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1 Introduction

Microfluidics is a term which deals with transport phenomena at the microscopic
scales and techniques and components employed for controlling and actuating the
fluids. The microfluidic systems are the fast-growing technology, and the micro-
fluidics study is significant for implementing lab-on-a-chip (LOC). The LOC sys-
tems are moreover recognized as micro total analysis systems (µTAS) that can
execute maximum stages of chemical and biological processes [1, 2]. Microfluidics
has many applications in many different fields including cosmetics, pharmaceuti-
cals, biotechnology, medicine, and also in physical sciences for control systems and
heat management. A microchannel is one of the vital components of microfluidic
systems. The microchannel is a channel that has a height and width in the order of
micrometers (lm). A microchannel which mixes fluid is called a micromixer. The
geometries are built into the circuits which are known as microfluidic chips. This
technology has been the reason for a good deal of research, as it offers a means for
carrying out the key chemical evaluation processes in the biomedical field [1–3].
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Micromixers can be classified into two main categories as active and passive. Each
of these micromixers has different capacity, mixing speed, and operating require-
ments. For example, an active micromixer requires power input to make mixing
possible in the device.

In contrast, a passive micromixer achieves mixing with the applied pressure for
fluid motion. As such, some micromixers are more suitable for a particular appli-
cation than the others. Active micromixer generally provides correct mixing, but
their fabrication is cost-intensive, and integration with different devices is difficult.
For this reason, passive micromixers are favored in several situations [4–6].

Many researchers report the mixing performance of passive microchannels. The
various geometries like wavy structure, curved shape, static micromixers, 3D ser-
pentine, square wave, straight microchannels, spiral-shaped microchannel, serpen-
tine microchannel with cyclic L-shaped units, serpentine microchannel with
non-aligned inputs, etc., have been used by different researchers for analyzing the
effect of geometry/shape on the mixing performance analysis [7–15]. Many
researchers have also studied the microchannel-based on the split and recombine
(SAR) process. In SAR, the two fluids to be mixed are split and recombined to
optimize the diffusion process. The different passive micromixer configurations
developed by various researchers are planar SAR micromixer, micromixer using
two-dimensional (2D) modified Tesla structures, two-layer crossing channels
(TLCCM), ellipse-like micropillars, P-SAR micromixer with cavities (fan-shaped),
modified P-SAR micromixer with dislocation sub-channels, etc. The mixing per-
formance has been observed enhanced due to the SAR process and the subsequent
chaotic advection [16–18]. Different researchers report some numerical investiga-
tions on mixing behavior of microchannels using different types of obstacles and
grooves along the mixing path. [19–24] and reported that recirculation zones are
created downstream of these obstructions, which resulted in mixing performance
enhancement. Few of the researchers have fabricated the microchannels using
different methods like laser machining, photochemical machining, micro-milling,
etc. [25–35].

Based on the above reported various studies, it is noted that the microchannel is
governed by the two main parameters as pressure drop and mixing index (or mixing
length). Still, there is scope for comparative analysis of serpentine microchannels
with straight bends and curved bends. Also, the effect of width and height (aspect
ratio) on the mixing analysis is impressive. This paper presents the mixing per-
formance analysis with straight and curved bends. COMSOL Multiphysics 5 was
used for performing the simulations. The aspect ratio (ratio of channel width to
height) was varied as 0.75, 1, and 1.25. The pressure variation (drop) and mixing
within straight and curved serpentine microchannel is analyzed.
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2 Methodology—Numerical Simulations

2.1 Microchannel Geometry

In the present study, two microchannel configurations with Y-shaped inlet have
been considered—a serpentine microchannel with straight bends and a serpentine
microchannel with bends. The computational models for the same are developed in
COMSOL Multiphysics 5.0 and are presented in Fig. 1a, b for the serpentine
microchannel with straight and curved bends, respectively. The dimensions (width
and height) of the microchannel considered are 400 µm for both the configurations
for aspect ratio 1. The width of the channel is kept constant, and the height is varied
for aspect ratio of 0.75 and 1.25. Two different fluids have been fed through two
different inlets, namely Inlet 1 and Inlet 2. The fluid velocity (u mm/s) for both the
inlets has been assumed to be the same.

2.2 Boundary Conditions

The simulations for the developed microchannels have been carried out using
COMSOL Multiphysics 5. The physics used for simulations in COMSOL is lam-
inar flow and transport of diluted species. Using suitable boundary conditions, the
governing equations, i.e., Eqs. 1–3, have been solved in the software. The boundary

Fig. 1 Serpentine microchannel a with straight bends b with curved bends
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conditions used are the equal velocities at the two inlets, atmospheric pressure at the
outlet, symmetry at the interface between the fluids, and no-slip conditions at the
microchannel walls. The fluids at the two inlets have been considered as water and
ethanol at 25 °C. At the inlet boundaries, the concentrations of fluids have been
taken as 10 mol/m3 and that for fluid 2 as 0 mol/m3. The diffusion coefficient of
ethanol in water has been taken as 1.0 � 10−9 m2/s. The inlet velocity is varied
from 0.5 to 1 mm/s.

For the developed computational models, the steady-state condition for the fluid
flow and convection and diffusion of the species have been assumed. The mass and
momentum balance for the incompressible and isothermal Newtonian fluids in
microchannels are expressed by Navier–Stokes and continuity equations, and the
equations are as follows:

r:u ¼ 0 ð1Þ

r u:rð Þu ¼ r: �pIþr ruþðruÞT� �� 2=3r r:uð ÞI� �þF ð2Þ

where u = (u, v, w) is the flow velocity field, q is the density of the fluid, p is fluid
pressure, µ is the dynamic viscosity of the fluid, I is the unit diagonal matrix, and
F = (fx, fy, fz) is a volume force affecting the fluid.

Due to the convection and diffusion, the mixing in the flow takes place. The
following equation has governed mass transport:

r: �D:rcð Þþ u:rc ¼ R ð3Þ

2.3 Meshing

For the computational analysis of the microchannel models, the unstructured mesh
has been used. For avoiding the effect of increased meshing elements on the quality
of the simulation results, the simulations have been carried out with different mesh
size (domain elements). For both the configurations of the microchannel, the results
for pressure drop are compared at various domain elements. The meshed serpentine
microchannel with straight and curved bends is depicted in Fig. 2a, b, respectively.

3 Results and Discussion

Using COMSOL Multiphysics 5.0 software, the 3D models of the serpentine
microchannel with straight and curved bends have been developed, and then,
simulations have been carried out. Equations 1–3 have been solved by using
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considered boundary conditions. Water is used as the primary fluid, while ethanol
has been used as the secondary fluid (both at 25 °C).

3.1 Effect on the Pressure Drop (Pa)

The influence of the aspect ratio on the pressure drop is analyzed. The aspect ratio
considered for the analysis was 0.75, 1, and 1.25. The velocity of inlet fluids was
varied with a velocity of 0.5 mm/s, 0.75, and 1 mm/s. The sample images for the
pressure drop measurement for serpentine microchannel with straight bends and
curved bends are shown in Fig. 3a, b, respectively.

The pressure drop was recorded, and the effect of aspect ratio on pressure drop
for serpentine microchannel with straight bends and curved bends is shown in
Fig. 4a, b, respectively. It is observed from Fig. 4 that the pressure drops increase
with increase in the aspect ratio from 0.75 to 1.25. Also, the pressure drops increase
with increase in velocity from 0.5 to 1 mm/s. The reason behind this is as the aspect

Fig. 2 Meshing for serpentine microchannel a with straight bends b with curved bends

Fig. 3 Pressure drop for serpentine microchannel at 0.5 mm/s velocity for a with straight bends
b with curved bends
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ratio increases the cross-sectional area of the microchannel increases. The same
fluid will experience more pressure in a lesser area and less pressure in the increased
area. Therefore, the pressure drop increases with an increase in aspect ratio. From
Figs. 4 and 5, it can also be noted that the pressure drop is more for the serpentine
microchannel with curved bends as compared to serpentine microchannel with
straight bends. The fluids experience more pressure in curved bend configuration
due to its shape, and this leads to increased pressure drop for serpentine
microchannel with curved bends as compared to serpentine microchannel with
straight bends.

3.2 Effect on the Mixing Length

The term mixing length refers to the distance along the channel where the mixing
index is achieved as 1, i.e., the mixing of the two fluids is 100%. The mixing length
is recorded in COMSOL Multiphysics 5 software. The sample images for the
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serpentine with a straight
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mixture across the cross section for serpentine microchannel with straight bends and
curved bends are presented in Fig. 6a, b, respectively.

The effect of aspect ratio on mixing length is presented in Fig. 7a, b for ser-
pentine microchannels with straight bends and curved bends.

From Fig. 7, it can be seen that the mixing length is noted lesser for the
microchannels smaller aspect ratio. It increases with increase in aspect ratio from
0.75 to 1.25 for both the considered microchannel configurations. This increase is
because the flow is laminar at lesser fluid velocities, and the mixing in the
microchannels is because of diffusion. Aspect ratio 0.75 indicates the broader cross
section, and the aspect ratio 1.25 showed the smaller the cross section. The more
area is available for diffusion in case of the larger cross-sectional area; hence, the
lesser mixing length is observed at lower aspect ratio, and the increased mixing
lengths are noted for the larger aspect ratio 1.25. Also, the mixing lengths are found

Fig. 5 Comparative pressure drop analysis for serpentine with a straight bends b curved bends

Fig. 6 Sample images for mixing at the cross section of the channel for serpentine with a straight
bends b curved bends
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lesser for serpentine microchannel with curved bends as compared to that for the
serpentine microchannel with straight bends. This smaller mixing length is due to
the effect of Dean vortices forming at the curved bends, which enhances the mixing
and leads to reduced mixing lengths as compared to that for straight bends.

4 Conclusions

The mixing performance analysis of a serpentine microchannel with straight bends
and curved bends has been studied using computational analysis with COMSOL
Multiphysics 5.0 software. The aspect ratio considered in the analysis is 0.75, 1, and
1.25. The influence of aspect ratio on the pressure drop and mixing length is
investigated. Based on the numerical analysis, the following conclusions are drawn:

• The pressure drop increases proportionally with an increase in the aspect ratio
from 0.75 to 1.25.

(a)

(b)

Fig. 7 Effect of aspect ratio
on mixing length for
serpentine microchannel with
a straight bends b curved
bends
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• The mixing length also increases with an increase in aspect ratio from 0.75 to
1.25.

• The higher-pressure drops are noted for the serpentine microchannel with
curved bends as compared to serpentine.

• The mixing lengths are observed lesser for the serpentine microchannel with
curved bends as compared to straight bends.
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