
Chapter 5
Exponential Collocation Methods
for Conservative or Dissipative Systems

The main purpose of this chapter is to present exponential collocation methods
(ECMs) for solving conservative or dissipative systems. ECMs can be of arbitrarily
high order and preserve exactly or approximately first integrals or Lyapunov
functions. In particular, the application of ECMs to stiff gradient systems is dis-
cussed in detail, and it turns out that ECMs are unconditionally energy-diminishing
and strongly damped even for very stiff gradient systems. As a consequence of
this discussion, arbitrary-order trigonometric/RKN collocation methods are also
presented and analysed for second-order highly oscillatory/general systems. The
chapter is accompanied by numerical results that demonstrate the potential value of
this research.

5.1 Introduction

In this chapter, we consider systems of ordinary differential equations (ODEs) of
the form

y ′(t) = Q∇H(y(t)), y(0) = y0 ∈ R
d, t ∈ [0, T ], (5.1)

where Q is an invertible and d × d real matrix, and H : Rd → R is defined by

H(y) = 1

2
yᵀMy + V (y). (5.2)

Here M is a d × d symmetric real matrix, and V : R
d → R is a differentiable

function.
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It is important to note that the system (5.1) exhibits remarkable geometrical/
physical structures, which should be preserved by a numerical method in the spirit
of geometric numerical integration. In fact, if the matrix Q is skew symmetric, then
(5.1) is a conservative system with the first integral H : i.e.,

H(y(t)) ≡ H(y0) for any t � 0.

If the matrix Q is negative semi-definite, then (5.1) is a dissipative system with the
Lyapunov function H : i.e.,

H(y(t2)) � H(y(t1)) if t2 � t1.

Throughout this chapter, we call H energy for both cases in a broad sense. The
objective of this chapter is to design and analyse a class of arbitrary-order expo-
nential energy-preserving collocation methods which can preserve first integrals or
Lyapunov functions of the underlying conservative/dissipative system (5.1).

It is convenient to express

A = QM, g(y(t)) = Q∇V (y(t)).

We then rewrite the system (5.1) as

y ′(t) = Ay(t) + g(y(t)), y(0) = y0 ∈ R
d . (5.3)

As is known, the exact solution of (5.1) or (5.3) can be represented by the variation-
of-constants formula (the Duhamel Principle)

y(t) = etAy0 + t

∫ 1

0
e(1−τ )tAg(y(τ t))dτ. (5.4)

The system (5.1) or (5.3) plays a prominent role in a wide range of applications
in physics and engineering, including mechanics, astronomy, molecular dynamics,
and in problems of wave propagation in classical and quantum physics (see, e.g. [1–
4]). Some highly oscillatory problems and semidiscrete PDEs such as semilinear
Schrödinger equations fit this pattern. Among typical examples are the multi-
frequency highly oscillatory Hamiltonian systems with the Hamiltonian

H(p, q) = 1

2
pᵀM̄−1p + 1

2
qᵀK̄q + U(q), (5.5)

where K̄ is a symmetric positive semi-definite stiffness matrix, M̄ is a symmetric
positive definite mass matrix, and U(q) is a smooth potential with moderately
bounded derivatives.
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As an interesting class of numerical methods for (5.3), exponential integrators
have been widely investigated and developed in recent decades, and we refer
the reader to [5–17] for example. Exponential integrators make good use of the
variation-of-constants formula (5.4), and their performance has been evaluated on a
range of test problems. A systematic survey of exponential integrators is presented
in [2]. However, apart from symplectic exponential integrators (see, e.g. [18]), most
existing publications dealing with exponential integrators focus on the construction
and analysis of the schemes and pay little attention to energy-preserving exponential
integrators which can preserve the first integrals/Lyapunov functions. Energy-
preserving exponential integrators, especially higher-order schemes have not been
well researched yet in the literature.

On the other hand, various effective energy-preserving methods have been
proposed and researched for (5.3) in the special case of A = 0, such as the average
vector field (AVF) method [19–21], discrete gradient (DG) methods [22–24],
Hamiltonian Boundary Value Methods (HBVMs) [25–28], the Runge–Kutta-type
energy-preserving collocation (RKEPC) methods [29, 30], time finite elements
(TFE) methods [31–35], and energy-preserving exponentially-fitted (EPEF) meth-
ods [36, 37]. Some numerical methods preserving Lyapunov functions have also
been studied for (5.3) with A = 0 (see, e.g. [38–40]). It is noted that all these
methods are constructed and studied for the special case A = 0 and thus they do not
take advantage of the structure brought by the linear term Ay in the system (5.3).
These methods could be applied to (5.3) with A �= 0 if the right-hand side of (5.3)
is considered as a whole (function), i.e., y ′ = f (y) ≡ Ay + g(y).

Recently, in order to take advantage of the structure of the underlying system
and preserve its energy simultaneously, a novel energy-preserving method has been
studied in [41, 42] for second-order ODEs and a new energy-preserving exponential
scheme for the conservative or dissipative system has been researched in [43].
However, those two kinds of methods are both based on the AVF methods and
thence they are only of order two, in general. This may not be sufficient to deal
with some practical problems for high-precision numerical simulations in sciences
and engineering.

On noting the above observation, we are concerned in this chapter with deriving
and analysing structure-preserving exponential collocation methods. To this end we
make good use of the variation-of-constants formula and the structure introduced
by the underlying system. These exponential integrators can in such a way exactly
or approximately preserve the first integral or the Lyapunov function of (5.1).
Very recently, there have been some publications on the numerical solution of
Hamiltonian PDEs, and the analysis is related to the approach of this chapter (see,
e.g. [44–48]).
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5.2 Formulation of Methods

Following [34], we begin by defining the finite-dimensional function spaces Yh as
follows:

Yh = span {ϕ̃0(τ ), · · · , ϕ̃r−1(τ )}

=
{

w̃ : w̃(τ ) =
r−1∑
i=0

ϕ̃i(τ )Wi, τ ∈ [0, 1], Wi ∈ R
d

}
, (5.6)

where {ϕ̃i}r−1
i=0 are supposed to be linearly independent on I = [0, T ] and suffi-

ciently smooth. We use ϕ̃i(τ ) to denote ϕi(τh) for all the functions ϕi throughout
this chapter and h > 0 is the stepsize. With this definition, we consider another
finite-dimensional function space Xh such that w̃′ ∈ Yh for any w̃ ∈ Xh.

We introduce the idea of the formulation of methods. Find ũ(τ ) with ũ(0) = y0,
satisfying

ũ′(τ ) = Aũ(τ) + Phg(ũ(τ )), (5.7)

where the projection operationPh is given by (see [34])

〈ṽ(τ ),Phw̃(τ )〉 = 〈ṽ(τ ), w̃(τ )〉 for any ṽ(τ ) ∈ Yh (5.8)

and the inner product 〈·, ·〉 is defined by (see [34])

〈w1, w2〉 = 〈w1(τ ),w2(τ )〉τ =
∫ 1

0
w1(τ ) · w2(τ )dτ.

With regard to the projection operation Ph, we have the following property (see
[34]) which is needed in this chapter.

Lemma 5.1 The projectionPhw̃ can be explicitly expressed as

Phw̃(τ ) = 〈Pτ,σ , w̃(σ )〉σ ,

where

Pτ,σ = (ϕ̃0(τ ), · · · , ϕ̃r−1(τ ))Θ−1(ϕ̃0(σ ), · · · , ϕ̃r−1(σ ))ᵀ,

Θ = (〈ϕ̃i(τ ), ϕ̃j (τ )〉)0�i,j�r−1. (5.9)

When h tends to 0, the limit of Pτ,σ exists. If Pτ,σ is computed by a standard

orthonormal basis
{
ψ̃0, · · · , ψ̃r−1

}
of Yh under the inner product 〈·, ·〉, then Θ
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is an identity matrix and Pτ,σ has a simpler expression:

Pτ,σ =
r−1∑
i=0

ψ̃i (τ )ψ̃i (σ ). (5.10)

As ũ(τ ) = u(τh), (5.7) can be expressed in

u′(τh) = Au(τh) + 〈Pτ,σ , g(u(σh))〉σ .

Applying the variation-of-constants formula (5.4) to (5.7), we obtain

ũ(τ ) = u(τh) = eτhAy0 + τh

∫ 1

0
e(1−ξ)τhA〈Pξτ,σ , g(u(σh))〉σ dξ

= eτhAy0 + τh

∫ 1

0
e(1−ξ)τhA〈Pξτ,σ , g(ũ(σ ))〉σdξ (5.11)

Inserting (5.10) into (5.11) yields

ũ(τ ) = eτhAy0 + τh

∫ 1

0
e(1−ξ)τhA

∫ 1

0

r−1∑
i=0

ψ̃i (ξτ )ψ̃i (σ )g(ũ(σ ))dσdξ

= eτhAy0 + τh

∫ 1

0

r−1∑
i=0

∫ 1

0
e(1−ξ)τhAψ̃i(ξτ )dξψ̃i (σ )g(ũ(σ ))dσ.

We are now in a position to define exponential collocation methods.

Definition 5.1 An exponential collocation method for solving the system (5.1) or
(5.3) is defined as follows:

ũ(τ ) = eτhAy0 + τh

∫ 1

0
Āτ,σ (A)g(ũ(σ ))dσ, y1 = ũ(1), (5.12)

where h is a stepsize,

Āτ,σ (A) =
∫ 1

0
e(1−ξ)τhAPξτ,σ dξ =

r−1∑
i=0

∫ 1

0
e(1−ξ)τhAψ̃i(ξτ )dξψ̃i (σ ), (5.13)

and
{
ψ̃0, · · · , ψ̃r−1

}
is a standard orthonormal basis of Yh. We denote the method

as ECr.
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Remark 5.1 Once the stepsize h is chosen, the method (5.12) approximates the
solution of (5.1) in the time interval I0. Obviously, the obtained result can be
considered as the initial condition for a new initial value problem and it can be
approximated in the next time interval I1. In general, the method can be extended to
the approximation of the solution in the interval [0, T ].
Remark 5.2 It can be observed that the ECr method (5.12) exactly integrates the
homogeneous linear system y ′ = Ay. The scheme (5.12) can be classified into the
category of exponential integrators (which can be thought of as continuous-stage
exponential integrators). This is an interesting and important class of numerical
methods for first-order ODEs (see, e.g. [2, 13, 14, 49, 50]). In [43], the authors
researched a new energy-preserving exponential scheme for the conservative or
dissipative system. Here we note that its order is only two since this scheme
combines the ideas of DG and AVF methods. We have proposed a kind of
arbitrary-order exponential Fourier collocation methods in [16]. However, those
methods cannot preserve energy exactly. Fortunately, we will show that the ECr
method (5.12) can be of arbitrarily high order and can preserve energy exactly or
approximately, and which is different from the existing exponential integrators in
the literature. This feature is significant and makes the methods more efficient and
robust.

Remark 5.3 In the case of M = 0 and Q =
(

Od1×d1 −Id1×d1

Id1×d1 Od1×d1

)
, (5.1) is a

Hamiltonian system. In this special case, if we choose Xh and Yh as

Yh = span {ϕ̃0(τ ), · · · , ϕ̃r−1(τ )} ,

Xh = span

{
1,
∫ τ

0
ϕ̃0(s)ds, · · · ,

∫ τ

0
ϕ̃r−1(s)ds

}
,

then the ECr method (5.12) becomes the following energy-preserving Runge–Kutta
type collocation methods

ũ(τ ) = y0 + τh

∫ 1

0

∫ 1

0
Pξτ,σdξg(ũ(σ ))dσ, y1 = ũ(1),

which yields the functionally-fitted TFE method derived in [34]. Moreover, under
the above choices of M and Q, if Yh is particularly generated by the shifted
Legendre polynomials on [0, 1], then the ECr method (5.12) reduces to the RKEPC
method of order 2r given in [30] or HBVM(∞, r) presented in [26]. Consequently,
the ECr method (5.12) can be regarded as a generalisation of these existing methods
in the literature.
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5.3 Methods for Second-Order ODEs with Highly
Oscillatory Solutions

We first consider the following systems of second-order ODEs with highly oscilla-
tory solutions

q ′′(t) − Nq ′(t) + Υ q(t) = −∇U(q(t)), q(0) = q0, q ′(0) = q ′
0, t ∈ [0, T ],

(5.14)

where N is a symmetric negative semi-definite matrix, Υ is a symmetric positive
semi-definite matrix, and U : Rd → R is a differentiable function. By introducing
p = q ′, (5.14) can be transformed into

(
q

p

)′
=
(

0 I

−I N

)
∇H(p, q) (5.15)

with

H(p, q) = 1

2
pᵀp + 1

2
qᵀΥ q + U(q). (5.16)

This is exactly the same as the problem (5.1). Since N is symmetric negative semi-
definite, (5.15) is a dissipative system with the Lyapunov function (5.16). In the
particular case N = 0, (5.15) becomes a conservative Hamiltonian system with the
first integral (5.16). This is an important highly oscillatory system which has been
investigated by many researchers (see, e.g. [4, 51–58]).

Applying the ECr method (5.12) to (5.15) yields the trigonometric collocation
method for second-order highly oscillatory systems. In particular, for Hamiltonian
systems

q ′′(t) + Υ q(t) = −∇U(q(t)), (5.17)

the case where N = 0 in (5.14), the ECr method (5.12) leads to the following form.

Definition 5.2 The trigonometric collocation (denoted by TCr) method for (5.17)
is defined as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̃(τ ) = φ0(K)q0 + τhφ1(K)p0 − τ2h2
∫ 1

0
Aτ,σ (K)f (q̃(σ ))dσ, q1 = q̃(1),

p̃(τ) = −τhΥ φ1(K)q0 + φ0(K)p0 − τh

∫ 1

0
Bτ,σ (K)f (q̃(σ ))dσ, p1 = p̃(1),

(5.18)
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where K = τ 2h2Υ, f (q) = ∇U(q),

φi(K) :=
∞∑
l=0

(−1)lKl

(2l + i)! ,

for i = 0, 1, · · · , and

Aτ,σ (K) =
r−1∑
i=0

∫ 1

0
(1 − ξ)φ1

(
(1 − ξ)2K

)
ψ̃i (ξτ )dξψ̃i (σ ),

Bτ,σ (K) =
r−1∑
i=0

∫ 1

0
φ0
(
(1 − ξ)2K

)
ψ̃i (ξτ )dξψ̃i (σ ). (5.19)

Remark 5.4 In [59], the authors developed and researched a type of trigonometric
Fourier collocation methods for second-order ODEs q ′′(t) + Mq(t) = f (q(t)).
However, as shown in [59], those methods cannot preserve the energy exactly.
From the analysis to be presented in this chapter, it turns out that the trigonometric
collocation scheme (5.18) derived here can attain arbitrary algebraic order and can
preserve the energy of (5.16) exactly or approximately.

Remark 5.5 It is remarked that the multi-frequency highly oscillatory Hamil-
tonian system (5.5) is a kind of second-order system q ′′(t) + M̄−1K̄q(t) =
−M̄−1∇U(q(t)) and applying the ECr method (5.12) to it leads to the TCr method
(5.18) with K = τ 2h2M̄−1K̄ and f (q) = M̄−1∇U(q).

In the special case where N = 0 and Υ = 0, the system (5.14) reduces to the
conventional second-order ODEs

q ′′(t) = −∇U(q(t)), q(0) = q0, q ′(0) = q ′
0, t ∈ [0, T ]. (5.20)

Then the TCr method has the following form.

Definition 5.3 A TCr method for solving (5.20) is defined as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̃(τ ) = q0 + τhp0 − τ 2h2
∫ 1

0

¯Aτ,σ ∇U(q̃(σ ))dσ, q1 = q̃(1),

p̃(τ ) = p0 − τh

∫ 1

0
B̄τ,σ ∇U(q̃(σ ))dσ, p1 = p̃(1),

(5.21)

where

¯Aτ,σ =
r−1∑
i=0

∫ 1

0
(1 − ξ)ψ̃i (ξτ )dξψ̃i (σ ), B̄τ,σ =

r−1∑
i=0

∫ 1

0
ψ̃i (ξτ )dξψ̃i (σ ).

(5.22)
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This scheme looks like a continuous-stage RKN method, and is denoted by RKNCr
in this chapter.

5.4 Energy-Preserving Analysis

In this section, we analyse the energy-preserving property of the ECr methods.

Theorem 5.1 If Q is skew symmetric and ũ(τ ) ∈ Xh, the first integral H

determined by (5.2) of the conservative system (5.1) can be preserved exactly by
the ECr method (5.12): i.e., H(y1) = H(y0). If ũ(τ ) /∈ Xh, the ECr method
(5.12) approximately preserves the energy H with the following accuracy H(y1) =
H(y0) + O(h2r+1).

Proof We begin with the first part of this proof under the assumption that Q is
skew symmetric and ũ(τ ) ∈ Xh. It follows from ũ(τ ) ∈ Xh that ũ′(τ ) ∈ Yh and
Q−1ũ′(τ ) ∈ Yh. Then, in the light of (5.8), we obtain

∫ 1

0
ũ′(τ )ᵀ(Q−1)ᵀũ′(τ )dτ =

∫ 1

0
ũ′(τ )ᵀ(Q−1)ᵀ

(
Aũ(τ) + Phg(ũ(τ ))

)
dτ

=
∫ 1

0
ũ′(τ )ᵀ(Q−1)ᵀ

(
Aũ(τ) + g(ũ(τ ))

)
dτ.

Here Q is skew symmetric, so is Q−1. We then have

0 =
∫ 1

0
ũ′(τ )ᵀ(Q−1)ᵀũ′(τ )dτ = −

∫ 1

0
ũ′(τ )ᵀQ−1(Aũ(τ) + g(ũ(τ ))

)
dτ.

On the other hand, it is clear that

H(y1) − H(y0) =
∫ 1

0

d

dτ
H(ũ(τ ))dτ = h

∫ 1

0
ũ′(τ )ᵀ∇H(ũ(τ ))dτ.

It follows from (5.1) and (5.3) that

∇H(ũ(τ )) = Q−1(Aũ(τ) + g(ũ(τ ))
)
.

Therefore, we obtain

H(y1) − H(y0) = h

∫ 1

0
ũ′(τ )ᵀQ−1(Aũ(τ) + g(ũ(τ ))

)
dτ = h · 0 = 0.
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We next prove the second part of this theorem under the assumption that ũ(τ ) /∈
Xh. With the above analysis for the first part of the proof, we have

H(y1) − H(y0)

= h

∫ 1

0
ũ′(τ )ᵀQ−1(Aũ(τ) + g(ũ(τ ))

)
dτ

= h

∫ 1

0
ũ′(τ )ᵀQ−1(Aũ(τ) + Phg(ũ(τ )) + g(ũ(τ )) − Phg(ũ(τ ))

)
dτ

= −h

∫ 1

0
ũ′(τ )ᵀ(Q−1)ᵀũ′(τ )dτ + h

∫ 1

0
ũ′(τ )ᵀQ−1(g(ũ(τ )) − Phg(ũ(τ ))

)
dτ

= h

∫ 1

0
ũ′(τ )ᵀQ−1(g(ũ(τ )) − Phg(ũ(τ ))

)
dτ.

Exploiting Lemma 3.4 presented in [34] and Lemma 5.2 proved in Sect. 5.6, we
obtain ũ′(τ ) = Phũ

′(τ ) + O(hr ). Therefore, one arrives at

H(y1) − H(y0)

= h

∫ 1

0

(
Phũ

′(τ ) + O(hr )
)ᵀ

Q−1(g(ũ(τ )) − Phg(ũ(τ ))
)
dτ

= h

∫ 1

0

(
Phũ

′(τ )
)ᵀ

Q−1(g(ũ(τ )) − Phg(ũ(τ ))
)
dτ + O(h2r+1)

= h

∫ 1

0

(
Phũ

′(τ )
)ᵀ

Q−1(g(ũ(τ )) − g(ũ(τ ))
)
dτ + O(h2r+1) = O(h2r+1),

where the result (5.28) in Sect. 5.6 is used.
The proof is complete. ��

Remark 5.6 It is noted that for the special case g(y) = 0 or A = 0, it is easy to
choose Yh and Xh such that ũ(τ ) ∈ Xh. For the case A �= 0 and g(y) ≡ C, if we
consider Yh = span

{
1, eτhA

}
and Xh = span

{
1, τh, eτhA

}
, it follows from (5.12)

that ũ(τ ) = eτhAy0 + A−1(eτhA − I)C. This also leads to ũ(τ ) ∈ Xh. However, for
the general situation, it is usually not easy to check whether the fact ũ(τ ) ∈ Xh is
true or not for the considered Yh and Xh. Therefore, we present the results for two
different cases ũ(τ ) ∈ Xh and ũ(τ ) /∈ Xh in Theorem 5.1.

Remark 5.7 For the result of ũ(τ ) /∈ Xh, we only present the local error of the
energy conservation, which is a direct consequence of Theorem 5.4. For the long-
time energy conservation, we have proved the result for exponential integrators in
[60]. It is possible to perform the long-time analysis for the methods presented in
this chapter by using modulated Fourier expansions.
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Theorem 5.2 If Q is negative semi-definite and ũ(τ ) ∈ Xh, then H , the Lyapunov
function of the dissipative system (5.1), given by (5.2), can be preserved by the
ECr method (5.12); i.e., H(y1) � H(y0). If ũ(τ ) /∈ Xh, it is true that H(y1) �
H(y0) + O(h2r+1).

Proof Applying the fact that
∫ 1
0 ũ′(τ )ᵀQ−1ũ′(τ )dτ � 0, this theorem can be

proved in a similar way to the proof of Theorem 5.1. ��

5.5 Existence, Uniqueness and Smoothness of the Solution

In this section, we focus on the study of the existence and uniqueness of ũ(τ )

associated with the ECr method (5.12).
According to Lemma 3.1 given in [50], it is easily verified that the coefficients

eτhA and Āτ,σ (A) of the methods for 0 � τ � 1 and 0 � σ � 1 are uniformly
bounded. We begin by assuming that

Mk = max
τ,σ,h∈[0,1]

∥∥∥∥∂kĀτ,σ

∂hk

∥∥∥∥ , Ck = max
τ,h∈[0,1]

∥∥∥∥∂keτhA

∂hk
y0

∥∥∥∥ , k = 0, 1, · · · .

Furthermore, denoting n-th-order derivative of g at y by g(n)(y), we then have the
following result about the existence and uniqueness of the methods.

Theorem 5.3 Let B(ȳ0, R) = {y ∈ R
d : ||y − ȳ0|| � R

}
and

Dn = max
y∈B(ȳ0,R)

||g(n)(y)||, n = 0, 1, · · · ,

whereR is a positive constant, ȳ0 = eτhAy0, ||·|| = ||·||∞ is the maximum norm for
vectors in R

d or the corresponding induced norm for the multilinear maps g(n)(y).
If h satisfies

0 � h � κ < min

{
1

M0D1
,

R

M0D0
, 1

}
, (5.23)

then the ECr method (5.12) has a unique solution ũ(τ ) which is smoothly dependent
on h.

Proof Set ũ0(τ ) = ȳ0 and define

ũn+1(τ ) = eτhAy0 + τh

∫ 1

0
Āτ,σ (A)g(ũn(σ ))dσ, n = 0, 1, · · · , (5.24)

which leads to a function sequence {ũn(τ )}∞n=0. We note that lim
n→∞ ũn(τ ) is a

solution of the TCr method (5.12) if {ũn(τ )}∞n=0 is uniformly convergent, which will
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be shown by proving the uniform convergenceof the infinite series
∑∞

n=0(ũn+1(τ )−
ũn(τ )).

By induction and according to (5.23) and (5.24), we obtain ||ũn(τ ) − ȳ0|| � R

for n = 0, 1, · · · . It then follows from (5.24) that

||ũn+1(τ ) − ũn(τ )||

� τh

∫ 1

0
M0D1||ũn(σ ) − ũn−1(σ )||dσ

� h

∫ 1

0
M0D1||ũn(σ ) − ũn−1(σ )||dσ � β||ũn − ũn−1||c, β = κM0D1,

where || · ||c is the maximum norm for continuous functions defined as ||w||c =
maxτ∈[0,1] ||w(τ)|| for a continuous R

d -valued function w on [0, 1]. Hence, we
obtain

||ũn+1 − ũn||c � β||ũn − ũn−1||c
and

||ũn+1 − ũn||c � βn||ũ1 − y0||c � βnR, n = 0, 1, · · · .

It then immediately follows from Weierstrass M-test and the fact of β < 1 that∑∞
n=0(ũn+1(τ ) − ũn(τ )) is uniformly convergent.
If the ECr method (5.12) has another solution ṽ(τ ), we obtain the following

inequalities

||ũ(τ ) − ṽ(τ )|| � h

∫ 1

0
||Āτ,σ (A)

(
g(ũ(σ )) − g(ṽ(σ ))

)||dσ � β||ũ − ṽ||c,

and ‖ũ − ṽ‖c � β||ũ − ṽ||c. This yields ||ũ − ṽ||c = 0 and ũ(τ ) ≡ ṽ(τ ). The
existence and uniqueness have been proved.

With respect to the result that ũ(τ ) is smoothly dependent of h, since each ũn(τ )

is a smooth function of h, we need only to prove that the sequence

{
∂kũn

∂hk
(τ )

}∞

n=0
is uniformly convergent for k � 1. Differentiating (5.24) with respect to h gives

∂ũn+1

∂h
(τ) = τAeτhAy0 + τ

∫ 1

0

(
Āτ,σ (A) + h

∂Āτ,σ

∂h

)
g(ũn(σ ))dσ

+τh

∫ 1

0
Āτ,σ (A)g(1)(ũn(σ ))

∂ũn

∂h
(σ )dσ, (5.25)
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which yields

∥∥∥∥∂ũn+1

∂h

∥∥∥∥
c

� α + β

∥∥∥∥∂ũn

∂h

∥∥∥∥
c

, α = C1 + (M0 + κM1)D0.

By induction, it is easy to show that

{
∂ũn

∂h
(τ )

}∞

n=0
is uniformly bounded:

∥∥∥∥∂ũn

∂h

∥∥∥∥
c

� α(1 + β + · · · + βn−1) � α

1 − β
= C∗, n = 0, 1, · · · . (5.26)

It follows from (5.25)–(5.26) that

∥∥∥∥∂ũn+1

∂h
− ∂ũn

∂h

∥∥∥∥
c

� τ

∫ 1

0
(M0 + hM1) ‖g(ũn(σ )) − g(ũn−1(σ ))‖ dσ

+ τh

∫ 1

0
M0

(∥∥∥∥
(
g(1)(ũn(σ )) − g(1)(ũn−1(σ ))

) ∂ũn

∂h
(σ)

∥∥∥∥

+
∥∥∥∥g(1)(ũn−1(σ ))

(
∂ũn

∂h
(σ) − ∂ũn−1

∂h
(σ)

)∥∥∥∥
)
dσ � γβn−1 + β

∥∥∥∥∂ũn

∂h
− ∂ũn−1

∂h

∥∥∥∥
c

,

where γ = (M0D1 + κM1D1 + κM0L2C
∗)R, and L2 is a constant satisfying

||g(1)(y) − g(1)(z)|| � L2||y − z||, for y, z ∈ B(ȳ0, R).

Therefore, the following result is obtained by induction

∥∥∥∥∂ũn+1

∂h
− ∂ũn

∂h

∥∥∥∥
c

� nγβn−1 + βnC∗, n = 1, 2, · · · .

This shows the uniform convergence of
∑∞

n=0

(
∂ũn+1

∂h
(τ) − ∂ũn

∂h
(τ )

)
and then

{
∂ũn

∂h
(τ )

}∞

n=0
is uniformly convergent.

Likewise, it can be shown that other function series

{
∂kũn

∂hk
(τ )

}∞

n=0
for k � 2 are

uniformly convergent as well. Therefore, ũ(τ ) is smoothly dependent on h. ��
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5.6 Algebraic Order

In this section, we analyse the algebraic order of the ECr method (5.12). To express
the dependence of the solutions of y ′(t) = Ay(t) + g(y(t)) on the initial values, we
denote by y(·, t̃, ỹ) the solution satisfying the initial condition y(t̃ , t̃ , ỹ) = ỹ for any

given t̃ ∈ [0, h] and set �(s, t̃ , ỹ) = ∂y(s, t̃ , ỹ)

∂ỹ
. Recalling the elementary theory

of ODEs, we have the following standard result

∂y(s, t̃ , ỹ)

∂ t̃
= −�(s, t̃ , ỹ)

(
Aỹ + g(ỹ)

)
.

Throughout this section, for convenience, an h-dependent functionw(τ) is called
regular if it can be expanded as w(τ) =∑r−1

n=0 w[n](τ )hn+O(hr ), wherew[n](τ ) =
1

n!
∂nw(τ)

∂hn
|h=0 is a vector-valued function with polynomial entries of degrees� n.

It can be deduced from Proposition 3.3 in [34] that Pτ,σ is regular. Moreover, we
can prove the following result.

Lemma 5.2 The ECr method (5.12) generates a regular h-dependent function
ũ(τ ).

Proof By the result given in [34], we know that Pτ,σ can be smoothly extended
to h = 0 by setting Pτ,σ |h=0 = lim

h→0
Pτ,σ (h). Furthermore, it follows from

Theorem 5.3 that ũ(τ ) is smoothly dependent on h. Therefore, ũ(τ ) and Āτ,σ (A)

can be expanded with respect to h at zero as follows:

ũ(τ ) =
r−1∑
m=0

ũ[m](τ )hm + O(hr ), Āτ,σ (A) =
r−1∑
m=0

Ā[m]
τ,σ (A)hm + O(hr).

Then let δ = ũ(σ ) − y0 and we have

δ = ũ[0](σ ) − y0 + O(h) = y0 − y0 + O(h) = O(h).

We expand f (ũ(σ )) at y0 and insert the above equalities into the first equation of
the ECr method (5.12). This manipulation yields

r−1∑
m=0

ũ[m](τ )hm =
r−1∑
m=0

τmAmy0

m! hm

+τh

∫ 1

0

r−1∑
k=0

Ā[k]
τ,σ (A)hk

r−1∑
n=0

1

n!g
(n)(y0)(δ, · · · , δ︸ ︷︷ ︸

n−f old

)dσ + O(hr ). (5.27)
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In order to show that ũ(τ ) is regular, we need only to prove that

ũ[m](τ ) ∈ Pd
m = Pm([0, 1]) × · · · × Pm([0, 1])︸ ︷︷ ︸

d−f old

for m = 0, 1, · · · , r − 1,

where Pm([0, 1]) consists of polynomials of degree � m on [0, 1]. This can be
confirmed by induction as follows.

Firstly, it is clear that ũ[0](τ ) = y0 ∈ Pd
0 . We assume that ũ[n](τ ) ∈ Pd

n for
n = 0, 1, · · · ,m. Comparing the coefficients of hm+1 on both sides of (5.27) and
using (5.13) lead to

ũ[m+1](τ )

= τm+1Am+1

(m + 1)! y0 +
∑

k+n=m

τ

∫ 1

0
Ā[k]

τ,σ (A)hn(σ )dσ

= τm+1Am+1

(m + 1)! y0 +
∑

k+n=m

τ

∫ 1

0

∫ 1

0

[
e(1−ξ)τhAPξτ,σ

][k]
hn(σ )dσdξ,

hn(σ ) ∈ Pd
n .

Since Pξτ,σ is regular, it is easy to check that e(1−ξ)τhAPξτ,σ is also regular. Thus,
under the condition k + n = m, we have

∫ 1

0

[
e(1−ξ)τhAPξτ,σ

][k]
hn(σ )dσ := p̌k

m(ξτ ) ∈ Pd
m([0, 1]).

Then, the above result can be simplified as

ũ[m+1](τ ) = τm+1Am+1

(m + 1)! y0 +
∑

k+n=m

τ

∫ 1

0
p̌k

m(ξτ )dξ

= τm+1Am+1

(m + 1)! y0 +
∑

k+n=m

∫ τ

0
p̌k

m(α)dα ∈ Pd
m+1.

��
According to Lemma 3.4 presented in [34] and the above lemma, we obtain

Phg(ũ(τ )) − g(ũ(τ )) = O(hr ), (5.28)

which will be used in the analysis of algebraic order. We are now ready to present
the result about the algebraic order of the ECr method (5.12).
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Theorem 5.4 About the stage order and order of the ECr method (5.12), we have

ũ(τ ) − y(t0 + τh) = O(hr+1), 0 < τ < 1,

ũ(1) − y(t0 + h) = O(h2r+1).

Proof According to the previous preliminaries, we obtain

ũ(τ ) − y(t0 + τh)

= y(t0 + τh, t0 + τh, ũ(τ )) − y(t0 + τh, t0, y0)

=
∫ τ

0

d

dα
y(t0 + τh, t0 + αh, ũ(α))dα

=
∫ τ

0
(h

∂y

∂t̃
(t0 + τh, t0 + αh, ũ(α)) + ∂y

∂ỹ
(t0 + τh, t0 + αh, ũ(α))hũ′(α))dα

=
∫ τ

0

(
− h

∂y

∂ỹ
(t0 + τh, t0 + αh, ũ(α))

(
Aũ(α) + g(ũ(α))

)

+ ∂y

∂ỹ
(t0 + τh, t0 + αh, ũ(α))

(
hAũ(α) + h〈Pτ,σ , g(ũ(α))〉α

))
dα

= −h

∫ τ

0
�τ(α)

(
g(ũ(α)) − Ph(g ◦ ũ)(α)

)
dα = O(hr+1), (5.29)

where �τ (α) = ∂y

∂ỹ
(t0 + τh, t0 + αh, ũ(α)). Letting τ = 1 in (5.29) yields

ũ(1) − y(t0 + h) = −h

∫ 1

0
�1(α)

(
g(ũ(α)) − Ph(g ◦ ũ)(α)

)
dα. (5.30)

We partition the matrix-valued function �1(α) as �1(α) = (�1
1(α), · · · ,�1

d(α))ᵀ.
It follows from Lemma 5.2 that

�1
i (α) = Ph�1

i (α) + O(hr ), i = 1, · · · , d. (5.31)

On the other hand, we have

∫ 1

0
(Ph�

1
i (α))ᵀg(ũ(α))dα =

∫ 1

0
(Ph�1

i (α))ᵀPh(g ◦ ũ)(α)dα, i = 1, · · · , d.

(5.32)



5.7 Application in Stiff Gradient Systems 163

Therefore, it follows from (5.30), (5.31) and (5.32) that

ũ(1) − y(t0 + h)

= −h

∫ 1

0

⎛
⎜⎜⎝

⎛
⎜⎜⎝

(Ph�1
1(α))ᵀ
...

(Ph�
1
d (α))ᵀ

⎞
⎟⎟⎠+ O(hr )

⎞
⎟⎟⎠
(
g(ũ(α)) − Ph(g ◦ ũ)(α)

)
dα

= −h

∫ 1

0

⎛
⎜⎜⎝

(Ph�1
1(α))ᵀ

(
g(ũ(α)) − Ph(g ◦ ũ)(α)

)
...

(Ph�
1
d (α))ᵀ

(
g(ũ(α)) − Ph(g ◦ ũ)(α)

)

⎞
⎟⎟⎠ dα − h

∫ 1

0
O(hr ) × O(hr )dα

= 0 + O(h2r+1) = O(h2r+1).

��

5.7 Application in Stiff Gradient Systems

When the matrix Q in (5.1) is the identity matrix, the system (5.1) is a stiff gradient
system as follows:

y ′ = −∇U(y), y(0) = y0 ∈ R
d, t ∈ [0, T ], (5.33)

where the potential U has the form

U(y) = 1

2
yᵀMy + V (y). (5.34)

Such problems arise from the spatial discretisation of Allen–Cahn and Cahn–
Hilliard PDEs (see, e.g. [61]). Along every exact solution, it is true that

d

dt
U(y(t)) = ∇U(y(t))ᵀy ′(t) = −y ′(t)ᵀy ′(t) � 0,

which implies that U(y(t)) is monotonically decreasing.
For solving this stiff gradient system, it follows from Theorem 5.2 that the

practical ECr method (5.40) is unconditionally energy-diminishing. For a quadratic
potential (i.e., V (y) = 0 in (5.34)), the numerical solution of the method is given by

y1 = R(−hA)y0 = e−hAy0.

The importance of the damping property |R(∞)| < 1 for the approximation
properties of Runge–Kutta methods has been studied and well understood in
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[62, 63] for solving semilinear parabolic equations. The role of the condition
|R(∞)| < 1 in the approximation of stiff differential equations has been researched
in Chapter VI of [64]. It has been shown in [39] that for each Runge–Kutta
method the energy decreases once the stepsize satisfies some conditions. Discrete-
gradient methods, AVF methods and AVF collocation methods derived in [39] are
unconditionally energy-diminishing methods but they show no damping for very
stiff gradient systems. However, it is clear that the methods are unconditionally
energy-diminishing methods and they have

|R(∞)| = |e−∞| = 0.

This implies that the methods are strongly damped even for very stiff gradient
systems and this is a significant feature.

5.8 Practical Examples of Exponential Collocation Methods

In this section, we present practical examples of exponential collocation methods.
Choosing ϕ̃k(τ ) = (τh)k for k = 0, 1, · · · , r − 1 and using the Gram–Schmidt
process, we obtain the standard orthonormal basis of Yh as follows:

p̂j (τ ) = (−1)j
√
2j + 1

j∑
k=0

(
j

k

)(
j + k

k

)
(−τ )k,

j = 0, 1, · · · , r − 1, τ ∈ [0, 1],

which are the shifted Legendre polynomials on [0, 1]. Therefore, Pτ,σ can be
determined by (5.10) as follows Pτ,σ =∑r−1

i=0 p̂i(τ )p̂i(σ ).

5.8.1 An Example of ECr Methods

For the ECr method (5.12), we need to calculate Āτ,σ (A) appearing in the methods.
It follows from (5.13) that

Āτ,σ (A) =
∫ 1

0
e(1−ξ)τhAPξτ,σdξ =

r−1∑
i=0

∫ 1

0
e(1−ξ)τhAp̂i(ξτ )dξp̂i (σ )

=
r−1∑
i=0

∫ 1

0
e(1−ξ)τhA(−1)i

√
2i + 1

i∑
k=0

(
i

k

)(
i + k

k

)
(−ξτ )kdξp̂i (σ )

=
r−1∑
i=0

√
2i + 1

i∑
k=0

(−1)i+k (i + k)!
k!(i − k)! ϕ̄k+1(τhA)p̂i(σ ). (5.35)
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Here the ϕ̄-functions (see, e.g. [2, 14, 49, 50]) are defined by:

ϕ̄0(z) = ez, ϕ̄k(z) =
∫ 1

0
e(1−σ)z σ k−1

(k − 1)!dσ, k = 1, 2, · · · .

It is noted that a number of approaches have been developed which work with the
application of the ϕ-functions on a vector (see [2, 65, 66], for example).

5.8.2 An Example of TCr Methods

For the TCr method (5.18) solving q ′′(t) + �q(t) = −∇U(q(t)), we need to
computeAτ,σ andB1,σ . It follows from (5.19) that

Aτ,σ (K)

=
r−1∑
j=0

∫ 1

0
(1 − ξ)φ1

(
(1 − ξ)2K

)
p̂j (ξτ)dξ p̂j (σ )

=
r−1∑
j=0

√
2j + 1

∞∑
l=0

(−1)j
j∑

k=0

(
j

k

)(
j + k

k

)∫ 1

0
(−ξ)k(1 − ξ)2l+1dξ

(−1)lKl

(2l + 1)! τ
kp̂j (σ )

=
r−1∑
j=0

√
2j + 1

∞∑
l=0

j∑
k=0

(−1)j+k

(
j

k

)(
j + k

k

)
k!(2l + 1)!

(2l + k + 2)!
(−1)lKl

(2l + 1)!τ
kp̂j (σ )

=
r−1∑
j=0

√
2j + 1p̂j (σ )

∞∑
l=0

j∑
k=0

(−1)j+k+l (j + k)!
k!(j − k)!(2l + k + 2)!τ

kKl.

Recall that the generalised hypergeometric function mFn is defined by

mFn

[
α1, α2, · · · , αm;
β1, β2, · · · , βn;x

]
=

∞∑
l=0

m∏
i=1

(αi)l

n∏
i=1

(βi)l

xl

l! , (5.36)

where αi and βi are arbitrary complex numbers, except that βi can be neither zero
nor a negative integer, and (z)l is the Pochhammer symbol which is defined as

(z)0 = 1, (z)l = z(z + 1) · · · (z + l − 1), l ∈ N.
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Then,Aτ,σ can be expressed by

Aτ,σ (K) =
r−1∑
j=0

√
2j + 1p̂j (σ )

∞∑
l=0

(−1)j+l

(2l + 2)!2F1

[−j, j + 1;
2l + 3; τ

]
Kl. (5.37)

Likewise, we can obtain

B1,σ (K) =
r−1∑
j=0

√
2j + 1p̂j (σ )Sj (K), (5.38)

where Sj (K) are

S2j (K) = (−1)j
(2j)!

(4j + 1)!K
j
0F1

⎡
⎢⎣

−;
1

2
;
− K

16

⎤
⎥⎦ 0F1

⎡
⎢⎣

−;

2j + 3

2
;
− K

16

⎤
⎥⎦ ,

S2j+1(K) = (−1)j
(2j+2)!
(4j+4)!K

j+1
0F1

⎡
⎢⎣

−;
3

2
;
− K

16

⎤
⎥⎦ 0F1

⎡
⎢⎣

−;

2j+ 5

2
;
− K

16

⎤
⎥⎦ , j =0, 1, · · · .

(5.39)

5.8.3 An Example of RKNCr Methods

By letting K = 0 in the above analysis, we obtain an example of RKNCr methods
for solving the general second-order ODEs (5.20) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qdi =q0 + dihp0 − d2
i h2

∫ 1

0

¯Adi ,σ ∇U

(
r∑

m=1

qdmlm(σ )

)
dσ, i = 1, · · · , r,

q1 =q0 + hp0 − h2
∫ 1

0

¯A1,σ∇U

(
r∑

m=1

qdmlm(σ )

)
dσ,

p1 =p0 − h

∫ 1

0
B̄1,σ ∇U

(
r∑

m=1

qdmlm(σ )

)
dσ,

where ¯Aτ,σ =∑r−1
i=0

∫ 1
0 (1−ξ)p̂i(ξτ )dξp̂i (σ ) and B̄1,σ =∑r−1

i=0

∫ 1
0 p̂i (ξ)dξp̂i (σ ).
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Remark 5.8 It is noted that one can make different choices of Yh and Xh and the
whole analysis presented in this chapter still holds. Different choices will produce
different practical methods, and in this chapter, we do not pursue this point for
brevity.

5.9 Numerical Experiments

Applying the r-point Gauss–Legendre quadrature to the integral of (5.12) yields

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yci = ecihAy0 + cih

r∑
j=1

bj Āci ,cj (A)g(ycj ), i = 1, · · · , r,

y1 = ehAy0 + h

r∑
j=1

bj Ā1,cj (A)g(ycj ),

(5.40)

where cj and bj for j = 1, · · · , r are the nodes and weights of the quadrature,
respectively. It is shown that the quadrature formula used here is not exact in
general for arbitrary g. According to Theorem 5.4 and the order of Gauss–Legendre
quadrature, it is obtained that this scheme approximately preserves the energy H

with the accuracy H(y1) = H(y0) + O(h2r+1).

In this section, we use fixed-point iteration in practical computation. Concerning
the convergence of the fixed-point iteration for the above scheme (5.40), we have
the following result.

Theorem 5.5 Assume that g satisfies a Lipschitz condition in the variable y, i.e.,
there exists a constant L with the property that ‖g(y1) − g(y2)‖ � L ‖y1 − y2‖. If
the stepsize h satisfies

0 < h <
1

LC max
i=1,··· ,r ci max

j=1,··· ,r |bj | , (5.41)

then the fixed-point iteration for the scheme (5.40) is convergent, where the constant
C depends on r but is independent of A.

Proof We rewrite the first formula of (5.40) as

Y = echAy0 + hK̄(A)g(Y ), (5.42)
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where c = (c1, c2, · · · , cr )
ᵀ, Y = (y1, y2, · · · , yr )

ᵀ, K̄(A) = (K̄ij (A))r×r and
K̄ij (A) are defined by

K̄ij (A) := cibj Āci ,cj (A).

It then follows from (5.35) that

∥∥K̄ij (A)
∥∥ � ci |bj |

r−1∑
l=0

√
2l + 1

l∑
k=0

(l + k)!
k!(l − k)! ‖ϕ̄k+1(cihA)‖ ∣∣p̂l(cj )

∣∣ � Cci |bj |,

where the constant C depends on r but is independent of A. It then follows that∥∥K̄(A)
∥∥ � C max

i=1,··· ,r
ci max

j=1,··· ,r
|bj |. Letting

ϕ(x) = echAy0 + hK̄(A)g(x),

we obtain that

‖ϕ(x) − ϕ(y)‖ = ∥∥hK̄(A)g(x) − hK̄(A)g(y)
∥∥ � hL

∥∥K̄(A)
∥∥ ‖x − y‖

� hLC max
i=1,··· ,r ci max

j=1,··· ,r |bj | ‖x − y‖ .

The proof is complete by the Contraction Mapping Theorem. ��
Remark 5.9 It can be concluded from this theorem that the convergence of the
method (5.40) is independent of ‖A‖. However, it can be checked easily that the
convergence of some other methods such as RKEPC methods given in [30] depends
on ‖A‖. This fact confirms the efficiency of the method (5.40) and is demonstrated
numerically by the experiments presented in this section. This is also a reason why
the RKEPC2 formula does not precisely conserve the energy of Problem 5.1.

In order to show the efficiency and robustness of the methods, we take r = 2 and
denote the corresponding method by EC2P. Then we choose the same Yh and Xh

for the functionally fitted energy-preserving method developed in [34], and by this
choice, the method becomes the 2rth order RKEPC method given in [30]. For this
method, we choose r = 2 and approximate the integral by the Lobatto quadrature
of order eight, which is precisely the “extended Labatto IIIA method of order four”
in [67]. We denote this corresponding method as RKEPC2. Another integrator we
select for comparison is the explicit three-stage exponential integrator of order four
derived in [14] which is denoted by EEI3s4. It is noted that the first two methods
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Fig. 5.1 The logarithm of the global error against the logarithm of T /h

are implicit and we set 10−16 as the error tolerance and 5 as the maximum number1

demonstrate the efficiency of ECr methods when applied to first-order systems, for
brevity.

Problem 5.1 Consider the Duffing equation defined by

(
q

p

)′
=
(

0 1
−ω2 − k2 0

)(
q

p

)
+
(

0
2k2q3

)
,

(
q(0)
p(0)

)
=
(
0
ω

)
.

It is a Hamiltonian system with the Hamiltonian:

H(p, q) = 1

2
p2 + 1

2
(ω2 + k2)q2 − k2

2
q4.

The exact solution of this system is q(t) = sn(ωt; k/ω) with the Jacobi elliptic
function sn. Choose k = 0.07, ω = 5, 10, 20 and solve the problem on the interval
[0, 1000]with different stepsizes h = 0.1/2i for i = 0, · · · , 3. The global errors are
presented in Fig. 5.1. Then, we integrate this problem with the stepsize h = 1/100
on the interval [0, 10000]. See Fig. 5.2 for the energy conservation for different
methods. Finally, we solve this problem on the interval [0, 10] with ω = 20, h =
0.01 and different error tolerances in the fixed-point iteration. See Table 5.1 for the
total numbers of iterations for the implicit methods EC2P and RKEPC2.

11 It is noted that in order to show that the methods can perform well even for few iterations, a
low maximum number 5 of fixed-point iterations is used in this section. It is possible to increase to
other bigger maximum number of fixed-point iterations, but we do not go further here for brevity.
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Fig. 5.2 The logarithm of the error of Hamiltonian against t

Table 5.1 Results for Problem 5.1: the total numbers of iterations for different error tolerances
(tol)

Methods tol = 1.0 × 10−6 tol = 1.0 × 10−8 tol = 1.0 × 10−10 tol = 1.0 × 10−12

EC2P 859 992 1000 1651

RKEPC2 6886 8907 10, 647 11, 899

Problem 5.2 Consider the following averaged system in wind-induced oscillation
(see [40])

(
x1

x2

)′
=
(−ζ −λ

λ −ζ

)(
x1

x2

)
+
⎛
⎝ x1x2

1

2
(x2

1 − x2
2)

⎞
⎠ ,

where ζ � 0 is a damping factor and λ is a detuning parameter. By setting

ζ = r cos θ, λ = r sin θ, r � 0, 0 � θ � π/2,

this system can be transformed into the scheme (5.1) with

Q =
(− cos θ − sin θ

sin θ − cos θ

)
, M =

(
r 0
0 r

)
,

V = −1

2
sin θ

(
x1x

2
2 − 1

3
x3
1

)
+ 1

2
cos θ

(
−x2

1x2 + 1

3
x3
2

)
.
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Fig. 5.3 (a) The logarithm of the global error against the logarithm of T /h. (b) The logarithm of
the error of Hamiltonian against t

Its first integral (conservative case, when θ = π/2) or Lyapunov function
(dissipative case, when θ < π/2) is

H = 1

2
r(x2

1 + x2
2) − 1

2
sin θ

(
x1x

2
2 − 1

3
x3
1

)
+ 1

2
cos θ

(
−x2

1x2 + 1

3
x3
2

)
.

The initial values are given by x1(0) = 0, x2(0) = 1. Firstly we consider the
conservative case and choose θ = π/2, r = 20. The problem is integrated on
[0, 1000] with the stepsize h = 0.1/2i for i = 1, · · · , 4 and the global errors
are given in Fig. 5.3a. Then we solve this system with the stepsize h = 1/200 on
the interval [0, 10000] and Fig. 5.3b shows the results of the energy preservation.
Secondly we choose θ = π/2 − 10−4 and this gives a dissipative system. The
system is solved on [0, 1000] with h = 0.1/2i for i = 1, · · · , 4 and the
errors are presented in Fig. 5.4a. See Fig. 5.4b for the results of the Lyapunov
function with h = 1/20. Here we consider the results given by EC2P with a
smaller stepsize h = 1/1000 as the ‘exact’ values of the Lyapunov function.
Table 5.2 gives the total numbers of iterations when applying the methods to this
problem on [0, 10] with θ = π/2, r = 20, h = 0.01 and different error
tolerances.
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Fig. 5.4 (a) The logarithm of the global error against the logarithm of T /h. (b) The results for the
Lyapunov function against t

Table 5.2 Results for Problem 5.2: the total number of iterations for different error tolerances
(tol)

Methods tol = 1.0 × 10−6 tol = 1.0 × 10−8 tol = 1.0 × 10−10 tol = 1.0 × 10−12

EC2P 2000 3000 3434 4000

RKEPC2 6000 8000 9999 11, 000

Problem 5.3 Consider the nonlinear Schrödinger equation (see [68])

iψt + ψxx + 2|ψ|2ψ = 0, ψ(x, 0) = 0.5 + 0.025 cos(μx),

with the periodic boundary conditionψ(0, t) = ψ(L, t). Following [68], we choose
L = 4

√
2π and μ = 2π/L. The initial condition chosen here is in the vicinity of

the homoclinic orbit. Using ψ = p + iq, this equation can be rewritten as a pair of
real-valued equations

pt + qxx + 2(p2 + q2)q = 0,

qt − pxx − 2(p2 + q2)p = 0.

Discretising the spatial derivative ∂xx by the pseudospectral method given in [68],
this problem is converted into the following system:

(
p

q

)′
=
(

0 −D2

D2 0

)(
p

q

)
+
(−2(p2 + q2) · q

2(p2 + q2) · p

)
, (5.43)
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where p = (p0, p1, · · · , pN−1)
ᵀ, q = (q0, q1, · · · , qN−1)

ᵀ and D2 =
(D2)0�j,k�N−1 is the pseudospectral differentiation matrix defined by:

(D2)jk =

⎧⎪⎪⎨
⎪⎪⎩

1

2
μ2(−1)j+k+1 1

sin2(μ(xj − xk)/2)
, j �= k,

−μ2 2(N/2)2 + 1

6
, j = k,

with xj = j
L

N
for j = 0, 1, · · · , N − 1. The Hamiltonian of (5.43) is

H(p, q) = 1

2
pᵀD2p + 1

2
qᵀD2q + 1

2

N−1∑
i=0

(p2
i + q2

i )2.

We choose N = 128 and first solve the problem on the interval [0, 10] with h =
0.1/2i for i = 3, · · · , 6. See Fig. 5.5a for the global errors. Then, this problem is
integrated with h = 1/200 on [0, 1000] and the energy conservation is presented in
Fig. 5.5b. The total numbers of iterations when solving this problem on [0, 10] with
N = 32, h = 0.1 and different error tolerances are shown in Table 5.3.

Fig. 5.5 (a) The logarithm of the global error against the logarithm of T /h. (b) The logarithm of
the Hamiltonian error against t
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Table 5.3 Results for Problem 5.3: the total number of iterations for different error tolerances
(tol)

Methods tol = 1.0 × 10−6 tol = 1.0 × 10−8 tol = 1.0 × 10−10 tol = 1.0 × 10−12

EC2P 488 632 796 963

RKEPC2 2558 4229 6991 8551

It can be concluded from these numerical experiments that the EC2P method
definitely shows higher accuracy, better invariant-preserving property, and good
long-term behaviour in the numerical simulations, compared to the other effective
methods in the literature.

5.10 Concluding Remarks and Discussions

For several decades, exponential integrators have constituted an important class
of methods for the numerical simulation of first-order ODEs, including the semi-
discrete nonlinear Schrödinger equation etc. Finite element methods for ODEs
can be traced back to the early 1960s and they have been investigated by many
researchers. In this chapter, combining the ideas of these two types of effective
methods, we derived and analysed a type of exponential collocation method for
the conservative or dissipative system (5.1). We have also rigorously analysed its
properties including existence and uniqueness, and algebraic order. It has been
proved that the exponential collocation methods can achieve an arbitrary order of
accuracy as well as preserve first integrals or Lyapunov functions exactly or approx-
imately. The application of the methods to stiff gradient systems was discussed. The
efficiency and superiority of exponential collocation methods were demonstrated by
numerical results. By the analysis of this chapter, arbitrary-order energy-preserving
methods were presented for second-order highly oscillatory/general systems.

Last, but not least, it is noted that the application of the methodology presented in
this chapter to other ODEs such as general gradient systems (see [69]) and Poisson
systems (see [70]) has been presented recently. We also note that there are some
further issues of these methods to be considered.

• The error bounds and convergence properties of exponential collocation methods
can be investigated.

• Another issue for exploration is the application of the methodology to PDEs such
as nonlinear Schrödinger equations and wave equations (see, e.g. [71]).

• The long-time energy conservation of exponential collocation methods as well
as its analysis by modulated Fourier expansion is another point which can be
researched.

The material in this chapter is based on the work by Wang and Wu [72].
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