
Chapter 4
Functionally-Fitted Energy-Preserving
Integrators for Poisson Systems

This chapter presents a class of energy-preserving integrators for Poisson systems
based on the functionally-fitted strategy, and these energy-preserving integrators can
have arbitrarily high order. This approach permits us to obtain the energy-preserving
methods proposed in [1] by Cohen and Hairer and [2] by Brugnano et al. for Poisson
systems.

4.1 Introduction

It is well known that Poisson systems arise in many applications. Moreover, it
is noted that Poisson systems often have periodic or oscillatory solutions. This
chapter is devoted to efficient numerical integrators for solving Poisson systems
(non-canonical Hamiltonian systems)

y ′(t) = B(y(t))∇H(y(t)), y(0) = y0 ∈ R
d, t ∈ [0, T ], (4.1)

where the prime denotes
d

dt
, B(y) is a skew-symmetric matrix, H(y) is a scalar

function, and both are sufficiently smooth. It is assumed that the system (4.1) has a
unique solution y = y(t) defined for all t ∈ [0, T ]. An important feature of (4.1) is
that the energy H(y) is preserved along the exact solution y(t), since we have

d

dt
H (y(t)) = ∇H(y(t))ᵀy ′(t) = ∇H(y(t))ᵀB(y(t))∇H(y(t)) = 0.

Numerical integrators that preserve H(y) are termed energy-preserving (EP) inte-
grators. Themain aim of this chapter is to formulate and analyse some EP integrators
for efficiently solving Poisson systems. Other geometric properties of the Poisson
systems such as the preservation of Casimir functions and the Poisson map of the
flow will not be considered in this chapter.
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If the matrix B(y) is independent of y, d is an even number and

B = J =
(

0 d
2

I d
2

−I d
2
0 d

2

)
,

then the system (4.1) is a canonical Hamiltonian system. Much effort has been made
for solving this system, and we refer the reader to [3–13] and references therein. For
canonical Hamiltonian systems, EP integrators are important and efficient methods
and a variety of EP methods have been derived and studied in the past few decades,
such as the average vector field (AVF) method (see, e.g. [14–16]), discrete gradient
methods (see, e.g. [17, 18]), Hamiltonian Boundary Value Methods (HBVMs) (see,
e.g. [19, 20]), EP collocation methods (see, e.g. [21]) and exponential/trigonometric
EP methods (see, e.g. [22–26]).

Among typical EP methods for solving ẏ = J∇H(y) is the well-known AVF
method given by Quispel and McLaren [16] as follows:

y1 = y0 + h

∫ 1

0
J∇H(y0 + σ(y1 − y0))dσ. (4.2)

Quispel and McLaren in [16] pointed out that this method is a B-series method.
Hairer extended this second-order method to higher-order schemes by introducing
the so-called continuous-stage Runge–Kutta methods [21]. On noticing the fact that
the dependence of the matrix B(y) should be discretised in a different manner,
an additional strategy will be required for Poisson systems. This means that it is
necessary to design and analyse the EP methods specifically for Poisson systems.
As is known, McLachlan et al. [18] discussed DG methods for various kinds of
ODEs including Poisson systems, and Cohen et al. [1] succeeded in constructing
arbitrary high-order EP schemes for Poisson systems and the following second-
order EP scheme for (4.1) was derived

y1 = y0 + hB
(
(1/2)(y1 + y0)

) ∫ 1

0
∇H(y0 + σ(y1 − y0))dσ. (4.3)

In the light of HBVMs, Brugnano et al. gave an alternative derivation of such
methods and presented a new proof of their orders in [27]. EP exponentially-
fitted integrators for Poisson systems were researched by Miyatake [28]. Using
discrete gradients, Dahlby et al. [29] constructed useful methods that simultaneously
preserve several invariants in systems of type (4.1). With regard to other multiple
invariant-preserving integrators we refer the reader to [2, 20, 30–32].

We note that the functionally-fitted (FF) technique is a very useful approach to
the construction of effective numerical methods for solving differential equations.
In general, an FF method can be derived by requiring it to integrate members of
a given finite-dimensional function space X exactly. The corresponding methods
are termed trigonometrically-fitted (TF) or exponentially-fitted (EF) methods if
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X is generated by trigonometrical or exponential functions. Using the FF/TF/EF
technique, many efficient methods have been constructed for canonical Hamiltonian
systems including the symplectic methods (see, e.g. [33–40]) and EP methods (see,
e.g. [23, 41]). This technique has also been used successfully for Poisson systems in
[28] and second- and fourth-order schemes were derived. In this chapter, using the
functionally-fitted technology, we will design and analyse efficient EP integrators
for Poisson systems. These integrators of arbitrarily high order can be derived in
a routine and convenient manner, and different EP schemes can be obtained by
considering different function spaces. We will show that choosing a special function
space allows us to obtain the EP schemes proposed by Cohen and Hairer [1] and
Brugnano et al. [27].

4.2 Functionally-Fitted EP Integrators

In order to derive the EP integrators for Poisson systems (4.1), we first define a
vector function space Y=span{Φ0(t), · · · ,Φr−1(t)} on [0, T ] by (see [41])

Y =
{

w : w(t) =
r−1∑
i=0

Φi(t)Wi, t ∈ [0, T ], Wi ∈ R
d

}
,

where the real functions {Φi(t)}r−1
i=0 are linearly independent and C

1 ([0, T ] → R).
In this chapter, we choose a stepsize h > 0 and consider the following two function
spaces

Yh =span {Φ0(τh), · · · ,Φr−1(τh)} , Xh =span

{
1,
∫ τh

0
Φ0(s)ds, · · · ,

∫ τh

0
Φr−1(s)ds

}
,

(4.4)

where τ is a variable with τ ∈ [0, 1], the stepsize h is a positive parameter with
0 < h � h0 � T , and h0 depends on the underlying problem.

We now introduce a projection (see [41]), which will be used in this chapter and
we summarise its definition as follows.

Definition 4.1 (See [41]) Let Ph be a linear operator that maps d-vector valued
real functions defined on [0, h] into the finite dimensional space Yh. The definition
ofPhw(τh) is given by

〈v(τh),Phw(τh)〉 = 〈v(τh),w(τh)〉, for any v ∈ Yh, (4.5)

where w(τh) be a continuous Rd -valued function for τ ∈ [0, 1] and Phw(τh) is a
projection of w onto Yh. The scalar product 〈·, ·〉 is defined as an inner product in



126 4 Functionally-Fitted Energy-Preserving Integrators for Poisson Systems

C([0, 1] → R
d ) so that for

u = u(τh) = (u1(τh), · · · , ud(τh))ᵀ , v = v(τh) = (v1(τh), · · · , vd(τh))ᵀ ,

〈u, v〉 is a d-dimensional vector with components
∫ 1

0
ui(τh)vi(τh) dτ for i =

1, · · · , d .

The following property ofPh is also needed, which has been proved in [41].

Lemma 4.1 (See [41]) The projectionPhw(τh) can be explicitly expressed as

Phw(τh) = 〈Pτ,σ ,w(σh)〉σ ,

where

Pτ,σ =
r−1∑
i=0

ψi(τh)ψi(σh),

and {ψ0, · · · , ψr−1} is a standard orthonormal basis of Yh under the inner product
〈·, ·〉.

With these preliminaries, we first present the definition of the integrators and
then show that they exactly preserve the energy of Poisson system (4.1).

Definition 4.2 Let u = u(τh) be the unique solution of the following initial value
problem

1

h

du(τh)

dτ
= B(u(τh))Ph

(∇H(u(τh))
)
, u(0) = y0, τ ∈ [0, 1]. (4.6)

If u ∈ Xh, then the numerical solution after one step is defined by y1 = u(h). In
this chapter, the integrator is termed a functionally-fitted EP (FFEP) integrator.

Remark 4.1 It is important to note that the exact solution of the Poisson system (4.1)
may not belong to the function space Xh. In this definition, the function u ∈ Xh is
considered as a numerical approximation of the exact solution. This approach is
similar to that given by Cohen and Hairer in [1], where they consider a polynomial
function as the approximation of the exact solution. In particular, we remark that, for
the Euler equation considered as a numerical experiment in Sect. 4.7, the solution of
(4.6) belongs to Xh.

Theorem 4.1 The FFEP integrator (4.6) exactly preserves the energy, i.e.,

H(y1) = H(y0).
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Proof It follows from u ∈ Xh that u′ ∈ Yh. Using the definition ofPh yields

∫ 1

0
u′(τh)i

(
Ph

(∇H(u(τh))
))

i
dτ =

∫ 1

0
u′(τh)i

(∇H(u(τh))
)
i
dτ, i = 1, 2, · · · , d,

where (·)i denotes the i-th entry of a vector. We then obtain

∫ 1

0
u′(τh)ᵀPh

(∇H(u(τh))
)
dτ =

∫ 1

0
u′(τh)ᵀ∇H(u(τh))dτ.

Hence, we have

H(y1) − H(y0) =
∫ 1

0

d

dτ
H(u(τh))dτ

= h

∫ 1

0
u′(τh)ᵀ∇H(u(τh))dτ

= h

∫ 1

0
u′(τh)ᵀPh

(∇H(u(τh))
)
dτ.

Inserting (4.6) into this formula gives

H(y1) − H(y0) = h

∫ 1

0
Ph

(∇H(u(τh))
)ᵀ

B(u(τh))ᵀPh

(∇H(u(τh))
)
dτ.

This proves the result by considering that B(u) is a skew-symmetric matrix. �	
Remark 4.2 If B(y) is a constant skew-symmetric matrix, (4.1) is a canonical
Hamiltonian system. In this case, the FFEP integrator (4.6) is identical to the
functionally-fitted EP method derived in Li and Wu [41]. Apart from this, if Yh is
generated by the shifted Legendre polynomials on [0, 1], then the FFEP integrator
(4.6) reduces to the EP collocation method given by Cohen and Hairer [21] and
Brugnano et al. [27].

4.3 Implementation Issues

We next pay attention to practical implementation issues of the FFEP integrator. We
choose the generalised Lagrange interpolation functions l̂i (τ ) ∈ Yh with respect to
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r distinct points d̂i ∈ [0, 1] for i = 1, · · · , r as follows:

(l̂1(τ ), · · · , l̂r (τ )) = (Φ0(τh),Φ1(τh), · · · ,Φr−1(τh))

·

⎛
⎜⎜⎜⎝

Φ0(d̂1h) Φ1(d̂1h) · · · Φr−1(d̂1h)

Φ0(d̂2h) Φ1(d̂2h) · · · Φr−1(d̂2h)
...

...
...

Φ0(d̂rh) Φ1(d̂rh) · · · Φr−1(d̂rh)

⎞
⎟⎟⎟⎠

−1

. (4.7)

Clearly, {l̂i (τ )}ri=1 provides another basis of Yh, satisfying l̂i (d̂j ) = δij . As u′ ∈ Yh,
u′ can be expressed in

u′(τh) =
r∑

i=1

l̂i (τ )u′(d̂ih).

It follows from Lemma 4.1 that the FFEP integrator (4.6) is identical to

u′(τh) = B(u(τh))

∫ 1

0
Pτ,σ ∇H(u(σh))dσ,

which leads to

u′(d̂ih) = B(u(d̂ih))

∫ 1

0
P

d̂i,σ
∇H(u(σh))dσ.

We then obtain

u′(τh) =
r∑

i=1

l̂i (τ )u′(d̂ih) =
r∑

i=1

l̂i (τ )
(
B(u(d̂ih))

∫ 1

0
P

d̂i,σ
∇H(u(σh))dσ

)
.

(4.8)

Integrating (4.8) gives

u(τh) = y0 +
∫ τh

0
u′(x)dx = y0 + h

∫ τ

0
u′(αh)dα

= y0 + h

∫ τ

0

r∑
i=1

l̂i (α)dαB(u(d̂ih))

∫ 1

0
P

d̂i,σ
∇H(u(σh))dσ.

Let yσ = u(σh), and we are now in a position to present the FFEP integrator
(4.6) for Poisson system (4.1).
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Definition 4.3 An FFEP integrator (4.6) for Poisson system (4.1) is defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yτ = y0 + h

r∑
i=1

∫ 1

0

(
P

d̂i,σ

∫ τ

0
l̂i (α)dα

)
B(y

d̂i
)∇H(yσ)dσ, 0 < τ < 1,

y1 = y0 + h

r∑
i=1

∫ 1

0

(
P

d̂i ,σ

∫ 1

0
l̂i (α)dα

)
B(y

d̂i
)∇H(yσ )dσ.

(4.9)

Remark 4.3 It can be observed from (4.9) that this integrator has a pattern similar
to the formula (2.4) given by Cohen and Hairer in [1]. We need the first formula of
(4.9) only for τ = d̂1, · · · , d̂r and this leads to a nonlinear system of equations for
the unknowns y

d̂1
, · · · , y

d̂r
which can be solved by a fixed-point iteration method.

Remark 4.4 It is noted that the integrals
∫ τ

0 l̂i (α)dα and
∫ 1
0 l̂i (α)dα can be calcu-

lated exactly if Yh is generated by many kinds of functions such as polynomials,
exponential and trigonometrical functions. The integral

∫ 1
0 P

d̂i,σ
∇H(yσ )dσ appear-

ing in (4.9) can also be calculated exactly for many cases. If these integrals cannot be
explicitly calculated, they can be approximated by quadrature to any desired degree
of accuracy.

4.4 The Existence, Uniqueness and Smoothness

We note that the FFEP integrator (4.6) fails to be well defined unless its existence
and uniqueness is shown. This section is devoted to this issue.

In what follows, we assume that the solution y = y(t) of (4.1) is contained in the
following ball for t ∈ [0, h0]

B̄(y0, R) =
{
y ∈ R

d : ||y − y0|| � R
}

,

where R is a positive constant and ‖ · ‖ is a fixed norm in R
d which is the same as

that stated in Assumption 4.1 below. Besides, it has been shown in [41] that Pτ,σ is a

smooth function of h. In this setting, we assume that An = maxτ,σ,h∈[0,1]
∣∣∣∣∂nPτ,σ

∂hn

∣∣∣∣
for n = 0, 1. Furthermore, the nth-order derivative of ∇H at y is a multilinear map
from R

d × · · · × R
d︸ ︷︷ ︸

n−f old

to R
d defined by

∇H(n)(y)(z1, · · · , zn) =
∑

1�α1,··· ,αn�d

∂n∇H

∂yα1 · · · ∂yαn

(y)z
α1
1 · · · zαn

n ,
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where y = (y1, · · · , yd)ᵀ and zi = (z1i , · · · , zd
i )ᵀ for i = 1, · · · , n. The same

notation is used for B(y). Before presenting the result, we also need the following
assumption.

Assumption 4.1 Denote D0 = maxy∈B̄(y0,R) ||∇H(y)|| and C0 = maxy∈B̄(y0,R)

||B(y)||. It is assumed that∇H and ∇H(1) are Lipschitz-continuous, i.e., there exist
D1, D2 > 0 such that

||∇H(y1) − ∇H(y2)|| � D1||y1 − y2||, ||∇H(1)(y1) − ∇H(1)(y2)|| � D2||y1 − y2||

for all y1, y2 ∈ B̄(y0, R). The same assumption is required for B(y) and B(1)(y),
and the corresponding Lipschitz constants are denoted by C1 and C2, respectively.

Theorem 4.2 Under the assumptions stated above, the FFEP integrator (4.6) has
a unique solution u(τh) provided the stepsize h satisfies

0 � h � δ < min

{
1

A0C0D1 + A0C1D0
,

R

A0C0D0
, h0,1

}
. (4.10)

Moreover, u(τh) is smoothly dependent on h for any fixed τ ∈ (0, 1].
Proof Existence and uniqueness. It follows from Lemma 4.1 that the FFEP
integrator (4.6) can be written as

u′(τh) = B(u(τh))

∫ 1

0
Pτ,σ ∇H(u(σh))dσ.

By integration we obtain

u(τh) = y0 + h

∫ τ

0
B(u(αh))

∫ 1

0
Pα,σ ∇H(u(σh))dσdα. (4.11)

The formula (4.11) generates a function series {un(τh)}∞n=0 by the following
recursive definition

un+1(τh) = y0 + h

∫ 1

0

(∫ τ

0
B(un(αh))Pα,σ dα

)
∇H(un(σh))dσ, n= 0, 1, · · · ,

(4.12)

which will be shown to be uniformly convergent by proving the uniform conver-
gence of the infinite series

∑∞
n=0(un+1(τh) − un(τh)). Then the integrator (4.6)

has a solution lim
n→∞ un(τh).

We next prove the uniform convergence of
∑∞

n=0(un+1(τh) − un(τh)). First, it
is clear that ||u0(τh) − y0|| = 0 � R. We assume that ||un(τh) − y0|| � R for
n = 0, · · · ,m. It then follows from (4.10) and (4.12) that

||um+1(τh) − y0|| � hA0C0D0 � R,
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which implies that un(τh) are uniformly bounded by ||un(τh) − y0|| � R for n =
0, 1, · · · . Then using (4.12) and the Lipschitz conditions, we obtain

‖un+1(τh) − un(τh)‖c

� h

∫ 1

0

∫ τ

0

∥∥∥[B(un(αh))Pα,σ∇H(un(σh))−B(un−1(αh))Pα,σ∇H(un−1(σh))
]∥∥∥

c
dαdσ

� h

∫ 1

0

∫ τ

0

∥∥∥[B(un(αh))Pα,σ∇H(un(σh)) − B(un(αh))Pα,σ∇H(un−1(σh))

+ B(un(αh))Pα,σ∇H(un−1(σh)) − B(un−1(αh))Pα,σ∇H(un−1(σh))
]∥∥∥

c
dαdσ

� h(A0C0D1 + A0C1D0)

∫ 1

0
||un(σh) − un−1(σh)||dσ � β||un(τh) − un−1(τh)||c,

where β = δ(A0C0D1 + A0C1D0) and ||w||c = maxτ∈[0,1] ||w(τh)|| for a
continuous Rd -valued function w on [0, 1]. This implies that

||un+1 − un||c � β||un − un−1||c
and then

||un+1 − un||c � βn||u1 − y0||c � βnR, n = 0, 1, · · · .

Using the Weierstrass M-test and the fact that β < 1, we confirm that∑∞
n=0(un+1(τh) − un(τh)) is uniformly convergent.
With regard to the uniqueness, we suppose that the integrator has another solution

v(τh). We then have

||u(τh) − v(τh)|| � β||u(τh) − v(τh)|| � β||u − v||c,

and

‖u − v‖c � β||u − v||c.

Hence, we obtain ||u − v||c = 0 and u(τh) ≡ v(τh). Therefore, the solution of the
FFEP integrator (4.6) exists and is unique.

Smoothness We next prove the result that u(τh) is smoothly dependent on h

for any fixed τ ∈ (0, 1]. This is true if the series

{
∂kun

∂hk
(τh)

}∞

n=0
is uniformly

convergent for k � 1. We note that the analysis of this part needs the bounds
on ∇H(1)(y) and B(1)(y), which are also denoted by D1 and C1, respectively.
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Differentiating (4.12) with respect to h yields

∂un+1

∂h
(τh) =

∫ 1

0

(∫ τ

0
B(un(αh))Pα,σ dα

)
∇H(un(σh))dσ

+h

∫ 1

0

(∫ τ

0
B(1)(un(αh))

∂un(αh)

∂h
Pα,σdα

)
∇H(un(σh))dσ

+h

∫ 1

0

(∫ τ

0
B(un(αh))

∂Pα,σ

∂h
dα

)
∇H(un(σh))dσ

+h

∫ 1

0

(∫ τ

0
B(un(αh))Pα,σ dα

)
∇H(1)(un(σh))

∂un(σh)

∂h
dσ. (4.13)

We then have∥∥∥∥∂un+1

∂h

∥∥∥∥
c

� α + β

∥∥∥∥∂un

∂h

∥∥∥∥
c

with α = A0C0D0 + δA1C0D0,

which yields that

{
∂un

∂h
(τh)

}∞

n=0
is uniformly bounded as follows:

∥∥∥∥∂un

∂h

∥∥∥∥
c

� α(1 + β + · · · + βn−1) � α

1 − β
=: C∗, n = 0, 1, · · · .

It follows from (4.13) that

∂un+1

∂h
− ∂un

∂h

=
∫ 1

0

∫ τ

0

[
B(un(αh))Pα,σ ∇H(un(σh)) − B(un−1(αh))Pα,σ ∇H(un−1(σh))

]
dαdσ

+ h

∫ 1

0

∫ τ

0

[
B(1)(un(αh))

∂un(αh)

∂h
Pα,σ ∇H(un(σh))

− B(1)(un−1(αh))
∂un−1(αh)

∂h
Pα,σ ∇H(un−1(σh))

]
dαdσ

+ h

∫ 1

0

∫ τ

0

[
B(un(αh))

∂Pα,σ

∂h
∇H(un(σh))

− B(un−1(αh))
∂Pα,σ

∂h
∇H(un−1(σh))

]
dαdσ

+ h

∫ 1

0

∫ τ

0

[
B(un(αh))Pα,σ ∇H(1)(un(σh))

∂un(σh)

∂h

− B(un−1(αh))Pα,σ ∇H(1)(un−1(σh))
∂un−1(σh)

∂h

]
dαdσ.
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Adding and removing some expressions with careful simplifications gives∥∥∥∥∂un+1

∂h
− ∂un

∂h

∥∥∥∥
c

� γβn−1 + β

∥∥∥∥∂un

∂h
− ∂un−1

∂h

∥∥∥∥
c

,

where

γ = (C0A0D1 + C1A0D0 + δC0A1D1 + δC1A1D0 + 2δC1A0D1C
∗

+ δA0D0C
∗C2 + δC0A0C

∗D2)R.

Hence, by induction, it is true that∥∥∥∥∂un+1

∂h
− ∂un

∂h

∥∥∥∥
c

� nγβn−1 + βnC∗, n = 1, 2, · · · ,

which confirms the uniform convergence of
∑∞

n=0

(
∂un+1

∂h
(τh) − ∂un

∂h
(τh)

)
.

Thus,

{
∂un

∂h
(τh)

}∞

n=0
is uniformly convergent.

Likewise, the uniform convergence of other function series

{
∂kun

∂hk
(τh)

}∞

n=0
for

k � 2 can be shown as well. Therefore, u(τh) is smoothly dependent on h. �	

4.5 Algebraic Order

We consider the algebraic order of the FFEP integrator in this section. For this
purpose, we begin with the regularity of the integrators. Following [41], if an h-
dependent function w(τh) can be expanded as

w(τh) =
r−1∑
n=0

w[n](τh)hn + O(hr ),

thenw(τh) is termed regular, wherew[n](τh) = 1

n!
∂nw(τh)

∂hn

∣∣∣∣
h=0

is a vector-valued

function with polynomial entries of degrees� n.

Lemma 4.2 The FFEP integrator (4.6) gives a regular h-dependent function
u(τh).

Proof It has been proved in Theorem 4.2 that u(τh) is smoothly dependent on h.
We then can expand u(τh) with respect to h at zero as follows:

u(τh) =
r−1∑
m=0

u[m](τh)hm + O(hr ).
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Let� = u(τh)−y0 and it is clear that � = O(h). Expanding∇H(u(τh)) at h = 0
and inserting the above equalities into (4.11) leads to

r−1∑
m=0

u[m](τh)hm

= y0 + h

∫ 1

0

∫ τ

0
Pα,σ B(u(αh))dα

r−1∑
n=0

1

n!∇H(n)(y0)(�, · · · ,�︸ ︷︷ ︸
n−f old

)dσ + O(hr ). (4.14)

In what follows, we prove the following result by induction

u[m](τh) ∈ Pd
m = Pm([0, 1]) × · · · × Pm([0, 1])︸ ︷︷ ︸

d−f old

for m = 0, 1, · · · , r − 1,

where Pm([0, 1]) consists of polynomials with degrees� m on [0, 1].
First, it is clear that u[0](τh) = y0 ∈ Pd

0 . Assume that u[n](τh) ∈ Pd
n for n =

0, 1, · · · ,m. Compare the coefficients of hm+1 on both sides of (4.14) and then we
have

u[m+1](τh) =
∑

k+n=m

∫ 1

0

∫ τ

0

[
Pα,σ B(u(αh))

][k]dαhn(σh)dσ, hn(σh) ∈ Pd
n .

Because Pα,σ is regular (see [41]) and u[n](τh) ∈ Pd
n , it can be verified that[

Pα,σ B(u(αh))
][k] ∈ Pd×d

k . Hence, with the condition k + n = m, we have

∑
k+n=m

∫ 1

0

∫ τ

0

[
Pα,σ B(u(αh))

][k]dαhn(σh)dσ ∈ Pd
m+1.

Thus, it is true that

u[m+1](τh) ∈ Pd
m+1.

�	
Let us now quote a result which is needed in the analysis of algebraic order.

Lemma 4.3 (See [41]) Given a regular function w and an h-independent suffi-
ciently smooth function g, the composition (if it exists) is regular. Moreover, one
has

Phg(w(τh)) − g(w(τh)) = O(hr ).
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Before presenting the algebraic order of the integrators, we recall the following
elementary theory of ordinary differential equations. Denoting by y(·, t̃, ỹ) the
solution of y ′(t) = B(y(t))∇H(y(t)) satisfying the initial condition y(t̃, t̃ , ỹ) = ỹ 1

for any given t̃ ∈ [0, h] and setting

Φ(s, t̃ , ỹ) = ∂y(s, t̃ , ỹ)

∂ỹ
,

one has the standard result

∂y(s, t̃ , ỹ)

∂ t̃
= −Φ(s, t̃ , ỹ)B(ỹ)∇H(ỹ).

Theorem 4.3 The FFEP integrator (4.6) is of order 2r , which implies

u(h) − y(t0 + h) = O(h2r+1).

Moreover, we have

u(τh) − y(t0 + τh) = O(hr+1), 0 < τ < 1.

Proof On the basis of the previous preliminaries, we obtain

u(h) − y(t0 + h)

= y(t0 + h, t0 + h, u(h)) − y(t0 + h, t0, y0)

=
∫ 1

0

d

dα
y(t0 + h, t0 + αh, u(αh))dα

=
∫ 1

0

(
h

∂y

∂t̃
(t0 + h, t0 + αh, u(αh)) + ∂y

∂ỹ
(t0 + h, t0 + αh, u(αh))hu′(αh)

)
dα

=
∫ 1

0

(
− h

∂y

∂ỹ
(t0 + h, t0 + αh, u(αh))B(u(αh))∇H(u(αh))

+ ∂y

∂ỹ
(t0 + h, t0 + αh, u(αh))hB(u(αh))Ph∇H(u(αh))

)
dα

= −h

∫ 1

0
Φ1(α)B(u(αh)) (∇H(u(αh)) − Ph∇H(u(αh))) dα,

0 1 Clearly, since the problem is autonomous, then y(t, t̃ , ỹ) = y(t − t̃ , 0, ỹ).



136 4 Functionally-Fitted Energy-Preserving Integrators for Poisson Systems

where

Φ1(α) = ∂y

∂ỹ
(t0 + h, t0 + αh, u(αh)).

It follows from Lemmas 4.2 and 4.3 that

Ph∇H(u(τh)) − ∇H(u(τh)) = O(hr).

Partition the matrix-valued function Φ1(α) as Φ1(α) = (Φ1
1 (α), · · · ,Φ1

d (α))ᵀ and
then it follows from Lemma 4.2 that

Φ1
i (α) = PhΦ

1
i (α) + O(hr ), i = 1, 2, · · · , d.

AsPhΦ
1
i (α) ∈ Yh, we obtain

∫ 1

0
(PhΦ

1
i (α))ᵀ∇H(u(αh))dα =

∫ 1

0
(PhΦ

1
i (α))ᵀPh∇H(u(αh))dα, i = 1, 2, · · · , d.

Hence, we have

u(h) − y(t0 + h)

= − h

∫ 1

0

⎛
⎜⎝
⎛
⎜⎝

(PhΦ1
1 (α))ᵀ
...

(PhΦ1
d (α))ᵀ

⎞
⎟⎠+ O(hr )

⎞
⎟⎠ (∇H(u(αh)) − Ph∇H(u(αh))) dα

= − h

∫ 1

0

⎛
⎜⎝

(PhΦ
1
1 (α))ᵀ

(∇H(u(αh)) − Ph∇H(u(αh))
)

...

(PhΦ
1
d (α))ᵀ

(∇H(u(αh)) − Ph∇H(u(αh))
)
⎞
⎟⎠ dα

− h

∫ 1

0
O(hr ) × O(hr )dα

= 0 + O(h2r+1) = O(h2r+1).

Similarly, we deduce that

u(τh) − y(t0 + τh) = y(t0 + τh, t0 + τh, u(τh)) − y(t0 + τh, t0, y0)

= −h

∫ τ

0
Φτ (α)B(u(αh))

(∇H(u(αh)) − Ph∇H(u(αh))
)
dα

= −h

∫ τ

0
Φτ (α)B(u(αh))O(hr )dα = O(hr+1).

�	
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4.6 Practical FFEP Integrators

In what follows, we consider two illustrative examples of FFEP integrators.

Example 1 We choose

Φk(τh) = (τh)k, k = 0, 1, · · · , r − 1,

for the function spaces Xh and Yh, and then we have

l̂i (τ ) =
r∏

j=1,j �=i

τ − d̂j

d̂i − d̂j

,

for i = 1, 2, · · · , r . The Gram–Schmidt process leads to the standard orthonormal
basis of Yh as follows:

p̂j (τh) = (−1)j
√
2j + 1

j∑
k=0

(
j

k

)(
j + k

k

)
(−τ )k, t ∈ [0, 1],

for j = 0, 1, · · · , r − 1, which are the shifted Legendre polynomials on [0, 1].
Consequently, Pτ,σ can be determined by

Pτ,σ =
r−1∑
i=0

p̂i(τh)p̂i (σh).

Here it is important to note that all the above functions are independent of h. In this
situation, the FFEP integrator (4.6) is identical to the EP method given by Cohen
and Hairer [21] and Brugnano et al. [27].

If we choose r = 1 and d̂1 = 1/2, we obtain

l̂1(τ ) = 1, Pτ,σ = 1.

Accordingly, the integrator (4.9) yields

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yτ = y0 + hτB(y 1
2
)

∫ 1

0
∇H(yσ)dσ,

y1 = y0 + hB(y 1
2
)

∫ 1

0
∇H(yσ )dσ,

(4.15)

which gives

yτ = y0 + hτB(y 1
2
)

∫ 1

0
∇H(yσ )dσ = y0 + τ (y1 − y0).
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Let τ = 1/2 for the first equality of (4.15), and then we have

y 1
2

= y0 + 1

2
hB(y 1

2
)

∫ 1

0
∇H(yσ )dσ = y0 + 1

2
(y1 − y0) = 1

2
(y0 + y1).

This leads to

y1 = y0 + hB

(
1

2
(y0 + y1)

)∫ 1

0
∇H(y0 + σ(y1 − y0))dσ.

This second-order integrator has been given by Cohen and Hairer in [1].

Example 2 Let us consider another choice for Yh by

Yh = span {cos(ωτh)} ,

and this gives

l̂1(τ ) = cos(τv)

cos(d̂1v)
, Pτ,σ = 4v cos(σv) cos(τv)

2v + sin(2v)
,

where v = ωh. With this choice, the integrator (4.9) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yτ = y0 + h

∫ τ

0
l̂1(α)dαB(y

d̂1
)

∫ 1

0
P

d̂1,σ
∇H(yσ )dσ,

y1 = y0 + h

∫ 1

0
l̂1(α)dαB(y

d̂1
)

∫ 1

0
P

d̂1,σ
∇H(yσ )dσ.

(4.16)

Let τ = d̂1 = 1

2
in (4.16). We then obtain

y1/2 = y0 + h
tan(v/2)

v
B(y1/2)

∫ 1

0
P1/2,σ ∇H(yσ)dσ,

y1 = y0 + h
2 sin(v/2)

v
B(y1/2)

∫ 1

0
P1/2,σ∇H(yσ )dσ.

It follows from these two equalities that

y1/2 = y0 + tan(v/2)

v

v(y1 − y0)

2 sin(v/2)
= y0 + 1

2 cos(v/2)
(y1 − y0),

yτ = y0 + sin(vτ )

v cos(v/2)

v(y1 − y0)

2 sin(v/2)
= y0 + sin(vτ )

sin(v)
(y1 − y0).
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This then results in

y1 = y0 + h
2 sin(v/2)

v
B
(
y0 + y1 − y0

2 cos(v/2)

) ∫ 1

0
P1/2,σ ∇H

(
y0 + sin(vσ)

sin(v)
(y1 − y0)

)
dσ.

(4.17)

Clearly, this integrator reduces to (4.3) when v = 0. We denote the second-order
scheme by FFEP1.

Example 3 We now consider

Yh = span {cos(ωτh), sin(ωτh)} .

This choice of Yh leads to

l̂1(τ ) = sin((τ − d̂2)v)

sin((d̂1 − d̂2)v)
, l̂2(τ ) = sin((τ − d̂1)v)

sin((d̂2 − d̂1)v)

and

Pτ,σ = 2v(2v cos((σ − τ )v) + sin((−2 + σ + τ )v) − sin((σ + τ )v))

−1 + 2v2 + cos(2v)
.

We here choose τ = d̂1 and d̂2 for the integrator (4.9). We then obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
d̂1

= y0 + h

∫ 1

0

(
Ā11(σ )B(y

d̂1
) + Ā12(σ )B(y

d̂2
)
)∇H(yσ )dσ,

y
d̂2

= y0 + h

∫ 1

0

(
Ā21(σ )B(y

d̂1
) + Ā22(σ )B(y

d̂2
)
)∇H(yσ )dσ,

y1 = y0 + h

∫ 1

0

(
b̄1(σ )B(y

d̂1
) + b̄2(σ )B(y

d̂2
)
)∇H(yσ )dσ,

(4.18)

where

Āij (σ ) = P
d̂j ,σ

∫ d̂i

0
l̂j (α)dα, b̄j (σ ) = P

d̂j ,σ

∫ 1

0
l̂j (α)dα i, j = 1, 2.
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We denote this fourth-order integrator (4.18) by FFEP2. It is worth noting that when
v = 0 and d̂1,2 = 1/2 ∓ √

3/6, this scheme becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
d̂1

= y0 + h

∫ 1

0

(1
2
l1(σ )B(y

d̂1
) +

(
1

2
−

√
3

3

)
l2(σ )B(y

d̂2
)
)
∇H(yσ )dσ,

y
d̂2

= y0 + h

∫ 1

0

((
1

2
+

√
3

3

)
l1(σ )B(y

d̂1
) + 1

2
l2(σ )B(y

d̂2
)

)
∇H(yσ )dσ,

y1 = y0 + h

∫ 1

0

(
l1(σ )B(y

d̂1
) + l2(σ )B(y

d̂2
)
)∇H(yσ )dσ,

where

l1(σ ) = σ − d̂2

d̂1 − d̂2

and

l2(σ ) = σ − d̂1

d̂2 − d̂1
.

This fourth-order integrator has been proposed by Cohen and Hairer in [1].

Remark 4.5 We remark that different choices of Yh and Xh will derive different
practical integrators. We do not pursue this point further for brevity.

4.7 Numerical Experiments

To illustrate the efficiency and robustness of the integrators derived in this chapter,
we apply our integrators FFEP1 and FFEP2 to the Euler equation. For comparison,
we consider the second-order and fourth-order EP collocation methods given in [1]
and denote them by EPCM1 and EPCM2, respectively.We also choose the following
second-order trigonometrically-fitted EP method (see [28])

y1 = y0 + h
2 sinh(v/2)

v cosh(v/2)
B((1/2)(y0 + y1))

∫ 1

0
∇H(y0 + σ(y1 − y0))dσ,

(4.19)

which is denoted by TFEP1. Since these five methods are all implicit, we use fixed-
point iteration. We set 10−16 as the error tolerance and 10 as the maximum number
of each iteration.
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We will use as a test problem the following Euler equations (see [28, 33]) given
by

ẏ = (
(α − β)y2y3, (1 − α)y3y1, (β − 1)y1y2

)ᵀ
, t ∈ [0, T ],

which describes the motion of a rigid body under no forces. This system can be
written as a Poisson system

ẏ =
⎛
⎝ 0 αy3 −βy2

−αy3 0 y1

βy2 −y1 0

⎞
⎠∇H(y)

with

H(y) = y2
1 + y2

2 + y2
3

2
.

Following [28, 33], the initial value is chosen as y(0) = (0, 1, 1), and the parameters
are given by

α = 1 + 1√
1.51

, β = 1 − 0.51√
1.51

.

The exact solution is given by

y(t) = (
√
1.51sn(t, 0.51), cn(t, 0.51), dn(t, 0.51))ᵀ,

where sn, cn, dn are the Jacobi elliptic functions. This solution is periodic with the
period

Tp = 7.450563209330954,

and thence we consider choosing ω = 2π/Tp for the methods FFEP1 and TFEP1.
We integrate this problem with the stepsizes h = 0.5 and h = 0.2 on the interval
[0, 10000]. The energy conservation for different methods is shown in Fig. 4.1. We
then solve the problem on the interval [0, T ] with different stepsizes h = 1/2i for
i = 4, 5, 6, 7. The global errors are presented in Fig. 4.2 for T = 10, 100.

We also consider another case. As mentioned in [28], when β ≈ 1, it is expected
that ẏ3 ≈ 0 and thus y3(t) ≈ 1. Therefore, the variables y1 and y2 seem to behave
like the harmonic oscillator with the period Tp = 2π/(α − 1). We choose α = 2
and β = 1.01. We integrate this problem with h = 0.5 and h = 0.2 on the interval
[0, 10000]. The energy conservation for different methods is shown in Fig. 4.3.

Then the problem is solved on the interval [0, T ] with h = 1/2i for i = 4, 5, 6, 7,
and see Fig. 4.4 for the global errors of T = 10, 100.
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Fig. 4.1 The logarithm of the error of Hamiltonian against t

It is very clear from the numerical results that our FFEP methods when applied
to the underlying Euler equations show remarkable numerical behaviour compared
with the existing EP methods in the literature.

4.8 Conclusions

The Poisson system is an important model in applications. It is well known that the
energy of Poisson system is preserved along its exact solution. This chapter paid
attention to the analysis of preserving the energy exactly in the numerical treatment,
so that we can obtain H(y1) = H(y0) after one step of the method starting
from y0 with a time stepsize h. In this chapter, we presented functionally-fitted
energy-preserving integrators for Poisson systems by using a functionally-fitted
strategy. It has been shown that these integrators preserve exactly the energy of
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Fig. 4.2 The logarithm of the global error against the logarithm of t/h

Fig. 4.3 The logarithm of the error of Hamiltonian against t
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Fig. 4.4 The logarithm of the global error against the logarithm of t/h

Poisson systems and can be of arbitrarily high order by choosing a sufficiently large
integer r for the function spaces Yh and Xh. These integrators contain the energy-
preserving schemes given by Cohen and Hairer [1] and Brugnano et al. [27]. The
remarkable efficiency and robustness of the integrators were demonstrated through
the numerical experiments for the Euler equations. In a similar way, it is possible to
develop functionally-fitted energy-diminishing integrators for gradient systems.

The materials in this chapter are based on the work by Wang and Wu [42].
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