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Preface

Topological dynamics is an emerging field. Topological data analysis is a young
field. Dynamics of data is an interesting zone to stay and watch. Today, the field of
topological dynamics and topological data analysis has grown into a respected
mathematical discipline with specific concepts and techniques, and with plenty of
applications inside and outside mathematics. In December 2018, a workshop and
the first international conference on topological dynamics and topological data
analysis in India took place at Rajagiri School of Engineering and Technology,
Kerala.

In the workshop, from 5th December to 8th December, leading experts from all
over the world gave comprehensive survey lectures on the state of the art in their
areas. In the coference from 9th December to 11th December, new research results
were presented my mathematicians from 14 countries. To name a few—A.
N. Sharkovsky, James Yorke, Joseph Auslander, Henk Bruin, Robert Deveney,
Saber Elaydi, V. Kannan, G. Rangarajan, Roman Hric, Amit Chattopahyay, Andrei
Tetenov, Krzysztof Lesniak, Patrizio Frosini, Dan Burghelea, Dominic Kwietria K,
Hisao Kato, Karoly Sumon, Kitchan, Romen Hric, Vijay Natarajan, Anima Nagar,
W. J. Charatonik.

This volume contains some invited lectures of the workshop and selected con-
tributions of the conference. Providing readable surveys, it can be used as reference
book those who want to start work in the field.

The organizers of the conference would like to thank the management of
Rajagiri School of Engineering and Technology, Cochin, Kerala, India, for the
inspiration and support provided to conduct the conference.

The organizers acknowledge the financial support given by National Board of
Higher Mathematics, India, Dept. of Science and Technology, India, and
International Council for Industrial and Applied Mathematics.

Boston, USA Robert L. Devaney
Bowling Green, USA Kit C. Chan
Cochin, India P. B. Vinod Kumar
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An Overview of Unimodal Inverse
Limit Spaces

H. Bruin

Abstract An overview of unimodal inverse limit spaces, to support the mini-course
“Interval dynamics and Inverse limit spaces”, at IWCTA: International Workshop
and Conference on Topology and Applications, Rajagiri School of Engineering
and Technology, Kochi, December 5–8, 2018.

Keywords Inverse limit space · Unimodal map · Tent map · Quadratic map ·
Embeddings · Endpoints · Folding point · Composant · Ingram conjecture

2000 Mathematics Subject Classification 54H20, 37B45, 37E05

1 Introduction

Unimodal maps are maps of the interval with a single critical point and increasing/
decreasing at the left/right of the critical point. Thebest knownexamples are quadratic
(logistic) maps and tent maps, see Fig. 1.

They are among the simplest maps that, at least for some parameters, are chaotic
in every sense that can be given to mathematical chaos. They are not invertible;
however, a simple way to make them invertible is by introducing a second coordinate
and thicken the map:

Ta : x �→ 1 − a|x |, La,b: (x, y) �→ 1 − a|x | + by, x),

Qa: x �→ 1 − ax2, Ha,b: (x, y) �→ (1 − ax2 + by, x).

In this way, the tent map becomes a Lozi map and the quadratic map a Hénon map.
Figure2 gives a Lozi attractor (resp. Hénon attractor) obtained as ∩n≥0Ln

a,b(U ) for
somewell-chosen, forward invariant open diskU . In order to understand the topology
of such attractors, unimodal inverse limit spaces (UILs) are a first informative, but

H. Bruin (B)
Faculty of Mathematics, University of Vienna, Oskar Morgensternplatz 1, 1090 Vienna, Austria
e-mail: henk.bruin@univie.ac.at
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Fig. 1 Unimodal maps: a quadratic map and a tent map

Fig. 2 Lozi and Hénon attractor. The Lozi

certainly not sufficient, step. In fact, all questions asked about UILs in these notes
(and more!) can be asked about Lozi attractors and Hénon attractors.

2 Definitions and Notation

Let N = {1, 2, 3, . . . } be the set of natural numbers and N0 = N ∪ {0}. We consider
two families of unimodal maps, the family of quadratic maps Qa: [0, 1] → [0, 1],
with a ∈ [2, 4], defined as Qa(x) = ax(1 − x), and the family of tent maps
Ts : [0, 1] → [0, 1] with slope ±s, s ∈ [2, 3], defined as Ts(x) = min{sx, s(1 − x)}.
Let f be a map from any of these two families. The critical or turning point is
c: = 1/2. Write ck : = f k(c). The closed f -invariant interval [c2, c1] is called the
core and denoted as lim←−([c2, c1], T ).
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Fig. 3 sin 1
x continuum and the Knaster continuum. The sin 1

x continuum

Fig. 4 Maps with sin 1
x continuum and the Knaster continuum as inverse limit spaces

The inverse limit space lim←− ([0, 1], f ) is the collection of all backward orbits

{x = (. . . , x−2, x−1, x0): f (x−i−1) = x−i ∈ [0, c1] for all i ∈ N0},

equipped with metric d(x, y) = ∑
i≤0 2

i |xi − yi |. The map f is called the bond-
ing map of lim←− ([0, 1], f ). We define the induced or shift homeomorphismon
lim←− ([0, 1], f ) as

σ(x): = σ f (. . . , x−2, x−1, x0) = (. . . , x−2, x−1, x0, f (x0)).

Let πi : lim←− ([0, 1], f ) → [0, c1], πi (x) = x−i be the i-th projection map.

Simple examples of such unimodal inverse limit spaces are the sin 1
x -continuum

and the Knaster continuum (bucket handle) shown in Figs. 3 and 4.
The similarity between aHénon attractors and theKnaster continuummay suggest

that inverse limit spaces are homeomorphic to Hénon attractors in some generality,
but in fact, the generality is very limited.
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Theorem 2.1 (Barge and Holte [8]) If a is such that 0 is a periodic for Qa(x) =
1 − ax2, then for |b| sufficiently small, then the attractor of Ha,b and the inverse limit
space of Qa are homeomorphic.

Barge [6] on the other hand showed that under fairly general assumptions, Hénon
attractors (and homoclinic tangle emerging from a homoclinic bifurcations) are
homeomorphic to unimodal inverse limit spaces, not even if you allow varying bond-
ing maps.

Usually, thewholeUIL is decomposable: For the case c ≤ c1, it follows fromBen-
nett’s Theorem in [11] that we can decompose lim←−([0, 1], Ts) = lim←−([c2, c1], Ts) ∪
C, where 0̄: = (. . . , 0, 0, 0) ∈ C is a continuous image of [0,∞) (called zero-
composant) which compactifies on lim←−([c2, c1], Ts). Inverse limit space of tent map
lim←−([c2, c1], Ts) obtained from the forward invariant interval [c2, c1] is called the
core of the UIL.

2.1 Chainability

Definition 2.2 Let X be a metric space. A chain in X is a set C = {�1 . . . , �n} of
open subsets of X called links, such that �i ∩ � j �= ∅ if and only if |i − j | ≤ 1.

The mesh of a chain C is defined as mesh(C) = max{diam �i : i = 1, . . . , n}. A
space X is chainable if there exists chain covers of X of arbitrarily small mesh.

A corollary of X being chainable is that X contains no triods (homeomorphic
copies of the letter Y) or circles. All unimodal inverse limit spaces are chainable,
and all chainable continua can be embedded in the plane, i.e., there is a continuous
injection h: X → R

2 (called embedding) such that h(X) and X are homeomorphic.
They also possess the fixed point property: every continuous map f : X → X has
a fixed point.

Definition 2.3 A point a ∈ X ⊂ R
2 is accessible if there exists an arc A = [x, y] ⊂

R
2 such that a = x and A ∩ X = {a}.
Unimodal inverse limit spaces can therefore be embedded in the plane, but in

general, there are many (in fact uncountably non-homotopic) ways to do so. There
are two standard ways that yield an embedding very much like the Lozi attractor (or
Hénon attractor) with b > 0 (orientation reversing, making the composant R of the
fixed point p = (. . . , r, r, r) accessible, see [17]) and b < 0 (orientation preserving,
making the zero-composant accessible, see [16]), respectively.

The result of Anušić et al. gives an idea howmuch variety there is in embeddings.

Theorem 2.4 (Anušić et al. [2]) For every point a ∈ X, there exists an embedding
of X in the plane such that a is accessible.
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2.2 Symbolic Dynamics

Wecan extend theMilnor–Thurston [26]kneading theory toUILs, as doneoriginally
in [16]. The symbolic itinerary of the critical value c1 ∈ [0, 1] under the action of T
is called the kneading sequence, and we denote it as ν = ν1ν1ν3 . . . , where νi = 0 if
ci < c and νi = 1 if ci > c. Analogously, to each x ∈ lim←−([0, 1], T ), we can assign

a symbolic sequence ←−x .
−→x = . . . s−1 ∈ {0, 0

1 , 1}−N where

s−i =

⎧
⎪⎨

⎪⎩

0 πi (x) < c,
0
1 πi (x) = c,

1 πi (x) > c,

i ≥ 0.

Here, 0
1 means that both 0 and 1 are assigned to x . If c is non-periodic, this can

happen only once, i.e., to every point, we assign at most two symbolic itineraries. If
c is periodic, say of period n, then we need to make a consistent choice, usually such
hat si+1 . . . si+n contains an even number of 1s.

For a fixed left-infinite sequence s = . . . s−2s−1s0 ∈ {0, 1}N0 , the subset

A(s): = {x ∈ X :←−s ∈ ←−x }

of X is called a basic arc. It can be shown that A(
←−x ) is the maximal closed arc A

containing x such that π0: A → I is injective. In [17, Lemma 1], it was observed
that A(

←−x ) is indeed an arc (but it can be degenerated, i.e., a single point).
For every basic arc A(

←−x ), we define

NL(
←−x ) : = {n > 1: s−(n−1) . . . s−1 = ν1ν2 . . . νn−1, #1(ν1 . . . νn−1) odd},

NR(
←−x ) : = {n ≥ 1: s−(n−1) . . . s−1 = ν1ν2 . . . νn−1, #1(ν1 . . . νn−1) even}.

and
τL(

←−x ): = sup NL(
←−x ) and τR(

←−x ): = sup NR(
←−x ).

We can construct a model of the inverse limit space lim←− ([0, 1], f ) by gluing basic

arcs A(
←−x ) to A(

←−y ) at their left (resp. right) end points if and only if←−x and←−y agree
up to one index, and this index is exactly τL(

←−x ) = τL(
←−y ) (resp. τR(

←−x ) = τR(
←−y )).

3 End points and Folding Points

Definition 3.1 A point x in a chainable continuum is called end point if for every
two subcontinua A, B ⊂ X , A ⊂ B or B ⊂ A. We denote the set of end points by E .
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As an example, X = [0, 1] has end points 0 and 1 according to this definition. But
the triod would have four end points (the branch point too!), which speaks against
our intuition. Therefore, we required X to be chainable.

A geometric description of end points (using the notion of crooked graphs is
due to Barge and Martin [5]. Here, we give a symbolic classification of end points,
following [17, Sect. 2].

Lemma 3.2 (Bruin [17], Lemmas 2 and 3) If A(
←−x ) ∈ {0, 1}N is such that

τL(
←−x ), τR(

←−x ) < ∞, then

π0(A(
←−x )) = [T τL (

←−x )(c), T τR(
←−x )(c)].

Without the restriction that τL(
←−x ), τR(

←−x ) < ∞, we have

supπ0(A(
←−x )) = inf{cn: n ∈ NR(

←−x )},
inf π0(A(

←−x )) = sup{cn: n ∈ NL(
←−x )}.

This gives the following symbolic characterization of end points.

Proposition 3.3 Bruin [17, Proposition 2] A point x ∈ X such that πi (x) �= c
for every i < 0 is an end point of X if and only if τL(

←−x ) = ∞ and π0(x) =
inf π0(A(

←−x )) or τR(
←−x ) = ∞ and π0(x) = supπ0(A(

←−x )).

Definition 3.4 A folding point in the core of a unimodal inverse limit is any point
that does not have a neighborhood homeomorphic to a Cantor set of open arcs. We
denote this set by F .

The omega-limit set of a point is defined as the set of adherence points of its
forward orbit:

ω(x) = {y: ∃ ni → ∞ T ni (x) → y} = ∩ j∈N∪i> j {T j (x)}.

The following characterization of folding points is due to Raines.

Proposition 3.5 (Theorem2.2 in [28])Apoint x ∈ lim←−([c2, c1], T ) is a folding point
if and only if πn(x) belongs to ω(c) for every n ∈ N.

Theorem 3.6 The core lim←−([c2, c1], T ) contains exactly N end points if and only if
c is periodic of period N.

The core lim←−([c2, c1], T ) contains exactly N non-end folding points if and only if
c is preperiodic of period N.

Proof This is a special case of the theory developed above (Proposition 3.3) (Fig. 5).

Theorem 3.7 If c is not recurrent, then the core lim←−([c2, c1], T ) contains no end
points, but folding points do exist.
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(a) (b)

Fig. 5 Neighborhoods of non-end folding point (a) and an end point (b)

Proof Since ω(c) �= ∅, there must be folding points, see Proposition 3.5. But there
cannot be any endpoints, because everybackward itinerary←−x has NL(

←−x ), NL(
←−x ) <

∞, so Proposition 3.3 applies.

The following proposition follows implicitly from the proof of Corollary 2 in [17].
It shows that if c is recurrent, then #(E ∩ lim←−([c2, c1], T )) = N ∈ N if and only if c
is N -periodic, and otherwise E ∩ lim←−([c2, c1], T ) is uncountable. We prove it here
for completeness.

Proposition 3.8 If orb(c) is infinite and c is recurrent, then the core inverse limit
space X ′ has uncountably many end points. Moreover, E has no isolated points and
is dense in F .

Proof Since c is recurrent, for every k ∈ N there exist infinitely many n ∈ N such
that ν1 . . . νn = ν1 . . . νn−kν1 . . . νk .

Take a sequence (n j ) j∈N such that ν1 . . . νn j+1 = ν1 . . . νn j+1−n j ν1 . . . νn j for every
j ∈ N. Then, the basic arc given by the itinerary

←−x : = lim
j→∞ ν1 . . . νn j ,

is admissible and τL(
←−x ) = ∞ or τR(

←−x ) = ∞. Therefore, A(
←−x ) contains an end

point.Note that, since ν is not periodic,←−x is also not periodic, and thus,σ k(
←−x ) �= ←−x

for every k ∈ N.
To determine the cardinality of end points, we claim that for every fixed n ∈ N

there are m2 > m1 > n such that

ν1 . . . νm2 = ν1 . . . νm2−nν1 . . . νn, ν1 . . . νm1 = ν1 . . . νm1−nν1 . . . νn,

but ν1 . . . νm1 is not a suffix of ν1 . . . νm2 . Indeed, if m2 did not exist, then

←−x = (ν1 . . . νm1−n)
−∞ν1 . . . νn

would have a periodic tail. Since c is not periodic, no end point can have such a tail.
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We conclude that for every n j there are at least two choices of n j+1 such that the
corresponding tails ←−x are different and have #NL(

←−x ) ∪ NR(
←−x ) = ∞. It follows

that there are uncountably many basic arcs containing at least one end point.
To show that E contains no isolated points and is in fact dense in F , take any

folding point x with two-sided itinerary . . . s−2s−1s0.s1s2 . . . Then, for every k ∈
N, there exists n ∈ N such that s−k . . . sk = νn . . . νn+2k . Using the arguments as
above, we can find a basic arc with itinerary ←−y = . . . ν1 . . . νn−1νn . . . νn+2k and
such that τL(

←−y ) = ∞ or τR(
←−y ) = ∞. So, σ−k(

←−y ) contains an end point with
itinerary . . . νn . . . νn+k .νn+k+1 . . . νn+2k . . . Since k ∈ N was arbitrary, we conclude
that there is some (in fact, uncountably many) end points arbitrarily close to x .

The following result about comparing end points with folding points is due to [1].
We first need a definition, going back to Blokh and Lyubich [14]

Definition 3.9 The critical point c is reluctantly recurrent if there is ε > 0 and
an arbitrary long (but finite!) backward orbit ȳ = (y−m, . . . , y−1, y0) in ω(c) such
that the ε-neighborhood of y ∈ I has monotone pull-back along ȳ. Otherwise, c is
persistently recurrent.

Theorem 3.10 In an UIL, F = E if and only if c is persistently recurrent.

4 Composants

Definition 4.1 Let X be a continuum and x ∈ X . The arc-component A(x) of x
is the union of points y such that there is an arc in X connecting x and y. The
composant C(x) of a point x is the union of all proper subcontinua of X .

For example, if X = [0, 1], then A(0) = [0, 1], but C(0) = [0, 1) (it does not
contain 1 because [0, 1] is not a proper subcontinuum of X ). Also, A( 12 ) = C( 12 ) =
[0, 1] because [0, 1] = [0, 1

2 ] ∪ [ 12 , 1].
Two arc-components A and Ã are asymptotic if there are parametrizations

ϕ, ϕ̃:R → A, Ã such that lim
t→∞ d(ϕ(t), ϕ̃(t)) = 0.

The trivial case when A = Ã is excluded, but A is self-asymptotic if there is a
parametrization ϕ such that

lim
t→∞ d(ϕ(t), ϕ̃(−t)) = 0.

Figure6 gives the UIL of a tent map with T 3(c) = c, for which the fixed composant
R is self-asymptotic. There is a single infinite Wada channel for which the entire
shore is equal to R.

Theorem 4.2 (Barge et al. [9]) Every UIL with periodic critical point has at least
one asymptotic arc-component.
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p

Fig. 6 This representation has a single infinite Wada channel

snaf-2deknilowtelcyc-3naf-5

Fig. 7 Configurations of asymptotic arc-components

Proof The proof relies on substitution tilings and the fact that these spaces act as
2-to-1 coverings of inverse limit spaces. In fact, if the period is N , then there are at
least N − 1 and at most 2(N − 1) “halves” of arc-components asymptotic to some
other “halves” of an arc-components.

Conjecture 4.3 The upper bound is in fact 2(N − 2). Given any two “halves” of
arc-components H and H ′, H is asymptotic to or coincides with σ n(H ′) for some
n ∈ Z.

Question 4.4 If c is non-recurrent, then there are no asymptotic arc-components, see
[19], but what is the situation of asymptotic arc-components when c is non-periodic
but recurrent?

In the Knaster continuum, it was shown by Bandt [4] that every two arc-
componentswithout not containing the end point are homeomorphic.More generally,



10 H. Bruin

DeMan [21] showed that every two arc-components inside any two one-dimensional
solenoids are homeomorphic. (A solenoid is the inverse limit space of circles where
the bonding maps are degree ni ≥ 2 covering maps of the circle as bonding maps fi .)

Question 4.5 Given two arc-components without end points, are they homeomor-
phic? In particular, can a self-asymptotic arc-component be homeomorphic to a
non-self-asymptotic arc-component?

In contrast, Fokkink (in his thesis and in [22]) showed that among all matchbox
manifolds (i.e., continua that locally look like Cantor set of open arcs) there are
uncountably many non-homeomorphic arc-components.

Question 4.6 Are two lines with irrational slopes wrapping for ever around the
torus be homeomorphic as spaces?

This question is due to Aarts almost half a century ago, but beyond the fact that
if the slopes θ and θ ′ have continued fraction expansion with the same tail then the
lines are indeed homeomorphic, nothing is known.

Below, we gave a full list (take from [19]) of what configurations asymptotic
arc-components are possible for periodic kneading sequences (Fig. 7)

ν Type Periodic tail(s) k Case
1 101 1-cycle 1 2 I
2 1001 3-fan 101 3 I
3 10001 4-fan 1001 4 I
4 10010 3-cycle 101 3 I I
5 10111 Three 2-fans 101110 3 I I I
6 100001 5-fan 10001 5 I
7 100010 4-cycle 1001 4 I I
8 100111 Four 2-fans 10010011 4 I I I
9 101110 Two linked 3-fans 10, 1 4 I I, I V
10 1000001 6-fan 100001 6 I
11 1000010 5-cycle 10001 5 I I
12 1000111 Five 2-fans 1000100011 5 I I I
13 1000100 Four 2-fans (l.i.p.) 10, 1001 4 I I
14 1001101 Four 2-fans 10011010 4 I I I
15 1001110 Five 2-fans 10010, 10111 5 I I
16 1001011 Five 2-fans 1001011011 5 I I I
17 1011010 5-cycle 10111 5 I I
18 1011111 Five 2-fans 1011111110 5 I I I
19 10000001 7-fan 1000001 7 I
20 10000010 6-cycle 100001 6 I I
21 10000111 Six 2-fans 100001110000 6 I I I
22 10000100 Five 2-fans 10001, 10010 5 I I
23 10001101 Five 2-fans 1000110100 5 I I I
24 10001110 Six 2-fans 100010, 100111 6 I I
25 10001011 Six 2-fans 100010110011 6 I I I
26 10011010 Six 2-fans (l.i.p.) 101, 100111 6 I I
27 10011111 Six 2-fans 100111110110 6 I I I
28 10011100 Five 2-fans 10010, 10111 5 I I
29 10010101 Five 2-fans 1001010111 5 I I I
30 10010110 Six 2-fans (l.i.p.) 100, 101110 6 I I
31 10110111 Three 3-cycles 101101110 3 I I I
32 10111110 Two linked 4-fans 101110, 1 5 I I, I V

(l.i.p = linked in pairs.)
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5 Ingram Conjecture

In the early 90s, a classification problem that became known as the Ingram Con-
jecture was posed:

If 1 ≤ s ≤ s̃ ≤ 2, then the inverse limit spaces lim←−([0, 1], Ts) and lim←−([0, 1], Ts̃) are not
homeomorphic.

In the “Continua with the Houston problem book” in 1995 [24, page 257], Ingram
writes

The [...] question was asked of the author by Stu Baldwin at the [...] summer meeting of
the AMS at Orono, Maine, in 1991. ... There is a related question which the author has
considered to be of interest for several years. He posed it at a problem session at the 1992
Spring Topology Conference in Charlotte for the special case (that the critical point has
period) n = 5.

After partial results [7, 12, 18, 25, 29, 31, 33], the Ingram Conjecture was finally
answered in affirmative by Barge et al. in [10]. In addition (Bruin & Štimac [32]).

Proposition 5.1 (Rigidity) If h : lim←−([0, 1], T ) → lim←−([0, 1], T ) is a homeomor-
phism, then it is isotopic σ n for some n ∈ Z. In fact, if ω(c) = [c1, c2], then
h|lim←−([c2,c1],T ) = σ n.

However, the proof presented in [10] crucially depends on using the zero-
composant C, so the core version of the Ingram Conjecture still remains open. For
Hénon maps, C plays the role of the unstable manifold of the saddle point outside
the Hénon attractor; it compactifies on the attractor, but it is somewhat unsatisfac-
tory to have to use this (and the embedding in the plane that it presupposes) for the
topological classification. It is not possible to derive the core version directly from
the non-core version, because it is impossible to reconstruct C from the core. This
is for instance illustrated by the work of Minc [27] showing that in general there are
many non-equivalent rays compactifying on the Knaster bucket handle.

Question 5.2 Does the Core Ingram Conjecture hold? And the core rigidity propo-
sition?

Partial results here are by [25, 31] (because their proofs work without the zero-
composant) and [3, 20, 23]. In short, the Core Ingram Conjecture holds if c is
(pre)periodic or non-recurrent or is persistently recurrent with so-called “Fibonacci-
like” combinatorics, but all other cases remain unproved.

Question 5.3 Does the Ingram Conjecture hold in the multimodal setting, e.g., for
cubic maps?
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1 Introduction

This is a paper in the intersection of fractal geometry and dynamical systems.Dynam-
ical systems provide us with beautiful and interesting examples of sets, fractal geom-
etry gives us the language to describe them, and both theories give us tools. Tools to
understand the geometric properties of those sets, tools to understand the dynamical
properties, and most interesting of all—the relations between the two.

This is a paper about tools. Yeah, sure, we will prove some theorem eventu-
ally (in the second part of this paper)—but it is just a pretext. Our real goal is to
describe the process of understanding the geometric behaviour of a dynamical sys-
tem, starting from understanding the simplest possible models (conformal uniformly
hyperbolic iterated function systems with separation properties) and then throwing
out the training wheels, until we get to piecewise affine maps with quite general
symbolic description (not necessarily subshifts of finite type).

And, most of all, this is a survey. While the simple models are in the books (the
classical positions by Falconer [7] and by Mattila [17]), the modern theory of affine
iterated function systems is not in books yet, and neither is Hofbauer’s theory. We
aren’t going to be able to describe all the details, for sure, but we try to at least provide
the main ideas and most useful formulas, and also the literature for further reading.

Fine, let us present the hero of our story.

2 Barnsley’s Skew Product Maps

In order to define a piecewise affine and piecewise expanding skew product map
F on the plane which sends the vertical stripe D := [0, 1] × R into itself, first we
partition the unit interval [0, 1] =⊔m

i=1 Ii.
Then we define F :D→ D by

F(x, y) := Fi(x, y) if (x, y) ∈ Di := Ii × R, (1)

where for all i = 1, . . . ,m

Fi(x, y) := (fi(x), gi(x, y)), for (x, y) ∈ Di (2)

and fi: Ii → Ji ⊂ [0, 1] (see Fig. 1) and gi:Di → R and for |λi|, |γi| > 1 let

fi(x) := γix + vi, gi(x, y) = aix + λiy + ti. (3)

Throughout this note we always assume:

Principal assumption The map f : [0, 1] → [0, 1]

f (x) := fi(x), if x ∈ Ii is transitive, (4)
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Fig. 1 f is Markov on the left hand-side and non-Markov on the righ-hand side

that is f has an orbit which is dense in [0, 1]. We call the repeller of F :D→ D
(which is the graph of a function) Barnsley repeller and we denote it by �. We
call F Barnsley’s skew product map. Let S =⋃M

i=1 ∂Ii the singularity set and let
S∞ =⋃∞n=0 f −n(S). It was pointed out by Barnsley that� is the graph of a function
G: [0, 1] \S∞: → R which is defined by

G(x) = z, where {Fn(x, z)}∞n=1 is bounded. (5)

3 The Hausdorff and Box Dimensions

For a d ≥ 1 let A ⊂ R
d be a set of zero Lebesgue measure and let ν be a measure

which is singular with respect to the Lebesgue measure Ld . Then the size of A and
ν can be expressed by their fractal dimensions.

3.1 Fractal Dimensions of Sets

The most common fractal dimensions are the Hausdorff and the box dimensions:

Definition 3.1 (Hausdorff dimension) Let A ⊂ R
d then

dimH A := inf

{

α : ∀ε > 0, ∃ {Ui}∞i=1 , such that A ⊂
∞⋃

i=1
Ui,

∞∑

i=1
|Ui|α < ε

}

,

(6)
where |Ui| is the diameter of U .
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Fig. 2 The definition of the
Hausdorff dimension ∞

t → Ht(Λ)

dimH(Λ) t

Equivalently in a more traditional way, we can first define the t-dimensional Haus-
dorff measure

Ht(A) = sup
δ→0

inf

⎧
⎨

⎩

∞∑

i=1
|Ei|t :� ⊂

∞⋃

i=1
Ei, |Ei| < δ

⎫
⎬

⎭
, (7)

then we write see (Fig. 2)

dimH A := inf
{
t:Ht(A) = 0

} = sup
{
t:Ht(A) = ∞} . (8)

Another very popular notion of fractal dimension is the box dimension:

Definition 3.2 dimB A

Let E ⊂ R
d , E 	= ∅, bounded. Nδ(E) be the smallest number of sets of diameter

δ which can cover E. Then the lower and upper box dimensions of E:

dimB(E) := lim inf
r→0

logNδ(E)

− log δ
, (9)

dimB(E) := lim sup
r→0

logNδ(E)

− log δ
. (10)

If the limit exists then we call it the box dimension of E and we denote it by
dimB(E).

3.2 Hausdorff Dimension of Measures

The Hausdorff dimension of a measure μ is the best lower bound on the Hausdorff
dimension of a sets having large μ measures. Depending on what “large” means we
define
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Definition 3.3 Let μ be a Borel measure on R
d such that 0 < μ(Rd ) < ∞.

(a) Lower Hausdorff dimension of μ is: dim∗(μ) := inf {dimH A:μ(A) > 0},
(b) Upper Hausdorff dimension of μ: dim∗(μ) := inf {dimH A:μ(Ac) = 0}.
(c) The lower and the upper local dimension of the measure μ are:

dim(μ, x) := lim inf
r→0

logμ(B(x, r))

log r
(11)

and

dim(μ, x) := lim sup
r→0

logμ(B(x, r))

log r
(12)

We say that themeasureμ is exact dimensional if forμ-almost all x lim
r↓0

logμ(B(x,r))
log r

exists and equals to a constant.

Lemma 3.4 Let μ be a measure like in Definition 3.3. Then

dim∗ μ = essinfx∼μdim(μ, x), dim∗ μ = esssupx∼μdim(μ, x) (13)

4 Self-similar Sets

FromnowonweworkonRd . Letm ≥ 2 andO1, . . . ,Om ∈ O(d)orthogonalmatrices
and r1, . . . , rm ∈ (0, 1) and t1, . . . , tm ∈ R

d . Then

S := {Si(x) = ri · Oix + ti}mi=1 (14)

is called a self-similar Iterated Function System on R
d .

Let B := B(x,R) be a closed ball, where R is large. Then

∀i = 1, . . . ,m : Si(B) ⊂ B. (15)

Hence the the following is a nested sequence of compact sets:

{
⋃

i1...in

Si1...inB

}∞

n=1
,

wherewe use throughout the paper the notation: Si1...in := Si1 ◦ · · · ◦ Sin . The attractor
of our IFS S is

� :=
∞⋂

n=1

⋃

i1...in

Si1...inB, (16)

which is independent of B as long as B satisfies (15).
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Fig. 3 The four-corner cantor set C
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Fig. 4 The Sierpiński gasket: S312(x) := S3 ◦ S1 ◦ S2(x) = S3(S1(S2(x)))

Example 4.1 (Four Corner Set). Figure3 shows the first three iterations of a famous
self-similar set, called the Four Corner Cantor set. Here B = [0, 1]2 and

Si(x, y) = 1

4
(x, y)+ ti, for t1= (0, 0), t2=

(
3

4
, 0

)

, t3=
(
3

4
,
3

4

)

, t3=
(

0,
3

4

)

.

In the general case, we code the points of the attractor by the elements of the symbolic
space:


 := {1, . . . ,m}N . (17)

The natural projection is �:
 → �:

�(i) := lim
n→∞ Si1...in(0). (18)

On Figs. 4 and 5 we indicate how this coding works.
Si are translations of the appropriate homothety-transformatons of the form:

Si(x) = 1

2
x + ti.

The sets {Si(T )}3i=1 in theprevious examples ar thefirst cylinders, the sets
{
Si,j(T )
}3
i,j=1

are the second cylinders an so on.
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S1(Q) S2(Q) S3(Q)

S4(Q)

S5(Q)S6(Q)S7(Q)

S8(Q)

S86(Q)

S15(Q)

S867(Q)

S152(Q)

Fig. 5 The third approximation of the Sierpiński carpet

In both of the previous examples, the cylinders were not disjoint, but their interiors
were disjoint. This results that the cylinders are well-separated.

Definition 4.2 (SSP, OSC, SOSC). Here, we define three important separation con-
ditions. These will be used in much more general setup then the self-similar IFS.

(a) If Si(�) ∩ Sj(�) = ∅ for all i 	= j the we say that the Strong Separation Property
(SSP) holds. (Like in the case of the Four Corner Cantor set.)

(b) If there exists a bounded open set V such that

(1) Si(V ) ⊂ V for all i = 1, . . . ,m
(2) Si(V ) ∩ Sj(V ) = ∅ for all i 	= j then we say that the Open Set Condition

(OSC) holds like in the case of the Sierpiński gasket and Sierpiński carpet.
Here V is the interior of the right triangle and the unit square respectively.

(c) If the OSC holds with an open set V satisfying V ∩� 	= ∅, where � is the
attractor, then we say that the Strong Open Set Condition (SOSC) holds.

The OSC and SOSC are equivalent for self-similar (and also for self-conformal) IFS.

Now, we present a heuristic argument in order to guess the Hausdorff dimension
of the attractor� in the case when the cylinders are disjoint (that is when SSP holds):

We will use the following fact: it is immediate from the definition that for any
r > 0 we have:

Hs(r · A) := rs ·Hs(A). (19)

Since this is only a heuristic argument we assume that for the appropriate s, (that is
for the s satisfying s = dimH �) the s-dimensional Hausdorff measure of the attractor
� has positive and finite. Then,

Hs(�) =
m∑

i=1
Hs(Si�)

=
m∑

i=1
rsiHs(�).
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By the assumption above, we can divide byHs(�). This yields that:

m∑

i=1
rsi = 1. (20)

Even if S does not satisfy any of the previous assumptions we can define s as the
solution of (20).

Definition 4.3 LetS be a self-similar IFS of the form (14). The similarity dimension
dimS(�) := swhere s is the unique solution of (20). That is

∑m
i=1 r

s
i = 1.Sometimes,

we also say that s is the similarity dimension of the attractor.

Clearly,
dimH(�) ≤ dimS(�). (21)

However “=” does not always hold:
Let �1/3 be the attractor the S1/3 from (24):

S1/3 = S :=
{
1

3
x,

1

3
x + 1,

1

3
x + 3

}

.

Then
dimB(�1/3) < 0.9 < 1 = dimS(�1/3). (22)

This is so because in this case

S1/3
0 ◦ S1/3

3 ≡ S1/3
1 ◦ S1/3

0

so there is an exact overlap.

Theorem 4.4 (Hutchinson’s-Moran Theorem [18] and [13]) Let S := {S1, . . . , Sm}
be a self-similar IFS on Rd with contraction ratios r1, . . . , rm and similarity dimen-
sion s. We assume that the OSC (Open Set Condition) holds.
then

(a) dimH � = s, even we have
(b) 0 < Hs(�) < ∞,
(c) Hs

(
Si(�) ∩ Sj(�)

) = 0 for all i 	= j.

Theorem 4.5 (Falconer) The Hausdorff- and box-dimensions are the same for any
self-similar set.

The following problem is one of the most interesting open problems in Fractal
Geometry:
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Conjecture 4.6 (Complete Overlap Conjecture) Let s be the similarity dimension
and let � be the attractor of a self-similar IFS S = {Si}mi=1 on R. Then

dimH(�) < min {d , s} ⇐⇒ ∃i, j ∈ 
∗, i 	= j s.t. Si ≡ Sj. (23)

InR2 the conjecture does not hold. The following example was introduced by Keane
et al. [15] and played a very important role in the study of self-similar fractals with
overlapping construction.

Example 4.7 For every λ ∈ ( 14 ,
2
5 ) consider the following self-similar set:

�̃λ :=
{ ∞∑

i=0
aiλ

i: ai ∈ {0, 1, 3}
}

.

Then �̃λ is the attractor of the one-parameter (λ) family IFS:

Sλ := {Sλ
i (x) := λ · x + i

}
i=0,1,3 (24)

To normalize it, we write �λ := 1−λ
3 · �̃λ. It was proved by Solomyak [21] that

for Lebesgue almost all λ > 1
3 (that is when the similarity dimension is greater than

one) we have
dimH �λ = 1. (25)

Fix a λ slightly greater than 1/3 for which (25) holds and consider the product set

Cλ := �λ × [0, 1] (see Fig. 6). Then for λ ∈
(
1
3 ,

1√
6

)
we have

dimH Cλ = 1+ log 2

− log λ
< min

{

2,
log 6

− log λ

}

= min {2, dimSim(S)} .

Since there are uncountably many λ like this, and complete overlap can happen only
for countably many λ, we get that dimension drop occur in higher dimension not
only when we have complete overlaps.

4.1 Self-similar Measures

Analogously to the self-similar sets, we can define the self-similar measures:

Definition 4.8 Given an m ≥ 2, S = {S1, . . . , Sm} self-similar IFS on Rd with con-
traction ratios: r1, . . . , rm and we are given a probability vector p = (p1, . . . , pm).
Now we define the self-similar measure ν = νS,p which corresponds to S and p:

νS,p := �∗
(
pN
) := μ ◦�−1. (26)
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Fig. 6 �̃λ and Cλ := �λ × [0, 1]

Then νS,p is the unique probability Borel measure satisfying

νS,p(H ) =
m∑

k=1
pi · νS,p

(
S−1i (H )

)
, (27)

for every Borel set H .
Let ν := νS,p be the invariant measure for the self-similar IFS on R

d :

S := {Si(x) = ri · Oix + ti}mi=1. (28)

Below we give a heuristic argument to show that if the OSC holds then the Hausdorff
dimension of ν is equal to the similarity dimension of ν, which is defined by:

dimSim ν :=

m∑

i=1
pi log pi

m∑

i=1
pi log ri

= entropy

Lyapunov exponent
. (29)

Lemma 4.9 S and p as above and we assume that the OSC holds. Then

dimH ν = dimSim ν. (30)

Proof (Heuristic Proof) Let I be a large interval such that Si(I) ⊂ I for all i =
1, . . . ,m and we write Ii1...in := Si1...in I for the level n cylinder intervals. It follows
from Birkhoff’s Ergodic Theorem that in this case the limit in (11) and (12) exist.
That is, Lemma 3.4 indicates that for a ν-typical x = �(i), i ∈ 
:
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dimH ν = lim
n→∞

log ν(Ii1...in)

log |Ii1...in |
def= lim

n→∞
log pi1...in
log ri1...in

=
lim
n→∞

1
n

n∑

k=1
log pik

lim
n→∞

1
n

n∑

k=1
log rik

LLN=

m∑

i=1
pi log pi

m∑

i=1
pi log ri

= dimSim ν,

where LLN means Law of Large Numbers. Here, we used the notations: pi1...in :=
pi1 · · · pin and ri1...in := ri1 · · · rin

4.1.1 Hochman Theorem

Let S = {Si}mi=1 be a self-similar IFS on R with contraction ratios {ri}mi=1. Let �n(S)

be the smallest distance between the left end points of two level n cylinders having
the same length. More formally, �n(S) is the minimum of �(ωωω,τττ) for distinct
ωωω,τττ ∈ 
n, where

�(ωωω,τττ) =
{ ∞ S ′ωωω(0) 	= S ′τττ (0)|Sωωω(0)− Sτττ (0)| S ′ωωω(0) = S ′τττ (0).

Condition 4.10 (HESC) We say that the self-similar IFS S satisfies Hochman’s
exponential separation condition (HESC) if there exists an ε > 0 and an nk ↑ ∞
such that

�nk > εnk . (31)

Hochman proved the following very important assertion in [9, Theorem 1.1].

Theorem 4.11 (Hochman)Assume thatS = {Si}mi=1 is a self-similar IFS onRwhich
satisfies Hochman’s exponential separation condition. Let p = (p1, . . . , pN ) be an
arbitrary probability vector. Then

dimH
(
νS,p
) = min {1, dimSim ν} , (32)

Remark 4.12 (Relation to the Compete Overlaps Conjecture) AlthoughHochman’s
Theorem does not solve the Compete Overlaps Conjecture (Conjecture 4.6) but it
makes a very significant progress towards it.

• Exact overlap means that �n = 0 for some n.
• If the OSC holds then �n → 0 exactly exponentially fast.
• �n → 0 at least exponentially fast always holds. Namely: # {|i| = n} = mn. On
the other hand: # {ri: |i| = n} is polynomially large (ri was the contraction ration of
Si). So, there exist distinct i, j of length n with ri = rj and with with exponentially
small
∣
∣Si(0)− Sj(0)

∣
∣.
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• However, in case of a dimension drop, that is, if we can find a probability vector
p such that dimH νS,p < min {1, dimS ν} then �n → 0 super exponentially fast.
That is

lim
n→∞−

1

n
log�n = ∞.

The following theorem shows that Hochman’s theorem solves the complete overlap
conjecture in some cases:

Theorem 4.13 (Hochman)For an self-similar IFS on the line with algebraic param-
eterswehave either exact overlaps, or nodimensiondrop:dimH �=min {1, dimS �}.

5 Dimension of the Self-conformal Sets and Measures
When OSC Holds

We can extend a large part of the dimension theory of self-similar sets to the so called
self-conformal ones by using the notion of the topological pressure.

Definition 5.1 (Conformal IFS on the line) Let η > 0 and m > 1. We are given
f1, . . . , fm: [0, 1] → [0, 1] satisfying the following conditions:

(a) fi ∈ C1+η[0, 1] for all i = 1, . . . ,m,
(b) ∃ 0 < c1, c2 < 1 such that c1 < |f ′i (x)| < c2 holds for all i = 1, . . . ,m and all

x ∈ [0, 1].
Then we say that

F := {f1, . . . , fm} (33)

is a self-conformal IFS. We can define the attractor, the symbolic space and the
natural projection analogously as we did in (16), (17) and (18), respectively.

A very important property of the self-conformal IFS the following:

Theorem 5.2 (Bounded Distortion Property) Let F be as in Definition 5.1. Then
there exist 0 < c3 < c4 such that for all n and for all (i1, . . . , in) ∈ (1, . . . ,m)n and
for all x, y ∈ [0, 1] we have

c3 <
f ′i1,...,in(x)
f ′i1,...,in(y)

< c4, (34)

The proof is available in [19]. Our aim is to calculate the Hausdorff dimension of
the attractor.
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5.1 Hausdorff Dimension of Self-conformal Sets When OSC
Is Assumed

Theorem 5.3 Let F be a conformal IFS on R as in definition 5.1 and we assume
that the OSC holds. Let s0 be the root of the pressure formula that is we assume that
(82) holds. Then

dimH � = s0. (35)

Proof First, we prove that dimH � ≤ s0. This is so, since the system of level n cylin-
der intervals In :=

{
fi1...in([0, 1])

}
(i1...in)∈(1,...,m)n

gives a cover of as small diameter as
wewant if n is large enough.Moreover, by Lagrange Theorem for suitable xωωω ∈ [0, 1]

∑

I∈In

|I |s0 =
∑

|ωωω|=n
|f ′ωωω(xωωω)|s0 ≤ 1

c1c3

∑

|ωωω|=n
μ(ωωω) = 1

c1c3
.

That isHs0(�) < ∞ consequently dimH � ≤ s0.
Now we prove that dimH � ≥ s0. Letμ be the Gibbs measure for the potential φs0

[defined in (78)]. Fix an arbitrary i ∈ 
. Then, putting together (77), (82) and (83)
we obtain the following limit exists

lim
n→∞

log�∗μ(Ii1...in)

log |Ii1...in |
≡ s0.

That is the local dimension of the measure �∗μ is equal to s0 at all points of the
attractor �. Hence dimH �∗μ = s0. This implies that dimH � ≥ s0.

We say that the measure μ in the previous proof is the natural measure for the
IFS F .

5.2 Hausdorff Dimension of an Invariant Measure
and Lyapunov Exponents

Now, we present the Lyapunov exponents for the classes of maps that occur in this
paper.

Ergodic measures for a piecewise monotone map on the interval. Let η be
an ergodic measure for a T : [0, 1] → [0, 1] piecewise monotonic map. Then, the
Lyapunov exponent χ(η) = ∫ log |T ′|dη. It follows from Hoffbauer and Raith
[11, Theorem 1] that

dimH η = h(μ)

χ(η)
if χ(η) > 0. (36)
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6 The Hausdorff Dimension of Self-affine Sets

Definition 6.1 (Self-affine IFS and self-affine measures) We say that

F := {f1(x) = A1x + t1, . . . , fm(x) = Amx + tm} (37)

is a self-affine IFS on R
d for a d ≥ 2 if A1, . . . ,Am are contractive non-singular

d × d matrices and t1, . . . , tm ∈ R
d . The natural projection � from the symbolic


 := {1, . . . ,m}N space to the attractor � [which is defined as in (16)] is defined
as in the self-similar case: �(i) := lim

n→∞ fi1 ◦ · · · ◦ fin(0). The attractors of self-affine
IFS are called self-affine sets. The computation of the dimension of the self-affine
sets is much more difficult. Namely, in the self-similar case if the cylinders are
well-separated that is OSC holds (see Definition 4.2) then

(a) The Hausdorff dimension of the attractor is equal to the similarity dimension s,
which can be calculated merely from the contraction ratios (20), regardless the
translations, as long as the cylinders remain well-separated.

(b) The appropriate dimensional Hausdorff measure of the attractor is positive and
finite.

(c) The Hausdorff and the box dimensions of self-similar sets are the same.

In the self-affine case, we will define the affinity dimension which replaces the
similarity dimension.However, not any of the assertions (a)–(c) hold for all self-affine
sets with disjoint cylinders.

Example 6.2 On the left-hand side Fig. 7 we see three copies of the unit square.
Focus on the one which is on the left-hand side. It contains six shaded rectangles
of size 1

3 × 1
5 . Denote their left bottom corners by t1, . . . , t6 in any particular order.

Then, we define the IFS

F l :=
{

fi(x) =
( 1

3 0
0 1

5

)

· x + ti

}6

i=1
.

(0, 0)

(1, 1)

0.2

0.4

0.6

0.8

1

1
3

2
3

(0, 0)

(1, 1)

1
3

2
3

(0, 0)

(1, 1)

1
3

2
3

Fig. 7 Left: dimH �l = dimB �l = dimAff � middle: dimH �m < dimB �m = dimAff �m right:
dimH �r < dimB �r < dimAff �r
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Let �l be the attractor of F l . Clearly, the first cylinders of F l are the shaded
rectangles on Figure. We say that F l and �l are generated by the left hand-
side of the Fig. 7. We define Fm, �m and F r , �r , respectively, generated by
the rectangles in the middle and right-hand side unit squares on Fig. 7. These
self affine sets belongs to the family of Bedford-McMullen carpets (see [7] for
more details). The linear parts are the same in each of the three systems they
differ only in the translation vectors. However, dimH �l = dimB �l = dimAff �l ,
dimH �m < dimB �m = dimAff �m and dimH �r < dimB �r < dimAff �r , where
the affinity dimension dimAff plays the same rolle here as the similarity dimension
in the case of self-similar sets and it will be defined in Sect. 6.1.

Moreover, if dl , dm and dr are the Hausdorff dimension of�l ,�m and�r respec-
tively, then

0 < Hdl
(�l) < ∞, Hdm

(�m) = Hdr
(�r) = ∞.

For simplicity, here we explain everything on the plane but the definitions and
discussions in Rd for d ≥ 3 are similar (see e.g. [7, Sect. 9.4] for the introduction in
higher dimension).

We can define the self-affinemeasures exactly as we defined self-similarmeasures
in Sect. 4.1. That is for a probability vector p = (p1, . . . , pm) the self-affine measure
corresponding to F and p is

ν = νF ,p := �∗(pN). (38)

6.1 Singular Value Function, Affinity Dimension, Falconer’s
Theorem

Most of the basic concepts of this field were introduced by Falconer [8]. The singular
value function φs(A) of a matrix A is defined by

φs(A) =
{

α�s�(A)s−�s�
∏�s�

j=1 αj(A) if 0 ≤ s ≤ rank(A),

| det(A)|s/rank(A) if rank(A) < s,
(39)

where αi(A) denotes the ith singular value of A. On the plane, for a non-singular
matrix A this is simply

φs(A) :=
⎧
⎨

⎩

α1(A), if s ≤ 1;
α1(A)αs−1

2 (A), if 1 ≤ s ≤ 2;
(α1(A)α2(A))s/2, if s ≥ 2.

(40)

Using the singular value function Falconer [8] defined the affinity dimension
dimAff � as the root of the subadditive pressure formula



30 B. Bárány et al.

PA1,...Am(dimAff �) = 0, (41)

where the function s �→ PA1,...Am(s) is defined in the Appendix Example B.3. This is
the value of the Hausdorff dimension of � in most of the cases.

Theorem 6.3 (Falconer) Fix the d × d non-singular matrices A1, . . . ,Am in any
particular ways satisfying max

1≤i≤m ‖Ai‖ < 1/2. For every t = (t1, . . . , tm) ∈ R
md we

consider the following self-affine IFS on R
d : F t := {fi(x) := Aix + ti}mi=1, where

the translations t = (t1, . . . , tm) are considered as parameters. Then, dimH � =
dimB � = dimAff � for Lebesgue almost all choices of (t1, . . . , tm) ∈ R

dm.

7 Ergodic Measures for a Self-affine IFS

LetF be a self-affine IFS as in Definition 6.1. Then for an arbitrary ergodic measure
ν on 
 we have

χk(ν) := χk(�∗ν) := lim
n→∞

1

n
logαk(Ai1 · · ·Ain). (42)

where αk(B) is the k-th singular value of the matrix B.
In high generality,we knowonly almost all type formulas for theHausdorff dimen-

sion of �∗ν. Namely, we consider the translations t = (t1, . . . , tm) as parameters (as
in Theorem 6.3) in the self affine IFS of the form (37) and we write F t instead of F ,
�t instead of � and �t∗ν instead of �∗ν. Then [14, Theorem 1.9] gives an analo-
gous assertion to Falconer’s theorem (Theorem 6.3) for self-affine measures instead
of self-affine sets:

Theorem 7.1 (Jordan Pollicott and Simon) Let ν be an arbitrary ergodic measure
on 
 = {1, . . . ,m}N. If max

1≤i≤m ‖Ai‖ < 1/2 then for almost all t (w.r.t. the m · d-
dimensional Lebesgue measure) we have

dimH(�t
∗ν) = min {d ,D(ν)} , (43)

where D(ν) is the Lyapunov dimension for the ergodic measure ν defined below.

Definition 7.2 Let F be a self-affine IFS as in Definition 6.1. Then, for an arbitrary
ergodic measure ν on 


D(ν) := k + h(ν)+ χ1(ν)+ · · · + χk(ν)

−χk+1(ν)
, (44)

if k = k(ν) = max {i: 0 < h(ν)+ χ1(ν)+ · · · + χi(ν)} ≤ d . On the other hand, if
0 < h(ν)+ χ1(ν)+ · · · + χd (ν) then we define
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D(ν) := d · h(ν)

−(χ1(ν)+ · · · + χd (ν))
. (45)

We call D(ν) the Lyapunov dimension of the measure ν.

Example 7.3 In this paper, we mostly work on the plane (d = 2). In this case

D(ν) =

⎧
⎪⎨

⎪⎩

h(ν)

|χ1(ν)| , if h(ν) ≤ |χ1(ν)| ;
1+ h(ν)−|χ1(ν)|

|χ2(ν)| , if |χ1(ν)| ≤ h(ν) ≤ |χ1(ν)| + |χ2(ν)|;
2 · h(ν)

|χ1(ν)|+|χ2(ν)
|, if |χ1(ν)| + |χ2(ν)| ≤ h(ν).

(46)

Recently, there have been a number of very significant achievements on this
field. Here, we mention only one of them. Bárány, Hocfhman and Rapaport [1,
Theorem 1.2] computed the Hausdorff dimension of self-affinemeasures under some
mild conditions. They obtained this by combining the entropy growth theorem by
Hochman [9] with the method of Bárány and Käenmäki [2] about the dimension
of the projections of self-affine measures, that they got by an application of the
Furstenberg measures.

7.1 Self-affine Measures

Definition 7.4 Let F := {fi(x) := Aix + ti}mi=1 be a self-affine IFS on R
d and let p

be a probability vector. Then, the corresponding self-affine measure can be defined
exactly as we defined the self-similar measures. That is

ν = νF ,p := �∗
(
pN
)
, (47)

In their very recent seminal paper Bárány, Hochman and Rapaport [1, Theorems 1.1
and 1.2] proved the following

Theorem 7.5 (Bárány, Hochman and Rapaport) Let F := {fi(x) := Aix + ti}mi=1 be
a self-affine IFS on R

2 which satisfies both of the following conditions:

(a) the strong open set condition (see Definition 4.2) and
(b) The normalized linear parts

{
Ai/
√| det Ai|

}m
i=1 generate a non-compact and

totally irreducible subgroup of GL2(Rd ) (that is they do not preserve any finite
union of non-trivial linear spaces,)

Then for an arbitrary probability vector, p we have

dimH νF ,p = D(νF ,p) and dimH � = dimB � = dimAff �, (48)

where � is the attractor of F and we remind the reader that the affinity dimension
dimAff was defined in (41).



32 B. Bárány et al.

This theorem does not cover the case of those self affine IFS for which all of the
mappings have lower triangular linear parts. However, the same authors proved in
[1, Proposition 6.6]

Theorem 7.6 (Bárány, Hochman and Rapaport) Let F := {fi(x) := Aix + ti}mi=1 be
a self-affine IFS on R

2 which satisfies both of the following conditions:

(c) The linear parts of all of the mapping of F are lower triangular:

Ai =
(
ai 0
bi ci

)

for i = 1, . . . ,m and

(d) ai < ci for all i = 1, . . . ,m.

Then, for an arbitrary probability vector p we have

dimH νF ,p = D(νF ,p) and dimH � = dimB � = dimAff �, (49)

where � is the attractor of F .

8 Ergodic Measures for Barnsley’s Skew Product Maps

We use the notation of Sect. 2. Let μ be an ergodic measure for the Barnsley’s skew
product map F , which was defined in Sect. 2. The two Lyapunov exponents χ1(μ)

and χ2(μ) of F are

χx(μ) =
∫

log ‖Dproj(x)f ‖dμ(x) =
m∑

i=1
μ(Ii × R) log γi and

χy(μ) =
∫

log ‖∂2g(x)‖dμ(x) =
m∑

i=1
μ(Ii × R) log λi,

where proj(x) is the orthogonal projection of an x ∈ D to the x-axis and ∂2 means
the derivative with respect to the second coordinate.

Remark 8.1 If 0 < χx(μ) ≤ χy(μ) then

dimμ = h(μ)

χx(μ)
,

Namely, the upper bound is trivial, and the lower bound follows from the fact
that proj∗μ is f -invariant and ergodic and the result of Hofbauer and Raith [11,
Theorem 1] [see (36)]. That is why we can restrict ourselves to the case when

χ1(μ) := χx(μ) =
m∑

i=1
μ(Ii × R) log γi > χ2(μ) := χy(μ) =

m∑

i=1
μ(Ii × R) log λi > 0.

(50)
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In this case, the best guess for the dimension of the μ is the so-called Lyapunov
dimension to be defined below.

Definition 8.2 Let μ ∈ EF(�) satisfying χx(μ) > χy(μ) > 0. We define the Lya-
punov dimension

D(ν) :=

⎧
⎪⎨

⎪⎩

h(ν
χy(ν)

, if h(ν) ≤ χy(ν) ;

1+ h(ν)−χy(ν)

χx(ν)
, if χy(ν) ≤ h(ν) ≤ χx(ν)+ χy(ν);

2 · h(ν)

χx(ν)+χy(ν)
, if χx(ν)+ χy(ν) ≤ h(ν).

(51)

9 Hofbauer’s Pressure

In the previous sections (and in the appendix), we presented the dimension theory
for the self-affine iterated function systems. However, the principal distinction of the
Barnsley’s maps from the iterated function systems lies in the fact that the symbolic
space for the Barnsley’s skew product map is not a full shift. In this section, we will
present the most general version of thermodynamical formalism theory, developed
in a series of papers by Franz Hofbauer with his co-authors. This theory is not
completely general, it assumes the system comes form piecewise monotone maps of
the interval, but this assumption is satisfied in our situation.

Let us remind the notations. Our base map f : [0, 1] → [0, 1] is piecewise mono-
tone: we can divide the interval [0, 1] into finitely many closed intervals with disjoint
interiors [0, 1] =⋃m

1 Ii. We denote by S the set of endpoints of intervals Ii. We
assume that f |I oi is continuous and monotone (strictly increasing or strictly decreas-
ing) on I oi . We define fi as the extension of f |I oi by continuity to the endpoints of
Ii.

In order that the symbolic expansion of the system (to be defined below) is com-
pact, we need to take a formal modification of the maps. We would like to consider
fi as the restriction of f to Ii. Naturally, such a definition can in general lead to the
map being doubly defined on some points inS∞, but this set is countable. Formally
speaking, if for a point x ∈ S the left and right limits of f disagree then we define
f (x−) = limz↗x f (z) and f (x+) = limz↘x f (z). We then proceed to inductively dou-
ble all the preimages of x. For a point y ∈ f −1(x), y /∈ Swe define: if f is increasing
at y then f (y−) = x− and f (y+) = x+, otherwise f (y−) = x+ and f (y+) = x−. And
for a point y ∈ f −1(x), y ∈ S: if limz↗y f (z) = x and f is increasing in (y − ε, y)
then f (y−) = x−, if it is decreasing then f (y−) = x+, if limz↘y f (z) = x and f is
increasing in (y, y + ε) then f (y+) = x+, if it is decreasing then f (y+) = x−. We set
the natural topology: at each doubled point x limz↗x z = x−, limz↘x z = x+. We also
redefine the partition intervals: if Ii = [x, y] and one or both of the endpoints are
doubled then we set Ii = [x+, y−].

Observe that the resulting set is not an interval anymore, but a Cantor set - but
with a natural projection onto the interval, which is 2-1 on a countable set and 1-1
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elsewhere. The well-known special case of this construction: consider the interval
[0, 1] with the map f (x) = 2x(mod1) and divide each dyadic point into two. That
is, 1/2 = 0.10000...2 = 0.01111...2, we formally define (1/2)− = 0.01111...2 and
(1/2)+ = 0.10000...2 – and the same for all the other dyadic points. The result is a
full shift on two symbols, which is conjugate (modulo a countable set) to the original
map.

Note that for the piecewise monotone map the minimal possible partition is given
by the intervals of monotonicity of f , but we can freely subdivide the intervals Ii
further, and the resulting maps will also belong to considered class. In particular, we
can freely demand that for any given continuous potential ϕ: [0, 1] → R its variation
supϕ − inf ϕ is arbitrarily small on each Ii.

Let A be a compact, f -invariant, f -transitive set. For the rest of the section, our
dynamical system will be the restriction of f to A.

Let 
̃ ⊂ {1, . . . ,m}N be the symbolic system of our dynamics, defined as the set
of sequences ω ∈ {1, . . . ,m}N such that there exists x ∈ A such that for n = 0, 1, . . .

f n(x) ∈ Iωn .

One can check that 
̃ is a subshift, that is a σ -invariant and closed subset of
{1, . . . , f }N. The sequence ω will be called symbolic expansion of x, x will be called
representation of ω. We will write x = π(ω). We will assume the partition {Ii} is
generating, that is each ω ∈ 
̃ has unique representation. This always holds if f is
expanding.

For any finite word τ n ∈ {1, . . . ,m}n denote by C[τ n] the set of points x ∈ A such
that π−1(x) begins with τ n. This set will be called n-th level cylinder. The set of n-th
level cylinders will be denotedDn. For x ∈ A, letCn(x) be the n-th level cylinder con-
taining x. Denote dn(x) = diamCn(x) and ϕn(x) = sup{ϕ(y)− ϕ(z); y, z ∈ Cn(x)}.
We have

lim
n→∞ dn(x) = lim

n→∞ϕn(x) = 0.

Definition 9.1 We say that A is Markov if there exists such partition {Ii} and such
n that for every n-th level cylinder C[τ n] its image T (C[τ n]) is a union of n-th
level cylinders. Equivalently, A is Markov if for some partition {Ii} the subshift

̃ is a subshift of finite type, that is, a subshift defined as all the infinite words
ω ∈ {1, . . . ,m}N that do not contain any word from some finite list of finite words.

9.1 Pressure and Markov Sets

Let ϕ: [0, 1] → R be a piecewise continuous potential, with the set of discontinuities
contained inS. For the Markov systems we can define the pressure in the usual way:
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P(A, ϕ) = lim
n→∞

1

n
log
∑

C[ωn]∈Dn

exp( sup
x∈C[ωn]

Snϕ(x)), (52)

compare (76). For the non-Markov systems the right hand side of this equation is
still well-defined, but is considered too large for applications in dimension theory.
Let us give a short explanation.

In the year 1973 Bowen [3] gave the following definition of topological entropy:
given a continuous map f :X → X , where X is any f -invariant set (not necessarily
compact), let Xn be the n-th level cylinders, then

htop(f ,X ) = inf{s; inf
X⊂⋃Ei

∑
e−sn(Ei) = 0},

where the sum is taken over covers of X with cylinders and for a cylinder E n(E)

denotes its level. Geometrically, the Bowen’s definition of topological entropy is
similar to the Hausdorff dimension as the usual definition (67) is similar to the box
counting dimension—or more precisely, the Bowen’s definition is the Hausdorff
dimension and (67) is the box counting dimension, both calculated in a special
metric (so-called dynamical metric). Still, Bowen proved that for compact X the two
definitions are equal, while for noncompact the Bowen’s definition gives in general a
smaller number. For example, for a countable set X the Bowen’s entropy is always 0.

Our set A is compact, so there is no disagreement about what htop(f ,A) is. How-
ever, even though the pressure is heuristically a very similar object to the topological
entropy (in both cases we are just counting how many trajectories the system has,
except in the case of pressure we count the trajectories with some weights, given by
the potential), there is no analogue of Bowen’s theorem. Thus, we can always define
the pressure by formula (52), but it is only an upper bound for the correct formula –
which we do not know.

Except for the Markov systems. For a Markov system each n-th level cylinder is
large, in the sense that there exists δ > 0 such that for every C[ωn] ∈ Dn we have

diamf n(C[ωn]) > δ.

It is not necessarily so for non-Markov systems: some n-th level cylinders might
be very tiny (they will be not only n-th level cylinders but also n+ 1, . . . , n+ �-th
level cylinders, for some possibly large �). As the result, the sum on the right hand
side of (52) overstates their importance (counting them as n-th level cylinders, while
they would be counted as n+ �-th level cylinders by Bowen). Thus, Franz Hofbauer
in [10] gave a better definition of pressure:

P(A, ϕ) = sup
B⊂A,BMarkov

P(B, ϕ), (53)
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where P(B, ϕ) is given by (52). For Markov A (53) gives the same value as (52). We
note that it is still an open question whether the formula (53) can be strictly smaller
than (52) for non-Markov A.

9.2 Conformal Measure and Small Cylinders

We finish the section with two more important results of Franz Hofbauer. The first of
them was obtained together with Mariusz Urbański [12]. We will call a probabilistic
measure μ defined on A conformal for the potential ϕ if for every n and for every
C[ωn] ∈ Dn we have

μ(TC[ωn]) =
∫

C[ωn]
eP(A,ϕ)−ϕdμ.

As the partition is generating, this formula can be iterated:

μ(TnC[ωn]) =
∫

C[ωn]
enP(A,ϕ)−Snϕdμ.

Theorem 9.2 (Hofbauer, Urbański) Let A be topologically transitive, compact, T -
invariant set of positive entropy. Then, for every piecewise continuous potential ϕ

there exists a nonatomic conformal measure μ(A, ϕ) with support A.

The second result of Hofbauer, from [10], provides a way of estimating the set of
points x ∈ A such that for every n the cylinder Cn(x) is not large. Denote

Nρ(A, μ) = {x ∈ A; lim sup
n→∞

μ(TnCn(x)) ≤ ρ}.

Denote also byD(α) the set of points x ∈ AwithLyapunov exponentα.We remind
that ϕ1(x) denotes the variation of potential ϕ in first level cylinder containing x.

Lemma 9.3 (Hofbauer) For every α > supx(log |F ′|)1(x),

lim
ρ→0

dimH (Nρ ∩ D(α)) = 0.

We note that supx(log |F ′|)1(x) can be arbitrarily decreased by considering sub-
partitions of {Ii}.
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10 The Dimension of Barnsley’s Repellers

First, we recall the basic definitions.

10.1 The Basic Definitions

First, we recall the definition of Barnsley’s skew product maps: Given {Ii}mi=1 which
is a partition of [0, 1]. Let Di := Ii × R. For (x, y) ∈ Di we defined Fi(x, y) :=
(fi(x), gi(x, y)), where fi: Ii → Ji ⊂ [0, 1] onto, and

fi(x) := γix + vi, gi(x, y) = aix + λiy + ti, |λi|, |γi| > 1, ti, vi ∈ R. (54)

Also recall that we define f (x) := fi(x) if x ∈ Ii. The set of admissible words is
defined as

X := cl
{
(i1, i2, . . . ) ∈ 
: ∃x ∈ I such that ∀n ≥ 0, f n(x) ∈ I oin

}
, (55)

where cl(A) is the closure of the set A ⊂ 
 := {1, . . . ,m}N in the usual topology on

.

Definition 10.1 We say that f isMarkov if f (Ii) is equal to a finite union of elements
in {Ii}mi=1 for every i = 1, . . . ,m.

10.2 Diagonal and Essentially Non-diagonal System

Since, themapsFi are affine the derivativesDFi are constant lower triangularmatrices

DFi :=
(

γi 0
ai λi

)

.

However, it is very important if the derivative matrices are diagonal or essentially
non diagonal along the dynamics since the proofs that work for the essentially non-
diagonal case do not work for the diagonal ones and we need different assumptions
in these different cases.

Definition 10.2 We say that

(a) F is diagonal if all the matrices DFi are diagonal.
(b) F is essentially diagonal if the system of matrices {DFi}mi=1, simultaneously

diagonizable. This holds if
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γi − λi,

ai
= γj − λj

aj
, ∀i, j ∈ {1, . . . ,m} . (56)

(c) F is essentially non-diagonal along the dynamics if there are admissible words
ωωω,τττ ,∈ X and another word ηηη such that ωωωηηητττ ∈ X such that

(1) both fωωω and fτττ have fixed points
(2) {DFωωω,DFτττ } are not simultaneously diagonizable. That is for

DFωωω =
(

γωωω 0
aωωω λωωω

)

and DFτττ =
(

γτττ 0
aτττ λτττ

)

we have
γωωω − λωωω

aωωω

	= γτττ − λτττ

aτττ

.

The reason for this restrictive definition in (c) is that during the proof we approxi-
mate by Markov sub-systems and we need to guarantee that even the approximating
Markov sub-system remains essentially non-diagonal.

10.3 Markov Pressure and Hofbauer Pressure

Using the notation of (3), we introduce potential:

ϕs(x) =
{
−s log |λi| if 0 ≤ s ≤ 1,

− (log |λi| + (s− 1) log |γi|) if 1 < s ≤ 2.
(57)

Definition 10.3 [P(s,B)] Let s > 0 and B ⊂ [0, 1] be a Markov subset. Recall that
in (52) we defined the pressure P(B, ϕ) for Markov subset B ⊂ [0, 1] and potential
ϕ. Using this definition we can define

P(s,B) := P(B, ϕs). (58)

The following lemma helps to get better understanding:

Lemma 10.4 Assume that B ⊂ [0, 1] is Markov of type-1 set. That is for every
i, j ∈ {1, . . . ,m} either Ij ∩ B ⊂ f (Ii ∩ B) or (Ij ∩ B) ∩ f (Ii ∩ B) = ∅. Then

A(s)
i,j =
{

(1/λi) · (1/γi)s−1 if Ij ∩ B ⊆ f (Ii ∩ B)

0 otherwise.

Then P(s,B) = log ρ(A(s)), where ρ(A) denotes the spectral radius of A.
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We remark that every subshifts of type-n can be corresponded to a type-1 subshift
by defining a new alphabet, and subdividing the monotonicity intervals into smaller
intervals.

Definition 10.5 [PMar(s),PHof(s)] Now we define the functions s �→ PMar(s) and
s �→ PHof(s) as follows:

(a) If f is Markov then we write PMar(s) := P(s, [0, 1])
(b) If f is none Markov then we write

PHof(s) := sup
B⊂[0,1], B Markov

P(s,B). (59)

10.4 The Main Results

Theorem 10.6 Suppose that

(a) F is essentially diagonal,
(b) γi > λi for every i = 1, . . . ,m,
(c) The self-similar IFS {g−1i (y) = y−ti

λi
}Mi=1 satisfies HESC (see Condition 4.10)

then
dimH � = dimB � = sup

μ∈Merg(�)

D(μ) = s0,

where s0 is the unique number such that

• PMar(s0) = 0 if f is Markov, otherwise
• PHof(s0) = 0.

.

Theorem 10.7 Assume that F is essentially non-diagonal and f is a topologically
transitive. If γi > λi for every i = 1, . . . ,m then

dimH � = dimB � = sup
μ∈Merg(�)

D(μ) = s0,

where s0 is the unique number such that

• PMar(s0) = 0 if f is Markov, otherwise
• PHof(s0) = 0.
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Appendix 1. Thermodynamical Formalism

First we introduce the subshift of finite type.

1.1 Subshift of Finite Type

Let 
 = {1, . . . ,m}N be endowed with the usual topology, which generated by the
distance dist(i, j) := m−|i∧j|, where

|i ∧ j| = max {n: ∀|�| ≤ n, i� = j�} .

For some k < r we write [i]k,r = {j ∈ 
 : i� = j�, ∀� ∈ {k, . . . , r}} for the (k, r)
cylinder sets. If k = 1 then we write simply [i]r . Similarly,

[i1, . . . , in] := {j ∈ 
: ik = jk ,∀k = 1, . . . , n} .

For an i ∈ 
 we write

i|n := (i1, . . . , in) ∈ (1, . . . ,m)n =: 
n. (60)

Definition A.1 (subshift of finite type) Given an m× m matrix A of 0’s and 1’s.
Let 
A :=

{
i ∈ 
:Aik ,ik+1 = 1, ∀k ∈ N

}
and let σ be the left shift on 
A. That is

σ(i1, i2, i3 . . . ) := (i2, i3. . . . ) for every (i0, i1, i2, . . . ) ∈ 
A. Clearly, σ(
A) = 
A

and σ |
A is a homeomorphism on 
A. Sometimes we call σ |
A topological Markov
chain.

We always assume that for every k ∈ {1, . . . ,m} there exist some i ∈ 
A such
that i0 = k. From now on we call

• (
, σ ) a full shift and
• (
A, σ ) as subshift of finite type.

Also for the rest of this Section we assume that A is an m× m primitive matrix.


A,n := {i = (i1, . . . , in): [i1, . . . , in] ∩
A 	= ∅}.

1.2 Ergodic Measures

Given a measurable self-map T of a measurable space (X ,B). That is T :X → X
and T−1B ∈ B for every B ∈ B. We write
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• M(X ) for the set of Borel probability measures on (X ,B),
• MT (X ) for the set of invariant measures. That is

MT (X ) = {μ ∈M(X ):μ(A) = μ(T−1A), ∀A ∈ B} ,

• ET (X ) for the ergodic measures. That is

ET (X ) = {μ ∈MT (X ):A = T−1A =⇒ either μ(A) = 0, or μ(A) = 1
}
.

We frequently use Birkhoff’s Ergodic Theorem.

Theorem A.2 [Birkhoff’s Ergodic Theorem] Let μ ∈ ET (X ) and let f ∈ L1(X , μ).
Then forμ-almost all x ∈ X the ergodic averages converge both in L1 and pointwise:

lim
n→∞

1

n

n−1∑

k=0
f (Tk(x)) =

∫

f (x)dμ(x). (61)

1.3 Entropy

One of the basic concepts of the thermodynamical formalism is the entropy. There
is measure theoretical and topological entropy. Here, we just present the definitions
and a basic property. For further reading we recommend [4, 22] and a very detailed
introduction is given in [20].

1.3.1 Measure Theoretical Entropy on (�A, σ ) for an Ergodic Measure

First, we define the measure theoretical entropy on 
A for an ergodic (with respect
to the left shift σ ) measure. (We always assume that A is a primitive matrix.)

Definition A.3 [Entropy (measure theoretical)] Let μ be an ergodic measure on

A. We can define the entropy of μ as

h(μ) := lim
n→∞

1

n

∑

ωωω∈
A,n

μ([ωωω]) logμ([ωωω]). (62)

Theorem A.4 [Shannon Breiman McMillian Theorem] Let μ ∈ Eσ (
). Then for
μ-almost all i ∈ 
A we have

lim
n→∞

1

n
logμ[i|n] = h(μ). (63)

For the proof see [4].
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Example A.5 (a) Bernoulli shift. Given a probability vector p := (p1, . . . , pm),

where pi and
m∑

i=1
pi = 1. Then, we say the μ := pN is the Bernoulli measure

corresponding to p. It is easy to see that

h(μ) = −
m∑

i=1
pi log pi. (64)

(b) Markov Shift Given a stochastic matrix P = (pi,j)1≤i,j≤m. That is
∑m

j=1 pi,j = 1,
pi,j ≥ 0. We assume that P is primitive (it was enough to assume less). Then
by Perron Frobenius Theorem, there exists a left eigenvector p = (p1, . . . , pm)

which is a probability vector, such that pT · P = pT , (p is considered as a column
vector). We define the Markov measure μ on 
 corresponding to (p,P) by
μ([ωωω]) := pω1 · pω1,ω2 · · · pωn1 ,ωωn

, where ωωω ∈ 
n and ωωω = (ω1, . . . , ωn). Then,

h(μ) = −
m∑

i,j=1
pipi,j log pi,j (65)

(c) Parry measure Let A = (ai,j)m1≤i,j≤m be an primitive matrix (to assume irreducib-
lity was enough again) whose entries belong to {0, 1}. Then, we define the canon-
ical Markov measure as follows: Let λ be the largest (Perron-Frobenius) eigen-
value. Letu := (u1, . . . , um) and v := (v1, . . . , vm) be the left and right (positive)
eigenvectors satisfying

∑m
i=1 ui = 1 and

∑m
i=1 uivi = 1 (see [22, p. 16]). Then

we define
pi := uivi and pi,j := ai,jvj

λvi
(66)

Letμ be theMarkovmeasure corresponding to (p,P). Then, the uniquemeasure
on 
A with maximal entropy is μ and h(μ) = log λ.

1.3.2 Topological Entropy on Compact Metric Spaces for Continuous
Mappings

Now, we give the definition of the topological entropy in a more general setup (see
e.g. [5, pp. 165–170]).

Definition A.6 (Topological entropy) Given a homeomorphism T of the compact
metric space (X , d). For ε > 0 we say the orbits of length n

x,T (x), . . . ,Tn−1(x) and y,T (y), . . . ,Tn−1(y)

are the same with ε-precision if

d(T i(x),T i(y)) < ε, ∀i = 0, . . . , n− 1.
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Fix an ε > 0 and an n ∈ N. Let sn(x, ε) be the maximal number of n-orbits which
are different with ε-precision. Then, we define the topological pressure of T by

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε) (67)

We remark that this is not the most common way to define the topological entropy.

Theorem A.7 Let T : X → X be a contiuous map of a compact metric space. then
htop(T ) = sup {hT (μ):μ is an invariant measure for T }.
We defined the measure theoretical entropy only on subshift of finite type. The
definition in the general case is similar see, e.g., [4] and [22]. Before we give some
examples we need the following definition that will also be used later.

Definition A.8 Let T : I → I , where I ⊂ R is an interval.

• We say that T is a piecewise monotone map if there is a finite partition of I such
that on every class of this partition the map T is monotone.

• Let T be a piecewise monotone map. The the lap number �(T ) is the number of
maximal monotonicity intervals of T .

Example A.9 (a) For a subshift of finite type (
A, σ ) the topological entropy of σ

is log λ, where λ is the largest eigenvalue of the primitive 0, 1 matrix A.
(b) Here we use the notation of Example A.9. It follows from a theorem of Misi-

urewicz and Szlenk that for a piecewise monotone map T , we have

h(T ) = lim
n→∞

1

n
log �(Tn), (68)

where Tn is the n-fold composition of T . In particular, h(T ) ≤ �(T ). Moreover,
if T is piecewise affine and its the slope of ±s at every point (except the turning
points) then h(T ) = max {0, log s}. (see [5] for the proofs.).

1.4 Lyapunov Exponent

To define the Lyapunov exponents, we need Oseledec Theorem. The following ver-
sion of Oseledec Theorem is from Krengel’s book [16, pp. 42–47] where the proof
is also presented. Given a finite measure space (�,A, μ) and τ :� → � measure
preserving. Further, M denotes the set of r × r matrices. Put

Pn(A, ω) := A(τ n−1ω) · · ·A(τω)A(ω).

Theorem A.10 [Oseledec] Legyen A:� → M be measurable and we assume that

log+ ‖A(·)‖ ∈ L1(μ). (69)

Then, there exists an invariant �′ ⊂ � which has full μ-measure such that



44 B. Bárány et al.

1.
lim
n→∞
(
P∗n(A, ω) · Pn(A, ω)

)1/2n =: �(ω)

exists and � is a symmetric positive semidefinite matrix.
2. Let exp(λ1(ω)) > · · · > exp(λs(ω)) are the different eigenvalues of � and let

Eν be the eigenspace of � which belongs to exp λν(ω). Then for

Hν(ω) := Es(ω)
⊕

Es−1(ω)
⊕

· · ·
⊕

Es+1−ν(ω)

we have

lim
n→∞

1

n
log ‖Pn(A, ω)v‖ = λs+1−ν(ω), ∀v ∈ Hν(ω) \ Hν−1(ω), (70)

where H0(ω) ≡ ∅.
3. ω �→ dimEν(ω) and ω �→ λν(ω) are τ -invariant maps and we call dimEν(ω)

the multiplicity of λi(ω).

Definition A.11 (Lyapunov exponenets) Let μ be an ergodic measure. Then it fol-
lows from (3) that for all i = 1, . . . , s and for μ-almost all ω ∈ �, λi(ω) and
dimEν(ω) are constants that we call λi and di, respectively, for 1, . . . , s. We par-
tition the index set

{1, . . . , r} =
s⊔

k=1
Ik , Ik := {d1 + · · · + dk−1 + 1, · · · , d1 + · · · + dk−1 + dk}

(71)
Then, we define the Lyapunov exponents χ1 ≥ χ2 ≥ · · · ≥ χr as follows:

χ1 = · · · = χd1︸ ︷︷ ︸
:=λ1

> χd1+1 = · · · = χd1+d2︸ ︷︷ ︸
:=λ2

> χd1+d2+1 = · · · = χd1+d2+d3︸ ︷︷ ︸
:=λ3

> · · ·

> χd1+···+ds−2+1 = · · · = χd1+···+ds−2+ds−1︸ ︷︷ ︸
:=λs−1

> χd1+···+ds−1+1 = · · · = χd1+···+ds−1+ds︸ ︷︷ ︸
:=λs

.

(72)

1.5 Topological Pressure and Gibbs Measure

In this section, we always assume that A is a primitive m× m matrix and we con-
sider the topological Markov chain (or subshift of finite type ) (σ,
A) as defined in
Definition A.1

Definition A.12 (Hölder continuity) We say that a function φ:
A → R is Hölder
continuous if there exists b > 0 and α ∈ (0, 1) such that
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varkφ := sup {|φ(i)− φ(j)| : |i ∧ j| ≥ k} ≤ bαk . (73)

The set of Hölder continuous functions on 
A is denoted by FA. For a φ ∈ FA

and ωωω = (ω1, . . . , ωn) ∈ {1, . . . ,m}n

Snφ(ωωω) := sup

{
n−1∑

�=0
φ(σ �j): j ∈ [ωωω] ∩
A

}

. (74)

First observe that for any φ ∈ FA satisfying (73): and for any j, j′ ∈ [ωωω], where
ωωω = (ω1, . . . , ωn) ∈ 
A,n we have

∣
∣
∣
∣
∣

n−1∑

�=0
φ(σ �j)−

n−1∑

�=0
φ(σ �j′)

∣
∣
∣
∣
∣
≤ b

1− α
(75)

holds for all n andωωω ∈ 
A,n. This yields that the topological pressure of the potential
φφφ for the topological Markov shift (
A, σ ) is

P(φφφ) := lim
n→∞

1

n
log

⎛

⎝
∑

i∈
A,n

eSnφ(i)

⎞

⎠ (76)

does not depend onwhich j ∈ [i] is chosen. LetMσ (
A) denote the σ -invariant prob-
ability measures on 
A. The so-called Gibbs measure together with the topological
pressure play central role in dimension theory:

Theorem A.13 [The Existence of Gibbs Measure Theorem] Suppose that

• A is primitive and
• φ ∈ FA.

Then there exists a uniqueμ ∈Mσ (
A) for which ∃c1, c2 > 0 such that for ∀i ∈ 
A

and ∀�:
c1 ≤ μ ([i]�)

exp (−� · P(φ)+ S�φ(i))
≤ c2, (77)

where recall that we defined [i]� = {j ∈ 
A : ik = jk , ∀k ∈ {1, . . . , �}}. It can be
proved that μ is mixing, consequently ergodic.

We say that μ is the Gibbs measure for the potential φ. For the proof see [4].

1.6 The Root of the Pressure Formula

LetF be a conformal IFS onR as in definition 5.1 and we assume that the SSP holds.
That is fi([0, 1]) ∩ fj([0, 1]) = ∅ for all i 	= j. Let φs : 
 → R be



46 B. Bárány et al.

φs(i) := log |f ′i1(σ i)|s. (78)

Then for every i ∈ 
 and n we have

φs(σ
n−1i)+ · · · + φs(σ i)+ φs(i) = log |f ′i1...in(�(σ ni))|s. (79)

Using this and the Bounded Distortion Property, we obtain that for every n and for
every ωωω ∈ 
n := {1, . . . ,m}n

s log c1 <
∣
∣Snφs(ωωω)− log |f ′i1...in(�(σ ni))|s∣∣ < s log c2. (80)

Hence we get

P(s) := P(φs) = lim
n→∞

1

n
log
∑

|ωωω|=n
|f ′i1...in(0)|s, (81)

It is easy to see that the function s �→ P(φs) is positive at zero, negative at 1, con-
tinuous and strictly decreasing. So it has a unique zero in (0, 1). Let us denote this
unique zero by s0. That is

P(s0) = 0. (82)

This is the reason that we say that s0 is the root of the pressure formula.
Let μ be the Gibbs measure for the potential φs0 . Then for every n, ωωω ∈ 
n, and

x ∈ (0, 1) we have

c1c3 <
μ([ωωω])
|f ′ωωω(x)|s0 < c2c4. (83)

Appendix 2. Subadditive Pressure

Falconer introduced subadditive pressure in [8] and in a more explicit form in [6,
Sect. 3].

Definition B.1 (Subadditive pressure)Assume thatψn:
A → R , n = 1, 2, . . . sat-
isfy the following three conditions:

(a) ψn+m(i) ≤ ψn(i)+ ψm(σmi), n,m ∈ N
(b) There exists an a > 0 such that

∣
∣ 1
nψn(i)
∣
∣ ≤ a, for all i ∈ 
A, n ∈ N

(c) There exists an a > 0 such that |ψn(i)− ψn(j)| ≤ b for all n ∈ N and i, j ∈ 
A.

Foe everyωωω ∈ 
A,n we fix an arbitrary iωωω ∈ [ωωω]. Then the subadditive pressure asso-
ciated to {ψn} is

P({ψn}) := lim
n→∞

1

n
log
∑

ωωω∈
A,n

exp (ψn(iωωω)) = inf
n

1

n
log
∑

ωωω∈
A,n

exp (ψn(iωωω)) . (84)
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The the second equality is verified in [6, Sect. 3] is a slightly different setup. The
connection to the additive pressure is that

P({ψn}) = lim
N→∞

1

N
P
(
σN , ψN

) = inf
N

1

N
P
(
σN , ψN

)
, (85)

where P
(
σN , ψN

)
is the additive pressure (defined in (76)) for the potential ψN on

the topological Markov shift (
A, σ
N ).

Most commonly we use this in the following special case:

Example B.2 In the case of the additive pressure ψn(i) =∑n−1
k=0 f (σ ni) for a con-

tinuous function f :
A → R.

Example B.3 Given contracting non-singular d × d matricesA1, . . . ,Am (the linear
part of a self-affine IFS of the form 37). Then for every s ≥ 0 we define

ψ s
n:
A → R, ψ s

n(i) := logφs(Ai1 · · ·Ain) and P(s) := PA1...An(s) := P
({

ψ s
n

})
.

(86)
whereφs is the singular value functiondefined in (40). It is immediate that the function
s �→ PA1...An(s) is strictly decreasing, continuous, positive at zero and negative at any
s which is large enough. So, it has a unique zero sA1...An > 0. That is

PA1...An(sA1...An) = 0. (87)
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1 The Weierstrass and Takagi Functions

The study of the geometric properties of the graphs of real functions goes back to
the nineteenth century. Karl Weierstrass introduced in 1872 a function, which is
continuous but nowhere differentiable. That was one of the first examples of such
functions and for nowadays, became a famous example:

Wα,b(x) =
∞∑

n=0

αn cos(2πbnx), (1)

where b > 1 and 1/b < α < 1. In fact, Weierstrass proved the non-differentiability
for some values of parameters, and the proof for all parameters was given by Hardy
[14] in 1916.

Takagi [25] published his simple example of a continuous but nowhere differen-
tiable function in 1901,

T (x) =
∞∑

n=0

2−nψ(2nx), (2)

where ψ(x) = dist(x,Z). Unlike for the Weierstrass function, it is easy to show that
T has at no point a finite derivative, which proof is due to Billingsley [10]. For further
properties and historical background of the functions above, see the survey papers
of Allaart and Kawamura [1] and Barański [2].

Later, starting from the work of Besicovitch and Ursell [9], the graphs of Wα,b

and related functions were studied from a geometric point of view as fractal curves
in the plane. In general, let

Gα,b(x) =
∞∑

n=0

αnφ(bnx) (3)

for x ∈ R, where b ∈ N, 1/b < α < 1 and φ : R �→ R is a non-constant Z-periodic
Lipschitz continuous piecewiseC1 function. Kaplan et al. [17] proved that a function
of the form (3) is either piecewise C1 smooth or the box dimension of the graph is
equal to

D = 2 + logα

log b
. (4)

This fact is related to theHölder continuity of the functionGα,b. In fact, if the function
g : [0, 1] �→ R is Hölder continuous with exponent α then

dimB{(x, g(x)) : x ∈ [0, 1]} ≤ 2 − α.

For instance, the case of smoothness of Gα,b happens if φ(x) = αh(bx) − h(x) for
some smooth function h.
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The problem of determining the value of the Hausdorff dimension turned out to
be much more complicated. Mandelbrot formulated the conjecture in 1977 [20] that
the Hausdorff dimension of the graph of Wα,b equals to D, but this has been solved
only recently.

Ledrappier [19] gave a sufficient condition in order to determine the Haus-
dorff dimension of the graph. In details, let ξ = {ξi, i = 1, 2, . . .} be a sequence
of independent Bernoulli variables with values 0, . . . , b − 1 and with probabilities
P(ξj = k) = 1/b. If the distribution of the random variable

Yx(ξ) =
∞∑

n=1

(bα)−nφ′
(

x

bn
+ ξ1

bn
+ ξ2

bn−1
+ · · · + ξn

b

)
(5)

has dimension 1 for Lebesgue almost every x then

dimH {(x,Gα,b(x)) : x ∈ [0, 1]} = D.

This condition relies on the so-called Ledrappier-Young formula.
Although for the first sight this condition may seem very restrictive, it turned out

that it is widely applicable. In the case of Weierstrass functions (1), Barański et al.
[3] showed that for every b ≥ 2 integers there exists αb ∈ [1/b, 1) such that for every
α ∈ (αb, 1),

dimH {(x,Wα,b(x)) : x ∈ [0, 1]} = D.

Recently, Shen [23] proved that αb = 1/b.
In the case of Takagi function, the distribution of the random variable Yx(ξ) is

independent of x and it is the Bernoulli convolution, related to Erdős’ problem [11,
12]. For simplicity denote Tα the function Gα,2 with ψ(x) = dist(x,Z). It is easy
to see that Yx(ξ) = ∑∞

n=0(δξn,0 − δξn,1)(2α)−n in (5), where δi,j = 1 if i = j and 0
otherwise. Using this phenomena, Solomyak [24] showed that for Lebesgue almost
every α ∈ (1/2, 1),

dimH {(x,Tα(x)) : x ∈ [0, 1]} = D. (6)

Applying the result of Hochman [15], [5, Theorem 4.11], there exists a set E ⊂
(1/2, 1) such that dimH E = 0 and for every α ∈ (1/2, 1) \ E, (6) holds. Recently,
Varjú [26] showed that the distribution of Y (ξ) has dimension 1 if (2α)−1 is a tran-
scendental number (which is transcendental if and only if α is transcendental), and
hence (6) holds.

However, it is well known that for Pisot numbers (for instance (2α)−1 = (
√
5 −

1)/2 the golden ratio) the distribution of Y (ξ) is singular and has dimension strictly
smaller than 1 and thus, Ledrappier’s condition (5) cannot be applied. Recently, with
different method, Bárány et al. [4] proved that (6) holds for every α ∈ (1/2, 1).
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2 Dynamically Defined Function Graphs

LetGα,b be the function defined in (3) with b > 1 integer, 1/b < α < 1 and φ : R �→
R is a non-constant 1-periodic Lipschitz continuous piecewiseC1 function. It is easy
to see that Gα,b satisfies certain self-similarity equation

Gα,b(x) = αGα,b(bx) + φ(x). (7)

Since φ is 1-periodic and thus, Gα,b as well, Eq. (7) implies that graph(Gα,b) =
{(x,Gα,b(x)) : x ∈ [0, 1]} is invariant with respect to the dynamics

F(x, y) =
(
bx mod 1,

y − φ(x)

α

)
for (x, y) ∈ [0, 1] × R,

and {Fn(x, y)} is bounded if and only if y = Gα,b(x).
One can define the local inverses of F such that

F̃i(x, y) =
(
x + i

b
, αy + φ

(
x + i

b

))
for i = 0, . . . , b − 1.

Hence, graph(Gα,b) = ⋃b−1
i=0 F̃i(graph(Gα,b)). For a visualizationof the local inverses

in the cases of W1/2,3 and T2/3, see Fig. 1.
Observe that for the Takagi function Tα , the function φ is piecewise linear; more-

over, the singularity occurs exactly at x = 1/2. Thus, graph(Tα) is a self-affine set,
see [5, Definition 6.1], with IFS

Fig. 1 Graph of W1/2,3 and T2/3 as repellers
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{
F̃0(x) =

(
1
2 0
1 α

)
x, F̃1(x) =

(
1
2 0

−1 α

)
x +

(
1
2
1

)}

formed by lower triangular matrices.
A wider family of continuous functions, which are attractors of affine IFS,

is the fractal interpolation functions, introduced by Barnsley [6]. Let a dataset
� = {(xi, yi) ∈ [0, 1] × R : i = 0, 1, . . . ,m} be given so that 0 = x0 < x1 < · · · <

xm−1 < xm = 1. We concern the graphs of continuous functions G : [0, 1] �→ R,
which interpolate thedata according toG(xi) = yi for i ∈ {0, 1, . . . ,m}, andgraph(G)

is the attractor of an IFS, which contains only affine transformations with lower tri-
angular matrices. That is,

{
F̃i

(
x

y

)
=
(

(xi − xi−1)x + xi−1

(yi − yi−1 − αi(ym − y0))x + αiy + yi−1 − αiy0

)}m

i=1

where αi ∈ (−1, 1) \ {0} are free parameters for i = 1, . . . ,m. In other words, the
interpolation function G is the repeller of the piecewise linear, expanding map F ,
where F(x, y) = Fi(x, y) if xi−1 < x < xi and

Fi(x, y) =
(
x − xi−1

xi − xi−1
,
y − (yi − yi−1 − αi(ym − y0))

x−xi−1

xi−xi−1
− yi−1 + αiy0

αi

)
. (8)

For a visualization of a fractal interpolation function, see Fig. 2.
Note that if � is collinear then Gα,� is a linear function and thus, its graph has

dimension 1. Thus, without loss of generality, the non-collinearity of � might be
assumed without loss of generality.

Let us introduce thenotationGα,�,whichdenotes the fractal interpolation function

for the dataset � and free parameters α ∈ ((−1, 1) \ {0})|�|−1
.

Barnsley andHarrington [7] calculated the box dimension of graph(G) in a special
case. Namely, when xi − xi−1 = 1/m and αi = α for every i = 1, . . . ,mwith 1/m <

α, and the data is not situated on a line. Note that in this case the interpolation function
corresponds to Gα,m in (3) with

φ(x) = (yi − yi−1 − α(ym − y0))

(
mx + yi−1 − αy0

yi − yi−1 − α(ym − y0)
− (i − 1)

)

if
i − 1

m
≤ x <

i

m
.

(9)

In this case,

dimB graph(Gα,m) = 2 + logα

logm
.

This result was later generalized byBedford [8] for generalαi butwith the assump-
tion that xi − xi−1 = 1/m with αi > 1/m for every i = 1, . . . ,m. Ruan et al. [22]
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Fig. 2 Fractal interpolation function and its defining dynamics for � = {(0, 0), (1/4, 2/3),
(1/2, 1/4), (1, 1)} and α1 = 1/3, α2 = −1/2 and α3 = 1/2

studied the box dimension in further generality. The complete characterization of the
box counting dimension follows by Falconer and Miao [13, Corollary 3.1]. Namely,
if � is not collinear then

dimB graph(Gα,�) =
{
1 if

∑m
i=1 |αi| ≤ 1 and

s if
∑m

i=1 |αi| > 1,

where
∑m

i=1 |αi|(xi − xi−1)
s−1 = 1.

The following extension for theHausdorff dimension followsbyBárány,Hochman
and Rapaport [4].

Theorem 3.1 Let the dataset� = {(xi, yi) ∈ [0, 1] × R : i = 0, 1, . . . ,m} be given
so that 0 = x0 < x1 < · · · < xm−1 < xm = 1. If

∑m
i=1 |αi| > 1 and there exists i �= j

such that
yi − yi−1 − αi(ym − y0)

xi − xi−1 − αi
�= yj − yj−1 − αj(ym − y0)

xj − xj−1 − αj
(10)

then

dimH graph(Gα,�) = s, where
m∑

i=1

|αi|(xi − xi−1)
s−1 = 1.
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The assumption (10) is a little bit stronger than non-collinearity of �. That is,
if � is collinear then (10) does not hold. The condition (10) is equivalent with the
condition that the matrices {DFi}mi=1 are not simultaneously diagonalizable.

Note that (10) is a milder condition than Ledrappier’s condition (5). For exam-
ple, suppose that the fractal interpolation function corresponds to a function of the
form (3) with a 1-periodic piecewise linear φ. That is, the dataset � = {( i

m , yi) :
i = 0, . . . ,m}, y0 = ym = 0 and α1 = · · · = αm = α. Then φ is the piecewise linear
function, connecting the dataset �, i.e.,

φ(x) = (yi − yi−1)(mx − (i − 1)) + yi−1 if
i − 1

m
≤ x <

i

m

for i = 1, . . . ,m. Then (5) has the form

Y (ξ) = m
∞∑

n=1

(mα)−n(yξn − yξn−1),

where {ξn} are independent randomvariableswithP(ξi = k)= 1/m for k = 1, . . . ,m.
Ledrappier’s condition requires that the distribution of the random variable Y has
dimension 1 but the condition (10), i.e., yi − yi−1 �= yj − yj−1 for some i �= j, is
equivalent to that the distribution of the random variable Y has positive dimension.

3 Markovian Fractal Interpolation Functions

Let � = {(xi, yi) ∈ [0, 1] × R : i = 0, 1, . . . ,m} be given so that 0 = x0 < x1 <

· · · < xm−1 < xm = 1, and let αi ∈ (−1, 1) \ {0} for i = 1, . . . ,m. The expanding
dynamics, of which repeller is graph(Gα,�), has a skew product form. That is, the
map F(x, y) has the form

F(x, y) = Fi(x, y) = (fi(x), gi(x, y)) for x ∈ (xi−1, xi). (11)

Thus, there is a base dynamics f : [0, 1] �→ [0, 1], which is a piecewise linear,
expanding interval map. In particular, each subinterval (xi−1, xi) is mapped to the
complete interval (0, 1). A natural generalization could be when the base dynamics
f is a Markovian expanding map with Markov partition {(xi−1, xi) : i = 1, . . . ,m}.

That is, for every i = 1, . . . ,m let 0 ≤ 	(i) < r(i) ≤ m be integers such that γi :=
xr(i)−x	(i)

xi−xi−1
> 1. Then let

f (x) = fi(x) := xr(i) − x	(i)

xi − xi−1
(x − xi−1) + x	(i) if x ∈ (xi−1, xi).



56 B. Bárány et al.

Fig. 3 Markovian fractal interpolation function and its defining dynamics for � =
{(0, 0), (1/5, 1/5), (2/3, 0), (1, 3/5)} and α1 = 2/3, α2 = −2/3 and α3 = 2/3

By the choice of 	(i), r(i), the map f is a piecewise linear expanding Markov map,
see [5, Definition 10.1].

For each i = 1, . . . ,m, let αi ∈ (−1, 1) \ {0} be arbitrary. Then let gi(x, y) be
of the form gi(x, y) = λiy + aix + ti such that λi = α−1

i , gi(xi−1, yi−1) = y	(i) and
gi(xi, yi) = yr(i). This assumption guarantees that the repeller of F in (11) is a graph
of a function G so that G(xi) = yi for i = 0, . . . ,m. Simple calculations show that

ai = yr(i) − y	(i) − α−1
i (yi − yi−1)

xi − xi−1
and ti = y	(i) − α−1

i yi−1 − aixi−1.

For a visualization of a Markovian fractal interpolation function, see Fig. 3.
Since the base dynamics isMarkov, not all sequences of functions fi is admissible.

We define the following m × m matrix A = (Ai,j)
m
i,j=1 as follows

Ai,j =
{
1 if 	(i) + 1 ≤ j ≤ r(i),

0 otherwise.
(12)

Hence, an infinite sequence i = (i1, i2, . . .) is admissible if Aik ,ik+1 = 1 for every
k = 1, 2, . . .. Denote �A ⊆ {1, . . . ,m}N the set of all admissible sequences, that is,
i = (i1, i2, . . .) ∈ �A if and only if Aik ,ik+1 = 1 for every k ≥ 1. By using the local
inverses F̃i, one can define the natural map from �A to graph(G) as


(i) = lim
n→∞ F̃i1 ◦ · · · ◦ F̃in(x	(in), y	(in)). (13)

Thus, 
(i)2 = G(
(i)1), where 
(i)i denotes the ith coordinate of 
(i), moreover,
F(
(i)) = 
(σ i), where σ is the left shift on �A (Fig. 4).
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Fig. 4 Base system f , its Markovian structure and the matrix A(s) of the Markovian fractal inter-
polation function of Fig. 3

Since f is Markov with respect to the intervals {[xi−1, xi]}mi=1, one can decompose
the intervals into finitelymany classeswith respect to recurrency. Since the repeller of
F restricted to any recurrent class of intervals is graph(G) restricted to the intervals,
without loss of generality, we may assume that f is topologically transitive. On the
other hand, if the period of f would be p ≥ 2 then again by decomposing the intervals
into finitely many classes, the repeller of Fp restricted to a class is the restriction of
graph(G). Thus, without loss of generality, we may assume that f (and the matrix
A) is aperiodic, namely there exists a positive k ≥ 1 such that every element of Ak is
positive.

Since the local inverses are strict contractions, there exists an interval D = [a, b]
such that

⋃m
i=1 F̃i([x	(i), xr(i)] × D) ⊆ [0, 1] × D. In order to determine the box

counting dimension of graph(G), it is natural to cover graph(G) with sets of the
form F̃ωωω([x	(i|ωωω|), xr(i|ωωω|)] × D). These sets are parallelograms with height parallel to
the x-axis γωωω and side length (parallel to the y-axis) αωωω.

Let us define the matrix A(s) = (A(s)
i,j )

m
i,j=1 for s ∈ [1, 2] as follows

A(s)
i,j = |αi|γ −(s−1)

i Ai,j =
{

|αi|γ −(s−1)
i if 	(i) + 1 ≤ j ≤ r(i),

0 otherwise.
(14)

Similarly to Barnsley’s fractal interpolation function, we distinguish two cases
ρ(A(1)) ≤ 1 and ρ(A(1)) > 1, where ρ(·) denotes the spectral radius. The first case
implies that for most of the sets F̃ωωω([x	(i|ωωω|), xr(i|ωωω|)] × D), the component on the x-axis
is longer than the component on the y-axis.
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Theorem 3.2 If the dataset � is not collinear then

dimB graph(G) =
{
1 if ρ(A(1)) ≤ 1,

s if ρ(A(1)) > 1,
(15)

where s is the unique solution of the equation ρ(A(s)) = 1.
For completeness, we give a proof later.
The problem of Hausdorff dimension is significantly different. In point of view of

Theorem 3.2, it is natural to assume that ρ(A(1)) > 1. One way to find the Hausdorff
dimension of graph(G) is to find a iterated function system of affine transformations,
which attractor is contained in graph(G), and satisfies the conditions given in Bárány
et al. [4], [5, Theorem 6.3].

Theorem 3.3 Let the dataset � be not collinear, the adjacency matrix A be irre-
ducible and aperiodic, and (α1, . . . , αm) ∈ ((−1, 1) \ {0})m be such that ρ(A(1)) >

1. Moreover, let us assume that there exist 	 ≥ 1, ωωω,τττ ∈ �A,	 such that

αωωω = ατττ , γτττ = γωωω, ω1 = τ1, ω	 = τ	 and DF̃ωωω �= DF̃τττ . (16)

Then

dimH graph(G) = s,where s is the unique solution of ρ(A(s)) = 1.

We remind that�n = {1, . . . ,m}n is the collection ofwords of length n. For n ∈ N,
let (p1, . . . , p|�n|) be a probability vector and let ν be the corresponding Bernoulli
measure, living on (�N

n , σ�n), where σ�n is the usual left shift but acting on �N

n .
We have a natural isometry between (�N

n , σ�n) and (�, σ n), let ν̃ be the image of ν

under this isometry. Finally, let

ν̂ = 1

n

n−1∑

i=0

ν̃ ◦ σ−i.

The measures ν̂ that can be obtained by this construction will be called n-Bernoulli
measures. Note that the n-Bernoulli measures are ergodic and σ invariant measures
on �.

Proposition 3.4 Let A be an irreducible and aperiodic adjacency and let (�A, σ )

be a subshift of finite type and letμ be a σ -invariant measure supported on�A. Then
there exists a sequence of n-Bernoulli measures ν̂n, n → ∞ supported on �A and
converging to μ both in weak-* topology and in entropy.

Proof Fix k such that all elements of Ak are positive. We choose a pair (i, j) ∈
{1, . . . ,m}2 such that Aij = 1. For every 	 ∈ {1, . . . ,m} we can choose a word
ppp(	) ∈ �A,k such that p1 = j and ppp(	)	 ∈ �A,k+1 and a word sss(	) ∈ �A,k such that
sk = i and 	sss(	) ∈ �A,k+1. For any n ≥ 2k + 1 and for any word ωωω ∈ �A,n−2k let
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ω̂ωω = ppp(ω1)ωωωsss(ωn−2k), denote the set of such words by �̂A,n. Note that �̂A,n ⊂ �A,n,
moreover each word ω̂ωω begins with j and ends with i, hence any concatenation of
those words is also admissible.

Let us show this construction on the example in Fig. 3. In this case

A =
⎛

⎝
0 1 0
0 1 1
1 1 0

⎞

⎠ .

Choose (i, j) = (2, 2). The matrix A3 has strictly positive elements, and it is
easy to check that choices ppp(1) = (2, 3),ppp(2) = (2, 2),ppp(3) = (2, 2) and sss(1) =
(2, 2), sss(2) = (2, 2), sss(3) = (2, 2) are admissible and appropriate.

Let νn be the the Bernoulli measure on (�N

A,n, σ�n) obtained by the probability
vector (pτττ )τττ∈�A,n , where

pτττ =
{

μ([ωωω]) if there exists ωωω ∈ �A,n−2ksuch that τττ = ω̂ωω,

0 otherwise.

Let ν̃n be the measure on (�A, σ
n) and let ν̂n be the n-Bernoulli measure on (�A, σ )

as introduced previously. We need to prove two claims.

Claim 3.5 h(ν̂n) → h(μ) as n → ∞.

Proof We have

h(μ) = lim
n→∞ − 1

n − 2k

∑

�A,n−2k

μ([τττ ]) logμ([τττ ]).

At the same time,

h(ν̃n, σ
n) = −

∑
pωωω log pωωω = −

∑

�A,n−2k

μ([τττ ]) logμ([τττ ]),

hence

h(ν̂n) = −1

n

∑

�A,n−2k

μ([τττ ]) logμ([τττ ]).

Claim 3.6 ν̂n → μ in weak-* topology.

Proof Letw : � → R be a continuous function and denote by var	(w) the supremum
of differences w(x) − w(y) over x, y belonging to the same 	-th level cylinder. We
have

∣∣∣∣
∫

wdμ −
∫

wd ν̂n

∣∣∣∣ ≤ 1

n

n−1∑

i=0

∣∣∣∣
∫

wd(μ ◦ σ−i) −
∫

wd(ν̃n ◦ σ−i)

∣∣∣∣
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(we remind that μ is σ -invariant, hence μ = μ ◦ σ−i for any i ≥ 1). For any n −
2k-th level cylinder set [ωωω], ν̃n(σ−k [ωωω]) = ν̃n([ppp(ω1)ωωω]) = ν̃n([ppp(ω1)ωωωsss(ωn−k)]) =
μ([ωωω]), hence for i = k, . . . , n − k + 1 we have

∣∣∣∣
∫

wd(μ ◦ σ−i) −
∫

wd(ν̃n ◦ σ−i)

∣∣∣∣ ≤ vari−k(w).

The other summands can be estimated from above by var0(w). Summarizing,

∣∣∣∣
∫

wdμ −
∫

wd ν̂n

∣∣∣∣ ≤ 2k

n
var0(w) + n − 2k

n

1

n − 2k

n−2k∑

i=1

vari(w) → 0.

The combination of Claims 3.5 and 3.6 proves the proposition.

Proof (Proof of Theorem 3.3) The strategy of the proof is the following:

(1) Find a σ -invariant ergodic probability measureμ on�A which natural projection
is a candidate for achieving the Hausdorff dimension;

(2) find a approximating sequence of n-step Bernoulli measures ν̂n such that ν̂n → μ

in weak-* and entropy topology;
(3) show that dimH 
∗ν̂n → s as n → ∞.

First, we find the measure μ. Let s be such that ρ(A(s)) = 1. Since there exists a
k ≥ 1 such that (A(s))k has strictly positive elements. Then by Perron-Frobenius the-
orem, there exists a vector p = (p1, . . . , pm)T with strictly positive elements such
that A(s)p = p. Let Pi,j = A(s)

i,j
pj
pi
. Then the matrix P = (Pi,j)

m
i,j=1 is a probability

matrix, which is aperiodic and recurrent. Thus, there exists a unique probability
vector q = (q1, . . . , qm) with positive elements such that qP = q. Then for a cylin-
der set [i1, . . . , in] let

μ([i1, . . . , in]) = qi1Pi1,i2 · · ·Pin−1,in . (17)

It is easy to see by the definition of Lyapunov exponents in formula [5, (8.1)] that

h(μ) = −
∑

i,j

qiPi,j logPi,j = −
m∑

i=1

qi log |αi|γ −(s−1)
i = χ2(μ) + (s − 1)χ1(μ).

Moreover, since h(μ)

χ1(μ)
≤ 1 < s we have χ2(μ) < χ1(μ), and thus, D(μ) = s by [5,

Definition 8.2].
By Proposition 3.4, for every ε > 0 there exists a sequence of n-step Bernoulli

measures ν̂n and a N ≥ 1 such that for every n ≥ N

|h(μ) − h(ν̂n)|, |χ2(μ) − χ2(ν̂n)|, |χ1(μ) − χ1(ν̂n)| < ε.
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One can choose ε < (χ1(μ) − χ2(μ))/100, so χ2(ν̂n) < χ1(ν̂n). Now, we approx-
imate ν̂n with a nm-step Bernoulli measure νn,m, which is supported on words
ωωω ∈ (�A,n)

m for which γ −1
ωωω < αωωω. More precisely, let

Ym,n = {ωωω ∈ �A,nm : ν̂n(C[ω]) > 0 and γ −1
ωωω < αωωω},

and let ν̂n,m be the Bernoulli measure on (Ym,n)
N defined with the probabilities(

ν̂n(C[ωωω])/ν̂n(Ym,n)
)
ωωω∈Ym,n

, and let νn,m be the corresponding nm-step Bernoulli mea-
sure.

By the strong law of large numbers and Egorov’s theorem, for every ε > 0 there
exists M = M (n) > 0 such that for every m ≥ M

|h(νn,m) − h(ν̂n)|, |χ2(νn,m) − χ2(ν̂n)|, |χ1(νn,m) − χ1(ν̂n)| < ε.

Thus, |s − D(νn,m)| < Cε with some constant C > 0 independent of n,m.
By definition, supp(
∗νn,m) ⊆ graph(G). Thus, in order to apply [5, Theo-

rem 6.3], it is enough to show that there exists ωωω �= τττ ∈ Ym,n such that DF̃ωωω

and DF̃τττ are not simultaneously diagonalizable. Let 	 ≥ 1 and ωωω1, τττ 1 ∈ �A,	 as
in (16). Without loss of generality, we may assume that n − 2k � 	. Since the
first and last symbols of ωωω1, τττ 1 are the same, one can choose υυυ1,υυυ2 such that
ν̂n(C[υυυ1ωωω1υυυ2]), ν̂n(C[υυυ1τττ 1υυυ2]) > 0. By the strong law of large numbers, for every
sufficiently large m ≥ 1 one can find κκκ ∈ �A,n(m−1) such that υυυ1ωωω1υυυ2κκκ,υυυ1τττ 1υυυ2κκκ ∈
Ym,n. By definition, αυυυ1τττ 1υυυ2κκκ = αυυυ1ωωω1υυυ2κκκ and γυυυ1τττ 1υυυ2κκκ = γυυυ1ωωω1υυυ2κκκ . Thus, DF̃υυυ1τττ 1υυυ2κκκ

and DF̃υυυ1ωωω1υυυ2κκκ are not simultaneously diagonalizable if and only if DF̃υυυ1τττ 1υυυ2κκκ �=
DF̃υυυ1ωωω1υυυ2κκκ . But this is true since DF̃ωωω1 �= DF̃τττ 1 . Hence, by [5, Theorem 6.3]

dimH graph(G) ≥ dimH 
∗νn,m = D(νn,m) ≥ s − Cε.

The statement follows by taking ε → 0.

Proof (Proof of Theorem 3.2) Since the lower box-counting dimension is always an
upper bound for the Hausdorff dimension and the upper box-counting dimension is
always at most s, in point of view of Theorem 3.3, it is enough to show for diagonal
systems. That is, by applying an affine transformation on the dataset �, we may
assume that ai = 0 for every i = 1, . . . ,m. Since � is not collinear, G([0, 1]) is an
interval D with |D| > 0. Let �

(r)
A =

{
ωωω ∈ ⋃∞

	=1 �A,	 : γ −1
ωωω ≤ r < γ −1

ωωω||ωωω|−1

}
. There

needed at least
∑

ωωω∈�
(r)
A

⌈
|D|·αωωω

γ −1
ωωω

⌉
-many squares of side length r to cover graph(G).

By using the measure μ defined in (17),

∑

ωωω∈�
(r)
A

⌈ |D| · αωωω

γ −1
ωωω

⌉
≥ r−s

∑

ωωω∈�
(r)
A

|D| · αωωω

γ −1
ωωω

γ −s
ωωω ≥ r−sC

∑

ωωω∈�
(r)
A

μ([ωωω]) = r−sC,

where C = |D|mini,j pi/pj.
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4 Continuous Generalized Takagi Functions

In the previous examples, the base dynamics f : [0, 1] �→ [0, 1] was a Markovian
expanding, piecewise linear map with Markov partition formed by intervals. For
general systems of the form (11), the base dynamics is not Markovian. However, it is
hard to get a graph of a continuous function as a repeller of such systems. Finally, we
present here a special case, for which the repeller is a continuous function graph but
the base dynamics is non-Markovian. This example can be considered as generalized
Takagi functions.

Let us recall that the α-Takagi function Tα was defined as Tα(x) := ∑∞
n=1 αnψ

(2n · x), where we defined ψ(z) = dist (z,Z).
To define a continuous generalization of this family first we fix the two parameters

α ∈ (0, 1) and β ∈ (1, 2) such that α · β > 1. Then we introduce (see Fig. 5) the
function Bβ : [0, 1] → [0, 1]

Bβ(x) :=
{

βx, if x ∈ [0, 1
2

] ;
1 − β(1 − x), if x ∈ ( 12 , 1

]
.

(18)

This map will be our base dynamics.
Nowwe define the continuous generalized (α, β)-Takagi function Tα,β : [0, 1] →

R
+ as

Tα,β(x) :=
∞∑

k=0

αk · ψ
(
Bn

β(x)
)
. (19)

The fact that the function Tα,β(x) is continuous follows from the fact that for

all n the function x �→ ψ
(
Bn

β(x)
)
is continuous (see the right-hand side of Fig. 5).

Indeed, it is easy to see by the symmetryBβ(x) = 1 − Bβ(1 − x) that for a continuous
function g : [0, 1] �→ R, which is symmetric to the line x = 1/2, the map g ◦ Bβ is
continuous and symmetric to x = 1/2.

Fig. 5 Functions Bβ(x) and ψ
(
B4

β(x)
)
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The graphs of the functions Tα,β(x) are not self-affine but the graphs of these
functions have a less restrictive weakened form of self-affinity. Namely, we write

I1 :=
[
0,

1

2

]
, I2 :=

[
1

2
, 1

]
and J1 :=

[
0,

β

2

]
, J2 :=

[
1 − β

2
.1

]
(20)

and
Ĩ	 := I	 × [0,Mα,β ] and J̃	 := J	 × [0,Mα,β ], 	 = 1, 2, (21)

where Mα,β := max
x∈[0,1] Tα,β(x). Then

Graph(Tα,β) = F̃1
(
Graph(Tα,β) ∩ J̃1

)⋃
F̃2
(
Graph(Tα,β) ∩ J̃2

)
, (22)

where

F̃0(x, y) :=
(
1

β
· x, 1

β
· x + α · y

)
and

F̃1(x, y) :=
(
1 − 1

β
· (1 − x),

1

β
· (1 − x) + α · y

)
.

(23)

The union in (22) is almost disjoint, the intersection is the only point of graph(Tα,β)

which lies on the vertical line x = 1
2 . This follows from the fact that

graph(Tα,β) ∩ Ĩ	 = F̃	

(
Graph(Tα,β) ∩ J̃	

)
, 	 = 1, 2. (24)

See Fig. 6. If we compare this function graph with the graph of the self-affine Takagi
map T3/2 (see on the right-hand side of Fig. 1) thenwe can see the difference. Namely,

Fig. 6 graph(T1.78,0.9) is the union of affine images of parts of graph(T1.78,0.9)
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in the case of T3/2, both the left- and right-hand sides of graph(Tα) are affine images
of the whole graph graph(Tα). As opposed to that in the case of Tα,β the left- and the
right-hand sides: graph(Tα,β) ∩ Ĩ1 and graph(Tα,β) ∩ Ĩ2 are affine images of certain
parts of graph(Tα,β) and not the whole one. That is why the family of Tα,β is much
more general.

Theorem 3.7 For every value of α and 1 < β ≤ 2 such that α · β > 1

dimH graph(Tα,β) = dimB graph(Tα,β) = 2 + logα

logβ
.

In order to calculate dimH graph(Tα,β), we give the upper bound by using natural
covers and for the lower bound we find "large enough" Markovian subsystems of
Bβ . The set of admissible sequences is

�β = {(i1, i2, . . .) : ∃x ∈ [0, 1] such that Bn
β(x) ∈ Iin for every n ≥ 1}.

Since the base system Bβ is not Markovian for a general value of β, the set of
admissible sequences cannot be generated by an adjacency matrix. By Rokhlin’s
formula, see [18, 21], limn→∞ 1

n log ��
(n)
β = logβ, where�

(n)
β = {(i1, . . . , in) : ∃j ∈

�β such that jk = ik for k ≥ 1}.
For eachωωω ∈ �

(n)
β , let us define the cylinder sets by induction. Namely, for n = 1

let Cω = F̃ω(̃Jω) the cylinder set corresponding toω ∈ �
(1)
β . For n > 1 andωωω ∈ �

(n)
β ,

let Cωωω = F̃ω1(Cσωωω ∩ J̃ω1), where σωωω is the word of length n − 1 by deleting the first
symbol ofωωω. For eachωωω ∈ �

(n)
β , the set Cω is a parallelogram with height parallel to

the x-axis is atmostβ−n and side length parallel to the y-axis isαnMα,β . Sinceαβ > 1
weget that the tangent of the angle between the sides is uniformly bounded, denote the
bound by C. Thus, graph(Tα,β) can be covered by at most ��(n)

β · (Mα,β(αβ)n + C)-
many squares of sidelength β−n. This shows that

dimBgraph(Tα,β) ≤ 2 + logα

logβ
.

Now, we introduce the Markovian subsystems of Bβ . A compact Bβ-invariant set
B is calledMarkov subset if there exists a finite collectionD of closed intervals such
that for every I1,I2 ∈ D.

(1) I1 ⊆ I1 or I1 ⊆ I2,
(2) Io1 ∩ Io2 = ∅ if I1 �= I2,
(3)

⋃
I∈D ∩B = B,

(4) either Bβ(I1 ∩ B) ∩ I2 ∩ B = ∅ or I2 ∩ B ⊆ Bβ(I1 ∩ B).

We call D the Markov partition of B. Now we show that there exist a sequence of
Markov subsystems, which topological entropy approximates logβ arbitrarily.
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Lemma 3.8 For every ε > 0 there exists m ≥ 1, a Markov subset Bm ⊂ [0, 1] and
Dm Markov partition such that

htop(Bβ |Bm) > htop(Bβ) − ε.

Moreover, we can assume that there exist intervals in Dm which contain 0 and 1.

The claim follows from Hofbauer et al. [16, Proposition 1(a, b, c) and Lemma 2].
Similarly to (14), we define a matrix A(s),m for every m ≥ 1, which gives the

dimension of graph(Tα,β |Bm). Namely, let A(s),m be a #Dm × #Dm matrix such that

A(s),m
I,J =

{
αβ−(s−1) if J ∩ Bm ⊆ Bβ(I ∩ Bm) for I, J ∈ Dm

0 otherwise.

Let sm be such that ρ(A(sm),m) = 1. For, I, J ∈ Dm, let

I
n→J = {(I1, . . . ,In) :

Ij ∈ Dm, I1 = I,In = J, Bβ(Ij ∩ Bm) ⊇ Ij+1 ∩ Bm for 1 ≤ j ≤ n − 1
}
.

By definition,

htop(Bβ |Bm) = lim
n→∞

log #
⋃

I,J∈Dm
I

n→ J

n
.

But for every k ≥ 1, and I, J ∈ Dm,

((
A(sm)

)k)

I,J
= (

αβ−(sm−1)
)k · #(I n→ J).

Hence,

logβ − ε < htop(Bβ |Bm) = lim
k→∞

log
‖(A(sm))

k‖1
(αβ−(sm−1))

k

k
= − log

(
αβ−(sm−1)

)
,

which implies that sm > 2 + logα

logβ
− ε. One can decompose Dm into recurrent and

transient classes. It is easy to see that there exists a recurrent class R such that
restricting A(sm),m for R, ρ(A(sm),m|R) = 1. Denote the Markov subset of Bm restricted
to R byRm. Similarly to (17), there exists a Markov measure μm such that D(μm) =
sm. By Proposition 3.4, for every ε > 0 there exists an n-step Bernoulli measure νn,m
such that D(νn,m) > sm − ε. By [5, Theorem 7.6] , dimH 
∗νn,m = D(νn,m), which
gives the lower bound.
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Abstract Various types of basins, attractors and their fiberings are defined and
shortly discussed in the realm of iterated function systems on normal topological
spaces.
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The aim of this article is to present some topological basics on attractors of IFSs
in view of recent advances in the fractal geometry. It is based on the series of arti-
cles: [2–6, 8]. We introduce the concepts of basin, pointwise basin, fast basin, strict
attractor, pointwise strict attractor, point-fibred attractor, strongly fibred attractor and
homoclinic attractor. Relation of these concepts with the chaos game algorithm and
fractal manifolds is mentioned in passing. For a thorough discussion of the existence
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2 IFS

Throughout the paper, X will be a normal topological space. As usual, S stands for
the closure and Int(S) for the interior of S ⊆ X .

We distinguish the following collections of sets:

• 2X , all subsets of X ;
• C(X), nonempty closed sets;
• CB(X), nonempty bounded closed sets (provided X is a metric space);
• K(X), nonempty compact sets.

The Vietoris topology in C(X) is generated by subbasic sets of two forms

V+ = {C ∈ C(X):C ⊆ V },
V− = {C ∈ C(X):C ∩ V �= ∅},

where V runs through all open subsets of X . If X is a metric space, then the Vietoris
topology and the Hausdorff metric topology agree on K(X). If a sequence of closed
sets Sn ⊆ X converges to S ⊆ X with respect to the Vietoris topology, then we write
Sn → S.

An iterated function system F = {wi : i ∈ I }, IFS for short, is a finite collection
of maps wi : X → X . Note that we do not assume continuity of wi .

TheHutchinson operator F : 2X → 2X induced by the IFSF is defined as follows

F(S) :=
⋃

i∈I
wi (S) for S ⊆ X.

Note that, without ambiguity, we denote the IFS and the associated Hutchinson
operator by the same symbol F . Symbol Fn will stand for the n-fold composition
of F . (Conveniently F0 = id.)

Under additional conditions, we can restrict F to smaller collections of sets. We
shall tacitly assume the following condition

wi (K ) ∈ K(X) for all K ∈ K(X), i ∈ I,

whenever we write F :K(X) → K(X). This condition is satisfied when all maps wi

are continuous.
IfF comprises continuous maps, then the Hutchinson operatorF : C(X) → C(X)

is continuous with respect to the Vietoris topology. If X is a metric space, then
F :K(X) → K(X) is continuous in both, the Vietoris topology and the Hausdorff
metric topology, while F : CB(X) → CB(X) may fail to be continuous with respect
to the Hausdorff metric. See [2] for more information about the continuity of F .
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3 Basins and Pointwise Basins

Definition 3.1 (Barnsley et al. [3, 4]) Let A ∈ K(X) and F be an IFS on X . We
define the pointwise basin of A to be the set

B1(A) = {x ∈ X :Fn({x}) → A},

and the basin of A to be the set

B(A) =
⋃

U(A),

U(A) = {U ⊆ X : A ⊆ U – open,Fn(S) → A for all S ∈ K(U )}.

A nonempty compact set A is

(i) a pointwise strict attractor of F , when Int(B1(A)) ⊇ A;
(ii) a strict attractor of F , when B(A) �= ∅.
Proposition 3.2 (Barnsley et al. [3] Propositions 8 and 11) (i) If A is a pointwise
strict attractor of F , then Int(B1(A)) = B1(A) and F(B1(A)) ⊆ B1(A).

(ii) If A is a strict attractor, then A is a pointwise strict attractor, and B(A) =
B1(A).

The following criterion explains that pointwise strict attractors which are not strict
attractors can exist only in highly non-contractive IFSs.

Proposition 3.3 (Barnsley et al. [3] Lemma 10) Let F = {wi : i ∈ I } be an IFS
consisting of nonexpansive maps wi : X → X acting on a metric space (X, d). If A
is a pointwise strict attractor of F , then A is a strict attractor of F .

We list now a couple of characteristic examples.

Example 3.4 (Strict attractor is a local concept) Let w: X → X be a continuous
map with two attractive fixed points x1, x2 ∈ X , i.e. there exist open neighbourhoods
Ul 	 xl , l = 1, 2, such that wn(x) → xl for x ∈ Ul . Then, Al = {xl}, l = 1, 2, are
two pointwise strict attractors of the same F = {w}. (If w is locally contractive
around x1, x2 in a complete metric space X , then we get strict attractors.)

In view of the above example and the example below, let us note that a strict
attractor A of the IFS comprising global contractions is global in the sense that
B(A) = X .

Example 3.5 (Strict attractor is a topological concept) Let C be the complex plane.
We endow C with two equivalent metrics: d(z1, z2) = |z1 − z2| for z1, z2 ∈ C and
d1 = d

1+d . Fix three distinct points a1, a2, a3 ∈ C. Define wi (z) = 1
2 · (z + ai ) for

z ∈ C, i = 1, 2, 3 and considerF = {wi : i ∈ {1, 2, 3}}. It is known that theSierpiński
triangle A with vertices a1, a2, a3 is the Hutchinson attractor of F in (C, d), i.e. for
all nonempty closed and bounded subsets S of (C, d), the set convergenceFn(S) →
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A takes place with respect to the Hausdorff metric dH in CB(C) induced by d.
The Hausdorff metric induced by d1 is not equivalent to dH , because d1 and d are
not uniformly equivalent. Moreover, Fn(C) = C �= A, and the set C is closed and
bounded in (C, d1). Therefore, A is not the Hutchinson attractor of F in (C, d1).
On the other hand, A is a strict attractor of F regardless of the choice of equivalent
metric in C.

Example 3.6 (Strict attractor in a discontinuous IFS) LetF = {wi : i ∈ I } be an IFS
comprising continuous mapswi : X → X . We assume thatF admits a strict attractor,
denoted A. Further, assume that A has two disjoint dense subsets Em ⊆ A,m = 1, 2,
i.e. Em = A, E1 ∩ E2 = ∅. Let also em ∈ Em be two distinguished points. Define for
i ∈ I , m = 1, 2

w̃i,m(x) =
{

wi (x), x ∈ Em ∪ (X \ A),

em, x ∈ A \ Em .

Then, the IFS F̃ = {w̃i,m : (i,m) ∈ I × {1, 2}} is an IFS of discontinuous maps, and
A is a strict attractor of F̃ . (Indeed, the Hutchinson operators associated with F and
F̃ coincide.)

Some other notable examples of strict attractors include:

• the Alexandrov double arrow space—a nonmetrizable compact separable space
([3] Example 6);

• the Warsaw sine curve—a non-locally connected continuum ([4] Example 2).

Pointwise strict attractors, despite their generality, offer sufficiently reach theory
to be worth of consideration for IFSs. For instance, the probabilistic chaos game
algorithm is valid for them, cf. [3].

If A is a strict attractor of the IFS F comprising continuous maps, then A is an
invariant set, i.e. F(A) = A. (Indeed, Fn+1(A) = F(Fn(A)) → F(A) = A thanks
to continuity of F .) We will see later that attractors which are not invariant can exist
in discontinuous IFSs and their existence leads to interesting questions.

4 Point-Fibred and Strongly Fibred Attractors

Let I be a finite set (with a discrete topology). The Tikhonov product I∞ of countably
many copies of I is called the code space. It is a Cantor space, i.e. a homeomorph
of the Cantor ternary set.

Definition 4.1 (Kieninger [7] chap. 4) Let F = {wi : i ∈ I } be an IFS comprising
continuous maps. Let A be a strict attractor ofF . We define the coding multifunction
π : I∞ → K(A) by the following formula

π(ι) =
∞⋂

n=1

wi1 ◦ . . . ◦ win (A) for ι = (in)
∞
n=1 ∈ I∞.
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The strict attractor A is said to be

• point-fibred if π is single-valued, i.e. π(ι) is a singleton for each ι ∈ I∞;
• strongly fibred if for every open V ⊆ X with V ∩ A �= ∅ there exists ι ∈ I∞ such
that π(ι) ⊆ V .

Note that the codingmapπ provides a fibering of the attractor A into a nondisjoint
union: A = ⋃

ι∈I∞ π(ι).

Proposition 4.2 (Barnsley and Leśniak [1] Proposition 1) The coding multifunction
π of a strict attractor A of an IFSF comprising continuous mapswi does not depend
on the choice of a forward invariant compact capC ⊇ A,F(C) ⊆ C, that is for every
forward invariant compact cap C ⊆ B(A) and every ι = (in)∞n=1 we have

π(ι) =
∞⋂

n=1

wi1 ◦ . . . ◦ win (C).

An attractor of an IFS comprising weak contractions is point-fibred. Interestingly,
we can construct strongly fibred attractors from point-fibred ones.

Example 4.3 (Strongly fibred attractor which is not point-fibred; [1] Example 2.1,
[7] Example 4.3.19) Let F = {wi : i ∈ I } be an IFS of at least two continuous maps
wi : X → X on a compact space X which contains at least two points. Assume that
the images of these maps tessalate X :

⋃
i∈I wi (X) = X . (We do not demand Int

(wi (X)) to be disjoint.) Define an IFS on X × X :

F� = id × wi , wi × id: i ∈ I.

If X is a point-fibred strict attractor of F , then X × X is a strongly fibred strict
attractor of F�, but it is not point-fibred.

Example 4.4 (Non-strongly fibred attractor) Let w: X → X be a minimal map on
a compact metric space X (i.e. {wn(x): n ≥ 0} = X for each x ∈ X ). Then, X is a
strict attractor of F = {id, w}, and X is not strongly fibred.

The interesting fact about strongly fibred strict attractors, aside their mosaic inner
structure (e.g. [5]), is that we can derandomize the chaos game algorithm for such
attractors, cf. [1].

5 Fast Basins

So far we have considered the basin B(A) and the pointwise basin B1(A) of a set
A. These domains have the property that the iterations of the IFS F = {wi : i ∈ I }
starting there, as well as orbits xn = win ◦ ... ◦ wi1(x0), in ∈ I , n ≥ 1, x0 ∈ B1(A),
are attracted by A. We are going to consider the fast basin B̂(A) of A, the domain
with the property that all iterations (of orbits) fall into A after finite number of steps.
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Definition 5.1 (Barnsley et al. [4, 6]) Let A be a strict attractor of an IFS F . The
fast basin of A is defined by

B̂(A) = {x ∈ X :Fn({x}) ∩ A �= ∅ for some n ≥ 0}.

We describe below the fast basin of the Sierpiński triangle.

Example 5.2 (Sierpiński wallpaper) Let A be the Sierpiński triangle in the complex
plane with vertices a1 = 0, a2 = 1, a3 = ı ∈ C, generated by the IFS from Example
3.5. Then, B̂(A) = ⋃

k,m∈Z(A + k · 1 + m · ı).
It should be noted that in general neither B̂(A) ⊆ B(A) nor B(A) ⊆ B̂(A).

Example 5.3 (Fast basin reaching outside basin; [4] Example 5) Let X = R ∪
{∞}. Define w1(x) = x

2 for x �= ∞, w1(∞) = ∞, w2(x) = x+3
−2x+6 for x /∈ {3,∞},

w2(3) = ∞, w2(∞) = −1
2 . Then A = [0, 1] is a strict attractor with basin B(A) =(−∞, 3

2

)
. It turns out that

{3 · 2k : k ≥ 1} ⊆ B̂(A) \ B(A).

Denote

• F−1(S) = ⋃
i∈I w−1

i (S), the large counter-image of S ⊂ X ;
• B̂(ϑ) = ⋃∞

k=0 w−1
θk

(. . . w−1
θ1

(A) . . .), the fractal continuation of A along ϑ =
(θ1, θ2, ...) ∈ I∞.

Proposition 5.4 (Alternative descriptions of the fast basin; Barnsley et al. [4]
Propositions 2 and 3) If A is a strict attractor of F and B̂(A) is the fast basin
of A, then

(i) S = B̂(A) is the smallest (with respect to ⊆) solution of the equation

F−1(S) ∪ A = S;

(ii) B̂(A) = ⋃∞
k=0(F k)−1(A) = ⋃

ϑ∈I∞ B̂(ϑ).

The IFS is said to be invertible if it consists of homeomorphisms. The character-
ization of the fast basin given in Proposition 5.4 is the key to the following theorem.

Theorem 5.5 Let A be a strict attractor of the invertible IFS F acting on a normal
space X. Let B̂(A) be the fast basin of A. Let (P) be any of the following properties
of a set:

(i) the Lebesgue topological dimension of the set equals δ ∈ {0, 1, 2, . . .};
(ii) the Hausdorff fractal dimension of the set equals δ ∈ [0,∞);
(iii) the set is connected;
(iv) the set is pathwise connected;
(v) the set is boundary (i.e. it has empty topological interior);
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(vi) the set is σ -porous;
(vii) the set is hereditarily disconnected (in particular, it has a tree-like structure

and admits ultrametrization).

If A has property (P), then B̂(A) has property (P) too. In (ii) and (vi), we need to
assume that X is a metric space and the maps constituting F are b-Lipschitz. In (v),
we need to assume that X is a Baire topological space. For (vii), we assume that X
is a locally compact metric space.

The work [4] contains a gallery of fast basis. To unveil a true nature of the fast
basin B̂(A), one has to introduce inductive topology in a flag of successive enlarge-
ments w−1

θk
(. . . w−1

θ1
(A) . . .) (or blow-ups) of A. These blow-ups fill up the fractal

continuation B̂(ϑ). Properly glued continuations constitute branches (or leaves) of
the resulting object called a fractal manifold. We refer to [6] for technical details of
this construction. A simplistic visualization of this construction in the case of the
Sierpiński wallpaper has been offered in [10].

6 Homoclinic Attractors Versus Fast Basins

We are going to address an intricate connection of the existence of non-invariant
strict attractors, called homoclinic attractors, with the notion of fast basin.

Let F = {wi : i ∈ I } be an IFS of continuous maps wi : X → X . Let A be a strict
attractor with a nontrivial basin B(A) �= A. Fix b ∈ B(A) \ A. Define w̃i |A ≡ b,
w̃i = wi outside A, and

F̃ = {w̃i : i ∈ I }.

Then, F̃ is a discontinuous modification of F .
The following question arises: Whether/when A persists a strict attractor after

the modification of F? We would have then an attractor of F̃ which undergoes an
expulsion of its content, i.e. F̃(A) � A. The answer is that it depends upon the fast
basin B̂(A) of the original system F .

Proposition 6.1 (Necessary condition for a homoclinic attractor; [8] Proposition 2)
If A is a strict attractor of F̃ , then b /∈ B̂(A).

Theorem 6.2 [Sufficient condition for a homoclinic attractor; [8] Theorem 3] If
b /∈ B̂(A) and the following nonresonance condition holds: there exists an open
neighbourhood A ⊆ U (A) ⊆ B(A) such that

κ(S) := sup{k ≥ 0:F k(S) ∩ (B̂(A) \ A) �= ∅} < ∞

for all nonempty compact S ⊆ U (A), then A is a strict attractor of F̃ .

What about more general modifications F̃ of F? Say, F admits a strict attractor
A with basin B(A) and fast basin B̂(A), further F̃ is such a modification of F that
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F̃(A) ⊆ B(A) and F̃(A) � A. On this level of generality, Proposition 6.1 would
sound like: if A is a strict attractor of F̃ , then F̃(A) ∩ (B̂(A) \ A) = ∅. We have the
following counterexample for such speculations.

Example 6.3 (Leśniak [8]Example6)Let us consider the IFSF = {wi : i ∈ {1, 2, 3}}
on C from Example 5.2. Let w̃i = wi for i = 2, 3, and w̃1(z) = w1(z) for z �= 0,
w̃1(0) = 2. The Sierpiński triangle A is a strict attractor of F . It turns out that A is
a strict attractor of F̃ , F̃(A) � A, and 2 ∈ (B̂(A) \ A) ∩ F̃(A).

We do not know any good criteria for the existence of homoclinic attractors.
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1. M.F. Barnsley, K. Leśniak, The chaos game on a general iterated function system from a
topological point of view. Int. J. Bifurcation Chaos Appl. Sci. Eng. 24(1), 1450139/1–10 (2014)
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Zero-Dimensional Covers of Dynamical
Systems

Hisao Kato

Abstract In this article, we study the dynamical properties of two-sided zero-
dimensional maps. In particular, we show that if f : X → X is a two-sided zero-
dimensional map on an n-dimensional compactum X with zero-dimensional set P(f )
of periodic points, then the map f can be covered by a map on a zero- dimensional
compactum via an at most 2n-to-one map.

Keywords Dynamical systems · Covers (extensions) of dynamical systems ·
Periodic point · Dimension · Cantor sets · General position

1 Introduction

A pair (X, f ) is called a dynamical system if X is a compact metric space (= com-
pactum) and f : X → X is a map on X . A dynamical system (Z , f̃ ) covers (X, f )
via a map p: Z → X provided that p is an onto map and the following diagram is
commutative, i.e., p f̃ = f p.

Z
f̃−→ Z

↓p ↓p

X
f−→ X

Note that (X, f ) is also called a factor of (Z , f̃ ) and conversely (Z , f̃ ) is called
a cover (or an extension) of (X, f ). We call the map p: Z → X a factor mapping.
If Z is zero-dimensional, then we say that the dynamical system (Z , f̃ ) is a zero-
dimensional cover of (X, f ). Moreover, if the factor mapping is a finite-to-one map,
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then we say that the dynamical system (Z , f̃ ) is a finite-to-one zero-dimensional
cover of (X, f ).

The (symbolic) dynamical systems on Cantor sets have been studied by many
mathematicians, and also, the strong relations between Markov partitions and sym-
bolic dynamics have been studied (e.g., see [1, 3–5, 11, 17, 19], Proposition 3.19).
In [1], R. D. Anderson proved that for any dynamical system (X, f ), there exists a
zero-dimensional cover (Z , f̃ ) of (X, f ), and moreover in Boyle et al. [4, Theorem
A.1] proved that any dynamical system (X, f ) has a zero-dimensional cover (Z , f̃ )
such that the topological entropy h( f ) of f is equal to h( f̃ ), where the factor map-
pings are not necessarily finite-to-one. In topology, there is a classical theorem by
Hurewicz [8] that any compactum X is at most n-dimensional if and only if there is
a zero-dimensional compactum Z with an onto map p: Z → X whose fibers have
cardinality at most n + 1. In the theory of dynamical systems, we have the related
general problem (e.g., see [3, 4, 10, 16]):

Problem 1.1 What kinds of dynamical systems can be covered by zero-dimensional
dynamical systems via finite-to-one maps?

The motivation for this problem comes from (symbolic) dynamics on Cantor sets.
To study dynamical properties of the original dynamics (X, f ), the finiteness of the
fibers of the factor mapping may be very important, and so, in this article, we focus
on the finiteness of fibers of factor mappings. Related to Problem 1.1, first Kulesza
[16] proved the following significant theorem:

Theorem 1.2 (Kulesza [16]) For each homeomorphism f on an n-dimensional
compactum X with zero-dimensional set P( f ) of periodic points, there is a zero-
dimensional cover (Z , f̃ ) of (X, f ) via an at most (n + 1)n-to-one map such that
f̃ : Z → Z is a homeomorphism.

He also showed that Problem 1.1 needs the assumption dim P( f ) ≤ 0. In fact,
for the disk X = [0, 1]2 or some one-dimensional continuum X , there is a dynamical
system (X, f ) such that f : X → X is a homeomorphism on X with dim P( f ) = 1
and (X, f ) has no zero-dimensional cover via a finite-to-one map (see the proof of
Example 2.2 and Remark 2.3 of [16]). In [10] Ikegami, Kato and Ueda improved the
theorem of Kulesza as follows: The condition of at most (n + 1)n-to-one map can
be strengthened to the condition of at most 2n-to-one map.

The aim of this article is to give a partial answer to Problem 1.1. In fact, we
show that the above theorem is also true for a class of maps containing two-sided
zero-dimensional maps. For the special case that (X, f ) is a positively expansive
dynamical systemwith dim X = n, (X, f ) can be covered by a subshift (�, σ ) of the
shift map σ : {1, 2, ..., k}∞ → {1, 2, ..., k}∞ via an at most 2n-to-one map. Also, we
study some dynamical zero-dimensional decomposition theorems of spaces related
to such maps (see [14]).
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2 Preliminaries

In this article, all spaces are separable metric spaces, and maps are continuous func-
tions. Let N be the set of all natural numbers, i.e., N = {1, 2, 3, . . . }, Z the set
of all integers and Z+ the set of all nonnegative integers, i.e., Z+ = {0} ∪ N (=
{0, 1, 2, . . . }). Also, let R be the real line. If K is a subset of a space X , then cl(K ),
bd(K ) and int(K ) denote the closure, the boundary and the interior of K in X ,
respectively. A subset A of a space X is an Fσ -set of X if A is a countable union of
closed subsets of X . Also, a subset B of X is a Gδ-set of X if B is an intersection of
countable open subsets of X . For a space X , dim X means the topological (covering)
dimension of X (e.g., see [6]). For a collection C of subsets of X , we put

ord(C) = sup{ordxC | x ∈ X},

where ordxC is the number of members of C which contains x . A closed set K in X
is regular closed in X if cl(int(K )) = K . A collection C of regular closed sets in X
is called a regular closed partition of X provided that

⋃
C (=

⋃
{C | C ∈ C}) = X

and C ∩ C ′ = bd(C) ∩ bd(C ′) for each C,C ′ ∈ C with C 
= C ′. For regular closed
partitions A and B of X , A@B denotes the regular closed partition

{cl[int(A) ∩ int(B)] | A ∈ A and B ∈ B}

of X . It is clear that ord(A@B) ≤ ord(A) · ord(B). A collection {Aλ}λ∈� of subsets
of X is called a swelling of a collection {Bλ}λ∈� of subsets of X provided that
Bλ ⊂ Aλ for each λ ∈ �, and if for any m ∈ N and λ1, . . . , λm ∈ �, then

m⋂

i=1

Aλi 
= ∅ if and only if
m⋂

i=1

Bλi 
= ∅.

Conversely, a family {Bλ}λ∈� of subsets of X is called a shrinking of a cover {Aλ}λ∈�

of X if {Bλ}λ∈� is a cover of X and Bλ ⊂ Aλ for each λ ∈ �.
Let X and Y be compacta. Amap f : X → Y is zero-dimensional if dim f −1(y) ≤

0 for each y ∈ Y . A map f : X → Y is a zero-dimension preserving map if for any
zero-dimensional closed subset D of X , dim f (D) ≤ 0. Also, a map f : X → X
is two-sided zero-dimensional if f is zero-dimensional and zero-dimension pre-
serving, i.e., for any zero-dimensional closed subset D of X , dim f −1(D) ≤ 0 and
dim f (D) ≤ 0. In this case, note that if Z is a zero-dimensional Fσ -subset of X , then
dim f (Z) = 0. A map f : X → Y is semi-open (or quasi-open) if for any nonempty
open set U of X , f (U ) contains a nonempty open set of Y , i.e., int f (U ) 
= ∅. An
onto map p: X → Y is at most k-to-one (k ∈ N) if for any y ∈ Y , |p−1(y)| ≤ k.
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For a map f : X → X , a subset A of X is f -invariant if f (A) ⊂ A. We define the
set

O(x) = { f p(x)| p ∈ Z+}

which denotes the (positive) orbit of x . Similarly, we define the eventual orbit of
x ∈ X :

EO(x) = {z ∈ X | there exists i, j ∈ Z+ such that f i (x) = f j (z)}

= {z ∈ X | there exists j ∈ Z+ such that f j (z) ∈ O(x)}.

Note that
EO(x) =

⋃

i, j∈Z+

f − j ( f i (x)),

the family {EO(x)| x ∈ X} is a decomposition of X and EO(x) is f -invariant, i.e.,
f (EO(x)) ⊂ EO(x). Let P( f ) be the set of all periodic points of f ;

P( f ) = {x ∈ X | f j (x) = x for some j ∈ N}.

Apoint x ∈ X is eventually periodic if there is some p ∈ Z+ such that f p(x) ∈ P( f ).
Let EP( f ) be the set of all eventually periodic points of f ;

EP( f ) =
∞⋃

p=0

f −p(P( f )).

Note that P( f ) and EP( f ) are Fσ -sets of X . In [15], Krupski, Omiljanowski and
Ungeheuer showed that the set ofmaps f : X → X with zero-dimensional setsCR( f )
of all chain recurrent points is a dense Gδ-set of the mapping spaceC(X, X) if X is a
(compact) polyhedron. Note that a point x ∈ X is a chain recurrent point of f if for
any ε > 0 there is a finite sequence x = x0, x1, · · · , xm = x of points of X such that
d( f (xi ), xi+1) < ε for each i = 0, 1, ...,m − 1. Since P( f ) ⊂ CR( f ), we see that
the set of maps f : X → X with zero-dimensional sets P( f ) of all periodic points is
residual in the mapping space C(X, X) if X is a compact polyhedron. Hence, almost
all maps on compact polyhedra have zero-dimensional sets of periodic points.

Let X be a compactum and U ,V be two covers of X . Put

U ∨ V = {U ∩ V | U ∈ U , V ∈ V}.

The quantity N (U) denotes minimal cardinality of subcovers of U . Let f : X → X
be a map, and let U be an open cover of X . Put

h( f,U) = lim
n→∞

log N (U ∨ f −1(U) ∨ . . . ∨ f −n+1(U))

n
.
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The topological entropy of f , denoted by h( f ), is the supremum of h( f,U) for all
open covers U of X . Positive topological entropy of map is one of generally accepted
definitions of chaos.

3 Finite-to-one Zero-Dimensional Covers

In this section, we study finite-to-one zero-dimensional covers of some dynamical
systems. We need the followings.

Lemma 3.1 (cf. [10, Lemma 3.4]) Let f : X → X be a two-sided zero-dimensional
map of a compactum X such that dim X = n < ∞ and dim P( f ) ≤ 0. Let F be
an Fσ -set of X with dim F ≤ 0. Suppose that C = {Ci | 1 ≤ i ≤ M} is a finite open
cover of X and let B = {Bi | 1 ≤ i ≤ M} be a closed shrinking of C. Then, for each
k = 0, 1, 2, . . . , there is an open shrinking C ′(k) = {C ′

i | 1 ≤ i ≤ M} of C such that
for each 1 ≤ i ≤ M,
(1) Bi ⊂ C ′

i ⊂ Ci ,
(2) { f −p(bd(C ′

i )) | 1 ≤ i ≤ M, p = 0, 1, ..., k} is in general position,
(3) bd(C ′

i ) ∩ (EP( f ) ∪ F) = ∅ for each i .

Lemma 3.2 (cf. [10, Lemma 3.5]) Suppose that f : X → X is a two-sided zero-
dimensional map of a compactum X such that dim X = n < ∞ and dim P( f ) ≤ 0.
Let F be an Fσ -set of X with dim F ≤ 0. Then, for each j ∈ N, there is a finite open
cover C( j) = {C( j)i | 1 ≤ i ≤ m j } of X such that
(1) mesh(C( j)) < 1/ j ,
(2) ord(G) ≤ n, where G = { f −p(bd(C( j)i )) | 1 ≤ i ≤ m j , j ∈ N and p ∈ Z+},
and
(3) F ∩ L = ∅, where L = ⋃{bd(C( j)i )| 1 ≤ i ≤ m j , j ∈ N}.
Lemma 3.3 Let f : X → X be a map of a compactum X, and let H be a subset of
X. Suppose that for j ∈ N, C( j) = {C( j)i | 1 ≤ i ≤ m j } is a finite open cover of X
such that mesh(C( j)) < 1/ j , H ∩ ⋃G = ∅ and ord(G) ≤ n, where

G = { f −p(bd(C( j)i )) | 1 ≤ i ≤ m j , j ∈ N and p ∈ Z+}.

Then, for j ∈ N, there is a finite regular closed partition D( j) of X such that the
following properties hold;
(1) mesh(D( j)) ≤ 1/ j ,
(2) D( j + 1) is a refinement of D( j),
(3)

∏∞
p=0 ord f p(x)D( j) ≤ 2n for each x ∈ X, and

(4) if x ∈ H, then
∏∞

p=0 ord f p(x)D( j) = 1.

Lemma 3.4 Let f : X → X be a map of a compactum X, and let H be a subset of
X. Suppose that there is m ∈ N and a sequence of finite regular closed partitions
D( j) ( j ∈ N) of X such that
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(1) mesh(D( j)) ≤ 1/ j ,
(2) D( j + 1) is a refinement of D( j),
(3)

∏∞
p=0 ord f p(x)D( j) ≤ m for each x ∈ X, and

(4) H ∩ D = ∅, where D = ⋃{ f −p(bd(d))| d ∈ D( j), j ∈ N, p ∈ Z+}, i.e., if x ∈
H,

∞∏

p=0

ord f p(x)D( j) = 1.

Then, there is a zero-dimensional cover (Z , f̃ ) of (X, f ) via an at most m-to-one
map p: Z → X such that |p−1(x)| = 1 for x ∈ H. Moreover, if X is perfect, then Z
can be taken as a Cantor set C.

By use of the above results, we obtain the following theorem.

Theorem 3.5 (Kato and Matsumoto [14]) Suppose that f : X → X is a two-sided
zero-dimensional map of a compactum X with dim X = n < ∞. If dim P( f ) ≤ 0,
then there exist a dense Gδ-set H of X and a zero-dimensional cover (Z , f̃ ) of
(X, f ) via an at most 2n-to-one onto map p such that P( f ) ⊂ H and |p−1(x)| = 1
for x ∈ H. Moreover, if X is perfect, then Z can be chosen as a Cantor set. In
particular, h( f ) = h( f̃ ), where h( f ) denotes the topological entropy of f .

We consider a generalization of Theorem 3.5. For a map f : X → X on a com-
pactum X , let

D0( f ) = {x ∈ X | dim f −1(x) ≤ 0}

and
D+( f ) = {x ∈ X | dim f −1(x) ≥ 1} (= X − D0( f )).

Note that a map f : X → X is a zero-dimensional map if and only if D+( f ) = ∅.
The following theorem is a generalization of Theorem 3.5 which is the main theorem
of this article (see [14]).

Main Theorem 3.6 (a generalization of Theorem 3.5) Let f : X → X be a map
on an n-dimensional compactum X (n < ∞). Suppose that f is a zero-dimension
preserving map, dim D+( f ) ≤ 0 and dim EP( f ) ≤ 0. Then, there exist a dense Gδ-
set H of X and a zero-dimensional cover (Z , f̃ ) of (X, f ) via an at most 2n-to-one
onto map p such that E P( f ) ⊂ H and |p−1(x)| = 1 for x ∈ H. Moreover, if X is
perfect, then Z can be chosen as a Cantor set. In particular, h( f ) = h( f̃ ).

Also, we consider the case that f : X → X is a positively expansive map of a
compactum X . A map f : X → X of a compactum X is positively expansive if
there is ε > 0 such that for any x, y ∈ X with x 
= y, there is k ∈ Z+ such that
d( f k(x), f k(y)) ≥ ε. Similarly, a map f : X → X of a compactum X is positively
continuum-wise expansive if there is ε > 0 such that for any nondegenarate subcon-
tinuum A of X , there is a k ∈ Z+ such that diam( f k(A)) ≥ ε (see [12]). Such an ε > 0
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is called an expansive constant for f . Note that any positively expansive map is two-
sided zero-dimensional and positively continuum-wise expansive. In [12, Theorem
5.3], we know that if a compactum X admits an positively continuum-wise expansive
map f on X , then dim X < ∞ and every minimal set of f is zero-dimensional.

Proposition 3.7 (cf. [13, Proposition2.5])Let f : X → X beapositively continuum-
wise expansive map of a compact metric space X, and let

I0( f ) =
⋃

{M | M is a zero-dimensional f -invariant closed set of X}.

Then, I0( f ) is a zero-dimensional Fσ -set of X. In particular, dim P( f ) ≤ 0.

Let Yk = {1, 2, ..., k} (k ∈ N) be the discrete space having k-elements, and let
YZ+
k = ∏∞

0 Yk be the product space. Then, the shift map σ : YZ+
k → YZ+

k is defined
by σ(x)i = xi+1 for x = (x0, x1, x2, · · · ) ∈ YZ+

k . Note that σ is the typical positively
expansive map.

Theorem 3.8 (cf. [10, Corollary 3.7] and [17, Proposition 20]) Let f : X → X be
a positively expansive map of a compactum X with dim X = n < ∞. Then, there
exist k ∈ N and a closed σ -invariant set � of σ : YZ+

k → YZ+
k such that (�, σ ) is a

zero-dimensional cover (= symbolic extension) of (X, f ) via an at most 2n-to-one
map p:� → X satisfying that |p−1(x)| = 1 for any x ∈ I0( f ).

Remark: For the case that f : X → X is an expansive homeomorphism of a com-
pactum X with dim X = n < ∞ (see [12] for the definition of expansive homeo-
morphism), there exist k ∈ N and a closed σ -invariant set � of σ : YZ

k → YZ

k such
that (�, σ ) is a zero-dimensional cover (= symbolic extension) of (X, f ) via an at
most 2n-to-one map p:� → X , where σ : YZ

k → YZ

k is the shift homeomorphism
(see [10, 16]).

In the special case that X is a graph G (= compact connected one-dimensional
polyhedron) and f :G → G is a piece-wisemonotonemap,we can omit the condition
dim P( f ) ≤ 0. A map f :G → G is piece-wise monotone (with respect to some
triangulation K ) if for any edge E of K (i.e., E ∈ K 1), the restriction f |E : E → G
of f to the edge E is injective. We need the following result.

Theorem 3.9 If f : G → G is a piece-wise monotone map on a graph G, then there
is a zero-dimensional cover (C, f̃ ) of (G, f ) via an at most 2-to-one map, where C
is a Cantor set.

4 Zero-Dimensional Decompositions of Dynamical Systems

In dimension theory, the following decomposition theorem is well-known [6, The-
orem 1.5.8]: A separable metric space X is dim X ≤ n (n ∈ Z+) if and only if X
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can be represented as the union of n + 1 subspaces Z0, Z1, ..., Zn of X such that
dim Zi ≤ 0 for each i = 0, 1, ..., n. In this section, we study the similar dynamical
decomposition theorems of two-sided zero-dimensional maps (cf. [7]). We consider
bright spaces and dark spaces of maps except n times, and by use of these spaces,
we prove some dynamical decomposition theorems of spaces related to given maps
(see [14]).

Let f : X → X be a map. A subset Z of X is a bright space of f except n
times (n ∈ Z+) if for any x ∈ X ,

|{p ∈ Z+| f p(x) /∈ Z}| ≤ n.

Also, we say that L = X − Z is a dark space of f except n times. Note that for any
x ∈ X , |O(x) ∩ L| ≤ n and L ∩ P( f ) = φ. For each z ∈ X , put

t (z) = |{p ∈ Z+ ; f p(z) ∈ L}|.

Also, we put
T (x) = max{t (z) ; z ∈ EO(x)}

for each x ∈ X . For a dark space L of f except n times and 0 ≤ j ≤ n, we put

A f (L , j) = {x ∈ X | T (x) = j}.

Note that A f (L , j) is f -invariant, i.e. f (A f (L , j)) ⊂ A f (L , j) and A f (L , i) ∩
A f (L , j) = φ if i 
= j . Hence, we have the f -invariant decomposition related to the
dark space L as follows;

X = A f (L , 0) ∪ A f (L , 1) ∪ · · · ∪ A f (L , n).

Theorem 4.1 (cf. [7, Theorem 2.4]) Suppose that f : X → X is a two-sided zero-
dimensional map of a compactum X with dim X = n < ∞. Then, there is a bright
space Z of f except n times such that Z is a zero-dimensional dense Gδ-set of X
and the dark space L = X − Z of f is an (n − 1)-dimensional Fσ -set of X if and
only if dim P( f ) ≤ 0.

Corollary 4.2 (cf. [7, Corollary 2.5]) Suppose that X is a compactum with dim X =
n (< ∞) and f : X → X is a two-sided zero-dimensional onto map. Then, there
exists a zero-dimensional Gδ-dense set Z of X such that for any n + 1 integers
k0 < k1 < · · · < kn (ki ∈ Z),

X = f k0(Z) ∪ f k1(Z) ∪ · · · ∪ f kn (Z)

if and only if dim P( f ) ≤ 0.

By use of Fσ -dark spaces, we have the following decomposition theorem.
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Theorem 4.3 (cf. [7, Theorem 2.6]) Suppose that X is a compactum with dim X =
n (< ∞)and f : X → X is a two-sided zero-dimensionalmapon X withdim P( f ) ≤
0. If L is a dark space of f except n times such that L is an Fσ -set of X and
dim (X − L) ≤ 0, then dim A f (L , j) = 0 for each j = 0, 1, 2, ..., n. In particular,
there is the f -invariant zero-dimensional decomposition of X related to the dark
space L:

X = A f (L , 0) ∪ A f (L , 1) ∪ · · · ∪ A f (L , n).

In the case of positively expansive maps, we obtain decomposition theorem for a
compact dark space L .

Theorem 4.4 (cf. [7, Theorem 2.8]) Suppose that X is a compactum with dim X =
n (< ∞) and f : X → X is a positively expansive map. Then, there exists a compact
(n − 1)-dimensional dark space L of f except n times such that dim A f (L , j) = 0
for each j = 0, 1, 2, ..., n. In particular, there is the f -invariant zero-dimensional
decomposition of X related to the compact dark space L:

X = A f (L , 0) ∪ A f (L , 1) ∪ · · · ∪ A f (L , n).
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Chaotic Continua in Chaotic
Dynamical Systems

Hisao Kato

Abstract In this article, for any graph G we define a new notion of “free tracing
property by freeG-chains” onG-like continua andwe show that a positive topological
entropy homeomorphism f of a G-like continuum X admits a Cantor set Z in X such
that any sequence (z1, z2, ..., zn) of points in Z is an IE-tuple of f, Z has the free
tracing property by free G-chains and the minimal continuum H containing Z in
X is indecomposable. Moreover, we show that the similar result can be obtained
for positive topological entropy “monotone” maps. Also we give characterization
theorems of G-like continua containing indecomposable subcontinua.

Keywords Topological entropy · Indecomposable continuum · Composants ·
G-like continuum · Cantor sets · Free tracing property by free G-chains · Inverse
limits

1 Introduction

During the last thirty years or so, many interesting connections between dynamical
systems and continuum theory have been studied by many mathematicians. Many
complicated spaces frequently appear in chaotic dynamical systems. Such spaces play
important roles in order to investigate behaviors of the dynamics. We are interested
in the following fact that chaotic topological dynamics should imply the existence of
complicated topological structures of underlying spaces. In many cases, such spaces
are indecomposable continua. We know that many indecomposable continua often
appear as chaotic attractors of dynamical systems. Also, in many cases, the com-
posants of such indecomposable continua are strongly related to stable or unstable
(connected) sets of the dynamics. For instance, in continuum theory and the theory
of dynamical systems, the Knaster continuum (= Smale’s horse shoe), the pseudo-
arc, solenoids and Wada’s lakes (= Plykin attractors) etc., are well-known as such
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indecomposable continua. The theory of indecomposable continua is one of the most
interesting branches of continuum theory in topology.

By use of ergodic theory method, Blanchard, Glasner, Kolyada andMaass proved
that if a map f :X → X of a compact metric spaceX has positive topological entropy,
then there is an uncountable δ-scrambled subset of X for some δ > 0 and hence the
dynamics (X , f ) is Li-Yorke chaotic. Huang and Ye studied local entropy theory and
they gave a characterization of positive topological entropy by use of entropy tuples.
Kerr and Li developed local entropy theory and gave a new proof of the theorem
of Blanchard, Glasner, Kolyada and Maass. Moreover, they proved that X contains
a Cantor set Z which yields more chaotic behaviors. Barge and Diamond showed
that for piecewise monotone surjections of graphs, the conditions of having positive
topological entropy, containing a horse shoe and the inverse limit space containing an
indecomposable subcontinuum are all equivalent. Mouron proved that if X is an arc-
like continuum which admits a homeomorphism with positive topological entropy,
then X contains an indecomposable subcontinuum. As an extension of the Mouron’s
theorem, Darji and Kato proved that if X is a G-like continuum for a graph G and
X admits a homeomorphism f with positive topological entropy, then X contains an
indecomposable subcontinuum.Moreover, if the graphG is a tree, then there is a pair
of two distinct points x and y of X such that the pair (x, y) is an IE-pair of f and the
irreducible continuum between x and y in X is an indecomposable subcontinuum.

In this article, for any graphG, we define a new notion of "free tracing property by
free G-chains" on G-like continua and we prove that a positive topological entropy
homeomorphism f of a G-like continuum X admits a Cantor set Z in X such that any
sequence (z1, z2, ..., zn) of points in Z is an IE-tuple of f and Z has the free tracing
property by freeG-chains. Our main theorem is a dynamical and geometric structure
theorem of positive topological entropy homeomorphism of G-like continua. Also,
we show that the similar result can be obtained for positive topological entropy
"monotone" maps. Also, we give characterization theorems of continua containing
indecomposable subcontinua.

2 Preliminaries

In this article, we assume that all spaces are separable metric spaces and all maps are
continuous. Let N be the set of natural numbers, R the real line, and I = [0, 1] the
unit interval. A graph is a compact connected 1-dimensional polyhedron. A graph T
is a tree if T contains no simple closed curve. For a set A, |A| denotes the cardinality
of the set A. For a family A of subsets of a space,

⋃A denotes the union of all
elements of A, i.e., ⋃

A =
⋃

A∈A
A (=

⋃
{A| A ∈ A}).

For a subset A of a space X , A denotes the closure of A in X . A subset E of X is an
Fσ -set of X if E is a countable union of closed sets of X .
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A continuum is a compact connected metric space. We say that a continuum is
nondegenerate if it has more than one point. A continuum is indecomposable [24]
if it is nondegenerate and it is not the union of two proper subcontinua. For any
continuum H , the set c(p) of all points of the continuum H , which can be joined
with the point p by a proper subcontinuum of H , is said to be the composant of the
point p ∈ H , i.e.,

c(p) =
⋃

{C| C is a proper subcontinuum of H containing the point p}.

Note that for an indecomposable continuum H , the following conditions are equiv-
alent;

1. the two points p, q belong to same composant of H ;
2. c(p) ∩ c(q) �= ∅;
3. c(p) = c(q).

So, we know that if H is an indecomposable continuum, the family

{c(p)| p ∈ H }

of all composants of H is a family of uncountable mutually disjoint sets c(p) which
are connected and dense Fσ -sets in H . Note that a (nondegenerate) continuum X
is indecomposable if and only if there are three distinct points of X such that any
subcontinuum of X containing any two points of the three points coincides with X ,
i.e., X is irreducible between any two points of the three points [24].

LetH be an indecomposable continuum.We say that a subsetZ ofH is transversal
for composants of H if no distinct two points of Z belong to the same composant of
H , i.e., if x, y are any distinct points of Z and E is any subcontinuum ofH containing
x and y, then E = H . In [27], Mazurukiewicz proved that if H is an indecomposable
continuum, then there is a Cantor set Z in H which is transversal for composants of
H .

Let Xi (i ∈ N) be a sequence of compact metric spaces and let fi,i+1:Xi+1 → Xi

be a map for each i ∈ N. The inverse limit of the inverse sequence {Xi, fi,i+1}∞i=1 is
the space

lim←−{Xi, fi,i+1} = {(xi)∞i=1 | xi = fi,i+1(xi+1) for each i ∈ N} ⊂
∞∏

i=1

Xi

which has the topology inherited as a subspace of the product space
∏∞

i=1 Xi. For a
map f :X → X , put

lim←−(X , f ) = {(xi)∞i=1 | xi = f (xi+1) for each i ∈ N}.

A map g from X onto G is an ε-map (ε > 0) if for every y ∈ G, the diameter of
g−1(y) is less than ε. For any collection P of graphs, X is P-like if for any ε > 0
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there exist an element G ∈ P and an ε-map from X onto G. A continuumX is G-like
if X is P-like, where P = {G}. Note that X is G-like if only if X is homeomorphic
to the inverse limit of an inverse sequence of G, i.e.,

X = lim←−{Gi, fi,i+1},

whereGi = G and fi,i+1:Gi+1 → Gi is an ontomap for each i ∈ N. Arc-like continua
(=chainable continua) are those which are G-like for G = I , and circle-like continua
are those which are S-like, where S is a simple closed curve. Our focus in this article
is on G-like continua where G is any graph.

Let U be a collection of subsets of X . The nerve N (U) of U is the polyhedron
whose vertices are elements of U and there is a simplex
< U1,U2, ...,Uk > with distinct vertices U1,U2, ...,Uk ∈ U if

k⋂

i=1

Ui �= ∅.

In this paper, we consider the only case that nerves are graphs.
If {C1, . . . ,Cn} is a subcollection of U , we call it a chain if Ci ∩ Ci+1 �= ∅ for

1 ≤ i < n and Ci ∩ Cj �= ∅ implies that |i − j| ≤ 1. We say that {C1, . . . ,Cn} is a
free chain in U if it is a chain and, moreover, for all 1 < i < n we have that C ∈ U
with C ∩ Ci �= ∅ implies that C = Ci, C = Ci−1 or C = Ci+1. By the mesh of a
finite collection U of sets, we means the largest of diameters of elements of U .
Note that for a graph G, a continuum X is G-like if and only if for any ε > 0,
there is a finite open cover U of X such that N (U) is homeomorphic to G and the
mesh of U is less than ε. The Knaster continuum [21] (= Smale’s horse shoe) and the
pseudo-arc (= hereditarily indecomposable arc-like continuum) are arc-like continua,
solenoids are circle-like continua and the Wada’ lake [35] (= Plykin attractor [32])
is a (S1 ∨ S2 ∨ S3)-like continuum, where S1 ∨ S2 ∨ S3 denotes the one point union
of 3 circles. Such spaces are typical indecomposable continua which often appear in
continuum theory and chaotic dynamical systems. The reader may refer to [24, 31]
for standard facts concerning continuum theory.

3 Free Tracing Property by Free G-chains

Let X be a continuum and m ∈ N. Suppose that Ai (1 ≤ i ≤ m) are nonempty m
open sets in X and xi (1 ≤ i ≤ m) are m distinct points of X . We identify the order
A1 → A2 → · · · → Am and the converse order Am → Am−1 → · · · → A1. Then we
consider the equivalence class

[A1 → A2 → · · · → Am] = {A1 → A2 → · · · → Am;Am → Am−1 → · · · → A1}.
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Suppose that U is a finite open cover of X . We say that a chain {C1, · · · ,Cn} ⊆ U
follows from the pattern [A1 → A2 → · · · → Am] [11] if there exist

1 ≤ k1 < k2 < · · · < km ≤ n or 1 ≤ km < km−1 < · · · < k1 ≤ n

such thatCki ⊂ Ai for each i = 1, 2, ...,m. In this case, more precisely we say that the
chain [Ck1 → Ck2 → · · · → Ckm] follows from the pattern [A1 → A2 → · · · → Am].
Similarly,we say that a chain {C1, . . . ,Cn} ⊆ U follows from the pattern [x1 → x2 →
· · · → xm] [11] if there exist

1 ≤ k1 < k2 < · · · < km ≤ n or 1 ≤ km < km−1 < · · · < k1 ≤ n

such that xi ∈ Cki for each i = 1, 2, ...,m, where

[x1 → x2 → · · · → xm] = {x1 → x2 → · · · → xm; xm → xm−1 → · · · → x1}.

More precisely, we say that the chain [Ck1 → Ck2 → · · · → Ckm] follows from the
pattern [x1 → x2 → · · · → xm].

Let P be a collection of graphs and let Z be a subset of a P-like continuum
X . We say that Z has the free tracing property by (resp. free) P-chains if for any
ε > 0, any m ∈ N and any order x1 → x2 → · · · → xm of any m distinct points
xi (i = 1, 2, ...,m) of Z , there is an open cover U of X such that the mesh of U is less
than ε, the nerveN (U) of U is homeomorphic to an element ofP and there is a (resp.
free) chain in U which follows from the pattern [x1 → x2 → · · · → xm]. Especially,
for a G-like continuum X , we say that a subset Z of X has the free tracing property
by (resp. free) G-chains if Z has the free tracing property by (resp. free) P-chains,
where P = {G}.

In the special the case that X itself is a graph G, for points xi (i = 1, 2, ...,m) of
G, we can similarly define that an edge of G follows from the pattern [x1 → x2 →
· · · → xm].

4 Positive Topological Entropy

Let X be a compact metric space and U ,V be two covers of X . Put

U ∨ V = {U ∩ V | U ∈ U ,V ∈ V}.

The quantity N (U) denotes minimal cardinality of subcovers of U . Let f :X → X be
a map and let U be an open cover of X . Put

h(f ,U) = lim
n→∞

logN (U ∨ f −1(U) ∨ . . . ∨ f −n+1(U))

n
.
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The topological entropy of f , denoted by h(f ), is the supremum of h(f ,U) for all
open covers U of X . Positive topological entropy of map is one of generally accepted
definitions of chaos. We say that a set I ⊆ N has positive density if

lim inf
n→∞

|I ∩ {1, 2, ..., n}|
n

> 0.

Let X be a compact metric space and f :X → X a map. Let A be a collection of
subsets of X . We say that a set I ⊂ N is an independence set for A if for all finite
sets J ⊆ I , and for all (Yj) ∈ ∏

j∈J A, we have that

⋂

j∈J
f −j(Yj) �= ∅.

We now recall the definition of IE-tuple which is related to independence set in
N and (topological) entropy (see [20]). Let (x1, . . . , xn) be a sequence of points in
X . We say that (x1, . . . , xn) is an IE-tuple of f if whenever A1, . . . ,An are open sets
containing x1, . . . , xn, respectively, we have that the collectionA = {A1, . . . ,An} has
an independence set with positive density. In the case that n = 2, we use the term
IE-pair. We use IEk to denote the set of all IE-tuples of length k.

Let f :X → X be a map of a compact metric space X with metric d and let δ > 0.
A subset S of X is a δ-scrambled set of f if |S| ≥ 2 and for any x, y ∈ S with x �= y,
then one has

lim inf
n→∞ d(f n(x), f n(y)) = 0 and lim sup

n→∞
d(f n(x), f n(y)) ≥ δ.

We say that f :X → X is Li-Yorke chaotic if there is an uncountable subset S of X
such that for any x, y ∈ S with x �= y, then one has

lim inf
n→∞ d(f n(x), f n(y)) = 0 and lim sup

n→∞
d(f n(x), f n(y)) > 0.

In [3], by use of ergodic theory method, Blanchard, Glasner, Kolyada and Maass
proved the following theorem.

Theorem 4.1 (Blanchard et al. [3]) If a map f : X → X of a compact metric space
X has positive topological entropy, then there is an uncountable δ-scrambled subset
of X for some δ > 0 and hence the dynamics (X , f ) is Li-Yorke chaotic.

In [20], by use of local entropy theory (IE-tuples),Kerr andLi proved the following
theorem.

Theorem 4.2 (Kerr and Li [20] Theorem 3.18) Suppose that f : X → X is a positive
topological entropy map of a compact metric space X , and x1, x2, ..., xm (m ≥ 2)
are distinct points of X such that the tuple (x1, x2, ..., xm) is an IE-tuple of f . If
Ai (i = 1, 2, ...,m) is any neighborhood of xi, then there are Cantor sets Zi ⊂ Ai

such that the following conditions hold;
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(1) any sequence (z1, z,..., zn) of points in the Cantor set Z = ⋃
i Zi is an IE-tuple

of f , and
(2) for all k ∈ N, k distinct points y1, y2, ..., yk ∈ Z and any points z1, z2, ..., zk ∈ Z,
one has

lim inf
n→∞ max{d(f n(yi), zi)| 1 ≤ i ≤ k} = 0.

In particular, Z is a δ-scrambled set of f for some δ > 0.

In [11], we have the following structure theorem for homeomorphisms on G-like
continua.

Theorem 4.3 (Kato [11]) In the setting of Theorem 4.2 assume additionally that X
is a G-like continuum for a graph G and f : X → X is a homeomorphism. Then the
Cantor sets Zi ⊂ Ai (i = 1, 2, ...,m) can be chosen so as to satisfy, in addition to the
above conditions (1) and (2), also the following two ones;
(3) Z = ⋃m

i=1 Zi has the free tracing property by free G-chains, and
(4) the unique minimal subcontinuum H of X containing Z is indecomposable and
Z is transversal for composants of H.

An onto map f :X → Y of continua is monotone if for any y ∈ Y , f −1(y) is
connected.

Theorem 4.4 (Kato [11]) Let X be a G-like continuum, where G is a graph. If
f : X → X is a monotone map with positive topological entropy, then there exists a
Cantor set Z in X satisfying conditions (1) and (2) of Theorem 5.2 and transversal
for composants of a certain indecomposable subcontinuum H of X . Moreover, H
can be taken to be the unique minimal subcontinnum of X containing Z.

5 Characterizations of Indecomposable Continua and Free
Tracing Property

A continuum X is tree-like if X is T -like, where T is the collection of all trees.
For the case that X is a tree-like continuum, we have the following characterization
theorem.

Theorem 5.1 ([12]) Let T be the collection of all trees and let X be a T -like con-
tinuum, i.e., X is tree-like. Suppose that D is a subset of X with |D| ≥ 3. Then, the
following conditions are equivalent.
(1) For any order x1 → x2 → x3 of three distinct points xi (i = 1, 2, 3) ofD and any
ε > 0, there is an open cover U of X such that the mesh of U is less than ε, the nerve
N (U) of U is homeomorphic to an element of T and there is a chain in U which
follows from the pattern [x1 → x2 → x3].
(2) D has the free tracing property by T -chains.
(3)Theminimal continuumH inX containingD is indecomposable andZ is transver-
sal for composants of H .
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For the special case of arc-like continua, we have the following characterization
theorem.

Theorem 5.2 (Kato [12]) Let X be an arc-like continuum. Suppose that Z is a subset
of X with |Z| ≥ 3. Then, the following conditions are equivalent.
(1) X is indecomposable and Z is transversal for composants of X .
(2) Z has the free tracing property by free I-chains and X is the minimal continuum
containing Z.

Next result is the main theorem in this section.

Theorem 5.3 (Kato [12]) Suppose that X is any G-like continuum for a graph G
and H is a subcontinuum of X . Then, the following conditions (1), (2) and (3) are
equivalent.
(1) H is indecomposable.
(2) There is a Cantor set Z in H such that Z has the free tracing property by free
G-chains and H is the unique minimal continuum containing Z. In particular, Z is
transversal for composants of H.
(3) There is a dense Fσ -set Z∞ of H such that

Z∞ =
⋃

i∈N
Zi

is the countable union of Cantor sets Zi in H, Z∞ has the free tracing property by
free G-chains and H is the unique minimal continuum containing Zi for each i ∈ N.
In particular, Z∞ is transversal for composants of H.

Proposition 5.4 (Kato [12]) Let X be a P-like continuum for a collection P of
graphs. Suppose that Z is a Cantor set in X such that Z has the free tracing property
by free P-chains and H is the unique minimal continuum H in X containing Z. Let
z ∈ Z and let c(z,H ) be the composant of z in the indecomposable continuum H.
Then any subcontinuum A in c(z,H ) is an arc-like continuum.

For hereditarily indecomposable continua, we have the following.

Corollary 5.5 (Kato [12]) Suppose that X is any G-like continuum for a graph G
and H is a subcontinuum of X . Then, the following (1) and (2) are equivalent.
(1) H is hereditarily indecomposable.
(2) For any subcontinuum K of H, there is a Cantor set ZK in K such that ZK has
the free tracing property by free G-chains and K is the unique minimal continuum
containing ZK . In particular, ZK is transversal for composants of K.

The following is a characterization of pseudo-arc.

Corollary 5.6 (Kato [12]) Suppose that X is an arc-like continuum and H is a
subcontinuum of X . Then the following (1) and (2) are equivalent.
(1) H is the pseudo-arc.
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(2) For any subcontinuum K of H, there is a Cantor set ZK in K such that ZK has
the free tracing property by free I-chains and K is the unique minimal continuum
containing ZK . In particular, ZK is transversal for composants of K.

In [23], Kuykendall studied irreducibility and indecomposability in inverse limits
of continua. Also, we have the following.

Corollary 5.7 (Kato [12])Let G be a graph and let X = lim←−{Gi, fi,i+1} be an inverse
limit with onto bonding maps fi,i+1, where Gi = G for each i ∈ N. Then the follow-
ings hold.

(1) There is an indecomposable subcontinuum in X if and only if there is a Cantor
set Z in X such that for any order z1 → z2 → · · · → zm of any finite points
zj = (zji)

∞
i=1 (j = 1, 2, ...,m) of Z and any n ∈ N, there is k ≥ n and an edge of

Gk which follows from the pattern

[z1k → z2k → · · · → zmk ].

(2) Moreover, if G is a tree, there is an indecomposable subcontinuum in X if and
only if there is a three points set Z in X such that for any order z1 → z2 → z3

of Z and any n ∈ N, there is k ≥ n and an edge of Gk which follows from the
pattern [z1k → z2k → z3k ].
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Mandelpinski Necklaces in the
Parameter Planes of Rational Maps

Robert L. Devaney and Sebastian M. Marotta

Abstract In this paper, we give a survey of some recent results involving
“Mandelpinski necklaces” that occur in the family of complex rational maps of
the form zn + λ/zd where λ ∈ C and n, d ≥ 2. AMandelpinski necklace is a simple
closed curve in the parameter plane for these maps that passes alternately through
a certain number of baby Mandelbrot sets and Sierpinski holes. At the end of the
paper, we describe the very special case that occurs when n = d = 2.

Keywords Julia set · Critical point · Critical value · McMullen domain ·
Mandelpinski necklace · Sierpinski holes

For the family of maps

Fλ(z) = zn + λ

zd

a “Mandelpinski necklace" is a simple closed curve in the parameter plane that
passes alternately through a certain number of centers of baby Mandelbrot sets and
Sierpinski holes. The center of a baby Mandelbrot set is the parameter that lies at
the “center" of the main cardioid of this set and, hence, is a parameter for which
one of the critical orbits is periodic. A Sierpinski hole is a disk in the parameter
plane containing parameters for which the corresponding Julia sets are Sierpinski
curves, i.e., sets homeomorphic to the well-known Sierpinski carpet fractal. The
center of such a hole is a parameter for which the critical orbits all eventually map
to ∞. The main result that we shall focus on in this paper is the following: In the
parameter plane for the maps zn + λ/zd , there are infinitely many disjoint simple
closed curves Sk for k = 1, 2, 3, . . . surrounding the McMullen domain, with the
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Sk converging down to the boundary of the McMullen domain (when n and d are
not both equal to 2). The curve S1 passes through exactly n − 1 centers of baby
Mandelbrot sets and Sierpinski holes. The curve Sk for k > 1 passes through exactly
dnk−2(n − 1) − nk−1 + 1 centers of baby Mandelbrot sets and Sierpinski holes.

1 Introduction

For simplicity, we shall concentrate for most of this paper on the family of complex
rational maps given by

Fλ(z) = zn + λ

zn

where λ �= 0 is a complex parameter and n ≥ 3. The reason for this simplification is
that this family has 2n “free” critical points. However, like the well-studied quadratic
family z2 + c, because of certain symmetries, there is really only one free critical
orbit since all of the critical orbits behave symmetrically. Moreover, there are certain
symmetries in the dynamical plane that are present when n = d but not so when
n �= d. For complete results in the case where n �= d, see [10, 11].

As another similarity with the quadratic family, the point at∞ is a superattracting
fixed point for each λ. Hence, we have an immediate basin of attraction at ∞ which
we denote by Bλ. Also, 0 is a pole of order n, and so, there is an open set containing
0 that is mapped onto Bλ. If this open set is disjoint from Bλ, we call this set the
“trap door” and denote it by Tλ. Note that Fλ maps both Tλ and Bλ n-to-1 over Bλ.

As usual in complex dynamics, we are interested in the Julia set for Fλ, which
we denote by J (Fλ). As in the quadratic case, the Julia set has several equivalent
definitions. First, J (Fλ) is the boundary of the set of points whose orbits tend to ∞.
Second, J (Fλ) is the closure of the set of repelling periodic points. And third, J (Fλ)

is the set on which the map Fλ is chaotic.
The following result was proved in [8].

Theorem 1 (The Escape Trichotomy) For the family of functions

Fλ(z) = zn + λ

zn

with n ≥ 2

1. If the critical values lie in Bλ, then the Julia set is a Cantor set.
2. If the critical values lie in Tλ, then the Julia set is a Cantor set of simple closed

curves.
3. If the critical values lie in any other preimage of Tλ, then the Julia set is a

Sierpinski curve.

A Sierpinski curve is a planar set that is characterized by the following five prop-
erties: it is a compact, connected, locally connected, and nowhere dense set whose
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Fig. 1 The parameter plane
for the family z3 + λ/z3

complementary domains (of which there must be at least two) are bounded by sim-
ple closed curves that are pairwise disjoint. It is known from work of Whyburn [14]
that any two Sierpinski curves are homeomorphic. In fact, they are homeomorphic
to the well-known Sierpinski carpet fractal. From the point of view of topology, a
Sierpinski curve is a universal set in the sense that it contains a homeomorphic copy
of any planar, compact, connected, and one-dimensional set. The first example of a
Sierpinski curve Julia set was given by Milnor and Tan Lei [13].

Case 2 of the Escape Trichotomy was first observed by McMullen [12], who
showed that this phenomenon occurs in each family provided that n �= 2 and λ is
sufficiently small. As we describe later, when n = 2, the critical values of Fλ cannot
lie in Tλ.

In Fig. 1, we display the parameter plane for the family Fλ(z) = z3 + λ/z3. The
external red region in this set corresponds to parameter values for which the Julia
set is a Cantor set; we call this set the Cantor set locus. The small red region in the
center is a disk surrounding the origin that contains parameter values for which the
Julia set is a Cantor set of simple closed curves. We call this region the McMullen
domain. All of the other red disks contain parameters for which the Julia set is a
Sierpinski curve. These disks are called Sierpinski holes. In each such hole, there
is a unique parameter for which the orbit of some critical point lands on 0 at some
iteration and therefore on ∞ at the next iteration, say at iteration k > 2. We then call
this parameter the center of the Sierpinski hole and k the escape time of the hole.

Our goal in this paper is to investigate further properties of the parameter plane for
these maps and, in particular, the structure of the parameter plane in a neighborhood
of theMcMullen domain. It is known [1, 3, 7] that there is a uniqueMcMullen domain
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Fig. 2 Magnifications of the parameter plane for the family z3 + λ/z3 around theMcMullen domain

in the parameter plane for each n ≥ 3, and this region is an open disk surrounding
the origin that is bounded by a simple closed curve.

In Fig. 2, we have displayed several magnifications of the region around the
McMullen domain in the case n = 3. In the first image, note that there are four
large Sierpinski holes symmetrically placed around the McMullen domain. These
Sierpinski holes all have escape time 4. Between the two upper and the two lower
Sierpinski holes there appear to be small copies of a Mandelbrot set; while between
the two left and two right holes, we see the period two bulb of a principal Mandelbrot
set and the remainder of the “tail” of this set. Indeed, one may draw a simple closed
curve that encircles the McMullen domain and passes through the centers of each
of these Sierpinski holes, the centers of the main cardioids of the two smaller Man-
delbrot sets, and the centers of the two period two bulbs of the principal Mandelbrot
sets. That is, on this simple closed curve, we find four parameter values for which the
map has a a superstable periodic point and four other values for which F4

λ maps the
critical points to ∞, and these parameter values alternate between the superstable
and the centers of Sierpinski holes as the parameter winds around the closed curve.

Inside these four Sierpinski holes appear to be another simple closed curve con-
taining ten Sierpinski holes. Each of these holes has escape time 5. Also, each pair
of these holes apparently has either a small copy of a Mandelbrot set or a portion
of a principal Mandelbrot set (the two largest Mandelbrot sets displayed in Fig. 1)
between them. Examining the further magnification in Fig. 2, we see a smaller closed
curve containing 28 Sierpinski holes with escape time 6 and, inside that curve, an
even smaller curve containing 82 Sierpinski holes with escape time 7. It appears that
the k th curve meets exactly 3k + 1 Sierpinski holes with escape time k + 3 as well
as the same number of (portions of) Mandelbrot sets (though these are so small that
they are not quite visible). These are the curves that we call Mandelpinski necklaces.

Actually, the formula in the general case is a little more complicated than that. In
Fig. 3, we display the parameter plane for the case n = 4 as well as a magnification
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Fig. 3 The parameter plane for the family z4 + λ/z4 and a magnification around the McMullen
domain

of the McMullen domain. Here we see three principal Mandelbrot sets arranged
between three large Sierpinski holes, each of which has escape time 3. Inside these
sets is a curve containing 9 Sierpinski holes, each with escape time 4, and inside
another curve containing 33 holes of escape time 5. Further magnification shows
that there are 2 · 4k−1 + 1 holes with escape time k + 2 in case n = 4.

Ourmain goal in this paper is tomake these observations rigorous.We shall prove:

Theorem 2 (Mandelpinski Necklace Theorem) For each n ≥ 3, the McMullen
domain for the family zn + λ/zn is surrounded by infinitely many simple closed
curves (or rings) Sk for k = 1, 2, . . . having the property that:

1. Each ring Sk surrounds the McMullen domain as well as Sk+1, and the Sk

accumulate on the boundary of the McMullen domain as k → ∞;
2. The ring Sk meets the centers of τ n

k Sierpinski holes, each with escape time k + 2
where

τ n
k = (n − 2)nk−1 + 1.

3. The ring Sk also passes through τ n
k superstable parameter values where a critical

point is periodic of period k or 2k.

Using techniques from complex dynamics, it has been shown [4] that these super-
stable parameter values each lie at the center of the main cardioid of a Mandelbrot
set when k �= 2, while the Sierpinski holes surrounding the centers are all simply
connected sets. When k = 2, S2 passes through exactly n − 1 centers of period 2
bulbs of the largest Mandelbrot sets and also the centers of τ n

2 − (n − 1) centers of
smaller baby Mandelbrot sets. As a remark, the case where n = 2 is very different
and quite special. We shall describe the result in this case at the end of this paper.
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2 Elementary Mapping Properties

Besides 0 and ∞, Fλ has 2n other critical points given by λ1/2n . We call these points
the free critical points for Fλ. There are, however, only two critical values, and these
are given by ±2

√
λ. We denote a free critical point by cλ and a critical value by vλ.

The map also has 2n prepoles given by (−λ)1/2n . Note that all of the critical points
and prepoles lie on the circle of radius |λ|1/2n centered at the origin. We call this
circle the critical circle and denote it by Cλ.

The map Fλ has some very special properties when restricted to circles centered
at the origin. The following is a straightforward computation (see [3]):

Proposition 1

1. Fλ takes the critical circle 2n-to-one onto the line interval connecting the two
critical values ±2

√
λ;

2. Fλ takes any other circle centered at the origin to an ellipse whose foci are the
critical values.

We call the image of the critical circle the critical segment. We call the straight
line connecting the origin to ∞ and passing through one of the critical points (resp.,
prepoles) a critical point ray (resp., prepole ray). Similar straightforward computa-
tions show that each of the critical point rays is mapped in two-to-one fashion onto
one of the two straight line segments of the form tvλ, where t ≥ 1 and vλ is the image
of the critical point on this ray. So the image of a critical point ray is a straight ray
connecting either vλ or −vλ to ∞. Thus, the critical segment together with these two
rays forms a straight line through the origin.

Similarly, each of the 2n prepole rays is mapped in one-to-one fashion onto the
straight line given by i t

√
λ, where t is now any real number. Note that the image of

the prepole rays is the line that is perpendicular to the line tvλ for t ∈ R, i.e., the line
that contains the critical segment and the images of all of the critical point rays.

LetUλ be a sector bounded by two prepole rays corresponding to adjacent prepoles
onCλ, i.e.,Uλ is a sector in the planewith angle 2π/2n.We callUλ a critical point sec-
tor since it contains at its “center” a unique critical point of Fλ. Similarly, let Vλ be the
sector bounded by two critical point rays corresponding to adjacent critical points on
Cλ. We call Vλ a prepole sector. The next result follows immediately from the above:

Proposition 2 (Mapping Properties of Fλ)

1. Fλ maps the interior of each critical point sector in two-to-one fashion onto the
open half plane that is bounded by the image of the prepole rays and contains the
critical value that is the image of the unique critical point in the sector;

2. Fλ maps the interior of each prepole sector in one-to-one fashion onto the entire
plane minus the two half lines ±tvλ where t ≥ 1;

3. Fλ maps the region in either the interior or the exterior of the critical circle onto
the complement of the critical segment as an n-to-one covering map of C.
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Wenow turn to the symmetry properties of Fλ in both the dynamical and parameter
planes. Let ν be the primitive 2nth root of unity given by exp(π i/n). Then, for each
j , we have Fλ(ν

j z) = (−1) j Fλ(z). Hence, if n is even, we have F2
λ (ν j z) = F2

λ (z)
for each j . Therefore, the points z and ν j z land on the same orbit after two iterations,
and so, their orbits have the same eventual behavior for each j . If n is odd, the
orbits of Fλ(z) and Fλ(ν

j z) are either the same or else they are the negatives of
each other after the first iteration. In either case, it follows that the orbits of ν j z
behave symmetrically under z �→ −z for each j . Hence, the Julia set of Fλ is always
symmetric under z �→ νz. In particular, each of the free critical points eventually
maps onto the same orbit (in case n is even) or onto one of two symmetric orbits (in
case n is odd). Thus, these orbits all have the same behavior, and so the λ-plane is a
natural parameter plane for each of these families. Note also that, if n is even and the
orbit of some critical point eventually lands on some other critical point at iteration
j ≥ 1, then in fact one of the critical points of Fλ must be periodic of period j . If n
is odd, then there are two possibilities: either one of the critical points has period j
or else it has period 2 j .

Let Hλ(z) be one of the n involutions given by Hλ(z) = λ1/n/z. Then we have
Fλ(Hλ(z)) = Fλ(z), so that the Julia set is also preserved by each of these involutions.
Note that each Hλ maps the critical circle to itself and also fixes a pair of critical
points of the form ±√

λ1/n . Hλ also maps circles centered at the origin outside the
critical circle to similar circles inside the critical circle and vice versa. It follows that
two such circles, one inside and one outside the critical circle, are mapped onto the
same ellipse by Fλ.

The parameter plane (see Figs. 1 and 3) for Fλ also possesses several symmetries.
First of all, we have

Fλ(z) = Fλ(z)

so that Fλ and Fλ are conjugate via the map z �→ z. Therefore, the parameter plane
is symmetric under the map λ �→ λ.

We also have (n − 1)-fold symmetry in the parameter plane for Fλ. To see this,
let ω be the primitive (n − 1)st root of unity given by exp(2π i/(n − 1)). Then, if n
is even, we compute that

Fλω(ωn/2z) = ωn/2(Fλ(z)).

As a consequence, for each λ ∈ C, the maps Fλ and Fλω are conjugate under the
linear map z �→ ωn/2z. In particular, since, when λ is real, the real line is preserved
by Fλ, and it follows that the straight line passing through 0 and ωn/2 is preserved
by Fλω.

When n is odd, the situation is a little different. We now have

Fλω(ωn/2z) = −ωn/2(Fλ(z)).

Since Fλ(−z) = −Fλ(z) when n is odd, we therefore have that F2
λω is conjugate

to F2
λ via the map z �→ ωn/2z. This means that the dynamics of Fλ and Fλω are
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“essentially” the same, though subtly different. For example, if Fλ has a fixed point,
then under the conjugacy, this fixed point and its negative are mapped to a 2-cycle
for Fλω. Since the real line is invariant when λ is real, it follows that the straight lines
passing through the origin and ±ωn/2 are interchanged by Fλω and hence invariant
under F2

λω.
To summarize the symmetry properties of Fλ, we have:

Proposition 3 (Symmetries in the dynamical and parameter plane) The dynamical
plane for Fλ is symmetric under themap z �→ νz where ν = exp(π i/n). The parame-
ter plane is symmetric under both z �→ z and z �→ ωz whereω = exp(2π i/(n − 1)).

The following result shows that the McMullen domain, and all of the Sierpinski
holes are located inside the unit circle in parameter space.

Proposition 4 (Location of the Cantor set locus) Suppose |λ| ≥ 1. Then vλ lies in
Bλ so that λ lies in the Cantor set locus.

Proof Suppose |z| ≥ 2|λ|1/2 ≥ 2. Then, since |z| ≥ |λ|1/2, we have

|Fλ(z)| ≥ |z|n − |λ|
|z|n ≥ |z|n − |λ|1− n

2 ≥ |z|n − 1 ≥ |z|n−1 > |z|

since n > 2. Hence |F j
λ (z)| → ∞ so the region |z| ≥ 2|λ|1/2 lies in Bλ. In particular,

vλ ∈ Bλ.
For each n, let λ∗ = λ∗

n be the unique real solution to the equation

|vλ| = 2|√λ| = |λ|1/2n = |cλ|.

Using this equation, we compute easily that

λ∗ =
(
1

4

) n
n−1

.

The circle of radius λ∗ plays an important role in the parameter plane; if λ lies on this
circle, it follows that both of the critical values lie on the critical circle for Fλ. If λ

lies inside this circle, then Fλ maps the critical circle strictly inside itself. We call the
circle of radius λ∗ in parameter plane the dividing circle. We denote byO = On the
open set of parameters inside the dividing circle. We will be primarily concerned in
later sections with values of the parameter that lie inO. In particular, we shall show
that all of the rings around the McMullen domain Sk with k > 1 lie in this region,
while the ring S1 is the dividing circle itself.

3 Some Special Cases

In this section, we discuss the dynamics of several special cases of Fλ that will help
define the rings around the McMullen domain later.
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First suppose that λ lies on the dividing circle, i.e., |λ| = λ∗. In this case, all of the
critical points, critical values, and prepoles of Fλ lie on the same circle (the critical
circle) in dynamical plane, namely the circle

|z| =
(
1

2

) 1
n−1

.

As λ winds once around the dividing circle in the counterclockwise direction begin-
ning on the real axis, the critical points and prepoles of Fλ wind 1/2n of a turn
around the critical circle, while the critical values wind one-half of a turn around
the critical circle, all in the counterclockwise direction. Hence, there are exactly
n − 1 special parameter values on the dividing circle for which a critical point of
the corresponding map equals a critical value, so for these special λ-values, we have
a superattracting fixed or period two point for Fλ. Equivalently, one computes that
these n − 1 parameters are given by

λ =
(
1

4

) n
n−1

.

There are n − 1 other parameters on this circle for which the critical value is a
prepole, and these are given by

λ =
(−1

4

) n
n−1

.

This proves the case k = 1 of the Mandelpinski Necklace Theorem.

Theorem 3 The ring S1 is the dividing circle in parameter plane. It contains n − 1
superstable parameters and the same number of centers of Sierpinski holes.

See Fig. 4.
We next restrict attention to values of λ lying in R+. The graph of Fλ shows that,

in this case, Fλ mapsR+ to itself and that there is a unique critical point lying inR+.
We denote this critical point by c0 = c0(λ). See Fig. 5.

It is known [2] that there is a Mandelbrot set (a principal Mandelbrot set) whose
central spine lies along an interval [λ−, λ+] contained in R

+. Moreover, if λ > λ+,
thenλ lies in theCantor set locus, whereas if 0 < λ < λ−, thenλ lies in theMcMullen
domain. The graph of Fλ |R+ shows that Fλ undergoes a saddle-node bifurcation
at λ+ and that the critical point cλ maps onto the repelling fixed point in ∂Bλ ∩ R

+
after two iterations when λ = λ−. Since each Fλ is conjugate on the real line to a
real quadratic polynomial of the form Qc(x) = x2 + c, standard facts from quadratic
dynamics yield the following:

Proposition 5 (Superstable parameters for λ ∈ R
+) There is a decreasing sequence

of parameters in R+ λ1 > λ2 . . . converging to λ− such that, for λ = λk , the critical
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Fig. 4 The ring S1 in the parameter plane for n = 4

Fig. 5 The graphs of x3 + 0.01/x3 and x4 + 0.01/x4

point c0 is periodic with period k and the critical orbit in R
+ has the special form

when k ≥ 2:

0 < vλ = Fλ(c0) < c0 = Fk
λ (c0) < Fk−1

λ (c0) < . . . < F3
λ (c0) < F2

λ (c0).

In particular, λk is a superstable parameter value of period k, and the orbit of F2
λk

(c0)
is monotonically decreasing for k − 1 iterations along R

+.
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Fig. 6 The graphs of Fλ for λ = λ4 and λ = λ5 when n = 4

Portions of the graphs of Fλk for k = 4 and k = 5 when n = 4 are displayed in
Fig. 6. Note that the parameter λ1 necessarily lies on the dividing circle S1. We shall
show below that each λk lies on Sk .

Because of the (n − 1)-fold symmetry in the parameter plane, we have a similar
sequence of superstable parameter values along the ray λ = ω · R+ in parameter
plane. To be more precise, first suppose that n is even. Suppose that λ = aω with
a > 0 and, as before, ω = exp(2π i/(n − 1)). Then, using the results in Sect. 2, we
have that, if t > 0,

Fλ(ω
n
2 t) = ω

n
2 Fa(t)

so that Fλ on the line ωn/2 · R+ is conjugate to Fa on R+.
Now Fλ has critical points at

c0 = (aω)
1
2n

c1 = ν(aω)
1
2n

cn+1 = νn+1(aω)
1
2n = −ν(aω)

1
2n = −c1.

Note that the critical point cn+1 lies on the line ωn/2 · R+. This follows since

−ν(aω)
1
2n = −(a)

1
2n

(
exp

(
π i

n

)
exp

(
π i

n(n − 1)

))

= −(a)
1
2n exp

(
π i

n − 1

)

= −a
1
2n ω

1
2 = a

1
2n ω

n
2 .
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Therefore, the above proposition goes over to the case where λ = aω with a = λk ∈
R

+ provided we now use the critical point cn+1 lying on the line ωn/2 · R+. We note
that the symmetric critical point c1 lies on the line ω1/2 · R+ and maps onto the
critical value on the line ωn/2 · R+ after one iteration.

The casewhere n is odd is similarmodulo the z �→ −z symmetry described earlier.
The difference is that the superattracting cycles now have period 2k and alternate
back and forth between ω · R+ and −ω · R+. We have:

Proposition 6 (Superstable parameters forλ ∈ ω · R+)Letλ1 > λ2 . . .be thedecreas-
ing sequence in R

+ in the previous proposition. Suppose n is even. For λ = λkω,
the critical point cn+1 is periodic with period k, and the critical orbit along the line
ωn/2 · R+ has the special form when k ≥ 2

Fλ(cn+1) < cn+1 = Fk
λ (cn+1) < Fk−1

λ (cn+1) < . . . < F3
λ (cn+1) < F2

λ (cn+1).

In particular, λ = λkω is a superstable parameter value of period k, and the orbit of
F2

λ (cn+1) is monotonically decreasing for k − 1 iterations along ωn/2 · R+. When n
is odd, replace Fλ with F2

λ . The cycle corresponding to λ = λkω now has period 2k.

4 Rings in Dynamical Plane

In this section, we prove the existence of infinitely many rings γ k
λ for k = 0, 1, . . . in

the dynamical plane. Each ring γ k
λ is a smooth, simple closed curve that is mapped

nk-to-1 onto the critical circle by Fk
λ . We shall use these rings in the next section to

construct the rings Sk in the parameter plane.
We begin by defining γ 0

λ to be the critical circle. Recall that, if λ ∈ O, then Fλ

maps γ 0
λ strictly inside itself. Since all of the critical points of Fλ lie on γ 0

λ , it follows
that Fλ takes the exterior of γ 0

λ as an n-to-1 covering onto the plane minus the critical
segment and hence over the entire exterior of γ 0

λ . Thus, there is a preimage γ 1
λ lying

outside of γ 0
λ and mapped n-to-1 onto γ 0

λ by Fλ. Since Fλ is a covering map, it
follows that γ 1

λ must be a single simple closed curve. Then Fλ maps the exterior of
γ 1

λ as an n-to-1 covering onto the exterior of γ 0
λ , so there is a preimage of γ 1

λ lying
in this region and mapped n-to-1 to γ 1

λ . Call this simple closed curve γ 2
λ . Continuing

inductively, we find a collection of simple closed curves γ k
λ for k ≥ 1 having the

properties that:

1. γ k+1
λ lies in the exterior of γ k

λ ;
2. Fλ takes γ k+1

λ as an n-to-1 covering onto γ k
λ ;

3. so Fλ takes γ k+1
λ as an nk+1-to-1 covering of the critical circle;

4. the γ k+1
λ converge outward to the boundary of Bλ as k → ∞.

We now construct a parameterization of each of the γ k
λ . In order for this

parametrization to be well-defined, we need to restrict attention to parameters in
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the region O′ = O − (−λ∗, 0], so that −π < Arg λ < π . We therefore assume that
λ lies in O′ for the remainder of this paper.

For λ ∈ O′, there is a unique critical point of Fλ lying in the region |Arg z| <

π/2n. Call this critical point c0 = c0(λ). Note that c0 ∈ R
+ if λ ∈ R

+. We index the
remaining critical points by c j with the argument of c j increasing as j increases.

To parametrize the critical circle γ 0
λ , we set γ

0
λ (0) = c0(λ). By the mapping prop-

erties proposition, for each θ ∈ R, we then let γ 0
λ (θ) be the natural continuation

of this parametrization of the circle in the counterclockwise direction. So γ 0
λ (θ) is

2π -periodic in θ and depends analytically on λ for λ ∈ O′.
To parametrize γ 1

λ (θ), consider the portion of the critical point sector containing
c0(λ) that lies outside the critical circle. There is a unique point in this regionmapped
to c0 by Fλ; call this point γ 1

λ (0). Then define γ 1
λ (θ) by requiring that

Fλ(γ
1
λ (θ)) = γ 0

λ (θ)

and that γ 1
λ (θ) varies continuously with θ . Note that γ 1

λ (θ) is 2nπ periodic since
Fλ is n-to-1 on γ 1

λ . We then proceed inductively to define γ k
λ (θ) by first specifying

that, in the outside portion of the critical point sector containing c0, γ k
λ (0) is the

unique point that is mapped by Fλ to γ k−1
λ (0) and then using Fλ to complete this

parameterization. As above, for each k, γ k
λ (θ) is 2nkπ periodic in θ and depends

analytically on λ.
To prove the existence of the rings in the parameter plane, we need to be more

specific about the location of the rings in the dynamical plane. Let V+ be the portion
of the prepole sector lying on and outside the critical circle and also between the two
critical point rays through c0 and c1. That is,

V+ =
{
z
∣∣ |z| ≥ |λ|1/2n, Arg λ

2n
≤ Arg z ≤ Arg λ

2n
+ π

n

}
.

Let V− = ν−1 · V+. So V− is the portion of the prepole sector bounded by the critical
lines through c0 and c−1 and lying on or outside the critical circle. Let Vλ = V+ ∪ V−.
See Fig. 7.

Since |Arg λ| < π and n ≥ 3, we have for z ∈ Vλ

|Arg z| ≤
∣∣∣∣Arg λ

2n

∣∣∣∣ + π

n
<

3π

2n
≤ π

2
.

So for each λ ∈ O′, the region Vλ is contained in the half plane Re z > 0.
Now Fλ maps the portion of boundary of V+ lying along the critical circle one-to-

one to the critical segment since the endpoints of this arc are adjacent critical points
along Cλ that are mapped to distinct critical values. Also, Fλ maps the portion of
the critical point line containing c0 lying on the boundary of V+ one-to-one onto the
ray tvλ = 2t

√
λ with t ≥ 1 and Arg

√
λ > 0, while Fλ maps the other boundary ray

containing c1 to the negative of this ray. Hence, the boundary of V+ is mapped onto
the entire straight line passing through ±vλ and the origin. Therefore, Fλ maps V+
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Fig. 7 The region
Vλ = V+ ∪ V−

univalently onto one of the half planes bounded by this line. Similarly, Fλ maps V−
univalently onto the opposite half plane.

Let 
λ be the straight line given by 2t
√

λ where t ∈ (−∞, 1]. So 
λ is the straight
line that starts at 2

√
λ at t = 1 and passes through the origin and −2

√
λ enroute to

∞ as t → ∞. Note that the boundary of Vλ is mapped two-to-one onto 
λ by Fλ.
Hence, Fλ maps the interior of Vλ univalently onto C − 
λ. Now, for each λ ∈ O′,
the critical segment lies outside Vλ since neither V+ nor V− meets the interior of the
critical circle. Also, the portion of 
λ extending from −2

√
λ to ∞ lies in the left half

plane, so the entire line 
λ does not intersect Vλ. So we have:

Proposition 7 For each λ ∈ O′, Fλ maps the interior of Vλ univalently ontoC − 
λ

and so the image of Vλ contains Vλ.

Recall that the k th ring in the dynamical plane is parametrized by γ k
λ (θ) and is

periodic with period 2nkπ .

Proposition 8 For each k ≥ 1, the portion of the ring γ k
λ (θ) with |θ | ≤ nk−1π lies

in the region

−3π

2n
< Arg z <

3π

2n
.

Proof We deal first with the case 0 ≤ θ ≤ nk−1π ; the other case is handled by
applying the z �→ ν−1z symmetry, as we describe below.

We claim that the portion of the ring γ k
λ (θ) with 0 ≤ θ ≤ nk−1π actually lies in

the smaller region

− π

2n
< Arg z <

3π

2n
.

To see this, we first consider the simplest case where λ ∈ R
+. In this case, V+ is

bounded by R
+ and ν · R+ and Fλ maps V+ univalently onto Im z ≥ 0. Recall that
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γ 0
λ (θ) lies in the region Im z ≥ 0 if θ ∈ [0, π ]. Hence, there is a continuous preimage

of γ 0
λ (θ) lying in V+. This preimage is, by definition, γ 1

λ (θ) for θ ∈ [0, π ]. So γ 1
λ (θ)

lies in the region 0 ≤ Arg z ≤ π/n, and thus, the result is true when k = 1.
Next note that γ 1

λ (π) lies on the line ν · R+ and is given by νγ 1
λ (0). So we

can use the symmetry in the dynamical plane to extend the definition of γ 1
λ (θ)

to a continuous curve defined for θ ∈ [0, nπ ] as follows: if θ ∈ [ jπ, ( j + 1)π ],
let γ 1

λ (θ) = ν jγ 1
λ (θ − jπ) for j = 1, . . . , n − 1. So γ 1

λ (θ) lies in Im z ≥ 0 for
θ ∈ [0, nπ ]. Then the sector V+ is again mapped over γ 1

λ (θ) for these θ -values, so
we have a continuous preimage γ 2

λ (θ) lying in V+, mapped onto γ 1
λ (θ), and defined

for θ ∈ [0, nπ ].
Then we extend the definition of γ 2

λ (θ) to [0, n2π ] as above using the symmetry in
the dynamical plane. Sowe have that γ 3

λ (θ) lies in V+ for all θ ∈ [0, n2π ]. Continuing
in this fashion proves the stronger result thatγ k

λ (θ) in fact lies inV+ for θ ∈ [0, nk−1π ]
for all k as long as λ ∈ R

+.
Now suppose that 0 < Arg λ < π . We no longer have the fact that V+ is mapped

over γ 0
λ (θ) for 0 ≤ θ ≤ π . Indeed, the point γ 1

λ (0) now lies in V−. This follows from
the fact that the critical point ray through c0 is mapped to a line whose argument is
strictly larger than that of c0, so the preimage of c0 must lie below this critical point
line. By the previous proposition, we have that Fλ maps the interior of the entire
region Vλ univalently onto C − 
λ. Let 
′

λ denote the portion of 
λ lying in the lower
half plane. Then

π <
Arg λ

2
+ π = Arg 
′

λ <
3π

2
.

Since, for θ ∈ [0, π ], we have

0 < Arg c0 ≤ Arg γ 0
λ (θ) ≤ Arg c0 + π <

Arg λ

2
+ π = Arg 
′

λ,

it follows that the entire line 
λ never meets γ 0
λ (θ) for these θ -values. Hence, there is

a continuous preimage of γ 0
λ (θ) in V+ ∪ V− for each θ ∈ [0, π ]. This defines γ 1

λ (θ)

over this interval. Note that γ 1
λ (π) = νγ 1

λ (0)must lie in V+. In fact, we can saymore:

− π

2n
<

Arg λ

2n
− π

2n
≤ Arg γ 1

λ (θ)

for 0 ≤ θ ≤ π . This follows since Fλ maps the prepole line in V− to a line perpen-
dicular to 
λ in −π/2 < Arg z < 0. This line does not intersect the curve γ 0

λ (θ) for
θ ∈ [0, π ]. So γ 1

λ (θ) does not meet the prepole line in V−. We therefore have

− π

2n
< Arg γ 1

λ (θ) <
3π

2n

for θ ∈ [0, π ], so this proves the case k = 1 when 0 < Arg λ < π .
Nowwe extend the definition of γ 1

λ (θ) to θ ∈ [0, nπ ] as in the previous case using
symmetry. Then we have, for 0 ≤ θ ≤ nπ ,
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− π

2n
< Arg γ 1

λ (θ) ≤ Arg c0 + π.

But Arg c0 + π < Arg λ/2 + π = Arg 
′
λ. So again 
λ does not meet the extension

of γ 1
λ (θ). So we have that γ 2

λ (θ) lies in the interior of V+ ∪ V− for 0 ≤ θ ≤ nπ and
so Arg γ 2

λ (θ) < 3π/2n. As above, we in fact also have −π/2n ≤ Arg γ 2
λ (θ), so this

proves the case k = 2. Continuing inductively proves the result for all k-values when
0 < Arg λ < π and 0 ≤ θ ≤ nk−1π .

The case of negative values of θ is handled by symmetry as follows. We again
assume that 0 < Arg λ < π . For each k, we have, since γ k

λ (θ) is 2nkπ periodic,

Fλ(ν
−1γ k

λ (θ)) = −Fλ(γ
k
λ (θ))

= −γ k−1
λ (θ)

= γ k−1
λ (θ − nk−1π)

= Fλ(γ
k
λ (θ − nk−1π)).

Therefore
ν−1γ k

λ (θ) = γ k
λ (θ − nk−1π)

follows sinceγ k
λ (θ) is continuous in θ . Therefore,wehave thatwhen θ ∈ [−nk−1π, 0],

γ k
λ (θ) lies in the region

−3π

2n
< Arg z <

π

2n
.

So altogether the curve γ k
λ (θ) lies in the region |Arg z| < 3π/2n for all |θ | ≤ nk−1π .

This concludes the proof when 0 ≤ Arg λ < π .
If−π < Arg λ < 0, we invoke the z �→ z symmetry in the parameter plane. Since

Fλ is conjugate to Fλ via z �→ z, it follows that the curvesγ k
λ (θ) aremapped toγ k

λ
(−θ)

by the conjugacy. Hence, these curves lie in the same region when−π < Arg λ < 0.
This concludes the proof.

5 Rings in Parameter Plane

Before turning to the proof of the existence of the Mandelpinski necklaces in the
parameter plane, we need to examine more carefully the parametrizations of the
rings in the dynamical plane in two of the special cases discussed earlier, namely
when λ ∈ R

+ and λ ∈ ω · R+.
First suppose that λ ∈ R

+. For the special parameters λk among the superstable
parameters in R+, we have seen that Fλk (c0) always lies in R

+ and satisfies

0 < Fλk (c0) < c0 = Fk
λk

(c0) < Fk−1
λk

(c0) < . . . < F2
λk

(c0).
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Hence, F2
λk

(c0) lies on γ k−2
λk

∩ R
+ and F j

λk
(c0) lies on γ

k− j
λk

∩ R
+ for j = 2, . . . , k.

In particular, since the definition of the parametrization requires that Fλ(γ
j

λ (0)) =
γ

j−1
λ (0), it follows that, for the special parameter value λk , we have

γ 0
λk

(0) = c0

γ k−2
λk

(0) = F2
λk

(c0)

γ k−3
λk

(0) = F3
λk

(c0)

...

γ 1
λk

(0) = Fk−1
λk

(c0)

Next we turn attention to the special parameter values λkω lying along the line
ω · R+ in the parameter plane. Here the situation is somewhat more complicated.
For simplicity of notation, we fix a value of k and set μ = λkω.

As we showed earlier, the line ωn/2 · R+ contains the critical point cn+1 and is
either invariant under Fμ (if n is even) or interchanged with the symmetric line
−ωn/2 · R+ by Fμ (if n is odd). In either case, the symmetric line −ωn/2 · R+ is
mapped to this line by Fμ and contains the critical point c1 = −cn+1. Also, the
critical point line through c0 is mapped to −ωn/2 · R+ by Fμ and then to ωn/2 · R+
by F2

μ.
We have, by definition, γ 0

μ(0) = c0. Since c1 = νc0 where, as usual,
ν = exp(π i/n), we also have

c1 = γ 0
μ

(π

n

)

cn+1 = γ 0
μ

(π

n
+ π

)
.

Consider the portion of the critical point sector containing c0 and lying on or outside
Cλ. γ 1

μ(0) is the unique point in this region that is mapped to c0 by Fμ. Since Fμ takes
the critical point line through c0 to the critical point line through c1, it follows that
γ 1

μ(0) lies below this line and that γ 1
μ(π/n), the preimage of c1, lies on the critical

point line through c0. By symmetry, γ 1
μ((π/n) + π) then lies on the critical point

line through c1 and, since γ 1
μ is 2nπ -periodic, the point

γ 1
μ

(π

n
+ π + nπ

)

lies on the line ωn/2 · R+ containing cn+1.
Continuing, we have that γ 2

μ((π/n) + π) lies on the critical point line through c0
and is mapped by Fμ to γ 1

μ((π/n) + π). The point

γ 2
μ

(π

n
+ π + nπ

)
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then lies on the critical point line through c1 and is mapped to

γ 1
μ

(π

n
+ π + nπ

)

on ωn/2 · R+.
Continuing inductively, we see that the critical point line through c0 contains the

points

c0 = γ 0
μ(0)

γ 1
μ

(π

n

)

γ 2
μ

(π

n
+ π

)
...

γ j
μ

(π

n
+ π + nπ + . . . + n j−2π

)
= γ j

μ

(π

n

(
1 + n + . . . + n j−1

))
.

and the critical point line through c1 contains the points

c1 = γ 0
μ

(π

n

)

γ 1
μ

(π

n
+ π

)

γ 2
μ

(π

n
+ π + nπ

)
...

γ j
μ

(π

n
+ π + nπ + . . . + n j−1π

)
= γ j

μ

(π

n

(
1 + n + . . . + n j

))
.

Equivalently, γ j
μ(θ) lies on the critical point line through c1 for

θ = π

n

(
n j+1 − 1

n − 1

)
.

Now consider the corresponding points on the critical point line through c−1.
Since the parametrization corresponding to points on this line and γ

j
μ is obtained by

subtracting n j−1π from the corresponding critical point line through c0, we find the
following points on this critical point line:
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Fig. 8 Parametrization of γλ(θ) when λ = λkω

c−1 = γ 0
μ

(
−π

n

)

γ 1
μ

(π

n
− π

)

γ 2
μ

(π

n
+ π − nπ

)
...

γ j
μ

(π

n
+ π + nπ + . . . + n j−2π − n j−1π

)
.

Equivalently, γ j
μ(θ) lies on the critical point line through c−1 for

θ = π

n

(
1 + n + n2 + . . . + n j−1 − n j

) = π

n

(
n j − 1

n − 1

)
− n j−1π.

For later use, this value of θ is called θn, j . See Fig. 8.
We now turn to the proof of the existence of the rings Sk in parameter plane

for k > 1. For simplicity, we consider only the case when n ≥ 5 in this section; the
special cases n = 3, 4 are described in [9].

Recall that, from the results of the previous section, we have that, when k ≥ 1,
the portion of the curve γ k

λ (θ) for |θ | ≤ nk−1π lies in the region
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−3π

2n
< Arg z <

3π

2n
.

We call this region Wn and note that Wn lies in the right half plane. Let Hλ denote
the involution that fixes c0, i.e.,

Hλ(z) = λ1/n

z
.

Lemma 1 If n ≥ 5 and λ ∈ O′, then Hλ(Wn) lies in the half plane Re z > 0.

Proof Since

Arg Hλ(z) = Arg λ

n
− Arg z,

we have, if z ∈ Wn and n ≥ 5,

−π

2
≤ −5π

2n
≤ −3π

2n
+ Arg λ

n
< Arg Hλ(z) <

3π

2n
+ Arg λ

n
≤ 5π

2n
≤ π

2
.

We remark that this result is false when n = 3, 4; that is the reason why these are
special cases.

Now consider the curves

ξ k
λ (θ) = Hλ(γ

k
λ (θ)).

Since the involution Hλ interchanges the inside and outside of Cλ, each of the curves
ξ k
λ is a simple closed curve lying inside the critical circle. We have

Fλ(ξ
k
λ (θ)) = γ k−1

λ (θ)

since Fλ(Hλ(z)) = Fλ(z). By the Lemma, we also have that ξ k
λ (θ) lies in Re z > 0

for |θ | ≤ nk−1π , at least if n ≥ 5.

Theorem 4 For each k ≥ 1 and any θ satisfying |θ | ≤ nk−1π , there exists a unique
parameter λ = λθ,k such that

vλ = 2
√

λ = ξ k
λ (θ).

Proof The function G(λ) = vλ = 2
√

λ takes the subset O′ of the parameter plane
univalently onto an open subset of Re z > 0. For each λ ∈ O′, G(λ) lies inside Cλ,
but for λ on the dividing circle (which is the circular boundary of O′), G(λ) lies on
the critical circle. Hence, G maps O′ univalently onto the interior of a half disk in
the right half plane that contains the region inside Cλ in Re z > 0 for each λ ∈ O′.
Call this half disk D.



Mandelpinski Necklaces in the Parameter Planes of Rational Maps 115

Also, for fixed θ , the function λ �→ ξ k
λ (θ) is analytic on O′ and takes this set

strictly inside the portion of the critical circle bounded by the rays |Arg z| = 3π/2n.
Hence, for each θ , the set of points ξ k

λ (θ) lies inside a compact sector in D. That is,
this set of points can possibly accumulate on the boundary of D only at the origin.
Hence, we may consider the composition Q(λ) = G−1(ξ k

λ (θ)). As a function of λ,
Q is analytic and maps the simply connected regionO′ inside itself. By the Schwarz
Lemma, Q has a unique fixed point in this set or on its boundary. But the fixed point
cannot lie at λ = 0 since 0 is surrounded by the McMullen domain so that the curves
ξ k
λ are bounded away from the origin. Hence, there must be a unique fixed point in
the interior of D. This fixed point is λθ,k .

Note that the fixed points λθ,k vary continuously with θ , so θ �→ λθ,k is a curve
in the parameter plane.

The following proposition identifies the specific values of λθ,k corresponding to
the special cases considered earlier.

Proposition 9 When θ = 0 and k ≥ 1, the parameter values λ0,k are given by the
parameters λk+1 ∈ R

+. When θ = θn,k , λ(θ, k) is given by ωλk+1 on the symmetry
line ω · R+.

Proof When λ ∈ R
+, the points γ

j
λ (0) also lie in R

+ for each j . Since, as shown
earlier, the parameter λk+1 has the property that vλk+1 ∈ ξ k

λk+1
, F2

λk+1
(c0) ∈ γ k−1

λk+1
∩ R

+
and the forward orbit of this point decreases along R

+ until meeting c0, it follows
from the uniqueness of the parameter λ0, j that we must have λ0,k = λk+1 for each
k ≥ 1.

When λ = λk+1ω and θ = θn,k , we know that the point γ k
λ (θn,k) lies on the critical

point line through c−1. Hence, Hλ(γ
k
λ (θn,k)) lies on the critical point line through c1

and is given by ξ k
λ (θn,k). This point is then mapped by Fλ to the point on ωn/2 · R+

whose orbit meets cn+1 after k − 1 iterations of Fλ or F2
λ , depending upon whether

n is even or odd. Hence, λθn,k ,k = λk+1ω as claimed.
Now the parameters in the previous proposition are the unique parameters on the

corresponding lines in parameter space for which the orbit of the second iterate of the
appropriate critical point monotonically decreases along the corresponding line(s)
for k − 1 iterations before returning to itself and becoming periodic. So the curve
θ �→ λθ,k meets each of these two symmetry lines only once. Hence, the portion of
this curve defined for 0 ≤ θ ≤ θn,k either lies outside the sector

0 ≤ Arg λ ≤ 2π

n − 1

for all values of θ or else this entire curve lies inside the sector. But the former cannot
occur since thiswould imply that someλθ,k would lie inR−, contradicting the fact that
each λθ,k lies inO′. Hence, the portion of the curve λθ,k defined for 0 ≤ θ ≤ θn,k is a
continuous arc connecting θ = 0 and θ = 2π/(n − 1). It then follows by the (n − 1)-
fold symmetry that, for each k ≥ 1, λθ,k is a simple closed curve in parameter space
which is periodic of period
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(n − 1)θn,k = (n − 1)

(
π

n

(
nk − 1

n − 1

)
− nk−1π

)

= π

n

(−nk+1 + 2nk − 1
)
.

We therefore define the ring Sk+1 to be the simple closed curve θ �→ λθ,k . That
is, Sk+1 consists of parameter values for which the critical orbit has the following
behavior:

1. both critical values lie inside the critical circle;
2. F2

λ (cλ) lies on γ k−1
λ ;

3. subsequent iterates decrease through the γ
j

λ until, at the k th iterate, the critical
orbit lands back on the critical circle.

We have shown:

Theorem 5 When n ≥ 5, the ring Sk+1 in parameter space is a simple closed curve
that is parameterized by θ �→ λθ,k and is periodic of period

π

n

(
nk+1 − 2nk + 1

) = π

n

(
(n − 2)nk + 1

)
.

In particular, since the critical points (resp., prepoles) of Fλ are located on γ 0
λ (θ)

at θ = π j/n (resp., (2 j + 1)π/2n) for 0 ≤ j < 2n, we have the following count of
superstable parameters and centers of Sierpinski holes along Sk+1:

Corollary 1 There are precisely (n − 2)nk + 1 parameters along Sk+1 that are
superstable parameters. There are the same number of parameters that are cen-
ters of Sierpinski holes. These parameters alternate between these two types as the
parameter winds around Sk+1.

This proves the existence of the Mandelpinski necklaces when n ≥ 5.

6 The Special Case n = 2

In this section, we give three examples of how the case n = 2 is so much different
from the cases where n > 2. The first example of this difference is the fact that there
is no McMullen domain when n = 2. The reason for this is as follows. Recall that
the critical values of Fλ are given by vλ = ±2

√
λ. By McMullen’s result [12], the

critical values must lie in the trap door if the Julia set is a Cantor set of simple closed
curves. But, in the case n = 2, we have

Fλ(vλ) = 4λ + 1

4
.
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Fig. 9 Sierpinski curve Julia sets for various negative values of λ in the case n = 2

So, as λ → 0, Fλ(vλ) → 1/4, which is nowhere near Bλ since, when |λ| is small,
the boundary of Bλ is close to the unit circle.

A second reason why the case n = 2 is different involves the Julia sets of the maps
Fλ when |λ| is small. When n > 2, these Julia sets are always Cantor sets of simple
closed curves surrounding the origin. It is known [6] that there is a round annulus
of some given width lying inside the unit circle and separating two of these curves
when |λ| is small. Hence, these Julia sets never converge to the unit disk as λ → 0.
However, when n = 2, it is also shown in [6] that the Julia sets for Fλ do converge
to the closed unit disk as λ → 0. In Fig. 9 we display four Julia sets with λ small
and n = 2. All of these Julia sets are in fact Sierpinski curves. But notice how the
preimages of Tλ get smaller and smaller as |λ| decreases.
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Fig. 10 The parameter plane for the family z2 + λ/z2 and a magnification centered at the origin

Thefinal example of the difference between the casesn = 2 andn > 2 involves the
Mandelpinski necklaces described above.Aswe showed earlier, when n > 2, the ring
Sk passes alternately through exactly (n − 2)nk−1 + 1 centers of baby Mandelbrot
sets and centers of Sierpinski holes. Note that, when n = 2, this formula yields 1 for
each k. And that, in fact, is true. As shown in [5], we do have these special rings Sk

in this case. The single center of the only Mandelbrot set in Sk now lies along R
+,

while the single center of the corresponding Sierpinski hole lies in R
−.

In Fig. 10 we display the parameter plane for the case n = 2 together with a
magnification. The large red central region is not a McMullen domain; rather it is a
Sierpinski hole and it does not contain the origin. The ring S1 is the dividing circle
which passes through the center of the main cardioid of the principal Mandelbrot set
on the right and the center of that large red region on the left, which is a Sierpinski
curve. In the magnification, the ring S2 then passes through the center of the period
2 bulb of the Mandelbrot set and the center of the large red disk, also a Sierpinski
hole, that lies to the left of the origin.
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Some Examples of Hypercyclic Operators
and Universal Sequences of Operators
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Abstract Many examples of hypercyclicity take place in analytic function spaces,
such as spaces of entire functions, Hardy spaces, Bergman spaces, and Dirichlet
spaces. Using unique features of these analytic function spaces, we explore properties
of some hypercyclic operators, such as spectral properties, orbital properties, as well
as their hypercyclicity with respect to different topologies of the spaces.

Keywords Hypercyclic operators · Universal sequence of operators · Analytic
function spaces
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1 Introduction

Let X be an separable, infinite dimensional Fréchet space over C. A continuous
linear operator T is hypercyclic if there is a vector x for which the orbit orb(T, x) =
{x, T x, T 2x, T 3x, . . .} is dense in X . Such a vector x is called a hypercyclic vector.
Whenwegeneralize the sequence of powers {T, T 2, T 3, . . .} in the orbit to a sequence
of operators {T1, T2, T3, . . .}, we have the notion of universality. To be precise, we
say that a sequence of continuous linear operators Tn : X → X is universal if there
is a vector x for which {x, T1x, T2x, T3x, . . .} is dense in X . Such a vector x is called
a universal vector. In this teminology, the sequence {T n} of powers of T is universal
if and only if T is hypercyclic.

Some early examples of hypercyclicity take place in the Fréchet space H(�) =
{ f : � → C| f is analytic},where� is a region inC and H(�) carries the compact-
open topology. That is, a sequence fn → f in H(�) if and only if fn → f uniformly
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on compact subsets of �. Two well-known examples of hypercyclicity are the fol-
lowing results on the Fréchet space H(C) of all entire functions.

Theorem 1.1 (Birkhoff [3]) There is a function f ∈ H(C) so that { f (z), f (z +
1), f (z + 2), . . .} is dense in H(C). In other words, the translation operator T :
H(C) → H(C) defined by T f (z) = f (z + 1) is hypercyclic.

Theorem 1.2 (MacLane [13]) There is a function f ∈ H(C) so that the set of suc-
cessive derivatives { f (z), f ′(z), f ′′(z), . . .} is dense in H(C). In other words, the
differentiation operator D : H(C) → H(C) defined by D f (z) = f ′(z) is hyper-
cyclic.

One early example of universality was given on the Fréchet space H(D) for the
open unit disk D.

Theorem 1.3 (Seidel and Walsh [14]) Suppose {an} ⊂ D with an → 1, and

ϕn(z) = an − z

1 − anz
.

Then there exists a function f ∈ H(D) for which the set of non-Euclidean translates
{ f ◦ ϕn} is dense in H(D). In other words, the sequence of composition operators
Cn : H(D) → H(D) given by Cn f (z) = f ◦ ϕn(z) is universal.

All of the above theorems concern analytic functions, which provide the setting
for our discussion of hypercyclicity and universality.

2 Entire Functions

Putting the three examples of hypercyclicity and universality in the previous section
into one setting,Gethner and Shapiro ([9]) obtained the following sufficient condition
for a sequence of continuous linear operators on a Fréchet space X to be universal.
This sufficient condition is now known as the Universality Criterion.

Theorem 2.1 (Gethner and Shapiro [9]) For each integer n ≥ 1, let Tn : X → X be
a continuous linear operator on a separable, infinite dimensional Fréchet space X.
The sequence {Tn} is universal if there are dense subsets D1 and D2 of X and maps
Sn : X → X such that

(1) TnSn = identity,
(2) Tnx → 0 for each x ∈ D1, and
(3) Snx → 0 for each x ∈ D2.

Using Theorem 2.1, Gethner and Shapiro reproved the results of Birkhoff,
MacLane, and Seidel and Walsh. We remark that if there is an operator T such
that each Tn in Theorem 2.1 satisfies Tn = T n , then the Universailty Criterion can
be used to show that T is hypercyclic.
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Continuing with Birkhoff and MacLane’s results, Godefroy and Shapiro ([10])
showed that a continuous linear operator L : H(C) → H(C) commutes with the
differentiation D : H(C) → H(C) if and only if it commutes with every translation
Ta : H(C) → H(C) given by Tag(z) = g(z + a). Furthermore, they provided the
following result.

Theorem 2.2 (Godefroy and Shapiro [10]) If L : H(C) → H(C) is a continuous,
linear, nonscalar operator that communtes with D, then L is hypercyclic.

The set of all entire functions H(C) cannot be aHilbert space in ameaningful way.
However, it is possible to give a dense linear manifold M of H(C) a topology that
makes M a Hilbert space of entire functions. If M is invariant under the translation
operator T , then we can study the hypercyclicity of the translation operator on M .
To proceed with this idea, we introduce the following definition given by Chan and
Shapiro ([8]).

Let γ = {γn > 0 | n ≥ 0} be a sequence of positive numbers with γn+1

γn
↓ 0. Let

E2(γ ) =
{
f (z) =

∞∑
0

f̂ (n)zn
∣∣∣∣ ‖ f ‖2γ =

∞∑
0

| f̂ (n)|2
γ 2
n

< ∞
}

be a Hilbert space of entire functions. One can easily check that the norm topology
of E2(γ ) is stronger than the compact-open topology inherited from H(C), and
also that the differentiation operator D : E2(γ ) → E2(γ ) given by Df = f ′(z) is
bounded if and only if {nγn/γn−1} is a bounded sequence. In that case, the translation
operator Ta : E2(γ ) → E2(γ ) given by Ta( f ) = f (z + a) is bounded. This follows
from the observation that

eaD( f )(z) =
∞∑
n=0

an

n! D
n f (z) =

∞∑
n=0

f (n)(z)

n! ((a + z) − z)n = f (z + a),

and hence,

Ta = eaD =
∞∑
0

an
Dn

n! = I + D

( ∞∑
1

an
Dn−1

n!
)

.

One can check that D : E2(γ ) → E2(γ ) is compact if and only if nγn/γn−1 → 0,
and in that case Ta = I + K , where K is a compact operator.

Theorem 2.3 (Chan and Shapiro [8]) If the sequence {nγn/γn−1} is monotonically
decreasing and if a �= 0, then Ta : E2(γ ) → E2(γ ) is hypercyclic.

In the case that D is compact, Ta is the first natural example of a hypercyclic
operator that is of the form I + K where K is a compact operator, with the singleton
spectrum σ(Ta) = {1}.
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3 Hilbert Spaces of Analytic Functions

Let H be a Hilbert space of analytic functions on a region � ⊂ C satisfying (a)
H �= {0}, and (b) For each ω ∈ �, the point evaluation functional kω : f �→ f (ω)

is continuous. An analytic function ϕ : � → C is a multiplier for H if ϕ · H ⊂ H .
Using the Closed Graph Theorem, one can show that the multiplication operator
Mϕ : H → H given by Mϕ( f ) = ϕ f is a bounded linear operator.

Let H∞(�) be the algebra of all bounded analytic functions on �. We claim
that every multiplier ϕ is in H∞(�). To prove that, we see that |ϕ(ω)| · |〈 f, kω〉| =
|ϕ(ω) f (ω)| = |〈ϕ f, kω〉| ≤ ||Mϕ‖‖ f ‖‖kω‖.Putting f = kω/‖kω‖, we have |ϕ(ω)|
≤ ‖Mϕ‖ for all ω ∈ �. This proves our claim.

In fact, it is quite easy for the adjoint multiplication operatorM∗
ϕ to be hypercyclic.

Theorem 3.1 (Godefroy and Shapiro [10]) If ϕ is nonconstant and ϕ(�) intersects
the unit circle, then M∗

ϕ : H → H is hypercyclic.

The next result shows that hypercyclicity of the adjoint multiplication operator
on a Hilbert space H of analytic functions can be completely determined under
additional hypotheses.

Theorem 3.2 (Godefroy and Shapiro [10]) Suppose every function ϕ in H∞(�) is
a multiplier for H with ‖Mϕ‖ = ‖ϕ‖∞. If ϕ is a nonconstant multiplier, then M∗

ϕ is
hypercyclic if and only if ϕ(�) intersects the unit circle.

To illustrate the theorem, let

L2
a(�) =

{
f : � → C

∣∣∣∣ f is analytic and ‖ f ‖2 =
∫

�

| f |2 d A < ∞
}

be the Bergman space. Clearly every ϕ ∈ H∞(�) is a multiplier for L2
a(�) with

‖Mϕ‖ = ‖ϕ‖∞. Thus it follows from Theorem 3.2 that the adjoint multiplication
operator M∗

ϕ : L2
a(�) → L2

a(�) is hypercyclic if and only if ϕ(�) intersects the unit
circle.

However, in the case that not every bounded analytic function is a multiplier,
then the conclusion of Theorem 3.2 may not be true. For example, we consider the
Dirichlet space for the open unit disk D, which is given by

Dir(D) =
{
f : D → C

∣∣∣∣ f is analytic and ‖ f ‖2 = | f (0)|2 +
∫
D

| f ′|2 d A < ∞
}
.

Example 3.3 (Chan and Seceleanu [7], 2012) Let ϕ(z) = z. The operator M∗
ϕ :

Dir(D) → Dir(D) is hypercyclic, but ϕ(D) = D, which does not intersect the unit
circle.

Before we return to the Bergman space, we take a look at a hypercyclicity result
for a general operator on a Banach space.
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Theorem 3.4 (Bourdon and Feldman [4]) For any bounded linear operator T :
X → X on a separable, infinite dimensional Banach space X, an orbit orb(T, x) is
somewhere dense if and only if orb(T, x) is everywhere dense.

However, for the adjoint multiplication operator M∗
ϕ on the Bergman space L2

a(�)

to be hypercyclic, the equivalent condition of having a somewhere dense orbit in
Theorem 3.4 can be relaxed.

Theorem 3.5 (Chan and Seceleanu [6]) Let ϕ be a nonconstant function in H∞(�).
For the adjoint multiplication operator M∗

ϕ : L2
a(�) → L2

a(�), the following state-
ments are equivalent.

(A) M∗
ϕ is hypercyclic.

(B) M∗
ϕ has an orbit with a nonzero limit point.

(C) M∗
ϕ has an orbit orb(M∗

ϕ, f ) with infinitely many members M∗n
ϕ f contained in

an open ball whose closure avoids the origin.

Theorem 3.5 does not hold true for all classes of operators on a Hilbert space H
of analytic functions. To explain that, let D be the open unit disk, and let

H 2 =
{
f : D → D

∣∣∣∣ f (z) =
∞∑
0

anz
n analytic and

∞∑
0

|an|2 < ∞
}

be the Hardy space. Let ϕ : D → D be an analytic function, and define the compo-
sition operator Cϕ : H 2 → H 2 by Cϕ f = f ◦ ϕ.

Example 3.6 (ChanandSeceleanu [6], 2012) Ifα is an irrational number andϕ(z) =
e2π iαz,, then Cϕ has an orbit with the identity function ψ(z) ≡ z as a nonzero limit
point, but Cϕ is not hypercyclic.

Nowwe turn our attention to theweak topologyof a separable, infinite dimensional
Hilbert space H . The linear span of an orbit orb(T, x) is a convex set. So, it is dense
with the weak topology if and only if it is dense with the norm topology. What
about the orbit itself, without taking the linear span? In other words, must a weakly
dense orbit be norm dense? To provide an answer for that question, we introduce
the following definition. If there is a vector h ∈ H such that its orbit orb(T, h) is
dense with the weak topology of the Hilbert space H , then T is said to be weakly
hypercyclic. To provide an example of weak hypercyclicity, let A = {1 < |z| < 2} be
the annulus with radii 1 and 2, centered at 0. The correspondingHardy space H 2(A)

is given by H 2(A) = { f (z) = ∑∞
−∞ anzn | ∑0

−∞ |an|2 + ∑∞
1 22n|an|2 < ∞}.

Theorem 3.7 (Chan and Sanders [5]) The adjoint multiplication operator M∗
z :

H 2(A) → H 2(A) is weakly hypercyclic but not hypercyclic.

As an immediate corollary, we have the following unexpected result: There is a
norm increasing, and yet weakly dense sequence in a separable, infinite dimensional
Hilbert space!
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To conclude this paper, we remark that universality can take place in a nonlinear
setting. For example, Ball(H∞(D) carries no linear structure. Heins ([12]) showed
that if {an : n ≥ 1} ⊂ D with an → 1, and

ϕn(z) = an − z

1 − anz
,

then there exists a Blaschke product B such that the set

{B ◦ ϕ1, B ◦ ϕ2, B ◦ ϕ3, . . .}

is dense in Ball(H∞(D), with the compact-open topology. In other words, if Tn :
Ball(H∞(D) → Ball(H∞(D) is given by Tn f = f ◦ ϕn . Then the sequence {Tn} is
universal. The Blaschke product B is a universal element.

Recently, many authors have obtained results related to Heins’ results. For exam-
ple, Aron and Gorkin ([1]), Bayart, Gorkin, Grivaux, and Mortini ([2]), and also
Gorkin and Mortini ([11]).
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Some Basic Properties of Hypercyclic
Operators
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Abstract Using a few classical examples and the invariant subspace problem, we
motivate the definition of a hypercyclic operator on a Banach space. We state a
sufficient condition for an uncountable family of operators to have a dense Gδ set of
common hypercyclic vectors. Then we exhibit a few examples of such uncountable
families. Finally, we switch our focus to some results on extending of an operator
defined on a Hilbert subspace to a hypercyclic operator on the whole Hilbert space.

Keywords A path of hypercyclic operators · Common hypercyclic vector ·
Hypercyclic extension
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1 Introduction

Acontinuous linear operatorT : X → X ona separable, infinite-dimensional Fréchet
space is said to be hypercyclic if there is a vector x in X for which the orbit
orb(T, x) = {x, T x, T 2x, T 3x, . . .} is dense in X . Such a vector x is called a hyper-
cyclic vector. Two classical examples of hypercyclicity take place in the Fréchet
space of all entire functions H(C), which carries the compact-open topology. Thus,
a sequence { fn} in H(C) converges to a function f in H(C) if and only if fn → f
uniformly on compact subsets of C.

One of the two examples is due to Birkhoff ([4]) who showed that the translation
operator T : H(C) → H(C) given by T f (z) = f (z + 1) on the Fréchet space H(C)

of all entire functions is hypercyclic. The other example is due toMacLane ([20])who
showed that the differentiation operator D : H(C) → H(C) defined by Df = f ′ is
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hypercyclic. The first Banach space example of hypercyclicity is due to Rolewicz
([21])who showed that if B : �p → �p, where 1 ≤ p < ∞, is the unilateral backward
shift defined by

B(a0, a1, a2, . . .) = (a1, a2, a3, . . .)

and if t > 1, then t B is hypercyclic.
Another motivation for studying hypercyclic operators comes from the well-

known open problem, the Invariant Subspace Problem which has been around since
1900. The problem asks whether every bounded linear operator T : H → H on a
separable, infinite-dimensional Hilbert space H has a nontrivial invariant closed sub-
space. The problemwill be solved in the negative, if one shows that there is a bounded
linear operator T : H → H for which every nonzero vector is a hypercyclic vector.
In that case, T does not have a nontrivial invariant closed subspace, and indeed it
does not even have a nontrivial invariant closed subset.

Of course not every operator is hypercyclic. Some examples of non-hypercyclic
operators include normal operators, compact operators, and those operators of the
form T = I + F where F is a finite rank operator.

Kitai [19] offered a sufficient condition for a bounded linear operator T : X → X
on a Banach space X to be hypercyclic. The condition was rediscovered in much
greater generality by Gethner and Shapiro ([16]). The condition is now known as the
Hypercyclicity Criterion.

Theorem 1.1 (Kitai [19], Gethner and Shapiro [16]) A continuous linear operator
T : X → X on a separable, infinite-dimensional Fréchet space X is hypercyclic if
there is a dense subset D of X and if T has a right inverse S so that T nx → 0 and
Snx → 0 for each vector x ∈ D.

Using the Criterion, Gethner and Shapiro ([16]) reproved the aforementioned
results of Birkhoff, MacLane, and Rolewicz. Since then the Hypercyclicity Criterion
has been a basic tool for showing an operator is hypercyclic.

2 Common Hypercyclic Vectors

For a given countable dense subset {x j : j ≥ 1} of a separable, infinite-dimensional
Banach space X , one can easily check that the set of hypercyclic vectors HC(T ) of
a bounded linear operator T : X → X is given by

HC(T ) =
∞⋂

j,k=1

∞⋃

n=1

T−n B

(
x j ,

1

k

)
.

Since T is bounded, the union
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∞⋃

n=1

T−n B

(
x j ,

1

k

)

is an open set. Observe that if the orbit {x, T x, T 2x, . . .} is dense then every member
T nx in the orbit is a hypercyclic vector. Thus, HC(T ) is dense in X , and hence,
HC(T ) is a dense Gδ subset of X . Furthermore by the Baire Category Theorem, if
{Tn : n ≥ 1} is a countable collection of hypercyclic operators, then

the set of common hypercyclic vectors =
∞⋂

n=1

HC(Tn)

is again a dense Gδ set. What about an uncountable family of hypercyclic operators?
Can their set of common hypercyclic vectors be a denseGδ set? One such example in
relation to Rolewicz’ result that we have mentioned in Sect. 1 was given as follows.

Theorem 2.1 (Abakumov and Gordon [1]) If B is the unilateral backward shift,
then the set of common hypercyclic vectors

⋂

t>1

HC(t B) is a dense Gδ set.

The above theorem was given a simpler proof, by introducing the concept of a
path of operators. To give a definition, let B(X) = {T : X → X |T is bounded and
linear} be the operator algebra of a Banach space X , and let I be an interval of real
numbers. The collection {Tt ∈ B(X)|t ∈ I } is a path of operators if the map t �→ Tt
is continuous with the usual topology ofR and the operator norm topology of B(X).
For example, if B is the unilateral backward shift, then t B with t ∈ (1,∞) is a path
of operators.

Theorem 2.2 (Chan and Sanders [12]) Suppose {Tt : X → X |t ∈ [a, b]} is a path
of operators on a separable, infinite-dimensional Banach space X. Then

⋂

t∈[a,b]
HC(Tt ) is a dense Gδ set

if and only if for each pair of nonempty open subsets U1,U2 of X, there exist a parti-
tion P = {a = t0 < t1 < t2 < · · · < tk = b}of [a, b], positive integers n1, n2, . . . , nk,
and a nonempty open set V such that V ⊂ U1 and

T ni
t (V ) ⊂ U2, whenever 1 ≤ i ≤ k and t ∈ [ti−1, ti ].

Applying Theorem 2.2, Chan and Sanders ([12]) reproved Theorem 2.1. Further-
more, they also use the concept of path of operators to obtain other results on shift
operators. To explain that, let 1 ≤ p < ∞, A bounded linear operator T : �p → �p is
said to be a unilateral weighted backward shift, if there is a bounded positive weight
sequence {w j : j ≥ 1} such that

T (a0, a1, a2, . . .) = (w1a1, w2a2, w3a3, . . .).
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Note that if B is the unilateral backward shift, then the operators t B in Theorem 2.1
is a unilateral weighted backward shift with constant weight sequence wn = t .

A bounded linear operator T : �p → �p is said to be abilateralweighted backward
shift, if there is a bounded positive weight sequence {w j : −∞ < j < ∞} such that

T (. . . , a−1,

zeroth︷︸︸︷
a0 , a1, . . .) = (. . . , w−1a−1, w0a0,

zeroth︷︸︸︷
w1a1, w2a2, w3a3, . . .).

Continuing with the concept of a path of operators, we have the following result
for the shift operators in the operator algebra B(�p) of the Banach sequence space
�p.

Theorem 2.3 (Chan and Sanders [12]) Let 1 ≤ p < ∞. Between any two hyper-
cyclic unilateral weighted backward shifts in B(�p), there is a path of such operators
in B(�p) with a dense Gδ set of common hypercyclic vectors. Also, there is another
path of such operators in B(�p) with no common hypercyclic vector.

Immediately from Theorem 2.3, we see that the hypercyclic unilateral weighted
backward shifts form a path-connected subset in the operator algebra B(�p).

Theorem 2.3 continues to hold true if we replace the unilateral weighted backward
shifts by bilateral weighted shifts. These results lead to a natural question: Can we
have “a lot" of operators in a path and yet they still have a dense Gδ set of common
hypercyclic vectors? What do we mean by “a lot?” Before we look at the question,
let us first quote the following result showing the existence of a hypercyclic operator.

Theorem 2.4 (Ansari [2], Bernal [3]) For every separable, infinite-dimensional
Banach space X, there is a hypercyclic operator T in B(X).

However, the Banach space X may not admit an operator of a more restrictive
class. To explain that, we need the following definitions.

Definition 1 A vector x ∈ X is said to be a periodic point of an operator T in B(X)

if there is a positive integer n such that T nx = x . An operator T in B(X) is said to
be chaotic if it is hypercyclic and has a dense set of periodic points.

Unlike the result in Theorem 2.4, we cannot assume that we can always have a
chaotic operator on a Banach space.

Theorem 2.5 (Bonet et al. [5]) There is a separable, infinite-dimensional Banach
space which admits no chaotic operator.

In relation to Theorems 2.4 and 2.5, we have the following results about the
density of hypercyclic and chaotic operators. Here, we use “SOT” to denote the
strong operator topology of the operator algebra B(X).

Theorem 2.6 (Chan [7]) For a separable, infinite-dimensional Hilbert space H,
the hypercyclic operators on H are SOT-dense in B(H).
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Instead of a Hilbert space H in the above theorem, we have the following result
for the case of a Banach space X .

Theorem 2.7 (Bès and Chan [6]) The set of chaotic operators on a separable,
infinite-dimensional Banach space X is either empty or SOT-dense in B(X).

Indeed, if T ∈ B(X) is hypercyclic, then its similarity orbit {A−1T A : A invertible
on X} is SOT-dense in B(X). In the case that X is a Hilbert space H overC, Theorem
2.7 states that the chaotic operators are SOT-dense in B(H). Using these results, we
can continue our discussion on common hypercyclic vectors.

Theorem 2.8 (Chan and Sanders [13]) There is a path of chaotic operators in B(H)

that is SOT-dense in B(H), and each operator of the path has the exact same set G
of hypercyclic vectors.

It is further shown in [13] that there is such a path of which each operator satisfies
the Hypercyclicity Criterion. From Theorem 2.8, we immediately have the following
result.

Corollary 2.9 The hypercyclic operators in B(H) are SOT-connected. The chaotic
operators in B(H) are SOT-connected.

From Theorem 2.8 we also have the following fact about the set G of hypercyclic
vectors in the statement of the theorem: Hypercyclic operators T in B(H) with a
set of common hypercyclic vectors G are SOT-connected. In light of Theorem 2.5,
Theorem 2.8 cannot hold true for any separable, infinite-dimensional Banach space
X . However, in that case, we can offer the following result for the similarity orbit
S(T ) = {A−1T A | A : X → X is invertible} of a hypercyclic operator T : X → X .

Theorem 2.10 (Chan and Sanders [13]) Let T : X → X be a hypercyclic operator
on a separable, infinite-dimensional Banach space X. The similarity orbit S(T )

contains a path P of operators which is SOT-dense in B(X) and the set of common
hypercyclic vectors

⋂
T∈P HC(T ) for P is a dense Gδ set.

It is easy to see from the definition of S(T ) that we have the following remarks.

(1) If HC(T ) = X \ {0}, the set of common hypercyclic vectors for S(T ) is also
X \ {0}.

(2) IfHC(T ) 
= X \ {0}, the set of common hypercyclic vectors for S(T ) is empty.

Since we do not know whether there is a bounded linear operator T : H → H
on a separable, infinite-dimensional Hilbert space H such that HC(T ) = H \ {0},
Remark (1) above may or may not make sense in the Hilbert space case.

For an operator T on H , we let U(T ) = {U−1TU |U : H → H is unitary} be the
unitary orbit of T . Since the set of all unitary operators on H is a path-connected
subset of B(H), the unitary orbit U(T ) is path-connected. Every operator in U(T )

has the same norm as T , and so U(T ) does not contain a path that is SOT-dense
in B(H). However, we can offer the following result for their common hypercyclic
vectors.
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Theorem 2.11 (Chan and Sanders [15]) If T ∈ B(H) is hypercyclic, then U(T )

contains a path P of operators so that PSOT
contains U(T ) and the set of common

hypercyclic vectors
⋂

T∈P HC(T ) for P is a dense Gδ set.

Observe that between any two unit vectors in H , there is a unitaryU that takes one
vector to the other. Thus, if HC(T ) 
= H \ {0}, then the set of common hypercyclic
vectors for U(T ) is empty, same as Remark (2) above.

3 Hypercyclic Extension

Webegin this sectionwith an observation that ifM is a closed subspace of a separable,
infinite-dimensional Hilbert space H with dimH/M < ∞, then no bounded linear
operator A : M → M can have an extension T : H → H that is hypercyclic. To
prove that by way of contradiction, suppose T ∈ B(H) is a hypercyclic extension of
A. Let π : H → H/M be the quotient map; that is,

π( f ) = [ f ] = f + M.

If h is a hypercyclic vector for T , then the set

π{h, Th, T 2h, . . .} = {[h], [Th], [T 2h], . . .} is dense in H/M.

If S : H/M → H/M is the linear map defined by S[x] = [T x], then S is a hyper-
cyclic operator on a finite dimensional space H/M , but that is impossible. However,
if M is a closed subspace with infinite codimension then we have the following
hypercyclic extension result.

Theorem 3.1 (Grivaux [17]) IfdimH/M = ∞, then every operator A ∈ B(M)has
a chaotic extension T ∈ B(H); that is, a chaotic operator T : H → H for which
T |M = A.

If A is one-one and has closed range, then the chaotic extension T in Theorem
3.1 can be chosen to be one-one. However when A is not one-one, such an extension
can be chosen to preserve the kernel of A. Indeed we have the following result.

Theorem 3.2 (Chan and Kadel [10]) If dimH/M = ∞, and A in B(M) has closed
range, then A has a right invertible chaotic extension T in B(H)with ker A = ker T .

To explain what the extension T in the above theorem looks like, we write M =
ran A ⊕ ran A⊥. Let M0, M1, M2, . . . be orthogonal subspaces of M⊥, each of which
is isomorphic to M . Identify M0 with the original subspace M . Furthermore, let
M−1, M−2, . . . be orthogonal subspaces of M⊥, each of which is isomorphic to
ran A so that

H = · · · ⊕ M−2 ⊕ M−1 ⊕ M0 ⊕ M1 ⊕ M2 ⊕ · · · .
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Since the restriction A|ker A⊥ : ker A⊥ → ran A is invertible, there is a bounded
linear operator B : ran A → ker A⊥ such that AB = I on ran A.

An chaotic extension T is given by

Th =
(

· · · ,
1

α
h−2,

1

α
h−1, αh′

1,

zeroth position
︷ ︸︸ ︷
Ah0 + αh1, αh2, αh3, · · ·

)
,

where α > 1 and h′
1 is the orthogonal component of h1 in ran A. Then a right inverse

S of T is given by

Sh =
(

· · · , αh−3, αh−2,

zeroth position
︷ ︸︸ ︷
B(h′

0 − h−1),
1

α
(h−1 ⊕ h′′

0),
1

α
h1,

1

α
h2, · · ·

)
,

where h′
0 and h

′′
0 are orthogonal components of h0 in ran A and ran A⊥, respectively.

After explaining what the extension T looks like, we review the statement of
Theorem 3.2 and obtain the following two corollaries.

Corollary 3.3 Suppose dim H/M = ∞. An operator A ∈ B(M) has an invertible
chaotic extension T ∈ B(H) if and only if A is bounded below.

The property of invertibility in the above corollary naturally raises the question
about Fredholm operators.

Corollary 3.4 An operator A ∈ B(M) has a chaotic Fredholm extension T ∈ B(H)

if and only if A is left semi-Fredholm. Moreover, indT ≥ ind A.

Another property of the hypercyclic extensionwe study is dual hypercyclicity. For
the definition, a bounded linear operator T : H → H is said to be dual hypercyclic,
if both T and T ∗ are hypercyclic. Herrero ([18]) asked whether an operator can be
dual hypercyclic. The question was answered in the positive by Salas ([22]). In this
direction, we can offer the following result.

Theorem 3.5 (Chan [8]) Let M be a closed subspace of H with dim H/M = ∞,
and P : H → H be the orthogonal projection onto M. For any operator A ∈ B(M),
there exists an operator T ∈ B(H) such that

(1) T is dual hypercyclic,
(2) PT P|M = A,
(3) PT ∗P|M = A∗.

In general, we can only get A to be the compression PT P|M of a dual hypercyclic
operator T as stated in the above result, but not a restriction T |M of a dual hypercyclic
operator T . However, such an extension exists when A∗ is hypercyclic.

Theorem 3.6 (Chan and Kadel [9]) Suppose dim H/M = ∞. An operator A ∈
B(M) has a dual hypercyclic extension T ∈ B(H) if and only if A∗ is hypercyclic.
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To explain the “only if” part of the theorem, suppose h is a hypercyclic vector
for T ∗. Write h = f + g, where f ∈ M and g ∈ M⊥. Since T M ⊂ M , we have
T ∗M⊥ ⊂ M⊥.Also A∗n = PT ∗n|M , where P : H → H is the orthogonal projection
onto M . Thus, T ∗nh = T ∗n f + T ∗ng = A∗n f + gn, where gn ∈ M⊥. Hence, f ∈
M is a hypercyclic vector for A∗.

The above theorems and corollaries show how an operator A : M → M on a
Hilbert subspace M can be extended to a hypercyclic operator T : H → H . What
about operators A : M → H? Can we extend A to hypercyclic operator on H? This
does not seem to be possible, particularly when A is onto H . Nevertheless, we have
the following counterintuitive result.

Theorem 3.7 (Chan and Pinheiro [11]) Suppose dim H/M = ∞. Every bounded
linear operator A : M → H has a chaotic extension T : H → H.

For a countable collection of operators {An : n ≥ 1} in B(M, H), we can take the
point of view that An : H → H with An = 0 on M⊥. Does there exist one operator
V : M⊥ → H such that each operator An + V : H → H is chaotic, taking the point
of view that V = 0 on M? It was proved in [11] that such a bounded linear operator
V : M⊥ → H exists provided that {An} is uniformly bounded.
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The Testing Ground of Weighted Shift
Operators for Hypercyclicity

Kit C. Chan

Abstract We explore the hypercyclicity of unilateral weighted backward shifts and
bilateralweighted shifts on �p , where 1 ≤ p ≤ ∞, with theweakorweak-star topolo-
gies. Then, we turn our attention to see how a nonzero limit point of an orbit of such
an operator determines the hypercyclicity of the operator. Lastly, we explore a recent
result that a unilateral weighted backward shift can be factored as the product of two
hypercyclic shifts.

Keywords Unilateral weighted backward shift · Bilateral shifts · Hypercyclic
vector · Weak topology · Weak-star topology
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1 Introduction

Let X be a separable, infinite dimensional Banach space over C, and T : X → X be
a bounded linear operator. The orbit of T with respect to a vector x is orb(T, x) =
{x, T x, T 2x, . . .}. The operator T is hypercyclic if there is an orbit orb(T, x) that
is dense in X . Such a vector x is called a hypercyclic vector. One property of an
operator T that is weaker than hypercyclicity is called supercyclicity. An operator T
is supercyclic if there is a vector x such thatC · orb(T, x) = {αT nx : n ≥ 0, α ∈ C}
is dense in X . Such a vector x is called a supercyclic vector. Another property weaker
than supercyclicity is called cyclicity. The operator T is cyclic if there is a vector x
such that the linear span of its orbit

spanorb(T, x) = span{x, T x, T 2x, . . .} = {p(T )x : p polynomial}
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is dense in X . Such a vector x is called a cyclic vector.
In this paper, we focus on the shift operators on �p, where 1 ≤ p ≤ +∞.

An operator T : �p → �p, is a unilateral weighted backward shift if there is a
bounded positive weight sequence {w j : j ≥ 1} such that T (a0, a1, a2, . . .) =
(w1a1, w2a2, w3a3, . . .).

If we represent every �p sequence as a two-sided sequence, then a bounded linear
operator T : �p → �p is a bilateral weighted backward shift if there is a bounded
two-sided positive weight sequence {w j : −∞ < j < ∞} such that

T (. . . , a−1,

zeroth
︷︸︸︷

a0 , a1, . . .) = (. . . , w−1a−1, w0a0,
zeroth
︷︸︸︷

w1a1, w2a2, . . .).

For the above two shift operators to be hypercyclic, we have the following equivalent
conditions in terms of their weight sequences.

Theorem 1.1 (Salas [12]) Suppose 1 ≤ p < ∞. We have the following necessary
and sufficient conditions for hypercyclicity.
(1) A unilateral weighted backward shift T on �p is hypercyclic iff sup{w1w2 . . . wn :
n ≥ 1} = ∞.

(2) A bilateral weighted backward shift T on �p is hypercyclic iff for any ε > 0, and
q ∈ N, there is an arbitrarily large n such that whenever |k| ≤ q,

n
∏

j=1

wk+ j >
1

ε
and

n−1
∏

j=0

wk− j < ε.

To explain why Statement (1) in the above theorem holds true, suppose x =
(a0, a1, a2, . . .) is a hypercyclic vector for T . Then, there is sequence of positive
integers {nk} such that T nk x → (1, 0, 0, . . .). Thus, w1w2 . . . wnk ank → 1. Since x
is a p−summable sequence, we have ank → 0. Thus, w1w2 . . . wnk → ∞.

Conversely, suppose there is a sequence {nk} of positive integers such that
w1w2 . . . wnk → ∞. We now see how to construct a vector x so that there is subse-
quence {nki } with T nki x → (1, 1, 0, 0, 0, . . .).

Since {wn} is bounded, we have w1w2 . . . w−1+nk → ∞, and so we can select
a subsequence {nki }, and construct {anki } and {a−1+nki

} so that w1w2 . . . w−1+nki
a−1+nki

→ 1 and w2 . . . wnki
anki → 1. Hence, we can construct a vector x so that

T−1+nki x → (1, 1, 0, 0, 0, . . .). Instead of (1, 1, 0, 0, 0, . . .) one use the above argu-
ment on any �p sequence with finite number of nonzero rational entries, and then,
carefully construct a hypercyclic vector x in �p.

The above theorem provides us with a way to see whether a unilateral weighted
backward shift or a bilateral weighted backward shift is hypercyclic. In the rest of the
paper, we explore other aspects of hypercyclicity of these two types of shift operators.
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2 Weak Topologies

Every Banach space naturally carries the weak topology, which is weaker than the
norm topology as its name suggests. Thus, an orbit orb(T, x) may be dense with the
weak topology, without being dense with the norm topology. This leads to the follow-
ing definitions: If there is an orbit orb(T, x) that is dense with the weak topology of
X , then T is said to beweakly hypercyclic. Similarly, if there is an orbit orb(T, x) that
is dense with the weak-star topology of X , then T is said to beweak-star hypercyclic.
A subset E of X is weakly sequentially dense (resp. weak-star sequentially dense)
if for each vector y in X , there is a sequence in E converging to y with the weak
topology (resp. weak-star topology). If there is an orbit orb(T, x) that is sequentially
dense with the weak topology (resp. weak-star topology) of X , then T is said to be
weakly sequentially hypercyclic (resp. weak-star sequentially hypercyclic).

Obviously, if an orbit orb(T, x) is dense with the norm topology, then it is dense
with the weak topology. Thus, every hypercyclic operator is weakly hypercyclic.
However, a convex subset of a Banach space is closed with the weak topology if
and only if it is closed with the norm topology. Thus, the linear span of an orbit is
weakly dense if and only if it is norm dense. In other words, an operator T is cyclic
if and only if T is weakly cyclic. This naturally leads to the question whether T is
hypercyclic if T is weakly hypercyclic.

Theorem 2.1 (Chan and Sanders [5]) The following bilateral weighted backward
shift T : �2 → �2 is weakly hypercyclic but not hypercyclic.

T (. . . , a−2, a−1,

zeroth
︷︸︸︷

a0 , a1, a2 . . .) = (. . . , a−2, a−1, a0,

zeroth
︷︸︸︷

2a1 , 2a2, 2a3, . . .).

If x = (. . . , a−2, a−1,

zeroth
︷︸︸︷

a0 , a1, a2 . . .) is a weakly hypercyclic vector for T in
Theorem 2.1, then there are infinitely many entries an with positive n such that
an �= 0. Thus, we have the following corollary.

Corollary 2.2 There is a strictly norm-increasing, and yet weakly dense orbit in �2!

Itwas provedbyKitai ([11]) that if T : X → X on aBanach space X is hypercyclic
and invertible, then its inverse T−1 is also hypercyclic. However, the example of a
weakly hypercyclic operator T in Theorem 2.1 shows that Kitai’s result does not
extend to weak hypercyclicity, because ‖T−1‖ = 1.

Corollary 2.3 There exists a bounded linear operator T that is weakly hypercylic
and invertible, but its inverse T−1 is not weakly hypercylic.

If a sequence in a Banach space is weakly convergent, then the sequence is
bounded. Thus, the following corollary follows immediately from Corollary 2.2.

Corollary 2.4 There exists a weakly hypercyclic operator T : �2 → �2 that is not
weakly sequentially hypercyclic.
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Before we turn our attention away from Theorem 2.1, we remark that in the case
of �2, its weak topology coincides with its weak-star topology. Thus Theorem 2.1
and Corollaries 2.2, 2.3, 2.4 continue to hold true if we replace the weak topology
in their statements by the weak-star topology.

It is no accident that the operator T in Theorem 2.1 is a bilateral shift, because
the property stated in Theorem 2.1 is not shared by a unilateral weighted backward
shfit.

Theorem 2.5 (Chan and Sanders [5]) A unilateral weighted backward shift T :
�2 → �2 is weakly hypercyclic if and only if it is hypercyclic.

To explain why the theorem holds true, take e0 = (1, 0, 0, 0, . . .) and suppose
x ∈ �2 with |〈T nk x − e0, e0〉| < 1/k. Then, the weight sequence {wn} of T satisfies
w1w2 · · · wnk → ∞. Thus, T is hypercyclic, by Theorem 1.1.

The next question about weak topology is whether every weakly supercyclic
operator is indeed supercyclic. Before we look into the question, we quote one
supercyclicity result for a unilateral weighted backward shift.

Theorem 2.6 (Hilden and Wallen [10]) Let 1 ≤ p < ∞. Every unilateral weighted
backward shift T : �p → �p is supercyclic.

To explain why the theorem holds true, let D = {(a0, a1, . . . , an, 0, 0, 0, . . .) :
n ≥ 0 and a0, a1, . . . an ∈ Q[i]} be a countable dense subset of �p. Enumerate D
as D = {d1, d2, d3, . . .}. Let F : D → D be the unilateral weighted forward shift
defined by F(a0, a1, a2, . . .) = (0, w−1

1 a0, w
−1
2 a1, w

−1
3 a2, . . .). Thus, T F = Id on

D. Using this, we can create a supercyclic vector x of the form x = ∑

αk Fnk dk , by
choosing large enough integers nk and small enough positive αk .

Even though Theorem 2.6 shows that supercyclicity is automatic for every unilat-
eral weighted backward shift. We have the following result for weak supercyclicity.

Theorem 2.7 (Sanders [13]) There exists a bounded linear operator that is weakly
supercyclic, but not supercyclic.

For agiven formulaT (a0, a1, a2, . . .) = (w1a1, w2a2, . . .)of a unilateralweighted
backward shift T with a bounded positive weight sequence {w j }, we can consider
T as a bounded linear operator on any �p with 1 ≤ p < ∞ or p = ∞. In addition,
T also defines a bounded linear operator on a closed subspace c0 of �∞, where
c0 = {(a0, a1, a2, . . .) : an → 0}. Since �∞ is not separable with its norm topology,
we can only study hypercyclicity of T on �∞ with the separable weak-star topology.

Theorem 2.8 (Bès, Chan and Sanders [2]) Let 1 ≤ p < ∞ and {w j : j ≥ 1} be a
bounded sequence of positive weights. Suppose T is a unilateral weighted backward
shift defined by T (a0, a1, a2, . . .) = (w1a1, w2a2, . . .). Then, the following state-
ments are equivalent.

• T is weak-star hypercyclic on �∞.

• T is weak-star sequentially hypercyclic on �∞.
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• T is hypercyclic on �p.
• T is weakly sequentially hypercyclic on �p.
• T is weakly hypercyclic on �p.
• T is weak-star sequentially hypercyclic on �p.
• T is hypercyclic on c0.
• T is weakly sequentially hypercyclic on c0.
• T is weakly hypercyclic on c0.
• sup{w1w2 . . . wn : n ≥ 1} = ∞ (Salas [12]).

When we switch our focus to bilateral shifts, we have the following two results.

Theorem 2.9 (Bès et al. [1]) For a bilateral weighted backward shift T on �p with
1 ≤ p < ∞, we have the following two statements.

(1) T is weakly sequentially hypercyclic iff T is hypercyclic.
(2) T is weakly sequentially supercyclic iff T is supercyclic.

The above theorem cannot hold true for �∞ because it is not separable with the
norm topology. Nevertheless we have the following result for �∞.

Proposition 2.10 (Bès et al. [1]) There exists a weak-star hypercyclic bilateral
weighted backward shift T : �∞ → �∞ that is not weak-star sequentially hyper-
cyclic.

We return to case when 1 ≤ p < ∞. Let T : �p → �p be a unilateral weighted
backward shift or a bilateral weighted backward shift. Comparing to the hyper-
cyclicity of T with the norm topology of �p, we conclude from the above results that
hypercyclicity of T with the weak or weak-star topology can be totally different in
some ways, but can also be the same in some other ways.

3 Orbital Limit Points

The definition for a hypercyclic operator T : X → X on a Banach space X requires
it to have a dense orbit orb(T, x). However, if we know that the closure of an orbit
orb(T, x) contains an open set, then the closure is actually the whole space X .

Theorem 3.1 (Bourdon and Feldman [3]) If an orbit orb(T, x) is somewhere dense
in a Banach space X then the orbit orb(T, x) is everywhere dense.

However, if we know that T is a unilateral weighted backward shift or a bilateral
weighted backward shift, then the condition for hypercyclicity in Theorem 3.1 can
be further relaxed.

Theorem 3.2 (Chan and Seceleanu [7]) Let 1 ≤ p < ∞ and T : �p → �p be a
unilateral weighted backward shift. The following statements are equivalent:
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(A) T is hypercyclic.
(B) There is a vector x whose orbit orb(T, x) has a nonzero limit point
(C) There is a vector x whose orbit orb(T, x) has a nonzero weak limit point.
(D) There is a vector x whose orbit orb(T, x) has infinitely many members T nx

contained in an open ball whose closure avoids the origin.

For the case of a bilateral weighted backward shift T : �p → �p, conditions (A),
(B), (D) are equivalent.

When the operator T in Theorem 3.2 is a contraction satisfying ‖T ‖ < 1, then T
cannot be hypercyclic and for any vector x ∈ X , we have T nx → 0. That explains
why we need the limit point in Conditions (B) and (C) of Theorem 3.2 to be nonzero.
If condition (B) does not hold true, then the orbit’s closure is the same as the orbit
except for the zero vector. Hence, we have the following corollary: The operator T in
Theorem 3.2 is not hypercyclic if and only if every set of the form orb (T, x) ∪ {0} is
closed.

If orb(T, x) has a nonzero limit point, we can only conclude T is hypercyclic
as stated in Theorem 3.2, but we cannot conclude that the vector x is a hypercyclic
vector, and in fact not even a cyclic vector.

Theorem 3.3 (Chan and Seceleanu [8]) Let 1 ≤ p < ∞. Suppose T : �p → �p is
a unilateral weighted backward shift and orb(T, x) has a nonzero limit point. The
vector x is a cyclic vector for T , if

(1) the weight sequence {w j : j ≥ 1} of T is bounded below, and
(2) orb(T, x) has a nonzero limit point f = (a0, a1, . . . , an, 0, 0, 0, . . .) with finite

number of nonzero entries.

While Conditions (1) and (2) in Theorem 3.3 do not appear to be necessary, there
are examples in [8] showing that the vector x is not a cyclic vector if either Condition
(1) or Condition (2) is not satisfied.

4 Hypercyclic Factorization

In this section, we take a look at sums and products of cyclic and hypercyclic oper-
ators. We first focus on the case when the underlying space is a separable, infinite
dimensionalHilbert space H . The following two results concern the sumof operators.

Theorem 4.1 (Wu [14]) For any bouned linear operator T : H −→ H, there exist
cyclic operators T1, T2 for which T = T1 + T2.

Indeed there is a hypercycllc improvement of Theorem 4.1.

Theorem 4.2 (Grivaux [9]) For any bounded linear operator T : H −→ H, there
exist hypercyclic operators T1, T2 for which T = T1 + T2.
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The sum in Theorems 4.1 and 4.2 work for any bounded linear operator T :
H −→ H . However, not every operator T : H −→ H can be written as the product
of two cyclic operators, for the reason that the range ranT of a cyclic operator T has
co-dimension at most 1 by the definition of a cyclic operator.

Theorem 4.3 (Wu [14]) If 2 ≤ k < ∞, and if the operator T : H −→ H satisfies
dim (ran T )⊥ ≤ k, then the operator T can be written as the product of at most k + 2
cyclic operators.

In the rest of the paper, we discuss the factorization of a unilateral weighted back-
ward shift T as the product of two hypercyclic operators. To facilitate our discussion,
we rewrite the definition of T in terms of a canonical basis.

Suppose the canonical basis of �p is denoted by a one-sided sequence {en : n ≥ 0},
where e0 = (1, 0, 0, 0, . . .), and e1 = (0, 1, 0, 0, . . .), and e2 = (0, 0, 1, 0, 0, . . .)
etc. A unilateral weighted backward shift

T (a0, a1, a2, . . . ) = (w1a1, w2a2, w3a3, . . . )

can be rewritten as

T

( ∞
∑

i=0

aiei

)

=
∞

∑

i=1

wi ai ei−1.

Suppose the canonical basis of �p is denoted by a two-sided sequence { fn : −∞ <

n < ∞} where f−1 = (. . . , 0, 0, 1,

zeroth
︷︸︸︷

0, 0, . . .), f0 = (. . . , 0, 0,

zeroth
︷︸︸︷

1, 0, . . .), and

f1 = (. . . , 0,

zeroth
︷︸︸︷

0, 1, 0, 0, . . .) etc.. A bilateral weighted backward shift

T (. . . , a−1,

zeroth
︷︸︸︷

a0, a1, . . .) = (. . . , w−1a−1, w0a0,
zeroth
︷ ︸︸ ︷

w1a1, w2a2, . . .)

can be rewritten as

T

( ∞
∑

i=−∞
ai fi

)

=
∞

∑

i=−∞
wi ai fi−1.

Let us use {e0, e1, e2, . . .} as the canonical basis of �p, where 1 ≤ p < ∞. We can
generalize the definition of a unilateral weighted backward shift on �p by allowing a
permutation of the basis vector. An operator T : �p −→ �p is a unilateral weighted
backward shift if there exist (1) a bijection σ : Z+ → Z

+ to reorder the canonical
basis as {eσ(0), eσ(1), eσ(2), . . . }, and (2) a bounded, positive weight sequence {wi :
i ≥ 1} for which

T

( ∞
∑

i=0

aieσ(i)

)

=
∞

∑

i=1

wi ai eσ(i−1).
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An operator T : �p −→ �p is a bilateral weighted (backward) shift if there exist
(1) a bijection ρ : Z → Z

+ to reorder the canonical basis as a 2-sided sequence
{. . . , eρ(−1), eρ(0), eρ(1), . . . }, and (2) a bounded, positive 2-sided weight sequence
{wi : −∞ < i < ∞} for which

T

( ∞
∑

i=−∞
aieρ(i)

)

=
∞

∑

i=−∞
wi ai eρ(i−1).

Theorem 4.4 (Chan and Sanders [6]) Every unilateral weighted backward shift
T : �p −→ �p, with 1 ≤ p < ∞, can be factored as

T = U1B1 = B2U2,

where U1,U2 are hypercyclic unilateral weighted backward shifts and B1, B2 are
hypercyclic bilateral weighted shifts.

In the following, we show how to define U1 and B1 in [6] so that T = U1B1.
Without loss of generality, assume T is given by

T

( ∞
∑

i=0

aiei

)

=
∞

∑

i=1

wi ai ei−1.

For ε > 0, let b = (1 + ε)max{1, ‖T ‖} and select a scalar a satisfying b−1 <

a < 1. Select a sequence { jk : k ≥ 0} of positive, even integers very carefully.
Let ρ : Z −→ Z

+ be the bijection that reorders the canonical basis as

. . . e2+ j2 ,

e j2missing
︷ ︸︸ ︷

e1+ j2 , e−1+ j2 , e−2+ j2 , . . . , e2+ j1 ,

e j1missing
︷ ︸︸ ︷

e1+ j1 , e−1+ j1 , e−2+ j1 , . . . , e2, e1, e0,

e j1 , e j2 , e j3 , . . .

Define the bilateral weighted shift B1 : �p −→ �p by

B1eρ(i) =

⎧

⎪
⎨

⎪
⎩

a−1eρ(i−1), if i ≥ 1,

eρ(−1), if i = 0,

b−1wρ(i)eρ(i−1), if i ≤ −1.

Use another bijection σ : Z+ −→ Z
+ to reorder the canonical basis as

odd indices
︷ ︸︸ ︷

e1, e3, . . . , e−1+ j1 ,

even indices
︷ ︸︸ ︷

e0, e2, . . . , e−2+ j1
︸ ︷︷ ︸

indices 0,1,...,−1+ j1

,

odd indices
︷ ︸︸ ︷

e1+ j1 , . . . , e−1+ j2 ,

even indices
︷ ︸︸ ︷

e j1 , . . . , e−2+ j2
︸ ︷︷ ︸

indices j1,...,−1+ j2

, . . .
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Define the unilateral weighted shift U1 : �p −→ �p by

U1eσ(i) =

⎧

⎪
⎨

⎪
⎩

beσ(i−1), if σ(i) �= jk for any k,

aw jk+1eσ(i−1), if σ(i) = jk for some k,

0, if i = 0.

To conclude our paper, we remark Chan and Sanders ([6]) proved that if the
weight sequence of the unilateral weighted backward shift T in Theorem 4.4 is
bounded below, then the two factors U1 and B1 can be chosen to have their weight
sequence bounded below also, and in particular B1 is invertible.
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Abstract We find the conditions under which the attractor K(S′) of a deformation
S′ of a contractible P-polygonal system S inR

2 is a dendrite. The most important one
is the parameter matching condition at the points where the images of the vertices of
the polygon P meet.
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Though the study of topological properties of dendrites from the viewpoint of
general topology proceed for more than three quarters of a century [3, 11, 12],
the attempts to study the geometrical properties of self-similar dendrites are rather
fragmentary.

In 1985 Hata [8] studied the connectedness properties of self-similar sets and
proved that if a dendrite is an attractor of a system of weak contractions in a complete
metric space, then the set of its endpoints is infinite. In 1990 Bandt showed in his
unpublished paper [2] that the Jordan arcs connecting pairs of points of a post-
critically finite self-similar dendrite are self-similar, the set of possible values for
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dimensions of such arcs is finite. Kigami in his work [10] applied the methods of
harmonic calculus on fractals to dendrites; on a way to this, he developed effective
approaches to the study of structure of self-similar dendrites. Croydon in his thesis
[7] obtained heat kernel estimates for continuum random tree and for certain family
of p.c.f. random dendrites on the plane. A special kind of dendrites, which appear as
a particular case of fractal squares, was studied in papers of Christea and Steinsky
[4–6].

A systematic approach to the study of self-similar dendrites required to find the
answers to the following questions:What kind of topological restrictions characterize
the class of dendrites generated by systems of similarities inR

d?What are the explicit
construction algorithms for self-similar dendrites? What are the metric and analytic
properties of morphisms of self-similar structures on dendrites?

To approach these questions, we started from simplest and most obvious settings,
which were used by many authors [2, 14]. In [13, 16, 17], we considered systems
S of contraction similarities in R

d defined by some polyhedron P⊂R
d , which we

called contractible P-polyhedral systems.
We proved that the attractor of such system S is a dendrite K in R

d , and there is
a dense subset of K such that punctured neighbourhoods of its points split to a finite
disjoint union of subsets of solid angles �l , equal to the solid angles of P (Theorem
4); we showed that the orders of points x ∈ K have an upper bound, depending only
on P and that Hausdorff dimension of the set CP(K) of the cut points of K is strictly
smaller than the dimension of the set EP(K) of its end points unless K is a Jordan
arc.

This is a very convenient though rather restrictive way to define post-critically
finite self-similar dendrites in the plane using contractible P-polygonal systems.
Nevertheless, if we move slightly the vertices of the main polygon P and of polygons
Pi, defining the polygonal system S, and change the system S accordingly, we often
obtain a system S′ of a more general type whose attractor K ′ is a dendrite too.
We call such systems generalized polygonal systems (Definition 8) and in the case
when polygons P′

i differ from the polygons Pi less than by δ, we call such systems
δ-deformations (Definition 12) of the polygonal system S. In this paper, we begin
initial study of generalized polygonal systems and δ-deformations of contractible
polygonal systems.

In Theorem 9, we formulate sufficient conditions under which the attractor K
of a generalized polygonal system S is a dendrite. These conditions are expressed
in terms of intersections Ki ∩ Kj of the pieces of the attractor K . In Theorem 14,
we show that a δ-deformation S′ of a contractible polygonal system S defines a
continuous map f̂ : K → K ′ of respective attractors of these systems which agrees
with the action of S and S′ and give conditions under which f̂ is a homeomorphism.
In Theorem 20, we show that parameter matching condition is a necessary condition
for a generalized polygonal system to generate a dendrite. In Theorem 27, we show
that if δ is sufficiently small and the system S′ is δ-deformation of a contractible P-
polygonal system S, which satisfies parameter matching condition, then the attractor
K(S′) is a dendrite, homeomorphic to K(S).
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1 Preliminaries

1.1 Self-similar Sets

Definition 1 Let S = {S1, S2, . . . , Sm} be a system of (injective) contraction maps
on the complete metric space (X , d). A non-empty compact set K⊂X is called the
attractor of the system S, if K = ⋃m

i=1 Si(K).

The system S defines its Hutchinson operator T by T (A) = ⋃m
i=1 Si(A). By

Hutchinson’s Theorem, the attractor K is unique for S and for any compact set
A⊂X the sequence Tn(A) converges to K . We also call the subset K⊂X self-similar
with respect to S.
Throughout the whole paper, the maps Si ∈ S are supposed to be similarities and
the set X to be R

2. We will use complex notation for the point on the plane, so
each similarity will be written as Sj(z) = qjeiαj (z − zj) + zj, where qj = LipSj and
zj = fix(Sj). For a system S, let qmin = min{qj, j ∈ I} and qmax = max{qj, j ∈ I}.
Here, I = {1, 2, ...,m} is the set of indices, while I∗ =

∞⋃

n=1
I n is the set of all finite

I -tuples, or multiindices j = j1j2 . . . jn. The length n of the multiindex j = j1 . . . jn is
denoted by |j| and ij denote the concatenation of the corresponding multiindices. We
say i � j, if j = il for some l ∈ I∗; if i 	� j and j 	� i, i and j are incomparable.

For a multiindex j ∈ I∗, we write Sj = Sj1j2...jn = Sj1Sj2 . . . Sjn , and for the set
A ⊂ X , we denote Sj(A) by Aj; we also denote by GS = {Sj, j ∈ I∗} the semigroup,
generated by S;
I∞ = {α = α1α2 . . . , αi ∈ I} denotes the index space; and π : I∞ → K is the index
map , which sends α to the point

⋂∞
n=1 Kα1...αn .

Along with a system S, we will consider its nth refinement S(n) = {Sj, j ∈ I n}, whose
Hutchinson’s operator is equal to Tn.

Definition 2 The system S satisfies the open set condition (OSC) if there exists a
non-empty open set O⊂X such that Si(O), {1 ≤ i ≤ m} are pairwise disjoint and all
contained in O.

Let C be the union of all Si(K) ∩ Sj(K), i, j ∈ I , i 	= j. The post-critical set P
of the system S is the set of all α ∈ I∞ such that for some j ∈ I∗, Sj(α) ∈ C. In
other words, P = {σ k(α) : α ∈ C, k ∈ N}, where the map σ k : I∞ → I∞ is defined
by σ k(α1α2 . . .) = αk+1αk+2 . . . A system S is called post-critically finite (PCF) [9]
if its post-critical set P is finite. Thus, if the system S is post-critically finite, then
there is a finite set V = π(P) such that for any non-comparable i, j ∈ I∗, Ki ∩ Kj =
Si(V) ∩ Sj(V).
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1.2 Dendrites

A dendrite is a locally connected continuum containing no simple closed curve.
The order Ord(p,X ) of the point p with respect to a dendrite X is the number of

components of the set X \ {p}. Points of order 1 in a dendrite X are called end points
of X ; a point p ∈ X is called a cut point of X if X \ {p} is disconnected; points of
order at least 3 are called ramification points of X .

A continuum X is a dendrite iff X is locally connected and uniquely arcwise
connected.

1.3 Contractible Polygonal Systems

Let P ⊂ R
2 be a finite polygon homeomorphic to a disk, VP = {A1, . . . ,AnP } be the

set of its vertices. Let also �(P,A) denote the angle with vertex A in the polygon P.
We consider a system of similarities S = {S1, . . . , Sm} in R

2 such that:
(D1) for any i ∈ I set Pi = Si(P) ⊂ P;
(D2) for any i 	= j, i, j ∈ I ,Pi

⋂
Pj = VPi

⋂VPj and #(VPi

⋂VPj ) < 2;
(D3) VP ⊂ ⋃

i∈I
Si(VP);

(D4) the set P̃ =
m⋃

i=1
Pi is contractible.

Definition 3 The systemS satisfying the conditions (D1–D4) is called a contractible
P-polygonal system of similarities.

This theoremwas proved by the authors in ([16], Theorem4,(g)) (or [18], Theorem
10,(g)):

Theorem 4 Let S be a contractible P-polygonal system of similarities.
(a) The system S satisfies (OSC).
(b) Pj⊂Pi iff j � i.
(c) If i � j, then Si(VP) ∩ Pj⊂Sj(VP).
(d) For any incomparable i, j ∈ I∗, #(Pi ∩ Pj) ≤ 1 and Pi ∩ Pj = Si(VP) ∩ Sj(VP).
(e) The set GS(VP) of vertices of polyhedra Pj is contained in K.
(f)If x ∈ K\GS(VP), then #π−1(x) = 1.
(g) For any x ∈ GS(VP), there is ε > 0 and a finite system {�1, ..., �n}, where
n = #π−1(x), of disjoint angles with vertex x, such that if x ∈ Pj and diamPj < ε,
then for some k ≤ n, �(Pj, x) = �k . Conversely, for any �k there is such j ∈ I∗,
that �(Pj, x) = �k .
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B

Polygonal system and its attractor Local structure of K near the vertex B.(rotated)

ρ0

Definition 5 Let S be a contractible P-polygonal system of similarities. The vertex
A ⊂ VP is called a cyclic vertex, if there is suchmultiindex i = i1i2 . . . ik , that Si(A) =
A. The least number k = |i| among all i for which Si(A) = A is called the order of
the cyclic vertex A.

Definition 6 A point B ∈ ∪m
i=1VPi is subordinate to a cyclic vertex A, if for certain

multiindex i, Si(A) = B.

Proposition 7 Let S be a contractible P-polygonal system of similarities. Then:
(1) Each vertex B ∈ VP is subordinate to some cyclic vertex.
(2) There is such n, that in the system S(n) = {Si, i ∈ I n} all the cyclic vertices have
order 1.

Proof Notice that ifA ∈ VP is a cyclic vertex, then there is such j ∈ I∗ that Sj(A) = A.
Therefore, if for some j ∈ I∗,A ∈ Pj, then for some n, Sn

j (P)⊂Pj⊂P,A being a vertex
of each of these polygons. Since �(Sn

j (P),A) = �(P,A), for any j ∈ I∗, for which
A ∈ Pj, �(Pj,A) = �(P,A). This implies that #π−1(A) = 1 and for any n there is
unique j ∈ I n such that A ∈ Pj.

Conversely if for any i ∈ I∗, for which A ∈ Pi, �(Pi,A) = �(P,A), then #π−1

(A) = 1 and A is a cyclic vertex of the system S.
Then, by Theorem 4, for any vertex B ∈ GS(VP), there is a finite set {i1, ..., in} of

incomparable multiindices such that for any l, l′, Pil ∩ Pil′ = {B}, the set ⋃k
l=1 Kil is

a neighborhood of the point B in K and for any l = 1, ..., k, the point S−1
il (B) = Al

is a cyclic vertex. This proves (1).
Let now A1, ....,Ak be the full set of cyclic vertices in VP and p1, ..., pk be their

respective orders. Let N be the least common multiple of p1, ..., pk . Then S(n) is the
desired P-polygonal system. �

1.4 Main Parameters of a Contractible Polygonal System

For any set X⊂R
2 or point A by Vε(X ) (resp.Vε(A)), we denote ε-neighborhood of

the set X (resp. of the point A) in the plane.

ρ0 : Take such ρ0 > 0 that:
(i) for any vertex A ∈ VP , Vρ(A)

⋂
Pk 	= ∅ ⇒ A ∈ Pk ;
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(ii) for any x, y ∈ P such that there are Pk ,Pl : x ∈ Pk , y ∈ Pl and Pk
⋂

Pl =
∅, d(x, y) ≥ ρ0.

ρ2

ρ1
α0

Choosing the parameters α0, ρ1 and ρ2 for a polygonal system.

ρ1, ρ2 : As it follows from Theorem 4, for any vertex B ∈ VP̃ , there is a finite
set of cyclic vertices Ai1 , ...,Aik ∈ VP , and multiindices j1, ..., jk such that for any

l = 1, ..., k, Sjl (Al) = B and Sil (Al) = Al and the set
k⋃

l=1
Sjl S

n
il
(K) is a neighborhood

of the point B in K for any n ≥ 0.
Let ρ1 and ρ2 be such positive numbers that for for any vertex B ∈ VP̃

(Vρ1(B) ∩ K)⊂
k⋃

l=1

Sjl (Pil ) and
k⋃

l=1

Pjl⊂Vρ2(B). (1)

α0 :Let α0 denote theminimal angle between those sides of polygons Pi,Pj, i, j ∈
I , which have common vertex.
Arrangement of maps fixing cyclic vertices. Let S be a contractible P-polygonal
system all of whose cyclic vertices have order 1. In this case, we can arrange the
indices in I and enumerate the vertices in VP in such a way that each cyclic vertex Al

will be thefixedpoint ofSl ∈ S.Notice thatSl is a homothetySl(z) = ql(z − Al) + Al ,
and the polygon P lies inside the angle�(P,Al) andK\{Al} = ⊔∞

n=0 S
n
l (K\Kl). The

number of points in Kl\Sl(Kl) ∩ Sl(Kl) is finite and is equal to the ramification order
of Al in K .

2 Generalized Polygonal Systems

If we omit the condition (D1) in the definition of contractible P-polygonal system S,
we get the definition of a generalized P-polygonal system:

Definition 8 A system S = {S1, ..., Sm}, satisfying the conditions D2-D4, is called
a generalized P-polygonal system of similarities.
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P2P
P1

K1

K2

Theorem 9 Let S be a generalized P-polygonal system. If for any i, j ∈ I

Si(K) ∩ Sj(K) = Pi ∩ Pj, (2)

then the attractor K of the system S is a dendrite.

Proof Let i, i′ ∈ I . By a (simple) chain of indices, connecting i and i′, we mean
a sequence i = i1, i2, ..., il = i′ of pairwise different indices such that Pik ∩ Pik′ =
∅ if |k ′ − k| > 1, and that for any k = 1, ..., l − 1, Pik ∩ Pik+1 = {xk}, where xk
denotes a common vertex of the polygonsPik andPik+1 . The last condition alsomeans,
that Kik ∩ Kik+1 � xk for any k ∈ I . �

Since in a generalized polygonal system for any two indices i, i′, there is a chain of
indices i = i1, i2, ..., il = i′ connecting them, then by [9, Theorem 1.6.2], the attrac-
tor K is connected, locally connected and arcwise connected. Thus, any two points
of K can be connected by some Jordan arc in K .

Notice also that if the condition (2) holds, and the indices i, i′ ∈ I can be connected
by a chain i = i1, i2, ..., il = i′, then for anypoints x ∈ Ki, y ∈ Ki′ there is some Jordan
arc γxy ∈ K , consisting of subarcs

γxx1⊂Ki1 , . . . , γxk−1xk⊂Kik , . . . , γxl−1y⊂Kil (3)

with disjoint interiors.

At the same time, if the condition (2) holds, and a Jordan arc γxy⊂K with end-
points in x and y, meets sequentially the piecesKi1 , ...,Kil , then it passes sequentially
through the points xk , where {xk} = Kik−1 ∩ Kik and consists of subarcs of the form
(3) with disjoint interiors.

And vice versa, if the condition (2) holds, then for any Jordan arc γxy in K there
is unique chain of indices i1, . . . , il , such that γxy consists of subarcs of the form (3).

We need a small Lemma to continue the proof:
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Lemma 10 Let j ∈ I∗ and x, y ∈ Kj. If the condition (2) holds, then for any two
Jordan arcs λ1, λ2 with endpoints x, y, the distance dH (λ1, λ2) ≤ qmaxdiamKj.

Proof Indeed, consider the Jordan arcs λ′
1 = S−1

j (λ1) and λ′
2 = S−1

j (λ2), connecting

x′ = S−1
j (x) and y′ = S−1

j (y) in K . Let x′ ∈ Ki and y′ ∈ Ki′ , and let i1, i2, ..., il be the
chain, connecting i and i′. Then each of the arcs λ′

1, λ
′
2 consists of subarcs, connecting

sequentially the pairs of points xk , xk+1 in the sequence x′, x1, ..., xl−1, y′, and lying in
respective piecesKik . Since thediameters of these sets are not greater thanqmaxdiamK ,
dH (λ′

1, λ
′
2) ≤ qmaxdiamK . Then dH (λ1, λ2) ≤ qmaxdiamKj ≤ diamKq|j|+1

max . �

Now we can finish the proof of the Theorem. Let λ and λ′ be Jordan arcs in K
with endpoints at x and y. Applying the Lemma 10 by induction to the subarcs of
which the arcs λ and λ′ consist, we get that for any n > |j|, dH (λ1, λ2) ≤ qnmaxdiamK .
Taking a limit with n → ∞, we obtain that a Jordan arc, connecting the points x and
y is unique. Therefore, K is a dendrite. �

Remark 1 It is possible for a generalized P-polygonal system S not to satisfy the
condition 2 and to have the attractor K which is a dendrite. The attractor K of a
generalized polygonal system S on the picture below is a dendrite, but P7 ∩ P9 = ∅,
whereas K7 ∩ K9 is a line segment.

P1

P2

P3

P4

P5P6

P7

P8

P9

K1

K2 K3 K4

K5K6

K7

K8

K9

Corollary 11 Let S be a generalized P-polygonal system, satisfying the condi-
tion(2). For any subarc γxy⊂K and for any n, there is a unique chain of pair-
wise different multiindices i1, i2, ..., il ∈ I n, which divides γxy to sequential arcs
γxx1⊂Ki1 , . . . , γxk−1xk⊂Kik , . . . , γxl−1y⊂Kil . �

3 δ-deformations of Contractible Polygonal Systems

Definition 12 Let δ > 0. A generalized P′-polygonal system S′ = {S ′
1, ..., S

′
m} is

called a δ-deformation of aP-polygonal systemS = {S1, ..., Sm}, if there is a bijection
f :

m⋃

k=1
VPk → ⋃m

k=1 VP′
k
, such that

(a) f |VP extends to a homeomorphism f̃ : P → P′;
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(b) |f (x) − x| < δ for any x ∈
m⋃

k=1
VPk

(c) f (Sk(x)) = S ′
k(f (x)) for any k ∈ I and x ∈ VP .

A polygonal system S and its -deformation S′

P3

P5

P2

P4

P1

P ′
3

P ′
5

P ′
2

P ′
4

P ′
1

Notice that by the Definition 12 if z1, z2 ∈ VP , i, j ∈ I and Si(z1) = Sj(z2), then
S ′
i (f (z1)) = S ′

j (f (z2)). Moreover, we have the following

Lemma 13 If A1,A2 ∈ VP, i, j ∈ I∗ and Si(A1) = Sj(A2), then S ′
i (f (A1)) = S ′

j
(f (A2)).

Proof Suppose Si(A) = B ∈ VP̃ for some A ∈ VP and let i = i1i2...in. Denote
Sik+1...in(A) by Ak .

Then we have a finite sequence of relations between B ∈ VP̃ and the vertices
Ak ∈ VP:

B = Si1(A1); A1 = Si2(A2); . . .An−1 = Sin(A) (4)

Since, by (c), f (Sk(Ak)) = S ′
k(A

′
k), A′

k−1 = f (Ak−1) = f (Sk(Ak)) = S ′
k(A

′
k), there-

fore, the map f transforms the relations 4 to

B′ = S ′
i1(A

′
1); A′

1 = S ′
i2(A

′
2); . . .A′

n−1 = S ′
in(A

′) (5)

which implies S ′
i (A

′) = B′
Therefore, if Si(A1) = Sj(A2) ∈ VP̃ , then S ′

i (f (A1)) = S ′
j(f (A2)).

Now suppose Si(A1) = Sj(A2) and i = li′, j = lj′ and Si(A1) = Sj(A2) = Sl(B) for
some B ∈ VP̃ . Then Si′(A1) = Sj′(A2) = B, therefore S ′

i′(f (A1)) = S ′
j′(f (A2)) = f (B)

and S ′
i (f (A1)) = S ′

j(f (A2)) = S ′
l (f (B)). �

Theorem 14 Let K and K ′ be the attractors of a contractible P-polygonal system S

and of its δ-deformation S′, respectively, and π : I∞ → K, π ′ : I∞ → K ′ be respec-
tive address maps.
(i) There is unique continuous map f̂ : K → K ′ such that f̂ ◦ π = π ′.
(ii) If S′ satisfies condition 2, then f̂ is a homeomorphism.

Remark 2 Equivalent formulation of the statement (i) of the Theorem is:
There is unique continuous map f̂ : K → K ′ such that for any z ∈ K and i ∈ I∗,
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f̂ (Si(z)) = S ′
i (f̂ (z)). (6)

Proof The proof is similar to (cf. [1, Lemma 1.]). First, we define the function f̂
which is a surjectionof the dense subsetGS(VP)⊂K to the dense subsetGS′(VP′)⊂K ′.
Second, we show that it is Hölder continuous on GS(VP), and therefore has unique
continuous extension to a surjection ofK toK ′, which we denote by the same symbol
f̂ . Third, we show that the condition 2 implies that f̂ is injective and, therefore, is a
homeomorphism.

1. Define a map f̂ (z) : GS(VP) → GS′(VP′) by:

f̂ (z) = S ′
i (f (S

−1
i (z)) if z ∈ Si(VP) (7)

As it follows from Lemma 13, if Si(A1) = Sj(A2) = z then S ′
i (f (S

−1
i (z))) = S ′

j

(f (S−1
j (z))), so the map f̂ is well-defined.

Obviously, f̂ (GS(VP)) = GS′(VP′) because if A′ ∈ VP′ and z′ = S ′
i (A

′), then there is
a vertex A = f −1(A′) ∈ VP , therefore z′ = f̂ (Si(A)).

Moreover, for any z ∈ GS(VP) and i ∈ I∗, f̂ (Si(z)) = S ′
i (f̂ (z)) and

if z1, z2 ∈ GS(VP), i, j ∈ I∗ and Si(z1) = Sj(z2), then S ′
i (f̂ (z1)) = S ′

j(f̂ (z2)).

2. Let qk = LipSk , q′
k = LipS ′

k , β = mink∈I
log q′

k

log qk
.

Then, following the proof of [13, Theorem 27, step 4.], in which for our estimates
we use K ′ instead of P′, we see that for any z1, z2 ∈ GS(VP),

|z′
1 − z′

2| ≤ 2K ′|
(ρ0 · sin (α0/2))β

|z1 − z2|β.

Therefore, the map f̂ can be extended to a Hölder continuous surjective map of
K to K ′. Since for any z ∈ K and any k ∈ I , f̂ (Sk(z)) = S ′

k(f (z)), f̂ ◦ π = π ′.

3. Now, suppose the system S′ satisfies the condition (2). Suppose for some σ =
i1i2... ∈ I∞ and τ = j1j2... ∈ I∞, f̂ ◦ π(σ ) = f̂ ◦ π(τ ). Then, if i1 	= j1, then, by
condition 2, P′

i1
∩ P′

j1
	= ∅, therefore Pi1 ∩ Pj1 = {B} for some B ∈ VP̃ and π(σ ) =

π(τ ) = B.
Suppose now σ = lσ ′ and τ = lτ ′ and f̂ ◦ π(σ ) = f̂ ◦ π(τ ). Then, by formula

6, f̂ ◦ π(σ ′) = f̂ ◦ π(τ ′), so if first indices in σ ′ and τ ′ are different, then π(σ ) =
π(τ ) = Sl(B) for some B ∈ VP̃ .

This implies injectivity of the map f̂ . So f̂ is a homeomorphism of compact sets
K and K ′. �
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4 Parameter Matching Theorem

The Definition 5 of cyclic vertices can be applied to generalized polygonal systems.
In this case, if A is a cyclic vertex of a generalized P-polygonal system S, the map
Si for which Si(A) = A, need not be a homothety and we have to define the rotation
parameter for such map. Though the rotation angle αi of the map Si is defined up to
2nπ , the number n is uniquely defined by the set P̃ and depends on its geometric
configuration.

Lemma 15 Let S be a generalized P-polygonal system, satisfying the condition(2).
For any vertices A,B ∈ VP, there are A′,B′ ∈ VP and amap Si ∈ S such that Si(A′) =
A and Si(γA′B′)⊂γAB.

Proof Consider the unique arc γAB, connecting A and B.
For the arc γAB, we consider the chain i1, i2, ..., il , which partitions it to subarcs

γAx1⊂Ki1 , ...,γxk−1xk⊂Kik ,...γxl−1B⊂Kil (possibly to the only arc γAB if γAB⊂Ki1 ). Put
A′ = S−1

i1
(A), B′ = S−1

i1
(x1), and γ (A′B′) = S−1

i1
(γAx1). �

Proposition 16 Let S be a generalized P-polygonal system satisfying the condition
(2) and let A be a cyclic vertex of the polygon P. Then there is such vertex B ∈ VP and
a multiindex i ∈ I∗, that Si(A) = A and the Jordan arc γAB⊂K satisfies the inclusion
Si(γAB)⊂γAB.

Proof Notice that if S is a contractible P-polygonal system then for any cyclic vertex
A and for any n, there is unique multiindex i ∈ I n, and unique vertex B ∈ VP , such
that Si(B) = A. Therefore, if Si(A) = A, the piece Si(K) separates the point A from
the other part of the attractor K of the system S, i.e., A /∈ K\Si(K) and each Jordan
arc γAB where B ∈ VP\{A}, contains a point B′ ∈ Si(VP\{A}).

In the casewhen S is a generalized polygonal system, the situation ismore compli-
cated. Since the attractorK is a dendrite in the plane which has one-point intersection
property, it follows from [15] that the system S satisfies OSC and each vertexA′ ∈ VP

has finite ramification order. Let U1, ...,Us be the components of K\{A}. Since Si
fixes A, there is a permutation σ of the set {1, ..., s}, such that for any l ∈ {1, ..., s},
Si(Ul)⊂Uσ(l). Therefore, there is such N that σN = Id and Sj = SN

i sends each Ul

to a subset of Ul . Each of those components Ul which have non-empty intersection
with VP\{A} has also non-empty intersection with Sj(VP\{A}), therefore each arc
γAB,B ∈ VP contains a point B′ ∈ Sj(VP).

Let us enumerate the vertices ofP so thatA = A1 and other vertices areA2, ...,AnP .
For each vertex Ak , k ≥ 2, there is unique vertex Ak ′ such that γA1Ak ∩ Sj(VP) =
Sj(Ak ′). The formula φ(k) = k ′ defines a map φ of {2, 3..., nP} to itself. There is
some N ′ such that φN ′

has a fixed point k. Therefore, SN ′
j (γA1Ak )⊂γA1Ak . �

Definition 17 The arc γAB is called an invariant arc of the cyclic vertex A.
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Let A be a cyclic vertex and γAB be its invariant arc and Si(A) = A. Let B′ = Si(B).
We denote by α the total change of argument of z − Awhen z travels along γAB from
B to B′. This gives unique representation Si(z) = qieiα(z − A) + A.

Remark 3 The following picture shows how the angle α depends on the geometric
configuration of the system S, though the similarity which fixes A and sends B to B′
is the same.

α = π
A A

B

B′
B′

B

α = −π

Definition 18 The number λA = α

ln r
is called the parameter of the cyclic vertex A.

Definition 19 Generalized P-polygonal system S of similarities satisfies the param-
eter matching condition, if for any B ∈ ∪m

i=1VPi and for any cyclic vertices A,A′ such
that for some i, j ∈ I∗, Si(A) = Sj(A′) = B, the equality λA = λA′ holds.

From Propositions 7 and 16 and V.V.Aseev’s Lemma about disjoint periodic arcs
[1, Lemma 3.1], we come to the following parameter matching theorem:

Theorem 20 Let the generalized P′-polygonal system S′ be a δ-deformation of a
contractible P-polygonal system S and the attractor K ′ of the system S′ be a dendrite.
Then the system S′ satisfies parameter matching condition.

Proof Let S be a generalized polygonal system whose attractor K is a dendrite.
Let C ∈ ∪m

i=1VPi and A,A′ ∈ VP be such cyclic vertices that for some i, j ∈ I ,
Si(A) = Sj(A′) = C. Denote the images Si(K) and Sj(K) by Ki, Kj, respectively.
Without loss of generality we can suppose that the point C has coordinate 0 in C.
Since for some i, j ∈ I∗, Si(A) = A and Sj(A′) = A′, the maps Sb1 = SiSiS

−1
i and

Sb2 = SjSjS
−1
j have C as their fixed point and Sb1(Ki)⊂Ki and Sb2(Kj)⊂Kj. Let

Sb1(z) = qieiαiz and Sb2(z) = qjeiαjz. So the parameters of the vertices A and A′

will be λ1 = αi

log qi
and λ2 = αj

log qj
. Let γAB⊂K and γA′B′⊂K be invariant arcs for

the vertices A and A′. Let also γ1 = Si(γAB) and γ2 = Sj(γA′B′). Then Sb1(γ1)⊂γ1
and Sb2(γ2)⊂γ2. By V.V.Aseev’s Lemma on disjoint periodic arcs [1, Lemma 3.1] it
follows that if γ1 ∩ γ2 = {C}, then λ1 = λ2. �
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5 Main Theorem

5.1 Some Assumptions

From now on, we will use the following convention: S = {S1, ..., Sm} will denote a
contractible P-polygonal system and S′ = {S ′

1, ..., S
′
m}will be a P′-polygonal system

which is a δ-deformation of S defined by a map f .
For any k ∈ I , Sk(z) = qkeiαk (z − zk) + zk and S ′

k(z) = q′
ke

iα′
k (z − z′

k) + z′
k , where

zk = fix(Sk). We also suppose by default that diamP = 1. We suppose that

δ < qmin/8 and δ < (1 − qmax)/8 (8)

Lemma 21 Let S′ = {S ′
1, ..., S

′
m} be a δ-deformation of a contractible P-polygonal

system S. For sufficiently small δ, and for any k ∈ I ,

qk − 2δ

1 + 2δ
≤ q′

k ≤ qk + 2δ

1 − 2δ
and |α′

k − αk | ≤ arcsin 2δ + arcsin
2δ

qk
. (9)

Proof Let A,B be such vertices of P that |B − A| = 1. Let us write Sk(A) = Ak and
f (A) = A′ and use the similar notation for all vertices so by definition, S ′

k(A
′) =

A′
k = f (Ak). Notice that

Bk − Ak

B − A
= qkeiαk and

B′
k − A′

k

B′ − A′ = q′
ke

iα′
k .

Since the map f moves A,B,Ak ,Bk to a distance≤ δ, so |(B − A) − (B′ − A′)| ≤
2δ and |(Bk − Ak) − (B′

k − A′
k)| ≤ 2δ. Therefore |(Bk − Ak)| − 2δ ≤ |(B′

k − A′
k)| ≤

|(Bk − Ak)| + 2δ and

α′
i − αi = arg

B′
k − A′

k

B′ − A′
B − A

Bk − Ak
= arg

B′
k − A′

k

Bk − Ak
− arg

B′ − A′

B − A
(10)

This implies the inequalities (9). �

Under theAssumptions (8), 3qmin/5<
qmin − 2δ

1 + 2δ
< q′

k <
qmax + 2δ

1 − 2δ
<

1 + 3qmax
3 + qmax

;

taking into account that qk < 1 and 1 − 2δ > 3/4, and that if 0 < x < .5, then
arcsin x < 1.05x, we have


qk = |q′
k − qk | <

2δ(1 + qk)

1 − 2δ
< 6δ and 
αk = |α′

k − αk | < Cαδ (11)

where Cα = 2.1(1 + 1/qmin).

Let Vδ(P) denote δ-neighborhood of the polygon P.

Lemma 22 Let S′ = {S ′
1, ..., S

′
m} be a δ-deformation of a contractible P-polygonal

system S. The set U = Vδ1(P), where δ1 = 8δ

1 + 3qmax
, satisfies the condition
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for anyk ∈ I , Sk(U )⊂U and S ′
k(U )⊂U (12)

Proof By Definition 12, Vδ(Pk)⊃P′
k , Vδ(P′

k)⊃Pk and since vertices of P are also
moved at distance less than δ, Vδ(P)⊃P′ and Vδ(P′)⊃P.

Sowe canwrite S ′
k(P

′)⊂Vδ(Pk)⊂Vδ(P) fromwhich it follows that S ′
k(P)⊂V2δ(Pk)

⊂V2δ(P).
For any positive ρ we have the inclusion S ′

k(Vρ(P))⊂V2δ+q′
kρ

(P). In the case when

ρ = 2δ + q′
kρ this implies S ′

k(Vρ(P))⊂Vρ(P) where ρ = 2δ

1 − q′
k

. Since q′
k ≤ qk +

2δ, q′
max ≤ qmax + 2δ <

3qmax + 1

4
, we come to inclusions (12). �

Lemma 23 For any z ∈ Vδ1(P), |S ′
k(z) − Sk(z)| < C
δ, where C
 = 14 + 2Cα .

Proof Take z ∈ Vδ1(P) and consider the difference S ′
k(z) − Sk(z). It can be repre-

sented in the form S ′
k(A) − Sk(A) + (q′

ke
iα′

k − qkeiαk )(z − A). So

|S ′
k(z) − Sk(z)| < |S ′

k(A) − Sk(A)| + (|q′
k − qk | + qk |eiα′

k − eiαk |)|z − A|. (13)

Since |z − A| < 1 + δ1 < 2 and |S ′
k(A) − Sk(A)| < 2δ, the right hand side of (13) is

no greater than 2δ + 2(6δ + Cαδ). �

Proposition 24 Let π : I∞ → K and π ′ : I∞ → K ′ be the address maps for the
systems S and S′, respectively.
1.Under the assumptions (8), for any σ ∈ I∞,

|π ′(σ ) − π(σ)| < CKδ where CK = 2C


1 − qmax
(14)

2. For any n, if the system S
′(n) is a generalized polygonal system, then it is CKδ-

deformation of the system S(n). �

Remark 4 Let S′ = {S ′
1, ..., S

′
m} be a δ-deformation of a contractible P-polygonal

system S. Let A ∈ Sj(VP) for some j ∈ I . Let g(z) = z − A + A′ and Ŝ ′′
k = g ◦ S ′

k ◦
g−1. Then S′′ = {S ′′

1 , ..., S
′′
m} is a 2δ-deformation of the system S, for which A′′ = A,

K ′′ = g(K ′), P′′
j = g(Pj). Since g is a translation, the estimates (9) and (11) for S′′

remain the same with the same δ, while |π ′′(σ ) − π(σ)| < (CK + 1)δ.Thus, we will
denote δ2 = (CK + 1)δ.

Taking into account the propositions 7 and 24, it is sufficient to prove the theorem
for the case when all cyclic vertices of the system S have order 1.

Proposition 25 Let P′-polygonal system S′ be a δ-deformation of a contractible
P-polygonal system S. Let A ∈ VP be a cyclic vertex (of order 1) and Sk(z) =
qkeiαk (z − A) + A. Then the rotation angle αk of the map S ′

k does not exceed

arcsin 2δ + arcsin
2δ

qk
and the parameter λk of the map S ′

k satisfies the inequality
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|λk | ≤
arcsin 2δ + arcsin

2δ

qk
| log(qk + 2δ) − log(1 − 2δ)| (15)

Proof The formula (15) follows directly from Lemma 21. �

Under the assumptions (8),

|λk | < Cλδ, where Cλ = 2.1(1 + 1/qmax)

log(3 + qmax) − log(3qmax + 1)
. (16)

Lemma 26 Let S be a contractible P-polygonal system whose cyclic vertices have
order 1 and S′ be its δ-deformation. Then if

2.1
δ2

ρ1
+ λ log

ρ2 + δ2

ρ1 − δ2
< α0 and 2δ2 < ρ0, (17)

then the system S′ satisfies the Condition (2)

Proof Take a vertex B ∈ VP̃ . We may suppose for convenience that B = 0 and,
following Remark 4, we can suppose that the mapping f fixes the vertex B = 0, so
B′ = B = 0. Let Wl = Sjl (K\Kil ). The maps S̄l = Sjl Sil S

−1
jl are homotheties with a

fixed point B such that

Kjl\{B} =
∞⊔

n=0

S̄n
l (Wl) (18)

Similarly, let W ′
l = f̂ (Wl) and S̄ ′

l = S ′
jl S

′
il S

′−1
jl . Then

K ′
jl\{B} =

∞⊔

n=0

S̄
′n
l (W ′

l ) (19)

Notice that for any l, S̄l(z) = qil z and S̄
′
l (z) = q′

il
eiαil z, and due to parametermatching

condition, there is such λ, that for any l, αil = λ log q′
il
.

Consider the map z = exp(w) of the plane (w = � + iϕ) as universal cover of the
punctured plane C\{0}.

Consider polygons Pjl and choose their liftings in the plane (w = � + iϕ). We
may suppose these liftings lie in respective horizontal strips θ−

l ≤ ϕ ≤ θ+
l , where

0 < θ−
l < θ+

l < 2π and θ+
l + α0 < θ−

l+1 for any l < k and θ+
k + α0 < θ−

1 + 2π . We
also consider liftings of Kjl ,Wl , K ′

jl andW
′
l . We denote these liftings byKjl ,Wl ,K′

jl
and W′

l . It follows from the Eqs. 18 and 19, that

Kjl =
∞⊔

n=0

T̄ n
l (Wl) and K′

jl =
∞⊔

n=0

T̄
′n
l (W′

l) (20)
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where Tl(w) = w + log ql and T ′
l (w) = w + (1 + iλ) log q′

l are parallel translations
for which Tl(Kl)⊂Kl and T ′

l (K
′
l)⊂K′

l .
The setsKl lie in the half-strips � ≤ log ρ2, θ

−
l ≤ ϕ ≤ θ+

l , while the setsWl are
contained in rectangles Rl = {log ρ1 ≤ � ≤ log ρ2, θ

−
l ≤ ϕ ≤ θ+

l }.
Then the setsW′

l lie in a rectangle

R′
l =

{

log(ρ1 − δ2) ≤ � ≤ log(ρ2 + δ2), θ
−
l − 1.05

δ2

ρ1
≤ ϕ ≤ θ+

l + 1.05
δ2

ρ1

}

(21)

Each union
∞⋃

n=0
T

′n
l (R′

l) lies in a half-strip

⎧
⎨

⎩

� ≤ log(ρ2 + δ2)

θ−
l − 1.05

δ2

ρ1
− λ log(ρ2 + δ2) ≤ ϕ − λ� ≤ θ+

l + 1.05
δ2

ρ1
− λ log(ρ1 − δ2)

(22)
Therefore, the set K′

jl also lies in this half-strip. So, if

θ+
l−1 + 1.05

δ2

ρ1
− λ log(ρ1 − δ2) < θ−

l − 1.05
δ2

ρ1
− λ log(ρ2 + δ2) (23)

then K′
jl−1

∩ K′
jl = ∅.

We can guarantee that such inequality holds for any l if 2.1
δ2

ρ1
+ λ log

ρ2 + δ2

ρ1 − δ2
<

α0.
If, moreover, 2δ2 < ρ0, then for any i1, i2 ∈ I such that Pi1 ∩ Pi2 = ∅, P′

i1
∩ P′

i2
=

∅ and K ′
i1

∩ K ′
i2

= ∅ which implies the condition (2). �

B

O

The images of the set K ′ under the map w = log(z O) and the map w = log(z B).

Theorem 27 Let S be a contractible P-polygonal system. There is such δ > 0 that
for any δ-deformation S′ of the system S, satisfying parameter matching condition,
the attractor K(S′) is a dendrite, homeomorphic to K(S).

Proof Let all the cyclic vertices of the P-polygonal system S have order 1. If we
suppose that δ2 < ρ1/4, and δ2 < (1 − ρ2)/4 and combine the inequalities 11, 14,
16, 17, we see that if the following inequalities hold:

1.δ <
qmin
8

; 2. δ <
1 − qmax

8
; 3. δ <

ρ0

2(CK + 1)
; 4. δ <

ρ1

4(CK + 1)
;
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5. δ <
1 − ρ2

4(CK + 1)
; and 6. δ <

α0

2.1(CK + 1)

ρ1
+ Cλ log

1 + 3ρ2

3ρ1

,

then the attractor K ′ of δ-deformation S′ of the system S satisfies the condition (2).
Therefore K ′ is a dendrite. By Theorem 14, the map f̂ : K → K ′ is a bijection and
therefore it is a homeomorphism.

Suppose now that S has cyclic vertices of order greater than 1 and let M =
12 + 4.2

(

1 + 1

qmin

)

. There is such n, that the system S(n) has cyclic vertices of

order 1. Suppose any δ-deformation of the system S(n) generates a dendrite. Then
for any δ/M -deformation deformation S′ of the system S, the system S

′(n) is a δ-
deformation of the system S(n). �
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General Position Theorem and Its
Applications

Vladislav Aseev, Kirill Kamalutdinov, and Andrei Tetenov

Abstract We introduce some general and special formulations of general position
theorem for parametrized families of fractals and explain the techniques of its appli-
cation to prove the existence of self-similar sets with prescribed special properties.

Keywords Self-similar dendrite · Generalized polygonal system · Attractor ·
Postcritically finite set

1 Introduction

Consider the following problem:
Let K be the attractor of a system S = {S1, . . . , Sm} of contraction maps in R

n

and let dimH K < n/2. Suppose that the intersection Si(K) ∩ Sj(K) is nonempty for
some i, j. Is it possible to change the maps Sk ∈ S slightly to maps S ′

k to get a system
S′ = {S ′

1, . . . , S ′
m} with the attractor K ′, such that the set S ′

i (K
′) ∩ S ′

j (K
′) is empty?

To find the answer to this question, we consider the system S = S0 as an element of a
parametrized family St = {S1,t, . . . , Sm,t}, where the parameter t assumes the values
from some subset D in R

n. We denote the attractor of the system St by Kt . We search
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for the conditions under which Si,t(Kt) ∩ Sj,t(Kt) is empty for almost all t ∈ D. In
this case, we say that Si,t(Kt) and Sj,t(Kt) are disjoint in general position.

Particularly, this occurs when Hausdorff dimension of the set � = {t ∈ D :
Si,t(Kt) ∩ Sj,t(Kt) �= ∞} is less than dimH (D).

It is possible tomake an estimate of dimH (�) in termsof upper bound for similarity
dimensions of the systems {St : t ∈ D}. The method for finding such estimates is
based on General Position Theorem [6], which was initially introduced in [10].

2 Definitions and Notations

Let (X , d) be a complete metric space. A mapping S : X → X is a contraction if
Lip S < 1, and it is called a similarity if d(S(x), S(y)) = rd(x, y) for all x, y ∈ X
and some fixed r.

Let S = {S1, . . . , Sm} be a system of contractions in a complete metric space
(X , d). A nonempty compact set K ⊂ X is called the attractor of the system S, if

K =
m⋃

i=1
Si(K). By Hutchinson’s Theorem [5], the attractor K is uniquely defined by

the system S. We also call the set K self-similar with respect to S, when all Si are
similarities.

Multiindices. Given a system S = {S1, . . . , Sm}, I = {1, . . . , m} is the set of indices,
I∗ =

∞⋃

n=1
I n is the set of all finite I -tuples, or multiindices j = j1j2...jn. By ij we

denote the concatenation of the corresponding multiindices; we write i � j, if j = ik
for some k ∈ I∗; we say that i and j are incomparable, if neither i � j nor j � j; by
i ∧ j we mean the maximal k for which k � i and k � j; by |i| we denote the length
of i.

We write Sj = Sj1j2...jn = Sj1Sj2 . . . Sjn , and for the set A ⊂ X , we denote Sj(A) by
Aj; given a set of m ratios {rk , k ∈ I} we write rj = rj1rj2 . . . rjn .

The Index Space. I∞ = {i = i1i2 . . . : ik ∈ I} is the index space; π : I∞ → K

is the index map, which sends i ∈ I∞ to the point
∞⋂

n=1
Ki1...in . For a given vector

r = (r1, ..., rm) ∈ (0, 1)m, we define a metrics ρr on I∞ by ρr(α,β) = rα∧β . The
set I∞ supplied with this metrics will be denoted by I∞

ρr
. Let sr denote the unique

solution of the Moran equation rs
1 + · · · + rs

m = 1. Then, by [3, Theorem 6.4.3],
dimH I∞

ρr
= sr.

Separation conditions. Denote F = {S−1
i Sj : i, j ∈ I∗}. Then the system S =

{S1, . . . , Sm} of contraction similarities has the weak separation property (WSP)
iff Id /∈ F \ Id [11]. The system S satisfies open set condition (OSC) if there is
an open set V such that for any i ∈ I , Si(V ) ∈ V and for any non-equal i, j ∈ I ,
Si ∩ Sj(V ) = ∅. The system satisfies strong separation condition (SSC), if for any
non-equal i, j ∈ I , Ki ∩ Kj = ∅. There are well-known implications (SSC)→(OSC)
and (OSC)→(WSP) [1, 8, 11]
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3 General Position Theorem

We begin with a simple example. Let A, B be compact subsets in R
n, and the set B is

being translated by a vector t ∈ D, where D⊂R
n. We wish to understand, how large

can be the set of parameters � = {t ∈ D : A ∩ (B + t) �= ∅}, which we will call the
set of exceptional parameters.

It is easy to see that A ∩ (B + t) �= ∅ is equivalent to: " there are such a ∈ A,
b ∈ B that a = b + t". Finding t from this equation, we see that � = {a − b : a ∈
A, b ∈ B}. How to evaluate the Hausdorff dimension of the set � in terms of A and
B?

For that reason, we introduce the map f : A × B → �, f (a, b) = a − b. Since f
is Lipschitz, dimH � ≤ dimH (A × B), and if the product A × B has the dimension
less than dimH D, then A and B + t are disjoint for almost all t ∈ D.

We will extend this approach to a very general situation, taking a normed linear
space M instead of R

n, replacing A and B by metric spaces (L1, σ1), (L2, σ2) and
finding the set� for parametrized families At = ϕ1(t, L1) and Bt = ϕ2(t, L2) instead
of A and B + t [6]:

Theorem 1 Let the Cartesian products of metric spaces (D, ρ), (L1, σ1), (L2, σ2) be
supplied with the canonical metrisation (see [7], §21.VI, (1)). Let continuous maps
ϕ1 : D × L1 → M and ϕ2 : D × L2 → M to the normed linear space (M, ‖.‖) be
such that:
(a) there are C0 > 0 and α > 0 such that for any i = 1, 2 and for all (ξ, x), (ξ, y) in
D × Li the estimate holds

‖ϕi(ξ, x) − ϕi(ξ, y)‖ ≤ C0[σi(x, y)]α

(uniform α-Hölder continuity condition);
(b) there are such M0 > 0 and β > 0 that for any (x1, x2) ∈ L1 × L2 and ξ, ξ ′ ∈ D
the function


(ξ, x1, x2) := ϕ1(ξ, x1) − ϕ2(ξ, x2)

on the set D × L1 × L2 satisfies the condition

‖
(ξ ′, x1, x2) − 
(ξ, x1, x2)‖ ≥ M0[ρ(ξ ′, ξ)]β . (1)

Then Hausdorff dimension of the set � := {ξ ∈ D : ϕ1(ξ, L1) ∩ ϕ2(ξ, L2) �= ∅} sat-
isfies

dimH � ≤ min{(β/α) dimH (L1 × L2), dimH D} . (2)

Moreover, if the spaces (L1, σ1), (L2, σ2) are compact, � is closed in D.

Proof Put �̃ := {(ξ, x1, x2) ∈ D × L1 × L2 : ϕ1(ξ, x1) = ϕ2(ξ, x2)} = {(ξ, x1, x2) ∈
D × L1 × L2 : 
(ξ, x1, x2) = 0} and notice that � = pr1�̃, where pr1 : D × L1 ×
L2 → D is the canonical projection.
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Applying canonical projection pr2 : D × (L1 × L2) → L1 × L2 we obtain a set
�L := pr2(�̃), that is,

�L = {(x1, x2) ∈ L1 × L2| ∃ξ ∈ D : ϕ1(ξ, x1) = ϕ2(ξ, x2)}.

The maps πD = pr1|�̃ : �̃ → � and πL = pr2|�̃ : �̃ → �L are continuous open
maps (by properties of canonical projections). Let us show that πL is a bijection.
Indeed, if for (ξ ′, x′

1, x′
2) ∈ �̃ and (ξ ′′, x′′

1 , x′′
2) ∈ �̃ the equality πL(ξ

′, x′
1, x′

2) =
πL(ξ

′′, x′′
1 , x′′

2) holds, then (x′
1, x′

2) = (x′′
1 , x′′

2) = (x1, x2), whereas 
(ξ ′, x1, x2) =
0= 
(ξ ′′, x1, x2). Then from (1) it follows that 0= ‖
(ξ ′, x1, x2)− 
(ξ ′′, x1, x2)‖ ≥
M0[ρ(ξ ′, ξ ′′)]β , that is, ρ(ξ ′, ξ ′′) = 0. This means that ξ ′ = ξ ′′.

Since every open bijective continuous map is a homeomorphism (see
[7, §13.XIII]), the maps πL and π−1

L are homeomorphisms.
Now we find Hölder continuity estimate for a map g = πD ◦ π−1

L : �L → �. Let
ξ ′ = g(x′

1, x′
2) and ξ = g(x1, x2). Then 
(ξ ′, x′

1, x′
2) = 0 = 
(ξ, x1, x2) and, partic-

ularly, ϕ1(ξ
′, x′

1) = ϕ2(ξ
′, x′

2). The inequality (1) gives an estimate

M0[ρ(ξ ′, ξ)]β ≤ ‖
(ξ ′, x1, x2) − 
(ξ, x1, x2)‖ = ‖
(ξ ′, x1, x2) − 0‖

= ‖ϕ1(ξ
′, x1) − ϕ2(ξ

′, x2)‖ ≤ ‖ϕ1(ξ
′, x1) − ϕ1(ξ

′, x′
1)‖ + ‖ϕ1(ξ

′, x′
1) − ϕ2(ξ

′, x2)‖

= ‖ϕ1(ξ
′, x1) − ϕ1(ξ

′, x′
1)‖ + ‖ϕ2(ξ

′, x′
2) − ϕ2(ξ

′, x2)‖.
Applying the condition (a), we get the inequality

M0[ρ(ξ ′, ξ)]β ≤ C0[σ1(x1, x′
1)]α + C0[σ2(x2, x′

2)]α ≤ 2C0

[√
σ1(x1, x′

1)
2 + σ2(x2, x′

2)
2

]α

.

Denoting by σ̃ themetrics of Cartesian product of the spaces (L1, σ1) and (L2, σ2),
we get Hölder continuity estimate of the map g:

ρ(g(x′
1, x′

2), g(x1, x2)) ≤ (2C0/M0)
1/β[σ̃ ((x′

1, x′
2), (x1, x2))]α/β .

Applying [4, Proposition 2.3] and the inequality dimH �L ≤ dimH (L1 × L2), we
get the desired relation (2):

dimH � = dimH g(�L) ≤ (β/α)dimH (L1 × L2) and dimH � ≤ dimH D.

Since the maps ϕi are continuous, 
 is continuous too. The set �̃ is closed in
D × L1 × L2 as a set of zeros of 
, so the set � = πD�̃ is closed in D (by properties
of canonical projections). �

Remark 1.We see from the inequality (2) that if the product L1 × L2 has sufficiently
small dimension, then the sets ϕ(t, L1) and ψ(t, L2) do not intersect for almost all
t ∈ D. The proof of the inequality (2) in the Theorem does not use the condition that
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the functions ϕ1 and ϕ2 are continuous with respect to the metrization of product
spaces, so this condition may be omitted. It is needed only to show that � is closed
in D.
2. The condition (b) in the Theorem may be considered as a form of transversality
condition [9], where D ⊂ R

n is an open set, β = 1 and ϕi (i = 1, 2) are the address
maps to different copies of a self-similar set, depending of a parameter ξ ∈ D.
3. Notice that the only information required of the parameter space D is its Hausdorff
dimension. Moreover, if dimH D = s but the measure H s(D) is zero, we take some s′
satisfying dimH � < s′ < s to see that � is negligible in D in a sense that H s′

(D) =
∞ and H s′

(�) = 0.

For more easy understanding of the main idea ot the Theorem 1, we apply it to
muchmore simplified settings. Nevertheless, even the following simplified formwill
be useful for many applications:

Corollary 2 Let A, B, D be some subsets of R
n. Let the map ϕ : D × B → R

n be
such that:
(a) there is C0 > 0 such that for any x, y ∈ B and t ∈ D, ‖ϕ(t, x) − ϕ(t, y)‖ ≤
C0‖x − y‖
(b) there is such M0 > 0 that for any x ∈ B and t, t′ ∈ D

‖ϕ(t′, x) − ϕ(t, x)‖ ≥ M0‖t′ − t‖ . (3)

Then Hausdorff dimension of the set � := {t ∈ D : ϕ(t, B) ∩ A �= ∅} satisfies

dimH � ≤ min{dimH (A × B), dimH D} (4)

Moreover, if A and B are compact and the map ϕ is continuous, then � is closed in
D. �

One can consider several specific applications which may be derived from the
Corollary 2:

Example 1 If A, B ⊂ C and 0 /∈ Ā and dimH A × B < 2 then for Lebesgue almost
all z ∈ C: B ∩ zA = ∅.

Indeed, let M0 = inf{|z| : z ∈ A} and for some C0 > 0, let D = {z : |z| < C0}.
Then the conditions (a) and (b) of theCorollary 2 are fulfilled. Therefore, if dimH (A ×
B) < 2 then for Lebesgue almost all z ∈ D the sets A and B are disjoint. Letting C0

tend to infinity, we get that the statement is true for Lebesgue almost all z ∈ C.

Example 2 If A, B⊂R
n, M2 > M1 > 0, a map f : B × R

n → R
n is M1-Lipschitz,

and dimH (A × B) < n, then the set � = {t ∈ R
n : M2t + f (B, t) ∩ A �= ∅} has zero

measure in R
n .

In this case, the conditions (a), (b) are fulfilled with C0 = M1 and M0 = M2 − M1.
Since the set � can be represented also as {t ∈ R

n : f (B, t) ∩ M2t + A �= ∅} this
means that if A moves faster that the set B is deformed, for almost all t the set A
escapes the intersection with the set f (B, t).
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Example 3 Suppose A, B⊂R
n, a map F : R

n → R
n is bi-Lipschitz, and f : B ×

R
m is defined by f (x, t) = F(x + t). dimH (A × B) < n, then the set � = {t ∈ R

n :
f (B, t) ∩ A �= ∅} has zero measure in R

n .

In this case, we can interpret f (B, t) as a bi-Lipschitz distortion of a translation
of the set B by a vector t.

4 Application of General Position Theorem
to Self-similar Sets

TheGeneral PositionTheorem is a tool for treatingmore complicated cases than those
in which one of the sets undergoes simple rigid motions or similarities or translations
in some curvilinear coordinates. It works with the attractors Kt of parametrized
systems St of contraction maps. These attractors need not be even homeomorphic to
each other for different values of the parameter t.

To analyze transformations of the attractors of such systems, we define the fol-
lowing settings for parametrized families:
(S1). Let St = {S1,t, . . . , Sm,t} be a system of contraction maps in R

n, depending on
the parameter t ∈ D⊂R

n and let Kt be its attractor.

(S2) Suppose there is a compact set V such that for any k ∈ I and any t ∈ D,
Sk,t(V )⊂V .

(S3) There is a vector r = (r1, . . . , rm) such that for any t ∈ D and for any k ∈ I ,
Lip Skt ≤ rk < 1. Let r̄ = max{r1, . . . , rm}.
(S4) There is such C > 0 that for any x ∈ V , k ∈ I and for any t, t′ ∈ D, ‖Sk,t′(x) −
Sk,t(x)‖ ≤ C‖t′ − t‖.

4.1 Moving Subpieces Apart from Each Other.

First notice that it follows from the settings (S1), (S3) that all the address maps are
Lipschitz with a constant equal to diam(K):

Lemma 3 If the settings (S1), (S3) are fulfilled then the map π : I∞
ρr

→ K is
diam(K)−Lipschitz.

Proof (cf. [3], Ex. 4.2.4). Suppose α ∧ β = j, so α = jα′ and β = jβ ′. From
ρr(α

′,β ′) = 1 we get ‖π(α) − π(β)‖ = ‖Sj(π(α′)) − Sj(π(β ′))| ≤ rj diam(K) =
diam(K)ρr(α,β). �

To evaluate the distance between the points in Kt and Kt′ having the same
addresses, we use the Displacement Theorem for parametrized families (cf. [6, The-
orem 17]):
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Theorem 4 Suppose the settings (S1)—(S4) hold. Then for any α ∈ I∞ and any
t, t′ ∈ D we have

‖πt′(α) − πt(α)‖ ≤ C‖t′ − t‖
1 − r̄

. (5)

Proof Take α = i1i2 . . . and denote αk = ik ik+1 . . . .
Since πt(αk) = St

ik
πt(αk+1), ‖πt(αk) − πt′(αk)‖ ≤ ‖St

ik
πt(αk+1) − St

ik
πt′(αk+1)‖ +

‖St
ik
πt′(αk+1) − St′

ik
πt′(αk+1)‖, so‖πt(αk) − πt′(αk)‖ ≤ rik ‖πt(αk+1)−πt′(αk+1)‖ +

C‖t′ − t‖ for any k ∈ N.

Therefore, ‖πt(α) − πt′(α)‖ ≤ r̄n+1‖πt(αn+1) − πt′(αn+1)‖ + C‖t′ − t‖
n∑

k=0
r̄k ,

which becomes (5) as k tends to ∞. �
The following theorem gives the conditions under which the pieces Kj,t and Kk,t

are disjoint for almost all t ∈ D:

Theorem 5 Suppose the settings (S1)—(S4) hold. Let j,k ∈ I∗ be incomparable
multiindices.
Suppose there are such cj > 0, Ck > 0 that for any x ∈ V and for any t, t′ ∈ D,

‖St′
k (x) − St

k(x)‖ ≤ Ck‖t′ − t‖ and ‖Sj,t′(x) − Sj,t(x)‖ ≥ cj‖t′ − t‖ (6)

If

cj − Ck − (rj + rk)C

1 − r̄
> 0 (7)

and sr < dimH (D)/2, then Kj ∩ Kk = ∅ for almost all t ∈ D.

Proof Let ϕ(t, x) = Sk,t(πt(x)), ψ(t, x) = Sj,t(πt(x)), 
(t, x, y) = ϕ(t, x) −
ψ(t, y),
� = {t ∈ D : Kj ∩ Kk �= ∅}. Note that
‖
(t′, x, y) − 
(t, x, y)‖ ≥‖ψ(t′, y) − ψ(t, y)‖ − ‖ϕ(t′, x) − ϕ(t, x)‖;

‖ϕ(t′, x) − ϕ(t, x)‖ ≤‖Sk,t′(πt′(x)) − Sk,t(πt′(x))‖ + ‖Sk,t(πt′(x)) − Sk,t(πt(x))‖;
‖ψ(t′, x) − ψ(t, x)‖ ≥‖Sj,t′ (πt′(x)) − Sj,t(πt′(x))‖ − ‖Sj,t(πt′(x)) − Sj,t(πt(x))‖.

From Theorem 4, we have upper estimates

‖Sk,t(πt′ (x)) − Sk,t(πt(x))‖ ≤ rkC‖t′ − t‖
1 − r̄

and ‖Sj,t(πt′ (x)) − Sj,t(πt(x))‖ ≤ rjC‖t′ − t‖
1 − r̄

Combining them with inequalities (6), we obtain

‖
(t′, x, y) − 
(t, x, y)‖ ≥
(

cj − Ck − C(rk + rj)

1 − r̄

)

‖t′ − t‖ (8)

Applying the Theorem 1 with α = β = 1 we get dimH � < 2 dimH (I∞
ρr

) = 2sr.
Since sr < dimH (D)/2, we get H 2sr(�) = 0 and at the same time H 2sr(D) = ∞. �
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4.1.1 The Case When the Parameters Are Translation Vectors.

We consider the case is when the initial system S = {S1, ..., Sm} consists of the con-
traction maps Sk in R

n, and we consider a parametrized system St = {S1,t, ..., Sm,t}
where eachSk,t is definedby the formulaSk,t(x) = Sk(x) + tk ,where t = (t1, ..., tm) ∈
(Rn)m. Translations have no effect upon the contraction ratios, therefore Lip Sk,t = rk

for any t.
First we allow only one map, say Sm,t , to depend on the parameter t, leaving all

others unchanged.

Corollary 6 Let St = {S1, . . . , Sm−1, Sm,t(x) = Sm(x) + t} be a system of contrac-
tion maps in R

n, depending on the parameter t ∈ R
n and let Kt be its attractor. Let

1 ≤ k < m. If rk + rm + r̄ < 1 and sr < n/2, then Kk,t ∩ Km,t = ∅ for almost all
t ∈ R

n.

Proof For any open boundedD ⊂ R
n, there is suchV⊂R

n that the system St satisfies
the settings (S1)—(S4); since C = 1 the condition 7 of the Theorem 5 becomes
equivalent to rk + rm + r̄ < 1. Therefore Kk,t ∩ Km,t = ∅ for almost all t ∈ D ⊂ R

n.
The result does not depend on the choice of D ⊂ R

n, so it holds for the whole R
n. �

Now, if we apply a translation by some vector tk ∈ R
n to each map Sk ∈ S, we

obtain the following:

Corollary 7 Let S = {S1, . . . , Sm−1, Sm} be a system of contraction maps in R
n. Let

t = {t1, ..., tm}, where tk ∈ R
n. Let Sk,t(x) = Sk(x) + tk . Let Kt be the attractor of the

system St = {S1,t, ..., Sm,t}. If for any non-equal j, k ∈ I , rj + rk + r̄ < 1 and sr <

n/2, then for almost all t ∈ R
mn, the system S satisfies Strong Separation Condition.

Proof Notice that by Theorem 4, the maps πj,t : I∞ × R
nm → R

n are continuous
with respect to t. Therefore the function ρjk(t) = min{‖πj,t(α) − πk,t(β)‖,α,β ∈
I∞} is continuous with respect to t. Therefore, the set �jk = ρ−1({0}) is closed
in R

nm. Since all of its k-slices {(t1, .., tk−1, t, tk+1, ..., tm) ∈ �jk; t ∈ R
n} have zero

Lebesgue n-dimensional measure, the set �jk has zero measure in R
mn. Thus, the set

� = ⋃
j,k∈I �jk also has zero measure in R

mn. Therefore, for almost all t ∈ R
mn, the

system St satisfies Strong Separation Condition. �

4.2 Non-empty Overlaps of Prescribed Type

If we we get rid of all overlaps in a self-similar set, we obtain a system S, which
satisfy strong separation condition and whose attractor K is just a Cantor set. There
is a mush more interesting case, when we use our techniques to obtain a system S of
contraction maps which has the attractor K such that the intersections of its pieces
Kj strictly follow some predefined pattern. The attractors of such systems possess a
set of interesting properties, and often, they do not satisfy WSP. In this subsection,
we will see



General Position Theorem and Its Applications 173

(a) how to find systems S for which two maps S1 and S2 commute and for which
S1(K) ∩ S2(K) is exactly equal to S12(K) and
(b) how to find systems S which do not satisfy OSC though all the pieces Si(K) are
disjoint except S1(K) ∩ S2(K) which is a single point.

4.2.1 Exact Overlaps: An Example

First we consider the systems S in which two maps S1, S2 have a common fixed point
and commute (cf. [2]). Let the system St in [0, 1] consist of 3 maps: S1(x) = tx,

S2(x) = bx, S3(x) = x + 8

9
in R, where b, t ∈ (0, 1/9). It depends on the parameter

t, while b is a fixed value.
Since the maps S1,t and S2 commute, we have the following inclusion:

S1,tS2(Kt) ⊆ S1,t(Kt) ∩ S2(Kt) (9)

We want to study for which t ∈ (0, 1/9) the inclusion (9) becomes equality. In this
case, we say the system St has exact overlap S1(K) ∩ S2(K) = S12(K).

Notice that the same way as in ([6, Proposition 2(v)]),

Kt \ {0} =
∞⋃

m,n=0

Sm
1 Sn

2 (K3,t) (10)

Since t, b < 1/9 and K3 ⊂ [8/9, 1], for any m �= n, Sm
i (K3) ∩ Sn

i (K3) = ∅ for
i = 1, 2.

Following the argument of [6, Proposition 3], we obtain

Proposition 8 For the system St , the following statements are equivalent:
(i) For any m, n ∈ N, Sm

1 (K3) ∩ Sn
2 (K3) = ∅;

(ii) K = {0} ∪
∞⊔

m,n=0
Sm
1 Sn

2 (K3);

(iii) For any m, n ∈ N, Sm
1 (K) ∩ Sn

2 (K) = Sm
1 Sn

2 (K). �

Proposition 9 The system St has exact overlap S1(K) ∩ S2(K) = S12(K) for
Lebesgue almost all t ∈ (0, 1/9).

Proof By proposition 8, it suffices to find the set of those t, for which Sm
1 (K3) ∩

Sn
2 (K3) = ∅ for any m �= n.

Take non-equal m, n ∈ N and let Dmn = {t ∈ (0, 1/9) : Sm
1,t([8/9, 1]) ∩ Sn

2
([8/9, 1]) �= ∅}.

If t ∈ Dmn then
8bn

9
≤ tm ≤ min

{
9bn

8
,
1

9m

}

. Put t̄ =
(

min

{
9bn

8
,
1

9m

})1/m

.
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To apply the Theorem 5, we interpret the case under consideration in terms of its
settings:
The system St depends on the parameter t ∈ Dmn.
The set V = [0, 1], the constant C = 1. Since the vector r = (t̄, b, 1/9), we have
sr < 1/2.

Further, Sj = Sm
1,t , Sk = Sn

2 , therefore rj = t̄m <
9bn

8
, rk = bn.

By definition, cj = inf
t,t′∈Dmn

t′m − tm

t′ − t
= inf

t∈Dmn

mtm−1 ≥ inf
t∈Dmn

tm

t
.

Replacing tm by
8bn

9
and t in denominator by 1/9, we get cj > 8bn.

Since Ck = 0, we have cj − Ck − rj + rk
1 − r̄

>

(

8 − 9/8 + 1

8/9

)

bn.

Therefore by Theorem 5, the set �mn = {t ∈ D : Sm
1,t(K3,t) ∩ Sn

2 (K3,t) �= ∅} is a
closed subset of Dmn and dimH (�mn) < 1.

Let � be the union of all �mn, where m, n ∈ N and m �= n.
Then dimH (�) ≤ 2sr < 1 which implies the statement of the proposition. �

For almost all t, the systems St possess several remarkable properties:

1. Violation of WSP. Consider the set D∗ of those values of the parameter t ∈ D\�
for which

log t

log b
is irrational. The set D∗ has full measure in D. For each t ∈ D∗, there

are sequences of positive integers lk ,nk such that the sequence tlk b−nk converges to
1. Therefore, the system St does not satisfy weak separation property.

2. Measure and dimension. The Hausdorff dimension s of the attractor Kt , t ∈ D∗
is equal to the solution of the equation tx + bx − txbx + 9−x = 1. Since the weak
separation property is violated, the Hausdorff measure H s(Kt0) = 0.

3.AllKt are isomorphic. For any two setsKt1 ,Kt2 , ti ∈ D∗, there is a homeomorphism
ϕ : Kt1 → Kt2 , which agrees with the systems S1 and S2, i.e. for any k = 1, ..., 4 and
for any x ∈ Kt , ϕ(Sk,t(x) = Sk,t′(ϕ(x)).

We refer the reader to [6] for detailed proofs of the properties of such type of
self-similar sets.

4.2.2 One-Point Intersections: An Example

Takep, q, r in (0, 1/36) andputh = 1

2
, a = 1

3
.Consider a systemS = {S1, S2, ..., S6}

of contractions in [0, 1] whose equations are

S1(x) = px, S2(x) = a + rx, S3(x) = h − qx, S4(x) = h − r + rx,
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S5(x) = 1 − a − rx, S6(x) = 1 − r + rx

The similarity dimension for any such system is strictly less than 1/2.
Let K be the attractor of the system S and Ki = Si(K) be its pieces. By the

construction, {0, 1}⊂K⊂[0, 1] and the pieces Ki, i ∈ {1, 2, 3, 5, 6} are contained in
disjoint segments of length 1/36, while K3 ∪ K4⊂[h − 1/36, h] and K3 ∩ K4 � {h}
which is the only possible non-empty intersection of the pieces.

We wish to know the set of those p, q, r for which K3 ∩ K4 = {h}. In this case,
we say that the system S has unique one-point intersection.

If
log p

log r
/∈ Q, then the system S does not haveWSP for any q. Indeed, consider the

maps Hm(x) = S3Sm
1 S5(x) and Gn(x) = S4Sn

6S2(x). Notice that for any q > 0, there
is a sequence (mk , nk) ∈ N

2, such that p−mk rnk+1 converges to q as k → ∞. Easy
computation shows that if we choose such a sequence (mk , nk), then the sequence

G−1
nk

Hmk (x) = (rnk+1 − pmk q)(1 − a)

rnk+2
+ pmk q

rnk+1
x

converges to identity, which means violation of WSP.

Therefore, we fix some p, r ∈ (0, 1/36) such that logr p is irrational and con-
sider a 1-parameter family of systems Sq, q ∈ (0, 1/36), for which we show that for
Lebesgue almost all q ∈ (0, 1/36) the system Sq has unique one-point intersection
and does not have weak separation property.

For the simplicity of notation, we denote the system under consideration by S,
keeping in mind that it depends on the parameter q whenever it does not cause any
ambiguity.

From the representation of the pieces K3 and K4 as unions of infinite sequences

K3 = {h} ∪
∞⋃

m=0

S3Sm
1 (K \ K1), K4 = {h} ∪

∞⋃

n=0

S4Sn
6 (K \ K6),

we see that K3 ∩ K4 = {h} iff
for any m, n ∈ N ∪ {0} and any i ∈ I \ {6}, j ∈ I \ {1}, S3Sm

1 (Kj) ∩ S4Sn
6 (Ki) = ∅ (11)

Note that if pm[aq, q] ∩ rn+1[a, 1] = ∅ then for any i ∈ I\{6}, j ∈ I\{1} the inter-
sections S3Sm

1 Sj(K) ∩ S4Sn
6Si(K) are empty. Therefore, in search of those q for which

S3Sm
1 Sj(K) and S4Sn

6Si(K)may intersect, we can restrict the values of q to the intervals

Dmn(p, r) :=
(

arn+1

pm
,min

(
rn+1

apm
, 1/36

))
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We apply the Theorem 5 to the family Sq with the parameter set Dmn(p, r) and
to Sj = S3Sm

1 and Sk = S4Sn
6 . We take r = (p, r, 1/36, r, r, r), therefore sr < 1/2

and r̄ = 1/36. We have C = 1, Ck = 0 and rk = rn+1. Now since the set Kj lies
in the interval [a, 1], for x ∈ Kj and q′, q ∈ Dmn(p, r) we have |Sj,q′(x) − Sj,q(x)| =
|q′ − q|pmx ≥ |q′ − q|pma, so cj = pm/3. Notice also that rn+1 < 3pmq. Therefore,

cj − Ck − rj + rk
1 − r̄

> pm

(
1

3
− 1

35
− 3

35

)

>
pm

4

Therefore, the set �mn(p, r) = {q : S3Sm
1 (K\K1) ∩ S4Sn

6 (K\K6) has the dimension
less than 2sr. The same is true for the set �(p, r) which is a countable union of the
sets �mn(p, r).

This shows that

if p, r ∈ (0, 1/36) and
log p

log r
is irrational then for Lebesgue almost all q ∈ (0, 1/36)

the system S has totally disconnected attractor with unique one-point intersection,
and at the same time, it does not satisfy weak separation property.

The reader may see that the properties similar to The properties 1. 2. 3. in the
previous subsection are also valid for the systems, described above.
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The nth Itarate of a Map
with Dense Orbit

P. Amalraj and P. B. Vinod Kumar

Abstract Suppose that X is a Hausdorff space space having no isolated points and
f : X → X is continuous. We show that the orbit of a point x ∈ X under f is dense
in X while the orbit of x under f n = f ◦ f ◦ ◦ · · · ◦ f , n times is not for some n ≥ 2 ,
then the setD = {x, orb(f , x)is dense inX } is disconnected.As a consequence of this,
we show that the set D = {x, orb(f , x)is dense inX } is connected, then orb(f n, x) is
dense for all x ∈ X .

Keywords Chaotic functions · Dense orbit · Decomposition

2000 Mathematics Subject Classification. Chaos Theory

1 Introduction

Suppose X is a Hausdorff space having no isolated points and f : X → X is contin-
uous. In [1], it is proved that the orbit of a point x ∈ X under f is dense inX while
the orbit of x under f ◦ f is not, then the space X is decomposes in to three sets
realtive to which the dynamics of f are easy to describe. And also he proves that f
acts chaotically on X and that the closure of the set of periodic points of X having
odd period under f has nonempty interior, then f ◦ f is chaotic on X . They conclude
their paper with the question “For n ≥ 2 , what kind of decomposition of X may be
obtained if one assumes that f is toplogically transitive on X while f n is not ?”
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This motivated us to find a solution to this problem. We are solving a part
of this problem. We show that if orb(f n, x) is not dense for some n ≥ 2, then
the set D = {x, orb(x, f )is dense inX } is disconnected. Also we show that the set
D = {x, orb(x, f ) is dense inX } is connected, then orb(f n, x) is dense for all x ∈ X .
Also a consequence of this we proved the fact that if T is a linear function on a
complex Banach space B and that the orbit of b ∈ B under T is dense in B;then for
each positive integer n,the orbit of B under Tn is also dense. (This is S.I Ansari’s
remarkable theorem. It is just a corollary of our result) ([2],Theorem1)

1.1 The General Separation Theorem

In this section, X denotes a Hausdorff topological space having no isolated points
and f : X → X is continuous.

Notation
f n = f ◦ f ◦ f ◦ f · · · ◦ f , n times with f 0 = id

f −(n)(A) = {x ∈ X , f n(x) ∈ A}
D = {x ∈ X , orb(f , x) = X }
Dn = {x ∈ X , orb(f n, x) = X }
Theorem 1.1 Suppose Dn is nonempty and f is onto. Then Dn is dense subset of X ,
for all n and Dn is invariant under f n, for all n.
i.e., f n(Dn) ⊂ Dn and f −(n)(Dn) ⊂ Dn.

Proof Assume that Dn is nonempty.
Let x ∈ Dn =⇒ orb(f , x) = X

orb(f n, x) = {x, f n(x), f 2n, . . . , }
orb(f n, f (x)) = {f (x), f n+1, f 2n+1 . . . }

= f (orb(f n, x))

so, orb(f n, f (x)) = f (orb(f n, x) ⊇ f (orb(f n, x)
i.e., f (X ) ⊆ orb(f n, f (x)
Since f is onto, X ⊆ orb(f n, f (x)
i.e., f (x) ∈ Dn

i.e., Dn is invariant under f and so is under f n.
Next we show that Dn is a dense subset of X .
given x in Dn, orb(f n, x) = {x, f (x), f 2(x), . . . } ⊆ Dn

,however, orb(f n, x) is dense in X , and thus, Dn is dense in X as well.
Now we show that f −(n) ⊂ Dn

Let y ∈ f −(n)(Dn)

i.e., f n(y) ∈ Dn

So, f 2n(y), f 3n(y), · · · ∈ Dn since Dn is invariant underf n
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=⇒ orb(f n, y) contains orb(f n, f n(y)). But orb(f n, f n(y)) is dense in X ,
since f n(y) ∈ Dn

ie,orb(f n, y) is dense in X .
=⇒ y ∈ Dn

i.e., f −(n)(Dn) ⊂ Dn. Hence, the theorem.

Theorem 1.2 Suppose that x ∈ X , h : X → X is continuous and G is the comple-
ment of the closure of orb(h, x). Then for every non negative integer k,h−(k) ⊆ G.

Proof See [1].

Theorem 1.3 (Generalized Separation Theorem) Suppose x ∈ X such that orb(f , x)
is dense in X .

(1) orb(f n, x) is not dense in X for some n ≥ 2

(2) D = {x ∈ X , orb(f , x) = X } is disconnected.
we have, (1)=⇒ (2).

Proof Assume (1) holds

G =
(
orb(f n, x)

)c
, therefore, G is not empty and is open since (1) holds.

therefore for each non-negative integerk,f −(nk)(G) ⊆ G.
We claim that f −(1)(G) ∩ f −(2)(G) ∩ f −(3)(G) ∩ f −(4)(G) · · · ∩ f −(n−1)(G)must be
contained in the closure of G.
Suppose f −(1)(G) ∩ f −(2)(G) ∩ f −(3)(G) ∩ f −(4)(G) · · · ∩ f −(n−1)(G) intersects G.
f −(1)(G) ∩ f −(2)(G) ∩ f −(3)(G) ∩ f −(4)(G) · · · ∩ f −(n−1)(G) ∩ G is open and
orb(f , x) is dense, there is a non-negative integer j such that f j(x) ∈. f −(1)(G) ∩
f −(2)(G) ∩ f −(3)(G) ∩ f −(4)(G) · · · ∩ f −(n−1)(G) ∩ G.

f j(x) ∈ G =⇒ j �= multiple of n

f j(x) ∈ f −(1)(G) =⇒ j + 1 �= multiple of n

f j(x) ∈ f −(2)(G) =⇒ j + 2 �= multiple of n

. . . . . .

f j(x) ∈ f −(n−1)(G) =⇒ j + n − 1 �= multiple of n

is a contradiction.
Therefore, f −(1)(G) ∩ f −(2)(G) ∩ f −(3)(G) ∩ f −(4)(G) · · · ∩ f −(n−1)(G) is contained
in the complement of G.
Let S1 = G and S2 = f −(1)(G) ∩ f −(2)(G) ∩ f −(3)(G) ∩ f −(4)(G) · · · ∩ f −(n−1)(G)

Then S1 and S2 are open and disjoint.
Let w be in D. G is open and w has a dense orbit underf , and there is a non-negative
integerm such that f m(w) ∈ G.
Thus,w ∈ f −m(G) and is either in S1 (by using theorem 1.2 if m is a multiple of n)
or is S2 (if m ≡ r(modn), for 1 ≤ r ≤ n − 1).



180 P. Amalraj and P. B. Vinod Kumar

, therefore, D ⊂ S1 ∪ S2.
Because D is dense,S1 ∩ D and S2 ∩ D are non empty.
Thus the pairs S1 ∩ D = D1 and S2 ∩ D = D2 is a separation of D. ie, D is discon-
nected.

Theorem 1.4 Let D1 and D2 are sets mentioned in the Generalized Separation
Theorem, then f n−1(D2) ⊆ D1

Proof Suppose t ∈ D2.
In particular t ∈ f −(n−1)(G)

ie, f n−1(t) ∈ G = S1
=⇒ f n−1(t) ∈ S1 ∩ D = D1.
Hence the result.

Theorem 1.5 Let f : X → X be chaotic and D = {x ∈ X , orb(f , x) = X } is con-
nected.Then orb(f n, x) is dense in X for all x.

Proof Clear from Generalized Separation Theorem.

Theorem 1.6 Suppose B is a complex Banach space and T : B → B is bounded and
linear. If for some b ∈ B, orb(T , b) is dense in B, then orb(Tn, b) is also dense in
B,for all n.

Proof Suppose orb(T , b) is dense in B.
Then the set E = {P(T )b : p is a polynomial}\{0} is a dense set of vectors in B, each
element of which has dense orbit [3]. Because E is connected and dense , the setD of
vectors inB having dense orbit under T cannot be separated. Thus by the Generalized
Separation Theorem, orb(Tn, b) is also dense in B, for all n.
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Periodic Points of N-Dimensional Toral
Automorphisms

K. Ali Akbar and T. Mubeena

Abstract In this article, subsets ofTn that can arise as sets of all periodic points of a
continuous n-dimensional toral automorphism are characterized. Here, the torus Tn

is viewed as [0, 1) × · · · × [0, 1) (n-times) as a group under coordinate-wise addition
modulo 1.

Keywords Periodic points · Toral automorphism · Triangular matrix
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1 Introduction

There have been some papers discussed about the sets of periodic points for contin-
uous self-maps of intervals on R (see [3–5]). It is natural to ask: Which subsets will
arise as the set of all periodic points of these self maps? In the case of n-dimensional
toral automorphism, we have a neat answer.

A dynamical system is simply a pair (X, f ), where X is a metric space, and
f : X → X is a continuous function. For x ∈ X , the orbit of x under f is the sequence
x, f (x), f 2(x), · · · ,where f n = f ◦ f ◦ · · · ◦ f is the composition of f with itself
n times. A point x ∈ X is said to be periodic with period n if f n(x) = x for some
n ∈ N, and f m(x) �= x for 1 ≤ m < n. We denote the set of all periodic points of f
by P( f ). We refer ([5, 6]) for preliminaries from topological dynamics.

LetQ1 be the set of all rational points in [0, 1) andQn
1 beQ1 × · · · × Q1 (n-times).

Our main results prove that set of all periodic points of a continuous n-dimensional
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toral automorphism has to be either Qn
1 or Tn or a finite intersection of (atmost

n) sets of the form Sr1,...,rn for some ri ∈ Q; where Sr1,...,rn = {(x1, . . . , xn) ∈ T
n :

r1x1 + · · · + rnxn is rational}. In this article, we generalize our results in [7] to a
more general setting and provide a more general proof.

2 Basic Results

LetGL(n,Z)be the set of alln × nmatrices Awith integer entries andDet(A) = ±1,
where Det(A) denotes the determinant of A. Each such matrix A gives an invertible
linear map on Rn by X → AX . We define an automorphism on the torus TA : Tn →
T
n by TAX ≡ AX (mod1), coordinate-wise addition modulo 1.
Let Aut (Tn)denotes the set of all continuous automorphismsonTn . The following

proposition says that every automorphism TA on the torus is continuous, and every
continuous automorphism is induced by a matrix from GL(n,Z).

Proposition 1 (see [4, 7]) The above map A → TA from GL(n,Z) to Aut (Tn) is a
group isomorphism.

Note that, for a toral automorphism TA, the periodic points with period n are
solutions of the congruent equation AnX ≡ X (mod1). Now, we state the following
well-known lemma.

Lemma 1 (see [2]) If T : Rn → R
n is an invertible linear transformation, then

for every Riemann measurable set, S ⊂ R
n, T (S) is Riemann measurable, and the

Riemann measure of T (S) is equal to |Det(T )| times the Riemann measure of S.

The following propositions may be known. But we provide a proof here. See [5]
for n = 2.

Proposition 2 Let A ∈ GL(n,Z).

(1) The number of solutions of An X ≡ X (mod1) in T
n is |Det(An − I )|, provided

|Det(An − I )| �= 0.
(2) If |Det(An − I )| = 0, then An X ≡ X (mod1) has infinitely many solutions in

T
n.

Proof (1) Suppose Det(An − I ) �= 0. The number of solutions of the equation,
AnX ≡ X (mod1) in T

n , is equal to the number of integer points in the image
of Tn under An − I , treated as a linear map from R

n to R
n . Note that the num-

ber of integer points in the image is equal to its measure, which is equal to
|Det(An − I )| by Lemma 1.

(2) If Det(An − I ) = 0, then the system (An − I )X = 0 has infinitely many solu-
tions in T

n .
�
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Proposition 3 For each A = (ai j )n×n ∈ GL(n,Z), the set P(TA) is dense in Tn.

Proof We prove that P(TA) contains Qn
1, and so it is dense. A general element in

Q
n
1 is of the form X = (

p1
q , . . . ,

pn
q ), p1, p2, . . . , pn, q ∈ Z with 0 ≤ pi < q. Now,

TA(X) = (fractional part of the sum a11(
p1
q ) + · · · + a1n(

pn
q ), . . . , fractional part

of the sum an1(
p1
q ) + · · · + ann(

pn
q )) = an element of the form (m1

q , . . . , mn
q ), 0 ≤

mi < q. Observe that, for a fixed q ∈ N, the set {(m1
q , . . . , mn

q ) : 0 ≤ m1, . . . ,mn <

q,mi ∈ N} is TA-invariant and finite. Then, the orbit of X is finite and therefore
eventually periodic. Hence, the result follows from the fact that for invertible maps,
the eventually periodic points are periodic. �

Remark 1 Acontinuous toral automorphism, TA, A ∈ GL(n,Z), is said to be hyper-
bolic if A has no eigenvalue with absolute value 1. In this case, Det(An − I ) �= 0 for
all n ∈ N. Hence, P(TA) = Q

n
1 (see [5]).

Observe that, for any continuous toral automorphisms TA, the set P(TA) is a
subgroup of the torus. We now ask: Which subgroups of Tn arise in this way?

3 Main Results

For n ∈ N, define a sub-classA1,n of GL(n,Z) such that each member ofA1,n is of
the form(

1 k̄
0̄ In−1

)
for some vector k̄ = (k1, . . . , kn−1) with integer coordinates, and In−1

denotes the identity matrix of size n − 1, 0̄ is the zero vector in R
n−1. Also, we

define Sr1,...,rn := {(x1, . . . , xn) ∈ T
n : r1x1 + · · · + rnxn is rational} for ri ∈ Q. If

A ∈ A1,n then A and its powers A2, A3, . . . share the same set of periodic points.
Note that, for any j ∈ N, the periodic points of TA with period j are contained in
P(TA j ). Hence, P(TA) is a finite intersection of sets of the form Sr1,...,rn for some
ri ∈ Q.

Now, we consider our main theorem.

Theorem 1 (Main theorem) For any continuous toral automorphism TA : Tn →
T
n, the set P(TA) of periodic points of TA is one of the following:

(1) Q
n
1 .

(2) A finite intersection of atmost n sets of the form Sr1,...,rn for some ri ∈ Q.
(3) T

n.

Proof Let A = (ai j ) ∈ GL(n,Z). Then, (A − I )X ≡ 0(mod1) if andonly ifai1x1 +
· · · + (aii − 1)xi + · · · + ainxn ∈ Z for all 1 ≤ i ≤ n, where X = [x1, . . . , xn]T .
This fact will be used often in the proof.

Case 1: Det(Am − I ) �= 0 for all m ∈ N.
By Cramer’s rule, P(TA) = Q

n
1.

Case 2: Det(Am − I ) = 0 for some m ∈ N.
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Let S = {s ∈ N : Det(As − I ) = 0} and consider a k ∈ S.
If Ak ∈ A1,n , then Ak and its powers A2k, A3k, . . . share the same set of periodic

points. Note that, for any j ∈ N, the periodic points of TA with period j are contained
in P(TA j ). Hence, P(TA) is a finite intersection of sets of the form Sr1,...,rn for some
ri ∈ Q. In particular, if A = I then P(TA) = T

n .

Now, we have to prove that no other subset of Tn can come as the set of periodic
points. In general, Ak need not be in A1,n for k ∈ S. This general situation can be
handled as follows.

First, we prove that if P(TA) = ⋂
m∈N Sr (m)

1 ,...,r (m)
n
, then it is a finite intersection of

sets of the form Sr1,...,rn . For this, consider
⋂

m∈N Sr (m)
1 ,...,r (m)

n
for r (m)

i ∈ Q.Without loss

of generality assume that (r (m)
1 , . . . , r (m)

l ) is a rational multiple of (r (1)
1 , . . . , r (1)

l ) but
(r (m)

l+1, . . . , r
(m)
n ) is not a rational multiple of (r (1)

l+1, . . . , r
(1)
n ) and l is maximum with

respect to this property. Otherwise, there is a permutation σ on {1, 2, . . . , n} such
that (r (m)

σ (1), . . . , r
(m)

σ (l)) is a rational multiple of (r (1)
σ (1), . . . , r

(1)
σ (l)) but (r

(m)

σ (l+1), . . . , r
(m)

σ (n))

is not a rational multiple of (r (1)
σ (l+1), . . . , r

(1)
σ (n)), and l is maximum with respect

to this property. It is possible to find such a permutation to arrange the n-tuples
(r (m)

1 , . . . , r (m)
n ) simultaneously as we required. Therefore, if X = [x1, . . . , xn]T ∈⋂

m∈N Sr (m)
1 ,...,r (m)

n
for r (m)

i ∈ Q, then X ∈ Sr (1)
1 ,...,r (1)

l
× Q

n−l
1 . From this, it follows that

if P(TA) = ⋂
m∈N Sr (m)

1 ,...,r (m)
n
, then it is a finite intersection of sets of the form Sr1,...,rn

because S0,...,0,ri ,0,...,0 = [0, 1) × . . . × [0, 1) × Q1 × [0, 1) × . . . × [0, 1) (Q1 is in
the i th position).

Next suppose that P(TA) is a set which is not of the form T
n orQ1 × . . . × Q1 or

finite intersection of sets of the form Sr1,...,rn . Then, there exists X = [x1, . . . , xn]T ∈
P(TA) such that r1x1 + · · · + rnxn /∈ Q for all ri ∈ Q \ {0}. This is because, if
X = [x1, . . . , xn]T ∈ Sr1,...,rn ∩ P(TA), then Sr1,...,rn ⊂ P(TA)., and hence, other-
wise, P(TA) becomes countable intersection of sets of the form Sr1,...,rn . It is not
possible. Also AmX ≡ X (mod1) for somem, by our assumption. Hence, there exists
si ∈ Q1 \ {0} such that s1x1 + · · · + snxn ∈ Q. Which is a contradiction. Hence, the
proof follows.

Remark 2 If ri = 0 for some 1 ≤ i ≤ n, then Sr1,r2,...,rn = {(x1, x2, . . . , xn) ∈ T
n :

r1x1 + · · · + ri−1xi−1 + ri+1xi+1 + · · · + rnxn ∈ Q}. Hence, {xi : (x1, x2, . . . , xi ,
. . . , xn) ∈ Sr1,...,rn } = [0, 1).

The following result is an immediate corollary of Theorem 1. In [7], a different
proof is given.

Corollary 1 If A ∈ GL(2,Z), then for any continuous toral automorphism TA, the
set P(TA) of periodic points of TA is one of the following:

1. Q
2
1.

2. Q1 × [0, 1) or Sr for some r ∈ Q ; where Sr = {(x, y) ∈ T
2: r x + y is rational}.

3. T
2.

Remark 3 For A, B ∈ GL(n,Z), we say that A ∼ B if there exists P ∈ GL(n,Z)

such that A = P−1BP . If A ∼ B, then P(TA) = P(TB). Hence, if we know a nice
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representative from each equivalence class of GL(n,Z) with respect to the equiv-
alence relation ∼, then the proof will be so easy. It seems to be too difficult to
find the nice representatives for n > 2. But for GL(2,Z), we have nice represen-

tatives (See [1]). Define Am,n =
(

m n
−(m−1)2

n 2 − m

)
for n �= 0 and n divides m − 1,

and Bm,n =
(

m n
−(m+1)2

n −2 − m

)
for n �= 0 and n divides m + 1. Then, the set

{A1, j : j ∈ Z \ {0}} contains exactly one representative from each conjugacy class of
Am,n for (m, n) ∈ Z × (Z \ {0}). Also the set {B−1, j : j ∈ Z \ {0}} contains exactly
one representative from each conjugacy class of Bm,n for (m, n) ∈ Z × Z \ {0}. From
this representation, we can give an independent proof for Corollary 1. When n = 1,
GL(n,Z) is isomorphic to Z2 and which is equal to Aut(S1), the automorphism
group of S1. So the only subset of S1 that can arise as set of all periodic points of an
automorphism of S1 is S1 itself.

4 Summary

For each self-map f on a set X, we associate a subset of X as follows: P( f ) = {x ∈
X : f n(x) = x for some n ∈ N}. If f belongs to a certain nice class of functions, then,
not all subsets of X may arise as the set of all periodic points of f . It is natural to ask:
Which subsets of X arise as P( f ), for some f in that class?We answer this question,
for all continuous n-dimensional toral automorphisms. For n ≥ 2, even though there
are apparently nC1 + nC2 + · · · + nCn kinds of subsets which can appear as the set
of periodic points for some continuous toral automorphism, there are only n + 1
up to homeomorphism.
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Julia Sets in Topological Spaces

Sanil Jose and P. B. Vinod Kumar

Abstract In this paper, a study of Julia sets as generalization of classical Julia sets on
the complex plane is attempted. Interpreting Julia sets in various forms,we generalize
them to topological spaces.

Keywords Julia sets · T2 space

1 Introduction

The theory of iterated functions on the complex plane is well studied from the times
of Fatou and Julia onwards. The interest in this area got another flavour by the intro-
duction of Fractals in 1980s by Benoit Mandelbrot. See [1, 2].
The filled in Julia set was defined in the extended complex plane C ∪ {∞} for the
function f (z) as K ( f ) = {z ∈ C./ f k(z) → ∞}, and the corresponding Julia set is
defined as J ( f ) = ∂K ( f ), i.e. Julia set is the boundary of the set K ( f ).

Example 1 Consider the function f (z) = z2 in the complex plane.
For all points z inside the unit circle |z| = 1, we can easily see that f n(z) tends to
0 as n tends to ∞. Also all points with |z| ≥ 1, f n(z) tends to ∞ as n tends to ∞.
For all points on the boundary of the circle |z| = 1, we can see that f n(z) remains
bounded as n tends to ∞. Hence, the Julia set of the function f (z) = z2 is clearly
the the boundary f the circle i.e. J ( f ) = {z ∈ C\|z| = 1}.
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Note that z = 0 and z = ∞ are the only fixed points of f (z) = z2.
Julia set of a Complex rational function is non empty, perfect, compact and closed
[2].

Not much study of Julia sets was done in general topological space. We consider
the extended complex plane as a one point compactication asC ∪ {∞}. Naturally, the
question arries as can we define Julia sets in general topological space and weather
the corresponding function which is chaotic in the Julia set.

2 Basin of Attractors to a Point

Classical Julia set.
In the classical Julia sets, the basin of attractors of a fixed pointz0 is defined as the
{z ∈ C\ f n(z) converges to z0} In a general topological space X , we will take any
point x ∈ X and a function f (x) which we define the basin of attractor of f to x as
B f (x) = {y ∈ X\ f n(y) −→ x}.

Results
1. B f (x) �= φ only for fixed points.

Proof If possible, there exist a point x which is not a fixed point such that B f (x) �= φ

i.e. y ∈ B f (x) ⇒ f n(y) −→ x as n ⇒ ∞
i.e. f ( f n(y)) ⇒ f (x) as n ⇒ ∞, i.e. f n+1(y) ⇒ f (x), Since limx→∞ f n(y) =
limx→∞ f n+1(y), we get f (x) = x ,
i.e. x is a fixed point.

2. B f (x) ∩ B f (y) �= φ ⇒ x = y, where x and y are fixed points.

Proof Given that B f (x) ∩ B f (y) �= φ, i.e. ∃a ∈ B f (x) ∩ B f (y)
⇒ a ∈ B f (x) and a ∈ B f (y) ⇒ f n(a) −→ x and f n(a) −→ y
Uniquence of limit gives x = y.

3 Fatou and Julia Sets in General Topological Space

Let (X, τ ) be any topological space, and let x ∈ X be any point. We define K f (x) =
(B f (x))c

i.e. K f (x) = {y ∈ X/ f n(y) �−→ x}.
Example 2 Consider the topological space [0, 1] and the function f (x) = x2. We
know that the fixed points of the function are 0 and 1.
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Now, B f (0) = [0, 1), and hence, K f (0) = {1}.
Also B f (1) = {1}, and hence, K f (1) = [0, 1). For all other points, the set B f (x) =
φ, and hence, K f (x) = X = [0, 1]
Note 1 : The example clearly shows that we must concentrate only on fixed points
of the function, and also if the space is compact, then the set K f (x) is of not much
exciting for us.

Note 2 : The point ∞ is the one point compactification of the complex plane C. We
will think about spaces which T2.

T2 Space or Hausdroff Space
A topological space Let (X, τ ) is said to be T2 space or Hausdroff if for every pair
of distinct points x and y, and in X , there exists disjoint open setsU and V such that
x ∈ U and y ∈ V .

Theorem 1 Let X bea T2 space, and x ∈ X is anypoint. Let K f (x) = {y ∈ X/ f n(y) �−→
x}. If x is not a fixed point, then K f (x) = X.

Proof We need to show that K f (x) = X , if x is not a fixed point.
i.e. we need to show that {y ∈ X/ f n(y) �−→ x} = X
i.e. we need to show that {y ∈ X/ f n(y) −→ x} = φ

If possible assume that there exist y ∈ X such that f n(y) −→ x , i.e. the sequence
(y, f (y), f 2(y), . . . f n(y) . . .) converges to x .
i.e. the sequence ( f (y), f 2(y), f 3(y) . . . f n+1(y) . . .) converges to f (x), and the
two sequences differ only in the first term.
i.e. f (x) = x , i.e. x is a fixed point of f , which is a contradiction.
Hence the result.

Remark 1 The condition (X, τ ) is T2 is important
For
Let X = {a, b, c} and τ = {X, φ, {a}, {a, b}}. Clearly (X, τ ) is not Hausdroff since
for b and c, we cannot find two distinct open sets.
Define f : X −→ X as f (a) = a, f (b) = c, f (c) = b
Clearly, b and c are not fixed points. Also B f (a) = {a} and so K f (a) = {b, c} �= X
B f (b) = {a} and so K f (b) = {b, c} �= X
B f (c) = {a, b, c} and so K f (a) = φ �= X .

4 Locally Compact and T2 Space

Theorem 2 Let X be locally compact and T2. Let X̂ = X ∪ {∞} be the one point
compactification of X. Then, K f (∞) = {x ∈ X/O f (x) ⊂ K , where K is any com-
pact set contained in X}
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Proof Let x ∈ {x ∈ X/O f (x) ⊂ K }
⇒ O f (x) ⊂ K where K is a compact subset of X
⇒ (x, f (x), f 2(x), f 3(x), . . . f n(x)...) ⊂ K ⊂ X
⇒ (x, f (x), f 2(x) . . . f n(x) . . .) does not converge to ∞
⇒ x ∈ K f (∞) Hence {x ∈ X/O f (x) ⊂ K } ⊂ K f (∞)

Conversly let x ∈ K f (∞)

⇒ the sequence (x, f (x), . . . f n(x) . . .) does not converge to ∞
⇒ Either f n(x) converges to y ∈ X or (x, f (x), f 2(x), . . . , f n(x) . . .) is bounded
in some compact set K subset of X .
If f n(x) converges to y ∈ X then {x, f (x), f 2(x) . . . f n(x) . . . y} is compact and is
contained in X .
i.e. in both cases O f (x) ⊂ K
Hence, K f (∞) ⊂ {x ∈ X/O f (x) ⊂ K }
Thus, K f (∞) = {x ∈ X/O f (x) ⊂ K , where K is a compact set contained in X}.
Example 3 Let X = (0, 1], then X̂ = X ∪ {∞}is a one-point compactification
Let f (x) = x2 and K f (0) = {x ∈ X/ f n(x) �−→ 0}
clearly for all x ∈ (0, 1), f n(x) −→ 0
B f (0) = (0, 1) and K f (0) = {1}, which is closed and bounded and hence is a com-
pact subset of X

5 Julia Sets

Theorem 3 Let X is not compact but locally compact and T2. Define f : X̂ −→ X̂
such that f (∞) = ∞ Define J f (∞) = {x ∈ X̂/ f n(x) �−→ ∞}. Then
1. J f (∞) is perfect.
2. J f (∞) is closed.
3. J f (∞) is not always compact
4. J f (∞) is non-empty.

Proof We have J f (∞) = {x ∈ X̂/ f n(x) �−→ ∞}
1. First, we will prove that J f (∞) is perfect. For that we need to prove that
J f (∞) ⊂ J f (∞).
Assume that x is a limit point of a sequence {x1, x2, . . . xn . . .} of elements in J f (∞).
Since each xi ∈ J f (∞), by definition of J f (∞), f n(xi ) �−→ ∞∀i as n −→ ∞.
Now, xi −→ x ⇒ f (xi ) −→ f (x) ⇒ f 2(xi ) −→ f 2(x) ⇒ . . . ⇒ f n(xi ) −→
f n(x)
Since each f n(xi ) �−→ ∞, ∃ an open ball B(∞) containing ∞ which does not con-
tain f n(xi )∀n
Hence, f n(x) �−→ ∞.
x ∈ J f (∞) i.e. J f (∞) ⊂ J f (∞)

i.e. J f (∞) is perfect.
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2. Since J f (∞) is perfect J f (∞) is closed.

3. Consider N under discrete topology. Consider f (n) =
{
n/2 if n is even
(n + 1)/2 if n is odd

Clearly, J f (∞) = N which is not compact
∴ J f (∞) is not compact always.
4. Here, we need to prove that J f (∞) is non-empty. We use contradiction method to
do it.
If possible assume that J f (∞) = φ, ∀x ∈ X , f n(x) −→ ∞
, i.e O f (x) �⊂ K ,∀ compact set K
Given any compact set K , ∃nk ∈ Z+ such that f nk (x) /∈ K .

Let U be any neighbourhood of x , and for every compact set F ⊃ U , there exist K
such that F ⊃ K ⊃ U (Since X is locally compact)
But f nk (x) /∈ K Hence, K is not compact, which is a contradiction.
Hence J f (∞) is non empty

Result
Let K ( f ) = {x ∈ X̂/O f (x) ⊂ K , where K is compact set }. If X is compact
i.e.X̂ = X , does ∃x ∈ X such that K ( f ) = (B f (x))c

Proof z ∈ (K ( f ))c ⇒ O f (z) �⊂ K for every compact subset of X .
⇒ for every K ⊂ X, ∃m such that f m(z) ∈ Kc

Let x ∈ Kc, which is open. Also let B(x) be any open ball containing x . (B(x))cis
closed and since X is compact, and every closed subset of X is also compact; (B(x))c

is compact.
But z ∈ (K ( f ))c ⇒ ∃ some f m(z) /∈ (B(x))c

⇒ f m(z) ∈ B(x)
f n(z) −→ x ⇒ z ∈ B f (x)
∴ (K ( f ))c ⊂ B f (x) ⇒ (B f (x))c ⊂ K ( f ) Conversly let z ∈ K ( f ) ⇒ O f (z) ⊂ K
⇒ { f n(z)} ⊂ K , has a limit point say y ∈ K
f n(z) −→ y
z ∈ B f (y) for some y
⇒ z /∈ B f (x) for x /∈ K
⇒ z ∈ (B f (x))c

K ( f ) ⊂ (B f (x))c

6 Conclusion

In this paper, we tried to generalize the classical Julia sets which was defined in the
extended complex plain to a general topological space. But we restricted the defintion
to locally compact and Hausdroff space so that the Julia set has some properties of
the classical Julia sets.
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Julia Set of Some Graphs Using
Independence Polynomials

K. U. Sreeja, P. B. Vinod Kumar, and P. B. Ramkumar

Abstract Graph polynomial is a graph invariant whose values are polynomials and
found many applications in different fields of science. The goal of this paper is to
connect the theory of fractal geometry to the theory of the much broader class graph
theory using independence polynomial as basis of our fractals. We are particularly
interested in Julia sets and Mandelbrot sets. The various relations between indepen-
dence polynomial, energy, Julia set and Hausdorff dimension of different classes of
graphs are closely examined. The paper concludes with a discussion on Petersen
graph and its connectivity.

Keywords Graph · Independence polynomial · Fractal · Julia set · Hausdorff
dimension · Mandelbrot · Petersen graph

1 Introduction

The independence polynomial is introduced by Gutman and Harary in 1983 [1]. Let
sk denote the number of independent sets of size k, which are induced subgraphs of
G, then I(G, x) = ∑α(G)

k=0 skxk where α(G) is the independence number of G. The
independence polynomials are almost everywhere, but it is an NP complete problem
to determine the independence polynomial of a graph [1].
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2 Preliminaries

Definition 2.1 A graph G consists of a set V (G) of vertices along with an edge set
E(G), where each edge consists of a pair of vertices. A pair of vertices (x, y) is in
E(G), and then, x is adjacent to y.

Definition 2.2 An independent set in a graph G is a vertex subset S ⊆ V (G) that
contains no edge of G. The independence number of a graph is the maximum size of
an independent set of vertices.

Lemma 2.3 [2]: The independence polynomial of an empty graph G of order n is
given by I(G; x) = (1 + x)n.

Theorem 2.4 [2]: Let G be a simple graph. Let v ∈ V (G) and N [v] be the closed
neighborhood of v. Then, I(G; x) = I(G − v; x) + xI(G − N [v]; x).
Definition 2.5 [3]: The reduced independence polynomial of G is the function
R(G, z) = I(G, z) − 1, since every independence polynomial has constant term 1.

Definition 2.6 [3]: Julia set is defined on extended complex plane. The filled-in
Julia set of the polynomial f is defined as K(f ) = {z ∈ C : f n(z) � ∞}. The Julia
set is defined as the boundary of the filled-in Julia set, i.e., J (f ) = ∂K(f ). The Fatou
set F(f ) is the complement of J (f ) in C. The Julia set of a polynomial typically has a
complicated, self-similar structure. The dimension of a Julia set isHausdorff dimen-
sion that gives a reasonable way of assigning appropriate non-integer dimension to
such sets.

3 Computing the Independence Polynomial

By applying the above theorem, we have the following results (Table 1):

Definition 3.1 [4]: The energy E(G) of G is defined as the sum of the absolute
values of the eigen values of an adjacency matrix of a graph. E(G) = ∑n

i=1 |λi|.
Energy of standard graphs is listed in Table 2.

4 Complete Graph

A complete graph is a simple undirected graph in which every pair of distinct vertices
is connected by a unique edge.
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Table 1 Recurrence relations and independence polynomial of standard graphs [2]

No. Graph type Recurrence relations Independence polynomial
I(G, z)

1 Complete graph Kn I(Kn; z) = I(Kn−1; z) + z (1 + nz)

2 Star graph Sn I(Sn; z) =
(1 + z)I(Sn−1; z) − z2

(1 + z)n + z

3 Path graph Pn I(Pn; z) =
I(Pn−1; z) + zI(Pn−2; z)

1
2n+1 [(1 + 2z + s)(1 +
s)n + (s − 1 − 2z)(1 − s)n]
where s = √

1 + 4z

4 Cycle graph Cn I(Pn−1; z) + zI(Pn−3; z) 1
2n+1 [(1 + 2z + s)(1 +
s)n−2 + (1 + 2z − s)(1 −
s)n−2] where s = √

1 + 4z.

Table 2 Energy of standard graphs [4]

No. Graph type Energy

1 Complete graph Kn 2(n − 1)

2 Star graph Sn 2
√
n − 1

3 Path graph Pn 2
∑n

j=1 | cos( π.j
n+1 )|

4 Cycle graph Cn 2
∑n−1

j=0 | cos( 2π.j
n )|

4.1 Relation of Hausdorff Dimension and Energy
of J(I(G, z)) of Complete Graph

Independence polynomial of a complete graph Kn is (1 + nz), and energy of a com-
plete graph is 2(n − 1). So when z = 2,E(Kn) = I (Kn, 2). For complete graph, we
haveR(G, z) = nz. Since any nonzero point has an unbounded forward orbit, its Julia
set is {0}. Therefore, J (R(G, z)) = {0} if G = Kn. Also, dimH (J (R(Kn)) = 0 gives
E(Kn) ≥ dimH (J (R(Kn)).

4.2 Results on Complete Graph

• Zeros of I(G, z) lie outside of J (I(G, z)).
• Zeros of I(G, z) are stable for all values of z since all the roots are negative and
lie in the negative half plane.

• Periodic points of I(G, z) are not chaotic on C because periodic points are not
dense.

• The kth power of a graph G is another graph that has the same set of vertices, but
in which two vertices are adjacent when their distance in G is atmost k. But when
the powers of complete graph are complete, Gk satisfies all the above results.
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5 Mandelbrot Graph

A graph G is called a Mandelbrot graph if J (R(G; z)) is connected [5].
Mandelbrot graph is useful for the connectivity of a Julia set of independence

polynomial. We denote M = {G/G is a Mandelbrot graph}.
Theorem 5.1 [5]: If G is a non-empty graph with independence number 2 having n
vertices and m non-edges, then (i) − n

m ≤ Re(z) ≤ 0 and (ii) Im(z)=0 unless n=3, in

which case −
√
3

2m ≤ Im(z) ≤
√
3

2m .

Theorem 5.2 [5]: If G is a graph with independence number 2 having n=4 vertices
and m non-edges, then J(R(G,z))⊆ [−4

m , 0]
Corollary 5.3 [5]: If G is a non-empty graph with independence number 2 having
n ≥ 5 vertices and m non-edges, then it lies outside the Mandelbrot set.

5.1 Classification of Mandelbrot Graphs

• Clearly Kn∈M .
• If G is a non-empty graph with independence numberm having n vertices denoted
byGm,n, then we have the following results. (i)G2,2∈M (ii)G2,3∈M (iii)G2,4∈M
(iv) G2,n /∈M , where n ≥5.

5.2 Julia Set of Reduced Independence Polynomial of Some
Graphs

• For complete graph Kn, J (R(Kn, z)) = J (nz) = {0}.
• For path graph on three vertices P3, J (R(P3, z))=J (z2 + 3z) ⊆ [−3, 0] ×

[−√
3

2 ,
√
3
2 ].

• For path graph on four vertices P4, J (R(P4, z)) = J (3z2 + 4z) ⊆ [−4
3 , 0] since P4

has three non-edges.
• For cycle graph on four vertices C4, J (R(C4, z)) = J (2z2 + 4z) ⊆ [−2, 0] since
two non-edges.

6 Independence Polynomial of Second Degree of Graphs

We will study some graphs whose independence polynomial of second degree is as
follows:
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Table 3 Relation of Hausdorff dimension and energy of Barbell graph

Values of n J (I(Barn, z)) Hausdorff dimension
of J (I(Barn, z)

Energy of I(Barn, z)

1 z2 1 1

2 z2 + 1 0.6791 4

3 z2 + 2 0.3514 8.2926

Table 4 Relation of Hausdorff dimension and energy of Cocktail party graph

Values of n J (I(CPn, z)) Hausdorff dimension
of J (I(CPn, z)

Energy of I(CPn, z)

1 z2 + 1 0.6791 2

2 z2 1 4

3 z2 − 3 0.4187 6

1. Barbell Graph
Barbell graph of order n is a graph on 2n vertices which is formed by joining
two copies of Kn by a single edge, known as a bridge. We denote this graph by
Barn [2].
Independence polynomial of Barbell graph of order n is given by a second-
degree polynomial in z. I(Barn, z) = z2(n2 − 1) + 2nz + 1. If f (z) = z2(n2 −
1) + 2nz + 1, then it is conjugate to another polynomial of the form g(z) =
z2 + (n − 1).
The relations between Julia set, Hausdorff dimension and energy of Barbell
graph are listed in Table 3.
From the table, it follows that if n≥ 2, J (z2 + (n − 1)) is not connected, there-
fore only J (I(Bar1, z)) ∈ M . As order increases, energy increases. Therefore,
comparing Hausdorff dimension and energy, we have Hausdorff dimension of
independence polynomial of Barbell graph that is less than or equal to energy of
Barbell graph.

2. Cocktail Party Graph
The Cocktail party graph n is a graph on 2n vertices. The graph is formed by
taking n pairs of vertices such that the vertices in any one pair are adjacent to
both vertices in any other pair. There is no edge between the two vertices within
any given pair. We denote this graph by CPn [2] (Table 4).
Independence polynomial of Cocktail party graph of order n is given by a second-
degree polynomial in z.
I(CPn, z) = nz2a = 2nz + 1. If f (z) = nz2 + 2nz + 1, then it is conjugate to
another polynomial g(z) = z2 + 2n − n2.
If n = 2, J (z2 + 2n − n2 is connected, therefore J (I(CP2) ∈ M .
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Table 5 Relation of Hausdorff dimension and energy of complete bipartite graph

Values of n J (I(K2,2, , z)) Hausdorff dimension
of J (I(K2,2, z)

Energy of I(K2,2, z)

1 z2 1 4

Table 6 Relation of Hausdorff dimension and energy of cycle graph

Values of n J (I(C5, z)) Hausdorff dimension
of J (I(C5, z)

Energy of I(C5, z)

1 z2 + 5
4 0.4346 5

Hausdorff dimension of independence polynomial of Cocktail graph of order n
is less than energy of Cocktail graph.

3. Complete Bipartite Graph
A complete bipartite graph is a bipartite graph (i.e., a set of graph vertices
decomposed into two disjoint sets such that no two graph vertices within the
same set are adjacent) such that every pair of graph vertices in the two sets are
adjacent. If there are p and q graph vertices in the two sets, the complete bipartite
graph is denoted Kp,q [2] (Table 5).
Independence polynomial of complete bipartite graph of order 2, K2,2 is given
by a second-degree polynomial in z.I(K2,2, z) = 2z2 + 4z + 1. It is same as
independence polynomial of square graph C4. If f (z) = 2z2 + 4z + 1, then it is
conjugate to another polynomial g(z) = z2.
J (I(K2,2, z) = J (z2) is a unit circle and is connected. Therefore, J (I(K2,2, z) ∈
M . Comparing Hausdorff dimension and energy, we have the following result:
Hausdorff dimension of independence polynomial of complete graph K2,2 or
square graph is less than energy of complete graph K2,2.

4. Cycle Graph
A simple graph with n vertices (n ≥ 3) and n edges is called a cycle graph if all
its edges form a cycle of length n. If the degree of each vertex in the graph is
two, then it is called a cycle graph. We denote cycle graph by Cn [2].
Independence polynomial of cycle graph of order 5 is given by a second-degree
polynomial in z.
I(C5, z) = 5z2 + 5z + 1. If f (z) = 5z2 + 5z + 1, then it is conjugate to another
polynomial g(z) = z2 + 5

4 .
J (I(C5, z) = J (I(z2 + 5

4 ) is not connected. Therefore, J (I(C5, z) /∈ M .
Comparing Hausdorff dimension and energy, we have the following result
(Table 6).
Hausdorff dimension of independence polynomial of cycle graph C5 is less than
energy of cycle graph C5.
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Table 7 Relation of Hausdorff dimension and energy of path graph of order 3

J (I(P3, z)) Hausdorff dimension of
J (I(P3, z)

Energy of I(P3, z)

z2 + 1
4 1.0812 2.8285

Table 8 Relation of Hausdorff dimension and energy of path graph of order 4

J (I(P4, z)) Hausdorff dimension of
J (I(P4, z)

Energy of I(P4, z)

z2 + 1 0.6791 4.47206

5. Path Graph
The path graph is a tree with two nodes of vertex degree 1 and the other nodes
of vertex degree 2. A path graph is therefore a graph that can be drawn so that
all of its vertices and edges lie on a single straight line [2].

5.1 Path Graph of Order 3
It is denoted by P3. Independence polynomial of path graph of order 3 is given
by a second-degree polynomial in z (Table 7).
I(P3, z) = z2 + 3z + 1. It is same as that of independence polynomial of star
graph of order 3, S3. f (z) = z2 + 3z + 1, then it is conjugate to another polyno-
mial g(z) = z2 + 1

4 . J (I(P3, z) = J (z2 + 1
4 ). J (z2 + 1

4 ) is connected, and there-
fore, J (I(P3, z)) ∈ M .
ComparingHausdorff dimension and energy,we have the following result. Haus-
dorff dimension of independence polynomial of path graph of order 3 is less than
energy of path graph.

5.2 Path Graph of Order 4
It is denoted by P4. Independence polynomial of path graph of order 4 is given
by a second-degree polynomial in z.
I(P4, z) = 3z2 + 4z + 1. f (z) = 3z2 + 4z + 1, then it is conjugate to another
polynomial g(z) = z2 + 1. J (I(P4, z) = J (z2 + 1). J (z2 + 1) is totally discon-
nected, and therefore, J (I(P4, z)) /∈ M .
Comparing Hausdorff dimension and energy, we have the following result
(Table 8):
Hausdorff dimension of independence polynomial of Path graph of order 4 is
less than energy of path graph.

6. Wheel Graph
The wheel graph of order n is a graph on n+1 vertices. This graph is formed by
taking a copy of Cn and adding a central vertex which is adjacent to every vertex
in Cn. We denote the wheel graph of order n by Wn [2].
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Table 9 Relation of Hausdorff dimension and energy of wheel graph of order 5

J (I(W5, z)) Hausdorff dimension of
J (I(W5, z)

Energy of I(W5, z)

z2 − 7
4 1.1632 9.37

Table 10 Relation of Hausdorff dimension and energy of wheel graph of order 6

J (I(W6, z)) Hausdorff dimension of
J (I(W6, z)

Energy of I(W6, z)

z2 − 1 1.26835 11.92

6.1 Wheel Graph of Order 5
It is denoted byW5. Independence polynomial of wheel graph of order 5 is given
by a second-degree polynomial in z.
I(W5, z) = 2z2 + 5z + 1. If f (z) = 2z2 + 5z + 1, then it is conjugate to another
polynomial g(z) = z2 − 7

4 . J (I(W5, z)) = J (z2 − 7
4 ) is connected, and there-

fore, J (I(W5, z)) ∈ M (Table 9).
ComparingHausdorff dimension and energy,we have the following result. Haus-
dorff dimension of independence polynomial of path graphW5 is less than energy
of path graph W5.

6.2 Wheel Graph of Order 6
It is denoted byW6. Independence polynomial of wheel graph of order 6 is given
by a second-degree polynomial in z.
I(W6, z) = 5z2 + 6z + 1. If f (z) = 5z2 + 6z + 1, then it is conjugate to another
polynomial g(z) = z2 − 1.
J (I(W6, z) = J (z2 − 1) is connected, and therefore, J (I(W6, z) ∈ M (Table 10).
ComparingHausdorff dimension and energy,we have the following result: Haus-
dorff dimension of independence polynomial of wheel graph W6 is less than
energy of wheel graph W6.

7. Petersen Graph
The Petersen graph is an undirected graph with 10 vertices and 15 edges. It is
a small graph that serves as a useful example and counterexample for many
problems in graph theory. It is denoted by P5,2 and is 3 regular [6].

The independence polynomial of Petersen graph is a fourth-degree polynomial and
is given by I (P, z) = 1 + 10z + 30z2 + 30z3 + 5z4. Its characteristic polynomial
is given by (t − 1)5(t + 2)4(t − 3), making it an integral graph whose spectrum
consists entirely of integers, and its spectrum is −2,−2,−2,−2, 1, 1, 1, 1, 1, 3. So,
the energy of Petersen graph is 16. It is conjugate to another polynomial of the form
z4 + d where d = 29.0696. It meets the real axis at (−1, .5). So, its J (z4 + 29.0696)
is disconnected, and its Hausdorff dimension lies between 0 and 2 (Fig. 1).
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Fig. 1 Petersen graph P5,2
[6]

7 Conclusion

Summarizing the research pertaining to the graphs, the salient observations are listed
as follows:

• The relationship between a graph and its independence fractal still remains a
question.

• Connectivity of a fractal does not depend on the connectivity of the graph.
• The Julia set of graphs with independence number 2 is studied, and for graphs
with independence number 3 and higher, the same methods can be used with
modifications.

• Hausdorff dimension of a Julia set of independence polynomial of second degree
of graphs is less than the energy of corresponding graph.

• Juia set of independence polynomial of Bar1, CP2, K2,2, P3, W5 and W6 are all
connected and therefore element of Mandelbrot set.

• As a special graph, Petersen graph connectivity examined and found that its Julia
set is disconnected.
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An Introduction to the Notion of Natural
Pseudo-distance in Topological Data
Analysis

Patrizio Frosini

Abstract The natural pseudo-distance dG associated with a group G of self-
homeomorphisms of a topological space X is a pseudo-metric developed to com-
pare real-valued functions defined on X , when the equivalence between functions is
expressed by the group G. In this paper, we illustrate dG , its role in topological data
analysis, its main properties and its link with persistent homology.
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1 Introduction

In topological data analysis, data are frequently expressed by continuous real-valued
(or vector-valued) functions defined on a topological space X , and two such functions
are considered equivalent if they can be obtained from each other by composition
with a suitable self-homeomorphism of X . This happens, e.g., whenwe are interested
in comparing images with respect to the group of plane isometries, or ECG traces
with respect to the group of translations in time, or temperature distributions on the
earth with respect to rotations around the north pole-south pole axis. Such functions
are called filtering functions. In order to compare this kind of data, a pseudo-distance
is available, quantifying the infimum of the cost of matching two functions ϕ1, ϕ2

by composition with a homeomorphism in the considered group G, where the cost
is defined by the L∞ norm. According to this pseudo-metric, the measurements
ϕ, ϕ ◦ g ∈ C0(X,R) are considered equivalent to each other for every g ∈ G. In
many applications, this property is important and useful, since it allows to choose
the data equivalence the user is interested in. For the sake of simplicity, in this
survey, we will only consider the case of data represented by real-valued functions.
This paper is devoted to illustrate this pseudo-metric, called the natural pseudo-
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distance dG associatedwith the group G. After recalling the definition of dG (Sect. 2),
we present some theoretical results concerning the values that dG(ϕ1, ϕ2) can take,
showing that they are strictly related with the critical values of ϕ1 and ϕ2, provided
that these functions are regular enough (Sect. 3). Secondly, we observe that while dG
represents a clear ground truth in our setting, it is usually quite difficult to compute,
due to the size of the group G to be examined. Therefore, efficient methods to get
information about dG are needed. The most relevant method to study the natural
pseudo-distance is based on its link with persistent homology and the theory of
group equivariant non-expansive operator. Section4 is devoted to describe this link
and its main consequences. In Sect. 5, we conclude the paper by illustrating an open
problem concerning dG .

1.1 Related Literature and Historical Notes

This survey presents the main results obtained about the natural pseudo-distance in
the last three decades. These results appeared in several papers and are reported here
without proof. For every statement, the paper where the interested reader can find
a precise proof is referred. The concept of natural pseudo-distance appeared for the
first time in the paper [1], where the distance ‖A − B‖ between pairs (A, B) of points
in a submanifoldM of a Euclidean space was considered as a filtering function and
the group G was chosen to be the group of isometries ofM. A different but strictly
related distance between real-valued functions defined on a manifold had already
been presented in [2], referring to the group of similarities of En .

The description given in this survey is mainly based on the paper [3]. The reader
can find there definitions and proofs concerning the natural pseudo-distance dG asso-
ciated with a group G, together with its link with persistent homology and the the-
ory of group equivariant non-expansive operators. The problem of obtaining lower
bounds for dHomeo(X) by means of persistent homology in degree 0 (size functions)
has been investigated in [4–6]. Lower bounds for dG obtained by means of persistent
homotopy in the case G = Homeo(X) and via G-invariant persistent homology in
the general case have been presented in [7] and [8], respectively. A study of dG as
a quotient pseudo-metric has been done in the paper [9]. The proofs of the results
concerning the link between the values that dG can take and the critical values of
the filtering functions can be found in [10–12]. The proof of the result concerning
the possible values of the natural pseudo-distance in the case X = G = S1 can be
found in [13]. The results concerning optimal homeomorphisms are illustrated in
the papers [6, 10, 13, 14]. A survey about the natural pseudo-distance in the case
G = Homeo(X) has appeared in [15].
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2 The Definition of dG

Let (X, d) and G be a finitely triangulable metric space and a subgroup of the
group Homeo(X) of all homeomorphisms from X to X , respectively. If ϕ1, ϕ2 are
two continuous and bounded functions from X to R, we can consider the value
infg∈G ‖ϕ1 − ϕ2 ◦ g‖∞. This value is called the natural pseudo-distance dG(ϕ1, ϕ2)

between ϕ1 and ϕ2 with respect to the group G. We recall that a pseudo-metric is
just a metric without the property assuring that if two points have a null distance
then they must coincide. We endow C0(X,R) with the L∞ norm and G with the
distance DG(g1, g2) := maxx∈X d(g1(x), g2(x)), so that G becomes a topological
group acting on C0(X,R) by composition on the right. We observe that the action
of G on C0(X,R) is continuous [3].

If G is the trivial group Id, then dG is the max-norm distance ‖ϕ1 − ϕ2‖∞. More-
over, if G1 and G2 are subgroups of Homeo(X) and G1 ⊆ G2, then

dHomeo(X)(ϕ1, ϕ2) ≤ dG2(ϕ1, ϕ2) ≤ dG1(ϕ1, ϕ2) ≤ ‖ϕ1 − ϕ2‖∞

for every ϕ1, ϕ2 ∈ C0(X,R).
The direct computation of dG is usually difficult, due to the size of G. As an

example, if X = R
3 and G is the group of all isometries of R3, a direct computation

of dG would require to evaluate ‖ϕ1 − ϕ2 ◦ g‖∞ for every isometry g : R3 → R
3.

The reader could think of approximating dG(ϕ1, ϕ2) by the value μS(ϕ1, ϕ2) :=
infg∈S ‖ϕ1 − ϕ2 ◦ g‖∞, where S is a sufficiently dense subset S of G. Unfortunately,
the use of μS would be impractical for data retrieval for two reasons. First of all, in
many cases, S should be a very large set in order to obtain a good approximation of dG ,
so implying a large computational cost. Secondly, S could not be assumed to be a sub-
group ofG, even ifG is compact (cf. Sect. 3.1 in [3]). For example, this happenswhen
G is the group SO(3) of all orientation-preserving isometries ofR3 that take the point
(0, 0, 0) to itself. As a consequence, the function μS(ϕ1, ϕ2) would not be a pseudo-
metric. This would make the use of μS unsuitable for several applications. In Sect. 4,
wewill see that this difficulty can beworked around bymeans of persistent homology
and the concept of group equivariant non-expansive operator (Theorem 10).

We conclude this section by observing that in many cases we are not interested in
every function in C0(X,R), but in a bounded topological subspace � of C0(X,R).
This is due to the fact that the choice of each measuring device restricts the set of
functions that can be obtained as data produced by the measurement. From now on,
wewill assume that a bounded topological subspace� ofC0(X,R) has been chosen.

2.1 The Role of dG in Topological Data Analysis

The comparison of data is usually a process depending on an observer. We could
indeed say that data comparison consists in the study of the relationship between an
observer and the reality he/she can measure. In this framework, data coincide with
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measurements. Observers receive and transform data and are, in some sense, defined
by the way they perform this transformation. It follows that observers can be defined
as collections of suitable operators acting on measurements [16].

According to the dictionary, a “measurement is the assignment of a number to
a characteristic of an object or event, which can be compared with other objects
or events” [17]. This definition implies that measurements (and hence data) can
be seen as functions ϕ associating a real number ϕ(x) with each point x of a set
X of characteristics. (This definition admits a natural extension to vector-valued
functions, but for the sake of simplicity, we will treat here only the case of scalar-
valued functions). If wewish to develop a theory that can be applied in real situations,
we need stability with respect to noise. This justifies the use of topologies on X
and on the set Φ of possible measurements on X , as illustrated in the previous
section. Furthermore, observers are often endowed with some kind of equivariance,
represented by a suitable group G of homeomorphisms. Therefore, we are interested
in models where this equivariance can be represented. For example, we usually look
for pseudo-metrics that do not distinguish between the shapes of the same object in
different spatial positions. The natural pseudo-distance dG has this property, since it
vanishes when the measurements ϕ, ϕ ◦ g are considered, with ϕ ∈ Φ and g ∈ G.
For this reason, the pseudo-metric dG can be considered as a ground truth for data
comparison in our theoretical setting. This justifies our interest in its study.

3 Theoretical Results About dG

When the filtering functions are defined on a regular closed manifold, some results
restrict the range of values that can be taken by the natural pseudo-distance dG .

Theorem 1 ([10]) Assume thatM is a closed manifold of class C1 and that ϕ1, ϕ2 :
M → R are two functions of class C1. Set d: = dHomeo(M)(ϕ1, ϕ2). Then, a positive
integer k exists for which one of the following properties holds:

(i) k is odd, and kd is the distance between a critical value of ϕ1 and a critical value
of ϕ2;

(ii) k is even, and kd is either the distance between two critical values of ϕ1 or the
distance between two critical values of ϕ2.

Theorem 2 ([11]) Assume that S is a closed surface of class C1 and that ϕ1, ϕ2 :
S → R are two functions of class C1. Set d := dHomeo(S)(ϕ1, ϕ2). Then, at least one
of the following properties holds:

(i) d is the distance between a critical value of ϕ1 and a critical value of ϕ2;
(ii) d is half the distance between two critical values of ϕ1;
(iii) d is half the distance between two critical values of ϕ2;
(iv) d is one third of the distance between a critical value of ϕ1 and a critical value

of ϕ2.
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Fig. 1 In this case, the natural pseudo-distance is equal to the distance between two critical values
of the filtering functions

Theorem 3 ([12]) Assume that C is a closed curve of class C1 and that ϕ1, ϕ2 :
C → R are two functions of class C1. Set d := dHomeo(C)(ϕ1, ϕ2). Then, at least one
of the following properties holds:

(i) d is the distance between a critical value of ϕ1 and a critical value of ϕ2;
(ii) d is half the distance between two critical values of ϕ1;
(iii) d is half the distance between two critical values of ϕ2.

The statement in the last theorem is sharp, as shown by the following examples.

Example 1 Let us consider the two embeddings of S1 into R
2 represented in

Fig. 1. The ordinate y defines two filtering functions ϕ1, ϕ2 on S1. In this case,
dHomeo(S1)(ϕ1, ϕ2) = |ϕ1(A) − ϕ(B)|, i.e., it is the distance between a critical value
of ϕ1 and a critical value of ϕ2.

Example 2 Let us consider the two embeddings of S1 into R
2 represented in

Fig. 2. The ordinate y defines two filtering functions ϕ1, ϕ2 on S1. In this case,
dHomeo(S1)(ϕ1, ϕ2) = 1

2 |ϕ1(A) − ϕ1(B)|, i.e., it is half the distance between two crit-
ical values of ϕ1. In Fig. 2, a homeomorphism gε : S1 → S1 is displayed, such
that ‖ϕ1 − ϕ2 ◦ gε‖∞ ≤ 1

2 |ϕ1(A) − ϕ1(B)‖ + ε (we set gε(Dε) = Hε, gε(C) = G
and gε(Eε) = Fε; the first red arc is taken to the second red arc). The equality
dHomeo(S1)(ϕ1, ϕ2) = 1

2 |ϕ1(A) − ϕ1(B)| follows from Theorem 8 in Section 4.

The research concerning the case that G is a proper subgroup of Homeo(M)

is still at its very beginning. As an example of the results concerning this line of
research, we cite the following theorem.

Theorem 4 ([13]) Let ϕ1, ϕ2 be Morse functions from the Lie group S1 to R and
set d = dS1(ϕ1, ϕ2). At least one of the following statements holds:
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Fig. 2 In this case, the natural pseudo-distance is equal to half the distance between two critical
values of the filtering function ϕ1

(1) There exist a critical point θ1 for ϕ1 and a critical point θ2 for ϕ2 such that
d = |ϕ1(θ1) − ϕ2(θ2)|;

(2) There exist θ1, θ2, θ̃1, θ̃2 ∈ S1 such that

• d = |ϕ1(θ1) − ϕ2(θ2)| = |ϕ1(θ̃1) − ϕ2(θ̃2)|;
• dϕ1

dθ
(θ1) = dϕ2

dθ
(θ2) and

dϕ1

dθ
(θ̃1) = dϕ2

dθ
(θ̃2);

• θ1 − θ2 = θ̃1 − θ̃2;
• dϕ1

dθ
(θ1) · dϕ1

dθ
(θ̃1) · (ϕ1(θ1) − ϕ2(θ2)) · (ϕ1(θ̃1) − ϕ2(θ̃2)) < 0.

3.1 Optimal Homeomorphisms

Assume that ϕ1, ϕ2 : X → R are continuous functions. Let G be a subgroup of
Homeo(X). We say that a homeomorphism g ∈ G is optimal in G for (ϕ1, ϕ2) if
‖ϕ1 − ϕ2 ◦ g‖∞ = dG(ϕ1, ϕ2). The following results hold for optimal homeomor-
phisms.

Theorem 5 ([10]) Assume thatM is a C1 closed manifold and that ϕ1, ϕ2 : M →
R are of class C1. If an optimal homeomorphism g ∈ Homeo(M) for (ϕ1, ϕ2) exists,
then dHomeo(M)(ϕ1, ϕ2) is the distance between a critical value of ϕ1 and a critical
value of ϕ2.
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Theorem 6 ([14]) If ϕ1, ϕ2 : S1 → R are Morse functions and dHomeo(S1)(ϕ1, ϕ2)

vanishes, then an optimal C2-diffeomorphism exists in Homeo(S1) for (ϕ1, ϕ2).

Theorem 7 ([13]) The number of optimal homeomorphisms in the Lie group S1 for
a pair (ϕ1, ϕ2) of Morse functions from S1 to R is finite.

4 A Link Between dG and Persistent Homology

In this section, we will show that the natural pseudo-distance dG can be studied by
combining persistent homology with the concept of group equivariant non-expansive
operator.

4.1 Persistent Homology

Persistent homology can be seen as an efficient method to compute lower bounds
and good approximations for the natural pseudo-distance. We recall here some basic
definitions and facts concerning persistent homology. The interested reader can find
amore detailed and formal treatment in [18–21]. In plain words, persistent homology
is a mathematical theory describing the changes of the homology groups of the sub-
level sets Xt = ϕ−1((−∞, t]) varying t in R, where ϕ is a real-valued continuous
function defined on a topological space X . We can look at the parameter t as an
increasing time, whose change produces the birth and death of k-dimensional holes
in the sub-level set Xt . For k = 0, 1, 2, the expression “k-dimensional holes” refers to
gaps between connected components, tunnels and voids, respectively. The distance
between the birthdate and deathdate of a hole is called its persistence. The more
persistent is a hole, the more important it is for data comparison, since holes with
small persistence are usually produced by noise.

As happens for homology, persistent homology can be introduced in several dif-
ferent settings. In this paper, we will use the definition based on Čech homology (cf.
[22]).

We start from the following definition.

Definition 1 Letϕ : X → Rbe a continuous function. Ifu, v ∈ R andu < v,we can
consider the inclusion i of Xu into Xv . Such an inclusion induces a homomorphism
i∗ : Hk (Xu) → Hk (Xv) between the homology groups of Xu and Xv in degree k.
The group PHϕ

k (u, v) := i∗ (Hk (Xu)) is called the k-th persistent homology group
with respect to the function ϕ : X → R, computed at the point (u, v). The rank
rk(ϕ)(u, v) of this group is said the k- th persistent Betti numbers function with
respect to the function ϕ : X → R, computed at the point (u, v).
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Fig. 3 Example of matching
between two persistence
diagrams

It canbe easily proved that if g ∈ Homeo(X), the groups PHϕ

k (u, v), PHϕ◦g
k (u, v)

are isomorphic to each other for every (u, v) ∈ R with u < v and every k ∈ Z.
A classical way to describe persistent Betti numbers functions is given by per-

sistence diagrams. The k-th persistence diagram Dgmk(ϕ) of the function ϕ is
the set of all pairs (b j , d j ), where b j and d j are the birthdate and the death-
date of the j-th k-dimensional hole, respectively, with reference to the filtration
Xt = ϕ−1((−∞, t]) varying t in R. When a hole never dies, we set its deathdate
equal to ∞. For technical reasons, the points (t, t) are added to each persistence dia-
gram. Two persistence diagrams Dgmk(ϕ1),Dgmk(ϕ2) can be compared by means
of the bottleneck distance dBN

(
Dgmk(ϕ1),Dgmk(ϕ2)

)
. It is defined as the maxi-

mum movement of the points of Dgmk(ϕ1) that is necessary to change Dgmk(ϕ1)

into Dgmk(ϕ2), measured with respect to the maximum norm (see Fig. 3). If Čech
homology is used, each persistent Betti numbers function rk(ϕ) is equivalent to
the corresponding persistence diagram Dgmk(ϕ). Therefore, the bottleneck distance
induces a metric dmatch on the set of the persistent Betti numbers functions, so that
dmatch (rk(ϕ1), rk(ϕ2)) = dBN

(
Dgmk(ϕ1),Dgmk(ϕ2)

)
. The interested reader canfind

the formal definitions of persistence diagram and bottleneck distance in [20].
An important property of the metric dmatch is its stability, as stated in the following

result.

Theorem 8 If k is a natural number and ϕ1, ϕ2 ∈ C0(X,R), then

dmatch(rk(ϕ1), rk(ϕ2)) ≤ dHomeo(X)(ϕ1, ϕ2) ≤ ‖ϕ1 − ϕ2‖∞ .
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4.2 Group Equivariant Non-expansive Operators

Let us consider the setF(�,G) of all maps F from Φ to Φ that verify the following
two properties:

(1) F(ϕ ◦ g) = F(ϕ) ◦ g for every ϕ ∈ Φ and every g ∈ G (i.e., F is equivariant
with respect to G);

(2) ‖F(ϕ1) − F(ϕ2)‖∞ ≤ ‖ϕ1 − ϕ2‖∞ for every ϕ1, ϕ2 ∈ Φ (i.e., F is non-
expansive).

Obviously, F(�,G) is not empty, since it contains at least the identity map.
The maps in F(�,G) are called group equivariant non-expansive operators

(GENEOs). InF(�,G), we define the metric DGENEO(F1, F2) := supϕ∈Φ ‖F1(ϕ) −
F2(ϕ)‖∞.

4.3 Persistent Homology as a Tool to Get Lower Bounds
for dG

If F is a nonempty subset of F(�,G), then for every fixed k, we can define the
following pseudo-metric DF ,k

match on Φ:

DF ,k
match(ϕ1, ϕ2) := sup

F∈F
dmatch(rk(F(ϕ1)), rk(F(ϕ2)))

for every ϕ1, ϕ2 ∈ Φ, where rk(ϕ) denotes the k-th persistent Betti numbers function
with respect to the function ϕ : X → R. We will usually omit the index k, when its
value is clear from the context or not influential.

We observe that DF
match(ϕ1, ϕ2 ◦ g) = DF

match(ϕ1 ◦ g, ϕ2) = DF
match(ϕ1, ϕ2) for

every ϕ1, ϕ2 ∈ Φ and every g ∈ Homeo(X).
The importance of DF

match lies in the following two results, showing that it can be
used to get information about the natural pseudo-distance dG .

Theorem 9 ([3]) If ∅ �= F ⊆ F(�,G), then DF
match ≤ dG.

Theorem 10 ([3]) Let us assume that every function in Φ is non-negative, the k-th
Betti number of X does not vanish, and Φ contains each constant function c for
which a function ϕ ∈ Φ exists such that 0 ≤ c ≤ ‖ϕ‖∞. Then DF(�,G)

match = dG.

As a consequence, the topological and geometrical study ofF(�,G) is important
in the research concerning the natural pseudo-distance. Theorem 10 allows us to
approximate dG by approximating DF(�,G)

match .
Two relevant properties of F(�,G) are expressed by the following results.

Theorem 11 ([3]) If Φ is compact, then F(�,G) is compact.

Theorem 12 ([23]) If Φ is convex, then F(�,G) is convex.
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5 An Open Problem

Let us consider a closedC1 surface S and twoC1 filtering functions ϕ1, ϕ2 : S → R.
Let Homeo(S) be the group of all self-homeomorphisms of S. We know that
dHomeo(S)(ϕ1, ϕ2) := infg∈Homeo(S) ‖ϕ1 − ϕ2 ◦ g‖∞ is the natural pseudo-distance
between ϕ1 and ϕ2, with respect to the group Homeo(S). As we have previously
seen, it has been proved in [11] that at least one of the following statements holds:

(1) dHomeo(S)(ϕ1, ϕ2) is the distance between a critical value of ϕ1 and a critical value
of ϕ2;

(2) dHomeo(S)(ϕ1, ϕ2) is half the distance between two critical values of ϕ1;
(3) dHomeo(S)(ϕ1, ϕ2) is half the distance between two critical values of ϕ2;
(4) dHomeo(S)(ϕ1, ϕ2) is one third of the distance between a critical value of ϕ1 and

a critical value of ϕ2.

Interestingly, no example of two functions ϕ1, ϕ2 : S → R is known, such that (4)
holds but (1), (2), (3) do not hold. A natural question arises: Can we find an example
of two such functions or prove that such an example cannot exist (so improving
Theorem 5.7 in [11])?

We recall that the usual technique to compute the natural pseudo-distance
dHomeo(S) consists in

• finding a lower bound for dHomeo(S)(ϕ1, ϕ2) by computing the bottleneck distance
dBN

(
Dgmk(ϕ1),Dgmk(ϕ2)

)
between the persistence diagrams in degree k of the

functions ϕ1 and ϕ2 (cf. Theorem 8);
• looking for a sequence (gi ) in Homeo(S), such that limi→∞ ‖ϕ1 − ϕ2 ◦ gi‖∞ =
dBN

(
Dgmk(ϕ1),Dgmk(ϕ2)

)
.

If such a sequence (gi ) exists, then the definition of natural pseudo-distance
implies that dHomeo(S)(ϕ1, ϕ2) is equal to dBN

(
Dgmk(ϕ1),Dgmk(ϕ2)

)
.

Unfortunately, at least one of the following statements holds (cf. [5]):

(a) dBN
(
Dgmk(ϕ1),Dgmk(ϕ2)

)
is the distance between a critical value of ϕ1 and a

critical value of ϕ2;
(b) dBN

(
Dgmk(ϕ1),Dgmk(ϕ2)

)
is half the distance between two critical values of

ϕ1;
(c) dBN

(
Dgmk(ϕ1),Dgmk(ϕ2)

)
is half the distance between two critical values of

ϕ2.

Therefore, if (1), (2), (3) do not hold for ϕ1, ϕ2 : S → R, then dHomeo(S)(ϕ1, ϕ2)

cannot be equal to dBN
(
Dgmk(ϕ1),Dgmk(ϕ2)

)
. This means that if there exist two

C1 functions ϕ1, ϕ2 : S → R verifying (4) but not (1), (2), (3), then we need new
methods to compute dHomeo(S)(ϕ1, ϕ2) and to recognize the pair (ϕ1, ϕ2) as the right
example. As a consequence, the answer to the question asked in this section is still
unknown.

Acknowledgements Work carried out under the auspices of INdAM-GNSAGA.
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A Brief Introduction to Multidimensional
Persistent Betti Numbers

Andrea Cerri and Patrizio Frosini

Abstract In this paper, we propose a brief overview about multidimensional
persistent Betti numbers (PBNs) and the metric that is usually used to compare
them, i.e., the multidimensional matching distance. We recall the main definitions
and results, mainly focusing on the 2-dimensional case. An algorithm to approximate
n-dimensional PBNs with arbitrary precision is described.

2020Mathematics Subject Classification. Primary: 55N31; Secondary: 57R19 ·
65D18 · 68U05 · 62R40

1 Introduction

Persistent topology and homology are the main tools in topological data analysis.
They study how the topology and homology of the sublevel set Xu of a continuous
function f : X → R

n change when u varies in Rn . The case n = 1 has been consid-
ered in many papers, starting from the beginning of the ‘90s (see [1] for historical
notes). The case n > 1 (i.e., multidimensional persistence) was firstly investigated in
[2] as regards homotopy groups, while multidimensional persistence modules were
considered in [3, 4] and subsequently studied in other papers including [5–7]. In
particular, the interleaving distance between multidimensional persistence modules
has been formally introduced and discussed in [5]. Another useful tool in persistence
theory is given by multidimensional persistent Betti number functions (briefly, n-
dimensional PBNs) [8], also called rank invariants [4]. They have been studied in [9]
bymeans of the so-called foliation method. Focusing on the 0th homology, that paper
proved that for n > 1 a foliation in half-planes can be given, such that the restric-
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tion of the n-dimensional PBNs to these half-planes turns out to be 1-dimensional.
Each plane in the foliation corresponds to a positive slope line r in R

n and to the
1-dimensional filtration X p of X , where X p is the set of points of X whose images
by f are both under and on the left of the point p ∈ r . This approach leads to an algo-
rithm to approximate with arbitrary precision the multidimensional persistent Betti
number functions. Furthermore, a stable matching distance between n-dimensional
PBNs is available, namely the n-dimensional matching distance ([8–10]). The inter-
est in the n-dimensional matching distance between PBNs derives from the fact that,
while its computation is pretty simple, the computation of the interleaving distance
between persistence modules is NP-hard [11]. This survey paper illustrates the main
results concerning n-dimensional PBNs and the n-dimensional matching distance,
with particular reference to the case n = 2. Finally, we present a recent variant of
this last metric, called coherent matching distance [12]. For each result, the paper,
where the interested reader can find the corresponding proof and further details, is
reported.

2 PBNs: Definitions and First Properties

In this section, we recall some basic definitions and properties in persistent homology
and topology. For further information, we refer the interested reader to the surveys
[1, 13–15]. We will assume that the considered filtering functions are continuous
and make use of Čech homology. Although different from the more usual setting of
tame functions and simplicial or singular homology, our choice is motivated by the
following facts:

• the reduction of multidimensional persistence to the 1-dimensional setting is not
possible in the setting of tame functions, as observed in [10], but it luckily does in
the wider setting of continuous functions;

• using the continuity axiom of Čech homology, it is possible to prove the Repre-
sentation Theorem 2.5, stating that the PBNs of a scalar-valued filtering function
can be completely described by a persistence diagram.

Hereafter, X is a finitely triangulable topological space. The symbol �+ denotes the
half-plane {(u, v) ∈ R

2 : u < v}, while �∗ is the set �+ ∪ {(u,∞) : u ∈ R}.

2.1 1-Dimensional PBNs

We first consider the case when the filtering function f is real-valued. Indeed, our
approach to the multidimensional setting of PBNs is based on a reduction to the
1-dimensional situation. We can consider the sublevel sets of f to define a family of
subspaces Xu = f −1((−∞, u]), u ∈ R, nested by inclusion, i.e., a filtration of X .
Homologymay be applied to derive some topological information about the filtration
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of X induced by f . The first step is to define persistent homology groups as follows.
For u < v ∈ R, we consider the inclusion of Xu into Xv , which induces a homomor-
phism of homology groups Hk(Xu) → Hk(Xv) for every k ∈ Z. Its image consists of
the k-homology classes that live at least from Hk(Xu) to Hk(Xv): It is called the kth
persistent homology group of (X, f ) at (u, v), denoted by H (u,v)

k (X, f ). By assum-
ing that coefficients are chosen in a field K, we get that homology groups are vector
spaces. Therefore, they can be completely described by their dimension, leading to
the following definition [16].

Definition 2.1 (Persistent Betti Numbers) The persistent Betti numbers function of
f in degree k, briefly PBN, is the function β f : �+ → N defined as

β f (u, v) = dim H (u,v)
k (X, f ).

Since X is finitely triangulable, we have thatβ f (u, v) < ∞ for every (u, v) ∈ �+.
Hereafter, we will assume that a degree k ∈ Z has been chosen.

2.1.1 Persistence Diagrams and Representation Theorem.

One of the main properties of 1-dimensional PBNs is that they admit a very simple
and compact representation. Precisely, under our assumptions on X and f , and
making use of Čech homology, it is possible to prove that each 1-dimensional PBNs
can be compactly described by a multiset of points, proper and at infinity, of the real
plane.We call them proper cornerpoints and cornerpoints at infinity (or cornerlines),
respectively.

Definition 2.2 (Proper cornerpoint) For every point p = (u, v) ∈ �+, the number
μ(p) is the minimum over all the positive real numbers ε, with u + ε < v − ε, of

β f (u + ε, v − ε) − β f (u − ε, v − ε) − β f (u + ε, v + ε) + β f (u − ε, v + ε).

The number μ(p)will be called themultiplicity of p for β f . Any point p ∈ �+ such
that the number μ(p) is strictly positive is said to be a proper cornerpoint for β f .

Definition 2.3 (Cornerpoint at infinity) For every vertical line r , with equation
u = ū, ū ∈ R, we identify r with (ū,∞) ∈ �∗, and define the number μ(r) as the
minimum over all the positive real numbers ε, with ū + ε < 1/ε, of

β f (ū + ε, 1/ε) − β f (ū − ε, 1/ε) .

The number μ(r) will be called the multiplicity of r for β f . When this finite number
is strictly positive, r is said to be a cornerpoint at infinity for β f .

The concept of cornerpoint finds application in providing a representation of PBNs
[8, 17]. Set �̄∗ = �∗ ∪ ∂�+.
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Definition 2.4 (Persistence diagram) The persistence diagramDgm( f ) ⊂ �̄∗ is the
multiset of all cornerpoints (both proper and at infinity) for β f , counted with their
multiplicity, union the points of � := ∂�+, counted with infinite multiplicity.

The key role of persistence diagrams is shown in the following Representation
Theorem 2.5 [8, 17], claiming that they uniquely determine 1-dimensional PBNs
(the converse also holds by definition of persistence diagram).

Theorem 2.5 (Representation Theorem) For every (ū, v̄) ∈ �+, we have

β f (ū, v̄) =
∑

(u,v)∈�∗
u≤ū, v>v̄

μ((u, v)).

In practice, Theorem2.5 states that the value assumed byβ f at a point (ū, v̄) ∈ �+
equals the number of cornerpoints lying above and on the left of (ū, v̄). By means
of this theorem, 1-dimensional PBNs can be compactly represented as multisets of
cornerpoints and cornerpoints at infinity, i.e., as persistence diagrams.

2.1.2 Stability of 1-Dimensional PBNs.

The Representation Theorem 2.5 implies that any distance between persistence dia-
grams induces a distance between 1-dimensional PBNs. This justifies the following
definition 2.6 [8, 17, 18]. Before proceeding, we need to introduce the extended
metric d̃(p, q) := ‖p − q‖∞̃ on �∗. For every p = (u, v), q = (u′, v′) ∈ �∗, we
define

‖p − q‖∞̃ = min
{
max

{|u − u′|, |v − v′|} ,max
{
(v − u)/2, (v′ − u′)/2

}}
, (1)

with the convention about points at infinity that∞ − c = ∞ and c − ∞ = −∞when
c �= ∞,∞ − ∞ = 0, ∞

2 = ∞, | ± ∞| = ∞, min{c,∞} = c and max{c,∞} = ∞.
In plain words, d̃(p, q) measures the pseudo-distance between two points p and q
as the minimum between the cost of moving one point onto the other and the cost of
moving both points onto the diagonal�, with respect to the max-norm and under the
assumption that any two points of the diagonal have vanishing pseudo-distance (we
recall that a pseudo-distance d is just a distance missing the condition d(X,Y ) =
0 ⇒ X = Y , i.e., two distinct elements may have vanishing distance with respect to
d). When the number of cornerpoints is finite, the matching of persistence diagrams
is related to the bottleneck transportation problem, and thematching distance reduces
to the bottleneck distance [17]. However, this is not always the case when working
with continuous filtering functions, as the number of cornerpoints may be countably
infinite.
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Definition 2.6 (Matching distance) Let f, g : X → R be two continuous functions.
For any bijectionσ betweenDgm( f ) andDgm(g), set cost(σ ) := maxp∈Dgm( f ) ‖p −
σ(p)‖∞̃. The matching distance dmatch between β f and βg is defined as

dmatch
(
β f , βg

) = min
σ

cost(σ ), (2)

where σ ranges over all bijections between Dgm( f ) and Dgm(g).

We remark that the matching distance is stable with respect to perturbations of the
filtering functions, as the following matching stability theorem states:

Theorem 2.7 (1-Dimensional Stability Theorem) If f, g : X → R are two continu-
ous functions, then dmatch(β f , βg) ≤ ‖ f − g‖∞.

For a proof of the previous theorem and more details about the matching distance,
the reader is referred to [8, 18] (see also [17, 19] for the bottleneck distance).

2.2 The Foliation Method

We now review the so-called foliation method, leading to the definition of a stable
distance for multidimensional PBNs [8].

If the considered filtering function is vector-valued, i.e., f : X → R
n , providing

the multidimensional analog of PBNs is straightforward. For u, v ∈ R
n , with u =

(u1, . . . , un) and v = (v1, . . . , vn), we say u 
 v (resp. u ≺ v) if and only if ui ≤ vi
(resp. ui < vi ) for every index i = 1, . . . , n. We also endow R

n with the max-norm
‖(u1, u2, . . . , un)‖∞ = max1≤i≤n |ui | and use the symbol �+

n to denote the open set
{(u, v) ∈ R

n × R
n : u ≺ v}.

Given u ≺ v, the multidimensional kth persistent homology group of
(X, f ) at (u, v) is defined as the image H (u,v)

k (X, f ) of the homomorphism
Hk(Xu) → Hk(Xv) induced in homology by the inclusion of Hk(Xu) into Hk(Xv),
with Xu = {x ∈ X : f (x) 
 u}.
Definition 2.8 (Persistent Betti Numbers) The multidimensional persistent Betti
numbers function of f : X → R

n in degree k, briefly PBN, is the function β f :
�+

n → N ∪ {∞} defined as

β f (u, v) = dim H (u,v)
k (X, f ).

Since X is finitely triangulable, we have that β f (u, v) < ∞ for every (u, v) ∈ �+
n

(cf. [8, 20]). The key idea underlying the foliation method is that a collection of
half-planes in �+

n can be given, such that the restriction of the multidimensional
PBNs to these half-planes turns out to be a 1-dimensional PBNs function in two
scalar variables. This approach implies that the comparison of two multidimensional
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PBNs can be performed half-plane by half-plane bymeasuring the distance of appro-
priate 1-dimensional PBNs. Therefore, the stability of multidimensional PBNs is a
consequence of the 1-dimensional PBNs’ stability.

We start by recalling that the following parameterized family of half-planes in
R

n × R
n is a foliation of �+

n (cf. [9][Prop. 1], [21] and [22]).

Definition 2.9 (Linearly admissible pairs) For everym = (m1, . . . ,mn) ofRn such
that mi > 0 for i = 1, . . . , n, and

∑n
i=1 mi = 1, and for every b = (b1, . . . , bn) of

R
n such that

∑n
i=1 bi = 0, we shall say that the pair (m, b) is linearly admissible.

We denote the set of all linearly admissible pairs in R
n × R

n by Ladmn . Given a
linearly admissible pair (m, b), we define the half-plane π(m,b) of Rn × R

n by the
following parametric equations:

{
u = s · m + b
v = t · m + b

for s, t ∈ R, with s < t .

The set Ladmn is a set whose closure is (2n − 2)-dimensional submanifold of
R

n × R
n with boundary. The collection of half-planes π(m,b) constitute a foliation

of �+
n , implying that for each (u, v) ∈ �+

n there exists one and only one (m, b) ∈
Ladmn such that (u, v) ∈ π(m,b). Observe that m and b only depend on (u, v).

A first property of this foliation is that the restriction of β f to each leaf can be
seen as a particular 1-dimensional PBNs. Intuitively, on each half-plane π(m,b) one
can find the PBNs corresponding to the filtration of X obtained by sweeping the
line through u and v parameterized by γ(m,b) : R → R

n , with γ(m,b)(τ ) = τ · m + b.
Each set Xτ in this filtration is given by the points of X that are taken by f into the
quadrant

{
u ∈ R

n : u 
 γ(m,b)(τ )
}
.

A second property is that this filtration is equivalent to the one given by the lower
level sets of a certain real-valued continuous function. Both these properties are stated
in the next theorem, proved in [8, Thm. 4.2], and are intuitively shown in Fig. 1.

Theorem 2.10 (Reduction Theorem) For every (u, v) ∈ �+
n , let (m, b) be the only

linear admissible pair such that (u, v) = (s · m + b, t · m + b) ∈ π(m,b). Setting
m∗ = mini mi , let moreover f(m,b) : X → R be the continuous filtering function
defined by setting

f(m,b)(x) = m∗ · max
i

{
fi (x) − bi

mi

}
.

Then it holds that
β f (u, v) = β f(m,b)

m∗
(s, t) .

The Reduction Theorem 2.10 implies that in the multidimensional case, we can
obtain an analog Dmatch of the distance dmatch. The metric Dmatch has a particularly
simple form, but yet yields the desired stability properties [8].
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Fig. 1 1-dimensional reduction of 2-dimensional PBNs. Left: a 1-dimensional filtration is con-
structed sweeping the line through u and v. A unit vector m and a point b are used to parameterize
this line as γ(m,b)(τ ) = τ · m + b. Right: the persistence diagram of this filtration can be found on
the half-plane π(m,b)

Definition 2.11 (Multidimensional matching distance) Let f, g : X → R
n be con-

tinuous functions. If (m, b) ∈ Ladmn , set d(m,b)
(
β f , βb

) = dmatch
(
β f(m,b) , βg(m,b)

)
.

The multidimensional matching distance Dmatch between β f and βg is defined as

Dmatch
(
β f , βg

) = sup
(m,b)∈Ladmn

d(m,b)
(
β f , βg

)
.

3 Evaluating the Distance Between Multidimensional PBNs

Definition 2.11 implies that, in general, a direct computation of Dmatch
(
β f , βg

)
is not

feasible, aswe should compute the valued(m,b)
(
β f , βg

)
for an infinite number of pairs

(m, b) ∈ Ladmn . On the other hand, taking a non-empty, finite subset A ⊆ Ladmn

and replacing sup(m,b)∈Ladmn
by max(m,b)∈A in Definition 2.11, we get a stable and

computable pseudo-distance between multidimensional PBNs, say D̃match
(
β f , βg

)
,

which is an approximation of Dmatch to be used in applications.
Computing D̃match

(
β f , βg

)
requires the definition of a subset A ⊆ Ladmn strik-

ing a balance between computational cost and approximation accuracy. In fact, it is
reasonable that the larger the set A, the smaller the approximation error. On the other
hand, the smaller the set A, the faster the computation of D̃match

(
β f , βg

)
. In this

perspective, the goal is to find a set A representing a compromise between these two
situations. Additionally, given an arbitrary real value ε > 0 as an error threshold,
we might want A depending on ε in a way that D̃match

(
β f , βg

)
accomplishes the

inequality
∣∣∣Dmatch

(
β f , βg

) − D̃match
(
β f , βg

)∣∣∣ ≤ ε.

In what follows we review the procedure proposed in [21, 23] to develop an
algorithm resulting in an approximation D̃match

(
β f , βg

)
of the multidimensional

matching distance Dmatch
(
β f , βg

)
, up to an input error threshold ε.
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3.1 Underlying Theoretical Results

The first result stems from the fact that, at least in a wide subset of Ladmn , the func-
tions f(m,b) defined in the Reduction Theorem 2.10 do not depend on all the compo-
nents of f . To see this, we first fix c = max{maxx∈X ‖ f (x)‖∞,maxx∈X ‖g(x)‖∞}.
Given two indexes ı̄, j̄ ∈ {1, . . . , n}, with ı̄ �= j̄ , it is quite easy to choose a lin-
ear admissible pair (m, b) ∈ Ladmn such that fı̄ (x) − bı̄ ≤ 0 and fj̄ (x) − bj̄ ≥ 0
for every x ∈ X , thus implying that f(m,b) = m∗ · maxi �=ı̄

fi−bi
mi

. The simplest exam-
ple is when n = 2: In such a case, the elements of Ladm2 are given by (m, b) =
((m1, 1 − m1), (b1,−b1)), with 0 < m1 < 1 and b1 ∈ R. It is easy to check that,
whenever b1 ≥ c (respectively, b1 ≤ −c) it holds that f(m,b)(x) = m∗ · f2(x)+b1

1−m1
(resp.

f(m,b)(x) = m∗ · f1(x)−b1
m1

) for every x ∈ X . Similar arguments hold for g(m,b), so that
we can write

d(m,b)(β f , βg) =
{ m∗

m1
· dmatch(β f1 , βg1), if b1 ≤ −c;

m∗
1−m1

· dmatch(β f2 , βg2), if b1 ≥ c,
(3)

the equality in (3) coming from the properties of the matching distance dmatch (see
also [22, Prop. 2.3]).

Based on the above reasonings, the next result [21] states how andwhen it is possi-
ble to reduce the computation of d(m,b)

(
β f , βg

)
to a (n − 1)-dimensional setting. Set

Ladm+
n = {(m, b) ∈ Ladmn : ‖b‖∞ ≥ (n − 1) · c}. For every index i ∈ {1, . . . , n},

we denote by f i (respectively, gi ) the Rn−1-valued function obtained from f (resp.
g) by removing the i-th component. Similarly, the symbol mi (resp. bi ) will be used
for the element of Rn−1 obtained from m (resp. b) by removing the i-th component.

Theorem 3.1 Assume that (m, b) ∈ Ladm+
n . Then an index ı̄ ∈ {1, . . . , n} exists

such that

d(m,b)
(
β f , βg

) = m∗
mini �=ı̄ mi

· d(m̂,b̂)

(
β f ı̄ , βg ı̄

)
, (4)

with
(
m̂, b̂

)
∈ Ladmn−1 given by m̂ = mı̄

(1−mı̄ )
and b̂ = bı̄ + m̂ · bı̄ .

It is also possible to bound the variation of d(m,b)
(
β f , βg

)
when moving from

one half-plane to another in Ladmn \ Ladm+
n . To do this, it is useful to intro-

duce a distance d : Ladmn × Ladmn → R
+ on the set of admissible pairs [21].

For (m, b), (m ′, b′) ∈ Ladmn , we set

d
(
(m, b) ,

(
m ′, b′)) = max

{
max

i=1,...,n

∣∣∣∣
m∗
mi

− m ′∗
m ′

i

∣∣∣∣ ,
∥∥b − b′∥∥∞

}
. (5)

Based on the above distance, it is possible to prove the following result [21].
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Theorem 3.2 Let (m, b) ∈ Ladmn \ Ladm+
n and

(
m ′, b′) ∈ Ladmn, and assume

that d
(
(m, b) ,

(
m ′, b′)) ≤ δ. Then

∣∣d(m,b)
(
β f , βg

) − d(m ′,b′)
(
β f , βg

)∣∣ ≤ 2δ(n · c +
1).

Remark 3.3 Note that d(m,b)
(
β f , βg

) ≤ 2c for every (m, b) ∈ Ladmn (this is a triv-
ial consequenceofTheorem2.7); thuswehave

∣∣d(m,b)
(
β f , βg

) − d(m ′,b′)
(
β f , βg

)∣∣ ≤
2c. Now, if δ ≥ 1

n then 2c ≤ 2δ (nc + 1). Consequently, the inequality claimed by
Theorem 3.2 is trivial when δ ≥ 1

n .

4 An Algorithm for Approximating Dmatch

The aboveTheorems3.1 and 3.2 can be used to derive an algorithm for approximating
the multidimensional matching distance Dmatch

(
β f , βg

)
.

4.1 The 2-Dimensional Case

We start by providing a detailed treatment of the case n = 2, since our approach for
higher dimensions is based on a reduction to the 2-dimensional situation. We list the
steps in the algorithm described in [21]. For a previous version of the algorithm in
the case n = 2, the reader is referred to [23].

(a) Fix a threshold error ε. By rescaling appropriately both f and g (and con-
sequently ε), we can assume without loss of generality that c = 1. For every
δ > 0, we can consider the concept of regular δ-grid over a subset L of Ladm2,
i.e., a collection of points G = {p = (m, b) ∈ Ladm2} such that, denoting by
Bδ(p) the open ball centered at p having radius δ according to the distance d
introduced by equality (5), the following statements hold:

(1) Bδ(p) ∩ Bδ(p′) = ∅ for every p, p′ ∈ G;
(2) L ⊆ ∪p∈G B̄δ(p), with B̄δ(p) the closure of Bδ(p).

(b) We need to fix δ. Because of Remark 3.3 we take δ smaller than 1
2 , say δ = 1

4 .
We also define a finite, regular δ-grid G on L = Ladm2 \ Ladm+

2 , see Fig. 2 for
some examples. To display the grid, we use the fact that Ladm2 can be identified
with the product space M2 × N2, with M2 = {m = (m1, 1 − m1), 0 < m1 < 1}
and N2 = {b = (b1,−b1), b1 ∈ R}. Therefore, we can represent Ladm2 as the
subset of the real plane given by I × R, I the open interval {m1 ∈ R : 0 <

m1 < 1}. In this perspective, the set Ladm2 \ Ladm+
2 = {(m, b) : ‖b‖∞ < 1}

is displayed as I × {b ∈ R : |b| < 1}. We refer the reader to [21] for a practical
construction of G.

(c) Our goal is to compute the largest value for d(m,b)(β f , βg) on Ladm+
2 and

on Ladm2 \ Ladm+
2 . Equality (2) allows us to simplify the computation of
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Fig. 2 Regular grids on Ladm2 \ Ladm+
2 for δ = 1 (left), δ = 1/2 (center), and δ = 1/4 (right).

The grids are regular with respect to the distance d defined by the equality (5)

d(m,b)(β f , βg)on Ladm
+
2 . Indeed, it implies thatd(m,b)(β f , βg) ≤ dmatch(β f1 , βg1)

if b = (b1,−b1) is such that b1 ≤ −c, while d(m,b)(β f , βg) ≤ dmatch(β f2 , βg2) if
b1 ≥ c. Moreover, in the first case, the value dmatch(β f1 , βg1) is achieved when
m = (m1, 1 − m1) is such that m1 ≤ 1

2 ; while in the second case, the value
dmatch(β f2 , βg2) is achieved when m1 ≥ 1

2 . Thus, it is sufficient to consider the
maximum between dmatch(β f1 , βg1) and dmatch(β f2 , βg2) in order to know the
value maxLadm+

2
d(m,b)(β f , βg). We denote such a maximum by Dext .

(d) Theorem 3.2 allows us to control the variation of d(m,b)(β f , βg) in each set
(Ladm2 \ Ladm+

2 ) ∩ B̄δ(p), and hence in Ladm2 \ Ladm+
2 . For

every p = (m, b) ∈ G, we compute the value d(m,b)(β f , βg) and set Dint =
maxp∈G d(m,b)(β f , βg).

(e) The number Dtot = max{Dext , Dint } is then afirst approximation of thematching
distance Dmatch(β f , βg).We briefly describe how to refine the value Dtot to obtain
an approximation of Dmatch(β f , βg) up to the error threshold ε.

• If the inequality 2δ · (2c + 1) ≤ ε holds, by Definition 2.11 and by applying
Theorem 3.2, it follows that |Dmatch(β f , βg) − Dtot| ≤ ε. Therefore, we stop
having as output Dtot;

• Otherwise, we delete each point p = (m, b) ∈ G such that the inequality
Dtot − d(m,b)(β f , βg) > 2δ · (2c + 1) holds. Indeed, Theorem 3.2 ensures that
Dtot will not be achieved (or exceeded) by computing the values d(m,b)(β f , βg)

over the sets B̄δ(p). Moreover, the grid G is refined as follows: Each p still in
G is replaced by four suitable points p1, . . . , p4, such that {p j , j = 1, . . . , 4}
is a regular δ

2 -grid on Bδ(p) based on the four balls B δ
2
(p j ). Finally, Dint and

Dtot are updated according to the new grid G ′, δ is replaced by δ
2 , and the

algorithm restarts by checking if the inequality 2δ · (2c + 1) ≤ ε holds.
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4.1.1 The n-dimensional Case

We can now show how the above procedure can be generalized to the n-dimensional
setting, with n > 2. Such an extension is partially based on a reduction to the case
n = 2.

Similarly to what happens in the case n = 2, we need to compute the largest value
for d(m,b)(β f , βg) on Ladm+

n and on Ladmn \ Ladm+
n .We fix a threshold error ε. By

appropriately rescaling both f and g (and consequently ε), we can assume without
loss of generality that c = 1, so that Ladm+

n = {(m, b) ∈ Ladmn : ‖b‖∞ ≥ n − 1}.
In Ladm+

n , Theorem 3.1 allows us to reduce the computation of d(m,b)(β f , βg) to
a (n − 1)-dimensional situation. Indeed, it implies that, for every (m, b) ∈ Ladm+

n ,
there exists (m̂, b̂) ∈ Ladmn−1 such that d(m,b)

(
β f , βg

) ≤ d(m̂,b̂)

(
β f ı̄ , βgı̄

)
for a suit-

able index ı̄ ∈ {1, . . . , n}. On the other hand, it is possible to prove that, for every
ı̄ ∈ {1, . . . , n} and every (m̂, b̂) ∈ Ladmn−1, there always exists (m, b) ∈ Ladm+

n
such that d(m,b)

(
β f , βg

) = d(m̂,b̂)

(
β f ı̄ , βgı̄

)
. As a consequence, the computation

of d(m,b)
(
β f , βg

)
over the set Ladm+

n can be reduced to the one of the (n − 1)-
dimensional matching distances Dmatch

(
β f i , βgi

)
, for i = 1, . . . , n.

Obviously, we can recursively repeat the same reasonings to progressively
decrease the dimensionality of the problem. It turns out that computing the largest
value for d(m,b)(β f , βg) on Ladm+

n can be reduced to the 2-dimensional case,
by considering the

(n
2

)
2-dimensional matching distances Dmatch

(
β fi j , βgi j

)
, with

fi j = ( fi , f j ) and gi j = (gi , g j ) for every i �= j .
Similarly to what happens in the 2-dimensional case, Theorem 3.2 allows us

to control the variation of d(m,b)(β f , βg) on the set Ladmn \ Ladm+
n . Also in this

case, we can define a regular grid G on Ladmn \ Ladm+
n by extending the above

reasonings for the 2-dimensional setting, see [21] for more details.

5 Beyond the Multidimensional Matching Distance Dmatch

In Definition 2.11, we have seen that the multidimensional matching distance
Dmatch(β f , βg) depends on the comparison of the two collections {Dgm( f(m.b))} and
{Dgm(g(m.b))}, with (m, b) varying in Ladmn . This is done by computing the supre-
mum of the 1-dimensional matching distances d(m,b)(β f , βg) over (m, b). Note that,
in principle, a small change of the pair (m, b) can cause a large change in the “opti-
mal” matching, that is, the matching σ : Dgm( f(m,b)) → Dgm(g(m,b)) whose cost is
equal to the distance d(m,b)(β f , βg). In other words, the definition of Dmatch(β f , βg)

is based on a family of optimal matchings that is not required to change continuously
with respect to the pair (m, b). This is due to the intrinsically discontinuous definition
of Dmatch(β f , βg), which in turn makes studying its properties difficult.
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5.1 The Coherent Matching Distance for 2-Dimensional
Persistent Betti Numbers

For these reasons, in [12, 24], a new matching distance between multidimensional
PBNs has been introduced, called coherent matching distance and initially inves-
tigated in the 2-dimensional setting. The definition of the coherent matching dis-
tance is based on matchings that change “coherently” with the persistence diagrams
of the 1-dimensional filtering functions that we take into account. In other words,
the basic idea consists of considering only matchings between the persistence dia-
grams Dgm( f(m,b)) and Dgm(g(m,b)) that change continuously with respect to the
pair (m, b).

The idea of “coherent matching” leads to the discovery of an interesting phe-
nomenon of monodromy. While requiring that the matchings change continuously,
one has to avoid the pairs (m, b) at which the persistence diagram contains dou-
ble points, called singular pairs. This is done by choosing a connected open set
U ⊆ Ladm2 of regular (i.e., non-singular) pairs and assuming that (m, b) ∈ U . In
doing this, it is possible to preserve the “identity” of points in the persistence diagram
and follow them when moving in U . From this identity, the concept of a family of
continuously changing matchings easily arises. Interestingly, turning around a sin-
gular pair can produce a permutation in the considered persistence diagram, so that
the considered filtering function is associated with a monodromy group. An example
of this phenomenon can be found in [12].

Therefore, the definition of “coherent matching” must take a monodromy group
into account. In [12], this is done by defining a transport operator T ( f,g)

γ , which
continuously transports each matching σ(m,b) between the persistence diagrams
Dgm( f(m,b)), Dgm(g(m,b)) to a matching σ(m ′,b′) between the persistence diagrams
Dgm( f(m ′,b′)), Dgm(g(m ′,b′)) along a path γ from (m, b) to (m ′, b′) in the setU . The
existence of monodromy implies that the transport of σ(m,b) depends not only on the
pairs (m, b), (m ′, b′), but also on the path γ .

Having introduced the transport operator T ( f,g)
γ , we can define the coherent cost of

a matching σ(m,b) by considering the usual cost of all the matchings that are obtained
by transportation of σ(m,b):

cohcostU (σ(m,b)) = sup
γ

cost
(
T ( f,g)

γ

(
σ(m,b)

))
, (6)

where γ ranges over the set of all continuous paths from [0, 1] to U starting at
(m, b), while cost(σ ) is the cost of a matching σ between persistence diagrams (see
Definition 2.6).

This done thedefinitionof the coherentmatchingdistanceCDU is straightforward:
If two filtering functions f, g : X → R

2 are given and U does not contain singular
pairs neither for f nor for g, then CDU (β f , βg) is the infimum of the coherent costs
of the matchings between the persistence diagrams associated with an admissible
pair (m, b) ∈ U arbitrarily fixed:
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CDU (β f , βg) = inf
σ(m,b)

cohcostU
(
σ(m,b)

)
, (7)

with σ(m,b) varying in the set of all matchings from Dgm( f(m,b)) to Dgm(g(m,b)).
It is important to remark that the definition ofCDU does not depend on the choice

of the pair (m, b) [12, Prop. 12].Moreover, under suitable conditions for the functions
f and g, it is possible to prove that, if ‖ f − g‖∞ < c for a non-negative real value
c sufficiently small, then CDU (β f , βg) ≤ | f − g‖∞ [12, Thm. 3].

Another key point here is that the function cost(T ( f,g)
γ (σ(m,b))) takes its global

maximum over γ when the endpoint of γ belongs either to the vertical line m = 1
2

or to the boundary ofU [12, Thm. 6]. This result casts new light on the abundance of
examples where the supremum defining the usual matching distance Dmatch is taken
for the pairs (m, b) ∈ Ladm2 withm ≈ 1

2 [12, 23]. Nevertheless, it suggests that the
coherent matching distance CDU could be used in place of the matching distance
Dmatch both in theory and applications, as it allows one to manage the parameter
space Ladm2 more efficiently.

Acknowledgements Work carried out under the auspices of INdAM-GNSAGA.
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Some New Methods to Build Group
Equivariant Non-expansive Operators
in TDA

Nicola Quercioli

Abstract Group equivariant operators are playing a more and more relevant role
in machine learning and topological data analysis. In this paper, we present some
new results concerning the construction of G-equivariant non-expansive operators
(GENEOs) from a space � of real-valued bounded continuous functions on a topo-
logical space X to � itself. The space � represents our set of data, while G is a
subgroup of the group of all self-homeomorphisms of X , representing the invariance
we are interested in.

Keywords Natural pseudo-distance · Filtering function · Group action · Group
equivariant non-expansive operator · Persistent homology · Persistence diagram ·
Topological data analysis
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1 Introduction

In the recent years, topological data analysis (TDA) has imposed itself as a useful
tool in order to manage huge amount of data of the present digital world [1]. In
particular, persistent homology has assumed a relevant role as an efficient tool for
qualitative and topological comparison of data [2]; since in several applications, we
can express the acts of measurement byRm-valued functions defined on a topological
space, so inducing filtrations on such a space [3]. These filtrations can be analyzed by
means of the standard methods used in persistent homology. For further and detailed
information about persistent homology, we refer the reader to [4].

The importance of group equivariance in machine learning is well known (see,
e.g., [5–8]). Our work on group equivariant non-expansive operators (GENEOs) is
devoted to possibly establish a link between persistence theory andmachine learning.
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Our basic idea is that acts ofmeasurement are directly influenced by the observer, and
we should mostly focus on well approximating the observer, rather than precisely
describing the data (see, e.g., [9]). In some sense, we could see the observer as a
collection of GENEOs acting on a suitable space of data and encode in the choice of
these operators the invariance we are interested in.

The concept of invariance group leads us to consider the natural pseudo-distance
as our main tool to compare data. Let us consider two real-valued functions ϕ, ψ

on a topological space X , representing the data we want to compare, and a group
G of self-homeomorphisms of X . Roughly speaking, the computation of the natural
pseudo-distancedG betweenϕ andψ is the attempt of finding the best correspondence
between these two functions with respect to the invariance group G.

Unfortunately, dG is difficult to compute, but [10] illustrates a possible path to
approximate the natural pseudo-distance by means of a dual approach involving per-
sistent homology and GENEOs. In particular, one can see that a good approximation
of the space F(�,G) of all GENEOs corresponds to a good approximation of the
pseudo-distance dG . In order to extend our knowledge about F(�,G), we devote
this paper to introduce some new methods to construct new GENEOs from a given
set of GENEOs.

The outline of our paper follows. In Sect. 2, we briefly present our mathematical
framework. In Sect. 3, we give a new result about building GENEOs by power means
and show some examples to explain why this method is useful and meaningful. In
Sect. 4, we illustrate a new procedure to build new GENEOs by means of series of
GENEOs. In particular, this is a first example of costruction of an operator starting
from an infinite set of GENEOs.

2 Our Mathematical Model

In this section, the mathematical model illustrated in [10] will be briefly recalled. Let
X be a (non-empty) topological space and � be a topological subspace of the topo-
logical space C0

b (X ,R) of the continuous bounded functions from X to R, endowed
with the topology induced by the sup-norm ‖ · ‖∞. The elements of � represent our
data and are called admissible filtering functions on the space X . We also assume
that � contains at least the constant functions c such that |c| ≤ supϕ∈� ‖ϕ‖∞. The
invariance of the space � is represented by the action of a subgroup G of the group
Homeo(X ) of all homeomorphisms from X to itself. The group G is used to act on
� by composition on the right, i.e., we suppose that ϕ ◦ g is still an element of �

for any ϕ ∈ � and any g ∈ G. In other words, the functions ϕ and ϕ ◦ g, elements
of �, are considered equivalent to each other for every g ∈ G.

In this theoretical framework, we use the natural pseudo-distance dG to compare
functions.
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Definition 1 For every ϕ1, ϕ2 ∈ �, we can define the function
dG(ϕ1, ϕ2) := infg∈G supx∈X |ϕ1(x) − ϕ2(g(x))| from Φ × � to R. The function dG
is called the natural pseudo-distance associated with the group G acting on �.

We can consider this (extended) pseudo-metric as the ground truth for the com-
parison of functions in�with respect to the action of the groupG. Unfortunately, dG
is usually difficult to compute. However, the natural pseudo-distance can be studied
and approximated by a method involving G-equivariant non-expansive operators.

Definition 2 AG-equivariant non-expansive operator (GENEO) for the pair (�,G)

is a function
F : � −→ �

that satisfies the following properties:

1. F is G-equivariant: F(ϕ ◦ g) = F(ϕ) ◦ g, ∀ ϕ ∈ �, ∀ g ∈ G;
2. F is non-expansive: ‖F(ϕ1) − F(ϕ2)‖∞ ≤ ‖ϕ1 − ϕ2‖∞, ∀ ϕ1, ϕ2 ∈ �.

The symbolF(�,G) is used to denote the set of all G-equivariant non-expansive
operators for (�,G). Obviously, F(�,G) is not empty because it contains at least
the identity operator.

Remark 1 The non-expansivity property means that the operators in F(�,G) are
1-Lipschitz functions, and therefore, they are continuous.Weunderline thatGENEOs
are not required to be linear.

If X has nontrivial homology in degree k, the following key result holds [10].

Theorem 1 dG(ϕ1, ϕ2) = supF∈F(�,G) dmatch(Dgmk(F(ϕ1)),Dgmk(F(ϕ2))), where
Dgmk(ϕ) denotes the k-th persistence diagram of the function ϕ : X → R and dmatch

is the classical matching distance.

Persistent homology and the natural pseudo-distance are related to each other by
Theorem 1 via GENEOs. This result enables us to approximate dG by means of G-
equivariant non-expansive operators. The construction of new classes of GENEOs is
consequently a relevant step in the approximation of the space F(�,G), and hence
in the computation of the natural pseudo-distance, so justifying the interest for the
results shown in Sects. 3 and 4.

3 Building New GENEOs by Means of Power Means

In this section, we introduce a newmethod to build GENEOs, concerning the concept
of power mean. Now we recall a proposition that enables us to find new GENEOs,
based on the use of 1-Lipschitz functions (see [11]).
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Proposition 1 Let L be a 1-Lipschitz function from R
n to R, where Rn is endowed

with the norm ‖(x1, . . . , xn)‖∞ = max{|x1|, . . . , |xn|}. Assume also that F1, . . . ,Fn

areGENEOs for (�,G). Let us define the functionL∗(F1, . . . ,Fn) : � −→ C0
b (X ,R)

by setting
L∗(F1, . . . ,Fn)(ϕ)(x) := L(F1(ϕ)(x), . . . ,Fn(ϕ)(x)).

If L∗(F1, . . . ,Fn)(�) ⊆ �, the operator L∗(F1, . . . ,Fn) is a GENEO for (�,G).

In order to apply this proposition, we recall some definitions and properties about
power means and p-norms. Let us consider a sample of real numbers x1, . . . , xn and
a real number p > 0. As well known, the power mean Mp(x1, . . . , xn) of x1, . . . , xn
is defined by setting

Mp(x1, . . . , xn) :=
(
1

n

n∑
i=1

|xi|p
) 1

p

.

In order to proceed, we consider the function ‖ · ‖p : Rn −→ R defined by setting

‖x‖p = (|x1|p + |x2|p + · · · + |xn|p) 1
p

where x = (x1, . . . , xn) is a point of Rn. It is well know that, for p ≥ 1, ‖ · ‖p is a
norm and that for any x ∈ R

n, we have limp→∞ ‖x‖p = ‖x‖∞. Finally, it is easy to
check that if x ∈ R

n and 0 < p < q < ∞, it holds that

‖x‖q ≤ ‖x‖p ≤ n
1
p − 1

q ‖x‖q. (1)

For q tending to infinity, we obtain a similar inequality:

‖x‖∞ ≤ ‖x‖p ≤ n
1
p ‖x‖∞. (2)

Nowwe can define a new class of GENEOs. Let us consider F1, . . . ,Fn GENEOs
for (�,G) and p > 0. Let us define the operatorMp(F1, . . . ,Fn) : � −→ C0

b (X ,R)

by setting
Mp(F1, . . . ,Fn)(ϕ)(x) := Mp(F1(ϕ)(x), . . . ,Fn(ϕ)(x)).

Theorem 2 If p ≥ 1 andMp(F1, . . . ,Fn)(�) ⊆ �, Mp(F1, . . . ,Fn) is a GENEO for
(�,G).

Proof If we show that Mp is a 1-Lipschitz function for p ≥ 1, Proposition 1 will
ensure us that Mp(F1, . . . ,Fn) is a GENEO.

Let p ≥ 1 and x, y ∈ R
n. Since ‖ · ‖p is a norm, the reverse triangle inequality

holds. Therefore, because of (2), we have that:
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(
1

n

n∑
i=1

|xi|p
) 1

p

−
(
1

n

n∑
i=1

|yi|p
) 1

p

∣∣∣∣∣∣ =
(
1

n

) 1
p

∣∣∣∣∣∣
(

n∑
i=1

|xi|p
) 1

p

−
(

n∑
i=1

|yi|p
) 1

p

∣∣∣∣∣∣
=

(
1

n

) 1
p ∣∣‖x‖p − ‖y‖p

∣∣
≤

(
1

n

) 1
p

‖x − y‖p

≤
(
1

n

) 1
p

n
1
p ‖x − y‖∞ = ‖x − y‖∞.

Hence, for p ≥ 1, Mp is non-expansive (i.e., 1-Lipschitz), and the statement of our
theorem is proved.

Remark 2 If 0 < p < 1 and n > 1, Mp is not a 1-Lipschitz function. This can be

easily proved by showing that for x2 = x3 = · · · = xn = 1 the derivative ∂Mp

∂x1
is not

bounded.

3.1 Examples

In this subsection, we want to justify the use of the operator Mp. In order to make
this point clear, let us consider the space � of all 1-Lipschitz functions from the unit
circle S1 to [0, 1] and the invariance group G of all rotations of S1. Now, we can take
into consideration the following operators:

• the identity operator F1 : � −→ �;
• the operator F2 : � −→ Φ defined by setting F2(ϕ) := ϕ ◦ ρπ

2
for any ϕ ∈ �,

where ρπ
2
is the rotation through a π

2 angle.

Let us set ϕ̄ = | sin x| and ψ̄ = sin2 x. As we can see in Figs. 1 and 2, the func-
tions Fi(ϕ̄) and Fi(ψ̄) have the same persistence diagrams for i = 1, 2. In order
to distinguish ϕ̄ and ψ̄ , we define the operator F : � −→ � by setting F(ϕ) :=
M1(F1,F2)(ϕ) = F1(ϕ)+F2(ϕ)

2 . In particular,

F(ϕ̄) := M1(F1,F2)(ϕ̄) = F1(ϕ̄) + F2(ϕ̄)

2
= | sin x| + | cos x|

2
(3)

and

F(ψ̄) := M1(F1,F2)(ψ̄) = F1(ψ̄) + F2(ψ̄)

2
= sin2x + cos2 x

2
= 1

2
. (4)
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Fig. 1 On the left: ϕ̄ and ψ̄ have the same persistence diagrams. On the right: F1(ϕ̄) and F1(ψ̄)

have the same persistence diagrams
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Fig. 2 On the left: F2(ϕ̄) and F2(ψ̄) have the same persistence diagrams. On the right: the persis-
tence diagrams of F(ϕ̄) and F(ψ̄) are different from each other

We can easily check that F(ϕ̄) and F(ψ̄) have different persistence diagrams;
thus F allows us to distinguish between ϕ̄ and ψ̄ . All this proves that the use of the
operator M1 can increase the information, letting F1 and F2 cooperate.

A similar argument still holds for values of p greater than one. Under the same
hypotheses about �, we can consider the same GENEOs F1, F2 and the functions

ϕ̄ = | sin x| and ψ̂ = (sin2 x)
1
p . For the sake of simplicity, we fixed p = 3 in order to

represent the following figures. As we can see in Figs. 3 and 4, we cannot distinguish
ϕ̄ and ψ̂ by using persistent homology since their persistence diagrams coincide.
Neither applying F1 nor F2 can help us, but when we apply Mp(F1,F2), we can
distinguish ϕ̄ from ψ̂ by means of their persistence diagrams (see Fig. 4).

These examples justify the use of the previously defined power mean operators
Mp(F1, . . . ,Fn) to combine the information given by the operators F1, . . . ,Fn.
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Fig. 3 On the left: ϕ̄ and ψ̂ have hence the same persistence diagrams. On the right: On the right:
F1(ϕ̄) and F1(ψ̂) have the same persistence diagrams
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Fig. 4 On the left: F2(ϕ̄) and F2(ψ̂) have the same persistence diagrams. On the right: the persis-
tence diagrams of F(ϕ̄) and F(ψ̂) are different from each other

4 Series of GENEOs

First we recall some well-known results about series of functions.

Theorem 3 Let (ak) be a positive real sequence such that (ak) is decreasing and
limk→∞ ak = 0. Let (gk) be a sequence of bounded functions from the topological
space X to C. If there exists a real number M > 0 such that

∣∣∣∣∣
n∑

k=1

gk(x)

∣∣∣∣∣ ≤ M (5)

for every x ∈ X and every n ∈ N, then the series
∑∞

k=1 akgk is uniformly convergent
on X .

The second result ensures us that a uniformly convergent series of continuous
functions is a continuous function.
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Theorem 4 Let (fn) be a sequence of continuous function from a compact topolog-
ical space X to R. If the series

∑∞
k=1 fk is uniformly convergent, then

∑∞
k=1 fk is

continuous from X to R.

Nowwe can define a series of GENEOs. Let us consider a compact pseudo-metric
space (X , d), a space of real-valued continuous functions � on X and a subgroup
G of the group Homeo(X ) of all homeomorphisms from X to X , such that if ϕ ∈ �

and g ∈ G, then ϕ ◦ g ∈ �. Let (ak) be a positive real sequence such that (ak) is
decreasing and

∑∞
k=1 ak ≤ 1. Let us suppose that (Fk) is a sequence of GENEOs for

(�,G) and that for any ϕ ∈ � there exists M (ϕ) > 0 such that

∣∣∣∣∣
n∑

k=1

Fk(ϕ)(x)

∣∣∣∣∣ ≤ M (ϕ) (6)

for every x ∈ X and every n ∈ N. These assumptions fulfill the hypotheses of the
previous theorems and ensure that the following operator is well-defined. Let us
consider the operator F : C0

b (X ,R) −→ C0
b (X ,R) defined by setting

F(ϕ) :=
∞∑
k=1

akFk(ϕ). (7)

Proposition 2 If F(�) ⊆ �, then F is a GENEO for (�,G).

Proof

• Let g ∈ G. Since Fk is G-equivariant for any k and g is uniformly continuous
(because X is compact), F is G-equivariant:

F(ϕ ◦ g) =
∞∑
k=1

akFk(ϕ ◦ g)

=
∞∑
k=1

ak(Fk(ϕ) ◦ g)

=
( ∞∑

k=1

akFk(ϕ)

)
◦ g

= F(ϕ) ◦ g

for any ϕ ∈ �.
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• Since Fk is non-expansive for any k and
∑∞

k=1 ak ≤ 1, F is non-expansive:

‖F(ϕ1) − F(ϕ2)‖∞ =
∥∥∥∥∥

∞∑
k=1

akFk(ϕ1) −
∞∑
k=1

akFk(ϕ2)

∥∥∥∥∥
∞

=
∥∥∥∥∥ lim
n→∞

(
n∑

k=1

akFk(ϕ1) −
n∑

k=1

akFk(ϕ2)

)∥∥∥∥∥
∞

= lim
n→∞

∥∥∥∥∥
n∑

k=1

ak(Fk(ϕ1) − Fk(ϕ2))

∥∥∥∥∥
∞

≤ lim
n→∞

n∑
k=1

(ak‖Fk(ϕ1) − Fk(ϕ2)‖∞)

≤ lim
n→∞

n∑
k=1

(ak‖ϕ1 − ϕ2‖∞)

=
∞∑
k=1

ak‖ϕ1 − ϕ2‖∞

≤ ‖ϕ1 − ϕ2‖∞.

5 Conclusions

In this work, we have illustrated some new methods to build new classes of G-
equivariant non-expansive operators (GENEOs) from a given set of operators of this
kind. The leading purpose of our work is to expand our knowledge about the topolog-
ical space F(�,G) of all GENEOs. If we can well approximate the space F(�,G),
we can obtain a good approximation of the natural pseudo-distance dG (Theorem 1).
Searching new operators is a fundamental step in getting more information about the
structure ofF(�,G), and hence,we are asked to find newmethods to buildGENEOs.
Moreover, the approximation of F(�,G) can be seen as an approximation of the
considered observer, represented as a collection of GENEOs.Many questions remain
open. In particular, we should study an extended theoretical framework that involves
GENEOs from the pair (�,G) to a different pair (	,H ). A future research about
this is planned to be done.
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Topological Stability of the Hippocampal
Spatial Map and Synaptic Transience

Yuri Dabaghian

Abstract Spatial awareness in mammals is based on internalized representations
of the environment—cognitive maps—encoded by networks of spiking neurons.
Although behavioral studies suggest that these maps can remain stable for long
periods, it is also well-known that the underlying networks of synaptic connections
constantly change their architecture due to various forms of neuronal plasticity. This
raises a principal question: how can a dynamic network encode a stablemap of space?
In the following, we discuss some recent results obtained in this direction using
an algebro-topological modeling approach, which demonstrate that emergence of
stable cognitive maps produced by networks with transient architectures is not only
possible, but also may be a generic phenomenon.

Keywords Spatial map · Topological dynamics · Emergent phenomena ·
Hippocampal learning

1 Introduction

General background. Spatial awareness in mammals is based on an internalized
representation of the environment. Many parts of the brain are contributing to this
representation, providing different types of information: cue positions [1], geometry
of the navigated paths [2], orientations [3, 4], traveled distances [5, 6], velocities
[7], qualitative geometric relationships [8, 9], etc. A principal question addressed
by neuroscience is how all these types of data are captured by neuronal activity and
what are the computational algorithms employed by various networks for processing
this information.

At the current stage, our understanding of the mechanisms of spatial cognition
is based mostly on empirical observations. For example, it was found that a major

Y. Dabaghian (B)
Department of Neurology, McGovern Medical School, The University of Texas at Houston,
Houston, TX 77030, USA
e-mail: Yuri.A.Dabaghian@uth.tmc.edu

© Springer Nature Singapore Pte Ltd. 2021
R. L. Devaney et al. (eds.), Topological Dynamics and Topological Data Analysis,
Springer Proceedings in Mathematics & Statistics 350,
https://doi.org/10.1007/978-981-16-0174-3_20

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0174-3_20&domain=pdf
mailto:Yuri.A.Dabaghian@uth.tmc.edu
https://doi.org/10.1007/978-981-16-0174-3_20


240 Y. Dabaghian

role in cognitive representation of the ambient space is played by the hippocampus:
a vast number of experiments demonstrate that the hippocampal network contributes
a “cognitive map” C that is crucial for the animal’s ability to navigate, to find its nest
and food sources, etc. [10, 11]. Experimentally, the properties of the cognitive map
are studied by mapping hippocampal activity into the studied environment E ,

f : C → E .

In experiments with rodents (e.g., rats or mice), this mapping is constructed by
ascribing the (x − y) coordinates to very spike produced by the hippocampal princi-
pal neurons according to the animal’s position at the time when the spike was fired
[12]. As shown in [13], such mapping produces spatial clusters of spikes, indicat-
ing that these neurons, known as the “place cells,” fire only in certain places—their
respective “place fields.” The spatial layout of the place fields in E—the place field
map ME (Fig. 1a)—is therefore viewed as a geometric representation of the cog-
nitive map of that particular environment, C(E). Electrophysiological recordings in
“morphing” arenas demonstrate that ME is flexible: as the environment is slowly
deformed, the place fields shift and change their shapes, but largely preserve their
mutual overlaps, adjacency and containment relationships [14–17]. Thus, the order
in which the place cells spike during the animal’s navigation remains invariant within
a certain range of geometric transformations [18–23], which implies that C(E) may
be viewed as a coarse framework of qualitative spatiotemporal relationships rather
than precise geometry, i.e., that the hippocampal map is topological in nature.

From the computational perspective, this observation suggests that the informa-
tion contained in place cell spiking should be interpreted topologically. In [24–
29] we proposed an approach for such analyses, based on a schematic repre-
sentations of the information supplied by place cells (co)activity. Specifically, if
groups of coactive place cells, e.g., c0, c1, . . . , cn , are viewed as abstract simplexes,
σ = [c0, c1, . . . , cn], then the pool of the coactive place cell combinations observed
by a given moment t forms a simplicial “coactivity complex” T (t) whose topology
represents the topological structure of the cognitive map of the underlying environ-
ment (see [24–29] and Fig. 1b).

The evolution of T (t) reflects how the net spatial information accumulates in
time: starting from a few simplexes at the beginning of navigation, the complex T (t)
grows and eventually, if the parameters of spiking activity fall within the biological
range of values, assumes a shape that is topologically equivalent to the shape of the
navigated environment in a biologically plausible period Tmin—a theoretical estimate
of the time required to “learn” the environment [24–29].

Curiously, the key building blocks of this model—the coactive groups of the hip-
pocampal place cells represented by the coactivity simplexes, have physiological
counterparts, called “cell assemblies”—functionally interconnected groups of neu-
rons that work as operational units of the hippocampal network [30, 31]. In [32], it
was shown that this correspondence can be made accurate: the construction of the
coactivity complexmay be adjusted so that its maximal simplexes (i.e., the simplexes
that are not subsimplexes of any larger simplex) represent place cell assemblies, rather
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Fig. 1 Place cells and cell assemblies. a Simulated place field map ME in a small (1m × 1m)

planar environment E with a square hole: dots of a particular color, marking the locations where
a specific place cells produced spikes, form spatial clusters—the place fields. Shown is a map
produced for N = 300 place cells with a median maximal firing rate f = 14 Hz and place field
size 20 cm. b The net pool of coactivities is represented by the coactivity complex T (top), which
provides a topological representation of the environment E (bottom). E.g., the non-contractible
simplicial path shown by red chain of simplexes corresponds to a non-contractible physical path γ

around the central hole in E . The coactivity complex T assumes its topological shape as the spatial
information provided by the place cells accumulates. The panel on the right shows the timelines
of 0D (top) and 1D (bottom) topological loops in T , computed using Persistent Homology theory
methods [49–52]. The minimal time Tmin required to eliminate the spurious loops and extract the
persistent ones (marked by the red bullets) provides an estimate for the time required by a given
place cell ensemble to learn the topological structure of the navigated environment [24–29]. c If the
simplexes may not only appear but also disappear, then the structure of the resulting “flickering”
coactivity complex F(ME ) may never saturate, i.e., transient topological defects, described by
Zigzag Persistent Homology theory [53–55] may persist indefinitely

than arbitrary combinations of coactive place cells. An important physiological prop-
erty of the cell assemblies is that these are dynamic structures: Theymay form among
the cells that demonstrate repeated coactivity and disband as a result of deterioration
of synaptic connections, caused by reduction or cessation of spiking, then reappear
due to a subsequent surge of coactivity, then disband again and so forth [30, 31]. In
the model, the appearance and disappearance of the cell assemblies are represented
by the the appearances and disappearances of the corresponding simplexes, so that
the rewiring dynamics of the cell assembly network and the dynamics of the resulting
cognitive map is represented by a dynamic—“flickering”—cell assembly complex,
denoted below as F(t). Unlike its “perennial” counterpart T (t) that can only grow
and stabilize with time, the flickering complex F(t) may inflate, shrink, fragment
into pieces, produce transient holes, fractures, gaps and other dynamic “topological
defects” (Fig. 1c).

Thus, on the one hand, the dynamics of F(t) may be viewed as a natural conse-
quence of the network’s plasticity: studies show that the lifetime of the hippocampal
cell assemblies ranges between minutes [33–35] and hundreds of milliseconds [36,
37], suggesting that the hippocampal network perpetually rewires [38]. On the other
hand, behavioral and cognitive studies show that spatial memories in rats can last
for days and months [39–41]. This poses a principal question: how can a large-scale
spatial representation of the environment be stable if the neuronal substrate changes
at a much shorter timescale?

A principal answer to this question is suggested by an algebro-topological model
of the dynamic cell assembly networks, which allows studying the effect produced
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by the synaptic transience on the large-scale representation of space and demonstrat-
ing that a stable topological map can from within a biologically plausible period,
similar to the “perennial” learning period Tmin(T ), despite the rapid transience of the
connections [42–45].

The large-scale topology of the cognitivemap C(E), as represented by a coactiv-
ity complex, can be described at different levels. A particularly concise description
of a topological shape is given in terms of its topological loops (non-contractible
surfaces identified up to topological equivalence) in different dimensions, i.e., by its
Betti numbers bn , n = 0, 1, ... [46, 47]. For example, the number of inequivalent
topological loops that can be contracted to a zero-dimensional (0D) vertex, b0(F),
corresponds to the number of the connected components inF(t); the number of loops
that contract to a one-dimensional (1D) chain of links, b1(F), defines the number of
holes and so forth [46, 47]. The full list of theBetti numbers of a space or a complex X
is known as its topological barcode, b(X) = (b0(X), b1(X), b2(X), . . .), which cap-
tures the topological identity of X [48]. For example, the barcode b = (1, 1, 0, . . .)
corresponds to a topological annulus, the barcode b = (1, 0, 1, 0, . . .)—to a two-
dimensional (2D) sphere S2, the barcode b = (1, 2, 1, 0, . . .)—to a torus T 2 and so
forth [49]. Thus, by comparing the barcode of the coactivity complex b(F) to the
barcode of the environment b(E) one can establish whether their topological shapes
match, b(F(t)) = b(E), i.e., whether the coactivity complex provides a faithful rep-
resentation of the environment at a given moment t . The mathematical methods
required for these analyses—Persistent Homology [49–52] and Zigzag Persistent
Homology theories [53–55], also outlined in [56, 57], allow building a dynamical
model of the cognitive map and addressing the question “How can a rapidly rewiring
network produce and sustain a stable cognitive map?”

2 Overview of the Results

An efficient implementation of the coactivity complexF(t) is based on the “cognitive
graph” model of the hippocampal network [12, 59], in which each active place cell ci
corresponds to a vertex vi of a graph G, whose connections ςi j = [vi , v j ] represent
pairs of coactive cells. An assembly of place cells c0, c1, . . . , cn then corresponds to
the fully interconnected subgraph, i.e., to a maximal clique ς = [v0, v1, . . . , vn] of
G [29, 30, 32]. Since cliques, as combinatorial objects, can be viewed as simplexes
spanned by the same sets of vertexes, the collection of G-cliques defines a clique
simplicial complex [60] that serves as an instantiation of the coactivity complex
[26–29, 32]. The dynamics of the clique coactivity complexes can be modeled based
on the dynamics of the links of the corresponding coactivity graphG. In the following,
we discuss two such approaches, both of which demonstrate a possibility of encoding
stable cognitive maps by transient cell assembly networks.
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2.1 Decaying Clique Complexes

Consider the following dynamics of the coactivity graph G.
• The vertexes of G appear when the corresponding cells become active for the first
time and never disappear, since according to the experiments, place cells’ spiking
in learned environments remains stable [62].

• The connection ςi j between the vertexes vi and v j appearswith probability p+ = 1
if the cells ci and c j become active within aw = 1/4 second period (for biological
motivations of the w-value see [25, 61]). The exact time t of the link’s appearance
can be associated with any moment within w.

• An existing link ςi j between cells ci and c j disappears with the probability

p−(t) = 1

τ
e−t/τ , (1)

where the time t is counted from the moment of the link’s last activation and τ

defines the link’s proper decay time.
• The dynamics of the higher order cliques, e.g., their decay times, are fully deter-
mined by the link decay period τ . In the following, the notations Gτ and Fτ will
refer, respectively, to the flickering coactivity graph and the corresponding flick-
ering clique coactivity complex with the connections’ proper decay rate 1/τ .

Note that the ongoing place cell activity can reinstate some decayed links in
Gτ and rejuvenate (i.e., reset the decay of) some existent ones, thus producing an
effective link’s mean lifetime τe > τ and leading to diverse topological dynamics
of the coactivity complex Fτ . As mentioned previously, a key determinant of this
dynamics is the sequence in which the rat traverses place fields in a map ME . Fixing
ME and the animal’s trajectory γ (t) settles the times at which place cell combinations
become active (notwithstanding the stochasticity of neuronal firing [63, 64]), so that
the Betti numbers bk of Fτ (t) become dependent primarily on the parameters of
neuronal spiking activity: firing rates, place field sizes, etc., and on the links’ decay
time τ . In the following, we will review some of these dependencies for the case of
the environment shown on Fig. 1a, and discuss how they affect the net topological
structure of the corresponding cognitive map. For more details see [42–45].

Dynamics of thedecayingflickering coactivity complexes. If τ is too small (e.g.,
if the coactivity simplexes tend to disappear between two consecutive co-activations
of the corresponding cells), then the flickering complex should rapidly deteriorate
without assuming the required topological shape. In contrast, if τ is too large, then the
effect of the decaying connections should be small, i.e., the flickering complexFτ (t)
should follow the dynamics of its “perennial” counterpart T (t) ≡ F∞(t), computed
for the sameplace cell spikingparameters. In particular, if thefiring rates and the place
field sizes are such that T (t) assumes the correct topological shape in a biologically
viable time Tmin(T ), then a similar behavior should be expected from its slowly
decomposing counterpart Fτ (t). However, for intermediate values of τ that exceed
the characteristic interval �t between two consecutive activations of a typical link
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Fig. 2 Topological dynamics of the decaying coactivity complex. a The histogram of the connec-
tions’ durations between their consecutive appearances and disappearances: The shorter lifetimes
are distributed exponentially (the red line fit) and the population of the “survivor” links produces
a bulging tail of the distribution (red arrow). The dashed blue line shows the shape of the distri-
bution (1). b The population of 1D (blue trace) and 2D (green trace) simplexes in the decaying
“flickering” complex Fτ (t), compared to the population of 1D and 2D simplexes in the perennial
complex T (t) (dashed lines). The size of Fτ (t) remains dynamic, whereas T (t) saturates in about
10 minutes. c Betti numbers b0(Fτ (t)) (blue) and b1(Fτ (t)) (green) remain unchanged after a short
initial stabilization period

in G—a the natural timescale defined by the statistics of the rat’s movements—the
topological dynamics of Fτ (t) may exhibit a rich variety of behaviors.

Simulations show that the characteristic inter-activation interval in the environ-
ment shown on Fig. 1a is about �t ≈ 30 seconds. For the proper decay times that
generously exceed �t , e.g., 2.5�t � τ � 4.5�t , the histogram of the time inter-
vals �tς,i between the i th consecutive birth and death of a link ς is bimodal: the
relatively short lifetimes are exponentially distributed, with the effective link life-
times about twice higher τ (2)

e ≈ 2τ (higher order simplexes decay more rapidly, e.g.,
τ (3)
e ≈ τ , etc.). In addition, there emerges a pool of long-living connections that
persist throughout the entire navigation period (Fig. 2a). In other words, the flick-
ering coactivity complex Fτ (t) acquires a stable “core” formed by a population of
“surviving simplexes”, enveloped by a population of rapidly recycling, “fluttering,”
simplexes.

The numbers of d-dimensional simplexes inFτ (t) (its f -numbers in terminology
of [65]) rapidly grow at the onset of the navigation, when Fτ (t) inflates, but then
begin to saturate by the time a typical link makes an appearance (in the case of the
environment shown on Fig. 1a, this takes a few minutes). The characteristic size of
Fτ (t) grows to about a half of the size of its perennial counterpart, F∞(t) ≡ T (t),
with about 15% fluctuations (Fig. 2b). Thus, the population of simplexes in Fτ (t) is
transient: although the change of the size of Fτ (t) from one moment of time to the
next are relatively small, the number of simplexes that are present at a given moment
of time t , but missing at a later moment t ′, rapidly grows as a function of temporal
separation |t − t ′|, becoming comparable to the sizes of either Fτ (t) or Fτ (t ′) in
approximately one effective link-decay span [44, 45].

Meanwhile, the large-scale topology of Fτ (t) changes significantly slower: after
a brief initial stabilization period that roughly corresponds to the perennial learn-
ing time Tmin(T ), the topological barcode b(Fτ ) remains similar to the barcode of
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the navigated environment E , exhibiting occasional topological fluctuations at the
Tmin-timescale (Fig. 2c). Thus, the coactivity complex Fτ can preserve not only its
approximate size, but also its topological shape, despite the ongoing recycling of its
simplexes.

As τ reduces, the topological fluctuations intensify (Fig. 3) and vice versa, as τ

grows, the effective lifetimes τ (2)
e and τ (3)

e , as well as the number of the simplexes
actualized at a given moment increase approximately linearly, resulting in a growing
“stable core” that stabilizes the overall topological structure of Fτ (t). Given the
physiological range of parameters (simulated rat speed, place cell firing rates, place
field sizes, etc.), a complete suppression of topological fluctuations in the coactivity
complex is achieved after the decay times exceed a finite threshold τ ∗

p , comparable
to the time required to revisit a typical spot in the environment. This value gives
a theoretical estimate for the rate of physiological transience that permits stable
representations of the environment E [44].

Alternative lifetime statistics may strongly influence the topological dynamics
of the cognitive map. For example, if the links’ lifetimes are fixed, i.e., if the decay
probability is defined by

p−(t) =
{
1 if t = τ

0 if t �= τ,
(2)

then the topological structure of the resulting “quenched-decay” coactivity complex
F∗

τ (t) changes dramatically. Even though the rejuvenation effects widen the effective
distribution of the links’ lifetimes (as before, in addition to a population of short-
lived links with lifetimes close to τ , there appears a population of the “survivor”
simplexes), the resulting topological dynamics is more unstable: F∗

τ (t) may split
into dozens of islets containing short-lived, spurious topological defects, even for
the values of τ that reliably produce physical Betti numbers for the exponentially
distributed lifetimes (1).

As the decay slows down (i.e., as τ grows), the population of survivor links
also grows and the topological structure ofF∗

τ (t) stabilizes; nevertheless, the robust,
“physical” Betti numbers are attained at much (twice ormore) higher values of τ than
with the exponentially decaying links. Physiologically, this implies that the statistical
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spread of the connections’ lifetimes (the tail of the exponential distribution (1)) plays
an important role: without a certain “synaptic disorder” the network is less capable
of capturing the topology of the environment.

On the other hand, the topological behavior of Fτ (t) is less sensitive to themech-
anism that implements a given simplex-recycling statistics. As it turns out, even if
the functional connections between place cells are established and pruned randomly,
at a rate that matches the statistics (1), the resulting random connectivity graph Gr (t)
produces a random clique complexFr (t)with topological properties similar to those
of Fτ (t). In particular, the Betti numbers of Fr (t) converge to the Betti numbers of
the environment about as quickly as the Betti numbers of its decaying counterpart
Fτ (t), exhibiting similar pattern of the topological fluctuations. Thus, the model
suggests that the dynamic topology of the flickering complex may be controlled by
the statistics of the decays and by the sheer number of simplexes present at a given
moment, rather than by nature of the network’s activity (e.g., random versus driven
by the animal’s moves).

2.2 Finite Latency Complexes

An alternative model of flickering clique complexes can be built by restricting the
period over which the coactivity graph is formed to a shorter time window � [32].
In such approach, the coactivity simplexes that emerge within the starting� -period,
�1, will constitute a coactivity complex F(�1); the simplexes appearing within the
next window, �2, obtained by shifting �1 over a small step �� , will form the
complex F(�2) and so forth. For large consecutive window overlaps (�� 	 � ),
a given clique-simplex ς (as defined by the set of its vertexes) may appear through
a chain of consecutive windows, �1,�2, . . . ,�k−1, then disappear at the k th step
�k (i.e., ς ∈ F(�k−1), but ς /∈ F(�k)), then reappear in a later window �l≥k , then
disappear again, and so forth. One may then use the midpoints tk of the windows in
which ς has (re)appeared (or any other point within �k) to define the moments of
ς ’s (re)births, and the matching points in the windows where it disappears to define
the times of its deaths. By construction, the duration of ς ’s existence between its
k-th consecutive appearance and disappearance, δtς,k , can be as short as the shift
step �� or as long as the animal’s navigation session.

Simulations show that for � exceeding the perennial learning time Tmin(T )

and �� ≈ 0.01� , the intervals δtς,k (as well as their means averaged over k,
tς = 〈δtς,k〉k and of their net existence times �Tς = ∑

k δtς,k) are exponentially
distributed, which allows characterizing the simulated cell assemblies by a half-life,
τ� . Specifically, for the physiological range of parameters of the neuronal activity
in the environment shown on Fig. 1 and � ≈ 1.2Tmin(T ), the lifetime of a typical
maximal simplex varies within τς ≈ 3 − 12 s (depending on the simplex’ dimen-
sionality), which is much shorter than the proper decay time in the previous model
(1) and closer to the experimentally established range of values [30].
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Fig. 4 Topological dynamics in the finite latency flickering complexes. A. The number of
maximal simplexes (Nmax, blue trace) and total number of simplexes (Ntot/10, red trace) in the
coactivity complex F� (t). B. The instantaneous learning time T (k)

min as a function of the discrete
time tk , computed for � = 1.5Tmin(T ). C. The low-dimensional Betti numbers, b1, b2, b3 and b4
as a function of the discrete time, computed using � = 1.5Tmin(T ) remain stable, demonstrating
full topological stabilization of F� (t)

Dynamics of the finite latency flickering coactivity complexes. It is natural to
view the individual, “instantaneous” complexes F(�i ) as instantiations of a single
“finite latency” flickering coactivity complex,F(�i ) = F�(ti ). As it turns out, such
complexes exhibit a number similarities with the decaying complexes Fτ (t). For
example, the complex F�(t) does not fluctuate significantly: for � ≥ Tmin(T ), the
number of simplexes contained in F�(t) changes within about 5 − 10% of its mean
value during the entire navigation period, but the pool of the actualized maximal
simplexes is renewed at about � timescale (Fig. 4a). Biologically, this implies that
the simulated cell assembly network fully rewires over a � period, similar to the
effective link decay time τ (2)

e computed in the previous model.
On the other hand, the large-scale topological properties ofF�(t) are much more

stable, similarly to the topological properties of Fτ (t). For example, for sufficiently
long latencies, � � 1.2 Tmin(T ), the time required to produce the correct barcode
b(F�) = b(E)within eachwindow�k is typically finite, T

(k)
min = Tmin(F(�k)) < ∞

(Fig. 4b). Moreover, the average learning period T̄min = 〈T (k)
min〉k is typically similar

to the perennial learning time Tmin(T ), with a variance of about 20 − 40% of the
mean. This result shows that the topological dynamics in the cognitive map of a
semi-randomly foraging animal is largely time-invariant, i.e., the accumulation of the
topological information can start at any point (e.g., at the onset of the navigation) and
produce the result in an approximately the same time period. In effect, this justifies
using perennial coactivity complexes for estimating Tmin in [24–29]. It should also
be mentioned, however, that there also exists a number of differences between the
topological dynamics ofF�(t) andFτ (t), e.g., the topological fluctuations inF�(t)
aremostly limited to 1D loops, 2D surfaces and3D bubbles (b0(t) = 1,bn>4(t) = 0),
whereas the fluctuations in Fτ (t) also affect higher dimensions.

As � widens, the mean lifetime tς of maximal simplexes grows, suppressing the
topological fluctuations in F�(t) and vice versa, as the memory window shrinks,
the fluctuations of the topological loops intensify. The proportion of the “successful”
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coactivity integration windows (i.e., �ks in which the correct barcode b(F�(t)) =
b(E) is attained) also increases with growing � . In fact, for � ≥ �∗ ≈ 1.5Tmin

the topological fluctuations tend to disappear completely (Fig. 4c)—even though the
simplexes’ lifetimes remain short (τ ∗

� ≈ 15 seconds for the environment illustrated
in Fig. 1a).

Moreover, it can be demonstrated that as � exceeds a certain critical value �c

(typically exceeding Tmin(T ) by less than 40%), the instantaneous learning times
T (k)
min become � -independent. Thus, the finite latency model provides a parameter-

free characterization of the time required by a network of place cell assemblies
to represent the topology of the environment and establishes the timescale of the
topological fluctuations in the simulated cognitive map.

3 Discussion

The topologicalmodel of the hippocampal cognitivemapoffers a connection between
the spatial information processed by the individual place cells and the resulting global
map emerging at the neuronal ensemble level, for both stable [24–29, 32] and tran-
sient [42–44] cell assembly networks. The elements of the model are embedded into
the framework of simplicial topology: The groups of coactive cells are represented
by abstract coactivity simplexes, whereas the spatial map encoded by the activity of
neuronal populations is represented by the corresponding simplicial complexes. In
particular, the formation and the disbanding of the cell groups is represented by the
appearing and the disappearing coactivity simplexes, which combine into flickering
coactivity complexes with nontrivial topological dynamics.

Generically, these dynamics occur at three principal timescales. The fastest
timescale corresponds to the rapid recycling of the local connections—the start-
ing point of the model. The large-scale topological loops, described by the time-
dependent Betti numbers, unfold at a timescale that is by about an order of magnitude
slower than the fluctuations at the simplex-level. Lastly, the topological fluctuations
occur over certain robust base values that provide lasting, qualitative information
about the environment.

The model demonstrates that for sufficiently slow simplex-recycling rates, the
topological fluctuations at the intermediate timescale freeze out, i.e., the simulated
cognitive map may transition into a topologically stable state, with static (or nearly
static) Betti numbers. Physiologically, this implies that if the hippocampal place cell
assemblies rewire sufficiently slowly, then the hippocampal map may remain stable
despite the recycling of the connections in its neuronal substrate. Thus, the model
suggests that plasticity of neuronal connections, which is ultimately responsible for
the network’s ability to incorporate new information [66–68], does not necessarily
degrade the large-scale, qualitative information acquired by the system. Quite the
opposite: renewing the connections allows correcting errors, e.g., removing some
spurious, accidental topological obstructions fortuitously incorporated into the cog-
nitive map. In other words, a network capable of not only accumulating, but also dis-
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posing information, exhibits better learning capacity, suggesting that physiological
learning should involve a balanced contribution of both “learning” and “forgetting”
components [69–71].

Remarkably, the three dynamic timescales suggestedby themodel have their direct
biological counterparts: the short-term memory, which refers to temporary mainte-
nance of ongoing (working) associations [72, 73], the intermediate-termmemory that
is acquired and updated at the “operational” timescale [74, 75], and the long-term
memory that capturesmore persistent, qualitative information are broadly recognized
in the literature. Physiologically, these types of memory are associated with different
parts of the brain (hippocampal and cortical networks); thus, the model reaffirms
functional importance of the complementary learning systems for processing spa-
tial information at different levels of spatiotemporal granularity, from a theoretical
viewpoint [76–78].

The model allows exploring the effects produced on the cognitive map by the
parameters of neuronal activity and the synaptic structure. For example, it can be
shown, e.g., that the deterioration caused by an overly rapid decay of the network’s
connections may be compensated by increasing neuronal activity, e.g., boosting the
place cell firing rates [44] or via contributions of the “off-line”, endogenous activity
of the hippocampal network—the so-called “place cell replays” [79, 80]. The latter
are commonly viewed as manifestations of the animal’s “mental explorations” of its
cognitive map [81–84] and are believed to help learning and to reinforce the map’s
stability [85, 86]. This belief is largely validated by the model, which shows that suf-
ficiently frequent, broadly distributed place cell replays, produced without temporal
clustering, significantly reduce the topological fluctuations in the cognitive map C,
thus helping to separate the fast and the slow timescales and to extract stable topolog-
ical information for the long-term, qualitative representation of the environment [45].
Physiologically, these results suggest that indiscriminate, repetitive reactivations of
memory sequences prevent deterioration of cognitive frameworks.

As a closing comment, it can be mentioned that dynamical simplicial complexes
previously appeared in physical literature as discrete models of quantum space-time
fluctuations, in the context of Simplicial Quantum Gravity theories [87, 88]. It was
shown that such complexes exhibit rich geometrical and topological dynamics, e.g.,
they can exist in different geometric phases, experience phase transitions between
ordered and disordered states, etc., yielding regular behavior in the thermodynamic
“classical” limit. Here, the dynamical simplicial complexes appear in a very dif-
ferent context—as schematic models of the cognitive map’s topological structure
[12, 89], which is naturally discrete (being encoded by finite neuronal populations)
and transient due to the plasticity of the underlying network. Nevertheless, the sta-
tistical mechanics of these “neuronal” complexes also points at a variety of geo-
metric and topological states developing at several timescales. In particular, using
the instantaneous Betti numbers as intensive (size independent) statistical variables
allows describing these complexes’ temporal architecture and identifying the emer-
gent topological stability phenomena.
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Intuitionistic Fuzzy Graph
Morphological Topology

Abraham Jacob and P. B. Ramkumar

Abstract In this paper, we define morphological topology (M-topology) on intu-
itionistic fuzzy graph (IFG). We also define neighbourhood graph, continuity and
isomorphism between M-topologies.

Keywords M-topology · Neighbourhood graph · Continuity · Weak
neighbourhood graph · Continuous function · Isomorphism

1 Introduction

Mathematical morphology (MM) is a set theoretic tool for image analysis in digital
image processing. Accuracy in image analysis has great importance in any applica-
tions like medical imaging. Process of converting an image into digital form involves
sampling and quantization. A digital image in an array of squares, called pixels
which represents intensity values corresponding to sampling points. It is considered
as a grid-shaped graph with vertices as sampling points and edges determined by
adjacency relation. After thresholding, a planner graph is obtained with different
connected components as vertices.

Vincent [21] introduced graph morphology Laurent Najman and Fernand
Meyer [13] did their work onMathematical morphology on edge and vertexweighted
graphs based on lattice structure. Fuzziness helps to handle uncertain situations.
Ramkumar and Abraham [16] defined dilation and erosion on intuitionistic fuzzy
soft graphs (IFSG).
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We proved dilation and erosion of IFSG of an image is a member of a complete
lattice with respect to the operations union and intersection with partial order ‘⊆’ as
IFSG subgraph. Topology is a study of properties of some objects that are invariant
under certain invertible transformation. In this paper, we define pn adjacency vertices
of a vertex in IFG as a neighbourhood vertices of this vertex in Sect. 3. We also
defined morphological topology (M-topology), neighbourhood graph, continuity
and isomorphism of twoM-topologies in Sect. 3.

2 Preliminaries

Definition 1 An intuitionistic fuzzy graph (IFG) is of the form
G = (G∗,G×, μ1, γ1, μ2, γ2), where

1. G∗ = {v1, v2, . . . vn} such thatμ1 : G∗ → [0, 1] andγ1 : G∗ → [0, 1], themem-
bership and non-membership grades of the element vi ∈ G∗, respectively, and
0 ≤ μ1(vi ) + γ1(vi ) ≤ 1 for every vi ∈ G∗; i = 1, 2, . . . , n.

2. G× ⊆ G∗ × G∗ where μ2 : G× → [0, 1] and γ2 : G× → [0, 1], the member-
ship and non-membership grades of the element eviv j in G∗, respectively, are
such that

(a) μ2(eviv j ) ≤ min{μ1(vi ), μ1(v j )}
(b) γ2(eviv j ) ≤ max{γ1(vi ), γ1(v j )}
(c) 0 ≤ μ2(eviv j ) + γ2(eviv j ) ≤ 1 for every edges evi v j inG

×, i = 1, 2, 3, . . . , n,
j = 1, 2, 3, . . . , n.

Definition 2 Let ui and u j be two vertices in IFG

Gi = (G∗,G×, μ1i , γ1i , μ2i , γ2i ).

Then, u j is said to be n-path adjacency vertex (pn adjacency vertex) to ui if they are
connected by at most n edges. It is denoted by ui pn−adj u j .

Definition 3 Let eui u j and eukul be twoedges in the IFGGi = (G∗,G×, μ1i , γ1i , μ2i ,

γ2i ). Then eukul is said to be n-path adjacency edge (pn-adjacency edge) to eui u j

if either ui or u j is connected to uk or ul by almost n edges. It is denoted by
eui u j pn−adj eukul .

Now we define the dilation and erosion on intuitionistic fuzzy graphs.

Definition 4 Let Gi = (G∗,G×, μ1i , γ1i , μ2i , γ2i ) be IFG. Let G be set all intu-
itionistic fuzzy graphs Gi = (G∗,G×, μ1i , γ1i , μ2i , γ2i ) defined on G = (G∗,G×)

where each pair in G satisfies the property intuitionistic fuzzy subgraph with Gi . We
define a partial order ⊆ as IF subgraph. Let 0 be an IF graph with all vertices and
edges of membership grade 0 end non-membership grade 1 and 1 be an IFG with all
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vertices and edges of membership grade 1 and non-membership 0. Suprimum end
infimum of two IFG G1 and G2 in G is defined as follows.

G1 ∨ G2 = G1 ∪ G2 = (G∗,G×, μ11 ∨ μ12, γ11 ∧ γ12, μ21 ∨ μ22, γ21 ∧ γ22)

G1 ∧ G2 = G1 ∩ G2 = (G∗,G×, μ11 ∧ μ12, γ11 ∨ γ12, μ21 ∧ μ22, γ21 ∨ γ22)

Then, (G,∧,∨, 0, 1) is a complete lattice. Nowdefine dilation and erosion of vertices
and edges in IFG Gi in the following:

1. For each elements uk in G∗, δ1i = G∗ → [0, 1] and

∈1i G
∗ → [0, 1] by

δ1i (uk) =
(
sup
u j

(μ1i (u j ), inf
u j

γ1i (u j )

)

∈1i (uk) =
(
inf
u j

(μ1i (u j ), sup
u j

γ1i (u j )

)
,

where u j is either uk or u j p1−adj uk .
2. For each elements eukul in G×,

δ2i : G× → [0, 1] and
∈2i : G× → [0, 1] by

δ2i (eukul ) =
(
sup
eui u j

μ2i (eui u j ), infeui u j
γ2i (eui u j )

)

∈2i (eukul ) =
(
inf
eui u j

(μ2i (eui u j ), sup
eui u j

γ2i (eui u j )

)

where eui u j is eukul or eui u j pn−adj eukul .

Then GiE = (∈1i ,∈2i ) is called pn adjacency eroded IFG and GiD = (δ1i , δ2i ) is
called pn adjacency dilated IFG.

A theorem [16] states the pn adjacency dilated IFG GiD and pn adjacency eroded
IFG are again IFG. Therefore, G is closed under dilation and erosion on IFGGi . This
motivates us to define morphological topology (M-topology).

3 Morphological Topology

Now we take Gi = (G∗,G×, μ1, γ1, μ2, γ2) as IFG corresponding to an image
obtained for analysis. We proved [] that pn adjacency dilated IFG GiD and pn adja-
cency eroded IFG GiE are IF graphs, motivates us to take M as the collection of
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IFG in which each pair satisfy the IF subgraph property with Gi , for defining mor-
phological topology (M-topology).

Definition 5 Let Gi be any IFG. LetM be the collection of IFG in which each pair
in M satisfy IF subgraph property with Gi . Then, M is called M-topology if the
following axioms are satisfied.

1. 0, 1 ∈ M and Gi ∈ M.
2. M is closed under arbitrary union of IF graphs.
3. M is closed under finite intersection of IF graphs.

where 0 is the IFG with vertices and edges of membership grade 0 and non member-
ship grade 1, and 1 on the IFG with vertices and edges of membership grade 1 and
non membership grade 0.

Then, the pair (Gi ,M) is calledM-topological space. Members ofM-topology
M are called open IFG.

Similar images should have similar IF graphs. Therefore, these IF graphs are
topologically isomorphic. Before defining isomorphism, neighbourhood graph and
continuity of a vertex are defined below.

Definition 6 Let Gi = (G∗,G×, μ1, γ1, μ2, γ2) be IFG. Let vi be a vertex in Gi .
Then, neighbourhoodvertices of the vertexvi are defined as the set of all Pn-adjacency
vertices of Vi and it is denoted by n(vi ).

Definition 7 Let Gi = (G∗,G×, μ1, γ1, μ2, γ2) be IFG. Let vi be a vertex in Gi .
Let Ni be a subgraph of Gi . This Ni is said to be neighbourhood graph of the vertex
vi if there is an open IF subgraph μi of Ni containing neighbourhood vertices of vi .

Every open subgraph is M-topology containing neighbourhood vertices of vi is
a neighbourhood of vi .

Definition 8 Let Gi = (G∗,G×, μ1, γ1, μ2, γ2) be IFG. Let vi be a vertex in Gi .
Then, the smallest open IF subgraph of Gi containing neighbourhood vertices of vi
is called weak neighbourhood graph of vi . . Then, s Let Ni be a subgraph of Gi . This
Ni is said to be neighbourhood graph of the vertex vi if there is an open IF subgraph
μi of Ni containing neighbourhood vertices of vi .

Definition 9 Let (Gi ,Mi ) and (G j ,M j ) be two M-topological spaces. Let vi be
a vertex in Gi . Let f : (Gi ,Mi ) → (G j ,M j ) be a function. Then, f is said to be
continuous at the vertex vi if for every neighbourhood graph N j of the vertex f (vi )
inG j , there is a neighbourhood graph Ni of vi inGi such that f (Ni ) is a IF subgraph
of N j and f (Ni ) ⊆ N j .

Example 1 LetGi = (G∗,G×, μ1, γ1, μ2, γ2)be a IFGwhereG∗ = {v1, v2, v3, v4}
be the vertex set G× = {ev1v2 , ev2v3 , ev3v4 , ev4v1} (See Fig. 1).

Then neighbourhood vertices of vi = n(v1) = {v1, v2, v4}.
Let M = {0, 1,Gi ,G ′

i }. Then three axioms of M-topology are satisfied. Thus,
M isM-topology on IFG Gi .
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Fig. 1 .

Let G ′′
i be a IF subgraph of Gi . Since IFG G ′

i is an open subgraph of G
′′
i , G

′
i is a

neighbourhood graph of the vertex v1 in Gi .

Example 2 Let Gi = (G∗,G×, μ1, γ1, μ2, γ2) be IFG.

(a) IfM = {0, 1,Gi } then M is called discreteM-topology on Gi

(b) If M in the collection of all IFG with IF subgraph property with Gi , 0 and 1,
then M is called indiscreteM-topology on Gi .

Theorem 1 Let (Gi ,Mi ) and (G j ,M j ) be topological spaces. Let vi be a vertex
in Gi .

Let f : (Gi ,Mi ) → (G j ,M j ) be a function. Then, the following are equivalent.

1. f is continuous at vi
2. The inverse image of every neighbourhood graph of f (vi ) in G j is a neighbour-

hood graph of vi in Gi .

Proof (1) ⇒ (2) Let N j be a neighbourhood graph of a vertex f (vi ) in G j .
By definition of neighbourhood graph, there is an open neighbourhood subgraph

Mj of N j containing neighbourhood vertices of f (vi ).
Since f is continuous at vi in Gi for each neighbourhood IF graph N j of the

vertex f (vi ) in G j , there is a neighbourhood IF graph Ni of the vertex vi in Gi such
that f (Ni ) is a IF subgraph of N j

∴ f (Ni ) ⊆ N j Ni ⊆ f −1(N j ).

Since Ni is a neighbourhood IF graph of the vertex vi , there is an open IF subgraph
of Ni containing neighbourhood vertices of vi .

Therefore, f −1(N j ) is a neighbourhood graph of the vertex vi in Gi since Ni ⊆
f −1(N j ).

(2) ⇒ (1)
Let N j be a neighbourhood graph of f (vi ) in G j .

⇒ f −1(N j ) is a neighbourhood graph of vi in Gi
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⇒ there is an open IF subgraph of Mi of f −1(N j )

containing neighbourhood vertices of vi in Gi

∴ Mi ⊆ f −1(N j ) ⇒ f (Mi ) ⊆ N j

Therefore, f is continuous at the vertex vi . �

Definition 10 Let (Gi ,Mi ) and (G j ,M j ) be twoM-topologies. Let vi be a vertex
in Gi . Let f : (Gi ,Mi ) → (G j ,M j ) be a function. Then, if f is continuous on Gi

then f is continuous at each vertices of Gi .

Theorem 2 Let (Gi ,Mi )and (G j ,M j )be twoM-topologies. Let f : (Gi ,Mi ) →
(G j ,M j ) be a function. Then, the following are equivalent.

1. f is continuous
2. Every inverse image of an open IF subgraph if G j is an open IF subgraph of Gi .

Proof (1) ⇒ (2)
Let vi be any vertex in Gi . Let Mj be an IF subgraph in M j containing f (vi ).

Since f is continuous, there is a neighbourhood graph Ni of the vertex vi such that
f (Ni ) is a IF subgraph of Mj

∴ f (Ni ) ⊆ Mj

⇒ Ni ⊆ f −1(Mj )

⇒ f −1(Mj ) is an open subgraph inMi .

(2) ⇒ (1)
Let vi be any vertex in Gi .
Let Mj be open IF subgraph of G j

⇒ by assumption, f −1(Mj ) is open IF subgraph of Gi

⇒ f −1(Mj ) is a neighbourhood of a vertex vi
⇒ there is an open IF subgraph Mi in Gi containing vi and which IF subgraph of
f −1(Mj ).
Therefore, Mi ⊆ f −1(Mj ) ⇒ f (Mi ) ⊆ Mj .
Therefore, f is continuous. �

Now, we define isomorphism below.

Definition 11 LetGi = (G∗
i ,G

×
i , μ1i , γ1i , , μ2i , γ2i ) andG j = (G∗

j ,G
×
j , μ1 j , γ1 j ,

μ2 j , γ2 j ) be two IF graphs. Let (Gi ,Mi ) and (G j ,M j ) be twoM-topologies onGi

and G j , respectively. An isomorphism f : G∗
i → G∗

j which satisfies the following
conditions.

1. μ1i (vi ) = μ1 j ( f (vi )), γ1i (vi ) = γ1 j ( f (vi )),
2. μ2i (eviv j ) = μ2 j ( f (eviv j )), γ2i (eviv j ) = γ2 j ( f (eviv j ))

for each vertices vi and edges eviv j in Gi .
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Observation 1 Isomorphism is an equivalent relation.

Observation 2 Let (Gi ,Mi ) and (G j ,M j ) be two M-topologies. Let f : (Gi ,

Mi ) → (G j ,M j ) be a function. Then, Mi and M j are isomorphic if and only if
f is a bijective mapping and f and f −1 are continuous.

4 Conclusion

As a foundation theory of topology in intuitionistic fuzzy graph morphology, we
have defined morphological topology (M-topology) associated with neighbourhood
graph and continuity of a vertex in IFG with examples. Isomorphism of two M-
topologies defined in this paper can be applied for image analysis in future.
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Some Properties of the Bitopological
Space Associated With the 3-Uniform
Semigraph of Cycle Graph

Asha G. Pillai and P. B. Ramkumar

Abstract In this paper,the neighbourhood Ni of the vertex ’i’ of the 3 uniform
semigraph Cm,1 is defined as Ni = V − Ci where V is the vertex set and Ci is the
set of vertices which are consecutively adjacent to ’i’. Let E denote the collec-
tion of end vertices and M denote the collection of middle vertices of Cm,1.Define
τE = ∩i∈E P(Ni ) and τM = ∩i∈M P(Ni ).τE and τM are the discrete topologies on
the end vertex set and the middle vertex set respectively. Define τ

′
E = V ∪ τE and

τ
′
M = V ∪ τM . τ

′
E and τ

′
M are two different topologies defined on the vertex set and

hence (V, τ
′
E , τ

′
M) is a bitopological space. Different topological properties of this

bitopological space are discussed.

Keywords Semigraph · 3-uniform semigraph · Bitopological space

1 Introduction

A semigraph G is a pair (V, X)where V is a nonempty set whose elements are called
vertices of G and X is a set of n-tuples,called the edges of G, of distinct vertices for
n ≥ 2 satisfying the following conditions.

(i) Any two edges have atmost one vertex in common.
(i i) Two edges (u1, u2, ....un) and (v1, v2, ....vm)are equal only if
(a) n = m and (b) either ui = vi for 1 ≤ i ≤ n or ui = vn−i+1 for 1 ≤ i ≤ n..
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Fig. 1 Example for
semigraph

U1

U2

U6

U5

U4U3

If e = (u1, u2....un) is an edge of the semigraph G,u1 and un are called the end
vertices of e and u2, u3, ....un−1 are called the middle vertices of e.

Two vertices of G are adjacent if both of them belong to an edge and two edges
are adjacent if they have a common vertex. The pairs of vertices (u1, u2), (u2, u3)...
of the edge e are called consecutively adjacent.

Example
InFig. 1, the edges are (u1, u2, u3), (u3, u4), (u4, u5)(u1, u6, u4)(u3, u6)(u5, u6). For
the edge (u1, u2, u3) ,u1 and u3 are the end vertices and u2 is the middle vertex. Also
u1, u2andu3 are adjacent as they are part of the same edge. u1, u2andu2, u3 are
consecutively adjacent.The number of vertices in an edge is called the cardinality of
the edge (Fig. 1).

2 3-Uniform Semigraph of a Cycle Graph

The semigraph obtained by introducing a middle vertex to each edge of the cycle
Cm ,whereCm denote the cyclewithmvertices, is a 3-uniform semigraph. It is denoted
by Cm,1. In a 3-uniform semigraph, the cardinality of each edge is 3 (Fig. 2).

Examples

Fig. 2 Examples for 3-uniform semigraph
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3 Bitopological Space

A non-empty set X with two distinct topologies τ1andτ2 defined on X is called a
bitopological space, denoted by (X, τ1, τ2).

Definition 1 A bitopological space (X, τ1, τ2) is said to be weakly pairwise T0 if
for each pair of distinct points, there exists a τ1-open set or a τ2 open set containing
one but not the other.

Definition 2 A bitopolgical space (X, τ1, τ2) is said to be pairwise T0 if for each
pair (x, y) of distinct points of X, there is either a τ1-open set containing x but not y
or a τ2-open set containing y but not x.

Definition 3 A bitopolgical space (X, τ1, τ2) is said to be weakly pairwise T1 if for
each pair (x, y) of distinct points of X, there is a τ1-open set G and a τ2-open set H
such that x ∈ G, y /∈ G and y ∈ H, x /∈ H or x ∈ H, y /∈ Handy ∈ G, y /∈ G.

Definition 4 A bitopolgical space (X, τ1, τ2) is said to be pairwise T1 if for each
pair (x, y) of distinct points of X, there is a τ1-open set G containing x but not y or a
τ2-open set H containing y but not x.

Definition 5 A bitopological space (X, τ1, τ2) is said to be weakly pairwise T2 if
for each pair (x, y) of distinct points of X, there is a τ1-open set G and a τ2-open set
H with G ∩ H = φ such that x ∈ G and y ∈ H or x ∈ H and y ∈ G.

Definition 6 A bitopolgical space (X, τ1, τ2) is said to be pairwise T2 if for each
pair (x, y) of distinct points of X, there is a τ1-open set G and a (τ2)-open set H with
G ∩ H = φ such that x ∈ G and y ∈ H .

Definition 7 A bitopological space (X, τ1, τ2) is said to be double compact if both
the spaces (X, τ1) and (X, τ2) are compact.

Definition 8 A bitopological space (X, τ1, τ2) is said to be pairwise normal if for a
τ1-closed set P and a τ2-closed set Q with P ∩ Q = φ,there is a G ∈ τ1 and H ∈ τ2
such that P ⊂ H and Q ⊂ Gwi thG ∩ H = φ.

Definition 9 Abitopological space (X, τ1, τ2) is said to be pairwise compact if every
τ1-open cover of X has a finite τ2-open subcover and every τ2-open cover of X has
a τ1-open subcover.

Definition 10 A bitopological space (X, τ1, τ2) is said to be pairwise connected if
X cannot be expressed as the union of two nonempty disjoint open sets G and H such
that G ⊂ τ1and H ⊂ τ2.



266 A. G. Pillai and P. B. Ramkumar

4 Bitopological Space on Cm,1

Let the vertex set of a 3-uniform semigraph of a cycle graph be V = {1, 2, 3, ....}
where E = {1, 3, 5, ...} are the end vertices and M = {2, 4, 6, ...} are the middle
vertices.

Define a neighbourhood for each vertex as follows.
For each vertex ′i ′, define the neighbourhood ′N ′

i as Ni = V − Ci , where Ci is
the set of vertices which are consecutively adjacent to ′i ′.

Consider the collection τE = ⋂
i∈E P(Ni ) and τM = ⋂

i∈M P(Ni ), where P(Ni )

denote the power set of Ni .
τE and τM are the discrete topologies on E and M respectively.

Illustration 1 In C3,1, (Fig. 3)
N1 = {1, 3, 4, 5} ,N2 = {2, 4, 5, 6}
N3 = {1, 3, 5, 6} ,N4 = {1, 2, 4, 6}
N5 = {1, 2, 3, 5} ,N6 = {2, 3, 4, 6}
τE = {φ, {1}, {3}, {5}, {1, 3}{1, 5}{3, 5}{1, 3, 5}}, which is the discrete topology

on E.
τM = {φ, {2}, {4}, {6}, {2, 4}, {2, 6}, {4, 6}, {2, 4, 6}}, which is the discrete topol-

ogy on M.

Fig. 3 C3,1 1

6

5
4

3

2

Fig. 4 C4,1

4

7

6

53

2

1
8
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Illustration 2 For C4,1 (Fig. 4),

N1 = {1, 3, 4, 5, 6, 7} ,N2 = {2, 4, 5, 6, 7, 8}
N3 = {1, 3, 5, 6, 7, 8} ,N4 = {1, 2, 4, 6, 7, 8}
N5 = {1, 2, 3, 5, 7, 8} ,N6 = {1, 2, 3, 4, 6, 8}
N7 = {1, 2, 3, 4, 5, 7} ,N8 = {2, 3, 4, 5, 6, 8}
τE = {φ, {1}, {3}, {5}, {7}, {1, 3}, {1, 5}, {1, 7}, {3, 5}, {3, 7}, {5, 7}, {1, 3, 5},

{1, 3, 7}, {1, 5, 7}, {3, 5, 7}, {1, 3, 5, 7}} which is the discrete topology on E.
τM = {φ, {2}, {4}, {6}, {8}, {2, 4}, {2, 6}, {2, 8}, {4, 6}, {4, 8}, {6, 8}, {2, 4, 6},

{2, 4, 8}, {2, 6, 8}, {4, 6, 8}, {2, 4, 6, 8} which is the discrete topology on M.
Now define τE ′ = V ∪ τE and τM ′ = V ∪ τM .
Both τ

′
E and τ

′
M are topologies on the vertex set V.

Since τ
′
E and τ

′
M are definedover the samevertex setV,(V, τ

′
E , τ

′
M) is a bitpological

space .

5 Some Topological Properties of (V, τ
′
E, τ

′
M)

Proposition 1 The bitopological space (V, τ
′
E , τ

′
M) is weakly pairwise T0.

Proof Let i, j ∈ V such that i 	= j .
If i ∈ E ,{i} ∈ τ

′
E ,which contains i but not j.

If i ∈ M ,{i} ∈ τ
′
M ,which contains i but not j.

Therefore for every pair of vertices (i, j), i 	= j, there exists a τ
′
E open set or a

τ
′
M open set containing one but not the other. Hence(V, τ

′
E , τ

′
M) is weakly pairwise

T0.

Proposition 2 The bitopological space (V, τ
′
E , τ

′
M) is pairwise T0

Proof Let i, j ∈ V such that i 	= j .If i ∈ E, {i} ∈ τ
′
E which contains i but not j. If i ∈

M, {i} ∈ τ
′
Mwhich contains i but not j. Therefore for every pair of vertices (i, j), i 	=

j, there exists a τ
′
E -open set containing i but not j or a τ

′
M -open set containing i but

not j and hence (V, τ
′
E , τ

′
M) is pairwise T0.

Proposition 3 The bitopological space (V, τ
′
E , τ

′
M) is not pairwise T1 and not

weakly pairwise T1.

Proof Let i, j ∈ V such that i 	= j .
Let i, j ∈ E . Let G = {i} . G is τ

′
E open which contains i but not j. Now, V is the

only τ
′
M open set which contains j. Since V contains all the vertices,i ∈ V . Therefore

there exists no τ
′
M open set H which contains j but not i.

∴ (V, τ
′
E , τ

′
M) is not pairwise T1.

Same argument leads to the conclusion that (V, τ
′
E , τ

′
M) is not weakly pairwise T1.

Proposition 4 The bitopological space (V, τ
′
E , τ

′
M) is not pairwise T2 and it is not

weakly pairwise T2.
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Proof Let i, j ∈ V such that i 	= j .
Let i, j ∈ E .Let G = {i} . G is τ

′
E open which contains i but not j.Now, V is the

only τ
′
M open set which contains j.Let H = V .Since V contains all the vertices,i ∈

V .⇒ G ∩ H 	= φ.We cannot find two open sets G and H with G ∩ H = φ and
i ∈ G, j ∈ H .Hence (V, τ

′
E , τ

′
M) is not pairwise T2.

Same argument leads to the conclusion that (V, τ
′
E , τ

′
M) is not weakly pairwise T2.

Proposition 5 The bitopological space (V, τ
′
E , τ

′
M) is double compact.

Proof (i).To show that (V, τ
′
E )is compact.

Let β be an open cover for (V, τE )
′
.

⇒ ⋃
B∈β B = V .By the choice of τ

′
E ,every open cover must contain V.⇒Any

subcollection of β including V is a finite subcover of β.⇒ (V, τ
′
E )is compact.

(i i).To show that (V, τ
′
M )is compact.

β be an open cover for (V, τM )
′
.

⇒ ⋃
B∈β B = V .By the choice of τ

′
M ,every open cover must contain V.⇒Any

subcollection of β including V is a finite subcover of β.⇒ (V, τ
′
M )is compact.

Combining (i)and(i i) (V, τ
′
E , τ

′
M) is double compact.

Proposition 6 The bitopological space (V, τ
′
E , τ

′
M) is pairwise normal.

Proof Let P be a τ
′
E -closed set and Q be a τ

′
M -closed set such that P ∩ Q = φ.By

the choice of τ
′
E and τ

′
M ,there exists only one such pair ,namely,P=M and Q=E.

Let G=M and H=E.Clearly,P ⊆ G and Q ⊆ H ,with G ∩ H = φ.
∴For a τ

′
E -closed set P and a τ

′
M -closed setQ,with P ∩ Q = φ,there existsG ∈ τ

′
M

and H ∈ τ
′
E with G ∩ H = φ such that P ⊆ G and Q ⊆ H .

⇒ (V, τ
′
E , τ

′
M) is pairwise normal.

Proposition 7 The bitopological space (V, τ
′
E , τ

′
M) is pairwise disconnected.

Proof Let G=E and H=M.G ∈ τ
′
E , H ∈ τ

′
M ,G ∩ H = φandG ∪ H = V .

Hence V can be expressed as the union of two nonempty disjoint open sets G and
H such that G ⊂ τ

′
E and H ⊂ τ

′
M .

∴ (V, τ
′
E , τ

′
M) is pairwise disconnected.

6 Conclusion

In this paper,we have introduced two different topologies on the vertex set of a 3-
uniform semigraph of a cycle graph tomake it a bitopological space.Some topological
properties of the space are verified.Further studies are in progress.
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Hypergraph Topology

Chandran R. Deepthi and P. B. Ramkumar

Abstract Consider a hypergraph H with vertex set V = {v1, v2, . . . vn} and
hyperedge set E = {e1, e2, . . . em}. Two edges are adjacent if their intersection is
non-empty. A neighbourhood of a vertex vi , denoted by N (vi ) is defined as the
collection of vertices in adjacent edges of vi . Hence, every edge is contained in a
neighbourhood. A hypergraph topology is a family T of neighbourhood of vertices
in V which satisfies the following conditions

• φ ,V ε T
• If N (vi ), N (v j ) ε T then N (vi ) ∩ N (v j ) ε T
• If N (vi ) ε T for each i ε I then ∪iε I N (vi ) ε T

The elements of T are called open sets. Thus, a topology T defined on a hypergraph H
is called hypergraph topological space, denoted by (H, T ). Also for a subhypergraph,
similarly a subhypergraph induced topology is defined. The concept of closed sets,
continuity, connectedness, metric and homeomorphism are also discussed

Keywords Hypergraph · Neighbourhood of a vertex · Hypergraph topology ·
Hypergraph topological space
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1 Introduction

The hypergraph topology is not concerned with the physical layout of the hyper-
graph, but shows what connections exist between the vertices and hyperedges. Thus,
for the same hypergraph we can define different topologies. Hypergraph H is a pair
(V, E) where V is the set of vertices and E is the set of edges called hyperedges
which is a continuous closed curve containing the vertices. Each hyperedge consists
of any finite number of vertices. Topological Hyper-Graphs were defined in a paper
Topological Hyper-Graphs by Sarit Buzaglo, Rom Pinchasi and Gunter Rote in 4
December 2007. Theydefined topological hypergraphs as vertices enclosedby Jordan
Curves. A family of simple closed curves in the plane is a family of pseudo-circles,
if every two curves in the family are either disjoint or properly cross at precisely two
points. They discussed more on graphical properties in topological hypergraphs. In
this paper, also hyperedge is defined as pseudo-circles. But here we concentrated
only on topological properties. Instead of topological hypergraph, we defined it as
hypergraph topological space by defining hypergraph topology. The paper also dis-
cusses the concept of closed sets, continuity and connectedness, and their properties.
This is further extended to homeomorphism.

2 Preliminaries

Hypergraph H is a pair (V, E) where V is the set of vertices and E is the set of
edges called hyperedges which is a continuous closed curve containing the vertices.
Each hyperedge consists of any finite number of vertices. Consider a hypergraph
H with vertex set V = {v1, v2, . . . vn} and hyperedge set E = {e1, e2, . . . em}. Two
edges are adjacent if their intersection is non-empty. To every hypergraph, we define
a subhypergraph as follows. A subhypergraph is a hypergraph with some vertices
or edges removed. Subhypergraph HA induced by a subset A of V is defined as
HA = (A, {ei ∩ A; ei ∩ A �= ∅}) where eiεE .
For example, consider the above hypergraph H . Define A ⊂ V as A = {v1, v3, v6}.
ThenHA = (A, ei ∩ A �= ∅; i = 1, 2, 3)= (A, EA), whereEA = {e1A , e3A }The sub-
hypergraph HA is shown below (Fig. 1).

As our interest is on connected hypergraphs, hyperpaths is defined. A hyperpath
between vertices v1 and vk is defined as an alternative sequence of distinct vertices and
hyperedges v1, e1, v2, e2, . . . , ek−1, vk such that {vi , vi+1} ⊆ ei for 1 ≤ i ≤ k − 1.
A hypergraph is connected if there is a hyperpath between every pair of vertices.
Otherwise, it is disconnected.
A metric is a function d : X × X → R which satisfies the following conditions
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Fig. 1 Subhypergraph

• d(vi , v j ) ≥ 0
• d(vi , v j ) = 0 ⇐⇒ vi = v j

• d(vi , v j ) = d(v j , vi )

• d(vi , vk) ≤ d(vi , v j ) + d(v j , vk)

3 Hypergraph Topological Space

A neighbourhood of a vertex vi denoted by N (vi ) is defined as the collection of
vertices in adjacent edges of vi . Hence, every edge is contained in a neighbourhood.
A hypergraph topology is a family T of neighbourhood of vertices in V which
satisfies the following conditions

• φ ,V ε T
• If N (vi ), N (v j ) ε T then N (vi ) ∩ N (v j ) ε T
• If N (vi ) ε T for each i ε I then ∪iε I N (vi ) ε T

The elements of T are called open sets. Thus, a topology T defined on a hypergraph
H is called hypergraph topological space, denoted by (H, T ). Since neighbourhood
of a vertex is an open set, the closed set is the complement of a neighbourhood.
For example, a hypergraph H is shown below (Fig. 2).

Fig. 2 Hypergraph



274 D. R. Deepthi and P. B. Ramkumar

Fig. 3 Subhypergraph induced by A

Here V = {v1, v2, v3, v4, v5, v6, v7, v8} and E = {e1, e2, e3} where
e1 = {v1, v2, v3, v4}, e2 = {v4, v5} e3 = {v5, v6, v7, v8}
N (v1) = {v1, v2, v3, v4, v5} = N (v2) = N (v3),
N (v4) = {v1, v2, v3, v4, v5, v6, v7, v8} = V = N (v5),
N (v6) = {v4, v5, v6, v7, v8} = N (v7) = N (v8)

The hypergraph topology that can be defined are

• T = {φ, V, N (v1)}
• T = {φ, V, N (v5)}
• T = {φ, V, N (v8)}
• T = {φ, V, N (v3)}, etc.
(H, T ) is the hypergraph topological space. H = (V, E) with A ⊂ V . HA is the
subhypergraph of H .

The subhypergraph topology on HA is defined by TA = {A ∩ N (vi ); N (vi )εT }.
N (v1) = N (v2) = N (v3) = {v1, v2, v3, v4, v5},N (v4) = N (v5) = V ,N (v6) = N (v7)

= N (v8) = {v4, v5, v6, v7, v8}
T = {φ, V, N (v1)}.
Using the above hypergraph A = {v1, v3, v6}.A ∩ φ = φ,A ∩ V = A ∩ N (v4) = A,
A ∩ N (v1) = {v1, v3}.
TA = {φ, A, {v1, v3}} is not a topology induced by A. This is because the subhyper-
graph has disjoint hyperedges. So we shall redefine A using hyperpaths .

In the context of hypergraph topology, a hyperpath between vertices v1 and vk
is a sequence of vertices v1, v2, . . . , vk such that ∩k

i=1N (vi ) �= φ. By this, we can
define connectedness in hypergraph topological space. Thus, the connectedness in
hypergraph theory and topological theory is similar with respect to neighbourhood
of vertices. Nowwe shall come back to see what is subhypergraph topological space.

Consider an example (Fig. 1) as let A be thevertices in thehyperpathv1, e1, v4, e2, v5.
That is A = {v1, v4, v5}.
The subhypergraph induced by A is shown below (Fig. 3).
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Let T = {φ, V, N (v8)} Then A ∩ φ = φ, A ∩ V = A, A ∩ N (v8) = {v4, v5}.
Thus, TA = {φ, A, {v4, v5}} is the induced subhypergraph topology.
As we defined the open set, we can think of closed sets.

4 Closed Set

A set other than V is closed if its complement is a neighbourhood of a vertex. Thus,
a set is closed if its complement is open. Thus, φ and V are both closed and open.
In the previous example by Fig. 1, φc = V ,
V c = φ, N (v1)

c = {v6, v7, v8} = N (v2)
c = N (v3)

c,
N (v4)

c = φ = N (v5)
c

N (v6)
c = {v1, v2, v3} = N (v7)

c = N (v8)
c are not neighbourhoods.

The closed set in this topology is φ, V, {v6, v7, v8}, {v1, v2, v3}
Hence, complement of every set in a hypergraph topology is a closed set.
So similar to simple theorems in general topology, we have these in hypergraph
topology also.

Theorem 1 The union of any collection of open set is open.The intersection of a
finite number of open set is open.

Proof Every neighbourhood is an open set. By the definition of hypergraph topology,
any union of elements in a topology, T , is contained in T , and the union of open sets
is open in T .
Similarly, by the definition of hypergraph topology, intersection of elements of T is
in T . That is, intersection of open sets is open. �

Theorem 2 The intersection of a collection of closed set is closed. The union of a
finite number of closed set is closed.

Proof The complement of the intersection of closed sets is the union of the comple-
ment of closed sets. That is, it is the union of open sets . Since union of open set is
open, the complement of intersection of closed set is open. Hence, the intersection of
closed set is closed. Again by De Morgan’s law, complement of union of closed set
is the intersection of open set, which is open. Hence, union of closed set is closed. �

5 Continuity in Hypergraph Topology

Let us define the continuity in hypergraph topological space.
Let (H1, T1) and (H2, T2) be hypergraph topological spaces. A function f : H1 →
H2 is said to be continuous if for each neighbourhood N (vi ) of H2, the set f −1(N (vi ))

is a neighbourhood of H1. By this definition, we derive the following theorem using
closed sets.
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Theorem 3 Let (H1, T1) and (H2, T2) be hypergraph topological spaces. Then f :
H1 → H2 is continuous if and only if for every closed set W in H2, the set f −1(W )

is closed in H1.

Proof Assume that f is continuous. By definition, for each neighbourhood N (vi ) in
H2, the set f −1N (vi ) is a neighbourhood of H1. Let W be a closed set in H2. Then
by definition of closed set Wc is a neighbourhood in H2. By continuity, f −1(Wc) is
a neighbourhood in H1. f −1(Wc) = ( f −1(W ))c

Let vi ∈ f −1(Wc)

⇐⇒ f (vi ) ∈ Wc

⇐⇒ f (vi ) /∈ W
⇐⇒ vi /∈ f −1(W ) ,since f is continuous
⇐⇒ vi ∈ ( f −1(W ))c.
Therefore f −1(Wc) = ( f −1(W ))c

( f −1(W ))c is a neighbourhood in H1 . This implies that f −1(W ) is closed in H1.
Conversely assume that for every closed set W in H2, f −1(W ) is closed in H1.
W is closed in H2 =⇒ Wc is open in H2

=⇒ Wc is a neighbourhood in H2

f −1(W ) is closed in H1 =⇒ ( f −1(W ))c is a neighbourhood in H1

=⇒ f −1(Wc) is a neighbourhood in H1. Thus, for every neighbourhood Wc in H2

there exist f −1(Wc), neighbourhood in H1 =⇒ f is continuous. �

Using continuous mapping the connectedness can be proved by the next theorem.

Theorem 4 Let (H1, T1) and (H2, T2) be two hypergraph topological spaces. If f :
H1 → H2 is continuous and H1 is a connected, then f (H1) is a connected hypergraph
topological space.

Proof Since H1 is connected, there exists a hyperpath between every pair of vertices.
=⇒ ∩n

i=1N (vi ) �= φ for every i
claim: f (∩n

i=1N (vi )) = ∩n
i=1 f (N (vi ))

wε f (∩n
i=1N (vi )) ⇐⇒ f −1(w)ε ∩n

i=1 N (vi ))

⇐⇒ f −1(w)εN (vi )) for every i
⇐⇒ wε f (N (vi )) for every i
⇐⇒ wε ∩n

i=1 f (N (vi ))

Hence, f (∩n
i=1N (vi )) = ∩n

i=1 f (N (vi )) �= ∩n
i=1 f (φ) �= φ

Thus, there is a hyperpath between every pair of vertices in f (H1)

Thus, f (H1) is connected. �
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6 Metric in Hypergraph Topology

The function d(vi , v j ) = k, where k is the length of shortest hyperpath in a hyper-
graph topology, follows all the axioms of the metric. So with this metric defined by
d(vi , v j ) = k, where k is the length of shortest hyperpath in a hypergraph topology
is a function d : V × V → R , which satisfies the following conditions

• d(vi , v j ) ≥ 0
• d(vi , v j ) = 0 ⇐⇒ vi = v j

• d(vi , v j ) = d(v j , vi )

• d(vi , vk) ≤ d(vi , v j ) + d(v j , vk)

This hypergraph topology induced by this metric is called metric hypergraph topol-
ogy. For example, by Fig. 1, d(v1, v1) = 0, d(v1, v4) = 1, d(v1, v5) = 2, d(v1, v7) =
3. That is the first three conditions are satisfied. Also d(v1, v7) = 3 and d(v1, v4) +
d(v4, v7) = 1 + 2 = 3. From Fig. 4, d(v1, v8) = 4 and d(v1, v3) + d(v3, v8) = 2 +
3 = 5. Thus, d(vi , vk) ≤ d(vi , v j ) + d(v j , vk). Hence, the fourth condition is also
satisfied. With this metric (H, d) is a metric hypergraph space.

7 Homeomorphism in Hypergraphs

Homeomorphism is a bijective correspondence that preserves the topological struc-
ture, it gives the connection between the neighbourhoods of H1 and H2. Two hyper-
graphs H1 and H2 are homeomorphic if one of the hypergraph is obtained from the
other by subdivision or smoothing out of the vertices.

7.1 Subdivision

In subdivision, edges are subdivided into edges by introducing suitable number of
vertices. Using Fig. 1,consider the edge e1 = {v1, v2, v3, v4}
Add two new vertices as common.Let the new vertex be w1 and w2.Hence by subdi-
vision, the new edges are {v1, v2, w1, w2} and {w1, w2, v3, v4} (Fig. 4).

7.2 Smoothing Out

In smoothing out the edge is smoothed out to an edge by deleting suitable number of
vertices in common. For example, in Fig. 4 consider the edges {v1, v2, w1, w2} and
{w1, w2, v3, v4} . They have the intersection {w1, w2}. By smoothing out w1 and w2,
the edge {v1, v2, v3, v4} is obtained .
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Fig. 4 Hypergraph obtained by subdivision

8 Conclusion

By defining hypergraph topological space with hypergraph topology using neigh-
bourhood of a vertex a new branch of topology is evolved. Thus, hypergraph is a
topological space in which vertices are points, and each edge is a region in a plane.
The concept of closed set, continuity, connectedness in hypergrah topological space
are discussed. Using hyperpath metric is defined by giving metric hypergraph space.
The homeomorphism in hypergraph is defined. Further, investigation is being done
on the homeomorphism and to homology of hypergraph topological space.
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