
Chapter 14
Long-Time Momentum and Actions
Behaviour of Energy-Preserving Methods
for Wave Equations

Wave equations have physically very important properties which should be
respected by numerical schemes in order to predict correctly the solution over
a long-time period. In this chapter, the long-time behaviour of momentum and
actions for energy-preserving methods are analysed in detail for semilinear wave
equations.

14.1 Introduction

The main theme of this chapter is the long-time behaviour of energy-preserving (EP)
methods when applied to the following one-dimensional semilinear wave equation
(see [1–3])

∂2
t u − ∂2

xu + ρu + g(u) = 0, −π � x � π, t > 0, (14.1)

where g is a nonlinear and smooth real function with g(0) = g′(0) = 0 and ρ

is a positive number. Following the Refs. [1–3], we assume that the initial values
u(·, 0) and ∂tu(·, 0) for this equation are bounded by a small parameter ε, which
provides small initial data in appropriate Sobolev norms. Here, we consider 2π-
periodic boundary condition u(x, t) = u(x + 2π, t) for (14.1).

As is known, several important quantities are conserved by the solution of (14.1).
Firstly, the total energy

H(u, v) = 1

2π

∫ π

−π

(1

2

(
v2 + (∂xu)2 + ρu2)+ U(u)

)
dx
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is exactly preserved along the solution, where v = ∂tu and U(u) is the potential such
that U ′(u) = g(u). Secondly, the solution of (14.1) also conserves the momentum

K(u, v) = 1

2π

∫ π

−π

∂xu(x)v(x)dx.

Thirdly, the harmonic actions

Ij (u, v) = ωj

2
|uj |2 + 1

2ωj

|vj |2, j ∈ Z

are conserved for the linear wave equation, i.e., g(u) ≡ 0, where ωj = √
ρ + j2 for

j ∈ Z. In the nonlinear case, it has been proved in [2, 4] that, for smooth and small
initial data and for almost all values of ρ > 0, the actions Ij (u, v) remain constant
up to small deviations over a long-time period.

In the past decades it has become increasingly important to design numerical
integrators for wave equations aiming at respecting qualitative properties of the
solution (see, e.g. [5–14]). Among others, long-time conservation properties of
numerical methods when applied to wave equations have been well studied [1–
3, 15, 16]. All these analyses are achieved by the technique of modulated Fourier
expansions, which was developed by Hairer and Lubich in [17] and has been
frequently used in the long-term analysis (see, e.g. [18–22]). On the other hand,
as an important kind of method, energy-preserving (EP) methods have also been the
subject of many investigations for wave equations. EP methods can exactly preserve
the energy of the system under consideration. Concerning some examples of this
topic, we refer the readers to [23–31]. Unfortunately, it seems that the study of the
long-time behaviour of EP methods in other structure-preserving aspects is quite
inadequate for wave equations in the literature, e.g. the numerical conservation of
momentum and actions. This chapter focuses on this point.

14.2 Full Discretisation

This section presents a full discretisation for solving the semilinear wave equation
(14.1). We begin with a spectral semidiscretisation in space introduced in [1, 3], and
then use EP methods in time.

14.2.1 Spectral Semidiscretisation in Space

We here choose equidistant collocation points xk = kπ/M , k = −M,−M +
1, · · · ,M − 1, for the pseudospectral semidiscretisation in space and consider a
pair of real-valued trigonometric polynomials as an approximation for the solution
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of (14.1)

uM(x, t) =
′∑

|j |�M

qj (t)eijx, vM(x, t) =
′∑

|j |�M

pj (t)eijx, i = √−1,

(14.2)

where pj (t) = d

dt
qj (t) and the prime indicates that the first and last terms in the

summation are taken with the factor 1/2. We collect all the qj in a 2M-periodic
coefficient vector q(t) = (qj (t)), which is a solution of the 2M-dimensional system
of oscillatory ODEs

d2q

dt2 + Ω2q = f (q), (14.3)

where f (q) = −F2Mg(F−1
2Mq),Ω is diagonal with entries ωj , and F2M denotes

the discrete Fourier transform (F2Mw)j = 1

2M

M−1∑
k=−M

wke−ijxk for |j | � M. It is

noted that the system (14.3) is a finite-dimensional complex Hamiltonian system
with the energy

HM(p, q) = 1

2

′∑
|j |�M

(|pj |2 + ω2
j |qj |2

)+ V (q), (14.4)

where V (q) = 1

2M

M−1∑
k=−M

U((F−1
2Mq)k). Accordingly, the actions (for |j | � M)

and the momentum of (14.3) are respectively given by

Ij (p, q) = ωj

2
|qj |2 + 1

2ωj
|pj |2, K(p, q) = −

′′∑
|j |�M

ijq−jpj , i = √−1,

where the double prime indicates that the first and last terms in the summation
are taken with the factor 1/4. We are interested only in real approximation (14.2)
throughout this chapter, and hence it holds that q−j = q̄j , p−j = p̄j and I−j = Ij .

It is important to note that the energy (14.4) is exactly preserved along the
solution of (14.3). For the momentum and actions in the semidiscretisation, the
following results have been proved in [3].
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Theorem 14.1 (See [3]) Under the non-resonance condition (14.10) and the
Assumption (14.7) which are stated in Sect. 14.3.1, it holds that

M∑
l=0

ω2s+1
l

|Il(p(t), q(t)) − Il(p(0), q(0))|
ε2 � Cε,

|K(p(t), q(t)) − K(p(0), q(0))|
ε2 � CtεM−s+1,

where 0 � t � ε−N+1 and the constant C is independent of ε,M, h and t .

14.2.2 EP Methods in Time

It is known that among typical EP integrators is the average vector field (AVF)
method (see [32]). Unfortunately, however, it has been pointed out in Chap. 1 that
the AVF method cannot efficiently solve the highly oscillatory system (14.3) (see
also [33, 34]) since the AVF method is not oscillation preserving. Moreover, the
integral appearing in the AVF formula is dependent on the frequency matrix Ω .
This fact leads to the following definition.

Definition 14.1 (See [33, 34]) For efficiently solving the oscillatory system (14.3),
the adapted average vector field (AAVF) method has the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qn+1 = φ0(V )qn + hφ1(V )pn + h2φ2(V )

∫ 1

0
f ((1 − σ)qn + σqn+1)dσ,

pn+1 = −hΩ2φ1(V )qn + φ0(V )pn + hφ1(V )

∫ 1

0
f ((1 − σ)qn + σqn+1)dσ,

(14.5)

where h is the stepsize, and

φl(V ) :=
∞∑

k=0

(−1)kV k

(2k + l)! , l = 0, 1, 2 (14.6)

are matrix-valued functions of V = h2Ω2.

According to (14.6), it is clear that

φ0(V ) = cos(hΩ), φ1(V ) = sin(hΩ)(hΩ)−1, φ2(V ) = (I − cos(hΩ))(hΩ)−2 .

It is interesting to note that as V → 0 the method (14.5) reduces to the well-known
AVF method. The following properties of the AAVF method have been shown in
[33, 34].
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Theorem 14.2 (See [33, 34]) The AAVFmethod is symmetric and exactly preserves
the energy (14.4), which means that

HM(pn+1, qn+1) = HM(pn, qn) for n = 0, 1, · · · .

Theorem 14.2 ensures that the energy-preserving AAVF method does not exclude
symmetry structure, and, as is known, preserving the energy and symmetry of the
system simultaneously at the discrete level is important for geometric integrators.

14.3 Main Result and Numerical Experiment

In what follows, we shall use the following notations (see [1]). We denote

|k| = (|kl|)Ml=0, ‖k‖ =
M∑
l=0

|kl|, k · ω =
M∑
l=0

klωl, ωσ |k| =
M∏
l=0

ω
σ |kl |
l .

for sequences of integers k = (kl)
M
l=0, ω = (ωl)

M
l=0 and a real number σ . We also

denote by 〈j 〉 the unit coordinate vector (0, · · · , 0, 1, 0, · · · , 0)ᵀ with 1 in the j -th
entry 1 and 0 elsewhere. For s ∈ R

+, the space of 2M-periodic sequences q = (qj )

endowed with the weighted norm ‖q‖s =
( ′′∑

|j |�M

ω2s
j |qj |2

)1/2
is denoted by Hs .

Furthermore, we set

[[k]] =
{

(‖k‖ + 1)/2, k �= 0,

3/2, k = 0.

14.3.1 Main Result

In this subsection we first present the main result of this chapter, which will
be illustrated by numerical experiments. The following assumptions (see [1]) are
needed for the main result.

Assumption 14.1 It is assumed that the initial values of (14.3) are bounded by

( ‖q(0)‖2
s+1 + ‖p(0)‖2

s

)1/2 � ε (14.7)

with a small parameter ε > 0.
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Assumption 14.2 The following non-resonance condition holds for a given step-
size h:
∣∣∣∣sin

(
h

2
(ωj − k · ω)

)
· sin

(
h

2
(ωj + k · ω)

)∣∣∣∣ � ε1/2h2(ωj + |k · ω|). (14.8)

If this condition is not true, we define a set of near-resonant indices

Rε,h = {(j, k) : |j | � M, ‖k‖ � 2N, k �= ±〈j 〉, not satisfying (14.8)},
(14.9)

where N � 1 is the truncation number of the expansion (14.15) which will be
presented in the next section. Moreover, we assume that there exist σ > 0 and a
constant C0 such that

sup
(j,k)∈Rε,h

ωσ
j

ωσ |k| ε
‖k‖/2 � C0ε

N , (14.10)

for the set Rε,h.

Assumption 14.3 Assume that the following numerical non-resonance condition

| sin(hωj )| � hε1/2 for |j | � M, (14.11)

is satisfied.

Assumption 14.4 Suppose that, for a positive constant c > 0, another non-
resonance condition

∣∣∣∣sin

(
h

2
(ωj − k · ω)

)
· sin

(
h

2
(ωj + k · ω)

)∣∣∣∣ � ch2|2φ2(h
2ω2

j )|

for (j, k) of the form j = j1 + j2 and k = ±〈j1〉 ± 〈j2〉,
(14.12)

is also fulfilled, which leads to improved conservation estimates.

The following theorem represents the main result of this chapter.

Theorem 14.3 We define the following modified momentum and actions, respec-
tively

Îj (p, q) =
cos

(
1

2
hωj

)

sinc
(

1

2
hωj

) Ij (p, q), K̂(p, q) = −
′′∑

|j |�M

ij
cos

(
1

2
hωj

)

sinc
(

1

2
hωj

)q−jpj ,
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and choose the stepsize h such that

∣∣∣∣∣∣∣∣

cos

(
1

2
hωj

)

sinc

(
1

2
hωj

)
∣∣∣∣∣∣∣∣
� C1 for |j | � M. (14.13)

Then under the conditions of Assumptions 14.1–14.4 with s � σ + 1, for the AAVF
method (14.5) and 0 � t = nh � ε−N+1, the following near-conservation estimates
of the modified momentum and actions

M∑
l=0

ω2s+1
l

|Îl (pn, qn) − Îl (p0, q0)|
ε2 � Cε,

|K̂(pn, qn) − K̂(p0, q0)|
ε2

� C(ε + M−s + εtM−s+1)

hold with a constant C, depending on s,N,C0 and C1, but not on ε,M, h and time
t . If (14.12) is not satisfied, then the bound Cε is weakened to Cε1/2.

The proof of this theorem will be shown in detail in Sect. 14.4 based on the
technique of multi-frequency modulated Fourier expansions. It is remarked that
the above result for the AAVF method with the integral is also true for the AAVF
method with a suitable quadrature rule instead of the integral, and this point will be
explained briefly in Sect. 14.5.

An interesting study of the long-time behaviour of a symmetric and symplectic
trigonometric integrator for solving wave equations was made by Cohen et al.
in [1], and it was shown that this integrator has a near-conservation of energy,
momentum and actions in numerical discretisations. However, it is noted that the
method studied in [1] cannot preserve the energy (14.4) exactly. Fortunately, it
follows from Theorems 14.2 and 14.3 that the AAVF method not only preserves
the energy (14.4) exactly but also has a near-conservation of modified momentum
and actions over long terms.

Remark 14.1 Theorem 14.3 claims that the AAVF method has a near-conservation
of a modified momentum and modified actions over long terms. We here remark that
we have tried to prove long-time conservation for natural discretisations. However,
after the whole procedure of the proof using modulated Fourier expansion, it turns
out that artificial coefficients cos(hωj )/ sin(hωj/2) form part of each term of the
summation of the natural discretisation. Therefore, we only obtain the conservation
of the modified momentum and modified actions. Similar results have also been
shown in some other publications. For example, the authors in [19] proved long-
time conservation of modified energy and modified action for the Störmer-Verlet
method and in [35], conservation of the modified energy and modified magnetic
moment were shown for a variational integrator. In both publications, long-time



466 14 Long-Time Momentum and Actions Behaviour of Energy-Preserving Methods. . .

conservation of natural invariants was not given. We also note that although the
result cannot be obtained for the momentum K and actions Ij , K and Ij are no
longer exactly conserved quantities in the semidiscretisation, which can be seen
from Theorem 14.1. Moreover, it will be shown in the next subsection that, in
comparison with the near-conservation of K and Ij , the modified momentum and
modified actions are preserved rather well by the AAVF method. This supports the
result of Theorem 14.3.

14.3.2 Numerical Experiments

In what follows, we implement two numerical experiments to show the behaviour
of the AAVF method. Since the AAVF method is implicit, iteration solutions are
needed. Here, we use fixed-point iteration in practical computation. We set 10−16 as
the error tolerance and 100 as the maximum number of iterates.

Problem 14.1 Consider the semilinear wave equation (14.1), where ρ = 0.5 and
g(u) = −u2. The initial conditions are given by (see [1])

u(x, 0) = 0.1

(
x

π
− 1

)3( x

π
+ 1

)2
, ∂t u(x, 0) = 0.01

x

π

(
x

π
− 1

)(
x

π
+ 1

)2
,

for −π � x � π. We carry out the spatial discretisation1 with the dimension 2M =
27 and apply the midpoint rule to the integral2 appearing in the AAVF formula
(14.5), which yields

{
qn+1 = φ0(V )qn + hφ1(V )pn + h2φ2(V )f ((qn + qn+1)/2),

pn+1 = −hΩ2φ1(V )qn + φ0(V )pn + hφ1(V )f ((qn + qn+1)/2).
(14.14)

It is easily verified that the assumption (14.7) holds for s = 2 with ε ≈ 0.1. We solve
this problem with the stepsize h = 0.05 on [0, 10000], and the relative errors of
momentum/modified momentum and actions/modified actions against t are shown

1It is noted that for wave equations, the spatial discretisation with the dimension 2M = 27 has
been considered in [1, 8, 36] and it worked well in those publications. That is the reason why we
use the spatial discretisation with 2M = 27 here.
2From the analysis of Sect. 14.5, it follows that the main result is still true for the AAVF method
with some quadrature rule.
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Fig. 14.1 The logarithm of the errors against t

in Fig. 14.1. We here adopt the following notations:

errK = |K(pn, qn) − K(p0, q0)|
|K(p0, q0)| , errMK = |K̂(pn, qn) − K̂(p0, q0)|

|K̂(p0, q0)|
,

errI =

M∑
l=0

ω5
l |Il(pn, qn) − Il(p0, q0)|

M∑
l=0

ω5
l |Il(p0, q0)|

, errMI =

M∑
l=0

ω5
l |Îl(pn, qn) − Îl (p0, q0)|

M∑
l=0

ω5
l |Îl(p0, q0)|

.

It follows from Fig. 14.1 that the modified momentum and modified actions are
better conserved than the momentum and actions, which supports the results given
in Theorem 14.3.

We next show the efficiency of the AAVF method in comparison with some other
methods. To this end, we consider the classical Störmer-Verlet formula (denoted by
SV), Gautschi’s method of order two (denoted by GM1s2) given in [17] and the two-
stage diagonally implicit symplectic Runge–Kutta method of order three (denoted
by RK2s3) presented in [37]. With regard to Gautschi’s method, its coefficient
functions are chosen as φ(ξ) = 1 and ψ(ξ) = (sin(ξ)/ξ)2. The long-time behaviour
of this method has been shown in [17], and the non-resonance conditions given in
[1] are satisfied for this method. We first solve the system on [0, 10] with h = 0.2/2j

for j = 2, 3, 4, 5, and the errors GE = ( ‖qn − q‖2
3 + ‖pn − p‖2

2

)1/2 measured at
the final time against the CPU time are presented in Fig. 14.2a. We then integrate the
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Fig. 14.2 (a) The logarithm of the errors against the logarithm of CPU time. (b) The logarithm
of the energy errors against the logarithm of time

problem on [0, tend] with h = 0.01 and tend = 10j for j = 0, 1, 2, 3. The errors of
the semidiscrete energy conservation are presented in Fig. 14.2b. It can be observed
from Fig. 14.2 that the AAVF method shows good overall efficiency.

Problem 14.2 Consider the semilinear Klein–Gordon equation

⎧⎪⎨
⎪⎩

∂2
t u − a2∂2

xu = bu3 − au, −π � x � π, u(−π, t) = u(π, t), 0 � t � T ,

u(x, 0) =
√

2a

b
sech(λx), ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx)

where λ =
√

a

a2 − c2 and a, b, a2 − c2 > 0. The exact solution is

u(x, t) =
√

2a

b
sech(λ(x − ct)).

The choice of parameters a = 1, b = 0.01, c = 0.25 makes this problem fit into the
form (14.1).

Likewise, the spatial variable is discretised with the dimension 2M = 27, and
it can be verified that the assumption (14.7) is true for s = 1 with ε ≈ 0.015.
This problem is solved on [0, 10000] with h = 0.05, and the relative errors of
momentum/modified momentum and actions/modified actions against t are shown
in Fig. 14.3.
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Fig. 14.3 The logarithm of the errors against t

We then apply the AAVF method as well as the methods SV, GM1s2, and RK2s3
to the problem on [0, 100] with h = 0.2/2j for j = 0, 1, 2, 3. The errors measured
at the final time against the CPU time are given in Fig. 14.4a. Finally we solve
the problem on [0, tend] with h = 0.01 and tend = 10j for j = 0, 1, 2, 3, and
present the errors of the semidiscrete energy conservation in Fig. 14.4b. Here, it
is remarked that for this problem, the conservation of modified momentum and
modified actions seems to be similar to those for the natural discretisations of
momentum and actions. The reason is that, for some problems, it can be checked
that the modified momentum and modified actions are very close to the natural ones
of the considered system. Apart from this, according to Fig. 14.4, it is clear that
Gautschi’s method behaves at least as well as AAVF since both methods behave
similarly with respect to the conservation of invariants, but Gautschi’s method is
explicit while AAVF is implicit although both methods are of order two.

14.4 The Proof of the Main Result

This section concerns the proof of Theorem 14.3. We first present the outline of the
proof and then show the key points one by one since the proof is a bit long.
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Fig. 14.4 (a) The logarithm of the errors against the logarithm of CPU time. (b) The logarithm of
the energy errors against the logarithm of time

14.4.1 The Outline of the Proof

The proof relies on a careful study of a modulated Fourier expansion of the AAVF
method (14.5). It is assumed that the conditions of Theorem 14.3 are true. For the
numerical solution (pn, qn), determined by (14.5), we will consider the following
truncated multi-frequency modulated Fourier expansion (with N from (14.9))

q̃(t) =
∑

‖k‖�2N

ei(k·ω)t ζ k(εt), p̃(t) =
∑

‖k‖�2N

ei(k·ω)tηk(εt), (14.15)

where t = nh and ζ−k
−j = ζ k

j , η−k
−j = ηk

j . For this modulated Fourier expansion, the
following key points will be addressed one by one in the rest of this section.

• Formal modulation equations for the modulation functions are derived in
Sect. 14.4.2.

• We consider an iterative construction of the functions using reverse Picard
iteration in Sect. 14.4.3.

• We then work with a more convenient rescaling and study the estimation of non-
linear terms in Sect. 14.4.4.

• Abstract reformulation of the iteration is presented in Sect. 14.4.5.
• We control the size of the numerical solution by studying the bounds of

modulation functions in Sect. 14.4.6.
• The bound of the defect is estimated in Sect. 14.4.7.
• We study the difference between the numerical solution and its modulated

Fourier expansion in Sect. 14.4.8.
• We show two invariants of the modulation system and establish their relationship

with the modified momentum and modified actions in Sect. 14.4.9.
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• Finally, the previous results that are valid only on a short time interval are
extended to a long-time interval in Sect. 14.4.10.

It is noted that the above procedure is a standard approach to the study of
the long-time behaviour of numerical methods of Hamiltonian partial differential
equations by using modulated Fourier expansions (see, e.g. [1–3, 15, 16]). Although
the proof presented here closely follows these previous publications, there are novel
modifications adapted to the AAVF method in each part. The differences in the
analysis arise due to the implicitness of the AAVF method and the integral appearing
in the method.

Throughout the proof, denote by C a generic constant which is independent of
ε,M, h and t = nh. The following lemma, presented in [2], will be needed in the
analysis of this chapter.

Lemma 14.1 (See [2]) For s > 1/2, one has
∑

‖k‖�K

ω−2s|k| � CK,s � ∞. For

s > 1/2 and m � 2, it is true that

sup
‖k‖�K

∑
k1+···+km=k

ω−2s(|k1|+···+|km|)

ω−2s|k| � Cm,K,s < ∞,

where the sum is taken over (k1, · · · , km) satisfying
∥∥ki
∥∥ � K . For s � 1, it is

further true that sup‖k‖�K

∑
l�0

|kl| ω2s+1
l

ω2s|k|(1 + |k · ω|) � CK,s < ∞.

14.4.2 Modulation Equations

We commence from the formulation of the modulation equations for the modulated
functions. To this end, we first define five operators by

Lk
1 : = ei(k·ω)heεhD − 2 cos(hΩ) + e−i(k·ω)he−εhD,

Lk
2 : = e

1
2 i(k·ω)he

1
2 εhD + e− 1

2 i(k·ω)he− 1
2 εhD,

Lk
3 : = (ei(k·ω)heεhD − 1)(ei(k·ω)heεhD + 1)−1,

Lk
4(σ ) : = (1 − σ)e− 1

2 i(k·ω)he− h
2 εD + σe

1
2 i(k·ω)he

h
2 εD,

Lk : = (Lk
2)

−1Lk
1,

where D is the differential operator (see [20]). Then the following results for these
operators are essential in the analysis.
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Proposition 14.1 The operator Lk can be expressed in Taylor expansions as
follows:

L±〈j〉(hD)α
±〈j〉
j (εt) = ±2iεhs〈j〉α̇±〈j〉

j (εt) + 1

2
ε2h2 sec

(
1

2
hωj

)
α̈

±〈j〉
j (εt) + · · · ,

Lk(hD)αk
j (εt) = 2

s〈j〉+ks〈j〉−k

ck
αk

j (εt) + iεh
sk(1 + c〈j〉+kc〈j〉−k)

c2
k

α̇k
j (εt) + · · · ,

(14.16)

for |j | > 0 and k �= ±〈j 〉, where sk = sin

(
h

2
(k · ω)

)
and ck = cos

(
h

2
(k · ω)

)
.

The Taylor expansions of Lk
3 are of the forms

Lk
3α

k
j (εt) = i tan

(
1

2
h(k · ω)

)
αk

j (εt) + hε

1 + c2k

α̇k
j (εt) + · · · ,

for |j | > 0 and ‖k‖ � 2N . Moreover, for the operator Lk
4(σ ) with ‖k‖ � 2N , we

have

Lk
4

(
1

2

)
= cos

(
h(k · ω)

2

)
+ 1

2
sin

(
h(k · ω)

2

)
(ihεD) + · · · .

Theorem 14.4 (Modulation Equations) The formal modulation equations of the
modulated functions ζ k are given by

L±〈j〉ζ±〈j〉
j = − h2φ2(h

2ω2
j )
∑
m�2

g(m)(0)

m!
∑

k1+···+km=±〈j〉

′∑
j1+···+jm≡j mod 2M

·
∫ 1

0

[(
ξk1

j1
· · · · · ξkm

jm

)
(tε, σ )

]
dσ,

Lkζ k
j = − h2φ2(h

2ω2
j )
∑
m�2

g(m)(0)

m!
∑

k1+···+km=k

′∑
j1+···+jm≡j mod 2M

·
∫ 1

0

[(
ξk1

j1
· · · · · ξkm

jm

)
(tε, σ )

]
dσ, for k �= ±〈j 〉,

(14.17)
where Lk is defined by (14.16) and

ξk(εt, σ ) = Lk
4(σ )ζ k(εt).
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The modulation equations for ηk are determined by

η
±〈j〉
j = ±iωjζ

±〈j〉
j + O(hε), ηk

j =
tan

(
1

2
h(k · ω)

)

tan

(
1

2
hωj

) iωj ζ
k
j + O(hε)

(14.18)
for k �= ±〈j 〉.
Proof The proof will be divided into two parts.

The first part is the proof of (14.17).
Using the symmetry of the AAVF method and the following property

∫ 1

0
f ((1 − σ)qn + σqn−1)dσ =

∫ 1

0
f ((1 − σ)qn−1 + σqn)dσ,

leads to

qn+1 − 2 cos(hΩ)qn + qn−1

= h2φ2(V )

[ ∫ 1

0
f ((1 − σ)qn + σqn+1)dσ +

∫ 1

0
f ((1 − σ)qn−1 + σqn)dσ

]
.

(14.19)

We then seek for a modulated Fourier expansion of the form

q̃h(t + h

2
, σ ) =

∑
‖k‖�2N

e
i(k·ω)

(
t+ h

2

)
ξk

(
ε

(
t + h

2

)
, σ

)

for the term (1 − σ)qn + σqn+1 appearing in (14.19). This implies that

ξ k

(
ε

(
t + h

2

)
, σ

)
=
(

(1 − σ)e− 1
2 i(k·ω)he− h

2 εD + σe
1
2 i(k·ω)he

h
2 εD

)
ζ k

(
ε

(
t + h

2

))

=Lk
4(σ )ζ k

(
ε

(
t + h

2

))
. (14.20)

Likewise, for (1 − σ)qn−1 + σqn, we can obtain the following modulated Fourier
expansion

q̃h(t − h

2
, σ ) =

∑
‖k‖�2N

ei(k·ω)(t− h
2 )ξk

(
ε

(
t − h

2

)
, σ

)
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where

ξk

(
ε

(
t − h

2

)
, σ

)
= Lk

4(σ )ζ k

(
ε

(
t − h

2

))
. (14.21)

Inserting the modulated Fourier expansions (14.15), (14.20), and (14.21) into
(14.19) yields

q̃(t + h) − 2 cos(hΩ)q̃(t) + q̃(t − h)

=h2φ2(V )

[ ∫ 1

0
f

(
q̃h

(
t + h

2
, σ

))
dσ +

∫ 1

0
f

(
q̃h

(
t − h

2
, σ

))
dσ

]
,

which can be formulated as

(e
1
2 hD + e− 1

2 hD)−1(ehD − 2 cos(hΩ) + e−hD)q̃(t) = h2φ2(V )

∫ 1

0
f (q̃h(t, σ ))dσ.

(14.22)

We next rewrite this equation by using the approach introduced in [3]. We begin
with the following notation. For a 2π-periodic function w(x), denote by (Qw)(x)

the trigonometric interpolation polynomial to w(x) at the points xk. If w(x) is of the

form w(x) =
∞∑

j=−∞
wj eijx, then we have that

(Qw)(x) =
′′∑

|j |�M

( ∞∑
l=−∞

wj+2Ml

)
eijx,

where xk = kπ

M
. For a 2M-periodic coefficient sequence q = (qj ), (Pq)(x) is

referred to the trigonometric polynomial with coefficients qj , i.e.,

(Pq)(x) =
′∑

|j |�M

qj eijx.

With these new denotations, (14.22) is identical to

(e
1
2 hD + e− 1

2 hD)−1(ehD − 2 cos(hΩ) + e−hD)P q̃(t ) = h2φ2(V )

∫ 1

0
Qg(P q̃h(t, σ ))dσ.

(14.23)
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The Taylor expansion of the non-linearity Qg at 0 is given by3

Qg(P q̃h(t, σ )) =
∑
m�2

g(m)(0)

m! Q(P q̃h(t, σ ))m

=
∑
m�2

g(m)(0)

m!
( ′′∑

|j1|�M

∞∑
l=−∞

′∑
‖k1‖�2N

ei(k1·ω)t ξ k1

j1+2Ml(τ, σ )eij1x

)

· · ·
( ′′∑

|jm|�M

∞∑
l=−∞

′∑
‖km‖�2N

ei(km·ω)t ξ km

jm+2Ml(τ, σ )eijmx

)

=
∑
m�2

g(m)(0)

m!
′′∑

|j |�M

′∑
j1+···+jm≡j mod 2M

∑
‖k1‖�2N,··· ,‖km‖�2N

(ξk1

j1
· · · ξkm

jm
)(τ, σ )

ei((k1+···+km)·ω)teijx,

where τ = hε and the prime on the sum indicates that a factor 1/2 is included in the
appearance of ξki

ji
with ji = ±M . Inserting this into (14.23), considering the j -th

Fourier coefficient and comparing the coefficients of ei(k·ω)t , we obtain (14.17).
On the other hand, we need to derive the initial values for ζ̇

±〈j〉
j appearing in

(14.17). On noticing the fact that q̃(0) = q(0), we obtain

ζ
〈j〉
j (0) + ζ

−〈j〉
j (0) = qj (0) −

∑
k �=±〈j〉

ζ k
j (0). (14.24)

Furthermore, it follows from p̃(0) = p(0) that

η
〈j〉
j (0) + η

−〈j〉
j (0) = pj (0) −

∑
k �=±〈j〉

ηk
j (0),

which results in

iωj (ζ
〈j〉
j (0) − ζ

−〈j〉
j (0)) = pj (0) −

∑
k �=±〈j〉

ηk
j (0)

=pj (0) −
∑

k �=±〈j〉

tan

(
1

2
h(k · ω)

)

tan

(
1

2
hωj

) iωj ζ
k
j (0) + O(hε). (14.25)

The formulae (14.24) and (14.25) determine the initial values for ζ
±〈j〉
j .

3It is noted that g(0) = 0 and g′(0) = 0 are used here.
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We now turn to the second part, the proof of (14.18).
For the modulation equations of ηk , it follows from (14.5) that

qn+1 − qn = Ω−1 tan

(
1

2
hΩ

)
(pn+1 + pn). (14.26)

According to the definition of L3, this relation can be expressed as

Lk
3ζ

k = Ω−1 tan

(
1

2
hΩ

)
ηk.

It then follows from the Taylor series of Lk
3 that the relationship between ηk and ζ k

can be established by (14.18). The proof then is complete. 
�

14.4.3 Reverse Picard Iteration

In what follows, we consider the reverse Picard iteration (see [1, 3]) of the functions
ζ k such that after 4N iteration steps, the defects in (14.17), (14.24), and (14.25) are
of magnitude O(εN+1) in the Hs norm.

We here denote by [·](n) the nth iterate. For k = ±〈j 〉 and under the condition
(14.17), we design the iteration procedure as follows:

± 2is〈j〉hε
[
ζ̇

±〈j〉
j

](n+1) =
[

− h2φ2(h
2ω2

j )
∑
m�2

g(m)(0)

m!
∑

k1+···+km=k

′∑
j1+···+jm≡j mod 2M

·
∫ 1

0

[(
ξk1

j1
· · · · · ξkm

jm

)
(tε, σ )

]
dσ −

(
1

2
ε2h2 sec(

1

2
hωj )ζ̈

±〈j〉
j + · · ·

)](n)

.

(14.27)

For k �= ±〈j 〉 and j subject to the non-resonant condition (14.8), the iteration
procedure is of the form

2
s〈j〉+ks〈j〉−k

ck

[
ζ k
j

](n+1) =
[

− h2φ2(h
2ω2

j )
∑
m�2

g(m)(0)

m!
∑

k1+···+km=k

′∑
j1+···+jm≡j mod 2M

·
∫ 1

0

[(
ξk1

j1
· · · · · ξkm

jm

)
(tε, σ )

]
dσ −

(
iεh

sk(1 + c〈j〉+kc〈j〉−k)

c2
k

ζ̇ k
j + · · ·

)](n)

,

(14.28)
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where ζ k
j = 0 for k �= ±〈j 〉 in the near-resonant set Rε,h. For the initial values

(14.24) and (14.25), the iteration procedure is given by

[
ζ

〈j〉
j (0) + ζ

−〈j〉
j (0)

](n+1) =
[
qj (0) −

∑
k �=±〈j〉

ζ k
j (0)

](n)

,

iωj

[
ζ

〈j〉
j (0) − ζ

−〈j〉
j (0)

](n+1) =

⎡
⎢⎢⎣pj (0) −

∑
k �=±〈j〉

tan

(
1

2
h(k · ω)

)

tan

(
1

2
hωj

) iωjζ
k
j (0) + O(hε)

⎤
⎥⎥⎦

(n)

.

(14.29)

It is assumed that ‖k‖ � K := 2N and
∥∥ki
∥∥ � K for i = 1, · · · ,m, in these

iterations. We here remark that the procedure includes an initial value problem of
first-order ODEs for ζ

±〈j〉
j (for |j | � M) and algebraic equations for ζ k

j with k �=
±〈j 〉 at each iteration step. The starting iterates (n = 0) are chosen as ζ k

j (τ ) = 0

for k �= ±〈j 〉, and ζ
±〈j〉
j (τ ) = ζ

±〈j〉
j (0), where ζ

±〈j〉
j (0) are determined by (14.29).

Obviously, the iteration procedure is well defined.

14.4.4 Rescaling and Estimation of the Nonlinear Terms

In a similar way to Sect. 3.5 of [2] and Sect. 6.3 of [1], we next consider a more
convenient rescaling

cζ k
j = ω|k|

ε[[k]] ζ
k
j , cζ k = (

cζ k
j

)
|j |�M

= ω|k|

ε[[k]] ζ
k

in the space Hs = (H s)K = {cζ = (cζ k)k∈K : cζ k ∈ Hs}. The norm of this

space is defined by |||cζ |||2s = ∑
k∈K

∥∥cζ k
∥∥2

s
, where the set K is given by K =

{k = (kl)
M
l=0 with integers kl : ‖k‖ � K} with K = 2N . Likewise, we use the

notation cξk ∈ Hs having the same meaning.
With regard to the expression of the non-linearity for (14.17) in these rescaled

variables, we define the nonlinear function f = (f k
j ) by

f k
j

(
cξ(τ )

) = ω|k|

ε[[k]]
N∑

m=2

g(m)(0)

m!
∑

k1+···+km=k

ε[[k1]]+···+[[km]]

ω|k1|+···+|km|

·
′∑

j1+···+jm≡j mod 2M

∫ 1

0

(
cξk1

j1
· · · · · cξkm

jm

)
(τ, σ )dσ.
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Concerning this nonlinear function, we have the following bounds, which can be
proved by using the similar arguments presented in [1, 2].

Proposition 14.2 (Estimation of the Nonlinear Terms) It is true that

∑
k∈K

∥∥∥f k(cξ)

∥∥∥2

s
� CεP(|||cξ̃ |||2s ),

∑
|j |�M

∥∥∥f ±〈j〉(cξ)

∥∥∥2

s
� Cε3P1(|||cξ̃ |||2s ),

(14.30)

where cξ̃(τ ) := sup0�σ�1{cξ(τ, σ )} and P and P1 are polynomials with coeffi-
cients bounded independently of ε, h, and M .

Similarly, we can consider different rescaling

ĉζ k
j = ωs|k|

ε[[k]] ζ
k
j , ĉζ k = (

ĉζ k
j

)
|j |�M

= ωs|k|

ε[[k]] ζ
k (14.31)

in H 1 = (H 1)K with norm |||ĉζ |||21 = ∑
‖k‖�K

∥∥ĉζ k
∥∥2

1, where f̂ k
j is exactly the same

as f k
j , but with ω|k| replaced by ωs|k|. We use similar notations ĉξ k ∈ H1 and also

obtain similar bounds

∑
k∈K

∥∥∥f̂ k(ĉξ)

∥∥∥2

1
� CεP̂ (|||ĉξ̃ |||21),

∑
|j |�M

∥∥∥f̂ ±〈j〉(ĉξ)

∥∥∥2

1
� Cε3P̂1(|||ĉξ̃ |||21),

with other functions P̂ and P̂1.

14.4.5 Reformulation of the Reverse Picard Iteration

This subsection concerns the reverse Picard iteration. On the basis of the two cases:
k = ±〈j 〉 and k �= ±〈j 〉, we split cζ into two parts as follows:

⎧⎨
⎩

aζ k
j = cζ k

j if k = ±〈j 〉, and 0 else,

bζ k
j = cζ k

j if (14.8) is satisfied, and 0 else.
(14.32)

It is noted that for aζ = (aζ k
j ) ∈ Hs and bζ = (bζ k

j ) ∈ Hs , we have aζ + bζ = cζ

and |||aζ |||2s + |||bζ |||2s = |||cζ |||2s . Here, the same notation and property are used
for cξ .
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We now rewrite the iterations (14.27) and (14.28) in an abstract form

{
aζ̇ (n+1) = Ω−1F(aζ (n), bζ (n)) − Aaζ (n),

bζ (n+1) = Ω−1Ψ G(aζ (n), bζ (n)) − Bbζ (n),
(14.33)

where

(Ωx)kj = (ωj + |k · ω|)xk
j , (Ψ x)kj = 2φ2(h

2ω2
j ) cos

(
1

2
h(k · ω)

)
xk
j ,

and the operators A,B are respectively given by

(Aaζ )
±〈j〉
j (τ ) = 1

±2is〈j〉hε

(
1

2
ε2h2 sec

(
1

2
hωj

)
aζ̈

±〈j〉
j + · · ·

)
,

(Bbζ )kj (τ ) = ck

2s〈j〉+ks〈j〉−k

(
iεh

sk(1 + c〈j〉+kc〈j〉−k)

c2
k

bζ̇ k
j + · · ·

)

for (j, k) subject to (14.8).

The functions F = (F k
j ) and G = (Gk

j ) are defined respectively by

F
±〈j〉
j (aζ, bζ ) = 1

∓iε

2φ2(h
2ω2

j )

sinc

(
1

2
hωj

)f
±〈j〉
j (cξ), Gk

j (aζ, bζ ) = −h2(ωj + |k · ω|)
4s〈j〉+ks〈j〉−k

f k
j (cξ)

for (j, k) subject to (14.8).

Theorem 14.5 The operators A and B are bounded by

|||(Aaζ )(τ )|||s � C

N∑
l=2

hl−2εl−3/2
∣∣∣∣
∣∣∣∣
∣∣∣∣ dl

dτ l
(aζ )(τ )

∣∣∣∣
∣∣∣∣
∣∣∣∣
s

,

|||(Bbζ )(τ )|||s � Cε1/2|||(bζ̇ )(τ )|||s + C

N∑
l=2

hl−2εl−1/2
∣∣∣∣
∣∣∣∣
∣∣∣∣ dl

dτ l
(bζ )(τ )

∣∣∣∣
∣∣∣∣
∣∣∣∣
s

.

Moreover, we have

|||F |||s � Cε1/2, ||G|||s � C, |||Ψ −1Ω−1F |||s � C.
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Proof The bound of A follows from

∣∣∣∣ 1

±2is〈j〉hε

1

2
ε2h2 sec

(
1

2
hωj

)∣∣∣∣ =

∣∣∣∣∣∣∣

1

2
hε

sin(hωj )

∣∣∣∣∣∣∣
� 1

2
ε1/2.

We compute
∣∣∣∣∣

ck

2s〈j〉+ks〈j〉−k
iεh

sk(1 + c〈j〉+kc〈j〉−k)

c2
k

∣∣∣∣∣ �
∣∣∣∣∣

εh

ε1/2h2(ωj + |k · ω|)
sk(1 + c〈j〉+kc〈j〉−k)

ck

∣∣∣∣∣

� ε1/2

h

h
2 |k · ω|

ωj + |k · ω|
∣∣∣∣
1 + c〈j〉+kc〈j〉−k

ck

∣∣∣∣ � Cε1/2,

where |sk| � h

2
|k · ω| is used. Hence, we obtain the bound of B.

It follows from
∣∣∣∣∣∣∣∣

2φ2(h
2ω2

j )

sinc

(
1

2
hωj

)
∣∣∣∣∣∣∣∣
=
∣∣∣∣sinc

(
1

2
hωj

)∣∣∣∣ � 1

and (14.30) that |||F |||s � Cε1/2. Then using (14.8) and (14.30) yields |||G|||s � C.
Furthermore, according to (14.11), we obtain

|||Ψ −1Ω−1F |||2s =
∑

k∈K

′′∑
|j |�M

ω2s
j

∣∣∣(Ψ −1Ω−1F)kj

∣∣∣2 =
∑

k∈K

′′∑
|j |�M

ω2s
j

∣∣∣∣ h/2

ε sin(hε)

∣∣∣∣
2 ∣∣∣f ±〈j〉

j

∣∣∣2

�C
∑
k∈K

′′∑
|j |�M

ω2s
j

∣∣∣∣ 1

ε3/2

∣∣∣∣
2 ∣∣∣f ±〈j〉

j

∣∣∣2 = C
1

ε3
|||f ±〈j〉|||2s � C.

This shows |||Ψ −1Ω−1F |||s � C. The proof is complete. 
�
With regard to the initial value condition (14.29), it can be rewritten as

aζ (n+1)(0) = v + Pbζ (n)(0) + Qbζ (n)(0), (14.34)

where v
±〈j〉
j = ωj

ε

(
1

2
qj (0) ∓ i

2ωj

pj (0)

)
and the operators P and Q are given by

(Pbζ )
±〈j〉
j (0) = − 1

2

ωj

ε

∑
k �=±〈j〉

ε[[k]]

ω|k| bζ k
j (0),

(Qbζ )
±〈j〉
j (0) = ∓ 1

2ωj

ωj

ε

∑
k �=±〈j〉

ε[[k]]

ω|k| bηk
j (0).
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It can be verified from (14.7) that v is bounded in Hs . For the bounds of the
operators P and Q, we have

|||Pbζ(0)|||2s =
∑
k∈K

′′∑
|j |�M

ω2s
j

∣∣∣∣∣∣
1

2

ωj

ε

∑
k �=±〈j〉

ε[[k]]

ω|k| bζ k
j (0)

∣∣∣∣∣∣
2

� 1

4ε2

∑
k∈K

′′∑
|j |�M

ω2s+2
j

( ∑
k �=±〈j〉

ε2[[k]]

ω2|k|

)( ∑
k �=±〈j〉

bζ k
j (0)2

)

�1

4

∑
k∈K

′′∑
|j |�M

ω2s+2
j

( ∑
k �=±〈j〉

ω−2|k|
)( ∑

k �=±〈j〉
bζ k

j (0)2
)

�C|||Ωbζ(0)|||2s � C|||bζ(0)|||2s+1.

Likewise, we can obtain

|||(Qbζ )(0)|||2s � C|||bη(0)|||2s .

Therefore, the bounds |||(Pbζ )(0)|||s � C and |||(Qbζ )(0)|||s � C are confirmed.
Finally, we remark that the starting iterates of (14.34) are chosen as aζ (0)(τ ) = v

and bζ (0)(τ ) = 0, respectively.

14.4.6 Bounds of the Coefficient Functions

Theorem 14.6 (Bounds of the Modulation Functions) The modulation functions
ζ k of (14.15) are bounded by

∑
‖k‖�2N

( ω|k|

ε[[k]]
∥∥∥ζ k(εt)

∥∥∥
s

)2
� C (14.35)

and the same bound holds for any fixed number of derivatives of ζ k with respect to
the slow time τ = εt .

Proof According to the analysis stated above and by induction, we can prove that
the iterates aζ (n), bζ (n) and their derivatives with respect to τ are bounded in Hs

for 0 � τ � 1 and n � 4N . These bounds show that cζ (n) = aζ (n) + bζ (n) is
bounded in Hs , and then the bound (14.35) follows. 
�
Theorem 14.7 (Bounds of the Expansion) The expansion (14.15) is bounded
by

‖q̃(t)‖s+1 + ‖p̃(t)‖s � Cε f or 0 � t � ε−1. (14.36)
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For |j | � M , it further holds that

q̃j (t) = ζ
〈j〉
j (εt)eiωj t + ζ

−〈j〉
j (εt)e−iωj t + rj , where ‖r‖s+1 � Cε2.

(14.37)

If the condition (14.12) is not satisfied, then the bound becomes ‖r‖s+1 � Cε3/2.

Proof The following bounds for the (4N)-th iterates can be obtained

|||aζ(0)|||s � C, |||Ωaζ̇(τ )|||s � Cε1/2,

|||Ψ −1aζ̇ (τ )|||s � C, |||Ψ −1Ωbζ(τ)|||s � C, (14.38)

where C depends on N , but not on ε, h,M . It then follows from (14.38) that

|||aζ̇ |||s+1 = |||Ωaζ̇ |||s � Cε1/2,

|||bζ |||2s+1 =
∑
k∈K

′′∑
|j |�M

ω2s+2
j

∣∣bζj

∣∣2 =
∑

k∈K

′′∑
|j |�M

ω2s
j

ω2
j

(ωj + |k · ω|)2

∣∣(ωj + |k · ω|)bζj

∣∣2

� |||Ωbζ(τ)|||2s � C.

We thus obtain

|||cζ(τ) − aζ(0)|||s+1 = |||aζ(τ) + bζ(τ) − aζ(0)|||s+1 � |||aζ̇ |||s+1 + |||bζ |||s+1 � C.

On noticing the fact that ζ k
j = ε[[k]]

ω|k| (cζ k
j − aζ k

j (0) + aζ k
j (0)), we have

|||q̃|||2s+1 =
∑

k∈K

′′∑
|j |�M

ω2s+2
j

∣∣∣∣∣∣
∑

‖k‖�2N

ei(k·ω)t ζ k
j

∣∣∣∣∣∣
2

�
∑

k∈K

′′∑
|j |�M

ω2s+2
j

[
ε

ωj

( ∣∣∣aζ
〈j〉
j

(0)

∣∣∣+
∣∣∣aζ

−〈j〉
j

(0)

∣∣∣ )+
∑

‖k‖�2N

ε[[k]]
ω|k|

∣∣∣cζ k
j − aζ k

j (0)

∣∣∣
]2

�2ε2
∑

k∈K

′′∑
|j |�M

ω2s
j

( ∣∣∣aζ
〈j〉
j

(0)

∣∣∣+
∣∣∣aζ

−〈j〉
j

(0)

∣∣∣
)2

+ 2
∑

k∈K

′′∑
|j |�M

ω2s+2
j

( ∑
‖k‖�2N

ε[[k]]
ω|k|

∣∣∣cζ k
j − aζ k

j (0)

∣∣∣
)2

�4ε2|||aζ(0)|||2s + 2
∑

k∈K

′′∑
|j |�M

ω2s+2
j

( ∑
‖k‖�2N

ε2[[k]]
ω2|k|

)( ∑
‖k‖�2N

∣∣∣cζ k
j − aζ k

j (0)

∣∣∣2
)

�4ε2|||aζ(0)|||2s + 2CK,1ε
2|||cζ − aζ(0)|||2s+1 � Cε2.
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According to (14.26), with a similar analysis, it can be proved that |||p̃|||s � Cε.
Hence, the bound (14.36) holds.

It then follows from (14.30) and (14.33) that
( ∑

‖k‖=1

∥∥(Ψ −1Ωbζ)k
∥∥2

s

)1/2
� Cε

for bζ = (bζ )(4N). Furthermore, using (14.12), we obtain that

∑
|j |�M

∑
j1+j2=j

∑
k=±〈j1〉±〈j2〉

ω
2(s+1)
j |bζ k

j |2 � Cε.

These bounds as well as (14.38) lead to (14.37). The proof is complete. 
�
Concerning the alternative scaling (14.31), we can obtain the same bounds

|||âζ(0)|||1 � C, |||Ωâζ̇ (τ )|||1 � Cε1/2, |||Ψ −1Ωb̂ζ(τ )|||1 � C.

(14.39)

Moreover, the following bound is also true for this scaling:

( ∑
‖k‖=1

∥∥∥(Ψ −1Ωb̂ζ )k
∥∥∥2

1

)1/2

� Cε. (14.40)

14.4.7 Defects

In this subsection, we pay attention to the so-called defect. It follows from (14.5)
that the defect can be put in another form

δj (t) = q̃j (t + h) − 2 cos(hωj )q̃j (t) + q̃j (t − h)

h2φ2(h2ω2
j )

−
[ ∫ 1

0
fj ((1 − σ)q̃h(t) + σ q̃h(t + h))dσ +

∫ 1

0
fj ((1 − σ)q̃h(t − h) + σ q̃h(t))dσ

]
,

(14.41)

where q̃j is determined in (14.15) with ζ k
j = (ζ k

j )(4N) obtained after 4N iterations
of the procedure in Sect. 14.4.3. Here, δj (t) can also be rewritten as

δj (t) =
∑

‖k‖�NK

dk(εt)ei(k·ω)t + R(t),
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where

dk
j = 1

h2φ2(h2ω2
j )

L̃k
j ζ

k
j +

N∑
m=2

g(m)(0)

m!
∑

k1+···+km=k

′∑
j1+···+jm≡j mod 2M

·
∫ 1

0

[(
ξk1

j1
· · · · · ξkm

jm

)
(tε, σ )

]
dσ. (14.42)

It is remarked that we consider ‖k‖ � NK for dk
j , and assume that ζ k

j = ηk
j = 0 for

‖k‖ > K := 2N . We denote by L̃k
j the truncation of the operator Lk

j after the εN

term. The remainder terms of the Taylor expansion of f after N terms are absorbed
in R(t). Then it can be confirmed by the bound (14.36) and the estimates (14.38)
that

‖R(t)‖s+1 � CεN+1.

Furthermore, using the Cauchy–Schwarz inequality and Lemma 14.1 results in

∥∥∥∥∥∥
∑

‖k‖�NK

dk(εt)ei(k·ω)t

∥∥∥∥∥∥
2

s

=
′′∑

|j |�M

ω2s
j

∣∣∣∣∣∣
∑

‖k‖�NK

dk
j ei(k·ω)t

∣∣∣∣∣∣
2

=
′′∑

|j |�M

ω2s
j

∣∣∣∣∣∣
∑

‖k‖�NK

ω−|k|(ω|k|dk
j ei(k·ω)t )

∣∣∣∣∣∣
2

�
′′∑

|j |�M

ω2s
j

( ∑
‖k‖�NK

ω−2|k|
)( ∑

‖k‖�NK

(ω|k|dk
j )2
)

�CNK,1

∑
‖k‖�NK

∥∥∥ω|k|dk(εt)

∥∥∥2

s
.

This result leads to bounds on the defects. In fact, the right-hand side of this
inequality can be estimated as follows.

Theorem 14.8 (Bounds of the Defects) It can be deduced that
∑

‖k‖�NK

∥∥ω|k|

dk(εt)
∥∥2

s
� Cε2(N+1), and then the defect (14.41) implies the bound ‖δ(t)‖s �

CεN+1.

Proof To prove this result we will consider three different cases: truncated, near-
resonant and non-resonant modes.

• Truncated and near-resonant modes. The result for these two cases can be
obtained by using the similar analysis given in Sect. 6.8 of [1].
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• Non-resonant mode. For the non-resonant mode (‖k‖ > K and (j, k) satisfies
(14.8)), we first reformulate the defect in the scaled variables of Sect. 14.4.4 as

ω|k|dk
j =ε[[k]]

(
1

h2φ2(h2ω2
j )

L̃k
j cζ

k
j + f k

j (cξ)

)
.

Then splitting them into k = ±〈j 〉 and k �= ±〈j 〉 yields

ωjd
±〈j〉
j = ε

(
± iεωj

sinc(hωj /2)

φ2(h2ω2
j )

(
aζ̇

±〈j〉
j + (Aaζ )

±〈j〉
j

)+ f
±〈j〉
j (cξ)

)
,

ω|k|dk
j = ε[[k]]

(
2s〈j〉+ks〈j〉−k

h2ckφ2(h2ω2
j )

(
bζ k

j + (Bbζ )kj
)+ f k

j (cξ)

)
.

We remark that the functions here are actually the 4N-th iterates of the iteration
in Sect. 14.4.3. Expressing f

±〈j〉
j and f k

j in terms of F,G and inserting them from
(14.33) into this defect, we obtain

ωj d
±〈j〉
j = 2ωj α

±〈j〉
j

([
aζ̇

±〈j〉
j

](4N) − [
aζ̇

±〈j〉
j

](4N+1))
, α

±〈j〉
j = ±iε2 sinc(hωj /2)

2φ2(h2ω2
j
)

,

ω|k|dk
j

= βk
j

([bζ k
j
](4N) − [bζ k

j
](4N+1)

)
, βk

j = ε[[k]] 2s〈j〉+ks〈j〉−k

h2ckφ2(h
2ω2

j )
.

Looking closer at these expressions, we introduce new variables as follows:

ãζ
±〈j〉
j = α

±〈j〉
j aζ

±〈j〉
j , b̃ζ k

j = βk
j bζ k

j

and then rewrite the iteration (14.33) in these variables as

ãζ̇ (n+1) = Ω−1F̃ (ãζ (n), b̃ζ (n)) − Aãζ (n),

b̃ζ (n+1) = G̃(ãζ (n), b̃ζ (n)) − Bb̃ζ (n).

In such a way, the transformed functions are determined by

F̃
±〈j〉
j (ãζ, b̃ζ ) = α

±〈j〉
j F

±〈j〉
j (α−1ãζ, β−1b̃ζ ) = −εf

±〈j〉
j (α−1ãζ + β−1b̃ζ ),

G̃k
j (ãζ, b̃ζ ) = βk

j (Ψ Ω−1G)kj (α
−1ãζ, β−1b̃ζ ) = −ε[[k]]f k

j (α−1ãζ + β−1b̃ζ ).

As for the initial values of the iteration, we have

ãζ (n+1)(0) = αv + P̃ b̃ζ (n)(0) + Q̃b̃ζ (n)(0),



486 14 Long-Time Momentum and Actions Behaviour of Energy-Preserving Methods. . .

where P̃ = αPβ−1, Q̃ = αQβ−1. For the bound of P̃ , we obtain

|||P̃ b̃ζ(0)|||2s

=
∑
k∈K

′′∑
|j |�M

ω2s
j

∣∣∣∣∣∣iε
2 sinc(hωj /2)

2φ2(h2ω2
j )

1

2

ωj

ε

∑
k �=±〈j〉

h2ckφ2(h
2ω2

j )

ε[[k]]2s〈j〉+ks〈j〉−k

ε[[k]]

ω|k| b̃ζ k
j (0)

∣∣∣∣∣∣
2

�ε2h4

64

∑
k∈K

′′∑
|j |�M

ω2s
j

( ∑
k �=±〈j〉

ωj∣∣s〈j〉+ks〈j〉−k

∣∣ω−|k|b̃ζ k
j (0)

)2

�ε2h4

64

∑
k∈K

′′∑
|j |�M

ω2s
j

( ∑
k �=±〈j〉

1

ε1/2h2 ω−|k|b̃ζ k
j (0)

)2

� ε

64

∑
k∈K

′′∑
|j |�M

ω2s
j

( ∑
k �=±〈j〉

ω−2|k| ∑
k �=±〈j〉

(b̃ζ k
j (0))2

)
� Cε|||b̃ζ(0)|||2s .

In a similar way, the following result can be achieved:

|||Q̃b̃ζ(0)|||2s � Cε|||b̃ζ(0)|||2s .

Clearly, it can be verified that in an Hs-neighbourhood of 0 where the bounds
(14.38) hold, the partial derivatives of F̃ with respect to ãζ and b̃ζ are bounded
by O(ε1/2). Moreover, the partial derivative of G̃ with respect to b̃ζ is bounded by
O(ε1/2) but that of G̃ with respect to ãζ is only O(1). In fact, these results are the
same as those described in Sect. 6.9 of [1]. Similarly, we can obtain

|||Ω(ãζ̇ (4N+1) − ãζ̇ (4N))|||s � CεN+2,

|||b̃ζ (4N+1) − b̃ζ (4N))|||s � CεN+2,

|||ãζ(0)(4N+1) − ãζ(0)(4N))|||s � CεN+2.

Hence, for τ � 1 and (j, k) ∈ Rε,h, these results yield the bound

( ∑
‖k‖�K

∥∥∥ω|k|dk(τ )

∥∥∥2

s

)1/2
� CεN+1. (14.43)

It then follows from (14.43) that the defect (14.41) has the bound ‖δ(t)‖s �
CεN+1 for t � ε−1. Concerning the defect in the initial conditions (14.24) and
(14.25), it is true that

‖q(0) − q̃(0)‖s+1 + ‖p(0) − p̃(0)‖s � CεN+1.
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Finally, we turn to the alternative scaling (14.31). For this case, we can obtain

( ∑
‖k‖�K

∥∥∥ωs|k|dk(τ )

∥∥∥2

1

)1/2
� CεN+1. (14.44)

The proof is complete. 
�

14.4.8 Remainders

In this subsection, we are concerned with the difference between the numerical
solution and its modulated Fourier expansion.

Theorem 14.9 (Remainders) The bound on the difference between the numerical
solution and its modulated Fourier expansion satisfies

‖qn − q̃(t)‖s+1 + ‖pn − p̃(t)‖s � CεN f or 0 � t = nh � ε−1. (14.45)

Proof Let �qn = q̃(tn) − qn, �pn = p̃(tn) − pn. We have

(
�qn+1

Ω−1�pn+1

)
=
(

cos(hΩ) sin(hΩ)

− sin(hΩ) cos(hΩ)

)(
�qn

Ω−1�pn

)
+h

(
hΩφ2(V )Ω−1(�f + δ)

φ1(V )Ω−1(�f + δ)

)
,

where

�f =
∫ 1

0

(
f ((1 − σ)qn + σqn+1) − f ((1 − σ)q̃(tn) + σ q̃(tn + h))

)
dσ.

According to the Lipschitz bound given in Sect. 4.2 of [3] and Sect. 6.10 of [1], it is
clear that

∥∥∥Ω−1�f

∥∥∥
s+1

= ‖�f ‖s � ε(‖�qn‖s + ‖�qn+1‖s ).

Moreover, we have
∥∥Ω−1δ(t)

∥∥
s+1 = ‖δ(t)‖s � CεN+1. We then obtain

∥∥∥∥∥
(

�qn+1

Ω−1�pn+1

)∥∥∥∥∥
s+1

�
∥∥∥∥∥
(

�qn

Ω−1�pn

)∥∥∥∥∥
s+1

+ h
(
Cε ‖�qn‖s + Cε ‖�qn+1‖s + CεN+1

)
.

This leads to ‖�qn‖s+1 + ∥∥Ω−1�pn

∥∥
s+1 � C(1 + tn)ε

N+1 for tn � ε−1. This
proves (14.45). 
�
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14.4.9 Almost Invariants

This subsection concerns almost-invariants of the modulated Fourier expansions.
According to the analysis presented in Sect. 14.4.7, we can rewrite the defect

formula (14.42) as

1

h2φ2(h2ω2
j )

L̃k
j ζ

k
j + ∇−k

−jU (ξ(t)) = dk
j , (14.46)

where ∇−k
−jU (y) is the partial derivative with respect to y−k

−j of the extended
potential (see, e.g. [1, 3])

U (ξ(t, σ )) =
N∑

l=−N

Ul (ξ(t, σ )),

Ul (ξ(t, σ )) =
N∑

m=2

U(m+1)(0)

(m + 1)!
∑

k1+···+km+1=0

′∑
j1+···+jm+1=2Ml

∫ 1

0

(
ξk1

j1
· · · · · ξkm+1

jm+1

)
(t, σ )dσ.

We define (see [1])

Sμ(θ)y = (
ei(k·μ)θ yk

j

)
|j |�M,‖k‖�K

and

T (θ)y = (
eijθyk

j

)
|j |�M,‖k‖�K

,

where μ = (μl)l�0 is an arbitrary real sequence for θ ∈ R. Using the results given
in [1], we obtain U (Sμ(θ)y) = U (y) and U0(T (θ)y) = U0(y) for θ ∈ R. Hence,

0 = d

dθ
|θ=0 U (Sμ(θ)ξ(t, σ )), 0 = d

dθ
|θ=0 U0(T (θ)ξ(t, σ )). (14.47)

Theorem 14.10 (Two Almost-Invariants) There exist two functions Jl[ζ , η](τ )

andK [ζ , η](τ ) such that

M∑
l=1

ω2s+1
l

∣∣∣∣ d

dτ
Jl[ζ , η](τ )

∣∣∣∣ � CεN+1,

∣∣∣∣ d

dτ
K [ζ , η](τ )

∣∣∣∣ � C(εN+1 + ε2M−s+1) (14.48)
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for τ � 1. Moreover, it is true that

Jl[ζ , η](εtn) = Ĵl(pn, qn) + γl(tn)ε
3,

K [ζ , η](εtn) = K̂(pn, qn) + O(ε3) + O(ε2M−s ), (14.49)

where

Ĵl = Îl + Î−l = 2Îl for 0 < l < M, Ĵ0 = Î0, ĴM = ÎM .

Here, all the constants in (14.48) and (14.49) are independent of ε,M, h, and n,

and
M∑
l=0

ω2s+1
l γl(tn) � C for tn � ε−1.

Proof

• Proof of (14.48).

It follows from the first equality of (14.47) that

0 = d

dθ
|θ=0 U (Sμ(θ)ξ(t, σ )) =

∑
‖k‖�K

′∑
|j |�M

i(k · μ)ξ−k
−j (t, σ )∇−k

−jU (ξ(t, σ ))

=
∑

‖k‖�K

′∑
|j |�M

i(k · μ)L−k
4 (σ )ζ−k

−j

×
(

1

h2φ2(h2ω2
j )

L̃k
j ζ

k
j − dk

j

)
.

(14.50)

It is noted that the right-hand side is independent of σ . We thus choose σ = 1/2 in
the following analysis. In this case, (14.50) gives

∑
‖k‖�K

′∑
|j |�M

i(k · μ)L−k
4

(
1

2

)
ζ−k
−j

1

h2φ2(h2ω2
j )

L̃k
j ζ

k
j

=
∑

‖k‖�K

′∑
|j |�M

i(k · μ)L−k
4

(1

2

)
ζ−k
−j dk

j . (14.51)

It then follows from the expansions of L−k
4

(
1

2

)
and L̃k

j and the “magic formulas”

on p. 508 of [20] that the left-hand side of (14.51) is a total derivative of function
εJμ[ζ , η](τ ) which depends on ζ (τ ), η(τ ) and their up to (N − 1)th order
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derivatives. This implies that (14.51) is identical to the following equation

− ε
d

dτ
Jμ[ζ , η](τ ) =

∑
‖k‖�K

′∑
|j |�M

i(k · μ)L−k
4

(
1

2

)
ζ−k
−j dk

j .

In what follows, we consider the special case where μ = 〈l〉. Let zk
j = Lk

4(1/2)ζ k
j .

It follows from the property of Lk
4(1/2) that the bounds on zk

j and ζ k
j are of the

same magnitude. Splitting d = ad +bd into two parts: the diagonal (k = ±〈j 〉) and
nondiagonal (k �= ±〈j 〉), gives

|||ad|||2s +
∑

‖k‖�K

|||ωs|k|bd|||20 =
∑

‖k‖�K

∥∥∥ωs|k|dk
∥∥∥2

0
� Cε2N+2,

where (14.44) is used. Using Lemma 3 of [2] and the facts that

• zk
j = ε

ωs
j

âzk
j + ε[[k]]

ωs|k| âzk
j ,

• |||âzk|||1 � C,
• |||Ωb̂zk|||1 � from (14.39),

we obtain

M∑
l=1

ω2s+1
l

∣∣∣∣ d

dτ
Jl[ζ , η](τ )

∣∣∣∣ = 1

ε

M∑
l=1

ω2s+1
l

∣∣∣∣∣∣
∑

‖k‖�K

kl

∞∑
j=−∞

ζ k
j dk

j

∣∣∣∣∣∣

�1

ε

[
||| ε

ωs
j

âζ k
j |||s+1|||ad|||s +

( ∑
‖k‖�K

∥∥∥∥ωs|k|(1 + |k · ω|)ε
[[k]]

ωs|k| âζ k
j

∥∥∥∥
2

0

)1/2

·

( ∑
‖k‖�K

∥∥∥ωs|k|bdk
∥∥∥2

0

)1/2]
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The first statement of (14.48) is proved.
In a similar way, using the second equality of (14.47), we obtain
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4
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1
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)
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(
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∑
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∇−k
−j

(
Ul (ξ(t, σ ))

))
. (14.52)
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A careful analysis shows that the left-hand side of (14.52) can be written as a total
derivative of function εK [ζ , η](τ ), which yields

− ε
d

dτ
K [ζ , η](τ) =

∑
‖k‖�K

′∑
|j |�M

ijL−k
4

(1

2

)
ζ−k
−j

(
dk
j −

∑
l �=0

∇−k
−j

(
Ul (ξ(t, σ ))

))
.

(14.53)

It follows from the Cauchy–Schwarz inequality and the bound |j | � ωj that
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Furthermore, we note that

∑
‖k‖�K

′∑
|j |�M

ijz−k
−j∇−k

−j Ul (ξ(t, σ ))

=
N∑

m=2

U(m+1)(0)

m!
∑

k1+···+km+1=k

′∑
j1+···+jm+1=2Ml

zk1

j1
· · · zkm

jm
· ijm+1z

km+1

jm+1
,

is the 2Ml-th Fourier coefficient of the function (see [3])

w(x) :=
N∑

m=2

U(m+1)(0)

m!
∑

k1+···+km+1=k

Pzk1
(x) · · ·Pzkm

(x) · d

dx
Pzkm+1

(x).

We then can deduce that ‖w‖s−1 � Cε3, and the 2Ml-th Fourier coefficient of w is
bounded by Cε3ω−s+1

2Ml � Cε3(2Ml)−s+1, as shown in the proof of Theorem 5.2 of
[3]. In such a way, the second statement of (14.48) is confirmed by (14.53).

• Proof of (14.49).

We will prove only the second statement of (14.49) since the first one can be
dealt with in a similar way.

It follows from the AAVF formula that

2hsinc(hΩ)p̃(t) = q̃(t + h) − q̃(t − h) + O(h2).
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This shows that

p̃j (t) = iωj

(
η

〈j〉
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+ O(ε2).

On the basis of these results, an analysis of K is presented below:
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=K̂(p̃, q̃) + O(ε3) + O(ε2M−s) = K̂(pn, qn) + O(ε3) + O(ε2M−s ),

where the results (14.37) and (14.45) are used. 
�

14.4.10 From Short to Long-Time Intervals

According to the analysis stated above in this chapter, the statement of Theorem 14.3
can be confirmed by patching together many intervals of length ε−1 in the same way
as that used in [1, 2].
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14.5 Analysis for the AAVF Method with a Quadrature Rule

The previous analysis was made for the AAVF method with the integral appearing
in (14.5), which usually cannot be solved exactly. Normally a quadrature rule is
required. For this reason, we will show that the main result for the AAVF method
with the integral is still true for the AAVF method with a quadrature approximation
instead of the integral.

As an example, we consider the following AAVF method with the midpoint rule

{
qn+1 = φ0(V )qn + hφ1(V )pn + h2φ2(V )f ((qn + qn+1)/2),

pn+1 = −hΩ2φ1(V )qn + φ0(V )pn + hφ1(V )f ((qn + qn+1)/2).
(14.54)

The main result presented in Theorem 14.3 can be adapted for this method with the
following modifications for the operator and the nonlinearity. We next present only
the main differences and omit the details for brevity.

• Modifications for Sect. 14.4.2.

Since the term
∫ 1

0
f ((1−σ)qn +σqn+1)dσ is replaced by f ((qn +qn+1)/2),

the function ξk

(
ε

(
t + h

2

)
, σ

)
should be changed to ξk

(
ε

(
t + h

2

)
, 1/2

)
and

the operator Lk
4(σ ) is replaced by Lk

4(1/2). Then all the analyses and results in
Sect. 14.4.2 still hold for (14.54).

• Modifications for Sect. 14.4.3.
For this part, we only need to change

∫ 1
0

[(
ξk1

j1
· · · · · ξkm

jm

)
(tε, σ )

]
dσ to

(
ξk1

j1
·

· · · · ξkm

jm

)
(tε, 1/2).

• Modifications for Sect. 14.4.4.
One part of the function f k

j

(
cξ(τ )

)
here is

(
cξk1

j1
· · · · · cξkm

jm

)
(τ, 1/2) instead

of
∫ 1

0

(
cξk1

j1
· · · · · cξkm

jm

)
(τ, σ )dσ and then the property of f k

j

(
cξ(τ )

)
stated in

Proposition 14.2 is still true.
• Modifications for Sect. 14.4.7.

Since the defect expressed by (14.41) needs to be modified according to the

scheme (14.54), the term
∫ 1

0

[(
ξk1

j1
· · · · · ξkm

jm

)
(tε, σ )

]
dσ appearing in (14.42)

should be replaced by
(
ξk1

j1
· · · · · ξkm

jm

)
(tε, 1/2). In this situation, we still obtain

the same bounds of the defects as those stated previously.
• Modifications for Sect. 14.4.8.

Here only the expression of �f should be modified in the light of (14.54).
• Modifications for Sect. 14.4.9.
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A new function

Ul (ξ) =
N∑

m=2

U(m+1)(0)

(m + 1)!
∑

k1+···+km+1=0

′∑
j1+···+jm+1=2Ml

(
ξk1

j1
· · · · · ξkm+1

jm+1

)
(t, 1/2)

will be used here instead of the previous one.

At the end of this section, we remark that since the AAVF method with the
integral is of only order two, the long-time momentum and actions behaviour does
not change for (14.54). For the AAVF method with other higher-order quadrature
rules, the main result can also be obtained by following the same approach.

14.6 Conclusions and Discussions

It is known that the preservation of geometric or physical properties of the numerical
flow can assist in long-time integration and produce improved qualitative behaviour
in comparison with a general-purpose numerical method. In this chapter, we have
investigated in detail the long-time behaviour of the AAVF method when applied
to semilinear wave equations via spatial spectral semidiscretisations. With the
semidiscretisation, the AAVF method exactly preserves the energy and nearly
conserves modified actions and modified momentum over long times. The main
result has been presented by developing a modulated Fourier expansion of the AAVF
method and showing two almost-invariants of the modulated system.

The main result of this chapter explains rigorously the good long-time behaviour
of EP methods for the numerical solution of semilinear wave equations. The analysis
for multi-dimensional wave equations deserves further investigation. It is also noted
that the long-term analysis of many different methods other than EP methods has
been given recently for Schrödinger equations and the reader is referred to [18,
38–40]. The Schrödinger equation has become one of the most studied PDEs. It
is hoped to obtain near-conservation of actions, momentum and density as well as
exact-conservation of energy for some EP schemes when applied to the Schrödinger
equation.

The material in this chapter is based on the work by Wang and Wu [41].
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