
Chapter 3
Stability and Convergence Analysis
of ERKN Integrators for Second-Order
ODEs with Highly Oscillatory Solutions

In this chapter, we commence the nonlinear stability and convergence analysis
of ERKN integrators for second-order ODEs with highly oscillatory solutions,
depending on a frequency matrix. As one of the most important applications, we
also rigorously analyse the global errors of the blend of the ERKN time integrators
and the Fourier pseudospectral spatial discretisation (ERKN-FP) when applied to
semilinear wave equations. The theoretical results show that the nonlinear stability
and the global error bounds are entirely independent of the frequency matrix, and
the spatial mesh size. The analysis also provides a new perspective on the class of
ERKN time integrators. That is, the ERKN-FP methods are free from the restriction
on the Courant-Friedrichs-Lewy (CFL) condition.

3.1 Introduction

Nonlinear highly oscillatory problems occur in a variety of fields in science and
engineering. The computation of nonlinear highly oscillatory problems contains
numerous enduring challenges. In recent years, the investigation of efficient numer-
ical methods for solving such problems has received increasing attention. In this
chapter, we consider nonlinear multi-frequency highly oscillatory systems which
can be formulated by the following initial value problem of second-order ODEs

{
q̈(t) + κ2Aq(t) = g

(
q(t)

)
, t ∈ [t0, T ],

q(t0) = ϕ, q̇(t0) = ψ,
(3.1)

where κ2 > 0 is a takanami number, q ∈ R
d , and A ∈ R

d×d is a positive
semi-definite matrix that implicitly contains the dominant frequencies of the highly

oscillatory problem with κ2‖A‖ � max

{
1,

∥∥∥∥ ∂g

∂q

∥∥∥∥
}

. This type of problem plays
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an important role in a wide variety of practical application areas in science and
engineering, including nonlinear optics, molecular dynamics, solid state physics
and quantum field theory. It is well known that the method of lines is an effective
approach for the numerical integration of PDEs such as semilinear wave equations.
With suitable spatial discretisation strategies, for example the finite difference
method and the pseudospectral or spectral method (see, e.g. [1–6]), semilinear
wave equations can be converted into highly oscillatory second-order ODEs (3.1).
Therefore, research of the nonlinear multi-frequency highly oscillatory system (3.1)
will also be significant for the numerical investigation of semilinear wave equations,
including the important Klein–Gordon (KG) equation, in applications.

As is known, if the nonlinear function g(·) satisfies a Lipschitz condition, then the
nonlinear highly oscillatory problem (3.1) has a unique solution (see, e.g. [7, 8]) over
the interval [t0, T ]. Therefore, throughout this chapter we assume that the nonlinear
function g(·) is locally Lipschitz continuous in a strip along the exact solution q(t),
i.e., there is a positive constant L, s.t.

‖g(α(t)
) − g

(
β(t)

)‖ � L‖α(t) − β(t)‖ (3.2)

for all t ∈ [t0, T ] and

max{‖α(t) − q(t)‖, ‖β(t) − q(t)‖} � R. (3.3)

The numerical treatment of the highly oscillatory system (3.1) has received a great
deal of attention (see, e.g. [9–15]). Over the last decade, in order to systematically
and comprehensively study the nonlinear multi-frequency highly oscillatory second-
order ODEs (3.1) from both the analytical and numerical aspects, Wu et al. (see, e.g.
[15, 16]) established the following matrix-variation-of-constants formula

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) =φ0
(
(t − t0)

2κ2A
)
q(t0) + (t − t0)φ1

(
(t − t0)

2κ2A
)
q̇(t0)

+
∫ t

t0

(t − z)φ1
(
(t − z)2κ2A

)
g
(
q(z)

)
dz,

q̇(t) = − (t − t0)κ
2Aφ1

(
(t − t0)

2κ2A
)
q(t0) + φ0

(
(t − t0)

2κ2A
)
q̇(t0)

+
∫ t

t0

φ0
(
(t − z)2κ2A

)
g
(
q(z)

)
dz,

(3.4)

where t ∈ [t0, T ] and the functions φ0(A) and φ1(A) are defined by the following
unconditionally convergent matrix-valued functions:

φj (A) :=
∞∑

k=0

(−1)kAk

(2k + j)! , j ∈ N, (3.5)

where A is a positive semi-definite matrix. Since the matrix A appearing in (3.4) is
symmetric and positive semi-definite with A = Ω2, where Ω is also symmetric and
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positive semi-definite, (3.4) can also read (see, e.g. [8, 10])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = cos((t − t0)κΩ)q(t0) + κ−1Ω−1 sin
(
(t − t0)κΩ

)
q̇(t0)

+
∫ t

t0

κ−1Ω−1 sin((t − τ )κΩ)g
(
q(τ)

)
dτ,

q̇(t) = − κΩ sin((t − t0)κΩ)q(t0) + cos((t − t0)κΩ)q̇(t0)

+
∫ t

t0

cos((t − τ )κΩ)g
(
q(τ)

)
dτ.

(3.6)

It is noted that (3.6) depends on the decomposition of the matrix A, but (3.4) does
not. Throughout this chapter we use (3.4).

The matrix-variation-of-constants formula (3.4) has received a lot of attention
in the literature over the past decades. In particular, this formula can be used to
design and analyse effective and efficient numerical integrators for solving the
multi-frequency highly oscillatory system (3.1), such as the Gautschi-type methods
of order two (see, e.g. [10, 11, 17, 18]), the exponentially fitted Runge–Kutta
(EFRK) method [19], the exponentially fitted Runge–Kutta–Nyström (EFRKN)
method [20], the functionally-fitted energy-preserving method [21], the adapted
Runge–Kutta–Nyström (ARKN) method (see, e.g. [16, 22]), the extended Runge–
Kutta–Nyström (ERKN) method (see, e.g. [23–27]), and arbitrarily high-order
time-stepping methods (see, e.g. [28, 29]) and trigonometric Fourier collocation
methods (see, e.g. [30, 31]). These methods share the fact that they can exactly
integrate the unperturbed multi-frequency highly oscillatory system

q ′′(t) + κ2Aq(t) = 0. (3.7)

In particular, it is important to note that both the internal stages and updates of
an ERKN integrator can solve (3.7) exactly. This property of ERKN method is
essential for efficiently solving the nonlinear initial value problem (3.1) with highly
oscillatory solutions. Therefore, ERKN integrators are oscillation preserving (see
Chap. 1 for details and [32]).

Moreover, we also note that the classical stability analysis for numerical methods
deals with the following prototype scalar test equation (see, e.g. [15, 33]):

q̈(t) + ω2q(t) = −εq(t) with ω2 + ε > 0, (3.8)

where ω represents an estimate of the frequency λ and ε = λ2 − ω2 is the error
of the estimation. This is a linear system with a single-frequency, and hence this
kind of stability analysis is termed as the linear stability analysis. However, it
should be pointed out that the original system (3.1) is a nonlinear highly oscillatory
system with multiple frequencies. In particular, it may be a large scale system
of nonlinear multi-frequency highly oscillatory ODEs yielded by the refinement
of spatial discretisations for semilinear wave equations. Therefore, it would be
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insufficient to apply the linear and single frequency test equation (3.8) to the stability
analysis for a numerical method designed for the nonlinear multi-frequency highly
oscillatory system (3.1). This implies that it is important to investigate the nonlinear
stability for (3.1). Taking into account the special structure brought by the linear
term κ2Aq(t) of the system, and approximating the nonlinear integrals appearing
in the variation-of-constants formula (3.4) by suitable quadrature formulas, ERKN
integrators for solving the nonlinear multi-frequency highly oscillatory system (3.1)
have been proposed and developed in the literature. However, in contrast to classical
methods, the theoretical analysis associated with ERKN integrators is not sufficient.
Therefore, one of our main purposes in this chapter is to analyse the nonlinear
stability and convergence for the ERKN integrators based on the matrix-variation-
of-constants formula (3.4).

Another important issue in this chapter is to investigate the applications of ERKN
time integrators to semilinear wave equations:

utt (x, t) − ε2�u(x, t) + ρu = f
(
u(x, t)

)
, x ∈ T = R/(2πZ), t ∈ [t0, T ],

(3.9)

where ε2 > 0 and ρ > 0 are parameters, and the function f (·) is smooth and real-
valued, satisfying f (0) = 0. The wave equation (3.9) is studied with 2π-periodic
boundary conditions in one space dimension and its solution is assumed to be real-
valued. The initial values at time t = t0 are given by

u(x, t0) = ϕ(x), ut (x, t0) = ψ(x). (3.10)

In the literature, there exist many numerical strategies for solving the semilinear
wave equation, such as the finite difference method [3–5, 34], the pseudospectral or
spectral method [2, 6], the radial basis functions methods [35], the dual reciprocity
boundary integral equation technique [36] and the He’s variational iteration method
[37]. In this chapter, using the idea of the so-called operator-variation-of-constants
formula described in Chap. 1, we will combine the ERKN time integrators with
Fourier pseudospectral spatial discretisation (ERKN-FP) to solve (3.9) with 2π-
periodic boundary conditions and initial conditions (3.10), and this leads to a fully
discrete scheme. On the basis of energy techniques, which are widely used in
the numerical analysis of partial differential equations (see, e.g. [38–44]), we will
conclude that the global error bounds of the ERKN-FP schemes are independent
of any restriction of the time stepsize and the spatial stepsize. Moreover, it is
well known that restriction (CFL) of the time stepsize and the spatial stepsize
for the traditional numerical schemes in the literature is required for solving
semilinear wave equations. This means that the CFL condition is an essential
element associated with numerical PDEs in practice and the traditional schemes
for PDEs usually suffer from this crucial condition. Fortunately, however, our
analysis of the global errors in this chapter confirms that the ERKN-FP schemes
are completely independent of the CFL condition when applied to the semilinear
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wave equation. This is one of the most essential properties of ERKN time integrators
when applied to the semilinear wave equation.

3.2 Nonlinear Stability and Convergence Analysis for ERKN
Integrators

This section concerns the study of nonlinear stability and convergence for ERKN
integrators over a finite time interval. We begin this study with the nonlinear stability
analysis of the matrix-variation-of-constants formula for the nonlinear highly
oscillatory system (3.1), possessing multiple frequencies. After completing this,
we turn to the nonlinear stability and convergence analysis for ERKN integrators.
Throughout this section, ‖·‖ represents the vector 2-norm or matrix 2-norm (spectral
norm).

3.2.1 Nonlinear Stability of the Matrix-Variation-of-Constants
Formula

To begin with the stability analysis, we assume that the perturbed problem of (3.1)
is {

p̈(t) + κ2Ap(t) = g
(
p(t)

) + ε(t), t ∈ [t0, T ],
p(t0) = ϕ + ϕ̃, ṗ(t0) = ψ + ψ̃,

(3.11)

where A is symmetric and positive semi-definite, ϕ̃, ψ̃ are perturbations of the initial
conditions, and ε(t) is the perturbation of the nonlinear term. We let η(t) = p(t) −
q(t). Subtracting (3.1) from (3.11) leads to the following perturbation system:

{
η̈(t) + κ2Aη(t) = g

(
p(t)

) − g
(
q(t)

)+ ε(t), t ∈ [t0, T ],
η(t0) = ϕ̃, η̇(t0) = ψ̃.

(3.12)

We choose the time stepsize �t = (T − t0)/N , where N is a positive integer, and
denote the steps as

tn = t0 + n�t, n = 0, 1, 2, · · · , N.
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Applying the matrix-variation-of-constants formula (3.4) to the perturbation system
(3.12) yields
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(tn + μ�t) =φ0(μ
2V )η(tn) + μ�tφ1(μ

2V )η̇(tn)

+ �t2
∫ μ

0
(μ − z)φ1

(
(μ − z)2V

)(
g
(
p(tn + z�t)

)− g
(
q(tn + z�t)

))
dz

+ �t2
∫ μ

0
(μ − z)φ1

(
(μ − z)2V

)
ε(tn + z�t)dz,

η̇(tn + μ�t) = − μ�tκ2Aφ1(μ
2V )η(tn) + φ0(μ

2V )η̇(tn)

+ �t

∫ μ

0
φ0
(
(μ − z)2V

)(
g
(
p(tn + z�t)

)− g
(
q(tn + z�t)

))
dz

+ �t

∫ μ

0
φ0
(
(μ − z)2V

)
ε(tn + z�t)dz,

(3.13)

where 0 � μ � 1 and V = �t2κ2A. Since the matrix A can be decomposed as
A = Ω2, we denote the matrix D = κΩ , and then the decomposition of matrix κ2A

reads:

κ2A = D2,

where D is positive semi-definite matrix. Accordingly, the formula (3.13) can be
rewritten as the following compact form:

[
Dη(tn + μ�t)

η̇(tn + μ�t)

]
= Ψ (μ, 0, V )

[
Dη(tn)

η̇(tn)

]

+�t

∫ μ

0
Ψ (μ, z, V )

[
0

g
(
p(tn + z�t)

)− g
(
q(tn + z�t)

)
]

dz

+�t

∫ μ

0
Ψ (μ, z, V )

[
0

ε(tn + z�t)

]
dz, (3.14)

where

Ψ (μ, z, V ) =
[

φ0((μ − z)2V ) �t(μ − z)Dφ1((μ − z)2V )

−�t(μ − z)Dφ1((μ − z)2V ) φ0((μ − z)2V )

]
.

(3.15)

Before going into the details of stability analysis, we summarise some useful
properties related to the matrix-valued functions φj (μ

2V ) for j ∈ N and clarify
the spectral norm of Ψ (μ, z, V ) for 0 � μ, z � 1.
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Lemma 3.1 (See, e.g. [28, 45]) The matrix-valued functions defined by (3.5) satisfy

∫ 1

0
(1 − z)φ1

(
μ2(1 − z)2V

)
zj dz = Γ (j + 1)φj+2(μ

2V ), j = 0, 1, 2, · · · ,

∫ 1

0
φ0
(
μ2(1 − z)2V

)
zj dz = Γ (j + 1)φj+1(μ

2V ), j = 0, 1, 2, · · · ,

(3.16)

where Γ (j + 1) is the Gamma function.

Lemma 3.2 The matrix-valued functions defined by (3.5) are bounded, i.e.,

‖φj (μ
2V )‖ � 1

Γ (j + 1)
, j ∈ N. (3.17)

In particular, we have ‖φ0(μ
2V )‖ � 1 and ‖φ1(μ

2V )‖ � 1. Moreover, we also
have

‖μ�tDφ1(μ
2V )‖ � 1 and ‖μ�tDφj (μ2V )‖ � 1

Γ (j)
, j = 2, 3, · · · ,

(3.18)

where μ is a positive number with 0 � μ � 1.

Proof The boundedness of ‖φj (μ
2V )‖ and ‖μ�tDφ1(μ

2V )‖ can be confirmed
straightforwardly from the definition of the matrix-valued functions (3.5) and
Lemma 3.1. We thus need only to prove the boundedness of ‖μ�tDφj (μ

2V )‖ for
j = 2, 3, · · · . Clearly, it follows from the definition of φj (·) in (3.5) that

μ�tD(1 − z)φ1
(
μ2(1 − z)2V

) = sin
(
μ(1 − z)�tD

)
.

Therefore, the conclusion of Lemma 3.1 yields that

μ�tDφj (μ
2V ) = μ�tD

Γ (j − 1)

∫ 1

0
(1 − z)φ1

(
μ2(1 − z)2V

)
zj−2dz

= 1

Γ (j − 1)

∫ 1

0
sin
(
μ(1 − z)�tD

)
zj−2dz. (3.19)

Taking the spectral norms on both sides of (3.19) leads to

‖μ�tDφj (μ2V )‖ � 1

Γ (j − 1)

∫ 1

0
‖ sin

(
μ(1 − z)�tD

)‖zj−2dz � 1

Γ (j)
.

(3.20)

The statement of the lemma is confirmed. ��
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Lemma 3.3 (See, e.g. [13, 15]) The boundedmatrix-valued functions φ0(μ
2V ) and

φ1(μ
2V ) defined by (3.5) satisfy

φ2
0(μ2V ) + μ2V φ2

1(μ2V ) = I, (3.21)

where V is any positive semi-definite matrix and I is the identity matrix.

The other conclusions of Lemmas 3.1–3.3 can be proved by direct calculation, see
[13, 15, 28, 45], and we here ignore the details of the proof.

Theorem 3.1 The spectral norms of the matrices Ψ (μ, z, V ) satisfy

‖Ψ (μ, z, V )‖ = 1, ∀ μ, z ∈ [0, 1], (3.22)

where V = h2κ2A and A is a symmetric and positive semi-definite matrix.

Proof Obviously, the matrix Ψ (μ, z, V ) is well defined in (3.15) because A is a
symmetric and positive semi-definite matrix. Moreover, it is easy to verify that

Ψ (μ, z, V )ᵀΨ (μ, z, V ) = I2d×2d .

Thus, we have

‖Ψ (μ, z, V )‖ = 1, ∀μ, z ∈ [0, 1].

The conclusion of the lemma is confirmed. ��
According to the assumption of the finite-energy conditions (see, e.g. [11, 12, 18])

1

2
‖q̇(t)‖2 + κ2

2
q(t)ᵀAq(t) � K2

2
, (3.23)

where K is a constant, the error bounds of the Gaustchi-type methods of order
two were proved to be independent of κ2‖A‖. Here, we observe that Gautschi-
type time integrators are special ERKN integrators of order two. Therefore, it seems
reasonable to assume that the finite-energy condition (3.23) is also satisfied in a strip
along the exact solution. Using this assumption, we will investigate the nonlinear
stability and the error bounds of the ERKN integrators. To this end, we also need to
quote the following Gronwall’s inequality (see, e.g. [29]), which plays an important
role for the remainder of our analysis.

Lemma 3.4 Let σ be a positive number and ak, bk (k = 0, 1, 2, · · · ) be nonnega-
tive and satisfy

ak � (1 + σ�t)ak−1 + �tbk, k = 1, 2, 3, · · · ,
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then

ak � exp(σk�t)
(
a0 + �t

k∑
m=1

bm

)
, k = 1, 2, 3, · · · .

In what follows, we first show the nonlinear stability of the matrix-variation-of-
constants formula (3.4) whose perturbation formula is given by (3.13).

Theorem 3.2 Assume that the solution η(t) of the perturbation system (3.12) and
its derivative η̇(t) satisfy the finite-energy condition. If the time stepsize �t satisfies

�t �
√

1

2L
, then we have

‖η(tn)‖ � exp
(
T (1 + 4L)

)(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + 4�t

n∑
k=0

max
0�z�1

‖ε(tk + z�t)‖
)
,

‖η̇(tn)‖ � exp
(
T (1 + 4L)

)(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + 4�t

n∑
k=0

max
0�z�1

‖ε(tk + z�t)‖
)
.

(3.24)

That is, the matrix-variation-of-constants formula is nonlinearly stable over the time
interval [t0, T ].
Proof We take the l2-norm on both sides of the first formula (3.13) and (3.14),
respectively, and obtain

‖η(tn + �t)‖ � ‖η(tn)‖ + �t‖η̇(tn)‖ + �t2
∫ 1

0

∥∥g(p(tn + z�t)
)− g

(
q(tn + z�t)

)∥∥dz

+ �t2
∫ 1

0
‖ε(tn + z�t)‖dz,

(3.25)

and√
‖η̇(tn + �t)‖2 + κ2η(tn + �t)ᵀAη(tn + �t) �

√
‖η̇(tn)‖2 + κ2η(tn)ᵀAη(tn)

+�t

∫ 1

0

∥∥g(p(tn + z�t)
)− g

(
q(tn + z�t)

)∥∥dz + �t

∫ 1

0
‖ε(tn + z�t)‖dz.

(3.26)
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We then sum up the results in (3.25) and (3.26) and apply the Lipschitz condition.
This leads to

‖η(tn + �t)‖ +
√

‖η̇(tn + �t)‖2 + κ2η(tn + �t)ᵀAη(tn + �t)

� ‖η(tn)‖+
√

‖η̇(tn)‖2+κ2η(tn)
ᵀAη(tn) + �t‖η̇(tn)‖ + L�t(1 + �t) max

0�z�1
‖η(tn + z�t)‖

+ �t(1 + �t) max
0�z�1

‖ε(tn + z�t)‖.

(3.27)

It follows from the first equality in (3.13) that

‖η(tn +μ�t)‖ � ‖η(tn)‖+�t‖η̇(tn)‖+�t2L max
0�z�1

‖η(tn + z�t)‖+�t2 max
0�z�1

‖ε(tn + z�t)‖.

Under the assumption that time stepsize �t satisfies �t �
√

1

2L
, we then obtain

max
0�z�1

‖η(tn + z�t)‖ � 2‖η(tn)‖ + 2�t‖η̇(tn)‖ + 2�t2 max
0�z�1

‖ε(tn + z�t)‖.
(3.28)

Inserting (3.28) into (3.27) gives

‖η(tn + �t)‖ +
√

‖η̇(tn + �t)‖2 + κ2η(tn + �t)ᵀAη(tn + �t)

�
(
1 + �t(1 + 4L)

)(‖η(tn)‖ +
√

‖η̇(tn)‖2 + κ2η(tn)ᵀAη(tn)
)

+2�t(1 + �t) max
0�z�1

‖ε(tn + z�t)‖. (3.29)

Applying the Gronwall’s inequality (Lemma 3.4) to (3.29) yields

‖η(tn + �t)‖ +
√

‖η̇(tn + �t)‖2 + κ2η(tn + �t)ᵀAη(tn + �t)

� exp
(
n�t(1 + 4L)

)(‖η(t0)‖ +
√

‖η̇(t0)‖2 + κ2η(t0)ᵀAη(t0)

+4�t

n∑
k=0

max
0�z�1

‖ε(tk + z�t)‖
)
. (3.30)
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We thus obtain the estimations

‖η(tn)‖ � exp
(
T (1 + 4L)

)(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + 4�t

n∑
k=0

max
0�z�1

‖ε(tk + z�t)‖
)
,

‖η̇(tn)‖ � exp
(
T (1 + 4L)

)(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + 4�t

n∑
k=0

max
0�z�1

‖ε(tk + z�t)‖
)
.

Theorem 3.2 is proved. ��
The matrix-variation-of-constants formula (3.4) is fundamental to a true under-

standing of ERKN integrators for the multi-frequency highly oscillatory system
(3.1). Hence, its nonlinear stability is crucial for the nonlinear stability of ERKN
integrators for (3.1).

3.2.2 Nonlinear Stability and Convergence of ERKN
Integrators

The main theme of this subsection is the nonlinear stability and convergence analy-
sis of ERKN integrators for the nonlinear multi-frequency highly oscillatory system
(3.1). Choosing suitable nodes c1, c2, · · · , cs and approximating the nonlinear
integrals appearing in the formula (3.4) by suitable numerical quadrature formulae
leads to the following ERKN integrators (see, e.g. [15]).

Definition 3.1 (See [15]) An s-stage multidimensional multi-frequency ERKN
integrator with a stepsize �t for the multidimensional and multi-frequency oscil-
latory nonlinear system (3.1) is defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qn+1 = φ0(V )qn + �tφ1(V )q̇n + �t2
s∑

i=1

B̄i(V )g
(
Qni

)
,

q̇n+1 = −�tκ2Aφ1(V )qn + φ0(V )q̇n + �t

s∑
i=1

Bi(V )g
(
Qni

)
,

Qni = φ0(c
2
i V )qn + ci�tφ1(c

2
i V )q̇n + �t2

s∑
j=1

Aij (V )g
(
Qnj

)
, i = 1, 2, · · · , s,

(3.31)

where 0 � ci � 1 for i = 1, 2, · · · , s are real constants and B̄i (V ), Bi(V ) and
Aij (V ) for i, j = 1, 2, · · · , s are matrix-valued functions of V = �t2κ2A.

Using the SSEN-tree set and the corresponding B-series theory (see, e.g. [13]),
we now recall the order conditions of ERKN integrators which are summarised
in the following theorem. The weights B̄i (V ), Bi(V ) and Aij (V ) of an ERKN



86 3 Stability and Convergence Analysis of ERKN Integrators for Second-Order. . .

integrator for i, j = 1, 2, · · · , s can be determined by the following order
conditions.

Theorem 3.3 The ERKN integrator (3.31) has order r if and only if the order
conditions are satisfied

s∑
i=1

B̄i (V )�i(τ ) = ρ(τ)!
γ̃ (τ )s(τ )

φρ(τ)+1(V ) + O
(
�tr−ρ(τ)

)
, ∀τ ∈ SSRNTm, m � r − 1,

s∑
i=1

Bi(V )�i(τ ) = ρ(τ)!
γ̃ (τ )s(τ )

φρ(τ)(V ) + O
(
�tr−ρ(τ)+1), ∀τ ∈ SSRNTm, m � r,

(3.32)

where the definitions and properties of the order ρ(τ), the sgn s(τ ), the density
γ̃ (τ ), and the weight �i(τ) are well established and can be found in [13].

The conclusions of Theorem 3.3 indicate that the weights B̄i(V ), Bi(V ) and
Aij (V ) are the linear combination of φj (V ). Furthermore, it is evident from the first
conditions of (3.32) that the weights B̄i (V ) are independent of φ0(V ). Therefore,
combining this fact with Lemma 3.2, we can establish the uniform boundedness
of the weights B̄i (V ), Bi(V ) and Aij (V ), which will be used in our theoretical
analysis.

Lemma 3.5 The weights B̄i (V ), Bi(V ) and Aij (V ) are uniformly bounded, i.e.,

‖B̄i (V )‖ � B̄, ‖�tDB̄i (V )‖ � B̂, ‖Bi(V )‖ � B, ‖Aij (V )‖ � β,

(3.33)

for i, j = 1, 2, · · · , s, where B̄, B̂, B and β are all constants independent of �t , κ2

and the matrix V and D.

Applying an ERKN integrator (3.31) to the perturbed system (3.12), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηn+1 = φ0(V )ηn + �tφ1(V )η̇n + �t2
s∑

i=1

B̄i (V )
(
g
(
Pni

)− g
(
Qni

)+ ε(tn + ci�t)
)
,

η̇n+1 = −�tκ2Aφ1(V )ηn + φ0(V )η̇n

+ �t

s∑
i=1

Bi(V )
(
g
(
Pni

)− g
(
Qni

)+ ε(tn + ci�t)
)
,

ηni = φ0(c2
i V )ηn + ci�tφ1(c

2
i V )η̇n

+ �t2
s∑

j=1

Aij (V )
(
g
(
Pnj

)− g
(
Qnj

)+ ε(tn + cj �t)
)
,

i = 1, 2, · · · , s.

(3.34)
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The first two equalities of (3.34) can be rewritten as the compact form:

[
Dηn+1

η̇n+1

]
= Ψ (1, 0, V )

[
Dηn

η̇n

]

+�t

s∑
i=1

⎡
⎣�tDB̄i (V )

(
g
(
Pni

)− g
(
Qni

)+ ε(tn + ci�t)
)

Bi(V )
(
g
(
Pni

)− g
(
Qni

)+ ε(tn + ci�t)
)

⎤
⎦ .

(3.35)

We next present the nonlinear stability analysis for ERKN integrators over the
finite time interval [t0, T ].
Theorem 3.4 It is assumed that the nonlinear function g(·) is locally Lipschitz
continuous and the finite-energy condition (3.23) is satisfied. Then, if the time

stepsize �t satisfies the condition �t �
√

1

2sLβ
, we have the following estimates

for the perturbation system (3.12)

‖ηn‖ � exp(C1T )

(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + C2�t

n∑
k=0

s∑
i=1

‖ε(tk + ci�t)‖
)

,

‖η̇n‖ � exp(C1T )

(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + C2�t

n∑
k=0

s∑
i=1

‖ε(tk + ci�t)‖
)

,

(3.36)

where C1 and C2 are constants independent of �t , κ2 and the dominant frequency
matrix A.

Proof Under the hypothesis of the finite-energy condition (3.23), by taking l2-
norm on both sides of the first equality in (3.34) and (3.35), we obtain

‖ηn+1‖ � ‖ηn‖ + �t‖η̇n‖ + �t2B̄

s∑
i=1

(
L‖ηni‖ + ‖ε(tn + ci�t)‖

)
,

and √
‖η̇n+1‖2 + κ2η

ᵀ
n+1Aηn+1 �

√
‖η̇n‖2 + κ2η

ᵀ
n Aηn + �t

(
B̂

+ B
) s∑

i=1

(
L‖ηni‖ + ‖ε(tn + ci�t)‖

)
.
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Summing up the above inequalities leads to

‖ηn+1‖ +
√

‖η̇n+1‖2 + κ2η
ᵀ
n+1Aηn+1 � ‖ηn‖ +

√
‖η̇n‖2 + κ2η

ᵀ
n Aηn + �t‖η̇n‖

+�t
(
B̄ + B̂ + B

) s∑
i=1

(
L‖ηni‖ + ‖ε(tn + ci�t)‖

)
, (3.37)

where we have used the uniform boundedness of the weights B̄i (V ),�tDB̄i (V ),

Bi(V ),Aij (V ) (see Lemma 3.5). Likewise, it follows from taking norms on both
sides of the third equality in (3.34) that

‖ηni‖ � ‖ηn‖ + ci�t‖η̇n‖ + �t2β

s∑
i=1

(
L‖ηni‖ + ‖ε(tn + ci�t)‖

)
. (3.38)

Under the assumption that the time stepsize �t satisfies �t �
√

1

2sLβ
, it then

follows from the inequality (3.38) that

s∑
i=1

‖ηni‖ � 2s
(
‖ηn‖ + �t‖η̇n‖

)
+ 1

L

s∑
i=1

‖ε(tn + ci�t)‖. (3.39)

Inserting (3.39) into (3.37) results in

‖ηn+1‖ +
√

‖η̇n+1‖2 + κ2η
ᵀ
n+1Aηn+1

�
(
1 + C1�t

)(‖ηn‖ +
√

‖η̇n‖2 + κ2η
ᵀ
n Aηn

)

+ C2�t

s∑
i=1

‖ε(tn + ci�t)‖,

where C1 = 1 + sLC2 and C2 = 2
(
B̄ + B̂ + B

)
are constants. Thus, using the

discrete Gronwall’s inequality (Lemma 3.4), we obtain

‖ηn‖ +
√

‖η̇n‖2 + κ2η
ᵀ
n Aηn

� exp(C1T )

(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + C2�t

n∑
k=0

s∑
i=1

‖ε(tk + ci�t)‖
)

.

This completes the proof. ��
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We denote

ζn = q(tn)−qn, ζ̇n = q̇(tn)−q̇n, ζni = q(tn+ci�t)−Qni for i = 1, 2, · · · , s.

Subtracting (3.31) from the exact solution (3.4) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζn+1 =φ0(V )ζn + �tφ1(V )ζ̇n + �t2
s∑

i=1

B̄i(V )
(
g
(
q(tn + ci�t)

) − g(Qni)
)

+ �t2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
g
(
q(tn + z�t)

)
dz−�t2

s∑
i=1

B̄i (V )g
(
q(tn + ci�t)

)
,

ζ̇n+1 = − �tκ2Aφ1(V )ζn + φ0(V )ζ̇n + �t

s∑
i=1

Bi(V )
(
g
(
q(tn + ci�t)

)− g(Qni)
)

+ �t

∫ 1

0
φ0
(
(1 − z)2V

)
g
(
q(tn + z�t)

)
dz − �t

s∑
i=1

Bi(V )g
(
q(tn + ci�t)

)
,

ζni =φ0(c
2
i V )ζn + ci�tφ1(c

2
i V )ζ̇n + �t2

s∑
j=1

Aij (V )
(
g
(
q(tn + cj�t)

) − g(Qnj )
)

+ c2
i �t2

∫ 1

0
(1 − z)φ1

(
(1 − z)2c2

i V
)
g
(
q(tn + zci�t)

)
dz

− �t2
s∑

j=1

Aij (V )g
(
q(tn + cj�t)

)
,

i = 1, 2, · · · , s.

(3.40)

We then expand g
(
q(tn + z�t)

)
at tn into a Taylor series with remainder in integral

form:

g
(
q(tn + z�t)

) =
r−1∑
k=0

zk�tk

k! g(k)
(
q(tn)

)+ �tr
∫ z

0

(z − τ)r−1

(r − 1)! g(r)
(
q(tn + τ�t)

)
dτ.

(3.41)
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Inserting the Taylor expression into the right-hand sides of (3.40) leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζn+1 = φ0(V )ζn + �tφ1(V )ζ̇n + �t2
s∑

i=1

B̄i (V )�gni + δn+1,

ζ̇n+1 = −�tκ2Aφ1(V )ζn + φ0(V )ζ̇n + �t

s∑
i=1

Bi(V )�gni + δ̇n+1,

ζni = φ0(c2
i V )ζn + ci�tφ1(c

2
i V )ζ̇n + �t2

s∑
j=1

Aij (V )�gnj + �ni, i = 1, 2, · · · , s,

(3.42)

where �gni = g
(
q(tn + ci�t)

) − g(Qni) and the remainders can be explicitly
represented as

δn+1 =
r−1∑
k=0

�tk+2

(
φk+2(V ) −

s∑
i=1

B̄i (V )
ck
i

k!

)
g(k)

(
q(tn)

)

+�tr+2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

) ∫ z

0

(z − τ )r−1

(r − 1)! g(r)
(
q(tn + τ�t)

)
dτdz

−�tr+2
s∑

i=1

B̄i (V )

∫ ci

0

(ci − τ )r−1

(r − 1)! g(r)
(
q(tn + τ�t)

)
dτ, (3.43)

δ̇n+1 =
r−1∑
k=0

�tk+1

(
φk+1(V ) −

s∑
i=1

Bi(V )
ck
i

k!

)
g(k)

(
q(tn)

)

+�tr+1
∫ 1

0
φ0
(
(1 − z)2V

) ∫ z

0

(z − τ )r−1

(r − 1)! g(r)
(
q(tn + τ�t)

)
dτdz

−�tr+1
s∑

i=1

Bi(V )

∫ ci

0

(ci − τ )r−1

(r − 1)! g(r)
(
q(tn + τ�t)

)
dτ, (3.44)



3.2 Nonlinear Stability and Convergence Analysis for ERKN Integrators 91

and

�ni =
r−1∑
k=0

�tk+2

⎛
⎝ck+2

i φk+2(c2
i V ) −

s∑
j=1

Aij (V )
ck
j

k!

⎞
⎠ g(k)

(
q(tn)

)

+ cr+2
i

�tr+2
∫ 1

0
(1 − z)φ1

(
(1 − z)2c2

i V
) ∫ z

0

(z − τ)r−1

(r − 1)! g(r)
(
q(tn + τci�t)

)
dτdz

− �tr+2
s∑

i=1

Ai,j (V )

∫ cj

0

(cj − τ)r−1

(r − 1)! g(r)
(
q(tn + τ�t)

)
dτ.

(3.45)

Note that if the weights B̄i (V ), Bi (V ) and Aij (V ) satisfy the r-th order condition
(3.32) in Lemma 3.3 and the exact solution of the multi-frequency highly oscillatory
system (3.1) is of a suitable smoothness such that g(r) ∈ L∞([t0, T ],Rd

)
, then the

remainders δn+1, δ̇n+1 and �ni satisfy the following estimates

‖δn+1‖ � C̃1�tr+2, ‖δ̇n+1‖ � C̃1�tr+1,

s∑
i=1

‖�ni‖ � C̃1�tr+1, ‖Dδn+1‖ � C̃1�tr+1,

(3.46)

where C̃1 is constant and obviously independent of �t , the takanami number κ2 and
the dominant frequency-matrix A. Similarly to the stability analysis, we rewrite the
first two equalities of (3.42) as the following matrix-vector form:

[
Dζn+1

ζ̇n+1

]
=Ψ(1, 0, V )

[
Dζn

ζ̇n

]
+�t

s∑
i=1

[
�tDB̄i(V )�gni

Bi(V )�gni

]
+
[

Dδn+1

δ̇n+1

]
. (3.47)

Taking norms on both sides of (3.47) and using the estimates in (3.46), we obtain

√
‖ζ̇n+1‖2 + κ2ζ

ᵀ
n+1Aζn+1 �

√
‖ζ̇n‖2 + κ2ζ

ᵀ
n Aζn + �tL(B̂ + B)

s∑
i=1

‖ζni‖ + C̃�tr+1.

(3.48)

In what follows, we will investigate the convergence of the ERKN integrator
(3.31) for solving the system (3.1) of nonlinear multi-frequency highly oscillatory
second-order ODEs.

Theorem 3.5 Assume that the weights B̄i (V ), Bi (V ) and Aij (V ) satisfy the r-th
order conditions (3.32) and the exact solution q(t) of the nonlinear highly oscil-
latory system (3.1) satisfies suitable smoothness such that g(r) ∈ L∞([t0, T ],Rd

)
.
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Then, if the time stepsize �t satisfies �t �
√

1

2sLβ
, we have the estimates

‖q(tn) − qn‖ � C̃�tr and ‖q̇(tn) − q̇n‖ � C̃�tr , (3.49)

where the constant C̃ is independent of �t , κ2 and the dominant frequency-
matrix A.

Proof In a similar way to the proof of Theorem 3.4, it follows from taking norms
on both sides of the first equation in (3.42) and summing up the obtained results
with (3.48) that

‖ζn+1‖ +
√

‖ζ̇n+1‖2 + κ2ζ
ᵀ
n+1Aζn+1 � ‖ζn‖ +

√
‖ζ̇n‖2 + κ2ζ

ᵀ
n Aζn + �t‖ζ̇n‖

+ �tL(B̄ + B̂ + B)

s∑
i=1

‖ζni‖ + 2C̃1�tr+1.

(3.50)

Taking norms on both sides of the third equation in (3.42) and noting that the time

stepsize �t satisfies �t �
√

1

2sLβ
, we obtain

s∑
i=1

‖ζni‖ � 2s
(
‖ζn‖ + �t‖ζ̇n‖ + C̃1�tr+1

)
. (3.51)

Inserting (3.51) into (3.50) yields

‖ζn+1‖ +
√

‖ζ̇n+1‖2 + κ2ζ
ᵀ
n+1Aζn+1

�
(
1 + C1�t

) (‖ζn‖ +
√

‖ζ̇n‖2 + κ2ζ
ᵀ
n Aζn

)
+
(
sLC2C̃1�t + 2C̃1

)
�tr+1

�
(
1 + C1�t

) (‖ζn‖ +
√

‖ζ̇n‖2 + κ2ζ
ᵀ
n Aζn

)
+ C̃3�tr+1,

where C̃3 = sLC2C̃1 + 2C̃1 is a constant independent of �t , κ2 and ‖A‖, whereas
C1 and C2 are given in the proof of Theorem 3.4. Therefore, using the Gronwall’s
inequality (Lemma 3.4), we obtain

‖ζn‖ +
√

‖ζ̇n‖2 + κ2ζ
ᵀ
n Aζn � exp

(
C1n�t

) (‖ζ0‖ +
√

‖ζ̇0‖2 + κ2ζ
ᵀ
0 Aζ0 + C̃3n�tr+1

)

� C̃3T exp
(
C1T

)
�tr � C̃�tr ,

where C̃ = C̃3T exp
(
C1T

)
is a constant independent of �t , κ2 and ‖A‖. ��
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Theorem 3.5 shows an important fact that, with the finite-energy condition (3.23),
the error bounds of an ERKN integrator for solving the system (3.1) of multi-
frequency highly oscillatory second-order ODEs are independent of the takanami
number κ2, and the norm ‖A‖ of the dominant frequency matrix A. This property
is crucial for effectively and efficiently dealing with the system (3.1) of nonlinear
multi-frequency highly oscillatory second-order ODEs.

Remark 3.2.1 According to the Theorem 3.4 and Theorem 3.5, the limitation of

the time stepsize �t �
√

1

2sLβ
yields that the ERKN integrator for solving the

system (3.1) is unconditionally stable and convergent.

3.3 ERKN Integrators with Fourier Pseudospectral
Discretisation for Semilinear Wave Equations

This section presents an effective approach to the numerical solution of semilinear
wave equation (3.9) by combining the ERKN time integrators with the Fourier pseu-
dospectral spatial discretisation, which will have better computational efficiency
than that of traditional schemes in the literature. The rigorous convergence analysis
of the underlying numerical schemes will be based on energy techniques.

To simplify the analysis and practical computation, we truncate the whole space
R = (−∞,∞) onto an interval Ω = (0, 2π) with periodic boundary conditions.
We will only present and analyse the numerical schemes for the one-dimensional
semilinear wave equation:

⎧⎪⎪⎨
⎪⎪⎩

utt − ε2�u + ρu = f (u), (x, t) ∈ Ω × (t0, T ],
u(0, t) = u(2π, t), ut (0, t) = ut (2π, t), t ∈ [t0, T ],
u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ Ω̄,

(3.52)

where ε2 > 0, ρ > 0 are parameters, and 2π is assumed to be the fundamental
period. However, the generalisation to higher dimensions is straightforward and the
result remains valid without modification.

3.3.1 Time Discretisation: ERKN Time Integrators

We here define A as the operator:

(A v)(x) = (−ε2� + ρI)v(x),
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where A is a linear, unbounded positive semi-definite operator, whose domain is

D(A ) :=
{
v ∈ H 1(Ω) : v(x) = v(x + 2π)

}
,

and u(t) as the function that maps x to u(t, x), i.e.

u(t) = [x 
→ u(x, t)].

Then the semilinear wave equation can be formulated as the following abstract
second-order ordinary differential equation:

{
ü(t) + A u(t) = f

(
u(t)

)
, t0 < t � T ,

u(t0) = ϕ1(x), u̇(t0) = ϕ2(x),
(3.53)

where ü denotes the second-order temporal derivatives ∂2
t u. It follows from the

Duhamel Principle that the solution of the abstract system (3.53) can be charac-
terised by the following operator-variation-of-constants formula (see [28, 29, 45–49]
for details).

Theorem 3.6 The solution of the abstract ODE (3.53) and its derivative satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) =φ0
(
(t − t0)

2A
)
u(t0) + (t − t0)φ1

(
(t − t0)

2A
)
u̇(t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

u̇(t) = − (t − t0)A φ1
(
(t − t0)

2A
)
u(t0) + φ0

(
(t − t0)

2A
)
u̇(t0)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

for t � t0, where φ0
(
(t − t0)

2A
)
and φ1

(
(t − t0)

2A
)
are bounded operator-

argument functions ofA .

Clearly, the r-th order ERKN integrators (3.31) could be used for the temporal
discretisation of the abstract ODE (3.53), i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 = φ0(V )un + �tφ1(V )u̇n + �t2
s∑

i=1

B̄i (V )f (uni),

u̇n+1 = −�tA φ1(V )un + φ0(V )u̇n + �t

s∑
i=1

Bi(V )f (uni),

uni = φ0(c
2
i V )un + ci�tφ1(c

2
i V )u̇n + �t2

s∑
j=1

Aij (V )f (unj ), i = 1, 2, · · · , s,

(3.54)
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where V = �t2A and φ0(V ), φ1(V ), Bi(V ), B̄i (V ) and Aij (V ) are bounded
operators.

3.3.2 Spatial Discretisation: Fourier Pseudospectral Method

We implement the spatial discretisation based on the Fourier pseudospectral method.
To this end, we choose �x = 2π/M with the mesh size M , a positive even
integer, to discrete the domain Ω̄ . The grid points are denoted as xj = j�x for
j = 0, 1, · · · ,M . We define

XM = span
{

eikx, k = −M/2, · · · ,M/2 − 1
}

and

YM =
{
v = (

v0, v1, · · · , vM

)ᵀ ∈ R
M+1 : v0 = vM

}
.

For a periodic function v(x) defined on Ω̄ and a vector v ∈ YM , let PM : L2(Ω̄) →
XM be the standard L2-projection operator, and IM : C(Ω̄) → XM or YM → XM

be the interpolation operator, i.e.

(
PMv

)
(x) =

M/2−1∑
k=−M/2

v̂keikx,
(
IMv

)
(x) =

M/2−1∑
k=−M/2

ṽkeikx, 0 � x � 2π,

where v̂k and ṽk are the Fourier and discrete Fourier transform coefficients of the
periodic function v(x) and vector v, respectively, defined as

v̂k = 1

2π

∫ 2π

0
v(x)e−ikxdx and ṽk = 1

M

M−1∑
j=0

vj e−ikxj .

To obtain the fully discrete scheme, the Fourier spectral method is used to discretise
the ERKN integrators (3.54). This is described as follows. Find un+1

M (x), u̇n+1
M (x),

uni
M(x) ∈ XM , i.e.,

un+1
M (x) =

M/2−1∑
k=−M/2

û n+1
k eikx , u̇n+1

M (x) =
M/2−1∑

k=−M/2

̂̇u n+1
k eikx , uni

M(x) =
M/2−1∑

k=−M/2

û ni
k eikx ,

(3.55)
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such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û n+1
k = φ0(λ

2
k )̂u

n
k + �tφ1(λ

2
k )̂u̇

n
k + �t2

s∑
i=1

B̄i(λ
2
k)

̂f
(
uni

M(x)
)
k
,

̂̇u n+1
k = −�tβ2

kφ1(λ
2
k )̂u

n
k + φ0(λ

2
k )̂u̇

n
k + �t

s∑
i=1

Bi(λ
2
k)

̂f
(
uni

M(x)
)
k
,

û ni
k = φ0(c

2
i λ

2
k )̂u

n
k + ci�tφ1(c

2
i λ

2
k )̂u̇

n
k + �t2

s∑
j=1

Aij (λ
2
k)

̂

f
(
u

nj
M(x)

)
k
,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1,

(3.56)

where λ2
k = �t2β2

k with β2
k = ρ + ε2k2 and φ0(λ

2
k) = cos(λk), φ1(λ

2
k) = sin(λk)

λk

.

The blend of the ERKN time integrator and the Fourier spectral discretisation
(ERKN-FS) can be represented by the Butcher tableau:

c A(λ2
k)

B̄ᵀ(λ2
k)

Bᵀ(λ2
k)

=

c1 A11(λ
2
k) A12(λ

2
k) · · · A1s(λ

2
k)

c2 A21(λ
2
k) A22(λ

2
k) · · · A2s(λ

2
k)

...
...

...
...

cs As1(λ
2
k) As2(λ

2
k) · · · Ass(λ

2
k)

B̄1(λ
2
k) B̄2(λ

2
k) · · · B̄s(λ

2
k)

B1(λ
2
k) B2(λ

2
k) · · · Bs(λ

2
k)

.

However, the computation of the Fourier coefficient defined in integral form is
unsuitable in practice. In order to achieve an efficient implementation, we usually
use the interpolation to replace the integral. Thus, the ERKN time integrator with
the Fourier pseudospectral spatial discretisation (ERKN-FP) for the semilinear wave
equation (3.52) can be formulated as follows.

Let

un
j ≈ u(xj , tn), u̇n

j ≈ ∂tu(xj , tn), uni
j ≈ u(xj , tn + ci�t), j = 0, 1, · · · ,M,

and choose u0
j = ϕ1(xj ), u̇0

j = ϕ2(xj ), we then have

un+1
j =

M/2−1∑
k=−M/2

ũ n+1
k eikxj , u̇n+1

j =
M/2−1∑

k=−M/2

˜̇u n+1
k eikxj , uni

j =
M/2−1∑

k=−M/2

ũ ni
k eikxj ,

(3.57)
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for j = 0, 1, · · · ,M, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũ n+1
k = φ0(λ

2
k )̃u

n
k + �tφ1(λ

2
k )̃u̇

n
k + �t2

s∑
i=1

B̄i (λ
2
k)

˜f (uni)k,

˜̇u n+1
k = −�tβ2

k φ1(λ
2
k )̃u

n
k + φ0(λ

2
k )̃u̇

n
k + �t

s∑
i=1

Bi(λ
2
k)

˜f (uni)k,

ũ ni
k = φ0(c

2
i λ

2
k )̃u

n
k + ci�tφ1(c

2
i λ

2
k )̃u̇

n
k + �t2

s∑
j=1

Aij (λ
2
k)

˜f (unj )k,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1.

(3.58)

It is obvious that the ERKN-FP method (3.57)–(3.58) can be efficiently imple-
mented due to the fast Fourier transform (FFT). Its memory cost is O(M) and the
computational cost per time step is O(M log(M)).

3.3.3 Error Bounds of the ERKN-FP Method (3.57)–(3.58)

Before dealing with the error estimation of the ERKN-FP method (3.57)–(3.58), we
clarify some notations and assumptions:

• Denote the Soblev space

Hm
p (Ω) =

{
u(x) ∈ Hm(Ω)

∣∣ ∂l
xu(0) = ∂l

xu(2π), l = 0, 1, · · · ,m
}

and the L2-norm and the H 1-norm as:

‖v‖2
L2 =

∑
k∈Z

|v̂k|2 and ‖v‖2
H 1 =

∑
k∈Z

(1+k2)|v̂k|2 with v(x) =
∑
k∈Z

v̂keikx.

• The solutions (u(x, t), ∂tu(x, t)) of the semilinear wave equation are studied in
the space H 1

p(Ω) × L2(Ω) with the energy norm:

|||(u, ∂tu)||| =
√

‖u‖2
H 1 + ‖∂tu‖2

L2 .

• Assume that the nonlinear function f (·) and the exact solution of the semilinear
wave equation (3.52) satisfy

f (·) ∈ Cr(R), u ∈ Cr
(
[0, T ],Hm0+1

p (Ω)
)

(m0 � 1, r � 0).
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Under this assumption, we denote

K1 = max
{
‖u(·, t)‖L∞([0,T ];H 1), ‖∂tu(·, t)‖L∞([0,T ];L2)

}
� 1

and

K2 = max
0�l�r

max
‖w‖

L2�K1

∥∥f (l)(w)
∥∥

L2 � 1.

With un
k , u̇

n
k and uni

k , which are obtained from (3.57)–(3.58), define the error
functions as

en(x) :=u(x, tn) − (IMun
)
(x),

ėn(x) :=u(x, tn) − (IMu̇n
)
(x),

eni(x) :=u(x, tn + ci�t) − (IMuni
)
(x).

To proceed to the proof of the error bound for the ERKN-FP method, we define the
projected error as

en
M(x) :=PMu(x, tn) − un

M(x),

ėn
M(x) :=PM∂tu(x, tn) − u̇n

M(x),

eni
M(x) :=PMu(x, tn + ci�t) − uni

M(x),

where un
M(x), u̇n

M(x) and uni
M(x) are yielded from the ERKN-FS method (3.55)–

(3.56). It then follows from the triangle inequality and estimates on the projection
error [6, 50] that

‖en‖H 1 + ‖ėn‖L2 � ‖en
M‖H 1 + ‖ėn

M‖L2 + ‖un
M(·) − (IMun

)
(·)‖H 1 + ‖u̇n

M(·) − (IMu̇n
)
(·)‖L2

+ ‖u(·, tn) − PMu(·, tn)‖H 1 + ‖∂t u(·, tn) − PM∂tu(·, tn)‖L2

� ‖en
M‖H 1 + ‖ėn

M‖L2 + �xm0 ,

(3.59)

and

‖eni‖L2 � ‖eni
M‖L2 + ‖uni

M(·) − (IMuni
)
(·)‖L2 + ‖u(·, tni ) − PMu(·, tni )‖L2

� ‖en
M‖L2 + �xm0+1.

Hence, the error estimates for the ERKN-FP methods can be converted to the
estimates for the ERKN-FS methods. Moreover, the theoretical analysis for PDEs
is quite different from that for ODEs. In particular, the assumption for the nonlinear
function f (·) satisfying the Lipschitz condition will not be the same. Fortunately, the
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boundedness of the numerical solutions will be helpful to the theoretical analysis. In
what follows, we will first analyse the boundedness of the numerical solutions for
the ERKN-FS methods (3.55)–(3.56). We then will deduce the convergence of the
ERKN-FP methods (3.57)–(3.58).

With regard to the boundedness of the numerical methods, we start with the
explicit ERKN-FS methods (3.55)–(3.56), which can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û n+1
k = φ0(λ

2
k )̂u

n
k + �tφ1(λ

2
k )̂u̇

n
k + �t2

s∑
i=1

B̄i(λ
2
k)

̂f
(
uni

M(x)
)
k
,

̂̇u n+1
k = −�tβ2

kφ1(λ
2
k )̂u

n
k + φ0(λ

2
k )̂u̇

n
k + �t

s∑
i=1

Bi(λ
2
k)

̂f
(
uni

M(x)
)
k
,

û ni
k = φ0(c

2
i λ

2
k )̂u

n
k + ci�tφ1(c

2
i λ

2
k )̂u̇

n
k + �t2

i−1∑
j=1

Aij (λ
2
k)

̂

f
(
u

nj
M(x)

)
k
,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1,

(3.60)

with the Butcher tableau:

c A(λ2
k)

B̄ᵀ(λ2
k)

Bᵀ(λ2
k)

=

c1 0 0 · · · 0 0
c2 A21(λ

2
k) 0 · · · 0 0

...
...

...
...

...

cs As1(λ
2
k) As2(λ

2
k) · · · As,s−1(λ

2
k) 0

B̄1(λ
2
k) B̄2(λ

2
k) · · · B̄s−1(λ

2
k) B̄s(λ

2
k)

B1(λ
2
k) B2(λ

2
k) · · · Bs−1(λ

2
k) Bs(λ

2
k)

.

Theorem 3.7 (Boundedness for a Single Time Step: Explicit ERKN-FS
Method) Let the weights B̄i (λ

2
k), Bi(λ

2
k) and Aij (λ

2
k) of the explicit ERKN-

FS method (3.55)–(3.60) satisfy the r-th order conditions (3.32). There exists a
sufficiently small 0 < τ0 � 1 such that the time stepsize �t � τ0. If the numerical
solution (un

M, u̇n
M) ∈ H 1

p(Ω) × L2(Ω) of the explicit ERKN-FS method satisfies
|||(un

M, u̇n
M)||| � K , then we have

‖uni
M‖ � 1, i = 1, 2, · · · , s,

and (un+1
M , u̇n+1

M ) ∈ H 1
p(Ω) × L2(Ω) with

‖un+1
M ‖H 1 � CK and ‖u̇n+1

M ‖L2 � CK,

where CK is independent of the time stepsize �t and spatial mesh size M .
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Proof 1. “Estimations for update stage procedures: un+1
M (x) and u̇n+1

M (x)”.
For the first equality in (3.60), an application of the triangle inequality results in

|̂u n+1
k | � |̂u n

k | + �t |̂u̇ n
k | + �t2B̄

s∑
i=1

| ̂f
(
uni

M(x)
)
k
|

and

√
1 + k2

∣∣̂u n+1
k

∣∣ � √1 + k2
∣∣̂u n

k

∣∣+
√

1 + k2√
ρ + ε2k2

∣∣̂u̇ n
k

∣∣+ �tB̂

s∑
i=1

∣∣ ̂f (unj )k
∣∣.

Then, applying Minkowski’s inequality and Parseval’s identity to the above inequal-
ities, we have

‖un+1
M ‖L2 � ‖un

M‖L2 + �t‖u̇n
M‖L2 + �t2B̄

s∑
i=1

∥∥∥PMf
(
uni

M

)∥∥∥
L2

(3.61)

and

‖un+1
M ‖H 1 � ‖un

M‖H 1 + ς‖u̇n
M‖L2 + �tB̂

s∑
i=1

∥∥∥PMf
(
uni

M

)∥∥∥
L2

, (3.62)

where ς = 1/ min
{√

ρ, ε
}

> 0 is a constant parameter. Likewise, it follows from

the second equality in (3.60) that

|̂u̇ n+1
k | �

√
ρ + ε2k2 |̂u n

k | + |̂u̇ n
k | + �tB

s∑
i=1

| ̂f
(
uni

M(x)
)
k
|

� �
√

1 + k2|̂u n
k | + |̂u̇ n

k | + �tB

s∑
i=1

| ̂f
(
uni

M(x)
)
k
|,

where � = max{√ρ, ε} > 0 is also a constant parameter. Similarly, we have the
following estimate

‖u̇n+1
M ‖L2 � �‖un

M‖H 1 + ‖u̇n
M‖L2 + �tB

s∑
i=1

∥∥∥PMf
(
uni

M

)∥∥∥
L2

. (3.63)
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Consequently, summing up (3.62) and (3.63) leads to

‖un+1
M ‖H 1 + ‖u̇n+1

M ‖L2 � Ĉ1

(
‖un

M‖H 1 + ‖u̇n
M‖L2

)
+ �t

(
B̂ + B

) s∑
i=1

∥∥∥f (uni
M

)∥∥∥
L2

,

(3.64)

where Ĉ1 = max
{
�, ς

} + 1 is a constant parameter.

2. “Estimations for internal stage procedures: uni
M(x)”.

Using the third equality in (3.60), we obtain

∣∣̂u ni
k

∣∣ � ∣∣̂u n
k

∣∣+ ci�t
∣∣̂u̇ n

k

∣∣+ �t2β

i−1∑
j=1

∣∣ ̂f (unj )k
∣∣.

Applying Minkowski’s inequality and Parseval’s identity to the above inequality
yields

‖un1
M ‖L2 � ‖un

M‖L2 + ci�t‖u̇n
M‖L2,

‖uni
M‖L2 � ‖un

M‖L2 + ci�t‖u̇n
M‖L2 + �t2β

i−1∑
j=1

∥∥PMf (u
nj
M)
∥∥

L2, i = 2, · · · , s.

(3.65)

3. “Boundedness of the numerical solutions”.
According to the inequalities of (3.65), if the solution (un

M, u̇n
M) ∈ H 1

p(Ω) ×
L2(Ω) of the explicit ERKN-FS method (3.55)–(3.60) satisfies

|||(un
M, u̇n

M)||| � K,

then, the following approximations can be obtained by recursion:

‖uni
M‖L2 � (1 + �t)iK � 1, i = 1, 2, · · · , s, (3.66)

where we have used the fact that ‖un
M‖L2 � ‖un

M‖H 1 � K and the sufficiently
small time stepsize �t such that �tβK2 � 1. Inserting the result (3.66) into (3.64)
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yields

‖un+1
M ‖H 1 + ‖u̇n+1

M ‖L2 � Ĉ1

(
‖un

M‖H 1 + ‖u̇n
M‖L2

)

+ �t
(
B̂ + B

) s∑
i=1

∥∥∥ ∫ 1

0
f ′(τuni

M

)
dτ · uni

M

∥∥∥
L2

� Ĉ1

(
‖un

M‖H 1 + ‖u̇n
M‖L2

)
+ �t

(
B̂ + B

)
K2

s∑
i=1

‖uni
M‖L2

� Ĉ2

(
1 + �t + �t

s∑
i=1

(1 + �t)i
)
� CK,

where Ĉ2 = K1 max
{
Ĉ1, (B̂ + B)K2

}
is a constant and CK is obviously indepen-

dent of time stepsize �t and spatial mesh size M . ��
For the implicit ERKN-FS method (3.55)–(3.56):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û n+1
k = φ0(λ

2
k )̂u

n
k + �tφ1(λ

2
k )̂u̇

n
k + �t2

s∑
i=1

B̄i(λ
2
k)

̂f
(
uni

M(x)
)
k
,

̂̇u n+1
k = −�tβ2

kφ1(λ
2
k )̂u

n
k + φ0(λ

2
k )̂u̇

n
k + �t

s∑
i=1

Bi(λ
2
k)

̂f
(
uni

M(x)
)
k
,

û ni
k = φ0(c

2
i λ

2
k )̂u

n
k + ci�tφ1(c

2
i λ

2
k )̂u̇

n
k + �t2

s∑
j=1

Aij (λ
2
k)

̂

f
(
u

nj
M(x)

)
k
,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1,

(3.67)

with the Butcher tableau:

c A(λ2
k)

B̄ᵀ(λ2
k)

Bᵀ(λ2
k)

=

c1 A11(λ
2
k) A12(λ

2
k) · · · A1s(λ

2
k)

c2 A21(λ
2
k) A22(λ

2
k) · · · A2s(λ

2
k)

...
...

...
...

cs As1(λ
2
k) As2(λ

2
k) · · · Ass(λ

2
k)

B̄1(λ
2
k) B̄2(λ

2
k) · · · B̄s(λ

2
k)

B1(λ
2
k) B2(λ

2
k) · · · Bs(λ

2
k)

,

iteration is needed for practical application. In this chapter, we use the waveform
relaxation iteration, which can be split into the following two phases.
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I. Iteration procedure:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

û ni
k,[0] = φ0(c

2
i λ

2
k)̂u

n
k + ci�tφ1(c

2
i λ

2
k)̂u̇

n
k ,

û ni
k,[l+1] = φ0(c

2
i λ

2
k )̂u

n
k + ci�tφ1(c

2
i λ

2
k )̂u̇

n
k + �t2

s∑
j=1

Aij (λ
2
k)

̂

f
(
u

nj

M,[l](x)
)
k
,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1, l = 1, 2, · · · .

(3.68)

For any error tolerance ε > 0, if the condition

‖uni
M,[l+1] − uni

M,[l]‖L2 � ε

is satisfied, we define

uni
M(x) := uni

M,[l+1](x) =
M/2−1∑

k=−M/2

û ni
k,[l+1]eikx.

II. Output procedure:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

û n+1
k = φ0(λ

2
k )̂u

n
k + �tφ1(λ

2
k )̂u̇

n
k + �t2

s∑
i=1

B̄i (λ
2
k)

̂f
(
uni

M(x)
)
k
,

̂̇u n+1
k = −�tβ2

k φ1(λ
2
k )̂u

n
k + φ0(λ

2
k )̂u̇

n
k + �t

s∑
i=1

Bi(λ
2
k)

̂f
(
uni

M(x)
)
k
,

(3.69)

and define

un+1
M (x) =

M/2−1∑
k=−M/2

û n+1
k eikx, u̇n+1

M (x) =
M/2−1∑

k=−M/2

̂̇u n+1
k eikx.

In practice, the application of procedure (3.68)–(3.69) of the implicit ERKN-FS
method could be understood as an explicit method. Therefore, if the solution
(un

M, u̇n
M) ∈ H 1

p(Ω) × L2(Ω) of the implicit ERKN-FS method satisfies

|||(un
M, u̇n

M)||| � K,

we then obtain

‖uni
M,[l]‖L2 � (1 + �t)l+1K � 1, i = 1, 2, · · · , s. (3.70)
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In a similar way to the proof of Theorem 3.7, we can deduce the boundedness for
the implicit ERKN-FS methods (3.55)–(3.67).

Theorem 3.8 (Boundedness for a Single Time Step: Implicit ERKN-FS Meth-
ods) Let the weights B̄i (λ

2
k), Bi(λ

2
k) and Aij (λ

2
k) of the implicit ERKN-FS method

(3.55)–(3.67) satisfy the r-th order conditions (3.32). There exists a sufficiently
small 0 < τ0 � 1 such that �t � τ0. If the numerical solution (un

M, u̇n
M) ∈

H 1
p(Ω) × L2(Ω) of the implicit ERKN-FS method satisfies |||(un

M, u̇n
M)||| � K ,

then we have

‖uni
M‖ � 1, i = 1, 2, · · · , s,

and (un+1
M , u̇n+1

M ) ∈ H 1
p(Ω) × L2(Ω) with

‖un+1
M ‖H 1 � C̃K and ‖u̇n+1

M ‖L2 � C̃K,

where C̃K is independent of the time stepsize �t and spatial mesh size M .

According to the conclusion in Theorem 3.7 and Theorem 3.8 and using mathe-
matical induction, suitable smoothness assumptions for the initial values ϕ1(·) and
ϕ2(·) yield the boundedness of numerical solutions over a long-time interval [t0, T ].
Theorem 3.9 Assume that the weights B̄i (λ

2
k), Bi(λ

2
k) and Aij (λ

2
k) of the ERKN-

FS method (3.55)–(3.56) satisfy the r-th order conditions (3.32). There exists a
sufficiently small 0 < τ0 � 1 such that �t � τ0. If the initial conditions(
ϕ1(x), ϕ2(x)

) ∈ H 1
p(Ω) × L2(Ω) satisfy |||(ϕ1, ϕ2)||| � K0, then we have

(un
M, u̇n

M) ∈ H 1
p(Ω) × L2(Ω) with

|||(un+1
M , u̇n+1

M )||| � CK0 and ‖uni
M‖L2 � CK0, i = 1, 2, · · · , s,

where CK0 is independent of the time stepsize �t and spatial mesh size M .

Proof By mathematical induction, the proof of the theorem is quite similar to
Theorem 3.7 and Theorem 3.8, we omit the details here for brevity. ��

Using the boundedness of numerical solutions, we will analyse the error bounds
for the ERKN-FS methods. To this end, we introduce the modified H 1-norm and
modified energy norm:

|[uM ]|H 1 =
⎛
⎝ M/2−1∑

k=−M/2

(ρ + ε2k2)|ûk|2
⎞
⎠

1/2

and ||[(uM, u̇M)]|| =
√

|[uM ]|2
H 1 + ‖u̇M‖2

L2 .

Obviously, the modified H 1-norm is equivalent to the normal H 1-norm, namely

min{√ρ, ε} ‖uM‖H 1 � |[uM]|H 1 � max{√ρ, ε} ‖uM‖H 1 . (3.71)
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We also assume that the weights B̄i (λ
2
k), Bi(λ

2
k) and Aij (λ

2
k) satisfy the r-th order

conditions and the nonlinear function f (·) satisfies ∂r
t f ∈ L∞([t0, T ], L2(Ω)

)
.

Then the error system of ERKN-FS methods is to find en
M(x), ėn

M(x) and eni
M(x) in

the space XM , i.e.,

en+1
M (x) =

M/2−1∑
k=−M/2

ê n+1
k eikx, ėn+1

M (x) =
M/2−1∑

k=−M/2

̂̇e n+1
k eikx , eni

M(x) =
M/2−1∑

k=−M/2

ê ni
k eikx

(3.72)

such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ê n+1
k = φ0(λ

2
k )̂e

n
k + �tφ1(λ

2
k )̂ė

n
k + �t2

s∑
i=1

B̄i (λ
2
k)�f̂ ni

k + δ̂ n+1
k ,

̂̇e n+1
k = −�tβ2

k φ1(λ
2
k )̂e

n
k + φ0(λ

2
k )̂ė

n
k + �t

s∑
i=1

Bi(λ
2
k)�f̂ ni

k +̂̇δ n+1
k ,

ê ni
k = φ0(c

2
i λ

2
k )̂e

n
k + ci�tφ1(c

2
i λ

2
k )̂ė

n
k + �t2

s∑
j=1

Aij (λ
2
k)�f̂

nj
k + �̂ ni

k ,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1.

(3.73)

where �f̂ ni
k = ̂f (u)k(tn + ci�t) − ̂f

(
uni

M

)
k

and the remainders δ̂ n+1
k , ̂̇δ n+1

k and

�̂ ni
k can be represented as

δ̂ n+1
k

=
r−1∑
l=0

�tk+2

⎛
⎝φk+2(λ

2
k) −

s∑
i=1

B̄i (λ
2
k)

ck
i

k!

⎞
⎠ dl

dt l
̂f (u)k(tn)

+ �tr+2
∫ 1

0
(1 − z)φ1

(
(1 − z)2λ2

k

) ∫ z

0

(z − τ)r−1

(r − 1)!
dr

dt r
̂f (u)k(tn + τ�t)dτdz

− �tr+2
s∑

i=1

B̄i (λ
2
k)

∫ ci

0

(ci − τ)r−1

(r − 1)!
dr

dt r
̂f (u)k(tn + τ�t)dτ,

(3.74)

̂̇δ n+1
k =

r−1∑
k=0

�tk+1

(
φk+1(λ

2
k) −

s∑
i=1

Bi(λ
2
k)

ck
i

k!

)
dl

dt l
̂f (u)k(tn)

+�tr+1
∫ 1

0
φ0
(
(1 − z)2λ2

k

) ∫ z

0

(z − τ )r−1

(r − 1)!
dr

dtr
̂f (u)k(tn + τ�t)dτdz

−�tr+1
s∑

i=1

Bi(λ
2
k)

∫ ci

0

(ci − τ )r−1

(r − 1)!
dr

dtr
̂f (u)k(tn + τ�t)dτ, (3.75)
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and

�̂ ni
k =

r−1∑
k=0

�tk+2

⎛
⎝ck+2

i φk+2(c
2
i λ

2
k) −

s∑
j=1

Aij (λ
2
k)

ck
j

k!

⎞
⎠ dl

dt l
̂f (u)k(tn)

+ cr+2
i �tr+2

∫ 1

0
(1 − z)φ1

(
(1 − z)2c2

i λ
2
k

) ∫ z

0

(z − τ)r−1

(r − 1)!
dr

dt r
̂f (u)k(tn + τci�t)dτdz

− �tr+2
s∑

i=1

Ai,j (λ
2
k)

∫ cj

0

(cj − τ)r−1

(r − 1)!
dr

dt r
̂f (u)k(tn + τ�t)dτ.

(3.76)

Using energy techniques, we can obtain the convergence result for the ERKN-FP
methods.

Theorem 3.10 (H 1 × L2 Error Bounds of the ERKN-FP Method) Let un, u̇n

and uni be the approximations obtained from the ERKN-FP method (3.57)–(3.58),
and the weights B̄i(λ

2
k), Bi(λ

2
k) and Aij (λ

2
k) satisfy the r-th order conditions

(3.32). Then, under the assumption of Theorem 3.9, there exist two sufficiently small
constants 0 < τ0 � 1 and 0 < h0 � 1, such that

‖u(·, tn) − (IMun)(·)‖H 1 + ‖ut (·, tn) − (IMu̇n)(·)‖L2 � �tr + �xm0,

when 0 < �t � τ0 and 0 < �x � h0.

Proof According to Lemma 3.5, it is easy to obtain the following estimates for the

remainders δ̂ n+1
k , ̂̇δ n+1

k and �̂ ni
k :

|[δn+1
M ]|H 1 � K3�tr+1, ‖δ̇n+1

M ‖L2 � K3�tr+1,

s∑
i=1

‖�ni
M‖L2 � K3�tr+2,

where the constant K3 is dependent on K2, B, B̂, B̄ and β, but independent of the
time stepsize �t and the spatial mesh size M . Rewriting the first two equations in
(3.73) as

[
βkê

n+1
k̂̇e n+1

k

]
= Ω(1, 0, λ2

k)

[
βkê

n
k̂̇e n

k

]
+ �t

s∑
i=1

[
βkB̄i(λ

2
k)�f̂ ni

k

Bi(λ
2
k)�f̂ ni

k

]
+
[

βkδ̂
n+1

k̂̇δ n+1
k

]
,
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by taking the l2 inner product on both sides and using the Cauchy inequality, we
have

β2
k | ê n+1

k |2 + | ̂̇e n+1
k |2 �

(
1 + �t(s + 1)

)(
β2

k | ê n
k |2 + | ̂̇e n

k |2
)

+ 3�t(B̂2 + B2)

s∑
i=1

∣∣�f̂ ni
k

∣∣2

+ (2 + 1

�t
)
(
β2

k |̂δ n+1
k |2 + |̂δ̇ n+1

k |2
)
.

Summing up the above inequality for k from −M/2 to M/2−1 and using Parseval’s
identity yields

||[(en+1
M , ėn+1

M )]||2 �
(
1 + �t(1 + s)

)||[(en
M, ėn

M)]||2

+ 3�t(B̂2 + B2)

s∑
i=1

∥∥f (u(·, tn + ci�t)
)− f

(
uni

M

)∥∥2
L2 + 4K3�t2r+1.

(3.77)

It then follows from the conclusion of Theorem 3.9 and the assumptions for f (·)
that ∥∥f (u(·, tn + ci�t)

)− f
(
uni

M

)∥∥
L2

=
∥∥∥∥
∫ 1

0
f ′(τuni

M + (1 − τ )u(·, tn + ci�t)
)

dτ · (uni
M(·) − u(·, tn + ci�t)

)∥∥∥∥
L2

�K2
∥∥uni

M(·) − u(·, tn + ci�t)
∥∥

L2 � K2

(∥∥eni
M

∥∥
L2 + �xm0+1

)
.

Hence, inserting the above inequality into (3.77), we have

||[(en+1
M , ėn+1

M )]||2 �
(
1 + (1 + s)�t

)||[(en
M, ėn

M)]||2 + K4�t

s∑
i=1

‖eni
M‖2

L2

+K5�t
(
�t2r + �x2m0+2

)
, (3.78)

where K4 and K5 are constants and independent of �t and �x. Clearly, to show the
required error bounds, we need to estimate the term

∑s
i=1 ‖eni

M‖L2 . It follows from
taking the L2 norm on both sides of the third equation in (3.73) that

‖eni
M‖L2 � ‖en

M‖L2 + ‖ėn
M‖L2 + �t2β

s∑
i=1

∥∥f (u(·, tn + ci�t)
)− f

(
uni

M

)∥∥
L2 +

s∑
i=1

‖�ni
M‖L2

� ||[(en
M, ėn

M)]||L2 + �t2βK2

s∑
i=1

(∥∥eni
M

∥∥
L2 + �xm0+1)+

s∑
i=1

‖�ni
M‖L2 .
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This, together with the assumption that the time stepsize satisfies �t �
√

1

2sβK2
,

implies

s∑
i=1

∥∥eni
M

∥∥
L2 � 2s||[(en

M, ėn
M)]||L2 + 2sK3�tr+2 + s�xm0+1.

Inserting the result into (3.78) leads to

||[(en+1
M , ėn+1

M )]||2 �
(
1 + K6�t

)||[(en
M, ėn

M)]||2 + K7�t
(
�t2r + �x2m0+2

)
.

(3.79)

Applying Gronwall’s inequality to (3.79) results in

||[(en+1
M , ėn+1

M )]|| � �tr + �xm0+1.

Since the modified H 1-norm is equivalent to the normal H 1-norm and the relation
(3.59), we obtain

‖en‖H 1 + ‖ėn‖L2 � �tr + �xm0 .

Theorem 3.10 is proved. ��
Remark 3.3.1 It follows from the convergence analysis stated above that we gain
an insight into the significance of the ERKN-FP methods. That is, the ERKN-FP
methods are independent of the restriction between the time stepsize �t and the
spatial stepsize �x. In other words, the ERKN-FP methods are free from the CFL
condition. This is another important property of ERKN integrators when applied
to the semilinear wave equation, which, unfortunately, is not shared by traditional
schemes for PDEs in the literature.

3.4 Numerical Experiments

In this section, we present results of numerical experiments to verify our theoretical
analysis for the ERKN time integrators. In order to demonstrate the superiority of
ERKN time integrators, we select the following time integrators for comparison:

• ISV: the improved explicit symplectic Störmer–Verlet formula of order two given
in [13];

• ERKN3s4: the three-stage symmetric and symplectic explicit ERKN method of
order four (see [15]);

• IERKN2s4: the two-stage implicit symplectic ERKN method of order four;
• IERKN3s6: the three-stage implicit symplectic ERKN method of order six;
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• SV: the classical explicit symplectic Strömer–Verlet formula of order two (see
[8]);

• RKN3s4: the three-stage explicit symplectic RKN method of order four (see
[8]);

• IRKN2s4: the two-stage implicit symplectic RKN method of order four (see
[51]);

• IRKN3s6: the three-stage implicit symplectic RKN method of order six (see
[51]).

Using the established mapping between the ERKN group and the RKN group
(see [52]), it is known that ERKN methods with an arbitrarily high order can be
obtained from the corresponding RKN methods. Hence, the IERKN2s4 method
and the IERKN3s6 method are yielded by the well-known IRKN2s4 method and
IRKN3s6 method, respectively. For implicit time integrators, we use fixed-point
iteration and choose the tolerance as 10−15 and the maximum iteration number as
100. Here, it is noted that when the error of a method under consideration is very
large for some �t , we do not plot the corresponding points in the efficiency curves
in the numerical experiments. The efficiency curves are given as the log-log plots of
the errors.

Problem 3.1 We consider the Duffing equation

{
q̈ + ω2q = k2(2q3 − q),

q(0) = 0, q̇(0) = ω,

where 0 � k < ω. This is a Hamiltonian system with the conservation of the
following Hamiltonian

H
(
q(t), q̇(t)

) = 1

2
q̇(t)2 + 1

2
ω2q(t)2 + k2

2

(
q(t)2 − q(t)4).

The analytic solution of the Duffing equation is well known, and given by

q(t) = sn(ωt, k/ω),

where sn means the Jacobian elliptic function. Obviously, the analytic solution q(t)

satisfies |q(t)| � 1, i.e., q2 � q4. Therefore, for each ω > 0 (no matter how big ω

is) there exists a constant K such that

1

2
q̇(t)2 + 1

2
ω2q(t)2 � H

(
q(0), q̇(0)

)
� K2

2
.

Then, the finite-energy condition (3.23) is verified. We choose k = 0.03 and
different frequencies ω = 5, 10 and 20 which are similar to those in [53]. We
integrate the Problem 3.1 on the interval [0, 1000] to verify our error estimates for
the ISV method, the ERKN3s4 method, the IERKN2s4 method and the IERKN3s6
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Table 3.1 Temporal accuracy of the “ISV” method for solving Problem 3.1 with different ω and
�t up to T = 1000

�t

ω �t0 = 0.08 �t0/2 �t0/22 �t0/23 �t0/24

ω = 5 3.6227E − 7 8.4317E − 8 2.0714E − 8 5.1545E − 9 1.2843E − 9

Rate * 2.1032 2.0252 2.0067 2.0048

ω = 10 4.0951E − 7 7.1460E − 8 1.6455E − 8 4.0277E − 9 9.9857E − 10

Rate * 2.5187 2.1186 2.0305 2.0120

ω = 20 1.2973E − 5 9.1229E − 8 1.5503E − 8 3.5447E − 9 8.5937E − 10

Rate * – 2.5569 2.1288 2.0443

Table 3.2 Temporal accuracy of the “ERKN3s4” method for solving Problem 3.1 with different
ω and �t up to T = 1000

�t

ω �t0 = 0.08 �t0/2 �t0/22 �t0/23

ω = 5 4.4048E − 8 2.7520E − 9 1.7404E − 10 1.3915E − 11

Rate * 4.0005 3.9830 3.6447

ω = 10 1.1427E − 7 6.5012E − 9 4.0112E − 10 3.0784E − 11

Rate * 4.1356 4.0186 3.7038

ω = 20 6.2331E − 6 2.0477E − 8 1.0892E − 9 7.1579E − 11

Rate * 8.2498 4.2327 3.9276

Table 3.3 Temporal precision of the “IERKN2s4” method for solving Problem 3.1 with different
ω and �t up to T = 1000

�t

ω �t0 = 0.1 �t0/2 �t0/22 �t0/23 �t0/24

ω = 5 1.9339E − 6 1.2139E − 7 7.6054E − 9 4.7731E − 10 3.0324E − 11

Rate * 3.9938 3.9964 3.9940 3.9764

ω = 10 1.5263E − 5 9.6938E − 7 6.0899E − 8 3.8101E − 9 2.4023E − 10

Rate * 3.9768 3.9926 3.9985 3.9873

ω = 20 1.1468E − 4 7.6411E − 6 4.8518E − 7 3.0467E − 8 1.9073E − 9

Rate * 3.9077 3.9772 3.9932 3.9976

method with the different frequencies. The results in Tables 3.1 and 3.2 indicate that
the convergence order of the ISV method and the ERKN3s4 method are of order
two and order four, respectively. Tables 3.3 and 3.4 demonstrate that the IERKN2s4
method and the IERKN3s6 method are of order four and order six, respectively. The
computational results are coincide with our theoretical analysis results.

The logarithm of the global errors GE = ‖qN − q(1000)‖2 against different
stepsizes for Problem 3.1 are plotted in Fig. 3.1. The logarithm of the global errors
against different frequencies ω are displayed in Fig. 3.2. It can be observed from
Fig. 3.2 that the ERKN integrators are independent of the frequency ω, whereas
other traditional integrators depend on the frequency. In conclusion, Figs. 3.1
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Table 3.4 Temporal precision of the “IERKN3s6” method for solving Problem 3.1 with different
ω and �t up to T = 1000

�t

ω �t0 = 0.4 �t0/2 �t0/22 �t0/23 �t0/24

ω = 5 1.3355E − 5 2.2286E − 7 3.4864E − 9 5.6017E − 11 3.4615E − 12

Rate * 5.9051 5.9983 5.9597 4.0164

ω = 10 3.3252E − 4 6.5535E − 6 1.0957E − 7 1.7381E − 9 2.8857E − 10

Rate * 5.6650 5.9024 5.9782 5.9124

ω = 20 4.0302E − 3 1.6588E − 4 3.2996E − 6 5.4632E − 8 8.6855E − 9

Rate * 4.6026 5.6517 5.9164 5.9750

and 3.2 demonstrate that the ERKN time integrators are much more superior to
the traditional numerical methods in the literature.

Problem 3.2 We consider the nonlinear KG equation (see, e.g. [5, 29])

utt (x, t) − a2�u(x, t) + au(x, t) − bu3(x, t) = 0,

in the region (x, t) ∈ [−20, 20] × [0, 10] with the initial conditions

u(x, 0) =
√

2a

b
sech(λx), ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx),

where λ = √
a/(a2 − c2) and a, b, a2 − c2 > 0. The exact solution of Problem 3.2

is given by

u(x, t) =
√

2a

b
sech(λ(x − ct)).

The real parameter
√

2a/b represents the amplitude of a soliton which travels with
velocity c. We use the parameters a = 0.3, b = 1 and c = 0.25 which are similar to
those in [5, 29]. We integrate Problem 3.2 by using the IERKN3s6 time integrator
with Fourier pseudospectral spatial discretisation (IERKN3s6-FP). The error graphs
are shown in Fig. 3.3, with fixed time stepsize �t = 0.01 and several values of
spatial mesh size M . Numerical results demonstrate the spectral accuracy of the
spatial discretisation.

In Tables 3.5 and 3.6, we fixed the spatial mesh size M = 800 and integrate the
Problem 3.2 with different time stepsizes �t to compute the temporal convergence
order. The results demonstrate that the temporal accuracy is completely consistent
with our theoretical analysis. In Fig. 3.4, we plot the logarithms of the global error
GE = ‖U(�t; T ) − u(·, T )‖2 against different time stepsizes, where U(�t; T )

denotes the numerical solution at time T with the time stepsize �t . The results
illustrate that the ERKN time integrators have much better precision than the RKN
time integrators.
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Fig. 3.1 Efficiency curves for Problem 3.1: The logarithm of the global errors GE = ‖qN −
q(1000)‖2 against different time stepsizes with frequencies ω = 5 (a), 10 (b) and 20 (c)
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Fig. 3.2 Results of Problem 3.1: The logarithm of the global errors (GE) against different
frequencies ω. (a) �t = 0.001. (b) �t = 0.005

Problem 3.3 Consider the nonlinear KG equation in the nonrelativistic limit
regime (see [54, 55]):

⎧⎪⎪⎨
⎪⎪⎩

ε2utt (x, t) − �u(x, t) + 1

ε2 u(x, t) + f
(
u(x, t)

) = 0,

u(x, 0) = ψ1(x), ut (x, 0) = 1

ε2 ψ2(x),

(3.80)

in the region (x, t) ∈ [−30, 30] × [0, T ] with the initial functions

ψ1(x) = 2e−x2
, ψ2(x) = 3e−x2

and the cubic nonlinearity, i.e. f (u) = u3. Here 0 < ε � 1 is a dimensionless
parameter which is inversely proportional to the speed of light, ψ1 and ψ2 are two
given pieces of real-valued initial data which are independent of ε. We simulate the
experiment by using the IERKN3s6-FP method with the time stepsize �t = 10−4

and spatial mesh size M = 1200. The simulation results are displayed in Figs. 3.5
and 3.6. Obviously, the problem is highly oscillatory in time with respect to different
values of parameter ε.

To test the temporal accuracy of the time integrators “ISV”, “ERKN3s4”,
“IERKN2s4” and “IERKN3s6”, we fixed the spatial mesh size as M = 1200.
As is known, the exact solution of the Problem 3.3 cannot be represented explic-
itly. Therefore, we use a posterior error estimate, i.e. RE = ‖U(�t; T ) −
U(�t/2; T )‖2, to compute the convergence order. The computational results are
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Fig. 3.3 The errors for Problem 3.2 obtained by using the IERKN3s6-FP method for �t = 0.01
with (a) M = 200, (b) M = 400, and (c) M = 800

Table 3.5 Temporal
precision of “ISV” and
“ERKN3s4” methods for
solving Problem 3.2 with
different �t up to
T = 10 (�t0 = 0.1)

ISV ERKN3s4

Global error Rate Global error Rate

�t0 1.2884E − 1 * 6.9442E − 4 *

�t0/2 3.3095E − 2 1.9609 4.3965E − 5 3.9814

�t0/22 8.3311E − 3 1.9900 2.7567E − 6 3.9953

�t0/23 2.0864E − 3 1.9975 1.7244E − 7 3.9988

Table 3.6 Temporal
precision of “IERKN2s4” and
“IERKN3s6” methods for
solving Problem 3.2 with
different �t up to
T = 10 (�t0 = 0.4)

IERKN2s4 IERKN3s6

Global error Rate Global error Rate

�t0 1.4215E − 3 * 9.0669E − 6 *

�t0/2 9.0773E − 5 3.9690 1.4335E − 7 5.9830

�t0/22 5.7039E − 6 3.9922 2.2590E − 9 5.9877

�t0/23 3.5696E − 7 3.9981 1.7062E − 11 7.0488
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Fig. 3.4 Efficiency curves for Problem 3.2: The logarithm of the errors GE = ‖U(�t; T ) −
u(·, T )‖2 against different time stepsizes. (a) Explicit methods. (b) Implicit methods

Fig. 3.5 The graphs of Problem 3.3 obtained by using the IERKN3s6-FP method for ε = 0.5,
�t = 10−4 and �x = 1/20. (a) ε = 0.5, (b) t = 2, (c) t = 4, (d) t = 6, (e) t = 8, (f) t = 10
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Fig. 3.6 The graphs of Problem 3.3 obtained by using the IERKN3s6-FP method for ε = 0.1,
�t = 10−4 and �x = 1/20. (a) ε = 0.1, (b) t = 1, (c) t = 2, (d) t = 3, (e) t = 4, (f) t = 5

Table 3.7 Temporal accuracy of the “ISV” method for solving Problem 3.3 with different ε and
�t at time T = 2

�t

ε �t0 = 0.1 �t0/2 �t0/22 �t0/23 �t0/24

ε = 1 4.1772E − 2 9.8027E − 3 2.4133E − 3 6.0104E − 4 1.5012E − 4

Rate * 2.0913 2.0222 2.0055 2.0014

�t0 = 0.04 �t0/2 �t0/22 �t0/23 �t0/24

ε = 0.5 3.8736E − 2 9.5530E − 3 2.3790E − 3 5.9416E − 4 1.4850E − 4

Rate * 2.0196 2.0056 2.0014 2.0004

ε = 0.1 1.9373E − 2 5.1113E − 3 1.2885E − 3 3.2271E − 4 8.0712E − 5

Rate * 1.9223 1.9880 1.9974 1.9994

listed in Tables 3.7, 3.8, 3.9 and 3.10 demonstrating that the temporal accuracy is
completely consistent with our theoretical analysis.

In comparison with the corresponding time integrators “SV”, “RKN3s4”,
“IRKN2s4” and “IRKN3s6”, we fix the spatial mesh size as M = 1200 and
integrate with different time stepsizes at time T = 2. The logarithms of the relative
errors log10(RE) are plotted in Fig. 3.7. It can be observed from Fig. 3.7 that the
ERKN time integrators are more accurate than these traditional methods.
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Table 3.8 Temporal accuracy of the “ERKN3s4” method for solving Problem 3.3 with different ε

and �t at time T = 2

�t

ε �t0 = 0.1 �t0/2 �t0/22 �t0/23 �t0/24

ε = 1 4.0049E − 2 2.0521E − 3 1.2269E − 4 7.5856E − 6 4.7283E − 7

Rate * 4.2866 4.0641 4.0156 4.0039

�t0 = 0.04 �t0/2 �t0/22 �t0/23 �t0/24

ε = 0.5 4.3176E − 2 2.3654E − 3 1.4380E − 4 8.9274E − 6 5.5704E − 7

Rate * 4.1900 4.0400 4.0096 4.0024

ε = 0.1 3.4882E − 2 2.2846E − 3 1.4431E − 4 9.0431E − 6 5.6556E − 7

Rate * 3.9325 3.9847 3.9962 3.9991

Table 3.9 Temporal precision of the “IERKN2s4” method for solving Problem 3.3 with different
ε and �t at time T = 2

�t

ε �t0 = 0.1 �t0/2 �t0/22 �t0/23 �t0/24

ε = 1 2.3594E − 4 1.4193E − 5 8.8175E − 7 5.5037E − 8 3.4388E − 9

Rate * 4.0551 4.0087 4.0019 4.0004

�t0 = 0.05 �t0/2 �t0/22 �t0/23 �t0/24

ε = 0.5 6.5929E − 4 3.4212E − 5 2.0537E − 6 1.2721E − 7 7.9337E − 9

Rate * 4.2683 4.0582 4.0129 4.0031

�t0 = 0.005 �t0/2 �t0/22 �t0/23 �t0/24

ε = 0.1 2.1318E − 3 2.0379E − 4 1.3783E − 5 8.7673E − 7 5.5029E − 8

Rate * 3.3869 3.8861 3.9746 3.9939

Table 3.10 Temporal precision of the “IERKN3s6” method for solving Problem 3.3 with different
ε and �t at time T = 2

�t

ε �t0 = 0.1 �t0/2 �t0/22 �t0/23 �t0/24

ε = 1 3.0107E − 6 3.5378E − 8 5.2866E − 10 8.1239E − 12 2.6356E − 13

Rate * 6.4111 6.0644 6.0240 –

�t0 = 0.05 �t0/2 �t0/22 �t0/23 �t0/24

ε = 0.5 2.3162E − 5 2.9908E − 7 4.5292E − 9 7.0507E − 11 1.2447E − 12

Rate * 6.2751 6.0451 6.0053 5.8239

�t0 = 0.005 �t0/2 �t0/22 �t0/23 �t0/24

ε = 0.1 4.3967E − 4 2.0432E − 6 3.0716E − 8 4.7584E − 10 6.6287E − 12

Rate * 7.7494 6.0557 6.0124 6.1656

In Fig. 3.8, we use the numerical solution obtained by the sixth-order IERKN3s6-
FP method with the very small time stepsize �t = 10−4 and the spatial mesh size
M = 1200, as the reference solution of the exact solution. The logarithms of the
global errors against different parameters are plotted in Fig. 3.8. The results again
show that the ERKN time integrators for solving the highly oscillatory problems are
much superior to the RKN time integrators.
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Fig. 3.7 Efficiency curves for Problem 3.3: The logarithm of the relative errors RE =
‖U(�t; T ) − U(�t/2; T )‖2 against different time stepsizes with parameters ε = 1 (a), 0.5 (b)
and 0.1 (c)

3.5 Conclusions

In this chapter, we have made a comprehensive investigation on the nonlinear
stability and convergence of ERKN integrators for solving the system of nonlin-
ear multi-frequency highly oscillatory second-order ODEs (3.1) with a takanami
number. On the basis of the finite-energy condition, it turns out that the nonlinear
stability and the global error bounds are independent of the dominant frequency-
matrix and the takanami number. Employing the energy technique, we also analysed
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Fig. 3.8 Results of Problem 3.3: The logarithm of the global errors (GE) against different
parameters 1/ε2. (a) �t = 0.001. (b) �t = 0.005

the convergence of the ERKN time integrators with the Fourier pseudospectral
spatial discretisation when applied to semilinear wave equations. Another important
issue is that the ERKN-FP method eliminates necessity for the CFL restriction,
when applied to semilinear wave equations, whereas traditional schemes for solving
PDEs suffer from this crucial restriction which greatly affects the efficiency of
these schemes. This outstanding property of ERKN integrators ensures that an
ERKN-type time integrator can use a larger time stepsize in comparison with the
traditional methods for numerical solution of semilinear wave equations. This point
is significant in the long-time numerical simulation of nonlinear phenomena in a
wide variety of practical application areas in Science and Engineering.

The material in this chapter is based on the work by Liu and Wu [56].
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