
Chapter 2
Continuous-Stage ERKN Integrators
for Second-Order ODEs with Highly
Oscillatory Solutions

In this chapter, continuous-stage extended Runge–Kutta–Nyström (CSERKN) inte-
grators for solving highly oscillatory systems of second-order ODEs are derived
and analysed. These integrators are incorporated into the special structure of highly
oscillatory systems so that their internal stages and updates can integrate the
associated highly oscillatory homogeneous systems exactly. When the underlying
highly oscillatory systems are Hamiltonian systems, sufficient conditions for energy
preservation are shown for CSERKN methods. The symmetry and stability of
CSERKN integrators are also analysed in detail. Preliminary numerical results
highlight the effectiveness of CSERKN methods.

2.1 Introduction

We consider the following system of second-order ordinary differential equations
with oscillatory solutions

{
q ′′(t) + Mq(t) = f (q(t)), t ∈ [t0, T ],
q(t0) = q0, q ′(t0) = q ′

0,
(2.1)

where M ∈ R
d×d is a symmetric positive semi-definite matrix that implicitly

contains the dominant frequencies of the system, q ∈ R
d and f (q) : R

d → R
d

is a nonlinear function which is independent of q ′. If ‖M‖ � max

{
1,

∥∥∥∥∂f

∂q

∥∥∥∥
}

then

(2.1) is a highly oscillatory problem. This kind of problem frequently occurs in
science and engineering fields such as quantum mechanics, astrophysics, quantum
chemistry and electronics. It is particularly interesting when this highly oscillatory
problem is obtained from a spatial semidiscretisation of a semilinear wave equation
within the framework of the method of lines [1]. In practice, the system (2.1) can
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be integrated with general purpose methods [2, 3] or other codes adapted to its
special structure. However, it is worth noting that adaptive methods will be more
efficient than general purpose methods since adaptive methods make good use of
the information transmitted from the special structure of (2.1) introduced by the
linear term Mq(t).

For the particular case where M = ω2Id with a single frequency ω > 0 and
the d × d identity matrix Id , methods with frequency-dependent coefficients using
techniques like trigonometrical/exponential fitting can be traced back to the 1960s
(see, e.g. [4]). Here, we refer the reader to the reviews of the literature (see, [5,
6]) and the relevant papers (see, e.g. [7–18]). If M is a symmetric positive semi-
definite matrix, exponential integrators (see, e.g. [19, 20]), adapted Runge–Kutta–
Nyström (ARKN) methods (see [21, 22]) and other adaptive methods (see, e.g. [23–
28]) have been developed. Wu et al. proposed and analysed extended Runge–Kutta–
Nyström (ERKN) methods (see, e.g. [29–31]), whose internal stages and updates
exactly integrate the following highly oscillatory homogeneous linear system

q ′′(t) + Mq(t) = 0 (2.2)

associated with (2.1). This property plays an important role in oscillation-preser-
ving integrators as stated in Chap. 1. The global error analysis of ERKN methods
was presented and collocation techniques were also studied in [32–34].

If f (q) = −∇U(q) for some smooth function U(q), the system (2.1) is identical
to a separable Hamiltonian system of the following form

{
p′(t) = −∇qH(p, q),

q ′(t) = ∇pH(p, q),
(2.3)

with the initial values q(t0) = q0, p(t0) = p0 = q ′
0, and the Hamiltonian

H(p, q) = 1

2
pᵀp + 1

2
qᵀMq + U(q), (2.4)

where q : R → R
d and p : R → R

d are known as generalised position
and generalised momenta, respectively. It is clear that (2.3) is a highly oscillatory

Hamiltonian system once ‖M‖ � max

{
1,

∥∥∥∥∂f

∂q

∥∥∥∥
}

. As is known, for Hamiltonian

system (2.3), the corresponding map is symplectic and the true solution preserves
the energy H(p, q) for all t ∈ [t0, T ] (see, e.g. [35]). In the spirit of geometric
numerical integration, an integrator that inherits such geometric properties as much
as possible would be preferable. Unfortunately, however, it is often difficult to
design numerical integrators which inherit both symplecticity and energy preserva-
tion. A numerical method which is energy preserving at each step and defined by a
symplectic map has been discussed in [36, 37]. Since there is no symplectic B-series
method that conserves arbitrary Hamiltonians [38, 39], methods satisfying one of
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these properties have been developed in the past few decades [20]. Research work
has shown that symplectic methods perform very well in approximately preserving
the energy of Hamiltonian systems and we refer the reader to [20], for instance.
However, it is worth noting that symplectic methods just approximately, rather
than exactly, preserve the energy (2.4). In practical applications, apart from the
accuracy of approximate solutions, high-precision energy-preserving integrators are
also required. Moreover, in comparison with symplectic methods, energy-preserving
integrators have better nonlinear stability characteristics, are easier to adapt the time
step for, and are more suitable for the integration of chaotic systems (see, e.g. [40–
43]). Therefore, energy-preserving algorithms are becoming more popular.

As is known, for first-order ordinary differential equations of the form

y ′(t) = G(y(t)), y(t0) = y0, t ∈ [t0, T ], (2.5)

continuous-stage Runge–Kutta (CSRK) methods were firstly researched in [44, 45].
Then, some relevant papers appeared (see, e.g. [46, 47]). Hairer proposed a family
of CSRK methods and studied the corresponding energy conservation (see [48]).
Miyatake and Butcher proved a sufficient and necessary energy-preserving condi-
tion of CSRK methods (see [49]). Recently, some developments in this field have
been made (see, e.g. [50–52]). The exponentially and functionally-fitted version
of the CSRK method appeared in [53, 54]. The conservation of energy has been
approached by means of the definition of the discrete line integral [55–57].

More recently, for second-order ordinary differential equations of the form

q ′′(t) = F(q(t)), q(t0) = q0, q ′(t0) = q ′
0, t ∈ [t0, T ], (2.6)

Tang et al. [58] discussed continuous-stage Runge–Kutta–Nyström (CSRKN) meth-
ods and studied symplecticity-preserving algorithms. Energy-preserving CSRKN
methods were studied in [59]. The corresponding result in [58] has been extended
to high-order symplectic CSRKN methods [60].

2.2 Extended Runge–Kutta–Nyström Methods

Suppose that M is a positive semi-definite matrix. We begin with the following
matrix-valued φ-functions

φj (M) =
∞∑

k=0

(−1)kMk

(2k + j)! , j � 0, M ∈ R
d×d . (2.7)

which originally appeared in [22]. It can be observed from (2.7) that j !φj (M) → Id

when M → 0, where Id is the d × d identity matrix. The following proposition
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establishes the properties of matrix-valued φ-functions which will be used in
Sect. 2.4 of this chapter.

Proposition 2.1 The matrix-valued φ-functions defined by (2.7) satisfy:

• (i) M ∈ R
d×d ,

φj+2(M) =
∫ 1

0

(1 − z)φ1
(
M(1 − z)2

)
zj

j ! dz, j = 0, 1, · · · ,

φj+1(M) =
∫ 1

0

φ0
(
M(1 − z)2

)
zj

j ! dz, j = 0, 1, · · · ; (2.8)

• (ii) If M is invertible, then

φj+2(M) = M−1
(

1

j !Id − φj (M)

)
, j = 0, 1, · · · ; (2.9)

• (iii) φ2
0(M) + Mφ2

1(M) = Id .

The proofs of Proposition 2.1 and further details about the matrix-valued φ-
functions can be found in [22, 31]. As shown in Chap. 1 (see also [31]), an s-stage
ERKN method for the numerical integration of the system (2.1) is defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0(c
2
i V )qn + hciφ1(c

2
i V )q ′

n + h2
s∑

j=1

aij (V )f (Qj ), i = 1, · · · , s,

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2

s∑
i=1

b̄i(V )f (Qi) ,

q ′
n+1 = −hMφ1(V )qn + φ0(V )q ′

n + h

s∑
i=1

bi(V )f (Qi) ,

(2.10)

where ci are real numbers, and aij (V ), b̄i(V ) and bi(V ) for i, j = 1, · · · , s are
matrix-valued functions of V = h2M . The method (2.10) can be represented briefly
in Butcher’s notation by the following block tableau of coefficients:

c φ0(c
2V ) cφ1(c

2V ) A(V )

φ0(V ) φ1(V ) b̄ᵀ(V )

−hMφ1(V ) φ0(V ) bᵀ(V )
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=

c1 φ0(c
2
1V ) c1φ1(c

2
1V ) a11(V ) · · · a1s(V )

...
...

...
...

. . .
...

cs φ0(c
2
s V ) csφ1(c

2
s V ) as1(V ) · · · ass(V )

φ0(V ) φ1(V ) b̄1(V ) · · · b̄s(V )

−hMφ1(V ) φ0(V ) b1(V ) · · · bs(V )

(2.11)

The order conditions for an ERKN method (2.10) have been investigated in [31]
by using the B-series theory associated with the set of extended special Nyström
trees (see [61]). To learn more about this point the reader is referred to the relevant
references for all the definitions and notations.

Let

aij (V ) =
∞∑

k=0

a
(2k)
ij V k, (2.12)

where the coefficients a
(2k)
ij define the expansion of aij (V ). Then the local truncation

errors of qn+1 and q ′
n+1 can be expanded in the form

en+1 =qn+1 − q(tn+1)

=
∑

βτ∈ESNT

hρ(βτ)+1

(
γ (βτ )

ρ(βτ )!
s∑

i=1

b̄i (V )Φi(βτ ) − φρ(βτ)+1(V )

)
α(βτ )F(βτ )(qn, q

′
n),

e′
n+1 =q ′

n+1 − q ′(tn+1)

=
∑

βτ∈ESNT

hρ(βτ)

(
γ (βτ )

ρ(βτ )!
s∑

i=1

bi(V )Φi(βτ ) − φρ(βτ)(V )

)
α(βτ )F(βτ )(qn, q

′
n),

where the set ESNT of extended special Nyström trees βτ , functions ρ(βτ), α(βτ)

and elementary differential F(βτ)(q, q ′) are defined in [31, 61]. The following
theorem states the order conditions for ERKN methods.

Theorem 2.1 The ERKN method (2.10) is convergent of order p if and only if

s∑
i=1

b̄i(V )Φi(βτ) = ρ(βτ)!
γ (βτ)

φρ(βτ)+1(V ) + O(hp−ρ(βτ)), ρ(βτ) � p − 1,

s∑
i=1

bi(V )Φi(βτ) = ρ(βτ)!
γ (βτ)

φρ(βτ)(V ) + O(hp+1−ρ(βτ)), ρ(βτ) � p,

(2.13)

where βτ ∈ ESNT.
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With regard to the follow-up work of ERKN methods, we refer the reader to [32],
in which trigonometric Fourier collocation methods were studied. The symplectic
conditions for ERKN methods were derived and analysed in [29, 30].

2.3 Continuous-Stage ERKN Methods and Order Conditions

Similarly to the CSRK method, Tang et al. considered the continuous-stage Runge–
Kutta–Nyström (CSRKN) method for (2.6) as follows (see [58]).

Definition 2.1 Let Aτσ be a function of variables τ, σ ∈ [0, 1] and B̄τ , Bτ and Cτ

be functions of τ ∈ [0, 1]. A continuous-stage Runge–Kutta–Nyström (CSRKN)
method for solving (2.6) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qτ = qn + hCτ q ′
n + h2

∫ 1

0
AτσF (Qσ ) dσ, τ ∈ [0, 1],

qn+1 = qn + hq ′
n + h2

∫ 1

0
B̄τF (Qτ ) dτ,

q ′
n+1 = q ′

n + h

∫ 1

0
Bτ F (Qτ ) dτ.

(2.14)

The order conditions for CSRKN methods (2.14) have been given as those for

classical RKN methods with
∑

, ci , aij , b̄i , and bi , replaced by
∫ 1

0
, Cτ , Aτσ , B̄τ ,

and Bτ , respectively. For a more detailed description of the order conditions of the
CSRKN methods, we refer the reader to [58].

On the basis of the matrix-variation-of-constants formula of (2.1), applying the
continuous-stage idea to the ERKN methods leads to continuous-stage extended
Runge–Kutta–Nyström methods as follows.

Definition 2.2 An s-degree continuous-stage extended Runge–Kutta–Nyström
(CSERKN) method for the numerical integration of the system (2.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qτ = Cτ (V )qn + hDτ (V )q ′
n + h2

∫ 1

0
Āτσ (V )f (Qσ ) dσ, τ ∈ [0, 1],

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2

∫ 1

0
b̄τ (V )f (Qτ ) dτ,

q ′
n+1 = −hMφ1(V )qn + φ0(V )q ′

n + h

∫ 1

0
bτ (V )f (Qτ ) dτ,

(2.15)
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where Qτ is a polynomial of degree s with respect to τ satisfying Q0 = qn and
Q1 = qn+1, Cτ (V ), Dτ (V ), b̄τ (V ), and bτ (V ) are polynomials of degree s and
depend on V , Āτσ (V ) is a polynomial of degree s for τ , and s − 1 for σ and depend
on V , where τ, σ ∈ [0, 1] and V = h2M . In addition, the relations Ā0σ (V ) = 0 and
Ā1σ (V ) = b̄σ (V ) hold. The polynomials Cτ (V ) and Dτ (V ) satisfy

Cci (V ) = φ0(c
2
i V ), Dci (V ) = ciφ1(c

2
i V ), (2.16)

where ci for i = 0, · · · , s are the fitting nodes, and one of them should be 1. We
take c0 = 0 and cs = 1 in general. Cτ (V ) and Dτ (V ) can be expressed as

Cτ (V ) =
s∑

i=0

Li(τ )φ0(c
2
i V ), Dτ (V ) =

s∑
i=0

Li(τ )ciφ1(c
2
i V ), (2.17)

where Li(τ ) for i = 0, · · · , s are the following Lagrange interpolations functions

Li(τ ) =
s∏

j=0,j 	=i

τ − cj

ci − cj

.

The CSERKN method can be expressed by the following block Butcher tableau

Cτ Cτ (V ) Dτ (V ) Āτσ (V )

φ0(V ) φ1(V ) b̄τ (V )

−hMφ1(V ) φ0(V ) bτ (V )

. (2.18)

A CSERKN method (2.15) is of order p, if for sufficiently smooth problem (2.1),
the local truncation errors satisfy

en+1 = qn+1 − q(tn+1) = O(hp+1), e′
n+1 = q ′

n+1 − q ′(tn+1) = O(hp+1),

under the so-called local assumptions. In order to obtain the order conditions for
CSERKN methods, it is assumed that

Āτσ (V ) =
∞∑

k=0

Ā(2k)
τσ V k, (2.19)
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where the coefficients Ā
(2k)
τσ define the expansion of Āτσ (V ). Similarly to the

analysis of the paper [31], we have

en+1 =qn+1 − q(tn+1)

=
∑

βτ∈ESNT

hρ(βτ)+1
(

γ (βτ)

ρ(βτ)!
∫ 1

0
b̄τ (V )Φτ (βτ)dτ − φρ(βτ)+1(V )

)
α(βτ)F (βτ)(qn, q ′

n),

e′
n+1 =q ′

n+1 − q ′(tn+1)

=
∑

βτ∈ESNT

hρ(βτ)

(
γ (βτ)

ρ(βτ)!
∫ 1

0
bτ (V )Φτ (βτ)dτ − φρ(βτ)(V )

)
α(βτ)F (βτ)(qn, q ′

n).

The weights Φτ (βτ) can be given similarly to the ones for ERKN methods with
∑

,

ck
i , a

(2k)
ij , b̄i(V ), and bi(V ) replaced by

∫ 1

0
,

s∑
i=1

Li(τ )ck
i , Ā

(2k)
τσ , b̄τ (V ), and bτ (V ),

respectively. Therefore, we obtain the order conditions for a CSERKN method as
follows.

Theorem 2.2 The CSERKN method (2.15) is convergent of order p if and only if

∫ 1

0
b̄τ (V )Φτ (βτ)dτ = ρ(βτ)!

γ (βτ)
φρ(βτ)+1(V ) + O(hp−ρ(βτ)), ρ(βτ) � p − 1,

∫ 1

0
bτ (V )Φτ (βτ)dτ = ρ(βτ)!

γ (βτ)
φρ(βτ)(V ) + O(hp+1−ρ(βτ)), ρ(βτ) � p,

(2.20)

where βτ is the extended special Nyström-tree.

In what follows, we provide a list of the p-th order conditions (2.20) for
the CSERKN method (2.15) up to the extended special Nyström trees with
ρ(βτ) � 4.

• For the tree βτ with ρ(βτ) = 1, (2.20) gives∫ 1

0
b̄τ (V )dτ = φ2(V ) + O(hp−1),

∫ 1

0
bτ (V )dτ = φ1(V ) + O(hp).

• For the tree βτ with ρ(βτ) = 2, it follows from (2.20) that∫ 1

0
b̄τ (V )

s∑
i=0

Li(τ )cidτ = φ3(V ) + O(hp−2),

∫ 1

0
bτ (V )

s∑
i=0

Li(τ )cidτ = φ2(V ) + O(hp−1).
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• For the trees βτ with ρ(βτ) = 3, the order conditions are∫ 1

0
b̄τ (V )

s∑
i=0

Li(τ )c2
i dτ = 2φ4(V ) + O(hp−3),

∫ 1

0

∫ 1

0
b̄τ (V )Ā(0)

τσ dτdσ = φ4(V ) + O(hp−3),

∫ 1

0
bτ (V )

s∑
i=0

Li(τ )c2
i dτ = 2φ3(V ) + O(hp−2),

∫ 1

0

∫ 1

0
bτ (V )Ā(0)

τσ dτdσ = φ3(V ) + O(hp−2).

• For the trees βτ with ρ(βτ) = 4, we have∫ 1

0
b̄τ (V )

s∑
i=0

Li(τ )c3
i dτ = 6φ5(V ) + O(hp−4),

∫ 1

0

∫ 1

0
b̄τ (V )

s∑
i=0

Li(τ )ciĀ
(0)
τσ dτdσ = 3φ5(V ) + O(hp−4),

∫ 1

0

∫ 1

0
b̄τ (V )Ā(0)

τσ

s∑
i=0

Li(σ )cidτdσ = φ5(V ) + O(hp−4),

∫ 1

0
bτ (V )

s∑
i=0

Li(τ )c3
i dτ = 6φ4(V ) + O(hp−3),

∫ 1

0

∫ 1

0
bτ (V )

s∑
i=0

Li(τ )ciĀ
(0)
τσ dτdσ = 3φ4(V ) + O(hp−3),

∫ 1

0

∫ 1

0
bτ (V )Ā(0)

τσ

s∑
i=0

Li(σ )cidτdσ = φ4(V ) + O(hp−3).

Likewise, we can list more order conditions for trees with ρ(βτ) � 5. It should
be pointed out that, when s � p and the abscissae c1, c2, · · · , cs are distinct, we
have

∑s
i=0 Li(τ )c

p
i = τp.

2.4 Energy-Preserving Conditions and Symmetric
Conditions

In what follows, we show sufficient conditions for energy preservation for a
CSERKN method (2.15) when applied to the highly oscillatory Hamiltonian system
(2.1).
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Theorem 2.3 A CSERKN method (2.15) solving highly oscillatory Hamiltonian
systems (2.1) is energy preserving if the coefficients satisfy

V φ0(V )b̄τ (V ) − V φ1(V )bτ (V ) = C′
τ (V ),

φ0(V )bτ (V ) + V φ1(V )b̄τ (V ) = D′
τ (V ),

bτ (V )bσ (V ) + V b̄τ (V )b̄σ (V ) = Ā′
τσ (V ) + Ā′

στ (V ),

(2.21)

where Ā′
τσ (V ) = ∂

∂τ
Āτσ (V ), C′

τ (V ) = d

dτ
Cτ (V ) and D′

τ (V ) = d

dτ
Dτ (V ).

Proof For a CSERKN method (2.15) and Hamiltonian H(p, q) determined by (2.4)
with p = q ′, we have

H(pn+1, qn+1) − H(pn, qn)

=1

2
p
ᵀ
n+1pn+1 + 1

2
q
ᵀ
n+1Mqn+1 + U(qn+1) − 1

2
pᵀ

n pn − 1

2
qᵀ
n Mqn − U(qn)

=1

2

(
−hMφ1(V )qn + φ0(V )pn + h

∫ 1

0
bτ (V )f (Qτ ) dτ

)ᵀ

·
(

−hMφ1(V )qn + φ0(V )pn + h

∫ 1

0
bτ (V )f (Qτ ) dτ

)

+1

2

(
φ0(V )qn + hφ1(V )pn + h2

∫ 1

0
b̄τ (V )f (Qτ ) dτ

)ᵀ

·M
(

φ0(V )qn + hφ1(V )pn + h2
∫ 1

0
b̄τ (V )f (Qτ ) dτ

)

+
∫ 1

0

[∇U (Qτ )
]ᵀdQτ − 1

2
pᵀ

n pn − 1

2
qᵀ
n Mqn. (2.22)

After some calculation, we obtain

H(pn+1, qn+1) − H(pn, qn)

=1

2
p
ᵀ
n

(
φ2

0 (V ) + V φ2
1 (V )

)
pn − 1

2
p
ᵀ
n pn + 1

2
q
ᵀ
n M

(
φ2

0 (V ) + V φ2
1 (V )

)
qn − 1

2
q
ᵀ
n Mqn
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+ q
ᵀ
n V

(
φ0(V )

∫ 1

0
b̄τ (V )f (Qτ ) dτ − φ1(V )

∫ 1

0
bτ (V )f (Qτ ) dτ

)

+ hp
ᵀ
n

(
φ0(V )

∫ 1

0
bτ (V )f (Qτ ) dτ + V φ1(V )

∫ 1

0
b̄τ (V )f (Qτ ) dτ

)

+ h2

2

(∫ 1

0
bτ (V )f (Qτ ) dτ

)ᵀ (∫ 1

0
bτ (V )f (Qτ ) dτ

)

+ h2

2

(∫ 1

0
b̄τ (V )f (Qτ ) dτ

)ᵀ
V

(∫ 1

0
b̄τ (V )f (Qτ ) dτ

)

+
∫ 1

0

[∇U (Qτ )
]ᵀd

(
Cτ (V )qn + hDτ (V )pn + h2

∫ 1

0
Āτσ (V )f (Qσ ) dσ

)
.

(2.23)

It follows from Proposition 2.1 that

H(pn+1, qn+1) − H(pn, qn)

=qᵀ
n

∫ 1

0

(
V φ0(V )b̄τ (V ) − V φ1(V )bτ (V ) − C′

τ (V )

)
f (Qτ ) dτ

+ hpᵀ
n

∫ 1

0

(
φ0(V )bτ (V ) + V φ1(V )b̄τ (V ) − D′

τ (V )

)
f (Qτ ) dτ

+ h2

2

∫ 1

0

∫ 1

0
f (Qτ )ᵀ bτ (V )bσ (V )f (Qσ ) dτdσ

+ h2

2

∫ 1

0

∫ 1

0
f (Qτ )ᵀ V b̄τ (V )b̄σ (V )f (Qσ ) dτdσ

+ h2
∫ 1

0

[∇U (Yτ )
]ᵀd

(∫ 1

0
Āτσ (V )f (Qσ ) dσ

)
.

Using the first two equations of (2.21) and f (Qτ ) = −∇U (Qτ ), we obtain

H(pn+1, qn+1) − H(pn, qn)

=h2

2

∫ 1

0

∫ 1

0
f (Qτ )

ᵀ
(

bτ (V )bσ (V ) + V b̄τ (V )b̄σ (V ) − 2Ā′
τσ (V )

)
f (Qσ ) dτdσ.
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Letting τ ↔ σ and adding the resulting identities gives

H(pn+1, qn+1) − H(pn, qn) =h2

2

∫ 1

0

∫ 1

0
f (Qτ )

ᵀ
(

bτ (V )bσ (V ) + V b̄τ (V )b̄σ (V )

− Ā′
τσ (V ) − Ā′

στ (V )

)
f (Qσ ) dτdσ.

It then follows from the third equation of (2.21) that H(pn+1, qn+1)−H(pn, qn) =
0. The proof is complete. ��
Remark 2.4.1 When V → 0 (M → 0), the CSERKN method (2.15) reduces to
CSRKN method. In this case, the energy-preserving conditions of (2.21) reduce to

bτ = D′
τ ,

bτ bσ = Ā′
τσ + Ā′

στ ,
(2.24)

where D′
τ I , Āτσ Id , b̄τ Id and bτ Id are the limit values of D′

τ (V ), Āτσ (V ), b̄τ (V )

and bτ (V ) as V → 0. It follows from (2.17) that Dτ = τ and bτ = 1. This result
has been shown in [59].

A detailed investigation of the numerical integration of reversible systems has been
made in [3], and it has been shown that symmetric integration methods often have
excellent long-time behaviour for such systems. Therefore, we turn to the discussion
about the symmetry of CSERKN methods.

Definition 2.3 (See [3]) The adjoint method Φ∗
h of a method Φh is defined as the

inverse map of the original method with reversed time step −h, i.e., Φ∗
h = Φ−1

−h . A
method with Φ∗

h = Φh is called symmetric.

The following theorem gives the symmetric conditions of CSERKN methods:

Theorem 2.4 A CSERKN methods (2.15) is symmetric if and only if the coefficients
satisfy following conditions

φ1(V )bτ (V ) − φ0(V )b̄τ (V ) = b̄1−τ (V ),

φ0(V )bτ (V ) + V φ1(V )b̄τ (V ) = b1−τ (V ),

Cτ (V )φ0(V ) + V Dτ (V )φ1(V ) = C1−τ (V ),

Cτ (V )φ1(V ) − Dτ (V )φ0(V ) = D1−τ (V ),

Cτ (V )

(
φ1(V )bσ (V ) − φ0(V )b̄σ (V )

)

− Dτ (V )

(
φ0(V )bσ (V ) + V φ1(V )b̄σ (V )

)
+ Āτσ (V ) = Ā1−τ,1−σ (V ).

(2.25)
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Proof Exchanging qn+1 ↔ qn, q ′
n+1 ↔ q ′

n, tn+1 ↔ tn and replacing h by −h in
scheme (2.15) leads to

Q̄τ = Cτ (V )qn+1 − hDτ (V )q ′
n+1 + h2

∫ 1

0
Āτσ (V )f

(
Q̄σ

)
dσ,

qn = φ0(V )qn+1 − hφ1(V )q ′
n+1 + h2

∫ 1

0
b̄τ (V )f

(
Q̄τ

)
dτ,

q ′
n = hMφ1(V )qn+1 + φ0(V )q ′

n+1 − h

∫ 1

0
bτ (V )f

(
Q̄τ

)
dτ.

(2.26)

Using (2.26) and Proposition 2.1, we obtain

qn+1 =φ0(V )qn + hφ1(V )q ′
n

+ h2
∫ 1

0

(
φ1(V )bτ (V ) − φ0(V )b̄τ (V )

)
f
(
Q̄τ

)
dτ,

q ′
n+1 = − hMφ1(V )qn + φ0(V )q ′

n

+ h

∫ 1

0

(
φ0(V )bτ (V ) + V φ1(V )b̄τ (V )

)
f
(
Q̄τ

)
dτ,

Q̄τ =
(

Cτ (V )φ0(V ) + V Dτ (V )φ1(V )

)
qn +

(
Cτ (V )φ1(V ) − Dτ (V )φ0(V )

)
hq ′

n

+ h2
∫ 1

0

[
Cτ (V )

(
φ1(V )bσ (V ) − φ0(V )b̄σ (V )

)

− Dτ(V )

(
φ0(V )bσ (V ) + V φ1(V )b̄σ (V )

)
+ Āτσ

]
f (Qσ )dσ.

(2.27)

We replace all indices τ and σ by 1 − τ and 1 − σ , respectively, and denote
Q̄1−τ = Qτ . It is clear that the scheme defined by (2.27) coincides with the scheme
(2.15) if and only if the coefficients satisfy the conditions (2.25). This proves the
theorem. ��
Remark 2.4.2 When V → 0 (M → 0), the CSERKN method (2.15) reduces to a
CSRKN method. In this case, the symmetric conditions reduce to

bτ − b̄τ = b̄1−τ , bτ = b1−τ ,

bσ − b̄σ − τbσ + Āτσ = Ā1−τ,1−σ .
(2.28)

where Āτσ Id , b̄τ Id and bτ Id are the limit values of Āτσ (V ), b̄τ (V ) and bτ (V ) as
V → 0. This result has been given in [62].
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2.5 Linear Stability Analysis

In order to analyse the stability of CSERKN methods, we consider the following
linear scalar test equation

q ′′(t) + ω2q(t) = −εq(t), (2.29)

where ω represents an estimate of the dominant frequency λ and ε = λ2 − ω2 is the
error of the estimate. Applying the CSERKN method (2.15) to (2.29) yields

Qτ = Cτ (V )qn + hDτ (V )q ′
n − z

∫ 1

0
Āτσ (V )Qσ dσ,

qn+1 = φ0(V )qn + hφ1(V )q ′
n − z

∫ 1

0
b̄τ (V )Qτ dτ, (2.30)

hq ′
n+1 = −V φ1(V )qn + hφ0(V )q ′

n − z

∫ 1

0
bτ (V )Qτ dτ,

where V = ω2h2 and z = εh2. Considering Qτ is a polynomial of degree s with
respect to τ , we have

Qτ =
s∑

i=0

QiLi(τ ), Qi = Qci

where c0 = 0, c1 = 1 and Q0 = qn, Qs = qn+1, and then obtain

Qi = Ci(V )qn + hDi(V )q ′
n − z

∫ 1

0
Āiσ (V )

⎛
⎝ s∑

j=0

Lj(σ)Qj

⎞
⎠ dσ,

qn+1 = φ0(V )qn + hφ1(V )q ′
n − z

∫ 1

0
b̄τ (V )

(
s∑

i=0

Li(τ )Qi

)
dτ,

hq ′
n+1 = −V φ1(V )qn + hφ0(V )q ′

n − z

∫ 1

0
bτ (V )

(
s∑

i=0

Li(τ )Qi

)
dτ,

(2.31)

where Ci(V ) = Cci (V ), Di(V ) = Dci (V ) and Āiσ (V ) = Āciσ (V ). We can express
(2.31) in a vector form

Q = C(V )qn + hD(V )q ′
n − zĀ(V )Q,

qn+1 = φ0(V )qn + hφ1(V )q ′
n − zB̄(V )Q,

hq ′
n+1 = −V φ1(V )qn + hφ0(V )q ′

n − zB(V )Q,

(2.32)
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where Q = (Q0, · · · ,Qs)
ᵀ and

C(V ) = (C0(V ), · · · , Cs(V ))ᵀ, D(V ) = (D0(V ), · · · ,Ds(V ))ᵀ,

Ā(V ) =

⎛
⎜⎜⎜⎜⎜⎝

∫ 1

0
Ā0σ (V )L0(σ )dσ · · ·

∫ 1

0
Ā0σ (V )Ls(σ )dσ

...
. . .

...∫ 1

0
Āsσ (V )L0(σ )dσ · · ·

∫ 1

0
Āsσ (V )Ls(σ )dσ

⎞
⎟⎟⎟⎟⎟⎠ ,

B̄(V ) =
(∫ 1

0
b̄σ (V )L0(σ )dσ, · · · ,

∫ 1

0
b̄σ (V )Ls(σ )dσ

)
,

B(V ) =
(∫ 1

0
bσ (V )L0(σ )dσ, · · · ,

∫ 1

0
bσ (V )Ls(σ )dσ

)
.

The elimination of the vector Q in (2.32) yields the recursion

(
qn+1

hq ′
n+1

)
= M(V, z)

(
qn

hq ′
n

)
, (2.33)

where

M =
(

φ0(V ) − zB̄(V )N−1C(V ) φ1(V ) − zB̄(V )N−1D(V )

−V φ1(V ) − zB(V )N−1C(V ) φ0(V ) − zB(V )N−1D(V )

)
, (2.34)

and N = I + zĀ(V ). The matrix M is called the stability matrix. The behaviour of
the numerical solution will depend on the spectral radius ρ(M). Geometrically, the
characterization of stability involves a two-dimensional region in (V , z) space for a
CSERKN method.

Definition 2.4 For the CSERKN method (2.15) with the stability matrix M(V, z),
the region of the two-dimensional space

� := {(V , z) : V � 0, |ρ(M(V, z))| � 1}

is called the region of stability. The closed surface defined by ρ(M(V, z)) = 1 and
V � 0 is the stability boundary of the method.

Definition 2.5 Denoting ζ = √
V + z, the two quantities

φ(ζ ) = ζ − arccos

(
tr(M)

2
√

det(M)

)
, d(ζ ) = 1 − √

det(M)

are called the dispersion error and the dissipation error of the underlying CSERKN
method, respectively. The method is said to be dispersive of order γ and dissipative
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of order r , if φ(ζ ) = O(ζ γ+1) and d(ζ ) = O(ζ r+1), respectively. If φ(ζ ) = 0 or
d(ζ ) = 0, then the method is said to be zero dispersive or zero dissipative.

2.6 Construction of CSERKN Methods

In this section, we present second and fourth order symmetric and energy-preser-
ving CSERKN schemes. The derivation process of higher-order methods is com-
pletely similar. In the construction of the method, we always choose Dτ = τ , as
described in Remark 2.4.1.

In a CSERKN method, there is a restrictive relation between the internal and
final stages for the consistency of the method, because qn+1 should coincide with
Qcs while cs = 1. Therefore, b̄σ (V ) should be expressed as b̄σ (V ) = Ā1σ (V ).

2.6.1 The Case of Order Two

According to Definition 2.2, a one-degree CSERKN formulation has coefficients
with the following form:

Āτσ (V ) = ā11(V )τ, b̄τ (V ) = b̄1(V ), bτ (V ) = b1(V ). (2.35)

On the basis of the energy-preserving conditions (2.21), the coefficients satisfy

ā11(V ) = φ2((c1 − c2)
2V ),

b̄1(V ) = (1 − c2)
2φ2((1 − c2)

2V ) − (1 − c1)
2φ2((1 − c1)

2V )

c1 − c2
,

b1(V ) = (1 − c2)φ1((1 − c2)
2V ) − (1 − c1)φ1((1 − c1)

2V )

c1 − c2
.

(2.36)

Under the assumption that the coefficients in (2.36) satisfy the symmetric conditions
(2.25), we obtain

ā11(V ) = φ2

(
(2c1 − 1)2V

)
, c2 = 1 − c1,

b̄1(V ) = c2
1φ2(c

2
1V ) − (1 − c1)

2φ2((1 − c1)
2V )

2c1 − 1
,

b1(V ) = c1φ1(c
2
1V ) − (1 − c1)φ1((1 − c1)

2V )

2c1 − 1
.

(2.37)
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Fig. 2.1 The stability regions of the method SEPCSERKN2P (a) and the method SEPCSERKN4P
(b)

Let Ā1σ (V ) = b̄σ (V ) in (2.37), and this gives

c1 = 0, c2 = 1,

ā11(V ) = φ2(V ), b̄1(V ) = φ2(V ), b1(V ) = φ1(V ).
(2.38)

It then can be verified that the coefficients satisfy all the conditions of order two. We
denote the CSERKN method determined by (2.38) as SEPCSERKN2P. With regard
to the dispersion error and the dissipation error of the method SEPCSERKN2P, we
have

φ(ζ ) = ε2ζ 3

12(ε2 + w2)
+ O(ζ 5), d(ζ ) = 0.

This shows that the method is dispersive of order two and zero dissipative,
respectively. The stability region of the method SEPCSERKN2P is depicted in
Fig. 2.1a.

Remark 2.6.1 Actually, the method SEPCSERKN2P can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qτ =
(
τφ0(V ) + 1 − τ

)
qn + hτφ1(V )q ′

n + h2τ

∫ 1

0
φ2(V )f (Qσ ) dσ, τ ∈ [0, 1],

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2

∫ 1

0
φ2(V )f (Qτ ) dτ,

q ′
n+1 = −hMφ1(V )qn + φ0(V )q ′

n + h

∫ 1

0
φ1(V )f (Qτ ) dτ.

(2.39)
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Using the first two expressions of (2.39), we write Qτ as a linear combination of qn

and qn+1.

Qτ = τqn+1 + (1 − τ )qn. (2.40)

The method SEPCSERKN2P then can be expressed as

qn+1 = φ0(V )qn + hφ1(V )q ′
n + h2φ2(V )

∫ 1

0
f (τqn+1 + (1 − τ )qn) dτ,

q ′
n+1 = −hMφ1(V )qn + φ0(V )q ′

n + hφ1(V )

∫ 1

0
f (τqn+1 + (1 − τ )qn) dτ.

(2.41)

This formula (2.41) has been proposed in [63, 64] and is termed the adapted AVF
(AAVF) formula in [64]. The authors in [65] studied the application of AAVF
formula to Hamiltonian partial differential equations. Therefore, CSERKN methods
can be thought of as an extension of the AAVF method (2.41).

2.6.2 The Case of Order Four

A two-degree CSERKN method has the coefficients of the form

Āτσ (V ) = ā11(V )τ + ā12(V )τσ + ā21(V )τ 2 + ā22(V )τ 2σ,

b̄τ (V ) = b̄1(V ) + b̄2(V )τ, bτ (V ) = b1(V ) + b2(V )τ.
(2.42)

It then follows from the first two energy-preserving conditions of (2.21) that

b̄1(V ) =
(

(−c2
2 + c2

3)(1 − c1)
2φ2((1 − c1)

2V ) + (c2
1 − c2

3)(1 − c2)
2φ2((1 − c2)

2V )

+ (−c2
1 + c2

2)(1 − c3)
2φ2((1 − c3)

2V )

)/(
(c1 − c2)(c1 − c3)(c2 − c3)

)
,

b̄2(V ) =
(

2((c2 − c3)(1 − c1)
2φ2((1 − c1)

2V ) + (−c1 + c3)(1 − c2)
2φ2((1 − c2)

2V )

+ (c1 − c2)(1 − c3)
2φ2((1 − c3)

2V ))

)/(
(c1 − c2)(c1 − c3)(c2 − c3)

)
,
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b1(V ) =
(

(c2
2 − c2

3)(1 − c1)φ1((1 − c1)
2V ) + (−c2

1 + c2
3)(1 − c2)φ1((1 − c2)

2V )

+ (c2
1 − c2

2)(1 − c3)φ1((1 − c3)
2V )

)/(
(c1 − c2)(c1 − c3)(c2 − c3)

)
,

b2(V ) = 2

(
(−c2 + c3)(1 − c1)φ1((1 − c1)

2V ) + (c1 − c3)(1 − c2)φ1((1 − c2)
2V )

+ (−c1 + c2)(1 − c3)φ1((1 − c3)
2V )

)/(
(c1 − c2)(c1 − c3)(c2 − c3)

)
.

(2.43)

Using the last energy-preserving conditions of (2.21), we obtain

ā11(V ) = 1

2

(
b2

1(V ) + b̄2
1(V )V

)
,

ā21(V ) = 1

2

(
− a12(V ) + b1(V )b2(V ) + b̄1(V )b̄2(V )V

)
,

ā22(V ) = 1

4

(
b2

2(V ) + b̄2
2(V )V

)
.

(2.44)

Letting the coefficients in (2.6.2) and (2.44) satisfy the symmetric conditions and
Ā1σ (V ) = b̄σ (V ), we obtain

c1 = 0, c2 = 1

2
, c3 = 1, ā11(V ) = 4φ2

(
1

4
V

)
− 3φ2

(
V
)
,

ā12(V ) = −φ2
1

(
1

16
V

)(
1 + V

4
φ2

(
V

4

))
,

ā21(V ) = 1

2
φ2

1

(
1

16
V

)(
1 − 3V

4
φ2

(
V

4

))
, ā22(V ) = V

4
φ4

1

(
1

16
V

)
,

b̄1(V ) = 3φ2

(
V

)
− φ2

(
1

4
V

)
, b̄2(V ) = 2φ2

(
1

4
V

)
− 4φ2

(
V
)
,

b1(V ) = −2φ1

(
1

4
V

)
+ 3φ1

(
V
)
, b2(V ) = 4φ1

(
1

4
V

)
− 4φ1

(
V
)
.

(2.45)

It can be verified that the coefficients satisfy all the conditions of order four. We
denote the CSERKN method (2.15) determined by (2.45) as SEPCSERKN4P. Con-
cerning the dispersion error and the dissipation error of the method SEPCSERKN4P,
we have

φ(ζ ) = ε2(4ε2 + 3w2)ζ 5

2880(ε2 + w2)2
+ O(ζ 7), d(ζ ) = 0,
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which indicates that the method SEPCSERKN4P is dispersive of order four and
zero dissipative, respectively. The stability region of the method SEPCSERKN4P is
depicted in Fig. 2.1b.

2.7 Numerical Experiments

In this section, in order to demonstrate the superiority of the continuous-stage
ERKN methods in comparison with the existing methods in the literature, we
consider three model problems. Since these methods are implicit, iterative solutions
are required. We use fixed point iteration with the tolerance 10−15, and the
maximum number of iterations is 100. The integrals appearing in the right-hand
side of method (2.15) are integrated by using quad with the tolerance 10−12. The
integrators we select for comparison are

• EPCSRK2P: The energy-preserving CSRK method of order two derived in [48];
• EPCSRK4P: The energy-preserving CSRK method of order four derived in [48];
• SEPCSERKN2P: The symmetric and energy-preserving CSERKN method of

order two presented in Sect. 2.6 of this chapter;
• SEPCSERKN4P: The symmetric and energy-preserving CSERKN method of

order four presented in Sect. 2.6 of this chapter.

The numerical results are executed on the computer Lenovo M6600 (Inter(R)
Pentium(R) CPU 3.00 GHz, 0.99 GB), and the programming language MATLAB is
used.

Problem 2.1 We consider the Duffing equation

{
q ′′ + ω2q = 2k2q3 − k2q, t ∈ [0, tend],
q(0) = 0, q ′(0) = ω.

(2.46)

The Hamiltonian is given by

H(p, q) = 1

2
p2 + 1

2
(ω2 + k2)q2 − k2

2
q4,

where k = 0.03. The exact solution of this initial-value problem is q(t) =
sn(ωt; k/ω), where sn is the so-called Jacobian elliptic function. We choose the
frequency ω = 50 in this experiment. Accordingly, this is a highly oscillatory
Hamiltonian system.

We first solve this problem on the interval [0, 100] with the stepsizes h = 1/2j

for j = 4, · · · , 7 for each method. We then integrate the problem with a fixed
stepsize h = 1/100 on the interval [0, 100] to examine the preservation of the
Hamiltonian for the four methods. The numerical results are presented in Fig. 2.2.
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Fig. 2.2 Efficiency curves (a) and energy conservation (b) for Problem 2.1

Problem 2.2 We consider the two coupled oscillators with different frequen-cies
[17]

{
q ′′

1 + q1 = 2εq1q2, q1(0) = 1, q ′
1(0) = 0,

q ′′
2 + 2q2 = εq2

1 + 4εq3
2 , q2(0) = 1, q ′

2(0) = 0.

The Hamiltonian of this system is given by

H(p, q) = 1

2
(p2

1 + p2
2) + 1

2
(q2

1 + 2q2
2) − ε

(
q2

1q2 + q4
2

)
.

In this numerical experiment we choose ε = 10−3. We first solve this problem on the
interval [0, 100] with the stepsizes h = 1/2j for j = 2, · · · , 5 for all the methods.
We then integrate the problem with a fixed stepsize h = 1/10 on [0, 100] and
examine the preservation of the Hamiltonian. The numerical results are presented
in Fig. 2.3.
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Fig. 2.3 Efficiency curves (a) and energy conservation (b) for Problem 2.2

Problem 2.3 Consider the semilinear wave equation⎧⎪⎪⎨
⎪⎪⎩

∂2u

∂t2 − ∂2u

∂x2 = −1

5
u3, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, u(x, 0) = sin(πx)

2
, ut (x, 0) = 0.

By using second-order symmetric differences, this problem is converted into a
system of ODEs in time

⎧⎪⎪⎨
⎪⎪⎩

d2ui

dt2 − ui+1 − 2ui + ui−1

�x2 = −1

5
u3

i , 0 < t � tend,

ui(0) = sin(πxi)

2
, u

′
i (0) = 0, i = 1, · · · , N − 1,

where �x = 1/N is the spatial mesh stepsize and xi = i�x. Then this semidiscrete
oscillatory system has the form

⎧⎪⎪⎨
⎪⎪⎩

d2U

dt2 + MU = F(U), 0 < t � tend,

U(0) =
(

sin(πx1)

2
, · · · ,

sin(πxN−1)

2

)ᵀ
, U ′(0) = 0,
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where U(t) = (u1(t), · · · , uN−1(t))
ᵀ with ui(t) ≈ u(xi, t) for i = 1, · · · , N − 1,

and

M = 1

�x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠ , (2.47)

F(U) =
(

−1

5
u3

1, · · · ,−1

5
u3

N−1

)ᵀ
.

The Hamiltonian of this system is given by

H(p, q) = 1

2
pᵀp + 1

2
qᵀMq + 1

20
eᵀq4,

where e = (1, · · · , 1)ᵀ. In this numerical experiment we choose N = 100. We
first solve this problem on the interval [0, 100] with the stepsizes h = 1/2j for
j = 5, · · · , 8. We then integrate the problem with a fixed stepsize h = 1/128
on [0, 100] and examine the preservation of the Hamiltonian by each code. The
numerical results are shown in Fig. 2.4.

It can be observed from Figs. 2.2, 2.3, and 2.4 of the three numerical experiments
that the right-hand figures show all the integrators derived in this chapter preserve
the Hamiltonian well. The results of the numerical experiments confirm that, for
a given stepsize h, the SEPCSERKN integrators are more accurate than EPCSRK
methods with the same convergence order.

Remark 2.7.1 In general, the computational cost per step of high order methods is
larger than that of low order methods. In order to objectively evaluate these effects,
we present in Fig. 2.5 the error versus CPU time for each problem, which indicates
that SEPCSERKN4P is the best of these four methods. The related data are the same
as those shown in Figs. 2.2a, 2.3a, and 2.4a.

2.8 Conclusions and Discussions

In this chapter, we derived and analysed continuous-stage extended Runge–Kutta–
Nyström (CSERKN) methods for (2.1). This class of CSERKN methods is oscil-
lation preserving since the internal stages and the updates exactly integrate the
highly oscillatory homogeneous system (2.2) associated with (2.1). Symmetric and
energy-preserving conditions for CSERKN methods were derived and analysed for
highly oscillatory Hamiltonian systems. In terms of these conditions, two symmetric
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Fig. 2.4 Efficiency curves (a) and energy conservation (b) for Problem 3.3

Fig. 2.5 The error versus CPU time for three problems



References 71

and energy-preserving CSERKN methods were constructed, of orders two and
four respectively. The results of the numerical experiments show that the energy-
preserving CSERKN methods preserve the energy well, and are more accurate than
EPCSRK methods.

CSERKN methods for semilinear Hamiltonian wave equations could be investi-
gated further. We expect that they may exactly preserve the energy of the underlying
Hamiltonian wave equations, including the Klein–Gordon (KG) equation which has
received a great deal of attention, both numerical and analytical. We refer the reader
to [65] for this topic. A promising approach to the approximation is based on the so-
called operator-variation-constants formula (the Duhamel Principle), and we refer
the reader to some relevant papers [66–68]. In Chap. 11, symplectic approximations
will be derived and analysed in detail for efficiently solving semilinear KG equa-
tions. Moreover, continuous-stage leap-frog schemes for semilinear Hamiltonian
wave equations will be presented in Chap. 12.

The material in this chapter is based on the work by Li and Wu [69].
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