antibiotics by beekeepers include tetracycline, fumagillin, and
tylosin (Genersch et al. 2010). However, these chemical drugs are known to have

Table 9.1 A. mellifera gut microbiome composition and their main functions

A.mellifera microbiome composition Location Main function Reference

Snodgrassella alvi Ileum Activation of the innate
immune system

Horak et al.
(2020)

Gilliamella apicola Ileum Degradation of pectin Kwong and
Moran
(2016)

Lactobacillus Firm-4 Rectum Degradation of pectin Lee et al.
(2018)

Lactobacillus Firm-5 Rectum Degradation of pectin Lee et al.
(2018)

Bifidobacterium asteroids Rectum Through glycosidase
and pectinesterase
could degrade pollen

Lee et al.
(2018)

Frischella perrara Ileum Activation of the innate
immune system

Emery
et al.
(2017)

Bartonella apis Ileum Positive effects on
disease resistance

(Cornman
et al.
(2012)

Parasaccharibacter apium and a
Gluconobacter- related species group
designated Alpha2.1

Rectum Oxidative
fermentation/perform
gluconeogenesis

Bonilla-
Rosso et al.
(2019)
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many side effects, including the emergence of antibiotic resistance. Hence, more
attention has been paid to evaluate the effect of antibiotics on the survival and
growth of honeybees to identify and pinpoint the main disadvantages of these
drugs on honeybee and their environment’s health. Raymann et al., in 2017, assessed
the relationship between tetracycline exposure and the size and composition of
honeybee gut communities. Their results showed that treatment with tetracycline
greatly influenced both the honeybee gut microbiome’s composition and size.
According to their observations, tetracycline induced dysbiosis in these insects,
which resulted in increased susceptibility to opportunistic pathogens and subse-
quently led to a significant reduction in bee survival rate (Raymann et al. 2017).

Apart from antibiotics, some agrochemicals such as herbicides can perturb the
honeybee gut microbiota and therefore compromise bee health. Shikimate pathway
that is found in the bacterial community residing in the bee gut, such as in
Snodgrassella alvi, Gilliamella spp., and Bifidobacterium spp., is known to play a
key role in the production of essential aromatic compounds such as the amino acids
phenylalanine, tryptophan, and tyrosine. In this context, glyphosate, the primary
herbicide, inhibits 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) in the
shikimate pathway (Motta et al. 2018). Thus, glyphosate via shikimate pathway
inhibition and subsequently essential nutrients depletion play a crucial role in
bacterial death and reducing beneficial bacteria in bee gut.

Propolis is another critical factor involved in honeybee gut microbiome consis-
tency. In this context, Saelao et al. investigate the association between propolis and
microbial community consistency in the honeybee microbiome. They disclosed that
propolis insufficiency contributes to significant perturbation in the abundance of
several key gut microbiota members. These authors proposed that propolis, via
restricting alterations in the microbial community, play a key role in honeybee
colony microbial health (Saelao et al. 2020).

9.4 Probiotic Potential of Honeybee Gut-Associated Bacteria

Inappropriate and misuse of antibiotics has led to a rise in antibacterial resistance and
diminished the efficacy of these once considered miracle drugs. Since the alarming
rise of antibiotic resistance, many strategies and investigations have been carried out
to explore other safer ways to treat human ailments without harming the natural
immunity of the host, and replacing or augmenting these antibiotics.

In the late nineteenth century, microbiologists identified microflora in healthy
individuals’ gastrointestinal tracts that differed from those found in diseased
individuals. The beneficial microflora found in the gastrointestinal tract was termed
probiotics. FAO and WHO experts defined the term probiotics as “Live
microorganisms which when administered in adequate amounts confer a health
benefit on the host” (Joint 2002). In other words, probiotics are living
microorganisms used to restore gut health by maintaining the intestinal microbiota
(Manzanares et al. 2016). Similar to humans and animals, the gut-associated bacte-
rial flora in honeybees has been reported to have the ability to provide health
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benefits, most important of all, which is the capability to protect them from several
honeybee diseases (Li et al. 2017; Schwarz et al. 2016).

Below we discuss some of the beneficial functions carried out by the gut
microbiome of honeybees.

9.4.1 Antimicrobial Effects of Honeybee Gut-Associated Bacteria

As stated earlier, the gut microbial community in honeybee A. mellifera protects the
host from infection. Schwarz et al. provide experimental support linking parasite
susceptibility of honeybee to dysbiosis of their core microbiota. They disclosed that
honeybee, in a dysbiosis state, lose their ability to control encounter protozoan
Lotmaria passim and lead to L. passim infection in these insects (Schwarz et al.
2016). Nosema ceranae is a gut intracellular parasite of honeybees that destroys
epithelial cells and gut tissue integrity. In this context, Jiang Hong Li in 2017
revealed that disruption of bacteria in the honeybee by antibiotic treatment mediates
honeybee’s susceptibility to Nosema infection (Li et al. 2017).

Moreover, Huang and Evans in 2020 investigated the effect of Nosema on the gut
microbiome via suppression of N. ceranae with specific siRNAs. They found that
suppressing N. ceranae led to significant positive effects on gut microbial abun-
dance. These researchers concluded that N. ceranae is negatively correlated with the
abundance of 15 identified bacteria (Huang and Evans 2020). In a study conducted
by a group of researchers, it was found that the members of the gut microbiome, by
lowering the local intestinal pH with the production of lactic acid, antimicrobial
metabolites, as well as induction of innate immunity, interfere with the growth of
Nosema infection (El Khoury et al. 2018). Furthermore, Streptomycin is an
aminoglycoside antibiotic function in protein synthesis inhibition in Gram-negative
bacteria. In 2015, through a metagenomics approach, Saraiva identified genes
involved in streptomycin biosynthesis in A. mellifera microbiome. The presence of
such genes raises the hypothesis about the possible role of normal microbiota in
protecting Apis mellifera against pathogenic bacteria and in maintaining the healthy
status of the hive (Saraiva et al. 2015).

Paenibacillus larvae, a Gram-positive sporulated bacterium that causes the
American foulbrood disease, is an extremely contagious and dangerous pathogen
of honeybees. In 2009, Sabate et al. aimed to explore the biological control capabil-
ity of Bacillus strains associated with the bee intestine and evaluate their influence
against P. larvae. They found that Bacillus strains through surfactin synthesis inhibit
the growth of P. larvae (Sabaté et al. 2009). These novel findings collectively
emphasize the importance of A. mellifera gut bacteria in modulating honeybees’
susceptibility to various infections.

9 Honeybee Gut: Reservoir of Probiotic Bacteria 227



9.4.2 Gut Microbiome Role in Immune Function

Various predators, including parasites, parasitoids, and pathogens, threaten insect
health during their life cycle. A complex immune system has evolved in insects for
protection against these threats. Several studies have illustrated that gut bacteria are
key mediators in immune modulation and are essential for a healthy immune system
(Kaltenpoth and Engl 2014). Hemocyte (immune cells), as a crucial element in the
innate immune system through phagocytosis, plays a key role in hemolymph
pathogen clearance. Vitellogenin (Vg) is a protein engaged in honeybee worker’s
stress tolerance, and behavior. Vg is the main zinc carrier in honeybee workers, and
zinc deficiency is associated with hemocyte pycnosis (cell death). Thereby, Vg is
considered a critical mediator in honeybee immunity and lead to a longer life span. In
an experimental investigation by Zheng et al. in 2017, it was found that normal
microbiota compared to germ-free bees increase vitellogenin expression almost
fivefold (Kaltenpoth and Engl 2014; Zheng et al. 2017). Overall, based on these
findings, we can consider the gut microbiome as a major contributing factor for
honeybee immune activation.

Furthermore, the Scab phenotype as a prominent immune response factor is
triggered by reminiscent of melanization and develops 5–7 days after adult worker
bees have emerged. Scab phenotype is characterized by a dark brown to black
deposit forming a localized thin band in the pylorus at the midgut-hindgut boundary,
in close proximity to the Malpighian tubules of the honeybees. Emery et al.
identified significant host gene expression alteration in the pylorus region following
Frischella perrara colonization compared to non-colonized bee. Using gene ontol-
ogy (GO) enrichment analysis, they disclosed that immune-related genes, including
irp30, cdc2c, abaecin, apid73, b-guc2, and def-1, were increased in the pylorus
region of the screened honeybees. In this manner, Frischella perrara via coloniza-
tion in a restricted region in the pylorus, as well as immune-related genes activation,
play a key role in scab phenotype induction (Emery et al. 2017). Additionally, Horak
and his research team investigate the beneficial effect of symbiont Snodgrassella alvi
on honeybee immune gene expression. They illustrate that Snodgrassella alvi via
expression of host antimicrobial peptides as well as Toll pathway upregulation aid in
the clearance of opportunistic pathogen Serratia marcescens from the honeybees gut
(Horak et al. 2020).

9.4.3 Gut Microbiome Role in Food Fermentation

Fermentation products such as short-chain fatty acids (SCFAs) are highly beneficial
for host energy metabolism. In the fermentation process, A. mellifera gut microbiota
members play an important role in breaking saccharides into an array of alcohols,
SCFAs, gases, and other organic acids such as acetate and lactate. Acetate kinase
(ackA) and L-lactate dehydrogenase (ldh) are the main enzymes responsible for
acetate and lactate production, respectively. In turn, acetate production and lactate
through increased sucrose sensitivity play a crucial role in honeybee weight gaining
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(Lee et al. 2018; Zheng et al. 2017). Therefore, A. mellifera gut microbiota through
organic acid production plays an important role in honeybee weight gain.

9.4.4 Gut Microbiome Role in Detoxification

Gut microbiota strongly promotes the expression of key enzymes of the honeybee
xenobiotic detoxification pathway. Three important enzymes responsible for insect
detoxification, including carboxylesterases (COEs), Cytochrome P450
monooxygenases (CYPs, also called P450s), and glutathione S-transferases
(GSTs), have been identified recently. Thereby, honeybee gut microbiota enhance
host detoxification capability and manipulate host metabolism (Wu et al. 2020).
Furthermore, some monosaccharide sugars, including xylose, mannose, rhamnose,
and arabinose, have been reported to endorse toxic effects on A. mellifera and
decrease their life span. Recently, genes responsible for mannose metabolism,
including phosphotransferase systems (PTSs) and mannose-6-phosphate isomerase
(MPI), were identified in the Gilliamella apicola genome. Additionally, several
genes associated with catabolism of rhamnose, xylose, and arabinose have also
been detected in the genome of Gilliamella apicola. Hence, it is concluded that
Gilliamella apicola is able to metabolize xylose, mannose, rhamnose, and arabinose
and subsequently boost A. mellifera life span (Zheng et al. 2016).

9.4.5 Probiotic Properties of Honeybee-Specific Lactic Acid
Bacteria

Lactic acid bacteria (LAB) are a group of Gram-positive lactic acid-producing
bacteria present in diverse habitats. LAB belongs to phylum Firmicutes with low
G + C in the genome. These bacteria are well known for their role in food
fermentation, and a wide variety of strains are routinely employed as starter cultures
in the manufacture of dairy, meat, vegetable, and bakery products. Additionally, they
have a significant role as starter cultures for cheese and yogurts. One of the factors
that make LAB of high importance, especially for human and animal use, is their
“generally recognized as safe” (GRAS) status that make these food-grade
microorganisms to be employed as probiotics (Åvall-Jääskeläinen and Palva 2005;
Choi et al. 2005). While the European Food Safety Authority (EFSA) proclaimed the
LAB strain to have QPS (Qualified presumption of safety) status (EFSA 2008). In
several findings, the presence of LAB in the gut of honeybees has been reported,
where they are shown to provide beneficial effects to their host, and thereby they are
potential probiotic candidates.

Majority of honeybee-specific LAB has found significant importance owing to
their probiotic potentials. Up to date, thirteen genetically distinct lactic acid-
producing bacteria have been identified from the honeybee crop, of which nine are
Lactobacilli and four are Bifidobacteria (Olofsson et al. 2014; Olofsson and Vásquez
2008).
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Lactic acid bacteria has been isolated from the gut of several honeybee species,
including Apis mellifera, A. dorsata, A. florea, A. nigrocincta, Apis nuluenis, Apis
laboriosa, A. cerana indica, Melipona beecheii, Meliponula bacandei, and Trigona
sp. (Mathialagan et al. 2018; Niode et al. 2020; Vásquez et al. 2012). Lactobacillus is
one of the most important genera within the LAB, which at present includes
175 listed species (Euzéby 1997). Among this group of bacteria, genus Lactobacillus
is the most frequent Gram-positive bacteria isolated from different honeybee spe-
cies’ gut. While Lactobacillus kunkeei has been reported to be one of the most
dominant species of this genus residing in their gut (Niode et al. 2020). Table 9.2
depicts a variety of LAB species isolated from different honeybee species around the
world.

9.4.6 Antimicrobial Effect of Honeybee Gut-Associated LAB
Against Honeybee Diseases

LAB comprises a group of Gram-positive, catalase-negative, non-motile, non-spore-
forming facultative anaerobic bacteria that are commonly found as both exogenous
and endogenous microbes in healthy individuals. Similar to the LAB found within
humans and animals, the honeybee-specific LAB defends their hosts from invasion
and colonization of several pathogenic bacteria via the production of a variety of

Table 9.2 Lactic acid bacteria isolated from different species of honeybees

Honeybee
species LAB isolated

Country of
isolation Reference

Apis
mellifera

Micrococcus, Bifidobacterium asteroids,
Fructobacillus fructosus

Iran Sharifpour et al.
(2016)

Lactobacillus johnsonii, Enterococcus
faecium, Lactobacillus kunkeei

Argentina,
Egypt

Audisio et al.
(2011), Elzeini
et al. (2020)

Lactobacillus brevis, Lactobacillus casei Egypt Elzeini et al.
(2020)

L. melliventris, L. kimbladii, L. mellis,
L. apinorum, L. kullabergensis,
L. helsingborgensis

Sweden Olofsson et al.
(2014)

Apis
mellifera
jemenitica

L. kunkeei, Lact. Lactis, Enterococcus
faecalis

Saudi
Arabia

Khan et al.
(2017)

Apis
cerena

Bifidobacterium indicum, Bifidobacterium
asteroids, Fructobacillus fructosus,
L. apinorum, L. apis, L. helsingborgensis,
L. kimbladii, L. kullabergensis, L. kunkeei

Vietnam Duong et al.
(2020)

Apis
dorsata

Bifidobacterium indicum, Lactobacillus
kunkeei, Lactobacillus vermiform,
Lactobacillus sp.

Malaysia,
Indonesia

Apis florea
fabricius

L. kunkeei, L. plantarum, L. apis Iran Parichehreh et al.
(2018)
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antimicrobial metabolites and modulation of the host immune response (Huang and
Evans 2020; Mathialagan et al. 2018; Niode et al. 2020). Hence, honeybee-specific
LAB can also provide protection against several honeybee diseases by production of
these metabolites.

The antimicrobial effects exerted by these bacteria are owing to their metabolite-
producing abilities. These metabolites, also referred to as postbiotic metabolites,
includes organic acids (lactic acid, acetate acid, and formic acid) (Olofsson et al.
2016), extracellular proteins, benzoate, bacteriocins, hydrogen peroxide (H2O2),
lipopolysaccharides, and lipoteichoic acid volatile compounds (Butler et al. 2013;
Olofsson et al. 2016; Olofsson and Vásquez 2008) etc.

Hence, due to the stated health-promoting functions of LAB in honeybees, they
are considered safe alternative therapeutic strategy for the control of a number
of honeybee diseases, including Paenibacillus larvae (infective bacterial agent of
American foulbrood disease), Melissococcus pluton (infective bacterial agent of
European foulbrood), Nosemosis, and varroosis (Audisio 2017; Forsgren et al.
2010). In a study conducted by a group of researchers, an organic acid-producing
L. johnsonii was shown to inhibit the growth of Nosema ceranae and harbored
fumigillin activity (60).

Paratransgenesis has come to mean a Trojan horse strategy, where endogenous
microorganisms via effector molecules production inhibit pathogen development.
Candidate microorganisms to being practical in honeybee, they should possess
several criteria including (1) candidate microorganism should be genetically
modifiable for effector molecules expression; (2) ideally the candidate microorgan-
ism must be ecologically and functionally fit with other nonpathogenic
bee-associated microorganisms, and (3) following reintroduction the modified
organism should have no negative impact on honeybee health. In this context,
Rangberg et al. investigated L. kunkeei potency in honeybee paratransgenesis.
They concluded that L. kunkeei complies with the three criteria required for being
a suitable paratransgenic candidate (Rangberg et al. 2015). Similar to these findings,
Maddaloni and his co-investigators demonstrated that Fructobacillus fructosus can
be used as a powerful tool for honeybee paratransgenesis to control diseases and
expand nutrition repertoire (Maddaloni et al. 2014).

9.5 Commonly Used Methods for Microbiome Analysis

Researcher frequently utilizes full-length 16S rRNA gene sequences with nine
hypervariable regions (V1–V9) to infer phylogenetic relationship among the
microbiome. Therefore, a full-length 16S rRNA amplicon sequencing approach
with high accuracy and efficiency can be used for microbial diversity detection in
various biological samples. Nanopore DNA sequencer (MinION) containing several
significant advantages including rapid library construction, low cost, real-time
detection and small size that made it a suitable tool for identifying microbiome
composition at the species levels (Shin et al. 2016). However, it was disclosed that
bacteria with almost identical 16S rRNA sequences could exhibit high sequence
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divergence levels at other loci and very different gene repertoires. Thereby, it is
difficult to gain insight into intraspecific diversification of bacterial lineages in the
gut with 16S rRNA sequencing. Single-cell genomics and transcriptomics can
provide reliable context for assembled genome fragments and gene expression
activity on the level of individual prokaryotic genomes. In this manner single cell
genomics, through allowing direct access to information from individual
microorganisms, has the potential to elucidate processes of bacterial diversification
(Engel et al. 2014). However, low DNA and mRNA content restrict the yield of
reasonable amounts of genetic material for sequencing analysis from a single cell.

Furthermore, the lack of polyadenylation of bacterial mRNA limits its separation
from rRNA. Additionally, cell walls and membranes diversity induce a challenge to
consistent lysis or permeabilization required for single-cell RNA sequencing
(scRNA-seq). These problems impede the characterization of microbes by tradi-
tional single-cell sequencing methods (Sharma and Thaiss 2020).

9.6 Microbiome Engineering as a Future Perspective

Engineering of microbiomes is used to modify structures of the microbiota and
restore ecological balance. Synthetic biology and engineering principles are fre-
quently applied in microbiome engineering to improve microbiome function.
Thereby, microbiome engineering could lead to a breakthrough in agriculture and
medicine. In medicine, microbiome engineering enables exploring individual
microbes’ contribution and generating potential therapies against metabolic (e.g.,
phenylketonuria and chronic kidney disease), inflammatory, and immunological
diseases, among others. In the case of honeybee, due to their agricultural importance
as well as the simple gut microbiome, they are a promising testbed for the nascent
field of microbiome engineering (Foo et al. 2017; Leonard 2020). There are several
approaches to honeybee microbiome engineering. A plasmid toolkit by combining a
broad-host-range (BHR) replicon with a set of modular genetic parts can be applied
to bacteria from the A. mellifera gut microbiome. It was disclosed that plasmids
constructed using bee microbiome toolkit (BTK) act faithfully in various species of
Proteobacteria detected in the A. mellifera gut microbiome. The BTK can be used to
express heterologous genes or to repress or disrupt genes in the bacterial chromo-
some (Leonard 2020). Consequently, microbiome engineering could be employed as
a powerful tool for improving A. mellifera health and subsequently agricultural
productivity.

9.7 Conclusions

The economic value of commercial honeybee pollination is estimated at over US
$220 billion worldwide. Any damage to these insects leads to detrimental
consequences not only to our agriculture and production values that ultimately
would result in economic losses but might also threaten and endanger our lives on
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the planet. Hence, intensive research has been done and is still ongoing to find
solutions to prevent colony losses and find ways to increase their survival and
control the pathogens from harming their viability.

A.mellifera digestive tract is a reservoir of a diverse variety of bacterial
communities that play a significant role in these insects’ growth and survival. Recent
studies with gut microbiome disclosed the honeybee gut-associated microbial in
immune system activation, carbohydrate fermentation, and inhibition of disease in
the host. This suggests that the gut bacterial community structure may be considered
as an indicator of honeybee health. Since related microbiotas are found across bee
species, it strongly suggests a close evolutionary relationship between bacteria and
hosts, as well as underscoring the importance of LAB symbionts for bees. Not only
are LAB symbionts involved in honeybee food production and preservation, but they
are also of importance in host defense against pathogen and transient microbes
intercepted during foraging. Hence preserving the balance of these gut bacteria is
crucial for maintaining honeybee health and vigor. Tools to engineer a microbial
member of these honeybees might play a significant role in beekeeping management
issues such as increased colony survival.
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Role of Probiotic Bacteria on Bioavailability
of Functional Ingredients Under
Fermentation Process

10

Zeinab E. Mousavi and Seyed Mohammad Ali Mousavi

Abstract

Consumer attention to consume healthier foods has been significantly encouraged
the food industry to formulate new products within the area of so-called func-
tional foods. Functional foods are defined as whole foods, enriched, enhanced,
and fortified foods or dietary compounds that in addition to traditional nutrient
contents possess healthy and physiological benefits. Food products containing
probiotics compromise the majority of functional food market worldwide. This
chapter focuses on the bioactive compounds produced in different probiotic
fermented food matrices and investigates how these metabolites and fermentation
conditions affect the bioavailability of different compounds in foods.

Keywords

Probiotic · Functional foods · Bioactive compounds · Postbiotics · Dairy products

10.1 Introduction

Probiotics are defined as live microorganisms which when ingested in adequate
numbers (at least 106_107 CFU/ml) impart health benefits to the host and include
mainly Lactobacillus and Bifidobacterium genera but some other bacteria and yeast
species are also considered as probiotics (de Melo Pereira et al. 2018; George Kerry
et al. 2018; Meira et al. 2015; Morton 2015) (Table 10.1). Probiotics have
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anticarcinogenic antimutagenic activities and are able to suppress cholesterol level
and blood pressure. They improve digestive system function, epithelial homeostasis,
nutrient uptake, intestinal barrier function, immune modulation, and antagonism
action against pathogens (Liptáková et al. 2017; Marhaida et al. 2015).

Traditionally, the effectiveness of probiotics was assumed to be related to cell
viability. Apart from probiotic cells, bacterial products may have similar benefits to
the host. These products are characterized as postbiotics which have biological
activity in the host cell (George Kerry et al. 2018; Wegh et al. 2019). Postbiotics
are generally regarded as functional fermentation products and include a wide range
of metabolites such as bacteriocins, enzymes, vitamins, amino acids,
oligosaccharides, exopolysaccharides, short-chain fatty acids, and immunomodula-
tory compounds (George Kerry et al. 2018; Zielińska and Kolożyn-Krajewska
2018).

In other words, the functionality of probiotics in fermented foods is accomplished
in different ways which eventually affect the nutritional quality of foods which
include: 1) increase of nutrient density, mostly due to a decrease of sugar content, 2)
hydrolysis of polymers from the raw material and bioactive compounds content, 3)
biosynthesis of bioactive molecules, 4) degradation of toxic or anti-nutritional
factors, and 5) synthesis of promoters for absorption and uptake (Septembre-
Malaterre et al. 2018; Tamang et al. 2016).

Table 10.1 List of some important probiotic microorganisms (Morton 2015)

Category and
genus Species

Bacteria

Lactobacillus Lb. acidophilus, Lb. amylovorus, Lb. brevis, Lb. casei, Lb. curvatus,
Lb. crispatus, Lb. delbrueckii subsp. bulgaricus, Lb. fermentum,
Lb. helveticus, Lb. gasseri, Lb. johnsonii, Lb. reuteri, Lb. rhamnosus,
Lb. salivarius, Lb. paracasei, Lb. plantarum

Bifidobacterium B. adolescentis, B. animalis, B. bifidum, B. lactis, B. breve, B. infantis,
B. longum, B. thermophilum, B. essensis, B. laterosporus

Streptococcus S. cremoris, S. diacetylactis, S. intermedius, S. salivarius

Propionibacterium P. freudenreichii, P. freudenreichii subsp. shermanii, P. jensenii

Enterococcus E. faecalis, E. faecium

Lactococcus L. lactis subsp. cremoris, L. lactis subsp. lactis

Other bacteria Pediococcus acidilactici, Leuconostoc mesenteroides, Bacillus cereus,
Clostridium butyricum, Escherichia coli Nissle 1917

Yeast Kluyveromyces lactis, Saccharomyces boulardii, Saccharomyces
cerevisiae
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10.2 Probiotic Fermentation of Foods

Food fermentation is considered as one of the oldest ways of food processing and
preservation. Fermentation results in the enhancement of the flavor and nutritional
quality of food and extending its shelf life (Beena Divya et al. 2012). Fermentation is
microbe-driven process in which the low value substrates are converted to added-
value products (Hussain et al. 2016; Sadh et al. 2018). According to scientific data,
both nutritive and non-nutritive components are in fermented foods which could
potentially implement specific target functions in the body relevant to well-being and
health of the consumers (Tamang et al. 2016). Probiotic bacteria as functional
microorganisms, in fermentation process, convert the chemical constituents of raw
materials of plant/animal sources leading to the enhancement of the bioavailability of
nutrients, enrichment of sensory quality of the food, improvement of food safety,
degradation of toxic components and anti-nutritive factors, production of antioxidant
and antimicrobial compounds, stimulation of the probiotic functions, and fortifica-
tion with some health-promoting bioactive compounds (Homayoonfal et al. 2018;
Mousavi and Mousavi 2019; Rollán et al. 2019). In fact, the probiotic
microorganisms promote beneficial effects in a host which are due to the production
of bioactive compounds (Indira et al. 2019).

These bioactive compounds play an important role in bio-preservation of
fermented food products including dairy, fish, seaweeds, microalgae, beverages,
and fruits and vegetables (Mousavi and Mousavi 2019). Additionally, they show
antimicrobial activities against food pathogens such as Listeria monocytogenes,
Staphylococcus aureus and Enterococcus faecalis. In addition to their antimicrobial
properties, these metabolites can be aromatic which can influence the sensory and
organoleptic features of food products . Some peptides with health benefits are also
produced as bioactive compound in fermentation of and prevent diseases associated
with metabolic syndrome (Indira et al. 2019; Ojha and Tiwari 2016) (Table 10.1).

10.3 Production and Modification of Bioactive Compounds
Over Probiotic Fermentation

Bioactive compounds as result of probiotic fermentation have two major sources.
The first source is direct synthesis of the compound by the probiotic such as
bacteriocins, exopolysaccharides (EPS), or enzymes and they can be found in either
supplements or foods. The second source of bioactive is a compound that only
appears as a result of the modification of the food matrix itself by the probiotic
culture fermentation (Champagne et al. 2018). The following section will discuss the
bioactive compounds produced during probiotic fermentation and their effect on
food bioavailability.
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10.3.1 Bioactive Peptides

Bioactive peptides are short sequences of amino acids generally consisting from
2 and 20 amino acids. Such sequences stay intact and inactive when present in the
parental protein, but can be released after protein hydrolysis during gastrointestinal
digestion (GID), in vitro enzymatic hydrolysis, or microbial fermentation. These
peptides have biological activities that may influence human health in addition to
basic human nutrition (Erdmann et al. 2008). Cardioprotective functions, modula-
tion of immune system, anti-atherosclerosis, antioxidant, mental health, and general
well-being functions are associated with bioactive peptides (Ojha and Tiwari 2016;
Septembre-Malaterre et al. 2018). According to various researches, it is concluded
that microbial fermentation could be regarded as an appropriate approach improving
protein bioavailability and digestibility in different food products (Chi and Cho
2016; Hur et al. 2014; Limon et al. 2015; Wu et al. 2015).

10.3.1.1 Dairy Products
Milk-proteins and associated bioactive peptides released during microbial or enzy-
matic fermentation of milk offer a broad spectrum of new functional properties, for
instance antihypertensive, antimicrobial, antioxidative, immunomodulatory, opioid,
and mineral-binding properties (Beermann and Hartung 2013).

Calcium casein phosphopeptides (CCP) are phosphorylated bioactive peptides
derived from calcium-sensitive caseins (αs1, αs2, and β caseins). These peptides are
inactive fragments entrapped in the sequence of precursor protein, and exhibit
biological action after its release during the passage through the gastrointestinal
tract. In addition, they are also produced in vitro by the action of specific enzymes
during fermentation of a number of dairy-based products such as cheese, yogurts,
and fermented milks (Ledesma-Martínez et al. 2019; Mohanty et al. 2016). The main
activities of CCP include anticancer, body fat reduction, prevention of cardiovascu-
lar diseases through the reduction of atherosclerosis lesions and levels of cholesterol
and triacylglycerides, anti-inflammatory, and antioxidant. A great number of studies
approved the role of CCP on calcium, iron, and zinc (Ledesma-Martínez et al. 2019).

The effect of peptidases activity of Lactobacillus delbrueckii ssp. bulgaricus and
Streptococcus thermophiles on milk proteins resulted in the production of antimi-
crobial and hypotensive peptides. These small biological peptides can be used as
food supplements to improve the health-promoting qualities of liquid and semisolid
dairy foods prepared by the yogurt fermentation process (Paul and Somkuti 2009).

Investigations revealed that probiotic LAB such as Lactobacillus helveticus
produces bioactive peptide like, proline-containing peptides isoleucyl-prolyl-proline
(IPP) and valyl-prolyl-proline (VPP) which may induce greater availability of
calcium (Dubey and Patel 2018). The study on the level of level of calcium,
magnesium, phosphorus, and zinc absorption in a series of fermented goat and
cow milk showed that the bioavailability of minerals was significantly higher
compared with non-fermented milks (Bergillos-Meca et al. 2013).

Oxidative damage caused by various free radicals which are by-products of
physiological reactions within human body can be protected by antioxidants. It has
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been found that yogurt and fermented milks have a higher antioxidant activity than
milk. In fermented milks, bioactive peptides are released following the proteolysis of
milk proteins, especially lactalbumin, lactoglobulin, and casein (Melini et al. 2019).
Yogurt produced with camel milk by fermentation with Lactobacillus rhamnosus
strain PTCC 1637 has a higher antioxidant activity than cow milk, because of the
higher proline content in camel milk caseins. The presence and position of the amino
acids tryptophan, tyrosine, and methionine in the peptides are claimed responsible
for the antioxidant activity of fermented milks as well.

10.3.1.2 Fruits, Vegetables, Legumes, and Grains
Various studies showed that probiotic fermentation of nondairy foods including
vegetables, fruits, legumes, and grains could enhance the level of protein, peptides,
and amino acid in these products (Septembre-Malaterre et al. 2018). Bioactive
peptides have been mainly studied from milk or whey hydrolysis during lactic
fermentation. However, different studies on fermented soybeans, grapes, and cereal
flours also showed a significant increase in their bioactive contents (Septembre-
Malaterre et al. 2018). Probiotic LAB are naturally present in legume grains; they
have also been traditionally used for legume fermentation. Evidences showed that
fermentation of legumes with Lactobacillus genera can encourage the production of
bioactive compounds, improving health benefits beyond basic nutrition. Fermenta-
tion of cowpeas with Lactobacillus plantarum resulted in the modification of
phenolic compounds and improvement of antioxidant activity (Dueñas et al. 2005;
Limon et al. 2015).

L. plantarum B1–6 has been studied for its potential proteolysis effect on mung
bean protein during fermentation. Electrophoresis profiles revealed that
L. plantarum B1–6 degraded Mung bean proteins with the hydrolysis percentages
between 49 and 64%. In addition, reverse phase high-performance liquid chroma-
tography (RP-HPLC) analysis showed that larger/more hydrophobic peptide
contents decrease the amount of smaller/more hydrophilic peptides has substantially
augmented after fermentation (Wu et al. 2015). In addition, the degradation of gluten
could render the final product to be suitable for celiac consumers (Heredia-Sandoval
et al. 2016; Houben et al. 2012; Poutanen et al. 2009; Verni et al. 2019). Cereals are
in general good sources of proteins. The proportions of essential amino acids and
their digestibility mainly determine protein nutritional quality. Peptidase enzymes
produced by LAB convert peptides to amino acids. Specific products of these
enzymes are responsible for the aroma and taste of final products (Pessione and
Cirrincione 2016; Verni et al. 2019).

Solid-state fermentation of whole soybeans by Lactobacillus plantarum P-8
mixed with B. subtilis natto also resulted in an intensive protein degradation and
generation of hydrophilic peptides during fermentation (Pessione and Cirrincione
2016; Zhang et al. 2014).

Various scientific reports stated that hydrolyzed peptides produced by probiotics
during fermentation can act as antioxidants (Coda et al. 2012; Raveschot et al. 2018;
Taha et al. 2017). Rapeseed proteins are hydrolyzed to amino acids and peptides by
proteases produced by probiotic Bacillus subtilis during fermentation (Rong et al.
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2012). Hydrolysis of peptide bonds enhances the levels of free amino and carboxyl
groups, resulting in increased solubility. This enhanced solubility may improve the
antioxidant activity of the peptide (Karami and Akbari-Adergani 2019; Sohaib et al.
2017). Low-molecular-weight peptides have been reported to exhibit better radical-
scavenging activities than their high-molecular-weight counterparts (Xie et al.
2008). Thus, increasing the low-molecular-weight peptides by enzymatic hydrolysis
may influence the antioxidative activity during fermentation. Metal-chelating amino
acid residues, such as methionine, glutamic acid, glutamine, lysine or arginine,
within the sequences of these peptides contributed to the superior Fe2+-chelating
ability of the antioxidant peptides (Hur et al. 2014).

According to different studies, proteolytic activity of probiotic LAB could
enhance the level of bioactive peptides in fermented cereals. Antihypertensive
properties are attributed to these bioactive peptides. In addition, thanks to the
production of flavoring free amino acids and other amino acid derivatives during
fermentation which convey tastiness to fermented cereals such as bread, it is possible
to decrease salt content in the final product (Melini et al. 2019).

10.3.1.3 Fish
Large quantity of liquid and solid waste generated by fish industry can be regarded as
a potential resource for valuable products. Due to their high protein contents, fish
waste could be used as a suitable medium for culturing probiotic bacteria. Fermen-
tation of fish waste can partially degrade the protein contents, which could help the
absorption from the gut and influence its bioactive properties through the production
of bioactive peptides (Venegas-Ortega et al. 2019).

10.4 Digestible Saccharides

10.4.1 Fruits and Vegetables

Fruits and vegetables are a rich source of sugars. During fermentation of fruits and
vegetables, monosaccharide are significantly consumed by probiotic bacteria spe-
cially LAB species. However, with the help of glucosidases and glycosyl hydrolases
produced from the cells, hydrolysis of polysaccharides occurs, which release
monomers of sugars. Release of monomers contributes to the increase in nutrient
density of the fermented products (Ojha and Tiwari 2016).

10.4.2 Cereals

Lactobacillus species are the predominant organisms involved in the fermentation of
cereal-based foods and beverages in African countries (Richard and Jooste 2012). A
multiple of researches showed that cereal fermentation is considered as a significant
potential in improvement and design of the nutritional quality and health effects of
foods and ingredients (Rollán et al. 2019). Cereal grains are primarily a source of
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carbohydrates, and thus a good source of energy. However, a high proportion of
starch in cereals is in the form of amylopectin, which is not completed digested and
absorbed in the small intestine. Digestible polysaccharides are produced as a result
of probiotic lactic acid fermentation of cereal, which are more accessible to gut
microbiota. (Liptáková et al. 2017).

10.5 Exopolysaccharides (EPS)

EPS are secondary metabolites with long chain of homo or hetreo-polysaccharides
containing repeated units of sugars or sugar derivatives. These polysaccharides are
produced outside of the cell. Depending on the carbon source, LAB belonging to the
genera Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella are
able of producing a variety of EPS (Zeidan et al. 2017).

10.5.1 Dairy

In dairy-based foods, extracellular polysaccharides (EPS) are produced from ropy
probiotic cultures (Streptococci, lactobacilli, and lactococci strains) (Prasanna et al.
2012). These EPS could improve physicochemical and rheological properties of
foods. In addition, they may also protect cells to against phage attack, desiccation,
and osmotic stress, thus behaving as prebiotics and improve immunity to fight
against pathogenic organisms (Ruas-Madiedo et al. 2002). In addition, blood
cholesterol-lowering, immunostimulatory, antitumoral, and antiulcer activity have
been also attributed to EPS produced in fermented probiotic dairy products (Madhuri
and Prabhakar 2014; Shao et al. 2014).

10.6 Galacto-Olygosaccharides (GOS)

GOS are non-digestible carbohydrates and comprise a chain of galactose units
usually with a terminal glucose unit. They are derived from lactose by the action
of β-galactosidase enzyme in a trans-galactosylation reaction that occurs simulta-
neously with the hydrolysis. These bioactive compounds can be synthesized by
probiotic microorganisms in fermented products during processing (Otieno 2010). In
the case of use of probiotics as enzyme sources for GOS synthesis, they could
provide the double advantage as probiotics as well as in prebiotic. GOS are
fermented by the beneficial gut microflora of the large intestine resulting in the
inhibition of pathogenic and putrefactive bacteria growth. Therefore, the level of
toxic metabolites is significantly decreased which could prevent diarrhea, constipa-
tion relief, and lactose tolerance. Also, metabolism of GOS results in the production
of short-chain fatty acids which could assist in increased calcium and magnesium
absorption, control of serum lipid and cholesterol level, and reduction of cancer risk
(Davani-Davari et al. 2019).
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10.6.1 Dairy

Milk sugar (lactose) is a component of dairy by-products especially from whey
which is half consumed by human and animals and the remaining is generally
discarded. Various reports used different probiotic strains specially Lactobacillus
and Bifidobacterium species to produce GOS from milk, cheese, whey, and yogurt
which can be used as a suitable substrate for GOS synthesis. Therefore, fermented
dairy-based foods could be considered as the main carrier of GOS (Lappa et al. 2019;
Sabater et al. 2018; Song et al. 2013). There are many parameters affecting the
synthesis of these compounds such as β-galactosidase enzyme source and concen-
tration, type and counts of microorganisms, concentration of substrate (lactose),
composition of food matrix, conditions of fermentation and storage, and time/
temperature of hydrolysis/transgalactosylation (Morton 2015).

10.7 Conjugated Linoleic Acid (CLA)

CLA is a collective term used to describe a heterogeneous mixture of positional and
geometric isomers of octadecadienoic acid or linoleic acid (c9,c12-C18:2) in which
double bonds are conjugated (cis-, trans-, or mixed configurations). Biological and
biochemical roles attributed to CLA include anticancer, body fat reduction, preven-
tion of cardiovascular diseases through the reduction of atherosclerosis lesions and
levels of cholesterol and triacylglycerides, anti-inflammatory and antioxidant. Lino-
leate isomerase (LAI) enzyme is responsible of CLA synthesis, which is bond to the
cell membrane of microorganisms. CLAs exert various health benefits and their
effectiveness depends on CLA isomer form. Studies demonstrated that trans-9, trans-
11 C18:2 has a much higher inhibitory and antiproliferative effect on the growth of
the human colon and breast cancer cells, than cis9, trans-11 CLA isomer (Beppu
et al. 2007; El Roz et al. 2013; Park 2009).

In contrast, the results of other studies showed that cis-9, trans-11 CLA has extra
beneficial effects, such as anti-inflammatory and antiatherogenic effects (Tricon
et al. 2006). However, the mixture of the two CLA isomers (cis-9, trans-11 and
trans-9, trans-11 CLA) had a synergistic anti-proliferation effect on a human colo-
rectal carcinoma cell line (Zhong et al. 2012).

10.7.1 Meat Products

CLA is a compound found mainly in the meat of ruminants that is recently the
subject of many researches due its health-promoting properties, i.e., antiatherogenic,
cancer inhibition, anti-diabetic, obesity lowering, and improved immunity
(Mulvihill 2002). In a detoxification mechanism, some probiotic bacteria of Lacto-
bacillus and Bifidobacterium types are able to change fatty acid profile in meat
sausages by converting polyunsaturated fatty acids into CLA through isomerization,
hydrogenation, and dehydration (Galgano et al. 2015).
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10.7.2 Dairy

In some countries, liquid milk, powdered milk, fermented milk, yogurt, and cheese
enriched in CLA are marketed. On the other hand, the known fact that several strains
of bacteria possess the ability to synthesize CLA in vitro in the presence of precursor
substrate raised the possibility for increasing the production of CLA in situ during
manufacture of fermented dairy foods. The co-culture of L. rhamnosus and yogurt
starter in the presence of hydrolyzed soy oil as the lipid source showed that CLA
contents significantly increased in the final fermented (Xu et al. 2005). A study
performed by Ribeiro et al. (2017) showed that Lactobacillus plantarum isolated
from Pico cheese exhibited probiotic properties and presented the highest production
of both cis-9, trans-11 and trans-9, trans-11 CLA isomers, exhibiting a great
potential for application in health-promoting food product.

10.8 Short-Chain Fatty Acids (SCFA)

SCFA such as such as butyrate, acetate, propionate, and lactate are secondary
metabolites released from the hydrolysis of food fiber and non-digestible
carbohydrates in gut by probiotic bacteria and are used as a source of energy for
colon cells. In humans, 10% of the daily caloric requirement is from short-chain fatty
acids produced in large intestine. Among all short-chain fatty acids, 60–70% of the
energy is from butyrate produced in colonocytes. SCFAs, particularly butyrate, have
a therapeutic effect in various diseases such as inflammatory bowel disease,
antibiotic-associated diarrhea, colon cancer, and heart diseases (Indira et al. 2019;
Septembre-Malaterre et al. 2018).

According to different researches, the increase of Ca bioavailability by probiotics
would definitely satisfy the bone health. The mechanism behind the increase in Ca
bioavailability and ensure the bone health is that the probiotics produce short-chain
fatty acids, which increase the solubility of available calcium. Simultaneously, the
level of the para-thyroid hormone level (increased PTH level causes the Bone
resorption by stimulating the osteoclasts) decreases and minimizes the bone loss
(Dubey and Patel 2018).

10.9 Vitamins

Vitamins play an important role in regulating the intestinal metabolism and absorp-
tion of minerals. Calcium absorption is enhanced in the presence of Folate and
vitamin C, D, and K (Kiela and Ghishan 2016). Probiotics are associated with the
synthesis of vitamins and increase the metabolism and absorption of available
calcium (Parvaneh et al. 2014; Whisner and Castillo 2018). Therefore, food fermen-
tation with probiotic bacteria could result in an increased vitamin content of the final
product (Richard and Jooste 2012). Probiotic LAB are able of producing B vitamins
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including niacin (B3), panthothenic acid (B5), folic acid (B9), and also vitamins B1,
B2, B6, and B12 (Capozzi et al. 2012; Septembre-Malaterre et al. 2018).

10.9.1 Fruits and Vegetables

Vitamin B12 deficiencies in plant based-diet forced researchers to investigate poten-
tial ways to fortify plant-based foods with vitamin B12 (Chamlagain 2016; Melini
et al. 2019) Cereal-based products such as Ogi, Mageu, and Kenkey, which are
considered as traditional fermented products in Africa, have been reported to have an
improved B-vitamin content. Beside probiotic LAB benefits in the enrichment of
foods with vitamins, they may lower production costs by eliminating the need to add
synthetic vitamins (Rollán et al. 2019). A study performed by Varmanen et al. (2016)
showed that L. reuteri can be used for vitamin B12 fortification in soy-yogurt.

10.9.2 Dairy

Folate, as an essential vitamin, plays an important role in human life for the synthesis
of nucleotides, vitamins, and some amino acids. However, this vitamin could not be
synthesized by human and have to be taken by daily diet. Dairy products, especially
yogurt, are an appropriate choice for bio-fortification of folate as they contain folate-
binding protein which improves folate bioavailability. It is reported that the use of
folate-producing probiotic bacteria in combination with S. thermophilus and/or
L. bulgaricus provides the largest increase in folate during the fermentation process
of probiotic yogurt compared to original milk and conventional fermented milk (Rad
et al. 2016). The level of vitamin B12 is significant in dairy products. This vitamin is
necessary for the maintenance of the nervous system and the formation of blood
cells. Fermentation by probiotic bacteria could increase its content up to 10-folds
(Melini et al. 2019).

10.10 Enzymes: Anti-Nutrient Degradation

Food fermentation is considered as an important part in food detoxification.
Probiotics LAB are able to metabolize anti-nutrient compounds including phytates,
trypsin inhibitors, saponins, tannins, cyanogens, or phenolic compounds in foods.
This effect can be associated with modification of minerals bioavailability
(Septembre-Malaterre et al. 2018).

10.10.1 Phytates

According to clinical investigations, it has been found that vegetarians may suffer
from nutritional deficiencies and, specially, they have an impaired absorption of
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trace minerals, such as zinc, iron, and calcium, proteins, vitamin B12, and folate
(Bergillos-Meca et al. 2013; Masum Akond et al. 2011; Popova and Mihaylova
2019; Rekha and Vijayalakshmi 2010). This malabsorption syndrome may cause
severe health-threatening diseases ranging from anemia to neurological disorders
and immune deficiency (Hunt 2003). It is postulated that this intestinal malabsorp-
tion of minerals is due to the high content of phytate in cereals, nuts, legumes, and
oilseeds. Furthermore, it accounts from 60% to 90% of total phosphorus content in
cereals and is, therefore, the major storage compound for phosphorus (Gupta et al.
2015). Phytate is able of chelating nutritionally important cations such as Ca2+,
Mg2+, Fe2+, and Zn2+, thus decreasing the dietary bioavailability of these nutrients.

Intestinal microfloras, especially LAB, are an important source of phytase with
high activity. The consequence of phytate hydrolysis by LAB in gut is the release of
phosphate, other metal ions and proteins through the degradation of complexes
formed by phytate (Dubey and Patel 2018; Famularo et al. 2005) (Fig. 10.1). Various
studies have approved an improvement in mineral bioavailability by different
probiotic microorganisms used in the fermentation process (Bergillos-Meca et al.
2013). Daily diet enriched with probiotic lactic acid bacteria could minimize phytate
or phytic acid in plants. The fermentation of bran with probiotic LAB could provide
optimal pH conditions for enzymatic degradation of anti-nutritional factors induced
by the degradation of phytate (up to 90%). This results in better bioavailability of
minerals (Lopez et al. 2001; Rollán et al. 2019). According to researches, Ca
absorption is related to pH in the colon (Diaz de Barboza et al. 2015; Rekha and
Vijayalakshmi 2010). Calcium is a divalent cation which salt form is available in
food. The soluble and ionized form of Ca is absorbed. Phytate and oxalate in a diet
form insoluble salts with calcium and inhibit the calcium absorption (Dubey and
Patel 2018). Fermentation of soymilk with five strains of probiotic lactic-acid
bacteria (L. acidophilus B4496, L. bulgaricus CFR 2028, L. casei B1922,

Fig. 10.1 Effect of fermentation on minerals, phytochemicals, and proteins bioavailability of
foods
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L. plantarum B4495, and L. fermentum B4655) with the yeast Saccharomyces
boulardii made Ca more soluble (Parvaneh et al. 2014; Ramsubeik et al. 2014;
Rekha and Vijayalakshmi 2010). In a study performed by Lorusso et al. (2017),
evaluations showed that the minerals bioavailability in quinoa-based pasta flour
fermented by selected LAB with phytase activity substantially augmented. A similar
study (Rizzello et al. 2016) reported that phytase activity of quinoa sourdough has
increased 2.75 times after fermentation with autochthonous LAB (L. plantarum
T6B10 and L. rossiae T0A16).

10.10.2 Phenolic Compounds

Phenolic compounds as secondary metabolites produced by plants are widely used
as dietary supplements and have numerous biological and pharmacological effects
such as anticancer, antioxidative, antiviral, anti-inflammatory, and antiatherogenic
activities (de Souza et al. 2019; Hur et al. 2014; Rollán et al. 2019). Many phenolic
compounds occur in food as esters, glycoconjugates, or polymers, which are not
directly bioavailable (Rossi et al. 2013). According to estimations,, as little as
5–10% of total ingested phenolic compounds can be absorbed in the small intestine,
whereas 90–95% reach the colon because of insufficient gastric residence time, low
permeability or solubility in the intestine (de Souza et al. 2019). The evidences
showed that the gut microbiota are major responsible of polyphenols biotransforma-
tion into more biologically active components (de Souza et al. 2019; Pereira-Caro
et al. 2018). Enzymatic activity of intestinal bacteria able to catabolize phenolics
could results in the production of various compounds with different bioavailability
and biological functions to their parent compounds (Dudonné et al. 2015) As oligo-
and polysaccharides bounded to phenolic compounds are the major carbon sources
for saccharolytic fermentative bacteria, in the first step of phenolic degradation,
aglycones are released from glycol-conjugated forms of polyphenols by microbial
enzymes including glycosidases, glucuronidases, and sulfatases (Rossi et al. 2013).
These aglycones are further degraded through several functional groups cleavages
reactions (dehydroxylation, demethylation, and decarboxylation) and ring-fission.
Therefore, the produced microbial metabolites are absorbed from the colon and are
also subjected to liver metabolism, resulting in their conjugated derivatives. This
intensive microbial metabolism ultimately reduces the structural diversity of native
phenolic compounds to a limited number of smaller phenolic acids and derivatives of
phenylpropionic and phenyl acetic acids metabolites. Biological activities of pheno-
lic compounds have mostly been attributed to their microbial metabolites, present in
higher quantities in circulation than the native compounds (Marín et al. 2015).

Modulating the activity of gut microbiota by the incorporation of appropriate
probiotics into daily diet can enhance bioavailability and/or biological activity of
these phenolic compounds. In a study performed by Rekha and Vijayalakshmi
(2010), investigations showed that soymilk fermentation with LAB in combination
with probiotic yeast Saccharomyces boulardii could increase the bioactive
aglycones form of soy isoflavone (Rekha and Vijayalakshmi 2010). Investigations
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showed that glucoside conjugates of isoflavones exist principally in soya foods
which is poorly absorbed in the body and their biological effect are mainly attributed
to their glycosides form (Rekha and Vijayalakshmi 2010; Zubik and Meydani 2003).

Various studies revealed an increase in total phenols after fermentation of differ-
ent foods, and observed that the increase in antioxidative activity may be due to the
increase in the total phenolic compounds (Călinoiu et al. 2019; Hur et al. 2014; Zou
et al. 2017). Probiotic LAB are naturally present in legume grains; they have also
been traditionally used for legume fermentation. Evidences showed that fermenta-
tion of legumes with Lactobacillus genera can encourage the production of bioactive
compounds, improving health benefits beyond basic nutrition. Fermentation of
cowpeas with Lactobacillus plantarum resulted in the modification of phenolic
compounds and improvement of antioxidant activity (Dueñas et al. 2005; Limon
et al. 2015).

A research showed that complex polyphenols were hydrolyzed to simpler and
more biologically active compounds during fermentation of cowpea flour, and the
concentration of phenolic compounds in fermented has significantly increased
(Dueñas et al. 2005). In humans, isoflavones bioavailability depends on the relative
ability of gut microflora to degrade these compounds. Variation in the intestinal
bacterial community as a result of illnesses, diet, or age could significantly influence
isoflavones bioavailability (Rekha and Vijayalakshmi 2010; van der Velpen et al.
2014). A research carried out by Dudonné et al. (2015) consumption of showed
thatcranberry extract co-supplemented with probiotic Bacillus subtilis CU1 resulted
in the significant change in the composition of gut microbial communities of high-fat
fed diet mice through the inhibition of pathogenic bacteria and stimulation of
beneficial bacteria (de Souza et al. 2019). According to a study performed by
Parkar et al. (2014), anthocyanin-rich blackcurrant juice stimulated the in vitro
growth and adhesion properties of L. rhamnosus 299. In contrast, it suppressed the
growth and adhesion properties of Salmonella Typhimurium 450.

It has been reported that fermentation can significantly improve total phenolic
content and antioxidant activity of cereals and pseudocereals, which is highly
dependent on the species of microorganism, on the grains types,, fermentation
conditions, particularly time, temperature, and pH values (Hur et al. 2014; Rollán
et al. 2019). The enzymes involved in the phenolic metabolism by LAB are mainly
decarboxylases (PAD), reductases (PAR), esterases, and/or glycosidases (Rollán
et al. 2019). Fermentation of cowpeas with Lactobacillus plantarum resulted in
the modification of phenolic compounds and improvement of antioxidant activity
(Dueñas et al. 2005; Limon et al. 2015) (Fig. 10.1).

Catabolic products of orange juice flavanones identified by HPLC–HR–MS
showed that probiotication of orange juice by Bifidobacterium longum R0175
could significantly enhance the aglycone form of flavonones in orange juice which
could eventually augment the bioavailability of orange juice flavanones, and, there-
fore, their potential beneficial effects on health. A study on the effect of probiotic
fermentation of pomegranate juice revealed that fermentation of the juice using
L. plantarum and L. acidophilus as probiotic starter organisms increased the antioxi-
dant activity significantly (Mousavi et al. 2013). In a similar study, investigations
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showed that fermentation of liquorice root extract could effectively improve the
antioxidant activity of the extract from 53% to a maximum level of 73% (Mousavi
and Mousavi 2019).

10.10.3 Allergens

Hydrolysis of proteins into smaller peptide fragments during lactic acid fermentation
by probiotics could also suppress the potential allergenicity of parent proteins in
different foods (Verhoeckx et al. 2015; Xiang et al. 2019). For instance, despite the
high protein content, balanced amino acid composition, and high level of lysine in
comparison with other vegetable protein sources, soybean meals contain anti-
nutritional factors (ANFs) and allergens, which cause decrease in protein digestibil-
ity and absorption in animals (Gu et al. 2010). The soybean is one of the “Big 8”
food allergens. The allergen proteins account for 65–80% of total protein content in
the soybean and approximately 30% in soybean. The major allergen proteins are beta
conglycinin, the 30-kDa allergen (GlymBd 30), and glycinin. In human subjects,
these allergens can induce symptoms ranging from skin, gastrointestinal, or respira-
tory reactions to anaphylaxis. They also cause hypersensitivity in weaned piglets,
with the primary adverse effect being diarrhea (Adachi et al. 2009).

Lactobacillus kefiranofaciens M1 isolated from Kefir grains has an anti-allergic
effect. Digestion of caseins during maturation of fermented milk products has shown
to facilitate loss of allergenic reactivity (Chen et al. 2012).

Fermentation of soybean meal enhanced the bioavailability of nutritious
components and decreased the incidence of diarrhea in weaned pigs due to the
degradation of allergens into peptides (Chi and Cho 2016). The absorption of
peptides was significantly improved by the animal. In addition, soybean protein
hydrolysate also exhibited antioxidative, metal-chelating activity and lipid peroxi-
dation inhibitory activity attributed mainly to the low-molecular-weight (3 kDa)
peptide (Chi and Cho 2016).

The probiotic B. coagulans GBI-30, 6086 has the capacity to produce enzymes
degrading proteins and a wide of carbohydrates. These enzymes can increase the
amount of digested milk protein available for absorption. B. coagulans GBI-30,
6086 could be exploited to improve protein quality in plant protein sources with
lower essential amino acid such as Leucine (Jager et al. 2018).

10.10.4 Cyanogenic Glucosides

Galactosidase is recognized to metabolize cyanogenic glucosides present in some
vegetal matrixes such as cassava roots, bitter almonds, or whole sorghum. Cyano-
genic glycoside linamarin and lotaustralin in cassava tubers can be detoxified by
species of Leuconostoc, Lactobacillus, and Streptococcus during traditional method
to Gari and Fufu productions to yield hydrocyanic acid (HCN). This compound is
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volatile and can escape from the dewatered pulp during toasting rendering the
product safe for human consumption (Tamang et al. 2016).

10.10.5 Tannins

Tannins are polyphenols widely available in cereals and legumes. They can easily
bind to proteins making indigestible complexes with reduced bioaccessibility of
nutrients. Various probiotic Lactobacillus species such as L. plantarum,
L. paraplantarum, and L. pentosus have been confirmed to have tannase activity
(Osawa et al. 2000). Therefore, the exploitation of these bacteria in the fermentation
of plant-based foods rich in tannins can cleave the protein-tannin complexes render-
ing protein more available to the cells (Nkhata et al. 2018).

10.11 Conclusion

During food fermentation with probiotic bacteria, a number of chemical changes
occur in the structure of components of the raw matrix, which thus results in the
improvement of the functional properties of foods. This improvement is resulted
from several mechanisms such as the elimination of anti-nutritional factors, produc-
tion of metabolites with a positive effect (bioactive peptides, exopolysaccharides),
improvement of the bioavailability through biopolymers hydrolysis (esters of phe-
nolic compounds), and increased vitamin, mineral, and phenolic compounds, lead-
ing to an increase in the antioxidant capacity of the final product.

A higher bioactive molecule content and an improved antioxidant activity were
found in fermented milks, cereals, fruit and vegetables, meat and fish. Antihyperten-
sive peptides were detected in fermented milk and cereals. Changes in vitamin
content were mainly observed in fermented milk and fruits. The imparted health
benefits of probiotic fermentation to consumers make this category of foods worthy
of recommending for regular dietary guidelines. However, it seems that molecular
mechanisms behind the bioavailability and the potential health effects of the newly
formed compounds by probiotic fermentation are not deeply investigated yet.
Therefore, development of molecular tool analysis such as metabolomics, proteo-
mics, and transcriptomics would considerably help in that respect. Analysis of food
composition and enzyme activity evaluation in the gastrointestinal tract would be
helpful to evaluate the extent of molecular changes at each stage. Eventually, clinical
trials would be useful to measure the health effect of probiotic-fermented foods on
different groups of the population.
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Quality and Health Aspects of Dairy Foods
as Affected by Probiotic Bacteria and Their
Metabolites

11

Mahdieh Iranmanesh

Abstract

With the growing demand for healthy food products, there has been increasing
scientific and commercial interests for developing foods that besides providing
the nutritive values could also improve the overall health status of the consumer.
In this context, the probiotic dairy products are of immense interest to both
consumers and researchers who are searching for healthy food products with
increased health benefits. Administration of live bacteria especially lactic acid
bacteria (LAB) to ferment and non-fermented dairy food products are considered
a health-promoting strategy that could bestow health benefits on the consumer.
Probiotics are mixture of friendly bacteria capable of maintaining and improving
intestinal balance and hence boosting immune system effectiveness. Mounting
evidence are present on the role of probiotic strains acting as adjuncts to antibiotic
therapy by reducing adverse effects, improving antibacterial function and enhanc-
ing mucosal immunity. Apart from probiotic bacteria, their nonviable
counterparts (paraprobiotics) and the metabolites produced by probiotic bacteria
(postbiotic metabolites) are also known to provide physiological health benefits to
the consumers, and demonstrate therapeutic actions that are comparable to the
actions of probiotics. In this review these concepts will be approached, as well as
their potential applications in dairy products, highlighting the functional and
technological advantages compared to the use of probiotics.
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11.1 Introduction

With the rise in healthy living and integrative medicine, the importance of beneficial
bacteria has become prominent and the use of products known as probiotics is
becoming more and more common among ordinary people. The importance of
probiotic foods especially dairy foods has been emphasized by many researchers
in last decades (FAO/WHO 2001, 2002; Gardiner et al. 2002; Moeller and de Vrese
2004; Malcata et al. 2005; Sharma and Ghosh 2006; Shah 2007; Shiby and Mishra
2013; Sharma and Devi 2014; Santiago Lopez et al. 2015; Tunick and van Hekken
2015). The word Probiotic is derived from a Greek word that means “for life”
(Kollath 1953). As stated in FAO/WHO reports (2001), Probiotics are “live
microorganisms which when administered in adequate amounts confer a health
benefit on the host.” The most widely used probiotic species includes species from
the Genus Lactobacillus and Bifidobacterium, while some species of Streptococcus,
Lactococcus and Enterococcus has also been used. Apart from these, some yeast like
Saccharomyces boulardii and Kluyveromyces lactis are also used as a probiotics
(Kumura et al. 2004; Kumar et al. 2015). The health benefit of probiotics and their
metabolites has been observed in many probiotic food products. Among different
category of food products, fermented dairy products are considered as the most
important vehicle for delivering probiotic organisms (Tamime et al. 1995), and many
research reports have highlighted their therapeutic effects (Granato et al. 2010;
Parmjit 2011; Sánchez et al. 2017). In addition, the postbiotic metabolites produced
by these added probiotic bacteria can affect the microbiological and sensory qualities
of dairy products (Guzel-Seydim et al. 2005; Hekmat and Reid 2006; Sobrino-López
and Martín-Belloso 2008; Allgeyer et al. 2010). In this chapter, the effect of
probiotic bacteria and their metabolite on quality of dairy products and the health
benefits of consumption of these kinds of products will be reviewed.

11.2 Probiotic, Paraprobiotic, and Postbiotic

Probiotics in fermented dairy products impose beneficial health effects on the host
by several mechanisms (Fig. 11.1). According to Oelschlaeger (2010) these effects
can be divided into three groups based on their mode of action: (1) modulating hosts
defenses through the mucosal barrier function by decreasing the apoptosis of
epithelial cells and increasing mucin production (Mattar et al. 2002; Gaudier et al.
2005; Yan and Polk 2006; Caballero-Franco et al. 2007; Gogineni et al. 2013; Saad
et al. 2013), (2) direct effect on pathogenic microorganisms by producing
antimicrobial substances such as bacteriocins (Alakomi et al. 2000; Penner et al.
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2005; Liévin-Le Moal and Servin 2006; Sharma and Devi 2014) and antimicrobial
peptides (Schlee et al. 2008; Kelsall 2008; Mondel et al. 2009), and (3) effect on
microbial products such as toxins.

Most of the functions performed by probiotic bacteria have been reported to
depend on their viability (Sanders 2009), and it was considered essential for a
probiotic bacterium to retain its viability at concentrations of approximately109

cfu/mL to be effective. However, recent studies have suggested that bacterial
viability is not an imperative factor for these beneficial microbes to show their health
effects, and dead probiotic bacterial cells are also able to show significant health
benefits. The nonviable counterpart of the probiotic bacteria was termed
paraprobiotic.

Paraprobiotic or nonviable probiotic can be defined as “inactivated microbial
cells or cell fractions that confer health benefits to the consumer” (Taverniti and
Guglielmetti 2011). Paraprobiotics include the cell wall components including
peptidoglycans, surface proteins, cell wall polysaccharides, etc. (Shin et al. 2010).

Fig. 11.1 Health benefits of fermented dairy products
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Various methods like heat, high pressure, sonication, UV irradiation, and other
methods such as dehydration, pulsed electric field (PEF), and ohmic heating have
been used for inactivating bacterial cells (de Almada et al. 2016). These kinds of
methods are also used in dairy products manufactured with probiotics in order to
improve the functional activities. Guimarães and his colleagues (2019) used high-
intensity ultrasound (HIUS) as a mild preservation technology in dairy products
(Fig. 11.2). These researchers concluded that HIUS technology could shorten the
processing time, improve probiotic viability, and could be utilized for development
of paraprobiotics and improving the production of postbiotics with health effects.

Postbiotic or probiotic metabolic, biogenics, or simply metabolites/CFS (cell-free
supernatants) refers to soluble fractions (products or metabolic byproducts) secreted
by live probiotic bacteria or released after bacterial lysis (Tsilingiri and Rescigno
2013). Postbiotics are classified differently based on the data available in the
literature. As on these reports, postbiotics can be categorized depending on their
elemental composition like lipids (e.g., butyrate, propionate, dimethyl acetyl-derived
plasmalogen), proteins (e.g., lactocepin, p40 molecule), carbohydrates (e.g.,
galactose-rich polysaccharides, and teichoic acids), vitamins/cofactors (e.g.,
B-group vitamins), organic acids (e.g., propionic and 3-phenyllactic acid) enzymes,
bacteriocins, and complex molecules such as peptidoglycan-derived muropeptides
and lipoteichoic acids (Kostantinov et al. 2013; Tsilingiri and Rescigno 2013). In
another words, postbiotics include extracellular and intracellular bacterial cell
fractions. The extracellular cell wall components include exopolysaccharide and
peptidoglycans, while the intracellular metabolites are organic acids, short-chain
fatty acids, and bacteriocins like acidophilin, bifidin, reuterin, peptides, etc.
(Matsuguchi et al. 2003). Besides, postbiotics can be divided into different groups
according to their function such as immunomodulation, anti-inflammatory,
hypocholesterolemic, antiobesogenic, antihypertensive, antiproliferative, and anti-
oxidant effects (Nakamura et al. 2016; Shin et al. 2010; Sawada et al. 1990).

Fig 11.2 High-intensity ultrasound in the development of paraprobiotics and postbiotics
(Guimarães et al. 2019)
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11.3 Dairy Products

With increasing consumer demands, there is surge for safe and nutritive foods that
would not only provide the required energy and the nutrients for the human, but
might also improve the overall health status of the consumer including their physio-
logical and psychological status (Young 2000; Mollet and Rowland 2002). These
food products are referred to as functional foods and are known for their ability to
improve the general health of the consumers (Stanton et al. 2005). Functional foods
enriched with probiotics are termed probiotic functional foods.

Dairy products are an important source of energy as well as micro- and
macronutrients and among the highly consumed food product worldwide. Among
these dairy products yogurts, fermented dairy products, LAB drinks and mixture of
probiotic (fermented) milks and fruit juices are highly reputed for their dietary health
benefits and are considered a rich source of beneficial bacteria including lactic acid
bacteria. It is a well-known fact that milk and dairy products are a powerful tool and
significant vectors for creating probiotic dairy foods (Fig. 11.3).

11.4 Classification of Probiotic Dairy Products

This category of dairy products includes raw milk (fermented and unfermented),
cheese, ice cream, and dried dairy products (infant formula and dairy base dried
products). Below we discuss the importance of some of these probiotic products.

Fig. 11.3 Advantages of probiotics, paraprobiotics, and postbiotics in dairy products (Barros et al.
2020)
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11.4.1 Probiotic Fermented Milks

Fermented milk is a dairy product that is produced by fermentation of milk with
abundant number of viable and active microorganism that are safe for use (García-
Burgos et al. 2020). This milk has been produced in many countries for centuries,
and is considered one of the oldest methods for extending the shelf life of milk and
also helps to produce various products from milk. Fermented milk products offer
vast array of nutritional and health benefits due to the presence of abundant LAB and
their metabolites which are produced during the process of fermentation (Granier
et al. 2013). These products are produced from different mammal milk like cow,
sheep, goat, buffalo, and camel (Tamime 2002), and are a good source of calcium
which is vital for bone formation and mineralization (Baba et al. 2014). Fermented
milk products are recognized as suitable carrier for probiotic microorganisms.

According to Robinson and Tamime (1990) fermented milks can be classified
into three groups based on the dominant microorganisms in the products as follows:

A. Lactic fermentations: (i) mesophilic type like cultured buttermilk,
(ii) thermophilic type such as yogurt, Bulgarian buttermilk, zabadi, dahi; and
(iii) therapeutic or probiotic type including acidophilus milk

B. Yeast—lactic fermentations like kefir and koumiss
C. Mold—lactic fermentations such as viili

In addition to these groups, we discussed other probiotic dairy product in this
section as shown in Fig. 11.4.

Lactic fermentations could be divided into mesophilic probiotic fermented milks
and thermophilic probiotic fermented milks.

Fig. 11.4 Classification of fermented dairy products
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Mesophilic cultures are widely used in fermented dairy products, like in sour
creams, cultured buttermilk, kefir, etc. The primary mesophilic starter cultures used
in these fermented dairy products belongs to the Genus Lactobacillus, Lactococcus,
and Leuconostoc spp. These species are known to produce a variety of biogenic
metabolites including proteins, peptides, oligosaccharides, vitamins, and fatty acids
(Ebringer et al. 2008). The production of some fatty acids such as pyruvic, acetic,
propionic, and especially lactic acid in cultured buttermilk produced during the
fermentation by Lc. lactis and Leu. citrovorum was evaluated by Marsili 1981.
According to the results, the content of acetaldehyde was shown to increase initially
and then a decline was observed followed by formation of ethanol, whereas the
content of acetone and uric acid remained constant during fermentation. In our
previous study, some probiotic LAB species like Lb. brevis, Lb. pentosus, Ped.
acidilactici, and Lb. paracasei were isolated from a traditional buttermilk in Iran
(Iranmanesh et al. 2012). The paraprobiotic of the isolates also showed interesting
health characteristics and were able to lower the cholesterol concentrations in vitro.
Among the tested species, L. brevis demonstrated the highest level of cholesterol
removal (Iranmanesh et al. 2014). Our results also showed that Lb. pentosus,
Lc. lactis, Lb. paracasei, and Ped. acidilactici were able to produce protein metabo-
lite (bacteriocins) that inhibited the growth of L. monocytogenes and S. aureus. The
bacteriocin produced by the mentioned species was produced in the culture medium
in the early logarithmic phase and continued to the end of exponential phase
(Iranmanesh et al. 2015). Similar to our results, Lc. lactis subsp. Hordniae and Lc.
lactis subsp. Lactis isolated from homemade buttermilk was shown to produce a
bacteriocin that was active against Staphylococcus aureusMTCC96 and Pseudomo-
nas aeruginosa MTCC741 (Barman et al. 2018).

Thermophilic cultures used in fermentation of milk include Lb. delbrueckii subsp.
bulgaricus, Lb. helveticus, Lb. acidophilus, Lb. paracasei subsp paracasei,
Bifidobacterium species, and Streptococcus thermophilus. These cultures are mainly
used for the production of yogurt, Bulgarian buttermilk, etc. Below we describe the
beneficial health effects of some fermented dairy products having probiotic bacteria,
beside the thermophilic starter cultures.

11.4.2 Yogurt

The popularity of yogurt as one of the most consumed fermented dairy products has
increased in recent years due to its high nutritional-physiological values (Lourens-
Hattingh and Viljoen 2001). The nutritional aspects of probiotic yogurt are mainly
due to the presence of the beneficial bacteria with health-benefiting potentials. Some
of the health benefits of thermophilic probiotic fermented milks are summarized as
below.

Cancers are results of lethal cellular damage caused by free radicals, while
antioxidant compounds prevent generation of these free radicals and consequently
could prevent cancer generation (Urso and Clarkson 2003). The antioxidant property
of probiotic yogurt that contained Lb. bulgaricus, S. thermophiles, B. lactis Bb12,
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and Lb. acidophilus La5 was evaluated in 30- to 60-year-old patients with type
2 diabetes (Ejtahed et al. 2012). These patients consumed 300 g/day probiotic yogurt
for 6 weeks. The results showed that consumption of probiotic yogurt increased
erythrocyte superoxide dismutase and glutathione peroxidase activities as well as
total antioxidant status, significantly (P < 0.05), compared to the control group.
Furthermore, the level of insulin was not significantly different in comparison with
the healthy control group, while the content of serum malondialdehyde significantly
decreased.

Some bioactive peptides have shown to possess antioxidant activity. Sah et al.
(2014) showed that peptides separated from probiotic yogurt had antioxidant and
antimutagenicity activity. These researchers showed that the IC50 of two peptides
including 1,1-diphenyl-2-picrylhydrazyl and 2,20-azino-bis (3ethylbenzothiazoline-
6-sulphonic acid) were 1.51 and 1.63 mg/mL, respectively.

The effect of metabolites produced by probiotic starter cultures on the texture and
other sensory properties of the fermented milk products has been assessed. A number
of bacterial species such as S. thermophilus, Lb. kefiranofaciens, Lb. helveticus,
Lb. sake, Lb. delbrueckii subsp. bulgaricus, Lc. lactis subsp. cremoris, B. longum,
and B. infantis are known to produce exopolysaccharide (EPS) (Surono and Hosono
2011). EPS plays an important role in the rheology, texture, and mouthfeel of
fermented milks, and are found in yogurt, kefir, viili, and some other fermented
dairy products. In a study, Hess and his co-investigators (1997), studied the effect of
exopolysaccharide (EPS) produced by Lb. delbrueckii ssp. bulgaricus strain C1 and
S. thermophilus strain B1 on the texture of the produced yogurt. They found that the
susceptibility to syneresis was decreased, whereas the ropiness or extensibility was
increased significantly. In addition, the shear stress of yogurt with EPS was
increased from 0.1 to 0.3 s–1 and then a steady increase as shear rate was increased
from 0.3 to 100 s–1. Similar findings were reported by Guzel-Seydim et al. (2005),
who stated that whey separation was decreased in probiotic yogurt with ropy
polysaccharide-producing culture. There results also indicated increase in the
contents of lactic acid, volatile fatty acids, and tyrosine whereas the acetaldehyde
concentration and pH values were decreased. In another research, the effect of EPS
on the texture of inulin-containing probiotic yogurt during 21 days of storage
showed that the firmness in the texture of yogurt was not influenced by EPS
significantly (Ramchandran and Shah 2010). Whereas the influence of EPS on
yield stress (Pa), consistency index (Pa s), and thixotrophic behavior (Pa/s) was
observable only after day 7. In addition, the use of the EPS from Lb. fermentum Lf2,
as an additive, in yogurt augmented hardness and improved the water holding
capacity of the product (Ale et al. 2016). The sensory properties of non-fat yogurts
with 300 and 600 mg EPS/L showed that 600 mg/L of EPS extract had the highest
values of consistency after 3 days of storage, while this property was not detected at
the end of the shelf life. Similar to other results, the EPS333 produced by
S. thermophiles strain AR333 in yogurts could increase the viscosity and water
holding capacity which resulted in improved quality of yogurt (Zhang et al. 2018).
These exopolysaccharides are composed of galactose, glucose, and galactosamine in
a molar ratio of 3:2:1.
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The immunostimulatory effects of EPS produced from Lb. delbrueckii ssp.
bulgaricus OLL1073R-1 was described by Makino et al. 2016. They found that
the oral administration of EPS or yogurt fermented with OLL1073R and
S. thermophilus OLS305 to mice models, increased natural killer cell activity and
also the production of IFN-γ production in spleen cells of mice after 3 weeks.

Another metabolite produced by probiotic bacteria includes folate which is
B-group vitamin that is not synthesized in humans. Hence, humans require this
vitamin which they recieve through exogenous source such as food. Crittenden et al.
(2003) showed that S. thermophiles, bifidobacteria, and E. faecium can produce
folate. Based on his results, S. thermophiles produced higher content of folate than
the other tested strains. In another research study, combination of B. lactis,
L. acidophilus, and S. thermophilus used in the production of probiotic yogurts
was shown to demonstrate higher content of folate than yogurts produced by
traditional starter cultures (Lb. delbrueckii subsp. Bulgaricus and S. thermophiles).
Similar findings were reported by Laiño et al. (2012), who showed that Lb.
delbrueckii subsp. bulgaricus CRL 863 isolated from artisanal Argentinean yogurts
could produce folate. This strain produced both intracellular and extracellular folate
after 6 h of growth in folate-free culture medium and then decreased after 10 h, while
extracellular folates remained constant up to 24 h but intracellular forms reduced
slightly. Besides, the content of folate in milk fermented by Lb. delbrueckii subsp.
bulgaricus CRL 863 was shown to increase after 24 h of incubation at 37 �C.

The effect of fermented milk like yogurt on cholesterol has been investigated
widely. Ataie-Jafari et al. (2009) had shown that consumption of probiotic yogurt
was able to reduce total cholesterol levels in the serum of 14 healthy subjects. The
subjects in study were given 300 g of ordinary yogurt or probiotic yogurt for
6 weeks, after a 4-week washout period, the study continued for another 6 weeks.
In this study, probiotic yogurts were fermented by S. thermophilus and Lb.
delbrueckii subsp. Bulgaricus, Lb. acidophilus and B. lactis. They concluded that
the two probiotic strains Lb. acidophilus or B. lactis had important role on the
observed hypocholesterolemia effects. Similarly, Baroutkoub et al. (2010) showed
that total cholesterol and LDL (low-density lipoprotein) levels were decreased, while
HDL (high-density lipoprotein) increased by consumption of probiotic yogurt.
Furthermore, consumption of 300 g of probiotic yogurt containing Lb. acidophilus
La5 and B. lactis Bb12 for 6 weeks in people with type 2 diabetes also showed that
the total cholesterol and LDL-C were decreased 4.54% and 7.45%, respectively
(Ejtahed et al. 2011). The total cholesterol:HDL-C ratio and LDL-C:HDL-C was
also significantly decreased.

Some major antibacterial metabolites produced by probiotic bacteria include
bacteriocin and other antimicrobial compounds like organic acid, hydrogen perox-
ide, and low-molecular-weight substances like Reuterin (Ammor et al. 2006). In a
study, S. thermophile was shown to produce a bacteriocin which could decrease
L. monocytogenes counts below detectable levels (Benkerroum et al. 2002). Zaeim
et al. (2014) identified bacteriocin from Lb. bulgaricus isolated from local yogurt
samples. This bacteriocin had activity against Gram-positive bacteria like
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L. monocytogenes and Bacillus cereus and Gram-negative bacteria such as E. coli
O157:H7 and Proteus vulgaris.

11.4.3 Dahi

Dahi is another fermented dairy product belonging to yogurt group, which is
produced in India for long time. It is prepared by buffalo milk fermented by lactic
acid bacteria. This product has been reported to be highly nutritious and possess
therapeutic effects, and hence can be used as a functional food (Abbas and Jafri
1992; Sinha and Sinha 2000). The effect of probiotic dahi fermented by Lb.
acidophilus and Lb. casei in rats with type 2 diabetes showed that HDL levels
were reduced slightly and the thiobarbituric acid-reactive substances were lower
than control group (Yadav et al. 2007a).

Kaushal and Kansal (2012) also evaluated the activity of antioxidant enzymes in
dahi prepared from buffalo milk with different bacteria. Based on the type of bacteria
used in the preparations of dahi, they divided this product into 2 groups: 1. Lc. lactis
ssp. cremoris NCDC-86 and Lc. lactis ssp. lactis biovar diacetylactis NCDC60
along with selected strain of Lb. acidophilus LaVK2 (La-Dahi) and 2. Lb. acidophi-
lus and B. bifidum BbVK3 (LaBb-Dahi). The activity of antioxidant enzymes was
evaluated in mice fed with 5 g/day dahi for 4 months. The results showed the content
of oxidation products, thiobarbituric acid-reactive substances (TBARS) and protein
carbonyls, in red blood corpuscles (RBCs), heart tissues, liver and kidney was
increased. Moreover, the level of superoxide dismutase (SOD) activity in RBCs
and hepatic tissues during aging of mice was increased in both groups, while the
CAT activity increased in RBCs and heart tissue of only LaBb-Dahi group.

In another study, the EPS-producing non-ropy strain of Leuconostoc sp. CFR
2181 isolated from dahi (Vijayendra et al. 2008) was evaluated. This EPS consisted
mostly of glucose (91%), and hamnose and arabinose (1.8% each) and its molecular
weight was in the range of 1.0 � 104 to 1.5 � 106 Da. The EPS produced from Lb.
fermentum in low-fat dahi improved the rheological quality by lesser whey separa-
tion, higher viscosity, increased adhesiveness, and stickiness (Behare et al. 2013).
Similar results were shown that demonstrated that some LAB like Lb. fermentum and
Lb. plantarum isolated from traditional dahi could produce EPS (Patel et al. 2014)
that could have beneficial effects when used in dairy products.

The production of free fatty acids (FFAs) and conjugated linoleic acid (CLA) in
probiotic dahi containing Lb. acidophilus and Lb. casei during storage at 4�C for
10 days indicated an increase in butyric acids, linoleic acids, and also CLA content in
probiotic dahi (Yadav et al. 2007b).

Immunomodulatory effects of bacteria isolated from dahi have also been
reported. In a study conducted by Jain and his colleagues (2009), the ability of
dahi containing probiotic Lb. casei to modulate immune response against Salmo-
nella enteritidis infection in mice was evaluated. They found that the levels of the
secretory immunoglobulin A (sIgA) and proliferation of spleen lymphocytes rate
were significantly increased. In addition, interleukin (IL) IL-2, IL-6, and IFN-γ
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increased, but IL-4 reduced. Mitra et al. (2007) showed that the bacteriocin produced
by Lb. lactis isolated from homemade dahi had activity against B. cereus,
L. monocytogenes, C. perfringens, E. faecalis, and St. aureus. Similarly, the bacteri-
ocin produced by Lb. acidophilus isolated from dahi was investigated by Mahmood
et al. (2014). The bacteriocin showed activity against E. coli, S. aureus,
P. aeruginosa, and L. monocytogenes and had antibacterial activity of
5369.13 AU/mg.

11.4.4 Zabadi

Zabadi is another traditional dairy product recognized as Egyptian yogurt. Zabadi is
mostly made from cow milk and is produced at a local level by boiling, then cooling
the milk and inoculation with a day-old previous batch of zabadi (serves as starter).
Later, the milk is inoculated with starter cultures (S. thermophilus and Lb.
bulgaricus), and incubated at temperature ranging ~30–38 �C) for 12–15 h. This
product can be consumed as a fresh product or stored in a refrigerator. Zabadi (plain
full-fat yogurt) has a smooth consistency and a thin body and is not solid like
manufactured yogurt (Eissa et al. 2011). According to reports, increased production
of polysaccharides at low-temperature fermentations could contribute to a smoother
perceived texture of this traditional yogurt (Driessen 1984).

11.4.4.1 Therapeutic or Probiotic Fermented Milk Product
Food matrices are known to play significant role in the beneficial health effects of
probiotic bacteria in the host (do Espírito Santo et al. 2011). Acidophilus milk is one
of the well-known probiotic dairy foods that is recognized as a functional food and is
made by the addition of Lb. acidophilus. Some potential benefits of acidophilus milk
were reviewed by Gilliland (1989). These beneficial effects include antibacterial
activity against pathogens, cholesterol lowering, and anticarcinogenic activity.

Yeast: Lactic Fermentations
Kefir and koumiss are categorized in this group. Kefir is a fermented drink tradition-
ally made by adding kefir grains to cow or goat milk. These grains with cauliflower
like appearance are a mixture of bacteria (Lb. caucasius) and yeasts (Saccharomyces
kefir and Torula kefir). Kefir drink is thought to aid in digestion and calm upset
stomachs (Hertzler and Clancy 2003). The role of LAB bacteria in kefir is to ferment
lactose to lactic acid and provides the tangy flavor, while the yeasts ferment the
available fermentable sugars in milk to yield small amounts of alcohol and CO2,
which gives kefir its fizz and effervescence.

Immunomodulatory properties of some yeasts of the kefir like Kluyveromyces
marxianus B0399 have also been reported. This yeast has the ability to adhere to
Caco-2cells and cause a reduction in the secretion of IL-10, IL-12, IL-8, and IFN-γ.
In addition, K. marxianus B0399 caused a reduction in the secretion of
proinflammatory cytokines TNF-α, IL-6, and MIP1α in peripheral blood mononu-
clear cells stimulated with lipopolysaccharide (Maccaferri et al. 2012). Another yeast
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strain that is of probiotic potential is S. boulardii. This yeast has been known for its
ability to improve diarrhea symptoms caused by Clostridium difficile (Bourrie et al.
2016). The antioxidant activity of 28 Saccharomyces cerevisiae isolates from kefir
has been described by de Lima et al. (2017), and antioxidant activity was higher than
90. In addition, all strains showed intracellular β-galactosidase activity.

Functional properties of kumis were evaluated by several research (Ohashi et al.
2000; Osorio et al. 2011; Chaves-López et al. 2012), but research on probiotic
metabolites has been very limited. Furthermore, Chaves-López et al. (2012) isolated
ninety-three yeast strains from Colombian Kumis with Angiotensin I-converting
enzyme (ACE) inhibitory activity. Clavispora lusitaniae KL4A, Galactomyces
geotrichum KL20B and Pichia kudriavzevii KL52 showed the higher level of
ACE peptide production while Torulaspora delbrueckii KL66A had the lowest.

Mold: Lactic Fermentations Such as Viili
Viili is a traditional fermented milk from Scandinavia, which is produced from LAB
and the mold Geotrichum candidum (Kahala et al. 2008; Wang et al. 2008). Kahala
et al. (2008) isolated Lc. lactis subsp. lactis biovar diacetylactis and Leu.
mesenteroides subsp. cremoris Lc. lactis subsp. cremoris from Viili.

11.5 Probiotic Non-fermented Milks

There is limited data available regarding probiotic milk from different livestock and
most available data is related to cow milk. The angiotensin-converting enzyme
inhibitory (ACEI) activity of two peptides of milk containing Enterococcus faecalis
CECT 5727 named β-casein ƒ (133–138) (LHLPLP) and β-casein ƒ (58–76)
(LVYPFPGPIPNSLPQNIPP) demonstrated (IC50) values as low as 5 mM in rat
(Quirós et al. 2007). Although T β -casein ƒ (58–76) peptides showed lower
antihypertensive activity in spontaneously hypertensive rats compared with
LHLPLP. In another research, the impact of unfermented milk containing Lb.
fermentum MTCC 5898 on immunity system, antioxidant capacity, and severity of
pathogenic infection in aging mice was evaluated by Sharma et al. (2014). They
found that the activity of some antioxidant enzymes like Catalase and glutathione
peroxidase were increased significantly (P < 0.05); followed by activity of these
enzymes, immune system improved due to enhanced free radical clearance system.
While there was no significant difference in IgG2a compared with control group in
mice. The pathogen colonization in the intestine, liver, and spleen was also
decreased significantly (P < 0.05). Balakrishnan and Agrawal (2014) compared
the antioxidant activity of fermented cow, goat, and camel milk with Ped.
pentosaceus. They found that the activity was the highest in goat milk followed by
camel and cow milk. In another study, the different function of postbiotics in camel
milk and bovine milk probiotic strain Lc. lactis KX881782 in vitro was investigated
by Ayyash et al. (2018). The fermented camel milk showed grater inhibitions of
α-amylase than bovine milk. Whereas, the inhibition of α-glucosidase was not
significantly different in both milk. This inhibition resulted in decrease carbohydrate
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hydrolysis, so reduces the possibility of sugars being absorbed by the human
intestine. Furthermore, the proliferation of Caco-2, MCF-7, and HELA cells were
more inhibited by fermented camel milk. In contrast the 1,1-diphenyl-2-
picrylhydrazyl (DPPH) antioxidant capacity in camel milk was lower than
bovine milk.

Fatty acids particularly conjugated linoleic acid (CLA) is another metabolite of
probiotics. The content of CLA in fermented milk containing only S. thermophilus
and Lb. bulgaricus was the highest among 10 commercial fermented cow milk
products (Manzo et al. 2015). The fatty acid profiles of fermented cow, goat, and
camel milk with Ped. pentosaceus indicated that oleic acid was higher in camel milk
and also the content of linoleic and linolenic acids was low in all fermented milk
(Balakrishnan and Agrawal 2014).

Some strains isolated from raw milk showed antimicrobial activity by producing
bacteriocin. Lb. plantarum isolated from raw cow’s milk samples produced bacteri-
ocin with molecular weight approximately 9.5 kDa and could tolerate high tempera-
ture up to 121 �C (Sankar et al. 2012). Another strains of lactobacillus, Lb. sakei
GM3 isolated from goat milk produced bacteriocin which had antimicrobial activity
against C. albicans, C. tropicalis, S. aureus, P. aeruginosa, S. enterica, and
L. monocytogenes (Avaiyarasi et al. 2016). The Molecular weight of this bacteriocin
was 4.811 KDa and could withstand heat treating at 100 �C for 20 min. Furthermore,
bacteriocin produced from various lactobacillus strains which isolated from raw
cow, buffalo, and goat milk showed activity against some mastitis pathogens such as
S. aureus, E. coli, Y. enterocolitica, S. uberis, and S. xylosus (Eid et al. 2016).

11.6 Probiotic Cheeses

Chesses can be divided into different groups like very hard and hard (�38 g 100 g�1

moisture), semi-hard (averages ~40 g 100 g�1 moisture), Brined cheeses (50–55 g
100 g�1 moisture), soft cheeses, and other kinds of cheese (Tamime and Thomas
2018). However, we categorize different chesses based on the metabolite produced
by the probiotic bacteria.

Cottage cheeses prepared with Lb. casei, Lb. rhamnosus GG and Himalayan
cheese (Kalari) prepared by different probiotic strains (Lb. casei, Lb. plantarum, and
Lb. brevis) showed higher antioxidant activity due to higher concentration of
bioactive peptides (Abadía-García et al. 2013; Mushtaq et al. 2016). This may be
related to the proteolysis occurred by these bacteria. Additionally, probiotic Minas
Frescal cheese added with Lb. casei 01 showed higher ACEI (antioxidant and
angiotensin I-converting enzyme inhibitory) activity compared to conventional
cheese (Sperry et al. 2018).

ACEI peptides that are produced by a number of probiotic bacteria in many
fermented dairy products have antihypertensive properties. Also adding probiotic
bacteria like Lb. casei and Lb. plantarum to Cheddar cheese showed higher DPPH
(2,2-diphenyl-picrylhydrazyl) and antioxidant activity during the ripening time at
16th weeks compared to the control samples (Chen et al. 2019). The DPPH reached
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its maximum at 16th weeks while other properties of probiotic cheese like texture
and sensory analysis was not affected by probiotics.

The EPS-producing probiotic Lb. plantarum used in low-fat akawi cheese
showed higher antioxidant activities and angiotensin-converting enzyme (ACE)
inhibition in comparison with cheese made with non-EPS producers (Ayyash et al.
2012). In addition, the antioxidant activity increased when the storage time was
prolonged. Donkor et al. (2012) also showed that inhibition of α-amylase in cheese
with EPS-producing culture was higher, while the α-glucosidase inhibition was not
significantly increased. The inhibition of α-amylase and α-glucosidase resulted in
controlling diabetes and reducing carbohydrate hydrolase. This inhibition might be
due to the presence of bioactive peptides.

In another study, it was shown that the content of free fatty acids (FFA) increased
in cheeses inoculated either with Lb. casei and B. lactis at 60 days of ripening
(Rodrigues et al. 2012). In addition, three conjugated linoleic acids (CLA) isomers
(i.e., cis-9, trans11-C18:2, CLA1; trans-10, cis-12-C18:2, CLA2; trans-9, trans-12-
C18:2, CLA3), α-linolenic acid (ALA) and γ-linolenic acid (GLA) were increased
during ripening in 15 days that raised up to 60 days. The content of CLA (cis-9,
trans-11-octadecadienoic acid) from different probiotic white cheese showed that
B. longum cheese and E. faecium cheese had the highest and lowest CLA, respec-
tively (Gursoy et al. 2012). Moreover, linoleic acid has been shown to increase in
cheese samples prepared with Lb. paracasei and Lb. acidophilus. Besides, reports
showed that addition of Lb. casei 01 to Minas Frescal cheeses showed higher level of
medium- and long-chain fatty acids (Sperry et al. 2018). In addition, monounsatu-
rated fatty acid such as oleic acid was higher than conventional cheese.

Nine strains of E. faecium isolated from Tafı Cheese (a homemade traditional
cheese from Tucuman, Argentina) showed cholesterol reduction in vitro (Saavedra
et al. 2003). All these strains had bile salts hydrolase activity (BSH), while some
strains with negative BSH activity could not reduce cholesterol levels. Similar to
these studies, it was shown that Lb. plantarum and Lb. paracasei isolated from
Italian Castelmagno PDO cheese could reduce cholesterol levels in vitro (Belviso
et al. 2009). While some research also showed in vivo cholesterol lowering effects of
the cheese that harbored probiotic bacteria. The fresh Brazilian cheese containing
Lb. acidophilus LA14 and B. longum BL05 fed for 2 weeks to rats, probiotic cheddar
cheese with L. plantarum K25 in mice for 4 weeks could decrease total cholesterol
and LDL cholesterol, while HDL cholesterol increased compared to control groups
(Lollo et al. 2012; Zhang et al. 2013; Lollo et al. 2015).

The effect of probiotic Minas Frescal cheese on hypertension parameters in
spontaneously hypertensive rats indicated that the systolic, diastolic, and mean
blood pressure over 15 days decreased significantly (P < 0.05) compared to the
control groups (Lollo et al. 2015). In addition, cheese containing LGG and Lb.
rhamnosus LC 705 could reduce salivary microbial counts in young adults (Ahola
et al. 2002). The subjects ate 5 � 15 g cheese per day for 3 weeks and the result
showed that S. mutans and yeast counts decreased in 20% and 27%, respectively, in
all the subjects.
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The bacteriocinogenic Lb. paraplantarum FT259 isolated from Brazilian semi-
hard Minas cheese was evaluated by Tulini et al. (2013). This bacterium produced
bacteriocin against L. monocytogenes, L. innocua, and L. sakei, while no activity
against Gram-negative bacteria was reported. Furthermore, E. faecium AQ71
isolated from Azerbaijani Motal cheese produced bacteriocin named enterocins P
which had activity against L. monocytogenes and B. cereus (Ahmadova et al. 2013).

In another study, the inhibitory effects of the probiotics Lb. acidophilus, Lb. casei
subsp. paracasei, and B. lactis in a Brazilian semi-hard goat cheese (coalho) was
reported, during storage time (de Oliveira et al. 2014). The Lb. casei subsp.
paracasei showed the highest inhibitory activity against L.monocytogenes and S.
aureus on the 14th and 21st days of storage, respectively. While, B.lactis had activity
against S. aureus on the 1st (16.32%), 14th (10.12%), and 21st (3.67%) days of
storage, and only on 1st day of storage they had activity against L. monocytogenes.
Lb.plantarum isolated from Traditional Iranian Cheese (Kouzeh) showed high
activity against S.aureus and S.epidermidis (Jabbari et al. 2017). Furthermore,
Kluyveromyces marxianus S-2-05 and Kluyveromyces lactis S-3-05 isolated from a
traditional French cheese had inhibitory activity against Salmonella typhimurium,
Salmonella enteritidis, and Salmonella paratyphi B (Ceugniez et al. 2017).

The availability of some minerals is significantly affected by probiotic bacteria in
the different cheeses. As demonstrated by Aljewicz and Cichosz (2015), addition of
Lb. rhamnosus increased in calcium availability in Dutch-type cheese. However, the
availability of magnesium and phosphorus decreased in Swiss Dutch-type cheese
after 6 weeks of ripening, respectively. In addition, the zinc availability Dutch-type
cheese was increased and the availability of potassium lowered in Swiss-type cheese.

11.7 Probiotic Ice Cream

Probiotic ice cream containing 1� 106 CFU of bacterial strains B. lactis Bb-12 and
Lb. acidophilus La-5 per gram could reduce levels of salivary S.mutans in school
children after 10 days (Singh et al. 2011). In addition, the goat’s milk ice cream with
B.animalis subsp. Lactis showed good sensory characteristics, while other physico-
chemical properties such as overrun and melting behavior were not affected by
adding probiotic (Da Silva et al. 2015).

11.8 Dried Probiotic Dairy Products

Drying milk is one of the ways to extend the shelf life and decrease the loss of milk in
long chain between farmer and consumer. Dried products include milk powder,
whey powder, whey protein concentrate, yogurt powder, and infant formula. The
methods of drying can be divided into two groups, thermal and non-thermal
(Aadinath et al. 2017). In dried probiotic dairy product, some factors play essential
role for maintaining the viability of probiotic microorganisms, such as the methods
of drying, the type and size of packaging used, condition of storage like temperature
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and humidity, quality of powder, the process of rehydration and handling of rehy-
dration product, etc. (Gilliland 2001). One of the most widely used dried dairy
products of this group is infant formula which is described below.

11.8.1 Infant Formula

The effect of probiotic supplemented infant formula on plasma lipid of infant was
described by Kankaanpää et al. (2002). The Bifidobacterium Bb-12 supplemented
formula could increase the α-linolenic acid in phospholipids, while the Lb. GG had
no effect on this fatty acid. In addition, both probiotics were able to increase the
percentage of the total monounsaturated fatty acids (MUFA).

Saavedra et al. (2004) showed that probiotic supplemented formula could lower
the frequency of reported colic or irritability. According to their results, consumption
of formulas containing B. lactis and S. thermophiles for long time resulted in
reduction of colic, irritability and reduced the frequent use of antibiotics. Similar
to these findings, it was reported that B. lactis (BB-12) and Lb. reuteri in infant
formula could reduce infections in healthy 4- to 10-month-old infants after 4 weeks
(Weizman et al. 2005). The control group had more diarrheas with longer duration,
whereas Lb. reuteri group, compared to BB-12, had fewer days of diarrhea and lower
visits to the clinic or child care unit. In addition, the effect of supplemented formula
with Lb.johnsonii La1on fecal microbiota composition of infants was evaluated by
Brunser et al. (2006). Ninety infants close to 4 months of age were divided into
various groups and received probiotic supplemented infant formula for 13 weeks.
The results showed that the fecal Lactobacillus count was higher than controls, while
the count of Clostridium, Bacteroides, or Enterococcus were not significantly
difference between the groups.

The safety of a prebiotic-containing starter formula supplemented with Lb.
paracasei ssp. paracasei and B. animalis ssp. lactis for first 3 month in 126 newborns
and then continued in 80 infants for 6 month was evaluated by Vlieger et al. (2009).
The growth, clinical outcomes like crying and sleeping hours, number of gastroin-
testinal or upper respiratory tract infections, the amount of antibiotics used and visits
to the general practitioner were not significantly difference compared to the control
group.

11.8.2 Dairy-Based Dried Products

The traditional dairy-based dried products like Kashk, Tarhana, and Kurut are
produced for many centuries. The most data about these kinds of products were
related to isolation lactic acid bacteria, while the probiotic characteristics were not
assessed. In addition, some nutrition value of these products was evaluated by
researcher. The Kashk is produced under various names in different countries,
Kishk (Lebanon, Syria), Zhum (Yemen), Kushuk (Iraq) (Tamime and O'connor
1995). These traditional dairy-based products are a good source of endogenous
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probiotics. The dried Kashk has been produced in a wide geographical region
especially in rural parts of Iran for many years. Dried Kashk is produced from
cow’s and/or sheep’s milk which is boiled and then cooled and inoculated with
traditional yogurt made earlier as starter culture. The butter is isolated from sour
yogurt and the remaining sour buttermilk is boiled followed by sieving by cloth bag.
Finally, the thick whitish semi-solid part of buttermilk, which is sieved, is shaped in
the form of conic or cubic balls and then sun-dried for 3–4 days (Iranmanesh et al.
2018). Ebrahimi et al. (2011) isolated Lb. agilis from Kashk which had the ability to
assimilate cholesterol in vitro conditions. The Kishk samples containing Lb. casei
(108–109 CFU mL-1) showed antimicrobial activity against E.coli O157:H7 and
reduced its count during storage at 4 �C after 20 days (Sadrizadeh et al. 2018).

Tarhana is another traditional fermented cereal dairy product produced in Turkey.
It is made from cereal flours, yogurt, and different vegetables, and after fermentation
it is sun dried and used as soap (Ozdemir et al. 2007). Sengun et al. (2009) isolated
various LAB from Tarhana such as S. thermophilus, L. fermentum, E. faecium, Ped.
pentosaceus, Leu. pseudomesenteroides, Weissella cibaria, Lb. plantarum,
Lb. delbrueckii spp. bulgaricus, Leu. citreum, Lb. paraplantarum, and Lb. casei.

Kurut is traditional foods of Tibetan people. Kurut is prepared by natural fermen-
tation of yak milk in a custom-made specially treated Tung made big jar, at ambient
temperatures for 7–8 days. Kurut like kefir and koumiss have both alcohol and lactic
acid. Kurut is almost known to all regions of Qinghai (Zhang et al. 2008). Sun et al.
(2010) isolated Lb. helveticus, Lb. suntoryeus, Lb. fermentum, Lb. plantarum, and
Lb. delbrueckii subsp. bulgaricus from Kurut. Furthermore, other cocci isolates were
identified as Lc. lactis subsp. lactis, Lc. lactis subsp. cremoris, Leu. lactis, Leu.
mesenteroides subsp. mesenteroides, and S. thermophiles. Luo et al. (2011) showed
that some LAB strains isolated from Kurut had antimicrobial activity. Among the
isolates, Lb. casei, Lc. lactis and Leu lactis, possessed bacteriocin-producing ability
that could inhibit both S. aureus and E. aerogenes. The probiotic Lb. helveticus H9
isolated from Kurut was shown to produce antihypertensive peptides during milk
fermentation (Chen et al. 2015).

11.9 Conclusions

It is evident that in last decades probiotic bacteria have been used in various dairy
products due to their valuable health effects. Not only can probiotic be added to dairy
products, but some traditional dairy products already are enriched with abundant of
LAB species which show significant probiotic potential. These probiotic bacteria are
able to add nutritious values to the milk and their products, as well as producing a
number of metabolic products during fermentation they show therapeutic properties.
Probiotic bacteria and their postbiotics (secretory metabolic compounds) can affect
the quality of the dairy products by showing health benefits and might also improve
the flavor, texture, and other sensory properties of the product. Furthermore, probi-
otic strains reveal other properties such as cholesterol lowering and immunomodu-
latory properties, anticancer and antioxidant activity. Besides, the consumption of
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fermented dairy products can simulate the immunity system. Further research studies
are required that investigate the role of probiotic metabolite in some dairy products
especially traditional dairy products that have intrinsic probiotic microbes. Conse-
quently, these studies could lead to development of more nutritious and safe foods
with proven therapeutic potential.
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Encountering the Antibiotic Resistance by
Bioactive Components and Therapies:
Probiotics, Phytochemicals and Phages

12

Sheikh Ajaz Rasool, Muhammad Salman Rasool, and Munazza Ajaz

Abstract

Improper antimicrobial practices expedite the evolution of antibiotic-resistant and
super-drug-resistant bacteria, and result in varied and elevated antibiotic resis-
tance throughout the world. The dominant problem with antibiotic therapy is the
antibiotic resistance acquisition in bacteria. Therefore, it is important to use non-
antibiotic agents which could prevent the microbial propagation and control their
virulence. The agents like probiotics, phytochemicals and bacteriophages have
been found to tackle drug-resistant bacteria. The application of probiotics in
medicines, agriculture and food industry is becoming influential to contain
drug-resistant and virulent bacteria. The probiotic bacteria (Lactobacilli,
Bifidobacteria, etc.) directly and indirectly by their products (bacteriocins,
organic acids, short-chain fatty acids, polysaccharides, etc.) can counter or
evade the entero-virulent, pathogenic and drug-resistant bacteria such as Salmo-
nella typhi, Clostridium difficile, MRSA, Carbapenem-resistant representatives of
enterobacteriaceae, H. pylori, E. coli O157:H7, etc. Intestinal probiotic bacteria
(Lactobacilli) can also help to reduce diarrhoea, post-antibiotic therapy
complications and inflammatory bowel disease. Phytochemicals offer strong
antimicrobial action against virulent and resistant bacteria. These substances
unaccompanied or accompanied with antibiotics can enhance antibacterial effect.
Several plant procured compounds (Alkaloids, Phenolics, Cumarins, Terpenes
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and Sulphur-compounds) have been observed to carry antimicrobial effects with a
vast variety of mechanisms. Bacteriophages and the related enzymes (endolysins
and virion-associated peptidoglycan hydrolases) having antimicrobial effect are
also considered as therapeutic candidates to encounter drug-resistant bugs. Based
on the literature review, probiotics, plant procured compounds and phages in solo
or in combo with antibiotics can be the favourable and valuable therapeutic
options.

Keywords

Antibiotics · Drug resistance · Probiotics · Bacteriophages · Phytochemicals

12.1 Introduction

Extraordinary expansion in the occurrence and predominance of antibiotic resistance
has been witnessed after the administration and extensive application of antibiotics.
This resistance is considered to have prevailed much before antibiotic consumption
by humans (Broaders et al. 2013; Rasool et al. 2019a). Several ecological
interaction-based studies have proved that microorganisms produce antimicrobials
in microbial communities to ensure their survival (Samuels et al. 2013; Cawoy et al.
2014; Téllez et al. 2015). During natural selection events, the microbes which are
able to accommodate and withstand antimicrobial stress can produce resistant
microbial populations; therefore, antibiotic resistance is recognized as an innate
aspect (Sherpa et al. 2015; Imperial and Ibana 2016; Rasool et al. 2019b). After
knowing the antibiosis phenomena, antimicrobials were welcomed in chemotherapy
of infectious diseases (Scanlon et al. 2014; Sherpa et al. 2015). Moreover, antibiotics
are employed in agriculture and livestock (animals) for the enhancement of their
yield and growth ratio, and treatment of animals’ infections (Allen and Stanton 2014;
Xiao et al. 2015). Nevertheless, unchecked and unrestrained antimicrobial practices
accelerate the evolution of resistant and super-resistant bugs and lead to varied and
heightened antibiotic resistance resulted in response to discriminative antibiotic
stress on microbes (Rosander et al. 2008; Verraes et al. 2013; Hu et al. 2014; Card
et al. 2015). The ratio of emerging resistant bugs is more rapid than the revelation of
novel antibiotics (Sherpa et al. 2015). There are about 23,317 genes responsible for
targeting 249 antibiotics (Hu et al. 2013). The microbial ecology considerably
influences the existence of antibiotic resistance genes (Gibson et al. 2015). Further,
vertical transmission of resistance genes through mobile genetic elements (MGEs)
supports the prosperity of resistant microorganisms in the presence of antibiotics
(Penders et al. 2013; Fouhy et al. 2014). Antibiotic resistance genes (with the help of
plasmids) can travel between virulent and normal bacterial flora of humans
(Broaders et al. 2013; Imperial and Ibana 2016).

The major issue of antibiotic therapy is the development and acquisition of
antibiotic resistance in bacteria through various systems; drug inactivation, antibiotic
target alteration, advancement of outer membrane permeability and efflux pumps,
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circumvention of biochemical pathways, mutagenesis and horizontal gene transmis-
sion (Walsh 2000; Wright 2005; Naderi et al. 2014). Since, it is almost impossible to
revert the resistance phenomena, the prevention of pathogenic microbial propaga-
tion, microbial killing, and subverting their virulence factors may be targeted by
non-antibiotic agents; probiotics, phytochemicals and bacteriophages (Fig. 12.1).
Due to growing antibiotic resistance dilemma, there is an urgent demand to recog-
nize the performance of probiotics and normal microbiota or commensal
microorganisms in subverting antimicrobial resistance and virulence (Liévin-Le
Moal and Servin 2014).

12.2 The Probiotics: Significance in Agriculture and Human
Health

Apart from antibiotic resistance issue, symbiotic tie up of microorganisms with
gastrointestinal tract (GIT) of livestock animals facilitates fermentation. Fermenta-
tion of complicated polysaccharides by GIT normal microbial flora provides 70%
energy required by farm animals and about 30% energy for monogastric herbivores
(Téllez et al. 2015). Several researches have indicated that probiotics can be the
alternatives of antibiotics in growth enhancement and restricting diseases in farm
animals (Muñoz-Atienza et al. 2013; Téllez et al. 2015). The probiotics prevent
turkeys and chickens from infections of Salmonella spp. by colonizing GIT as
normal microflora. Moreover, probiotics can lower the severity of diarrhoea of
unknown cause in turkeys. Extensive trials of suitable probiotics use in turkeys
and chickens witnessed the decrease in complete production cost and boosted the
performance. Livestock animals excrete Escherichia coli O157:H7 in their faeces
which can be transmitted to humans (and produce bloody diarrhoea). The use of
various bacterial probiotic blends can diminish the faecal discharge of Escherichia
coli O157:H7 by sheep and cattle, and hence can reduce the chances of human
infection (Téllez et al. 2015). Antimicrobial action of probiotics has also been
determined against fish pathogenic Gram positive and Gram negative bacteria
(Muñoz-Atienza et al. 2013).

Fig. 12.1 Possible solutions
for antibiotic resistance
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Probiotics are prominent for the improvement of human health in general.
Probiotic bacteria are being incorporated in several commercial foods to maintain
GIT microbial flora (Songisepp et al. 2012). They are involved in various important
functions like controlling lipid storage, inflammatory bowel disease (IBD), GIT
epithelial growth, and inflammatory reactions (Collins and Gibson 1999; Ventura
et al. 2009). Probiotics are medically verified to adjust baby’s GIT normal flora upset
after antibiotic therapy (Collado et al. 2012). Antibiotic treatment is harmful for gut
normal flora of neonates resulting in killing the gut flora leading to diarrhoea
(Varankovich et al. 2015). The application of probiotics before and after birth of
baby has been found to avoid the onset of hypersensitivities (e.g. asthma) and GIT
infections (Luoto et al. 2010). In adults, regular oral probiotics consumption has
shown to cure intermittent diarrhoea inflicted by Clostridium difficile which is
offered by post extended antibiotic therapy. Such antibiotic treatment approach
kills GIT normal flora, which can enhance the Clostridium difficile growth (Ursell
et al. 2013; Varankovich et al. 2015).

The application of probiotics in medicines and agriculture is becoming common
since the evolution of drug-resistant microbial strains (Muñoz-Atienza et al. 2013;
D’Orazio et al. 2015; Téllez et al. 2015; Varankovich et al. 2015). Reducing the
antibiotics usage and employment of probiotics instead of antibiotics may assist in
lowering the proportion of flourishing resistant microbial strains (Muñoz-Atienza
et al. 2013; Varankovich et al. 2015). Probiotics application is the adoption of active
advantageous microorganisms to get required consequences, for example, inhibiting
ailments and promoting health in living beings (Collins and Gibson 1999). Prior to
employment of probiotics, it is necessary to check probiotics for the presence of
antibiotic resistance genes (Sanders et al. 2010). An important step in screening of
antibiotic resistance is to differentiate between acquired or transmissible resistance
and inherent resistance of probiotic bacteria (Chang et al. 2009; Hammad and
Shimamoto 2010).

12.3 Probiotic Bacteria, Their Anti-Pathogen Products
and Potentials

Probiotic bacteria are well established because they can control pathogens by
producing organic acids and lowering the clustering and production of adhesins.
Further, they are normal microbial flora of humans and animals and produce
bacteriocins (Reid 1999; Ennahar et al. 2000; McAuliffe et al. 2001; Anas et al.
2008). They promote gut microbial habitat by attachment with mucous of intestine,
and therefore prohibit the adherence of pathogenic microorganisms and also chal-
lenge pathogens for nutrient acquisition and provoke immunity in intestine. They are
hostile to a wide variety of urinary and GI tract associated pathogenic bacteria
(Gilliland and Walker 1990; Hutt et al. 2006). Interestingly, repression of virulence
factor genes in E. coli O157:H7 is carried out by biologically active compounds
released by probiotic bacteria. Probiotics may also reduce the attachment of E. coli
O127:H6 and E. coli O157:H7 to the epithelial cells. Cell-free supernatants of
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B. longum, L. plantarum, L. rhamnosus and L. helveticus were observed to possess
anti-biofilm effect against MDR-E. coli (Abdelhamid et al. 2018).

The most familiar probiotics reside in the lactic acid bacteria (LAB) group, which
involves various species of Lactobacilli and Enteroccci (Tompkins et al. 2008;
Chang et al. 2009; Nueno-Palop and Narbad 2011; Songisepp et al. 2012;
Gueimonde et al. 2013; Devi et al. 2015; Senan et al. 2015). In addition to other
health benefits in animals and humans, lactobacilli can destroy Helicobacter pylori
(responsible for peptic ulcer, gastric cancer and gastritis) (Téllez et al. 2015;
Varankovich et al. 2015). Enterococci as probiotic quickly heal diarrhoea
(Vankerckhoven et al. 2008; Varankovich et al. 2015). According to studies, a few
lactic acid bacterial species have inherent resistance to beta-lactams, teicoplanin,
bacitracin, vancomycin and kanamycin. Such resistance is advantageous when
combine therapy (probiotic with antibiotic) is required (Hammad and Shimamoto
2010; Varankovich et al. 2015).

The dominant probiotic, bifidobacteria are crucial component of the human and
animal GIT normal microbial flora. They are capable of preventing the attachment of
C. difficile, enterotoxigenic and enteroptahogenic E. coli with the cells of gut
epithelia. A combo of bifidobacteria and lactobacilli is responsible to reduce the
adverse effects of anti-H. pylori therapy. Furthermore, some strains of bifidobacteria
down-regulate the genes in human epithelia, inflicted by H. pylori, and mitigate
inflammatory bowel disease (IBD) and diarrhoea (Varankovich et al. 2015). The
other frequently employed probiotics in medicines, agriculture and food involve
Streptococcus, Lactobacillus, Bacillus, Lactococcus, Enterococcus,
Bifidobacterium, Pseudomonas, Pediococcus, Bacteroides, Trichoderma, yeast and
Aspergillus, etc. Many food supplements have Lactobacillus (L. rhamnosus,
L. acidophilus, L. plantarum, L. farciminis, L. casei), Bacillus (B. subtilis,
B. licheniformis, B. cereus var. toyoi), Escherichia coli Nissle 1917, Enterococcus
(E. faecium), Streptococcus (S. infantarius), Pedicoccus (P. acidilactici) and a few
fungi like Kluyveromyces, Saccharomyces cerevisiae and Saccharomyces boulardii
(Anadon et al. 2005; Cheng et al. 2014).

Important characteristics: avirulent, acid and bile stable, adherence and propaga-
tion in GIT, antimicrobial activity and production of valuable metabolites are needed
to be a good probiotic (Fijan 2016). Many research trials have shown antibacterial
potential of various probiotic strains against virulent and drug-resistant strains of
P. aeruginosa, K. pneumoniae, E. coli, Salmonella spp., E. fecalis and S. aureus and
also have antifungal action on C. albicans (Manzoor et al. 2016; Prabhurajeshwar
and Chandrakanth 2017). Both in vivo and in vitro L. acidophilus (isolate of human
stool) was found antagonistic against H. pylori (Coconnier et al. 1998). While
human milk-isolated lactobacilli displayed antibacterial action over S. typhi,
S. flexneri, B. cereus and P. aeruginosa, the lactobacilli of neonatal stool origin
are antagonistic for enterotoxigenic E. coli (ETEC) (Tsai et al. 2008; Sharma et al.
2017). Moreover, antiparasitic action of L. acidophilus was also witnessed against
Trichomonas vaginalis (Valadkhani et al. 2016). The vaginal lactobacilli are effec-
tive against anaerobic Gram negatives (Mobiluncus spp., Prevotella bivia and
Gardnerella vaginalis), and Herpes Simplex Virus (HSV-2). Antimicrobial effect
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of probiotics is peculiar to the pathogenic strains (Matu et al. 2010; Ranjbar et al.
2015; Saud et al. 2020).

12.4 Bacteriocins

The production of bacteriocins by Gram positive probiotic bacteria (normal intesti-
nal inhabitants) has killing and suppression effect on very similar relevant bacteria
(Dobson et al. 2012; O’Shea et al. 2012; Cotter et al. 2013). Many bacteriocins target
cell wall of the bacteria and some can alter gene expression (McAuliffe et al. 2001).
Another conventional mode of action of bacteriocin is the formation of pores and
channels in bacterial cell membrane which results in outflow of cellular contents.
Additionally, normal E. coli (normal inhabitant of intestine) also yield plasmid-
borne bacteriocins, specifically of low molecular mass (microcins) (Gordon and
O’Brien 2006; Duquesne et al. 2007; O’Shea et al. 2012) and of greater size
(colicins) (Cascales et al. 2007). Microcins upset various essential mechanisms in
the focused bacterial cell like activity of DNA gyrase and ATP synthase. Colicins
kill bacteria by forming pore, prohibiting the activity of nucleases and murein
biosynthesis. In LAB, formation of bacteriocins is regulated by quorum sensing
(QS) mechanism which is controlled by quorum sensing molecules or pheromones
(bacteriocin like peptide) (Eijsink et al. 2002; Risoen et al. 2000; Sturme et al. 2007).
These quorum sensing molecules get stimulated during infection (Moslehi-Jenabian
et al. 2011). Numerous clinical studies express metabolites based antimicrobial
activities of Lactobacillus that could serve as a substitute to antibiotics (Liévin-Le
Moal and Servin 2014). Assorted bacteriocins are being applied as preservatives in
foodstuff to prevent the growth of food-related pathogenic bacteria (Dobson et al.
2012; Cotter et al. 2013). Usually, it is considered that bacteriocins of lactobacilli
origin are less effective against Gram negative bacteria, but it has been noticed that
various bacteriocin-mimicking molecules and bacteriocins have hostile effect on
entero-virulent Gram negatives (Campylobacter, EHEC, Salmonella, H. pylori and
Shigella) (Zamfir et al. 1999; Kim et al. 2003; Han et al. 2007; Pascual et al. 2008;
Messaoudi et al. 2012). Anti-H. pylori bacteriocins have been recognized in L. casei
Shirota and L. johnsonii NCC 533 (Morency et al. 2001; Kim et al. 2003; Ryan et al.
2009; Simova et al. 2009).

12.5 Probiotics Potential Against Drug Resistance

Multidrug-resistant (MDR) bacteria are responsible for diverse global health
dilemma. Oral introduction of lactobacilli can prevent many MDR-bacterial
infections by producing hydrogen peroxide, lactic acid and other metabolites
which discourage growth of pathogens (Jamalifar et al. 2011). Several prebiotics
(products of probiotics) consist of polysols, polysaccharides, oligosaccharides
[(mannanoligosaccharide (MOS), fructooligosaccharide (FOS)], hydrolysates of
proteins, etc. Prebiotics can discriminatively propagate gut bacterial flora, improve
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immunity and offer antiviral activity. On the other hand, synbiotics, combination of
pre- and probiotics, can improve immunity and decrease diarrhoea-related illness
and fatality in piglets (Andersson et al. 2001; Gaggia et al. 2010).

Currently, carbapenem-resistant Enterobacteriaceae (CRE) is an important threat
associated with illness and deaths because of the availability of narrow treatment
options (Rodriguez-Bano et al. 2018; Chi-Chung Chen et al. 2019). Lactobacilli
synthesize lactic acid, formic acid, acetic acid, etc. to lower the pH of intestine which
results in antimicrobial effect. Various antimicrobials of lactobacilli like
bacteriocins, fatty acids, ethanol and hydrogen peroxide employ antimicrobial action
(Inglin et al. 2015). Such antimicrobials are accountable for the inhibition of
pathogens, P. aeruginosa, S. aureus, Streptococcus mutans, E. coli, Shigella spp.,
and C. difficile (Jamalifar et al. 2011; McFarland 2015; Kumar et al. 2016; Kang
et al. 2017; Ahn et al. 2018). Another notorious pathogen methicillin-resistant
Staphylococcus aureus (MRSA) causes high mortality and morbidity and has few
therapeutic options (Drew 2007; Raygada and Levine 2009). Specific probiotic
therapy can solve this multidrug resistance problem (Tagg and Dierksen 2003;
Roghmann and McGrail 2006). Many LAB on the basis of their antimicrobial
metabolites can stop the growth of antibiotic-resistant bacteria (Petrova et al.
2009). Much pronounced antimicrobial activity was observed when cell lysate and
entire broth of 3 LAB mix (1:1:1 ratio) was employed. This assay displayed 85%
suppression of MDR-S. aureus (Bhola and Bhadekar 2019).

Propionibacterium is mostly recruited from farm cattle milk and the products
obtained from milk (Rossi and Dellaglio 2007; Quigley et al. 2013). They are
immobile, Gram positive probiotic bacteria which yield short-chain fatty acids and
more metabolic products in gut (Huang and Adams 2004). Propionibacterium
freudenreichii is popular as probiotic, in food and dairy industry and for the
production of cheese and vitamins (Falentin et al. 2010; Thierry et al. 2011; Cousin
et al. 2012; Ganan et al. 2013; Yuksekdag et al. 2014; Rabah et al. 2017). They are
categorized in Qualified Presumption of Safety (QPS) and Generally Recognized as
Safe (GRAS) for the application in food products (EFSA 2013; FDA 2014). Anti-
virulence activity of P. freudenreichii subsp. shermanii (PS) and P. freudenreichii
subsp. freudenreichii (PF) has been noted against multi-drug-resistant (MDR) Sal-
monella (Nair and Kollanoor-Johny 2017). Dairy recruited L. helveticus R0052 and
L. rhamnosus R0011 have been proved to harbour activities against MDR bacterial
infections clinically (Hagen et al. 2010; Foster et al. 2011; Tompkins et al. 2012;
Nair and Kollanoor-Johny 2018).

12.6 The Antimicrobial Role of Gut-Related Microbiota or
Probiotics

The probiotic bacteria in gut produce metabolites of low molecular mass which
move towards systemic circulation and heal diseases. These metabolites establish
metabolome which include polyamines and short-chain fatty acids (Matsumoto et al.
2012). It is important to note that antibiotic therapy leads to changes in the content of
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intestinal microbiota or probiotics which influence the intestinal metabolome and
homeostasis (Antunes et al. 2011). The probiotics also cooperate in the anatomical
and functional development of epithelial cell linings, hence improving immunity of
the intestine (Kamada and Nunez 2013). Several gut probiotics or microflora pro-
hibit the encroachment and virulence factors mediated damaging responses of
pathogens by offering challenge for nutrient acquisition, enhancing gut immunity,
release of organic acids and antimicrobial chemicals (Brown et al. 2013; Buffie and
Pamer 2013). Moreover, they regulate and activate receptors on innate immune cells
(Kinnebrew and Pamer 2012).

12.7 Human Intestinal Lactobacillus Strains

In many clinical analyses, lactobacilli as probiotics have been found effective against
rotaviruses and gastroentero-virulent pathogens. The antibacterial action is based on
metabolites: non-bacteriocin components (proteolytic enzymes), lactic acid and
non-protein molecules. These antibacterial components directly kill bacteria, repress
virulence genes and minimize detrimental response of virulence factors on intestinal
cells (Kleerebezem et al. 2010; Lebeer et al. 2010; Bron et al. 2012; Dobson et al.
2012; Cotter et al. 2013; van Baarlen et al. 2013). Probiotic-stimulated immuno-
modulatory activities have been noticed in in vitro studies (Sanchez et al. 2008;
Sanchez et al. 2010). Six strains of lactobacilli in randomized controlled trials
(RCTs) proved to have antirotaviral and antimicrobial activities. These include
L. casei strain Shirota YIT9029, L. casei DN-114 001, L. acidophilus strain LB
(rearranged as L. fermentum LB-f), L. jhonsoniiNCC 533, L. rhamnosusGG (ATCC
53103) and L. reuteri DSM17938 (Rosander et al. 2008; Liévin-Le Moal and Servin
2014).

Killing effect on entero-virulent bacteria (Gram negative and Gram positive) of
lactobacilli cultures directly has been investigated. But in a few studies cell free
spent culture supernatants (CFCSs) explored for bactericidal response. It is notewor-
thy that bactericidal response causes >3-log decline of living bacterial cell number
after incubating the target bacterial culture for specified time and under controlled
conditions. A fall in Shigella growth till 4-log CFU/mL was noticed that was caused
by 4 h exposure of L. reuteri ATCC 55730, L. jhonsonii NCC 533, L. acidophilus
LB and L. rhamnosus GG (Bernet-Camard et al. 1997; Hutt et al. 2006; Spinler et al.
2008; Zhang et al. 2011). Similar findings can be seen for other entero-virulent
bacteria (Table 12.1).

L. reuteri ATCC 55730 behaves unfriendly with Vibrio cholerae. It is necessary
to treat entero-virulent bacteria before their entrance in gut cells. Gut concerned
antibiotic treatment often failed by entero-invasive bacteria because of their inter-
nalization by host gut cells in a vacuole. Interestingly, metabolites of L. acidophilus
LB can efficiently kill S. Typhimurium nested in intracellular vesicle of enterocyte
Caco-2/TC7 (Coconnier et al. 2000). Destructive effect of L. acidophilus LB,
L. johnsonii NCC 533, L. casei DN-114 001, L. casei Shirota, and L. rhamnosus
GG on entero-virulent bacteria is due to the presence of their metabolites or
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compounds in CFCSs. These metabolites act either cooperatively or in solo (Fayol-
Messaoudi et al. 2005; Makras et al. 2006). Bactericidal activity is also offered by
low pH. Lactobacilli produce lactic acid through fermentation which lowers the
intracellular pH of pathogens and makes cell membrane more pervious resulting in
death. The killing effect of lactic acid over S. Typhimurium rises linearly as its
concentration increases (Makras et al. 2006; Zhang et al. 2011). This effect is further
supported by production of H2O2 (Pridmore et al. 2008; Atassi and Servin 2010).
Several emitted compounds (non-proteinaceous) in CFCSs of L. acidophilus LB,
L. rhamnosus GG and L. johnsonii NCC 533 screened for susceptibility of
S. Typhimurium and found bactericidal. Few of these antibacterial compounds are
thermo-stable and are effective at low pH (De Keersmaecker et al. 2006). Further-
more, some heat stable small peptides are active against Salmonella typhi and entero-
aggregative E. coli (EAEC) (Lu et al. 2009). Lactobacilli have bactericidal potential
over H. pylori straight forwardly and indirectly. CFCSs of L. casei Shirota have low
pH-based killing effect on H. pylori (Sgouras et al. 2005). In the same manner,
exposure of CFCSs of L. acidophilus LB and L. johnsonii NCC 533 leads to quick
decline of H. pylori growth (6 log CFU/mL) (Michetti et al. 1999).

Table 12.1 Decline in growth (log CFU/mL) of entero-virulent bacteria in 4 h after direct
exposure to various lactobacilli strains

Targeted
entero-
pathogens

Direct exposure of
lactobacilli strains

Decline
in log
CFU/mL References

Entero-virulent
E. coli

L. acidophilus LB
L. casei Shirota
L. rhamnosus GG
L. reuteri
ATCC 55730

3–4 Ogawa et al. (2001), Spinler et al.
(2008), Zhang et al. (2011), Liévin-
Le Moal and Servin (2014)

Listeria L. johnsonii NCC
533, L. acidophilus LB

3–4 Bernet-Camard et al. (1997), Liévin-
Le Moal and Servin (2014)

Shigella L. reuteri ATCC
55730, L. johnsonii
NCC 533
L. acidophilus LB
L. rhamnosus GG

4 Bernet-Camard et al. (1997), Spinler
et al. (2008), Liévin-Le Moal and
Servin (2014)

S. Typhimurium L. rhamnosus GG,
L. johnsonii NCC
533, L. casei Shirota,
L. casei DN-114 001
L. reuteri ATCC
55730, L. acidophilus
LB

5 Bernet-Camard et al. 1997,
Coconnier et al. (2000), Coconnier-
Polter et al. (2005), Fayol-Messaoudi
et al. (2005), Hutt et al. (2006),
Makras et al. (2006), Vizoso Pinto
et al. (2006), Fayol-Messaoudi et al.
(2007), Pridmore et al. (2008),
Spinler et al. (2008), Burkholder and
Bhunia 2009, Atassi and Servin
(2010), Marianelli et al. (2010),
Asahara et al. 2011, Zhang et al.
(2011), Liévin-Le Moal and Servin
(2014)
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12.8 Effects of Probiotics on the Expression and Functionality
of Virulence Factors

L. rhamnosus GG is capable of lowering the stx2A mRNA (shiga toxin mRNA)
content in E. coli O157:H7 (Carey et al. 2008). Mobility of S. Typhimurium is
adversely affected when it is treated with CFCSs of L. casei Shirota and
L. acidophilus LB. This destruction of motility is due to the depolarization of cell
membrane that disturbs the performance of flagella (Lievin-Le Moal et al. 2011;
Lievin-Le Moal et al. 2013). Lactobacilli treatment can also adversely affect the
morphology of H. pylori. Accordingly, a switch from spiral form to coccoid was
observed (Sgouras et al. 2005).These forms are less virulent than the spiral form
(Sisto et al. 2000).

Urease activity is crucial for the survival of H. pylori under acidic environment of
stomach. Functionality of urease is diminished by L. casei Shirota and L. acidophilus
LB (Coconnier et al. 1998; Sgouras et al. 2005). In addition to spiral form, motility
of H. pylori is important for colonization. Non-proteinaceous substances (1000 Da)
released by L. johnsonii NCC 533 are capable to hinder the H. pylori motility
(Lertsethtakarn et al. 2011; Isobe et al. 2012). Similarly, motility and spiral form
are irreversibly affected by CFCS of L. casei Shirota (Lievin-Le Moal et al. 2013).

12.9 Findings of Probiotics Antimicrobial Potential by Various
Methods

Various researchers proved the antimicrobial potential of numerous probiotic strains.
Choi and Chang planned the strategy to check the antimicrobial effect of Lactoba-
cillus plantarum EM by applying spot-on-lawn procedure against serious pathogens
including S. aureus ATCC 29123, E. coli O157:H7 ATCC 43895, M. luteus ATCC
1530, P. aeruginosaATCC 27853, B. cereus KCTC 3624, S. enterica serovar Typhi
ATCC 19430 and V. parahaemolyticus ATCC 17802. Most powerful bacterial-foe
effect was noted against V. parahaemolyticus ATCC 17802 and the very low effect
was found against S. aureus ATCC 29123. The researcher concluded that Lactoba-
cillus plantarum EM bears vast antibacterial spectrum, and hence executed the
advantageous need of probiotics (Choi and Chang 2015; Chan et al. 2018). In
another study, Lactobacillus plantarum KL-1 was observed to generate bacteriocins
of broad antibacterial potential. The examination of bacteriocins activity was carried
out by spot-on lawn procedure. These bacteriocins were able to produce zones of
inhibition against various Gram positives but, highest activity was noted against
closely relevant L. sakei (Pilasombut et al. 2015).Various strains of lactobacilli were
recorded antibacterial against Pseudomonas aeruginosa, Shigella spp., S. aureus, S.
typhi, E. faecalis, E. coli, and K. pneumonia by altered agar well method. The most
efficient probiotic strains displayed the area of inhibition against aforementioned
pathogens varies from 19 to 33 mm (Prabhurajeshwar and Chandrakanth 2019).

Cell-less supernatants of lactobacilli and bifidobacteria species were investigated
for probiotic potential against E. coli and S. aureus by applying agar well diffusion
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protocol. Effectiveness of supernatants was measured by the expansion of one of
inhibition. Interestingly, supernatants were less active against E. coli comparatively
(Ali et al. 2013). By the same technique, Naderi and colleagues evaluated the
antibacterial activity of L. rhamnosus, L. casei and L. acidophilus against
uropathogens (Enterobacter spp., Enterococcus spp., Klebsiella pneumoniae and
E. coli). Accordingly, L. casei was the most competent probiotic against
MDR-E. coli (Naderi et al. 2014). A spot-on-lawn and agar diffusion-based study
was conducted in Iran in which child faecal isolate Lactobacillus acidophilus
presented powerful effect against MDR-P. aeruginosa. But the commercial Lacto-
bacillus acidophilus and Lactobacillus reuteri indicated comparatively weak activity
(Jamalifar et al. 2011). Co-culturing of multi-species probiotics (species of
Lactobacilli, Bifidobacterium and Enterococcus) with pathogenic P. aeruginosa
has resulted in decline in P. aeruginosa growth from 9.2 log/mL (without probiotics)
to 5.2 log/mL (with probiotics) (Koning et al. 2010; Fijan 2016). PCR and gene
sequencing-based detection of bacteriocins genes (plnA to G, plnI to K, and plnN)
was reported in yogurt-isolated Lactobacilli strains by Qian et al. (2020).

12.10 Plant Procured Chemicals (Phytochemicals)

Due to the incidences of drug resistance evolution the currently used antibacterial
drugs have been unsuccessful (WHO 2014; Baym et al. 2016). One of the approved
approaches is to include the combo of additional molecules (non-antibiotic or
phytochemicals) with unsuccessful antibiotic in order to bring back its antibacterial
potential and generate the chances for advanced treatment options (Brown 2015;
Vandevelde et al. 2016; Rana et al. 2018). Hereof, phytochemicals present strong
antimicrobial action while numerous scientists have employed plant-oriented natural
substances against bacterial drug resistance (Cowan 1999; Khameneh et al. 2016;
Fazly Bazzaz et al. 2018; Shakeri et al. 2018). These substances or compounds,
unaccompanied or accompanied with antibiotics, can boost antibacterial effect up to
extended spectrum (Fazly Bazzaz et al. 2010; Betts and Wareham 2014; Fazly
Bazzaz et al. 2016; Fazly Bazzaz et al. 2018). The bacterial-foe effect of
phytochemicals and other antibacterial compounds is chiefly connected with two
processes: chemically obstruction of production and activity of integral constituents
of bacteria and/or bypassing the typical antibacterial resistance systems. Many
targets have been observed to be encountered by antibacterial compounds; (1) demo-
lition of plasma membrane (2) bio-formation of cell wall (3) polypeptide synthesis
(4) DNA restoration and bio-formation and (5) metabolism pathway hindrance. In
response bacteria may offer resistance to antibacterial compounds by an array of
processes (Khameneh et al. 2019).

Despite that microbes-foe artificial compounds have been authorized in various
countries, the application of natural agents obtained from animals or plants and
microbes captivates the concentration of numerous scientists (Gyawali and Ibrahim
2014; Moloney 2016). These agents displayed encouraging results in defeating
bacterial antibiotic resistance (Rossiter et al. 2017). A wide variety of antibacterial,
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antioxidant, anti-protozoan, antiviral and antifungal chemical compounds are
derived from plants (Fig. 12.2). They can improve clinical utilization of earlier
antibiotics by enhancing their potential of evading the resistance emergence
(Barbieri et al. 2017).

The antimicrobially active plant chemicals can be categorized into various large
groups depending upon their chemical configuration consisting of terpenoids,
alkaloids, polyphenols and sulphur-bearing chemicals. These substances bear vari-
ous potent strategies to encounter pathogenic microbes (Fig. 12.3) (Khameneh et al.
2019).

12.11 Terpenes or Terpenoids

Terpenes (isoprenoids) are acknowledged as divergent group of natural products and
found in plants and in cell structures (Paduch et al. 2007; Oldfield and Lin 2012).
Comparatively, Gram positives are more vulnerable to terpenes than Gram positives.
Monoterpenes are inclined to decrease the density and raise the permeability of
plasma membrane by changing the shape of its proteins and disrupt the respiratory
pathway (Paduch et al. 2007). Alcoholic compounds of terpene (phytol, linalool,
geranylgeraniol, geraniol, farnesol, plaunotol and nerolidol) suppress the propaga-
tion of S. aureus. Only nerolidol and farnesol could exhibit the bactericidal action
relied on the damage to cell membrane (Togashi et al. 2010). Dehydroabietic
acid (resin acid) and its derivatives (especially Carvone) were recorded efficient

Fig. 12.2 Plant procured potentially antimicrobial compounds
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antibacterial to Campylobacter jejuni, S. aureus, E. coli, L. monocytogenes,
E. faecium and C. albicans (De Carvalho and Da Fonseca 2006; Savluchinske-
Feio et al. 2006; Paduch et al. 2007). Furthermore, an antifungal, antibacterial and
antiviral agent, Thymol has expressed dynamic effect over Candida krusei, Candida
glabrata and C. albicans in solo and together with fluconazole (Sharifzadeh et al.
2018). Because of their extensive antifungal effect, thymol, menthol, eugenol and
carvacrol are applied in food industries against food decomposing fungi (Aspergillus
spp., Penicillium spp., Rhizopus oryzae, Botrytis cinerea, Fusarium oxysporum and
Alternaria alternata) (Abbaszadeh et al. 2014). In addition to antifungal potential,
thymol and carvacrol have efflux pump (EP) inactivation ability, anti-biofilm effect,
and disintegration of plasma membrane and are bactericidal to P. aeruginosa,
E. coli, S. aureus and Enterobacter aerogenes (Chauhan and Kang 2014; Amaral
et al. 2015; Miladi et al. 2016). Eugenol presents anti-biofilm action against
S. aureus, disruption of plasma membrane, and down-regulation of enterotoxin
and biofilm genes. Finally, several terpenes have anti-mycobacterial effect (Yadav
et al. 2015).

Fig. 12.3 Groups of plant-oriented compounds and their modes of antimicrobial action
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12.12 Alkaloids

They belong to heterocyclic compounds of nitrogen and have been verified for
antibacterial effectiveness and infectious disease therapy (Cushnie et al. 2014).
Many alkaloids work as efflux pumps inhibitor (EPI) that is an important process
of most antibacterials. The extracts of Piper longum and Piper nigrum (Piperine),
i.e. piperidine-like alkaloid, when used with Ciprofloxacin prevents the propagation
of resistant S. aureus and lowers MICs for S. aureus (Khan et al. 2006). Similarly,
co-application of gentamicin and Piperine was potent against methicillin-resistant
S. aureus (MRSA) ailments (Khameneh et al. 2015). Additionally, its anti-NorA
efflux pump activity has been noted in MRSA and non-MRSA (Kumar et al. 2008;
Khameneh et al. 2015). Berberine (applied as traditional medicine) is recognized as
alkaloid of isoquinoline and is present in bark and roots of Berberis species and other
plants. This agent is anti-protozoan and antibacterial by intercalating within DNA,
inhibiting topoisomerase IV, RNA polymerase and gyrase, and restriction of cell
division (Iwasa et al. 2001; Yi et al. 2007; Domadia et al. 2008). Cell division
restriction is linked with the inactivation of protein FtsZ needed for cell division
(Boberek et al. 2010). Berberine has emerged as a vigorous bacteria-foe compound
aimed to replace antibiotics and to defeat resistance.

Ungeremine is the alkaloid of iso-quinoline acquired from Pancratium illyricum
which also has bacterial-foe activity. It is responsible for the DNA breaking as it
inactivates topoisomerase IA (Casu et al. 2011; Schrader et al. 2013). Alkaloids of
quinolone (maculine, dictamine, and kokusagine) have shown antibacterial activity
and are separated from Teclea afzelii. They hinder the DNA biosynthesis by
targeting topoisomerase II (Heeb et al. 2011). Reduction in oxygen utilization in
bacteria has been observed when they are treated with Alkyl methyl quinolones
(respiratory inhibitors) (Tominaga et al. 2002). Alkaloid of indole (Reserpine)
acquired from Rauwolfia serpentina and has an excellent EPI effect (Abdelfatah
and Efferth 2015). It improves the antibiotic effect against Micrococcus spp.,
Staphylococcus spp. and Streptococcus spp. when co-employed with antibiotics
(Sridevi et al. 2017). Furthermore, it boosts the sensitivity of MDR-A. baumannii
to antibiotics. Reduction in EP-based resistance to flouroquinolones in
Stenotrophomonas maltophilia is noticed with the use of reserpine (Jia et al.
2015). It acts as EPI against Gram negative and positive bacteria (Sun et al. 2017).
Extracts of Macleaya cordata, Chelidonium majus and Sanguinaria canadensis
consist of Sanguinarine which is found as anti-MRSA. It is responsible for the
discharge of autolytic enzyme and causes the disruption of MRSA. It also modifies
altogether the process of septa development during cell division of MRSA (Obiang-
Obounou et al. 2011). In addition to anti-MRSA effect, it has been reported as anti-
mycobacterial against few species of Mycobacteria (Newton et al. 2002). Berberine
and Sanguinarine both are vigorous transcriptional and DNA biosynthesis inhibitors
(Al-Ani et al. 2015). Steroidal alkaloid (Tomatidine) are produced in eggplant,
tomato and potato plant. In combo with aminoglycoside or in solo, it has
demonstrated the killing activity against S. aureus (Mitchell et al. 2012; Jiang
et al. 2016). It is an antibiotic enhancer which can synergistically improve the effects
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of Cefepime, Ampicillin, Gentamicin and Ciprofloxacin against P. aeruginosa,
S. aureus and E. fecalis (Soltani et al. 2017). Another steroidal alkaloid (conessine)
is obtained from Holarrhena antidysenterica and has broad spectrum bacterial-foe
potential, EPI against AdeIJK efflux pump of A. baumannii and synergistic effect
with antibiotics (Kumar et al. 2007; Damier-Piolle et al. 2008; Siddiqui et al. 2012;
Siriyong et al. 2016; Zhou et al. 2017). Tricyclic ergot alkaloid (Chanoclavine)
procured from Ipomoea muricata was noted effective against MDR-E. coli when
delivered together with Tetracycline. Its antibacterial act is EPI (Dwivedi et al.
2019).

12.13 Sulphur-Containing Compounds or Organosulphur
Compounds

The vast spectrum bacterial-foe effects of plant procured sulphur-containing
compounds (isothiocyanates, allicin, S-allay-mercaptocystein, ajoene, dialkyl
sulphides, S-allay cysteine and diakyl) have been observed (Sobolewska et al.
2015; Barbieri et al. 2017). Allicin (diallylthiosulphinate) is derived from garlic
and is potentially effective against P. aeruginosa, S. epidermidis, MRSA and
Streptococcus aglactiae (Reiter et al. 2017). Its co-acting anti-P. aeruginosa effect
has been realized concomitantly with Ciprofloxacin, Cefoperazone and Tobramycin
(Cai et al. 2008). The antimicrobial mode of action of allicin is because of blocking
sulfhydryl-reliant enzymes (RNA polymerase, alcohol dehydrogenase and
thioredoxinreductase), protein and DNA biosynthesis (Lanzotti et al. 2014). Ajoene
is also present in garlic mainly as E- and Z-stereoisomers which strive extended
spectrum antimicrobial effect (Gram negative and Gram positive bacteria, protozoa,
fungi and viruses). It has similar bacterial-foe mode of action as that of allicin
(Rehman and Mairaj 2013).

The volatile sulphur-containing compounds like isothiocyanates (ITCs) are
derived through plant glucosinolates after interaction with myrosinase. These are
considerable antibacterial contenders against H. pylori by lowering the urease
activity (Fahey et al. 2013; Park et al. 2013). These agents probably bind with
proteins or enzymes, bearing sulfhydryl groups and block various biochemical
systems (Dufour et al. 2015). They intrude in ATP linking sites of E. coli ATPase
by targeting cysteine. A novel Sulforaphane belongs to ITCs and has bacterial-foe
behaviour for H. pylori, Listeria monocytogenes and S. aureus (Benzekri et al.
2016). Allyl ITCs (AITCs) are present in the Eutrema japonicum and Armoracia
rusticana and are effective against S. aureus and E. coli. They also lower synergisti-
cally Erythromycin MICs against Streptococcus pyogenes and Streptomycin MICs
against P. aeruginosa and E. coli (Palaniappan and Holley 2010; Saavedra et al.
2010; Lu et al. 2016). Their antibacterial effect is mediated by cell wall disruption,
pore formation in cell membrane and oxidative breakage of disulphide linkage
(Luciano and Holley 2009; Nedorostova et al. 2009). Phenethyl isothiocyanate
(PEITC) is an efficient antimicrobial (anti-Gram positives and antifungal) chemical
(Aires et al. 2009). Its antifungal effect is due to the accretion of reactive oxygen
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species (ROS) resulting in damage to mitochondria (Calmes et al. 2015). Benzyl
ITCs (BITCs) have bactericidal response towards MRSA and act on plasma mem-
brane as cationic protein (Sofrata et al. 2011; Dias et al. 2014).

12.14 Phenol-Containing Plant Compounds

These chemicals involve an extensive spectrum of natural substances which are
broadly employed for medical objectives and intensify the antibiotic effect against
resistant microorganisms by many mechanisms. They have indicated varied modes
of action and synergistic effect through targeting cell membrane, EPs inactivation,
and several vital enzymes like dihydrofolate reductase, urease and sortase A inacti-
vation. The following noticed activities of phenol-containing compounds are
impressive which make them marvellous candidates for clinical application (Farhadi
et al. 2019a, b; Górniak et al. 2019).

They are expert in inhibiting efflux pumps, e.g. CmeABC of C. jejuni (Lechner
et al. 2008; Klancnik et al. 2017). In addition to EPI effect, resveratrol causes the
accretion of Ethidium bromide in Arcobacter cryaerophilus and Arcobacter butzleri
(Ferreira et al. 2014). Baicalein can extraordinarily bring back the performance of
Ciprofloxacin, Tetracycline and Beta-lactams against MRSA through inactivation of
NorA efflux pumps (Chan et al. 2011). It also acts synergistically with Tetracycline
in order to inactivate E. coli efflux pump (Fujita et al. 2005). Similar to Baicalein,
Biochanin A (isoflavon) can also subvert the MRSA efflux pump (NorA) (Zou et al.
2014). It has growth-preventive response towards Chlamydia spp. and is a dominant
EPI of Mycobacterium (Lechner et al. 2008; Cannalire et al. 2017). Isoflavonoid,
flavonolignans (synergistic with Norfloxacin and Berberin) and many
otherflavonoids (flavones) like Chrysoplenetin and Chrysosplenol-D (synergistic
with Berberin) also restrict NorA activity (Stermitz et al. 2001; Morel et al. 2003;
Stermitz et al. 2003). For the decline of EP efficiency, concentration of scientists has
been captivated towards flavonoid-antibiotic hybridization. Studies have proved the
intracellular aggregation of antibiotics and extraordinarily heightened effect of
co-molecule (flavonoid-antibiotic hybrid) that validate required double action
(Xiao et al. 2014). Kaempferol (flavonoid) is an impressive antimicrobial against
C. albicans (Fluconazole resisted) and MRSA (Randhawa et al. 2016; Shao et al.
2016). Its anti-MRSA effect is due to the NorA EPI activity (Holler et al. 2012).
Chalcones can impede NorA EP activity and lower erythromycin MICs (0.4–0.1 μg/
mL) (Belofsky et al. 2004). Phenol-containing Catechin gallates like
Epigallocatechin gallate (EGCG) can efficiently eradicate MRSA. They can attach
themselves at ATP adhesive site on DNA gyrase, leading to the blockage of DNA
gyrase activity (Gibbons et al. 2004).

Antimicrobial potential of plant-oriented phenols is not restricted to EPI effect
however; other mechanisms are also known (Farhadi et al. 2019a, b). Green tea
procured Tannins/polyphenols (anthraquinones and chebulinic acid) have been
found to have anti-DNA gyrase effect (Patel et al. 2015). Semisynthetic
Haloemodins (of natural anthraquinone) are the vital inhibitors of DNA gyrase in
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Enterococcus faecium (vancomycin resistant) and MRSA (Duan et al. 2014). A
novel plasma membrane destructive, 3-p-trans-coumaroyl-2-hydroxyquinic acid
(CHQA) has been found effective against food-related pathogens (Wu et al. 2016).
Compounds of phenol bind with essential enzyme β-Ketoacyl acyl synthase (KAS),
responsible for the linking process of FabZ, FabL and FabG (fatty acid) biosynthesis.
These fatty acids are the precursors of the cell membrane formation in bacteria.
Curcumin (Turmeric derivative) can destroy E. coli and S. aureus by disrupting their
plasma membrane (Tyagi et al. 2015). Cell wall formation can be interrupted by
Apigenin and Quercetin (flavonoids) as they inactivate d-alanine:d-alanine ligase, an
essential enzyme for cell wall formation (Wu et al. 2008). However, there are few
other compounds like Sophoraflavanone B that can also target peptidoglycan elon-
gation in MRSA (Mun et al. 2014). Other mechanisms for microbial enzymes
inhibition by phenolic compounds have been studied such as inactivation of sortase,
dihydrofolate reductase and urease (Navarro-Martínez et al. 2005; Maresso and
Schneewind 2008; Xiao et al. 2013). EGCG have indicated anti-dihydrofolate
reductase activity in Stenotrophomonas maltophilia (Navarro-Martínez et al.
2005). Sortase A enzyme of S. aureus can be targeted by Curcumin and Morin
(Park et al. 2005). The functionality of urease of H. pylori is hindered by
acetohydroxamic acid 40,7,8-trihydroxyl-2-isoflavene (Xiao et al. 2013).

12.15 Coumarins

These compounds are not only obtained from plants but also from microbes (Smyth
et al. 2009). They can inhibit DNA gyrase, inactivate EP and abolish quorum sensing
resulting in reduction of biofilm and virulence components synthesis (Gutiérrez-
Barranquero et al. 2015; D'Almeida et al. 2017; Reen et al. 2018; Zhang et al. 2018).
The various derivatives Pyranocoumarins and Coumarins (Aegelinol benzoate,
Agasyllin and Grandivittin) exert antioxidant and widened spectrum antibacterial
effects. Mainly, agasyllin and aegelinol have more bactericidal effects against
S. aureus, Salmonella typhi and Enterobacter spp., and H. pylori (Melliou et al.
2005; Basile et al. 2009). However, other compounds of Coumarins (osthole and
40-senecioiloxyosthol) have exhibited bactericidal activity against Klebsiella
pneumoniae and S. aureus (Tan et al. 2017). Reduction in norfloxacin MIC against
MRSA has been witnessed when Coumarins are used concomitantly with
Norfloxacin (Roy et al. 2013).

12.16 Bacteriophages

The earliest analysis on the application of phage (phage therapy) was carried out by
Bruynoghe and Maisin in Belgium, 1921. They cutaneously infused phage suspen-
sion peculiar to S. aureus in order to cure carbuncle and fruncle. In 1940s, phages
were first launched commercially by the companies of France and United States
(O’Flaherty et al., 2009). The dilemma of antibiotic resistance and the demand of

12 Encountering the Antibiotic Resistance by Bioactive Components and. . . 299



novel antimicrobials have provoked the attention of the researchers towards
non-clinical and clinical utilization of bacteriophages (phages) and their procured
enzymes having antimicrobial effect (Van Boeckel et al. 2014; Van Boeckel et al.
2015; Webber et al. 2015; Soumet et al. 2016). Phages in comparison with
antibiotics also occupy therapeutic benefits. The undistinguishing antimicrobial
effects of antibiotic treatment lead to the loss of microflora. On the other hand,
therapeutic employment of phages can diminish this loss (Meader et al. 2013; Faber
et al. 2016; Zhao et al. 2017).

Various infections are being dealt in Europe with phage treatment, taking the
benefit of whole phage having lytic style of replication (Abedon et al. 2011; Viertel
et al. 2014).A few food products containing whole phage are employed in Western
countries, while phage procured enzymes are introduced in man and animal
medicines (Sulakvelidze 2013; Cooper 2016; Totté et al. 2017; Cooper et al.
2018). Phage-oriented proteins of therapeutic interest are usually endolysins, needed
for the release of freshly formed phages (Briers and Lavigne 2015; Rodríguez-Rubio
et al. 2016). Nevertheless, some phage-oriented enzymes (e.g. spanins and holins)
bearing antimicrobial response have also been explored (Roach, 2015; Song et al.
2016).Various phage therapeutic strategies have been adopted: (1) whole-phage
occupying treatments consisting of various preferred phages of desired properties
and selective antimicrobial effect in a blend (Gill and Hyman 2010; Weber-
Dabrowska et al. 2016), (2) mix therapy (Phages together with antibiotics) has
been found to kill drug-resistant bacteria, efficiently(Ryan et al. 2012; Daikos
et al. 2014) and (3) synergistic effect has been noted with various blends of
antibiotics and endolysins and endolysins alone against Gram negatives and Gram
positives (Fig. 12.4) (Becker et al. 2008; García et al. 2010; Schuch et al. 2014).

Phages have been found antibacterial to popular entero-virulent bacteria like
Campylobacter, Salmonella and E. coli O157:H7 (Huff et al. 2005; Johnson et al.
2008). US-FDA accepted LMP-102TM phage cocktail having six different types of
phages in 2006, for targeting Listeria in meat. United States Department of Agricul-
ture (USDA) in 2007 endorsed a phage therapeutic product for the eradication of
E. coli from cattle. However, various phage products are under investigation for

Fig. 12.4 Targeting drug-
resistant and virulent bacteria
by the application of phages
and their enzymes
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therapeutic scope. Phages reproduced in targeted bacteria and give rise to numerous
fresh lytic phages, and also produce mutations in pathogens (Cheng et al. 2014).

12.17 Phage-Originated Antibacterial Enzymes

Some phage-oriented enzymes (e.g. endolysins and hydrolases) bearing antimicro-
bial response have also been explored (Roach and Donovan 2015; Song et al. 2016).
Phage-oriented proteins of therapeutic interest are usually endolysins, needed for the
release of freshly build-up phages (Briers and Lavigne 2015; Rodríguez-Rubio et al.
2016). Some of these enzymes are discussed below.

12.18 Endolysins

During late stage of lytic cycle several endolysins (transglycosylase, glucosidase,
endopeptidase and amidase) are produced and are capable of deteriorating muco-
peptide/murein of bacterial cell wall, in order to promote the new phages discharge.
During 1950s, these enzymes were first time detected and found antibacterial to
Clostridium butyricum, Staphylococcus, L. monocytogenes and Bacillus anthracis
(Low et al. 2005). They are found effective in sepsis and bacterial infections of
Group B Streptococcus, Enterococcus faecalis and C. perfringens (Fenton et al.
2010). Endolysin PAL has the capability to destroy Group-A Streptococci. Together
with Endopeptidase Cpl-1 and Amidase PAL can lower the occurrence of pneumo-
nia (both systemic and localized) (Fischetti 2005). Phage K originated Endolysin
LysK can destroy MRSA (O’Flaherty et al. 2005). Similarly, PlyV12 Endolysin
expresses excellent lytic action on Vancomycin-resistant-E. faecium and E. faecalis
(Yoong et al. 2004). The phage phi3626 based endolysins can successfully cure
Clostridium related ailments (Courchesne et al. 2009). Endolysins have exclusive
Gram positive antibacterial spectrum and lead to very rapid bacterial lysis by
targeting their murein of cell wall (Loeffler et al. 2003). So, that there is no chance
for bacteria to evolve into resistant forms. But they are of little or no worth for
targeting Gram negatives (Fischetti 2005).

12.19 Virion-Associated Peptidoglycan Hydrolases (VAPGHs)

They are a sort of lyases which break down murein or peptidoglycan to facilitate
phage entrance in bacteria (Rodriguez-Rubio et al. 2013). Various viron-associated
peptidoglycan hydrolases (VAPGHs) have been identified and their antimicrobial
potential has been verified. For example, HydH5 (philPLA88 phage origin), protein
gp61 (produced by phiMR11 phage) and Protein 17 (produced by P68 phage) were
found remarkably antibacterial (at exponential growth phase) against MRSA and
non-MRSA (Takac and Blasi 2005; Rashel et al. 2008; Rodriguez et al. 2011).
Similarly, P5 protein produced by phage 6 bears antibacterial efficiency against
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Proteus vulgaris, Pseudomonas, S. Typhimurium and E. coli. In addition to afore-
mentioned Gram negatives, gp181 (produced by KZ phage) have shown lytic effect
against Yersinia and Ralstonia solanacearum. Gp36 (produced by bacteriophage
KMV) is heat stable and impressive against E. coli and P. aeruginosa (Lavigne et al.
2004). VAPGHs produced by phages targeting Gram negatives are of extensively
antibacterial spectrum while, VAPGHs generated by phages of Gram positives are
effective against only limited bacteria. They can also efficiently encounter drug-
resistant pathogenic bacteria by lowering the expression of efflux system (Paul et al.
2001). Most of VAPGHs can tolerate and remain effective at high temperature,
hence can be employed in food industry (Rodriguez-Rubio et al. 2013). We salute to
the scientists (working in above referred domains) whose efforts are indeed laudable.
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Probiotic Bacteria as a Functional Delivery
Vehicle for the Development of Live Oral
Vaccines

13

Maryam Dadar, Youcef Shahali, and Naheed Mojgani

Abstract

Probiotics improve the immune system and help to fight with different infection.
The LAB ability in eliciting the immune response against foreign antigens has led
to their use as candidate vectors for mucosal vaccines. Here, the use of LAB as
oral vaccine carriers and various expression systems intended to the production of
heterologous proteins are reviewed and discussed. Lactococcus lactis, Lactoba-
cillus strains, and Streptococcus gordonii are lactic acid bacteria (LAB) currently
being advocated for use as live antigen delivery vehicles to mucosal sites. Since
these vehicles differ in their life span and mode of antigen delivery within the
small intestine, in this chapter we tried to determine the promising LAB
candidates for the development of oral vaccines.

Keywords

Probiotics · Lactococcus lactis · Streptococcus gordonii · Lactobacillus strains ·
Vaccine

13.1 Introduction

The development of effective mucosal vaccines could have several advantages in
modern vaccinology. Due to high cost, storage and delivery condition of vaccines,
further improvements in the vaccination coverage are actively demanded in devel-
oping world. The development of a new generation of vaccines which could be
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applied orally, with the ability to stimulate both mucosal and systemic immune
responses, offers promising perspectives for the eradication of infection diseases in
many regions worldwide. For this purpose, over the last decade probiotic lactic acid
bacteria (LAB) have been extensively studied for their potential use in the develop-
ment of new generation of oral vaccines (Mojgani et al. 2020). Probiotic bacteria are
known as profitable bacteria that can be easily stored, delivered, and relatively
inexpensive to produce (Dadar et al. 2017; Mojgani et al. 2020). Another important
advantage of these bacterial vectors is their ability to deliver immune-protective
antigens at the mucosal surfaces, leading to cell and/or humoral-mediated responses.
The induction of targeted and specific local immune responses in the mucosa-
associated lymphoid tissue (MALT) can be most effectively achieved by the direct
application of the vaccine antigen to the mucosal surface by bacterial vectors. In this
regard, a number of LAB that are commonly found in the intestine of animals and
humans appeared to be promising candidates (Jandhyala et al. 2015; Boersma et al.
2000). Some strains of Lactobacillus and Lactococcus spp. are termed as
biotherapeutic agents due to their immune regulatory responses. The main immune
effects of probiotic LAB could be summarized in their immune modulatory features
that have been reported in the treatment of many disorders such as autoimmune
diseases and different cancers as well as their anti-inflammatory, immunogenic, and
immuno-adjuvant properties favoring their use as live vaccine delivery system
(Kassayova et al. 2014). Some randomized, placebo-controlled clinical trials
(RCTs) highlighted the promising and effectiveness of probiotics as delivery vehicle
able to promote both parenterally and mucosally administered vaccine-specific
immune responses (Amdekar et al. 2010). Particularly, Lactobacilli were found to
increase the performance of several candidate mucosal vaccines for infantile diar-
rhea, HIV, and malaria in preclinical studies involving experimental animals. One of
the most important advantages of probiotics is the ease of its administration
(Licciardi and Tang 2011), while stimulating the immune responses against the
vaccine antigen. These outstanding properties could help to provide effective pro-
tection against infectious diseases particularly in regions with low vaccination
coverage. In this chapter we will highlight different aspects of promising probiotics
species, effective transformation systems, and putative live oral vaccines. The
promising results achieved with a number of these beneficial constructs will be
discussed.

13.2 Probiotics and Their Safety Status

The profitable live microorganisms colonizing our digestive tract have been named
“probiotics”(Morelli and Capurso 2012). They preserve gut health by induction of
immunomodulatory impacts to maintain the intestinal homeostasis and by modula-
tion of the gastrointestinal microbiota (Adel et al. 2017; Azcárate-Peril et al. 2011;
Kałużna-Czaplińska et al. 2017; Mojgani et al. 2020). Lilly and Stillwell introduced
the term “probiotic” to explore components released by protozoa, which improved
the growth of other organisms (Lilly and Stillwell 1965). Several investigation
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supported the effective role of probiotic strains as promising supplements to improve
mucosal immunity while having limited side effects (Rolfe 2000; Van Doan et al.
2020). It is now well documented that probiotics help to preserve healthy digestion
(Cremon et al. 2018). Very limited reports of any adverse effects of probiotics have
been reported. However, the safety of probiotic strains is highly associated with
specific health claims and their purported advantages (Pradhan et al. 2020). Further-
more, probiotic can provide benefits to multiple parts of the body, where other
supplements commonly focus on specific organs (Reid et al. 2003; Varankovich
et al. 2015; Bisanz et al. 2015). The beneficial effects of probiotics have been
reported on improving the bioavailability of essential nutrients (Pandey et al.
2015), gastrointestinal health (Varankovich et al. 2015), ameliorating the adaptive
and innate immune response (Galdeano et al. 2019), decreasing common symptoms
of food intolerance (Oak and Jha 2019), preventing the onset of certain cancers
(Sharma 2019), and preventing atopic sensitization among susceptible subjects
(Allen et al. 2014). Probiotics also clearly benefit patients who have had broad-
spectrum antibiotic therapy by restoring a healthy intestinal microbiota (Sartor 2004;
Peterson et al. 2015; Sánchez et al. 2017). Probiotics also appeared to be effective in
the stimulation of both mucosal and systemic antigen-specific immune responses
throughout the nasal and oral route (Anand et al. 2019; Neto et al. 2018; Cervin
2018; Mercenier et al. 2000).

13.3 Probiotics as Delivery Vehicles for Vaccine

Probiotics are described as live microorganisms that live in the gastrointestinal
(GI) tract and, when administered in acceptable amounts, may confer a health benefit
to the host (Tang 2009). About 100 years ago, Elie Metchnikoff discovered the
health properties of probiotics and attributed the long life of Bulgarian peasants to
their consumption of Lactobacillus probiotic bacteria (Rizzardini et al. 2012;
Youngster et al. 2011). More recently, many reports pointed out the beneficial effects
of probiotics on adaptive and innate immune responses in vivo and in vitro (Adel
et al. 2017; Mojgani et al. 2020; Safari et al. 2016; Van Doan et al. 2020). Probiotics
can regulate immunological responses directly by their interaction with epithelial
cells and intestinal immune cells and/or indirectly by regulation of the intestinal
microbiota (Adel et al. 2017; Power et al. 2014). Moreover, the effective role of
probiotics in health improvement appeared to be the consequence of their combined
impacts on epithelial barrier integrity, immune modulation, and gut microbiota
(Mojgani et al. 2020). It was shown that interactions between immune system and
the microbiota are important for the safe and natural improvement of healthy
immune responses. Several investigation have reported that intestinal dysbiosis
can lead to chronic inflammatory conditions such as inflammatory bowel disease
and allergic disease likely as a result of abnormal regulation of immune system
(Johansson et al. 2011; Westerholm-Ormio et al. 2010). Immune effects of
probiotics can vary according to the selected probiotic, indicating its effects are
strain- and species-specific (Licciardi and Tang 2011). Nowadays, the most broadly
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evaluated probiotic bacteria in clinical trials and animal models are the
Bifidobacteria and Lactobacilli species (Licciardi and Tang 2011). The immuno-
modulatory effects of probiotic bacteria also have been described by the beneficial
role of some probiotic strains such as Lactococcus lactis as a protein expression
system (Singh et al. 2017; Wang et al. 2020). Both commensal and pathogenic
intestinal bacteria could interact with the gastrointestinal mucosal lymphoid system
(GALT) by Pathogen Recognition Receptors (PRR) expressed on specialized epi-
thelial DCs and M cells, and antigen-presenting cells (APC) (Amdekar et al. 2010).
These signaling pathways are important for the homeostasis of the intestinal immune
response, preventing immune dysregulation by promoting tolerogenic responses as
well as by stimulating the host protection against intestinal pathogens at the same
time (Licciardi and Tang 2011). Furthermore, lactobacilli can be delivered orally,
thereby providing a convenient presentation of antigens that can be applied on a
large scale as an inexpensive option in less industrialized countries (Pouwels et al.
1998). Molecular-biological features such as efficient adhesion and colonization to
human tissue surfaces play a major role in specific and nonspecific immune
responses to LAB (Bermúdez-Humarán 2009). The role of the human microbiome
as a regulator of both systemic and mucosal immunity is now well documented, and
some probiotics appeared to be promising vaccine candidates (Ferreira et al. 2005;
Vitetta et al. 2017). The applicable LAB for use as delivery vectors of vaccine
commonly comprise multiple Lactobacillus species, Lactococcus lactis, and Strep-
tococcus gordonii. Several comprehensive reviews of recombinant L. lactis vaccines
describing the immune response of these recombinant bacteria against viral and
bacterial antigens have been published (Bahey-El-Din et al. 2010; Pontes et al. 2011;
Bermúdez-Humarán et al. 2011). However, because of the large number of
published articles detailing L. lactis, S. gordonii, and lactobacilli as vaccine vectors,
this chapter will particularly focus on the results of in vivo studies.

13.4 Bacteria Antigen Expressed by Probiotics

Numerous studies have introduced engineered LAB strains as delivery vehicles for
bacterial antigens. The efficacy of L. lactis-based vaccine is associated with the route
of administration and is related to the nature and amount of antigen produced. For
example, it has been shown that oral immunization with recombinant L. lactis
expressing the pneumococcal protective protein A (PppA) induced sufficient protec-
tion against respiratory pneumococcal infection (Villena et al. 2008). However,
another study suggested that a better immunostimulation is achieved by intranasal
(IN) administration of recombinant L. lactis strains expressing Yersinia pseudotu-
berculosis low-calcium response V (LcrV) antigen (Daniel et al. 2009). Furthermore,
IN-vaccinated mice had developed protection against both oral and systemic
infections with Y. pseudotuberculosis, although oral vaccination failed to protect
against an oral challenge with Y. pseudotuberculosis and did not induce any specific
immune response (Daniel et al. 2009). L. lactis-secreting listeriolysin O (LLO)
induces specific CD8+ T cells and sufficient protection against Listeria

322 M. Dadar et al.

http://www.discoverymedicine.com/category/species-and-cell-types/bacterium/bifidobacteria/
http://www.discoverymedicine.com/tag/homeostasis/
http://www.discoverymedicine.com/tag/human-microbiome/


monocytogenes in a murine infection model (Bahey-El-Din et al. 2010). However,
in vivo and in vitro characterization of DNA delivery by recombinant L. lactis
secreting a mutated form of L. monocytogenes Internalin A (InlA) confirmed the
production of the mutated InlA at the L. lactis surface and appeared to be a promising
strategy for plasmid transfer (De Azevedo et al. 2012).

In another experiment, recombinant L. lactis MG1363 expressing urease subunit
B (UreB) of Helicobacter pylori failed to produce a sufficient immune response
through the different tested oral vaccination regimens against H. pylori challenge
(Lee et al. 2001). In contrast, another study reported that oral vaccination with
L. lactis MG1363 expressing the antigen CagL of Helicobacter pylori can be
evaluated as a potentially live vaccine able to induce a significant immune response
in mice (Aliramaei et al. 2020). Another study also confirmed the significant
immunoreactivity of BALB/c mice to the H. pylori Lpp20 antigen expressed in an
engineered L. lactis strain and administrated orally (Zhang et al. 2016). Orally and
intraperitoneally immunized mice with recombinant L. lactis producing Omp31
antigen of Brucella melitensis also promoted the production of serum IgM and
IgG antibodies as well as IFN-γ and IL-10 (Shirdast et al. 2020). The successful
cloning and expression of B. melitensis bp26 gene in L. lactis also confirmed the
efficacy of this vector for the production of an oral vaccine conferring protection
against brucellosis (Maghvan et al. 2019). Similarly, oral immunization using the
recombinant probiotic Lactobacillus casei expressing the outer membrane protein
OMP19, which is specific to Brucella species, induced strong mucosal immune
responses in mice and protection against Brucella abortus (Mohammadi and
Golchin 2020). A recombinant Lactobacillus casei expressing a flagellar antigen
from Salmonella enterica alsoinduced cell-mediated immune responses and offered
an efficient mucosal protection (Kajikawa et al. 2007). Another important LAB
vector that has been used in numerous studies is S. gordonii. The subcutaneous
injection of S. gordonii cells expressing S1 subunit of pertussis from Bordetella
pertussis on their surface efficiently immunized New Zealand white rabbits (Lee
et al. 1999). Furthermore, nasal or oral immunization of dd-Y mice with recombinant
L. lactis expressing surface protective antigen (SpaA) led to the production of
antigen-specific fecal IgA and serum IgG protecting mice against a challenge with
Erysipelothrix rhusiopathia (Cheun et al. 2004). However, there are several oral
vaccinations with LAB-based vaccine vectors that are highly variable in immune
responses and antibody production; therefore, further works are needed to improve
the efficiency and delivery route of the live bacterial vector.

13.5 Viral Antigen Expressed by Probiotics

A number of viral antigens have been produced in LAB-based vectors. Remarkably
Xin et al. reported the protective effect and immunogenicity of an orally
administered recombinant L. lactis expressing surface-bound (Env) protein of
human immunodeficiency virus type 1 (HIV-1), showing sufficient protection in
mice challenged intraperitoneally with the virus (Xin et al. 2003). Another study also
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confirmed that the construction of paired cell surface display of Salmonella enterica
Serovar Typhimurium FliC and HIV-1 Gag in Lactobacillus acidophilus as mucosal
vaccine vectors could induce an increase of Gag-specific IgA-secreting cells. Inter-
estingly, the expression of FliC in LAB conferred an adjuvant impact on the local
production of IgA (Kajikawa et al. 2012). The oral administration of the recombinant
L. acidophilus expressing the membrane proximal external region (MPER) of HIV-1
within the major S-layer protein (SlpA) led to a Th1 and Th17 dominance in the
immune responses (Kajikawa et al. 2015). The use of lactobacilli expressing HIV
antigens was found to be an effective way to improve the systemic (serum IgG) and
mucosal (IgA) immune responses against HIV proteins (Gag, MPER) in orally
immunized mice (LeCureux and Dean 2018). The subcutaneous injection of a
genetically modified Lactobacillus casei producing VLPs of human papillomavirus
(HPV) by the L1 protein led to an increased expression of serum-specific IgG in
BALB/c mice (Aires et al. 2006). Other studies performed on C57BL/6 mice have
effectively used a recombinant L. casei, displaying on its surface the minor capsid
protein L2 as well as the early oncoproteins E6 and E7 proteins of HPV, to induce T
cell-regulated cellular immunity with antitumor impacts (Lee et al. 2010; Poo et al.
2006). In Balb/c mice, the oral utilization of the L2 protein of HPV-16 expressed in
L. casei was able to stimulate mucosal and systematic cross-neutralizing responses
(Yoon et al. 2012). Similarly, the oral administration of the genetically modified
L. casei displaying E7 protein of HPV-16 promoted the generation of antigen-
specific cytotoxic T lymphocytes against HPV16 in C57BL/6 mice (Adachi et al.
2010). The same approach was used to immunize C57BL/6 mice with the severe
acute respiratory syndrome coronavirus (SARS-CoV)-spike protein expressed in
L. casei. The nasal and oral inoculations of the recombinant L. casei displaying
this protein generated high level of neutralizing-antibodies and an effective protec-
tion against the SARS-CoV (Lee et al. 2006). In this study, the authors also reported
an elevated content of mucosal IgA in bronchoalveolar and intestinal lavage fluids of
immunized C57BL/6 mice following the intranasal or oral immunization. The N
protein of SARS-CoV expressed into the cytoplasm or secreted in the medium of
L. lactismodified by genetic engineering was also able to stimulate the production of
N-specific IgG as a promising mucosal vaccine candidate (Pei et al. 2005). L. lactis
was also used for the production of a recombinant flaviviral E protein of Dengue
virus and effectively promoted the humoral immune response to dengue infection in
immunized mice (Crill et al. 2009).

The oral immunization with recombinant porcine rotavirus VP4 and VP4-LTB
expressed in L. casei stimulated neutralizing serum IgG and mucosal IgA antibody
responses in female Balb/c mice (Qiao et al. 2009). An efficient protection was also
achieved by using a recombinant L. rhamnosusGG expressing protein G of rotavirus
in mouse model, decreasing the severity, prevalence, and duration of diarrhea-
associated rotavirus infections (Günaydın et al. 2014). In a fish model, the oral
administration of L. casei expressing protein antigens of the infectious pancreatic
necrosis virus (IPNV)(Min et al. 2012; Li-Li et al. 2012), Koi herpesvirus (KHV)
(Cui et al. 2015), spring viremia of carp virus (SVCV) (Cui et al. 2015; Dadar et al.
2018), and viral hemorrhagic septicemia (VHS) (Naderi-Samani et al. 2020)
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significantly stimulated the generation of serum IgM and was found to be a
promising vaccine vector candidate against viral disease in fish.

Different study also confirm the protective role of the oral administration of an
L. plantarum strain expressing hemagglutinin (HA) gene of H9N2 and H5N1 avian
influenza virus by increasing the production of serum IgG, fecal IgA, and bronchio-
lar IgA in BALB/c mice (Shi et al. 2014; Wang et al. 2012).

13.6 Protozoal Antigens Expressed by Probiotics

L. lactis have also been applied as a promising candidate for the delivery and
expression of protozoal antigens. Oral immunization of BALB/c and C57BL/6
mice against rodent malaria with recombinant L. lactis expressing the C terminal
fragment of the merozoite surface protein 1 (MSP-119) of Plasmodium yoelii
provided protection at the asexual erythrocytic stage of malaria (Zhang et al.
2005). The oral administration of the Giardia lamblia cyst wall protein 2 (CWP2)
displayed at the surface of L. lactis led to increased levels of mucosal anti-CWP2
IgA in the intestine of mice along with a significant decrease in fecal cyst shedding
following challenge experiments with Giardia muris (Lee and Faubert 2006).

The protective effect of vaccine antigens expressed in LAB against parasite
infection could be significantly affected by inoculation doses, the vaccination regi-
men used, the route of administration, its cellular expression in LAB strain utilize
and nature and amount of the expressed antigen.

13.7 Immunomodulatory Responses of Probiotic Bacteria

It is now well documented that immune response could be directly or indirectly
affected by the gut microbiota, influencing the pathways involved in both innate and
adaptive immune responses (Frei et al. 2015; Hoseinifar et al. 2017). Therefore, it
was suggested that the condition of many diseases could be improved by improving
the gut microbiota. This hypothesis was supported by the weak performance of oral
vaccines in developing countries because of a higher proportion of children with
impaired or dysbiotic gut microbiota (Rosshart et al. 2017; Sánchez et al. 2017). The
protective mechanisms of probiotic are commonly related to the interaction of
probiotics with host cells or to the cross-talk of probiotics with other microbiota or
pathogenic microorganisms (Taverniti and Guglielmetti 2011). Direct interaction of
probiotic bacteria with the host cell can be regulated by the bacterial cells, indepen-
dent of their viability and by the multitude of specific components or products
released by bacteria as well as through their effects on specific human cells, such
as those of the mucosa-associated lymphoid tissue (MALT, playing an important
immunoregulatory role on the specific immunity (Adams 2010). Furthermore, the
immunomodulatory effects of genomic DNA of probiotic bacteria have been
reported on the human peripheral blood mononuclear cells (PBMC) responses
through elevated IL-1 and IL-10 production(Lammers et al. 2003). The significant
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differences in magnitude and kinetics of IL-10 and IL-1β release in response to
genomic DNA of probiotic revealed the influence of gut bacterial components on the
intestinal response of the mucosal immune system (Delcenserie et al. 2008;
Lammers et al. 2003).

Interestingly, a study demonstrated that heat-inactivated probiotics such as Lac-
tobacillus casei Shirota were marginally less effective in stimulating some
proinflammatory cytokines, including interleukin tumor necrosis factor (TNF)-a
and (IL)-12, when compared to viable cells, while similar induction of IL-10 was
reported for viable and inactivated cells. Moreover, live Gram-negative probiotic
bacteria of Escherichia coli Nissle 1917 stimulated the release of a higher amount of
IL-10 and proinflammatory cytokines by the murine monocyte/macrophage cell line
(J774A) when compared to heat-killed bacteria (Cross et al. 2004). The immuno-
genic effects reported by probiotics are directly associated with their immune-
modulating responses (production of IL-6 and IL-10) and their tumor-reducing
activities (Reid et al. 2003; Van Hoang et al. 2018; Amdekar et al. 2010). However,
species- and strain-specific effects have been attributed to different LAB based on
their ability to promote particular patterns of mucosal cytokine expression (Mojgani
et al. 2020). Through the oral route, probiotic bacteria enter the gut and may promote
the induction of cytokines through mucosal lymphoid cells. The up or down
modulation of the immune response could be affected by a broad range of immune
cells such as endothelial cells, fibroblasts, and stromal cells which are responsible for
the production of specific cytokines. Furthermore, the interaction between probiotic
bacteria and the gut epithelial cells leads to the stimulation of a cascade of signals
regulating the immune response (Amdekar et al. 2010; Galdeano and Perdigon
2006).The nonspecific immune response induced by probiotics mainly occurs
through inflammatory pathways resulting in the activation of macrophages and
phagocytic cells [polymorphonuclear (PMN)](Mojgani et al. 2020; Perdigon et al.
1995). After arrival of probiotic bacteria to the colon, they are absorbed by the
overlying M cells in the Peyer’s patches or across the overlying normal epithelium in
the lamina propria of the small intestine. The intact probiotics cells are then handled
by phagocytizing cells including antigen-presenting cells (APC), the macrophages,
B and T lymphocytes, and dendritic cells (Perdigon et al. 1995; Perdigón et al.
2001). The mucosal immune epithelial cells stimulated by probiotics could regulate
the immune defense pathways by the release of IL-2, IL-6, and IL-10 that are able to
modulate both nonspecific and specific immune mechanisms through their actions
on immune cells. Probiotic bacteria could also affect B cells in axillary lymph nodes
by pulses of IL-6 expression, which is known as an important B cell differentiation
factor (Akira et al. 2001). Probiotics are also capable to stimulate the release of
cytokines through the macrophages and T cells, leading to the regulation of the
mucosal immune response (Kawashima et al. 2018; Galdeano et al. 2019). Further-
more, the release of luminal secretory IgA could be promoted by some probiotic
bacteria, regulating both systemic and mucosal immunity (Perdigon et al. 1995,
Perdigón et al. 2001). LAB also regulates the immune responses by stimulating the
production of type 1 interferons (IFNs), which has a critical effect on the anti-viral
immune response (Kawashima et al. 2018). Moreover, it was shown that the
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absorption of particular LAB strains by DCs promotes the fractional maturation of
dendritic cells implicated in the immune response to foreign- and self-antigens
(Foligne et al. 2007).

13.8 The Design and Construct of Probiotic Bacteria as Putative
Vaccines

A promising application of LAB is its administration for the improvement of live
mucosal vaccines. Some LAB species such as L. lactis have been reported as
promising vaccine vector candidates for a multitude of bacterial and viral antigens
(Pouwels et al. 1998; Wells et al. 1996). Several delivery systems such as cell wall,
extracellular or cytoplasm medium have been designed to target different heterolo-
gous proteins to a particular location of cell (Le Loir et al. 2005). For the construc-
tion of recombinant protein in LAB vehicles, several parts, including genes coding
for heterologous proteins, and multiple cloning site (MCS) promoters and terminator
(T) should be accurately designed (Yeng et al. 2009). Promoters commonly are
species specific and originate from the bacteria used for protein expression. More-
over, several efficient expression systems have been designed to produce various
heterologous proteins in LAB (Boersma et al. 2000; Villatoro-Hernández et al.
2012). The regulation of the expression of recombinant immunogenic proteins in
LAB may be performed by strong or inducible constitutive promoters. The nisin-
inducible promotor Pnis, acting as one of the key components in the nisin-inducible
controlled expression (NICE) system, is now widely applied (Villatoro-Hernández
et al. 2012). The NICE system is largely used to express heterologous proteins in
L. lactis because of several advantages, including efficiently induced and tightly
controlled expression leading to high yields of protein (Roshan and Souza 2012),
large-scale production process, and easy use (Mierau and Kleerebezem 2005).
Fermentation parameters, nisin amounts, and growth conditions have been
optimized to increase the yield of recombinant proteins. In addition, another consti-
tutive promoter that could not be controlled by any regulator or growth conditions
are thought to be constitutive under laboratory growth conditions. The most gener-
ally used constitutive promoters originating from L. lactis genomic library include
P21, P23, and P59 (strong promotors) as well as P32 and P44 (weak promotor).
These strong and weak promoters have been used to express different heterologous
proteins in L. lactis (Morello et al. 2008). Furthermore, the expression of proteins
bearing an N-terminal signal peptide in the growth medium could be performed by
the Sec pathway (Mierau and Kleerebezem 2005). However, multistep process and
different factors localized in all cell compartments could impact on the protein
secretion in Gram-positive bacteria. For example, intracellular targeting factors
such as bacterial ffh genes which are contributed in protein folding and secretion
and encode the protein elements of signal recognition particle (Tjalsma et al. 2004).
The translocation machinery in L. lactis comprised of the ATPase-dependent motor,
SecA, partly prepare the energy demanded for preprotein translocation, and integral
membrane proteins, i.e., SecG, SecE, and SecY, produce the conducting channel via
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the hydrophobic membrane environment. Moreover, signal peptide cleavage such as
SipL in L. lactis strains is another factor that is removed by type I signal peptidase
during or shortly after preprotein translocation across the membrane. Surface quality
control proteins PmpA and HtrA in the L. lactis are other factors involved in the
protein secretion of Gram-positive bacteria. These proteins are transported by the
Sec machinery and involved several folding factors like folding catalysts and
chaperones, and are directly involved in the degradation of misfolded/unfolded
proteins through housekeeping proteases (Morello et al. 2008).

13.9 Advantage and Disadvantage of Probiotics as Delivery
Vectors of Vaccine

To date, human vaccines are categorized under 4 main groups including (1) live
attenuated vaccines, (2) recombinant, subunit, conjugate, and polysaccharide
vaccines, (3) toxoid vaccines, and (4) whole inactivated vaccines (Tong 2019).
Some live attenuated vaccines raised safety and quality concerns leading to the
further development of subunit and or killed vaccines during the last decades
(Mercenier et al. 2000; del Rio et al. 2018; Jiang et al. 2019). After several studies
on the nonpathogenic and pathogenic microorganisms naturally found in food, some
of them have been applied in the development of safer live bacterial vaccines that can
induce efficient immune response to one or more expressed antigens has been
proposed (Glenting et al. 2007; Detmer and Glenting 2006). In this regard, some
probiotics like LAB were proposed as potential mucosal delivery vehicles for
vaccine development. The use of LAB as vaccine vectors showed several attractive
benefits such as the maintenance and acceptance of genetic modifications, noninva-
sive administration (usually intranasal or oral), simple, high safety levels, and low
cost. LAB also tends to induce high levels of mucosal and systemic antibodies
against the expressed foreign antigen and minimal immune responses directed
against LAB cells themselves after uptake by the mucosal immune system.

The main advantages of LAB such as L. lactis comprised of their well-recognized
status as safe (GRAS) microorganisms for a long time in fermented foods, the lack of
endotoxin lipopolysaccharides (LPS) commonly found in Gram-negative bacteria,
safety administration for human, the accessibility to full genome sequencing of
LAB, fewer native exoproteins, and smaller genome size in comparison with
Gram-negative bacteria. The production of recombinant antigens in LAB is
exempted from the use of complex and multistep purification and refolding
procedures which complicate the protein production and is ideal for the development
of mucosal vaccines (Bahey-El-Din et al. 2010; Bermúdez-Humarán 2009). Also,
the secretion of heterologous proteins produced in LAB bacterial hosts into the
medium can be performed easily, thereby facilitating their purification (Morello et al.
2008). However, a major disadvantage of the mucosal route for the use of recombi-
nant L. lactis as oral vaccine vectors is the huge amount of protein which is required
to compensate the natural protein degradation occurring at the mucosal surfaces of
the gastrointestinal tract (Bermúdez-Humarán 2009). Moreover, the low efficiency
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of LAB transformation is a critical obstacle in the development of LAB vaccines and
therefore the organization of effective transformation protocols is hotly demanded
(Glenting et al. 2007; Tarahomjoo 2012). Thus, the development of novel vectors
capable to minimize these limitations and optimize the delivery of immunogenic
molecules to target tissues is a real challenge for future researches in the field.

13.10 Conclusions

LAB have been safely ingested by humans for several millenia. L. lactis appeared to
be one of the most promising LAB in the production of oral vaccines and has been
genetically engineered for the expression of a large variety of antigens and therapeu-
tic proteins. This property has been used by scientists for the development of novel
delivery vectors for immunogenic proteins into the mucosal tissues. New window
for the administration of genetically engineered LAB as delivery vehicles has been
opened by the successful Phase I clinical trial of a L. lactis strain with secretion of
interleukin-10 for Crohn’s disease. However, an improved potency of LAB-based
delivery vehicles is required to elicit specific immune responses at lower doses. The
capability of LAB vehicle carriers to stimulate effective protection against infective
agents related to the antigen presentation mode (secreted, cell surface exposed or
cytoplasmic), the sufficient delivery of antigen in vivo, immunization regimen
(timing, dose and route), and development of LAB carrier’s requirements for the
most suitable LAB strains. Moreover, important steps for improvement of the
vaccines efficiency is the coexpression of antigens with antigen-presenting cells
targeting peptides and adjuvants in LAB vehicles along with the coadministration of
immunoregulatory cytokines. The characterization of regulatory anchoring, and
secretion signals from genome sequences could improve these features (Wells and
Mercenier 2008). L. lactis provides a powerful genetic platform for the expression of
different antigens which can be expressed and delivered mostly to the gut environ-
ment, often with very hopeful outcomes. The number of investigations involving
lactobacilli and L. lactis has regularly increased over the last decade, smoothing the
way for the development of a new generation of oral mucosal vaccines. In this
regard, more works should be done to investigate the associated immune
mechanisms within the mucosa, particularly the pathways of bacterial uptake into
the immune inductive sites (DCs, M cells). The oral route for LAB administration
also can have an impact on the immune response stimulated due to the diversity of
mucosal inductive sites. The basic differences between the various location of
antigen expression, including intracellular, surface display and secreted, as well as
the properties specific to different LAB considerably influence the immune response,
and therefore the selected strains should be properly assessed and used for specific
antigens. However, the implementation of standardized model systems with empha-
sis on the most common mouse models (C57BL/6 and BALB/c), follow-up, experi-
mental setup, and methodologies should be a valuable step forward the production
and release of LAB-base vaccines.
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Promising Prospects of Probiotics
and Postbiotics Derived from Lactic Acid
Bacteria as Pharma Foods

14

Hooi Ling Foo, Laiella Shaahierra Jann Hishamuddin, and
Teck Chwen Loh

Abstract

The focus of food consumption has shifted from satisfaction to health-promoting
impact. Consumers are becoming more aware of their health. Food and health
care industries procure myriad functional foods that contain additional nutritional
components. Lactic acid bacteria (LAB) play an essential role in various
industries owing to their health-promoting effects. Cancer originates at the sites
of chronic inflammation. Cancer is a severe public health problem which is
considered as among the common cause of death globally. The incidence and
mortality rate of cancer have been steadily growing worldwide. Many chemo-
therapy regimens are effectively used to treat cancer; however, cancer cells often
acquire drug resistance that generally leads to relapse and worsening of progno-
sis. Therefore, continuing endless effort in finding a safer alternative or add-on
treatment with lower or no side effects through the healthy dietary constituents as
well as practical and appropriate supplements is prior necessary. The promising
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prospects of LAB probiotics and fermented products mediated by LAB have been
extensively reported. Recently, there are numerous studies on LAB metabolites,
postbiotics, a new preparation of non-viable supplement, exhibiting various
health-promoting and beneficial physiological effects to the animal host by
improving the mucosal gut barrier integrity and reducing the pathogen-induced
inflammation. Therefore, a comparative review of the promising potential of
probiotics and postbiotics as a functional food, ingredient or supplements and
adjunctive therapeutic aids are revealed in this chapter.

Keywords

Postbiotic · Probiotic · Health impact · Anti-cancer · Anti-inflammation

14.1 Introduction

Natural herbs and foods have a long-standing tradition in many cultures to treat
ailments. However, in recent years, “superfoods” have received tremendous atten-
tion. Interest is now rapidly expanding to foods with clinically enhanced properties.
Currently, the health and life science sectors are undergoing significant change
across all their industries. Both sectors are converged frequently to formulate
medical nutrition products, having specific nutritional compositions for intervention
in disease progression and symptom alleviation (Weenen et al. 2013). Hence, new
markets and industries have emerged from the convergence of both health and life
science sectors.

The core technology domain of medical nutrition industry is food. Nevertheless,
technological development is mainly driven by pharmaceutical/pharmacological
technologies. Hence, boundary-crossing developments are occurring between the
food and pharmaceutical industries, particularly (Weenen et al. 2013). Pharma food
products resulting from this convergence are known as Nutritional Supplements,
Functional Foods and Medical Nutrition, which are food substances that are consid-
ered to improve health and exist between conventional foods and pharmaceuticals
(Eussen et al. 2011; Henry 2010; Verhagen et al. 2010). Generally, pharma foods
promote either in general or by specifically targeting a bodily function, such as
improving digestion, bone density and so on. In the next decade, we can expect to
see a shift from traditional “farmer foods” to more sophisticated pharma foods.

Cancer is a severe public health problem and it is considered as among the
common cause of death globally. Throughout the past years, the incidence and
mortality rate of cancer have been steadily growing worldwide. Based on the
World Health Organization (WHO 2018), there were an estimated 17 million new
cancer cases (excluding non-melanoma skin cancer) and 9.6 million deaths due to
cancer in 2018 worldwide. In both sexes, lung cancer is the most diagnosed cancer
incidence (11.6% of the total cases), followed by female breast cancer (11.6%) and
colorectal cancer (10.2%). By mortality, the lung is also a leading cause of cancer
death accounting for 18.4% of the total cancer deaths, followed by colorectal cancer
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(9.2%) and stomach cancer (8.2%). However, women are mostly diagnosed with
breast cancer and it is the leading cause of cancer death in women.

Approximately 70% of cancer deaths happened in low- and middle-income
countries, mostly due to late detection of cancer and limited access to treatment. In
Malaysia, cancer is the third leading cause of death. As of 2018, 43,837 cases were
diagnosed and 26,395 death were reported due to cancer (GLOBOCAN 2019).
Despite the advancement in cancer therapy, these treatments cause various side
effects due to unspecific toxicity to normal cells (Zakuan et al. 2019). Furthermore,
cancer cells often acquire drug resistance which leads to relapse and worsening of
prognosis (Kovalchuk et al. 2008). The treatments of chemotherapy, radiotherapy
and immunotherapy could cause weakness, fatigue, nausea, hair loss, vomiting,
tissue damage and autoimmune diseases (Aslam et al. 2014; Kroschinsky et al.
2017). Exposure to chemotherapeutic drugs could result in the acquisition of multi-
drug resistance (MDR).

MDR leads to significantly worse response to treatment. Conventional treatment
with nanoparticles like titanium dioxide, silica, and gold complexes could also
increase the risk of metastasis of cancer cells (Peng et al. 2019). Although the
severity of some of these side effects are generally mild, life-threatening
complications may also occur. Therefore, finding an alternative or adjunctive treat-
ment which can reduce the side effects is necessary for the advancement of cancer
treatment. Lactic acid bacteria (LAB) are Gram-positive, non-motile,
non-sporulating rods and cocci (Bernardeau et al. 2008) bacteria. Probiotics are
highly selected LAB, such as Bifidobacterium spp., Lactobacillus spp. and Strepto-
coccus spp. (Rafter 2002) with emerging evidence as potential preventative and
therapeutic agents for cancers (Zhong et al. 2014). Bioactive metabolites produced
by probiotics, so-called postbiotic, confer various beneficial effects including anti-
inflammatory, anti-cancer and anti-microbial. This chapter reveals the comparative
beneficial impacts of different preparations of LAB.

14.2 Lactic Acid Bacteria

LAB are commonly classified as a group of facultative anaerobes that produce lactic
acid as the main product during sugar metabolism. It consists of Lactobacillus,
Streptococcus, Enterococcus, Lactococcus, Leuconostoc, Pediococcus,
Tetragenococcus, Weissella and Bifidobacterium (Hutkins 2006; Masood et al.
2011). They are subdivided into rod and cocci based on their morphology.
Homofermentative LAB produce mostly lactic acid and heterofermentative LAB
produce acetic acid or alcohol in addition to lactic acid (Halász 2009).
Phylogenetically, LAB are divided into two lines of descent. Gram-positive LAB
with a DNA base composition of less than 53 mol % guanine and cytosine (G + C)
are in the group of Clostridium branch. In contrast, DNA with higher base composi-
tion than 53 mol % G + C belongs to the Actinomycetes branch (Savadogo et al.
2007). The typical LAB, such as Carnobacterium, Lactobacillus, Lactococcus,
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Leuconostoc, Pediococcus and Streptococcus, have a G + C content of less than
50 mol % and belong to the Clostridium branch (Schleifer and Ludwig 1995).

LAB are typically found as natural microbiota or microflora in animals and the
human intestine. To date, LAB have been applied widely as a starter culture or
co-culture of fermentation processes in food and alcoholic beverages industries in
favour of producing natural and healthy products (Leroy and De Vuyst 2004). One
of the core genera of LAB is Lactobacillus. It has been recently reclassified into
25 new genera based on the polyphasic approaches, which includes host-adapted
LAB of Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera of
Acetilactobacillus, Agrilactobacillus, Amylolactobacillus, Apilactobacillus,
Bombilactobacillus, Companilactobacillus, Dellaglioa, Fructilactobacillus,
Furfurilactobacillus, Holzapfelia, Lacticaseibacillus, Lactiplantibacillus,
Latilactobacillus, Lapidilactobacillus, Lentilactobacillus, Levilactobacillus,
Ligilactobacillus, Limosilactobacillus, Liquorilactobacillus, Loigolactobacilus,
Paucilactobacillus, Schleiferilactobacillus and Secundilactobacillus (Zheng et al.
2020). The name of Lactiplantibacillus plantarum was suggested for the plantarum-
group lactobacilli.

Some LAB have been proven to be a vital probiotic bacteria, which are generally
recognised as safe (GRAS) microorganisms by the Food and Drug Administration
(FDA) of USA and they are also given “quantified presumption of safety” (QPS)
status by the European Union. Hence, probiotic LAB play an essential role in various
industries, particularly in the food industry and livestock industry (EFSA Panel on
Biological Hazards (BIOHAZ) 2013). Furthermore, LAB can produce an array of
compounds which contribute to the improvement of nutritional value, organoleptic,
technological and shelf life of the end product (Ayad et al. 2004). The prolong of
shelf life by LAB fermentation is mainly due to the rapid acidification of food
attributed to the production of organic acids, primarily lactic acid. However, the
production of other metabolites, such as acetic acid, ethanol, aroma compounds,
bacteriocins, exopolysaccharides and several enzymes, is of importance (De Vuyst
and Leroy 2007).

14.3 Health Impacts of Bacterial Probiotics

Probiotic was initially defined as a live microbial feed supplement which beneficially
affects the host animal by improving its intestinal microbial balance (Fuller 1989).
However, this definition is unsatisfactory and imprecise as more probiotics were
demonstrated to confer other beneficial health impacts. Food and Agriculture Orga-
nization and World Health Organization define probiotic bacteria as “live
microorganisms which, when administered in adequate amounts confer a health
benefit on the host” (FAO/WHO Expert Consultation 2001). To be classified as a
probiotic strain, several aspects of functionality must acquire: 1) tolerance to acid
and human gastric juice, 2) bile tolerance (for survival in the small bowel), 3)
adherence to epithelial surfaces and persistence in the human gastrointestinal tract
(GIT), 4) immuno-stimulation, but no pro-inflammatory effect, 5) antagonistic
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activity against pathogens and 6) antimutagenic and anticarcinogenic properties (Lee
and Salminen 1995).

Probiotics are mainly associated with LAB. Lactobacillus and Bifidobacterium
are the 2 genera of LAB that are mostly employed for various industrial applications
due to their long history of safe applications (Linares et al. 2016). In addition,
Propionibacterium and Streptococcus were also observed to possess beneficial
properties and hence they are also vogue as probiotic microorganisms. Dairy
propionibacteria promote bifidobacteria growth in the gut, enhance the use of
nutrients, hypocholesterolemic and immunomodulation effects (Zárate 2012),
while Streptococcus thermophilus produces a high amount of β-galactosidase in
the GIT, which is essential for lactose hydrolysis, making it beneficial to improve
lactose intolerance (Rul et al. 2011). However, other bacterial and yeast species have
been suggested to be a potential probiotic strain. Recently, a few strains of short-
chain fatty acids (SCFA) producing Escherichia coli isolated from adult human
microbiota were proven to possess promising probiotic properties (Nakkarach et al.
2020).

In the past decade, more health impacts of LAB were demonstrated, such as
enhanced immune response, colonic microbiota balance, vaccine adjuvant effect,
reduction of faecal enzymes implicated in cancer initiation, treatment of diarrheal
diseases, antibiotic therapy, control of rotavirus and Clostridium difficile, control of
gastric ulcers, reduction of serum cholesterol, antagonism against food-borne
pathogens and tooth decay organisms, and lactose intolerance and malabsorption
(Masood et al. 2011). Disruptions of the balance of gastrointestinal microflora will
disturb the homeostasis, leading to intestinal microbial dysbiosis and other diseases
associated with an unhealthy gut. Goldenberg et al. (2017) reported that probiotics
could reduce the risk of Clostridium difficile-Associated Diarrhoea (CDAD) inci-
dence rate by 60% on average. Patients treated with Lactobacillus acidophilus and
Lactobacillus casei demonstrated a lower incidence rate of CDAD and antibiotic-
induced diarrhoea (Gao et al. 2010). Supplementation of probiotics in patients with
gestational diabetes mellitus improved glycaemic control and decreased triglycerides
and VLDL cholesterol concentrations (Karamali et al. 2016).

As for immunity responses, administration of probiotic could modulate both
innate and adaptive immunity (Vitetta et al. 2017). Probiotics exert a positive effect
on human immunological defence by stimulating macrophages, NK cells, antigen-
specific cytotoxic T-lymphocytes, and the release of different cytokines (Ashraf and
Shah 2014). Ferreira dos Santos et al. (2016) reported that Lactobacillus plantarum
Lp62 decreased the IL-8 secretion by Salmonella Typhi-stimulated HT-29 cells and
prevented the adhesion of pathogens to the epithelial cells. Moreover, L. plantarum
Lp62 inhibited the inflammatory stimulation in epithelial cells and macrophages by
secreting TNF-α, IL1-β, and IL-17, while increased IL-10 secretion by mononuclear
cells. Supplementation of probiotic Lactobacillus rhamnosus GG during
breastfeeding stimulates the maturation of humoral immune response by increasing
the total number of immunoglobulin secreting cells, particularly, IgG, IgA and IgM
(Rinne et al. 2005).
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Beneficial bacteria may also stimulate wound healing. Recently, Han et al. (Han
et al. 2019) studied the effect of probiotics on oral mesenchymal stem cells and
wound healing. They revealed that the probiotic Lactobacillus reuteri could activate
the potentials of gingival mesenchymal stem cells and enhanced the wound healing
process by regulating the pathway of PI3K/AKT/β-catenin/TGFβ1. As for the
wound healing effect, Mohseni et al. (2018) reported that 12 weeks supplementation
of probiotic decreased ulcer length, depth and width of a wound in patients with a
diabetic foot ulcer. Orally administrated yoghurt containing probiotic Lactobacillus
gasseri has significantly accelerated the wound healing of acetic acid-induced gastric
ulcer in rats (Uchida et al. 2010). Probiotic of Lactobacilli, Bifidobacteria and
Streptococcus species accelerated the acetic acid-induced gastric ulcer in rats by
expressing and production of angiogenesis promoting vascular endothelial growth
factor (Dharmani et al. 2013).

Currently, emerging evidence that relates to gut microbiota and the function of
the central nervous system (Tillisch 2014) are extensively reported. Daily adminis-
tration of probiotic formulation consisting of Lactobacillus helveticus R0052 and
Bifidobacterium longum R0175 could reduce anxiety-like behaviour in rats and
alleviate psychological distress in human volunteers (Messaoudi et al. 2011). Folate
is a vitamin B that plays a vital role in the health and physiological functions of
human and animals. Some LAB have the capability of producing folate extracellu-
larly. Interestingly, L. plantarum I-UL4 was suggested to be employed for the
enhancement of folate level in milk and dairy products since it produced the highest
folate extracellularly in comparison to other LAB species (Nor et al. 2010). Kobyliak
et al. (2018) demonstrated that a multi-strain probiotic containing Bifidobacterium,
Lactobacillus, Lactococcus and Propionibacterium reduced liver fat, aminotransfer-
ase activity, TNF-α and IL-6 levels in non-alcoholic fatty liver disease patients.

The focus of food consumption today has shifted from satisfaction to health-
promoting impact. Consumers are becoming more aware of their health and the food
industry is going hand in hand with the production of so-called functional foods,
containing additional nutritional components. LAB play an important role in food
and beverages industries owing to its GRAS and QPS status, which provide health-
promoting effects when consumed in addition to several other reasons. The growth
of LAB increases carbohydrate content of the foods they ferment with reduced pH
condition resulting from the production of lactic acid from carbohydrate fermenta-
tion (Solioz et al. 2011). Certain LAB may secrete bacteriocin extracellularly.
Bacteriocins have been suggested as an alternative to replacing chemical
preservatives and heat treatment, to preserve food more naturally and rich in
organoleptic and nutritional properties (Gálvez et al. 2007). Application of
bacteriocins as bio-preservatives in food preparation is safe for consumers as they
are inactivated by pancreatic or gastric enzymes (Liu et al. 2011). The combined
action of both low pH and bacteriocins secretion is essential in the food industry to
extend the shelf life by inhibiting the growth of food spoilage and pathogenic
microorganisms (Gálvez et al. 2007). Bacteriocins are inhibitory peptide molecules
that act against food-borne pathogens such as Clostridium botulinum, Staphylococ-
cus aureus and Listeria monocytogenes (Nettles and Barefoot 1993).
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L. plantarum IUL-4 is the first L. plantarum strain reported to harbour both class I
plw and class II plnEF bacteriocin genes simultaneously (Tai et al. 2015). Both
classes of plantaricin genes contributed to the broad anti-microbial activity against
various pathogens such as L. monocytogenes, Salmonella enterica, E. coli and
Vancomycin resistant enterococci (VRE) (Kareem et al. 2014). Several other LAB
(Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, Leuconostoc
mesenteroides Lactobacillus curvatus, Lactobacillus sakei and L. plantarum) have
also been documented for the secretion of bacteriocin (Todorov et al. 2006; Shin
et al. 2008; Mataragas et al. 2003; Aasen et al. 2000; Kormin et al. 2001). Pediocin
secretion from three Pediococcus species (P. acidilactici NCIM 2292,
P. pentosaceous NCIM 2296 and P. cervisiae NCIM 2171) showed significant
inhibition against Bacillus cereus, L. monocytogenes, and S. aureus but moderate
against E. coli and Pseudomonas and less against Clostridium perfringens (Jamuna
and Jeevaratnam 2004). The food acidification caused by LAB changes the texture
due to the precipitation of some proteins (Solioz et al. 2011). Exopolysaccharides
forming LAB such as Streptococcus thermophilus and Lactobacillus delbrueckii
subsp. bulgaricus are used in the manufacturing of yoghurt to improve texture, avoid
syneresis and increase the viscosity of products (Ruas-Madiedo et al. 2002). LAB
produce aromas and flavours and accelerate the cheese’s maturation through its
proteolytic and lipolytic activities (Kongo 2013).

Applications of probiotics have been extended from human to agricultural
applications, including animals and plants. In response to consumers’ demands of
natural product, probiotics have been widely used in agriculture as an alternative
growth promoter to replace conventional antibiotic treatments and synthetic chemi-
cal feed (Fuller 1989), owing to the broad range of anti-microbial activity against
pathogens. Several reports have demonstrated the beneficial effects of probiotic
supplementations in animal feed. Corn-soybean meal supplemented with probiotic
(Pediococcus acidlactici) increased villus height in duodenum and ileum while
lowering the number of coliforms of the ileum and serum cholesterol level (Taheri
et al. 2010). Probiotic supplementation showed lower oxidative spoilage in broiler
breast meat over a 7-day post-mortem ageing, therefore increasing the shelf life of
chicken meat (Abdulla et al. 2018).

Recently, probiotics isolated from Malaysian foods have been reported to pro-
duce various versatile extracellular hydrolytic enzymes (Mohamad Zabidi et al.
2020). L. plantarum that grow on palm kernel cake secreted a cocktail of multi
extracellular hydrolytic enzymes (Lee et al. 2019). These enzymes degrade fibrous
and crystalline cellulosic materials, thereby improving the nutritional value of
fermented palm kernel cake substantially to be used as alternative feed ingredients
to reduce the production cost of animals (Mohamad Zabidi et al. 2020; Lee et al.
2019). Alshelmani et al. (2016) suggested that inclusion of 15% fermented palm
kernel cake could replace up to 30% of yellow maize in broiler diet, which can be
reflected in the cost savings of feed for the poultry industry.

Furthermore, Lactobacillus and Bifidobacterium strains have also been found
useful in the rapid removal of toxic metals such as cadmium and lead from the water
as reported by Halttunen et al. (Halttunen et al. 2007). A similar study has also been
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reported by Bhakta et al. (2012), whereby mud and sludge-isolated Lactobaciullus
reuteri Cd70–13 and Pb71–1 were used as a heavy metal sorbent to eliminate heavy
metals in the ambience. Mechanisms such as complex formation, ion exchange,
adsorption, chelation and microprecipitation have been proposed to be involved in
metal biosorption (Ahalya et al. 2003).

14.4 Health Impacts of Postbiotic

Postbiotics are defined as non-viable soluble bioactive metabolites produced by
probiotic LAB, which exerts a myriad beneficial effect on the host, directly or
indirectly. Several terms have been proposed for postbiotic preparation, such as
metabiotics, biogenics, metabolites or simply cell-free supernatants (CFS), soluble
factors secreted by live probiotic, which when administered in adequate amount will
confer beneficial effects (Tsilingiri et al. 2012). The composition of soluble bioactive
components that present in postbiotics could vary substantially amongst the pro-
ducer cells, attributing to the fermentation condition, such as growth medium and
physical parameters of the fermentation process. The bioactive compounds of
postbiotics include organic acid, bacteriocin, hydrogen peroxide, ethanol, fatty
acids, diacetyl, acetaldehyde, acetone, reuterin, reutericyclin, SCFA, hydrolytic
enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, endo- and
exo-polysaccharides, cell surface proteins, vitamins, plasmalogens, bacteriocin-like
compounds and other low molecular mass compounds with anti-microbial activities
(Aguilar-Toalá et al. 2018; Konstantinov et al. 2013; Paul et al. 2018).

The bioactive compounds of postbiotic target the host-microbe-pathogen inter-
face rescuing biotic and immune unbalances, as well as inflammation, thus providing
new therapeutic opportunities (Puccetti et al. 2020). Postbiotics mimic the beneficial
health effects of probiotics while avoiding the risk of administering live
microorganisms. The supplementation of viable probiotics has been associated
with systemic infections such as bacteraemia and fungemia, as well as transferring
of antibiotic resistance gene and virulence factor, and risk of sepsis. The incidents of
systemic infections by probiotics have been reported for premature infants, immu-
nocompromised and impairment of epithelial barrier patients (Paul et al. 2018).
Treatment with a combination of probiotics resulted in the death of 16% of acute
pancreatitis patients, as compared to 6% in the placebo group (Besselink et al. 2018).
Furthermore, consumption of live bacteria could also induce interaction with the
compound of food matrix or ingredient which may cause bloating.

The growing evidence demonstrates that probiotic metabolites exert various
beneficial health impacts, but not limited to, anti-microbial, antioxidant, and immu-
nomodulatory in the same way as the parent-live probiotics over the last 10 years.
Hypertension has been associated with gut microbiome dysbiosis. The manipulation
of the gut microbiota can lead to the development of new antihypertensive therapies
(Robles-Vera et al. 2017). The first evidence of SCFA that present in postbiotic
metabolite could decrease blood pressure was reported in 1983, whereby hypoten-
sion was noted when acetate was added to haemodialysis lysate (Muralitharan et al.
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2020). In addition, various Lactobacillus sp. have been identified to produce bioac-
tive peptides, which are useful in promoting human health, including reducing the
risk of hypertension (Raveschot et al. 2018).

Certain postbiotics may be a rich bacteriocin source for the inhibition of a wide
range of pathogenic bacteria that are likely to reduce the occurrence of infection
(Cicenia et al. 2014). Reuterin that produced by Lactobacillus reuteri is the first
molecule identified with potent anti-pathogenic activity against a broad spectrum of
microorganisms including Escherichia, Salmonella, Shigella, Proteus, Pseudomo-
nas, Clostridium, Staphylococcus, fungi, and protozoa, many of which are patho-
genic to humans (Talarico and Dobrogosz 1989). Six strains of Lactiplantibacillus
plantarum (formerly was known as Lactobacillus plantarum) isolated from
Malaysian foods exhibited antagonistic activity against S. typhimurium, E. coli,
followed by L. monocytogenes and Vancomycin-resistant enterococci (Thanh et al.
2010).

Exopolysaccharides (EPS) produced by Lactococcus lactis F-mou showed high
anti-microbial activity against Staphylococcus aureus, Pseudomonas aeruginosa,
E. coli, L. monocytogenes, B. cereus, Proteus mirabilis, Acinetobacter baumannii,
Enterobacter cloacae and Candida albicans (Nehal et al. 2019). In addition, L. lactis
F-mou also displayed potent beta-carotene bleaching inhibition and high radical
scavenging activity (> 90%). EPS produced by Lactobacillus reuteri SHA101 and
Lactobacillus vaginalis SHA110 isolated from the gut cecum of healthy hen showed
potent radical scavenging activity of hydroxyl DPPH (2,2-diphenyl-1-
picrylhydrazyl) and superoxide radicals and reducing power (Rajoka et al. 2019).

Antioxidant properties of postbiotics derived from L. plantarum were
demonstrated in the study conducted by Izuddin et al. (2020), whereby an increase
of hepatic antioxidant enzyme glutathione peroxidase (GPx) concentration in serum
and ruminal fluid were observed. He et al. (2017) demonstrated a preventative effect
against neonatal gut-derived E. coli K1 infection through promoting the maturation
of neonatal intestinal defence. The addition of L. casei subsp. rhamnosus reduced the
adherence of pathogenic bacteria, enteropathogenic and enterotoxigenic E. coli and
Klebsiella pneumonia to the tissue receptor of Caco-2 intestinal cells (Forestier et al.
2001). The CFS metabolites of four isolates of LAB isolated from the breast milk of
healthy women demonstrated anti-viral activity (32% inhibition) against HIV-1
infection (Martín et al. 2010).

Postbiotics have also been reported to modulate inflammatory responses. CFS of
Lactobacillus fermentum inhibited the pro-inflammatory response of HeLa 229 cells
to Yersinia enterocolitica by inhibiting the production of IL8 (Frick et al. 2007).
Lactobacillus rhamnosus and its CFS were evaluated for their immunomodulatory
effects on human dendritic cells (DC) challenged with E. coli (Bermudez-Brito et al.
2014). The results showed that CFS was more effective than live probiotics in
reducing the secretion of pro-inflammatory cytokines when DC was challenged
with E. coli. Furthermore, in the presence of E. coli, both treatments induced the
production of TGF-1β, an inhibitor for the synthesis of pro-inflammatory cytokines,
as well as an activator for the toll-death receptor signalling molecule to enhance the
innate immunity. Therefore, cultured CFS is a safer alternative to live bacteria to
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modulate immune responses of human DC. In another study, L. casei and its
postbiotic reduced the mRNA level of (IL)-1α, IL-6, IL-8 and increased the secretion
of IL10 in ileal and colonic mucosa in post-infectious irritable bowel syndrome
(PI-IBS) (Compare et al. 2017).

Recently, E. coli KUB-36 metabolite has been reported to reduce the production
of pro-inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α, but induced the secre-
tion of IL-10 in lipopolysaccharide-induced THP-1 macrophage cells (Nakkarach
et al. 2021). Postbiotics has also been shown to be a novel therapeutic agent for the
prevention and treatment of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), due to their immunomodulatory properties (Mantziari et al.
2020). Gou et al. (Gou et al. 2020) suggested that intestinal microbiome and their
metabolites can serve as a potential preventive/treatment target for intervention,
particularly among those who are susceptible to the SARS-CoV-2 infection. How-
ever, more clinical trials should be performed to verify the suggestion.
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Nondairy Foods as Potential Carriers
of Probiotic Bacteria and Postbiotics 15
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Abstract

Dairy-based foods are suitable substrates as a carrier for probiotic
microorganisms, nevertheless the great number of lactose intolerant people,
their high fat content, and also by reason of the increasing vegetarianism the
consumers are looking for substitutes. Consequently, studies have been exten-
sively done on the possibility of probiotic microorganisms in nondairy-based
carriers, for instance, vegetables, fruits, cereals, and meat products. This chapter
reviews the utilization of probiotics in nondairy-based foodstuffs and some of the
technical issues. These issues comprise the efficiency and viability of probiotic
microorganisms in nondairy foods; sensory and acceptability of nondairy probi-
otic products, technological challenges and advancements of nondairy probiotic
foods, and postbiotics and food applications of postbiotics.
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15.1 Introduction

Functional foods are nutrients that have possible positive impacts on healthiness
beyond basic nourishment (Ansari et al. 2020b; Granato et al. 2020). The probiotic
foodstuffs market is growing very quickly because of enlarged customer awareness
about the influence of these functional foods on health and fitness, and currently
probiotic products include 60–70% of the entire functional food market (Tripathi and
Giri 2014). The universal market for probiotic products (foods and drinks) was about
24.8 billion € in 2011, over 31.1 billion € in 2015 and is predicted to reach about
43 billion € until 2020 (Aspri et al. 2020).

Dairy food products have been conventionally considered as the greatest carriers
for probiotic microorganisms. Nevertheless, recently, alternative nondairy foodstuffs
have been applied for the separation of possible probiotic isolates for the manufac-
ture of innovative nondairy probiotic foods, and also on the other hand it is
determined that nondairy probiotic products have been more appealing by reason
of consumer demands (Aspri et al. 2020; Min et al. 2019). This chapter reviews the
current knowledge concerning several nondairy probiotic products existing world-
wide, for instance, vegetables, fruits, meat products, cereals, and confectionary
products with the purpose of give a vision to the issue and to display a way
advancing for the future.

15.2 Important Nondairy Probiotic Foods

Various probiotic products have been produced and marketed in different parts of the
world, some of which are related to nondairy probiotic products. In the following,
the most important nondairy probiotic foods are reviewed (see Table 15.1).

15.3 Fruits and Vegetables

The nutritional and biological potential of fruits and vegetables has led to the
conversion of these foods into products with multiple properties in maintaining the
balance of microorganisms. These beneficial effects cause the water of these
products to be used to treat various diseases. Studies have shown that the presence
of potassium salts, bioflavonoids, vitamins, and alkalis in fruit and vegetable and
their lack of fat can have beneficial effects in the prevention and treatment of
cardiovascular disease (DiRienzo 2014; Fernandez and Marette 2017). It has been
shown that the beneficial effects of fruits and vegetables can be improved by a
biological process such as lactic fermentation, so that today researchers are studying
lactic fermentation of vegetables as a natural preservation method. In addition, some
fruits and vegetables contain prebiotics that stimulate the growth of certain
probiotics (Szutowska 2020).

Many studies have used probiotics in dairy products, but lactose intolerance and
cholesterol levels of these products are the two main disadvantages that have led to
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Table 15.1 Some selected publications related to nondairy probiotic products during the last
5 years

Probiotic product Probiotic strains

Probiotic
numbers
(log/g or mL) Reference

Carrot and orange
juice

L. plantarum ~8 and 9 Valero-Cases
et al. (2017)

Mango and guava
juice

L. casei, L. bulgaricus, Streptococcus
thermophilus

7–8 Maldonado
et al. (2017)

Apricot juice B. lactis Bb-12, B. longum Bb-46,
L. casei 01, L. acidophilus La-5

~7 Bujna et al.
(2018)

Tomato juice L. plantarum, L. casei – Liu et al.
(2018)

Sohiong juice L. plantarum MCC 2974 10 Vivek et al.
(2019)

Pomegranate
juice

L. plantarum ATCC 14917 8.8 Mantzourani
et al. (2019)

Banana,
strawberry and
juçara

B. animalis subsp. Lactis,
L. acidophilus, L. casei, L. plantarum

~5 and 7 de Oliveira
Ribeiro et al.
(2020)

Cornelian cherry
(Cornus mas L.)
drink

Saccharomyces cerevisiae DDNd10,
Pichia kudriavzevii DCNa,
Wickerhamomyces subpelliculosus
DFNb6

~8 Di Cagno et al.
(2020)

Fermented
beverage from
maize and rice

L. plantarum, L. acidophilus,
Torulaspora delbrueckii

7 Freire et al.
(2017)

Fermented oat
flour drink

L. plantarum 14 Gupta and
Bajaj (2017)

maize-based
substrate

L. paracasei LBC-81, Saccharomyces
cerevisiae
CCMA 0731, Saccharomyces
cerevisiae CCMA 0732, Pichia
kluyveri CCMA 0615

6 Menezes et al.
(2018)

Legume sprouts L. plantarum 299 V 9 Świeca et al.
(2018)

Breadfruit flour
drink

L. plantarum DPC 206,
L. acidophilus, L. casei Shirota

7–8 Gao et al.
(2019)

Wheat/rice cereal
infant products

B. animalis subsp. lactis BB-12® 6 Leboš-Pavunc
et al. (2019)

Dry-fermented
pork neck and
sausage

L. acidophilus Bauer, B. animalis
BB-12, L. rhamnosus LOCK900

~6–8 Wójciak et al.
(2017)

Beef sausage L. plantarum TN8, Pediococcus
acidilactici MA18/5 M

~8 Slima et al.
(2018)

Bovine Salami L. plantarum 299v 7 Blaiotta et al.
(2018)

Fermented
sausage

B. longum KACC 91563 ~3–6 Song et al.
(2018)

(continued)
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their nonconsumption by some people. Therefore, the use of probiotics in fruit and
vegetable foods can be a good alternative for a group of people with special needs
(i.e., vegetarians and people with allergic reactions to milk proteins) (Aspri et al.
2020; Min et al. 2019).

Another important point to consider is the viability of probiotics in fruit and
vegetable products. Due to the fact that the pH of fruits and vegetables is low
(pH 2.5–3.7), and also bacteria are sensitive to acidic conditions, it is necessary to
use strains that can survive in these conditions and make the product healthier and
increase the shelf life. Therefore, the addition of probiotics to fruit and vegetable-
based foods and beverages is more complex than dairy products because of the need
to protect them from acidic environmental conditions (Min et al. 2019). It has been
shown that in fruit juices (pH 3.7–4.3) Lactobacilli can resist and survive better than
Bifidobacterial (Patel 2017). Nevertheless, some fruit juices may contain
components that sustain the survivability of probiotic microorganisms like ascorbic
acid, that declines O/R potential, organic acids or saccharides that may be used as a
carbon source or cellulose that can guard these microorganisms throughout
processing and storing (Martins et al. 2013).

Beetroot, cabbage, carrot, olive, oranges, pineapple, mango, strawberry, blue-
berry, cranberry, sweet lime, cashew apple, and grapes are some instances of
vegetable and fruit juices employed as food substrates for the delivery of probiotic
microorganisms. Various types of probiotic vegetable/fruit products have been
technologically advanced and commercialized, including fermented, juices, deserts,
and dried forms. Extensive variety of probiotic strains, mostly species of
Bifidobacteria and Lactobacillus, for instance, Bifidobacterium bifidum, B. longum,
B. breve, Lactobacillus acidophilus, L. rhamnosus, L. casei, L. paracasei,
L. plantarum, and L. fermentum have been broadly used in the advance of several
vegetable/fruit probiotic products (Aspri et al. 2020; Min et al. 2019).

Probiotic vegetable/fruit can be produced either with straight adding of the
probiotic strain, for example, into the juice of them or via the fermentation with
the probiotic microorganism. The fermentation is more valuable because probiotic
strain grows into the vegetable/fruit texture or juice to a more adapted probiotic
strain and a low-sugar product, which may perhaps develop its survival rates (Pereira

Table 15.1 (continued)

Probiotic product Probiotic strains

Probiotic
numbers
(log/g or mL) Reference

Dry fermented
sausage

L. paracasei LPC02 ~7–8 Coelho et al.
(2019)

Fermented
sausage

L. paracasei, L. rhamnosus GG – Bis-Souza
et al. (2019b)

Dry-cured meat
sausages

L. plantarum ~8 Sirini et al.
(2020b)

Spanish
Salchichón

L. paracasei, L. rhamnosus GG ~8 Bis-Souza
et al. (2020)
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and Rodrigues 2018). Also, throughout the fermentation process, the metabolites of
probiotics such as exopolysaccharides and bacteriocins can aid to improve the
quality of the probiotic product and rise their shelf life through storing time (Aspri
et al. 2020).

Newly, various studies focused on the manufacture of fermented probiotic and
synbiotic vegetable/fruit, for instance pomegranate extracts, and Cornelian cherry
drinks via delignified wheat bran (Kazakos et al. 2020; Liu et al. 2018; Valero-Cases
et al. 2020), carrot-orange extracts and nectars with diverse inulin concentrations
(Alizadeh et al. 2019; Lu et al. 2018), synbiotic apple juice or orange extract with
oligofructose (Miranda et al. 2019; Pimentel et al. 2015; Zhu et al. 2020), blended
drink of orange extract, hibiscus tea, and oligofructose (Miranda et al. 2019), and
mixed red fruit drinks of papaya, blackberry, and strawberry added with three
distinct prebiotics including inulin, galactooligosaccharides (GOS), and
fructooligosaccharides (FOS) (Bernal-Castro et al. 2019).

Pereira et al. (2011) studied the production of probiotic cashew apple juice and
they showed the cell counts of L. casei in the product after 6 weeks storage was about
8 log cfu/mL (Pereira et al. 2011). Similar results have been shown in melon juice
(Fonteles et al. 2013) and pineapple juice (Sheehan et al. 2007).

Sheehan et al. (2007) described wide alterations relating to the acid resistance
characteristic of Bifidobacterium and Lactobacillus in pineapple, orange, and cran-
berry juices. The survival rate of probiotics in pineapple and orange juices was
higher than cranberry juice. The number of L. rhamnosus, L. casei, and L. paracasei
was above 6 log cfu/mL in pineapple juice and over 7 log cfu/mL in orange juice for
12 weeks. In other study, a probiotic drink using coconut water was produced via
fermenting it by means of L. plantarum (Prado et al. 2015).

It has been studied the suitability of beet juice (Yoon et al. 2005), cabbage juice
(Ningrum et al. 2019; Yoon et al. 2006), and tomato (Dzandu 2019) by L. casei,
L. acidophilus, L. plantarum, and L. delbrueckii, and the number of the viable cells
the four probiotics in all fermented products raged from 5–8 log cfu/mL after
4 weeks storing at 4 �C.

Kun et al. (2008) showed that carrot juice can promote the growth of B. bifidum B
3.2, B. bifidum B7, and B. lactis Bb-12. All probiotic strains displayed high primary
cell counts of 10 log cfu/mL (Kun et al. 2008).

Mantzourani et al. (2018) applied L. plantarum ATCC 14917 in producing
probiotic Cornelian cherry juice. Consequences of their study disclosed that the
number of viable cells of L. plantarum ATCC 14917 was acceptable during cold
storage time and no significant organoleptic changes were observed in both
fermented and non-fermented samples (Mantzourani et al. 2018). Also, in another
study, they produced and surveyed fermented pomegranate juice by use of the same
strain (L. plantarum ATCC 14917) (Mantzourani et al. 2019).

Bujna et al. (2018) investigated mono- and mixed probiotic cultures for produc-
tion of apricot juice as a new nondairy probiotic beverage. Fermentation process
developed using probiotic bacteria individually disclosed cell numbers of, 7.06,
7.16, 7.2, and 7.25, log (cfu/mL h) L. casei 01, L. acidophilus La5, B. lactis
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Bb-12, and B. longum Bb-46 strains, respectively, even though sample fermented via
a mixed culture a higher cell numbers was detected (Bujna et al. 2018).

Li et al. (2019) demonstrated that using L. plantarum ATCC 14917 in apple juice
can improve the phenolic composition of apple juice and promote its total antioxi-
dant capacity. Also, Peng et al. (2020) assessed the fermentation performance of a
combination of Lactobacillus spp. in cloudy apple juices from nine cultivars. The
consequences disclosed that cultivar impacted most the characteristics of the
fermented cloudy apple juice. The highest probiotic number (6.37 � 108 CFU/
mL) and acetic acid contents (2.67 mg/mL) achieved from the fermented cloudy
apple juices made from Changfu (Peng et al. 2020).

In another study by Zhu et al. (2020), survival rate of L. sanfranciscensis into
three diverse nondairy carrier (apple, tomato, and orange) were investigated through-
out 4 weeks storage at 4 �C. Results showed that the survivability of probiotics in all
samples met the recommended level of >6–7 log cfu/mL at the end of storage time.

15.4 Cereals

Cereals are one of the most important sources of protein, carbohydrates, vitamins,
minerals, and fiber for humans. They can be used as sources of indigestible
carbohydrates and, with their water-soluble fiber such as beta-glucan, arabinoxylan,
and oligosaccharides such as galacto and fructo oligosaccharides and resistant
starch, as a prebiotic, can selectively stimulate the growth of Lactobacilli and
Bifidobacteria in the colon. Whole grains are sources of phytochemicals such as
phytosterols, phenolic compounds, antioxidants, phytic acid, and sterols (Lamsal
and Faubion 2009; Ogunremi et al. 2020).

The nutritional quality of grains is sometimes lower than that of milk due to their
lower protein content, deficiency of certain amino acids such as lysine, inability to
digest starch, hard nature of grains, and the presence of anti-nutritional compounds
such as phytic acid, tannins, and polyphenols. These compounds vary widely in
chemical structure and function, so fermentation can reduce the levels of indigestible
carbohydrates, poly and oligosaccharides, improve protein quality, and increase
lysine levels. Some amino acids may also be synthesized and the availability of B
vitamins may increase. Fermentation also provides the optimum pH for the enzy-
matic degradation of phytate and the release of minerals such as manganese
(an important factor for the growth of lactic acid bacteria), iron, zinc, and calcium.
Various strains of Lactobacilli and Bifidobacteria need fermentable carbohydrates,
amino acids, B vitamins, nitrogen, and minerals to grow, and different types of
cereals (like wheat, barley, millet, maize, oats, rye, and sorghum) are an inexpensive
culture and good carrier for these probiotics (Charalampopoulos et al. 2002; Chavan
et al. 2018; Kocková et al. 2013). Some instances of traditional cereal-based
fermented beverages (like Mahewa, Bushera, Boza, Togwa, and Pozol) are
described here.

Mahewu is a sour cereal-based probiotic beverage and it is made by means of a
multi-grain combination which can contains millet, maize, malt, sorghum, and wheat
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flour (Panghal et al. 2018). The natural fermentation process is made via the malt’s
microflora at about 25 �C. The chief bacteria isolated from Mahewu is L. lactis
subsp. lactis (Blandino et al. 2003). Bushera is an old beverage made with millet or
sorghum flour, and chiefly L. brevis, and another LAB like Enterococcus,
Lactococcus, Leuconostoc, and Streptococcus were isolated from Bushera (Muyanja
et al. 2003).

Boza is a traditional beverage from the natural fermentation of cereals like maize,
wheat, millet, rye, and others that are mixed with sugar (Todorov et al. 2008). Boza
displays a great variety of LAB and yeasts which contain L. acidophilus,
L. coprophilus, Lactobacillus brevis, L. plantarum, L. fermentum, Leuconostoc
mesenteroides, Leuconostoc reffinolactis, Saccharomyces cerevisiae, Candida
tropicalis, Candida glabrata, Geotrichum candidum, and Geotrichum penicillatum
(Heperkan et al. 2014). Togwa is another cereal-based fermented probiotic beverage
from China and Japan. This traditional probiotic drink is produced via fermenting
multi-grains like sorghum, finger millet, and maize flour with some probiotics, for
instance Streptococcus and mainly L. plantarum (Mugula et al. 2003).

Various investigations have been done to promote cereal-based probiotic
products and to assess the suitability of diverse cereal grains to improve probiotic
microorganisms’ growth and uphold their survivability into products during
manufacturing and storage time and also throughout gastrointestinal conditions
(in vitro and in vivo). Świeca et al. (2018) surveyed legume sprouts as a nondairy
carrier for L. plantarum 299 V. The sprouts that have been supplemented with the
probiotic, a lower mesophilic bacteria flora, particularly LAB, was detected in
comparison with the control groups (without probiotic). The L. plantarum number
was also steady throughout the cold storage period (Świeca et al. 2018).

In a study by Menezes et al. (2018), L. paracasei LBC-81 was employed lonely
and in mix with S. cerevisiae CCMA0731, S. cerevisiae CCMA0732, and Pichia
kluyveri CCMA0615 into maize-based substrate as a different functional food. Three
out of the four strains displayed acceptable survivability with counts more than 6 log
cfu/mL, which is the suggested for probiotic foodstuffs, excluding the Pichia
kluyveri which reduced throughout fermentation and storage period(Menezes et al.
2018). Leboš-Pavunc et al. (2019) studied the effect of dehydrated wheat/rice media
on probiotic activity of B. animalis ssp. lactis BB-12. The probiotic strain
(B. animalis ssp. lactis BB-12) displayed the high survivability throughout the
storage time of 106 weeks (Leboš-Pavunc et al. 2019). Gao et al. (2019) investigated
the development of a probiotic beverage by means of breadfruit flour as a substrate,
and L. plantarum DPC 206 and L. acidophilus as probiotic strains. The produced
probiotic beverage was found to have adequate cell viability and also satisfactory
sensory characteristic.

Soy milk is the main and well-known food in Asian countries that is now
consumed all over the world. Soybean milk is a stable emulsion of oil, water, and
protein which is prepared by soaking dried soybeans and grinding them. Soy milk is
a rich source of high-quality plant protein, isoflavones and B vitamins that are free of
milk sugar or lactose and is a good choice for people with lactose intolerance.
Laboratory studies on probiotic microorganisms have shown that soy milk is a
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good substrate for some probiotic bacteria, such as L. casei, L. helveticus,
L. fermentum, L. reuteri, and L. acidophilus (Niamah et al. 2017; Shilpa et al.
2011; Shimakawa et al. 2003; Taghizadeh et al. 2018).

In a related study, Homayouni Rad et al. (2020) investigated soy ice cream
(produced via the powder of soy milk) as a carrier for effective delivering of
L. casei. The viability of mentioned probiotic bacteria was assessed over storage
time (180-day, at �25 �C). The results disclosed considerable changes in the count
of L. casei in this product subsequently freezing and during storage time ( p < 0.05).
The most significant drop was perceived through the first 60 days approximately
1.83 logs after that the tendency of survival of L. casei leveled off over the next
120 days (Homayouni et al. 2020b). In similar study, Norouzi et al. (2019) surveyed
the survival rate of probiotic L. paracasei ssp. paracasei into fermented and
non-fermented frozen soy dessert during 180 days storage at �24 �C. The results
showed a considerable rise ( p < 0.05) in overrun (42.57 � 8.5) values in fermented
probiotic frozen soy dessert compared to other samples. In contrast to non-fermented
samples, there was no considerable ( p < 0.05) reduction in cell numbers of
L. paracasei throughout storage time. Both probiotic samples have capable potential
for application as functional foods. Nevertheless, fermentation could rise the stabil-
ity of L. paracasei in frozen soy dessert. Likewise, the organoleptic and physico-
chemical properties of frozen soy dessert were enhanced via fermentation (Norouzi
et al. 2019).

de Carvalho Marchesin et al. (2018) studied the impact of a soy-based probiotic
drink as a carrier for B. longum ATCC 15707 and Enterococcus faecium CRL
183 on the fecal microbiota configuration, body weight and inflammatory parameters
in diet-induced obese mice (de Carvalho Marchesin et al. 2018). In another study,
Devanthi et al. (2018) investigated the impact of concurrent and consecutive inocu-
lation of cultures (Tetragenococcus halophilus and Zygosaccharomyces rouxii as
starter cultures) in moromi fermentation models, regarding survivability, physico-
chemical variations, and volatiles formation (Devanthi et al. 2018). Lima Moraes
Filho et al. (2019) studied creamy soy sauce as carrier for L. plantarum BG 112
(Moraes Filho et al. 2019).

Recently, Setta et al. (2020) reviewed potential of probiotics from fermented
cereal-based beverages in enhancing healthiness of poor people in Africa. Also,
several researches have exposed that traditional African fermented cereal-based
drinks are possible probiotic carriers due to the probiotic bacteria (specially Lacto-
bacillus and Bifidobacterium spp.) and yeasts which are involved in the fermentation
of such foodstuffs. These probiotic products propose an occasion for the African
cereal beverages to be used to deliver probiotic health advantages to the majority of
populations. There are also other similar products in different countries that can
replace the shortage of fermented dairy products and expensive probiotic foods
(Setta et al. 2020).
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15.5 Meat Products

The function of probiotics in dairy products is fully acceptable, while their function
in meat products is still being studied. Fermented meat products are suitable for
carrying probiotics because they are not heated at all during processing or receive
very little heat and may improve the survival of probiotic bacteria in the gastrointes-
tinal tract. In contrast, bacterial viability may be reduced due to high salt content and
low water activity and low pH. Therefore, the results depend on the strain used.
However, the combination of these microorganisms with fermented meat products
can create some technological challenges. On the other hand, the acceptability of the
new meat product for the consumer and the survival of sufficient probiotic
microorganisms during the process is also among the issues under discussion
(Kołożyn-Krajewska and Dolatowski 2012). Probiotic bacterial strains have been
used successfully in the production of dairy products and some fruit juices, but their
use in the production of raw fermented meat products is not very suitable. It seems
that it is possible to add strains of meat-derived probiotic bacteria in the process of
producing fermented raw meat products, but research is needed to find out which
probiotic species can grow in which meat products (De Vuyst et al. 2008; Kołożyn-
Krajewska and Dolatowski 2009).

Fermented sausages (as raw meat products) are auspicious target meat products
with probiotic microorganisms, as such foodstuffs are treated without heat treatment
and probiotic microorganisms can continue to be live in the final product (Aspri et al.
2020; Kumar et al. 2015). However, probiotics must maintain their stability under
adverse conditions for the production of fermented sausages such as low pH (<4),
nitrite (120 ppm), aw (less than 0.85), and salt (1–3%) (Ordóñez et al. 1999; Vignolo
et al. 2010). Probiotic cultures should be able to grow rapidly during fermentation
and grow easily on industrial scales, be resistant to the freezing process, provide a
longer shelf life, and also improve the sensory quality of the final product. In such
fermented products, the addition of 3% sodium chloride and at least 120 ppm nitrite
is mandatory to maintain the microbial safety of the product. Therefore, the use of
salt-resistant medium is the first condition for the production of sausages with
probiotic properties (Aspri et al. 2020; Papamanoli et al. 2003). Despite all the
difficult conditions for the growth and survival of probiotics, fermented sausages are
regarded suitable carriers for them due to the guard of the probiotic cells to bile salts
and low pH which are applied from the fat molecules in the passageway over the GI
zone and the motivation of probiotic growing by the existence of the prebiotic fibers
(Bis-Souza et al. 2019a).

Important employed species of probiotic bacteria in fermented meat foods are
L. plantarum, L. casei, L. paracasei, L. sakei, L. acidophilus, L. rhamnosus,
Pediococcus pentosaceus, and Pediococcus acidilactici. The amalgamation of the
probiotic microorganisms can be attained via substituting the traditional starter
culture or via applying the traditional starter in association with the probiotic strain
(Bis-Souza et al. 2019a). Various investigations reveal the effective utilization of
probiotic strains into diverse fermented meat foods, for instance, different fermented
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sausages, salami, dry cured pork loins, sturgeon fermented sausage, mutton
fermented sausage, and Longaniza de Pascua (Aspri et al. 2020).

Rubio et al. (2014) studied nutritionally improved fermented sausages as a carrier
for delivery of lactobacilli probiotics. They used L. rhamnosus CTC1679 as a
probiotic for the making of Fuet (low acid fermented sausage). According to the
results, L. rhamnosus CTC1679 was able to grow and reach numbers of 8 log cfu/g
without disturbing the organoleptic characteristics of the product (Rubio et al. 2014).
In another study, Wójciak et al. (2017) investigated technical aspect of L. rhamnosus
LOCK900, L. acidophilus Bauer, and B. animalis BB-12 usage in dry fermented
pork neck and sausage. They showed that L. acidophilus retained the quality of the
product better than the L. rhamnosus and B. animalis (Wójciak et al. 2017). Slima
et al. (2018) demonstrated that probiotic strains of Pediococcus acidilactici MA
18/5 M and L. plantarum TN8 could be employed to improve sensory properties and
cooking yield and also extending sausage shelf life. In another study, Pavli et al.
(2020) investigated the potential of dry-fermented pork sausages as a carrier for
L. plantarum L125 strain. The results of their study disclosed that the viability rate of
L. plantarum was suitable (>6 log cfu/g) during the storage time without consider-
able impacting on the technological and the organoleptic properties of the final
product.

In similar study, de L Agüero et al. (2020) studied the technological
characteristics of LAB as starter cultures for dry fermented sausages. Eight strains
were evaluated properties counting the capability to grow, gas formation, lactic acid
production, hydrogen peroxide production, salt tolerance, nitrate reductase activity,
catalase activity, lipolytic activity, proteolytic activity, decarboxylation of amino
acids, performance at low temperatures, and antimicrobial activity against pathogen
microorganisms related to the product. According to the results, L. rhamnosus Lr-32,
L. rhamnosus R0011, L. casei Shirota, L. paracasei Lpc-37, and Enterococcus
faecium MXVK29 were suitable candidates for use as fermented sausages starters.
L. rhamnosus Lr-32 was the best enduring the low pH, salt, and nitrate throughout
the simulated phases of fermentation and maturing of sausage (de L Agüero et al.
2020). Sirini et al. (2020b) studied the effect of chestnut flour and probiotic micro-
organism on the functionality of dry-cured meat sausages. Adding the chestnut flour
diminished pH and remaining nitrite in Longaniza de Pascua. The results of the study
showed that Longaniza de Pascua is a good carrier for L. plantarum (Sirini et al.
2020b). The same authors reviewed the use of probiotic microorganisms in the
formulation of healthy meat products (Sirini et al. 2020a).

15.6 Other Traditional Products

There are many traditional fermented products with different names in different parts
of the world that can be the origin of different types of probiotic microorganisms and
may not have been researched yet. These products can be suitable carriers of native
probiotics and cause the transfer of probiotics into the consumer’s GI tract. However,
there are some products that have been extensively researched and their health
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effects have been proven to be effective carriers of probiotic microorganisms,
postbiotics, and other functional compounds. There are several non-dairy products
that can be discussed in this regard, which in this section, we have explained two of
these popular products; Kombucha and Chocolate.

One of the most famous of these products is Kombucha as a fermented beverage,
with a history of some thousand years in the East. Kombucha drink has been claimed
to be a nutritional supplement that consuming it supports the immune system and
averts some diseases. Kombucha is a symbiotic evolution of acetic acid bacteria and
osmophilic yeast species (SCOBY) which have to be cultivated in sweetened tea
with glucose or sucrose. SCOBY includes some bacteria like Acetobacter aceti spp.
xylinum, Acetobacter xylinum, Corynebacterium glutamicum, Acetobacter
pasteurianus, and Acetobacter xylinoides and also some yeasts like Saccharomyces
bisporus, Saccharomyces cerevisiae, Saccharomyces ludwigii,
Schizosaccharomyces pombe, Zygosaccharomyces bailii, Candida kefyer, Candia
krusei, Pichia sp., Brettanomyces sp., Torulopsis sp., and Issatchenkia orientalis
occidentalis. Several complexes and postbiotics have been isolated from Kombucha
including carbonic acid, glucuronic acid, gluconic acid, acetic acid, folic acid,
butyric acid, oxalic acid, lactic acid, malic acid, nucleic acid, citric acid, carbon
dioxide, ethanol, antibiotics, vitamins B including B1, B2, B6, and B12, and vitamin
C (Ansari et al. 2017; Ansari et al. 2019; Chakravorty et al. 2016; Coelho et al. 2020;
Villarreal-Soto et al. 2018).

Another product, as a functional food, not only does not unpleasantly impact
healthiness, but also hinders some disorders such as cancer, osteoporosis, diabetes,
and cardiovascular diseases. Cocoa is rich in proteins, minerals, carbohydrates,
flavonoids, and polyphenolic antioxidants (Aspri et al. 2020). Several researchers
have recommended that chocolate is a suitable substrate for probiotic
microorganisms providing guard to probiotics throughout storing time and passage
into GI lumen (dos Santos Filho et al. 2019; Kemsawasd et al. 2016; Konar et al.
2016). Klindt-Toldam et al. (2016) displayed that B. lactis HN019 and
L. acidophilus NCFM combined into dark chocolate and milk chocolate remained
viable throughout storage period and also during GI lumen (Klindt-Toldam et al.
2016). Zarić et al. (2016) showed that after 6 months of storage, the viability of
L. acidophilus NCFM, L. rhamnosus HN001, and B. lactis HN01 was above 90%,
with cell number of approximately 8 log cfu/g(Zarić et al. 2016). In another study,
Mirković et al. (2018) studied the organoleptic quality and volatile profile of dark
chocolate supplemented with microencapsulated probiotic L. plantarum 564 and
L. plantarum 299v. The consequences disclosed suitable survival of both probiotic
strains after manufacture and throughout storage period (8 log cfu/g in the first
60 days and over 6 log cfu/g up to 180 days) (Mirković et al. 2018). Cielecka-
Piontek et al. (2020) studied survival of commercial probiotic strains and their effect
on dark chocolate synbiotic snack with raspberry content during the storage and after
simulated digestion. The results showed the cell count of probiotics was steady
(8 log cfu/g) and moderately high through 6 months of storage time (Cielecka-
Piontek et al. 2020).
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15.7 Commercially Available Nondairy-Based Probiotic
Products

Various nondairy probiotic foods are previously extant for consumers. The primary
nondairy probiotic food was produced via a Swedish corporation Skane Dairy
(1994-ProViva) (Aspri et al. 2020; Bansal et al. 2016). Oatmeal gruel being
fermented via L. plantarum 299v was the base substrate and malted barley was
supplemented to expand liquefaction of the product, and finally it has been mixed
with diverse fruit extracts like strawberry, blueberry, or tropical fruits. This probiotic
product comprised 5 � 1010 CFU/L of L. plantarum (Molin 2001). A comparable
product GoodBelly was the primary nondairy probiotic beverage in the United States
in 2006 (Aspri et al. 2020; Panghal et al. 2018). Furthermore, some cereal probiotic
products have been available in some markets, for example, probiotic flakes
(Muesli®, Portugal), cereal bars (CornyActiv®, Germany), whole wheat breakfast
cereals (Weetaflakes®, France), whole grain probiotic liquidR (Grainfields,
Australia), whole grain oatmeal (United Kingdom), and snack bar (Goodness®,
United Kingdom) (Aspri et al. 2020; Dornblaser 2007).

15.8 Viability of Probiotics in Nondairy Foods

The survival rate of probiotics is one of the most important factors in the study of
these microorganisms. Dairy/nondairy Foods containing probiotics fall within the
“functional foods” class and these nutrients should comprise as a minimum 7 log
cfu/g probiotics and consumed at levels higher than 100 g/day to have supportive
impacts on healthiness (Abdolhosseinzadeh et al. 2018). However, there are still
some complications related to the low survival of probiotic microorganisms in foods
along with GI environments (Mirzaei et al. 2011; Suvarna et al. 2018). Various
investigations have obviously showed that the kind of carrier foods could impact not
only the survivability of probiotic microorganisms throughout production and stor-
ing period, but also on their functional characteristics, for instance vulnerability to
harsh situations in the GI tract (low pH, bile salt, and several enzymes), ability to
stick to enterocytes, and immunomodulation (Kedia et al. 2009; Marco and Tachon
2013; Ranadheera et al. 2012; Ranadheera et al. 2014).

Dairy foodstuffs (rich in milk fat) can enhance the viability of probiotics during
manufacturing and GI tract. Nevertheless, the physical structure of nondairy foods,
for instance fruits and vegetables, may offer protecting milieu for probiotic
microorganisms and decrease their contact to strict GI circumstances too (Ansari
et al. 2020a; Homayouni et al. 2020a; Homayouni et al. 2018). Fermented meats
such as sausage structure have also revealed a possible in retaining the survivability
of probiotic cells over GI transportation (Klingberg and Budde 2006; Rouhi et al.
2013). Various published articles are available on how to advance the viability of
probiotic microorganisms in nondairy foods. The most striking and effective
approaches are fortification via prebiotic ingredients (for instance dietary fiber,
resistant starch, inulin, cellulose), adding antioxidants, refrigerated storing in
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atmosphere improved carbon dioxide, and microencapsulation (Khosravi et al. 2021;
Shah 2000; Tamime et al. 2005). In summary, the important point that has already
been mentioned is to keep the number of probiotics in an acceptable range so that it
can maintain its beneficial effects on the host, and this is very much affected by the
type of food that carries these microorganisms.

15.9 Organoleptic/Sensory and Acceptability of Nondairy
Probiotics

The organoleptic/sensory properties and acceptability of probiotic products are
especially important in the case of nondairy products in terms of industrial and
mass production. The organoleptic characteristics of nondairy probiotic foods can be
impacted via interactions between diverse probiotics strains and food substrates,
where taste, aroma, flavor, color, and textures may be improved via the creation of
diverse metabolic ingredients, for instance, organic acids, exopolysaccharides, and
other metabolites through processing and storage (Aspri et al. 2020; Panghal et al.
2018). Consequently, it is significant to assess not only the suitable probiotic
viability, but also the organoleptic acceptance throughout manufacturing and storage
time of probiotic nondairy foods. For example, in fruit products, depending on the
type of fruit, processing and storing temperature, type of probiotic, and the addition
of protectants and prebiotics, it can influence the organoleptic characteristics of the
final product (Lebaka et al. 2018).

15.10 Summary of Technological Challenges and Advancements
of Nondairy Probiotic Foods

The most investigated technologies which were involved in fermentation, rehydra-
tion, drying, microencapsulation, and storage have been advanced and effectively
used to protect some probiotic microorganisms from environmental tensions related
to several nondairy food media, nonetheless there are still various technological
challenges in manufacturing and protecting probiotic foods. Certainly, the mainte-
nance of adequate viable cells of probiotics is an important factor of quality. Merely
applying any probiotic species such as Lactobacillus and Bifidobacterium does not
assurance high viable content in fermented foodstuffs after fermentation and
throughout the storage period (Min et al. 2019).

Technological challenges such as manufacturing, handing out, temperature of
production and storage, pH rate, oxygen content, O/R potential, aw rate, relative
humidity (RH), antimicrobial agents, and external stresses can affect the use of
probiotic microorganisms in food products (Min et al. 2019; Vasudha and Mishra
2013). For example, several food components such as sugar and salts can bind water
and cause low aw and improve the viability of probiotics (Holck et al. 2011).
Conversely, surplus aw, for example, in fruit juice, can decrease the survival of
probiotics throughout storage period (Vasudha and Mishra 2013).
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Microencapsulation of the probiotic microorganisms is one of the modern and most
effectual methods. Microencapsulation by means of emulsion and extrusion methods
has been used for the protection of probiotics against harsh circumstances (Pourjafar
et al. 2018, 2020). Some studies have shown that the addition of protectants (e.g.,
lactose, trehahose cellobiose, and sucrose) to the probiotic media can advance
survivability of probiotics in the nondairy foods (Min et al. 2019).

15.11 Postbiotics and Food Applications of Postbiotics

15.11.1 Classes of Postbiotics

Postbiotics can be secreted by live microbiota during its life cycle or may be released
after bacterial lysis. These compounds are essential in regulating self-growth, devel-
opment, reproduction and modulating the growth of other microorganisms and can
also have an effect on the physiological responses of the host by modifying cellular
processes and metabolic pathways (Aguilar-Toalá et al. 2018). In general, these
postbiotics are classified either by their elemental composition or by their physio-
logical function.

According the first classification method there are seven main classes of
postbiotics; (1) Cell-Free Supernatants including biologically active metabolites
secreted by bacteria and yeast into the surrounding liquid. This kind of postbiotics
is obtained directly from cell cultures. For this purpose, the microbial cells are
separated from overnight grown whole culture broth by centrifugations, and the
supernatant containing postbiotics is then filtered to ensure sterility.
(2) Exopolysaccharides which are biopolymers with different chemical properties
released outside the bacterial cell wall. These biopolymers form heterogeneous
molecules called exopolysaccharides (EPSs). EPSs has recently gained a lot of
attraction and are widely studied for their potential positive biological properties.
(3) Enzymes that are a part of the defense mechanisms of the organism against
harmful effects of reactive oxygen species (ROS) damaging lipids, proteins,
carbohydrates, and nucleic acids. Antioxidant enzymes, such as glutathione peroxi-
dase (GPx), peroxide dismutase (SOD), catalase, and NADH-oxidase are classified
within this category. (4) Cell Wall Fragments such as bacterial lipoteichoic acid
(LTA). These components are immunogenic and can elicit immune responses. They
are proven to have anti-infectious, anti-inflammatory and anti-cancer effects.
(5) Short-Chain Fatty Acids (SCFAs) produced by fermentation of plant
polysaccharides by intestinal microbiota. Acetic, propionic, and butyric acids are
from the most well-known SCFAs. Helping to renew intestinal epithelium,
modulating gene expression, immunosuppressive effects, and metabolic and anti-
inflammatory function are from the properties of SCFAs. (6) Bacterial Lysates (BLs)
which are results of the chemical or mechanical degradation of Gram-positive and
Gram-negative bacteria commonly found in the environment. They have specific
immunological activities like activating T and B lymphocytes. The beneficial effects
of BLs in the case of infections and allergic diseases have been observed in several
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studies. (7) Metabolites Produced by Gut Microbiota including vitamins, phenolic-
derived metabolites, and aromatic amino acids. These products have high bioavail-
ability, antioxidative features, and signaling properties and are very important in
host-microbiome crosstalk (Żółkiewicz et al. 2020).

According the physiological function of the postbiotics they are grouped in
categories such as immunomodulator, anti-inflammatory, hypocholesterolemic,
anti-obesogenic, anti-hypertensive, anti-proliferative, and antioxidant (Aguilar-
Toalá et al. 2018). These classifications lead to better understanding of the function
of postbiotics and is used for the application of them for clinical and industrial
purposes.

15.11.2 Manipulation of Postbiotic Composition for Food
Application

To apply postbiotics in nondairy food products several issues should be considered.
First of all, the susceptibility of postbiotics to manipulation processes such as pH
alterations, heat treatment and exposure to NaCl and proteolytic enzymes which can
severely change the postbiotic properties. For instance, it has been shown that
antimicrobial activity of bacteriocinogenic Lactococcus lactis subsp. lactis CWBI-
B1410 and L. curvatus CWBI-B28 was completely lost after 8 days storage at 10 �C
in the neutralized pH solution. The second issue is the interaction of postbiotics with
other food compounds. Food ingredients may contain several postbiotic inhibitory
elements like enzymes, proteins, and carbohydrates which may limit the postbiotic
properties. And the last but not the least is the effects of postbiotics on consumer’s
overall acceptance of the food (Moradi et al. 2020).

In the case of application postbiotics for each kind of food products all the above
issues should be assessed. There are also some hurdle technologies to assist
overcoming the mentioned concerns. For instance, postbiotics may be protected
and released in their target sites thorough encapsulation processes. Moreover,
application of nanocarriers for hydrophobic postbiotics like fat-soluble vitamins
improves their resistance to the light, heat, and oxygen during storage and augments
bioavailability of the postbiotics. They also increase transparency of the product,
which is highly important in the case of postbiotic beverages (Homayouni Rad et al.
2020). However, we need more studies in this field to develop effective and
applicable methods to protect postbiotics in the food matrix (Moradi et al. 2020).

15.11.3 Interaction Between Postbiotics and Food Ingredients

As it has been discussed previously, postbiotics have several kinds of properties,
such as anti-cancer, anti-oxidant, and anti-microbial effects. All the ingredients of a
food matrix have the potential to increase or decrease the specific effects of the added
postbiotics. For instance, it has been shown that the postbiotic Nisin is rapidly
inactivated in raw beef because of potential interaction with raw components like
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proteases and glutathione. In this case heating the meat at 71 �C or application of
liposome-encapsulated nisin was proposed for maintenance of the activity of nisin
during processing and storage (Younes et al. 2017). Similarly, anti-microbial
postbiotics may be applied to enhance the microbial safety of the food. Although
the results of a research indicate that bacteriocins with strong inhibition on agar
plates had only a reduced and transient inhibitory effect when applied in ground beef
(Hartmann et al. 2011). Some metabolites like EPS can protect the pathogens from
harsh environmental conditions, so their application in food products should be
under specific cautions. Otherwise they may increase the proliferation of the bacteria
and introduce a safety hazard for the consumers (Moradi et al. 2020).

On the other hand, some of the food ingredients lead to the production of valuable
substances as postbiotics which are not normally produced by the bacterium. For
example, some strains of L. plantarum produce 10-hydroxy-cis-12-octadecenoic
acid (HYA) in the presence of linoleic acid. This substance is very beneficial for
controlling colitis and diabetes (Moradi et al. 2020).

15.12 Conclusion

Nondairy food products (legumes, cereals, pseudocereals, fruits, and vegetables)
provide a valuable opportunity for special groups of people such as people intolerant
or allergic to milk proteins, those who are hypercholesterolemic, or those who are
vegetarian to use the benefits of functional foods and specifically postbiotics. These
products can be readily consumed by other groups, so they will have a wide market
target. We need more in vitro and in vivo studies to address the growing international
requirements for nondairy foods containing postbiotics.

The following research fields have been proposed for future studies:

• Developing products for consumers with certain dietary restrictions such as milk
allergies, low cholesterol or fat content, diabetes, phenylketonuria, and lactose
intolerance.

• Proposing novel products for specialized market segments such as children and
chronically ill patients.

• Working on novel technologies for production of foods containing postbiotics.
• Evaluating the viability of postbiotics in different environmental conditions, in

final product, and in gastrointestinal tube.
• Assessing Organoleptic and functional characteristics of the final product.
• Using encapsulation techniques for targeted delivery of postbiotics.
• Assurance of safety and effectivity of the final products.
• Developing international standards for products containing postbiotics.

The general plan for essential fields of future studies has been demonstrated in
Fig. 15.1.
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