
Chapter 13
Semi-Analytical ERKN Integrators for
Solving High-Dimensional Nonlinear
Wave Equations

Incorporating the operator-variation-of-constants formula for high-dimensional
nonlinear wave equations with Fast Fourier Transform techniques in this chapter,
we present a class of semi-analytical ERKN integrators, which can nearly preserve
the spatial continuity as well as the oscillations of the underlying nonlinear waves
equations. Standard ERKN methods require, in every time step, the computation
of the matrix-vector product whose computational complexity, in terms of basic
multiplication is O(N2), once a direct calculation procedure is implemented,
where N is the dimension of the underlying differentiation matrix. We design and
analyse efficient algorithms which are incorporated with the Fast Fourier Transform
in the implementation of ERKN integrators, so that these algorithms reduce the
computational cost from O(N2) to O(N logN) in terms of basic multiplication.

13.1 Introduction

This chapter concerns the numerical simulation of high-dimensional nonlinear
wave equations. Although all of the ideas, algorithms and analysis in this chapter
can be straightforwardly extended to the solution of nonlinear wave equations
in a moderate number of space dimensions, we begin with the nonlinear one-
dimensional Hamiltonian wave equation

utt − a2uxx = f (u), (13.1)

with 2π-periodic boundary condition (x ∈ Ω = R/(2πZ)) and initial values

u(x, t0) = ϕ(x) ∈ Hs+1(Ω), ut (x, t0) = ψ(x) ∈ Hs(Ω), (13.2)
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where s � 0, and Hs(Ω) is the Sobolev space on Ω . We consider the domain
Ω = [0, 2π] for simplicity. (13.1) is a conservative system due to the conservation
of the Hamiltonian energy

H = H(t) = 1

2

∫
Ω

(
(ut )

2 + a2(ux)
2 + 2V (u(x, t))

)
dx, (13.3)

where f (u) = −dV (u)

du
.

We first define the formal series

φj (x) :=
∞∑

k=0

(−1)kxk

(2k + j)! , j = 0, 1, · · · , (13.4)

for any x � 0, and the differential operatorA

(A v)(x) = −a2vxx(x).

This leads to the following operator-variation-of-constants formula for the initial-
boundary-value problem of (13.1) (see, e.g. [1])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) = φ0
(
(t − t0)

2A
)
ϕ(x) + (t − t0)φ1

(
(t − t0)

2A
)
ψ(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f (u(x, ζ ))dζ,

ut (x, t) = −(t − t0)A φ1
(
(t − t0)

2A
)
ϕ(x) + φ0

(
(t − t0)

2A
)
ψ(x)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f (u(x, ζ ))dζ,

(13.5)

where both φ0
(
(t − t0)

2A
)
and φ1

(
(t − t0)

2A
)
are bounded operators as stated

in Chap. 1 (see also [2]), although A is a linear, unbounded positive semi-definite
operator.

We remark that the formula (13.5) exactly provides an implicit expression for the
solution to (13.1). In particular, for the special case where f (u) = 0, (13.5) yields
the closed-form solution to (13.1). Moreover, with the help of (13.5), we are hopeful
of obtaining semi-analytical integrators for (13.1), which preserve the continuity of
the spatial variable x, and only discretise the time variable t . An interesting example
is the energy-preserving and symmetric scheme presented in Chap. 9 (see also [3]),
which can exactly preserve the true continuous energy (13.3), not a discrete energy
after spatial discretisations as is typically the case for other methods. It is noted that
the extended Runge–Kutta–Nyström (ERKN) methods have been well developed
for highly oscillatory systems of ordinary differential equations (see, e.g. [4–8])
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{
y ′′ + My = f (y), t ∈ [t0, T ],
y(t0) = y0, y ′(t0) = y ′

0,
(13.6)

where M is a (symmetric) positive semi-definite matrix and ‖M‖ �
max

{
1,

∥∥∥∥∂f

∂y

∥∥∥∥
}
. This line of research for (13.6) will assist in the design and

development of numerical schemes for (13.1).
For the formulation of semi-analytical ERKN integrators for (13.1), we first

rewrite (13.5) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, tn + τh) = φ0
(
τ 2V

)
u(x, tn) + τhφ1

(
τ 2V

)
ut (x, tn)

+ h2
∫ τ

0
(τ − ζ )φ1

(
(τ − ζ )2V

)
f (u(x, tn + ζh))dζ,

ut (x, tn + τh) = −τhMφ1
(
τ 2V

)
u(x, tn) + φ0

(
τ 2V

)
ut (x, tn)

+ h

∫ τ

0
φ0
(
(τ − ζ )2V

)
f (u(x, tn + ζh))dζ,

(13.7)

where V = h2A and h > 0 is the time stepsize. We assume that Ui ≈ u(x, tn +
Cih), un+1 ≈ u(x, tn + h) and u′

n+1 ≈ ut (x, tn + h). We set τ = Ci satisfying
0 < Ci < 1 for i = 1, · · · , s, and approximate the first integral appearing in (13.7)
by a suitable quadrature formula with the weights Aij (V ). This leads to the internal
stages of ERKN integrators for (13.1). Likewise, by setting τ = 1, the updates of
ERKN integrators for (13.1) follow from the approximations to the two integrals
appearing in (13.7) by suitable quadrature formulae with the weights Bi(V ) and
Bi(V ), respectively. Then we are in a position to define a semi-analytical ERKN
integrator for (13.1).

An s-stage semi-analytical ERKN integrator for (13.1) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui = φ0(C
2
i V )un + Cihφ1(C

2
i V )u′

n + h2
s∑

j=1

Aij (V )f (Uj ), i = 1, · · · , s,

un+1 = φ0(V )un + hφ1(V )u′
n + h2

s∑
i=1

B̄i (V )f (Ui),

u′
n+1 = −hA φ1(V )un + φ0(V )u′

n + h

s∑
i=1

Bi(V )f (Ui),

(13.8)

where the constants C1, · · · , Cs , and the operator-argument coefficients Aij (V ),
Bi(V ) and Bi(V ) for i, j = 1, · · · , s are determined to ensure that the numerical
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scheme (13.8) is convergent and stable. It can be observed from (13.8) that the
ERKN integrator defines a time-stepping procedure, and the initial conditions are
exactly (13.2), i.e., u0 = u(x, t0) and u′

0 = ut (x, t0). This class of integrators
possesses the superior property of preserving spatial continuity. Therefore, we
call them semi-analytical integrators (see, e.g. [9]). It should be noted that the
ERKN method for (13.6) can also be expressed in the form of (13.8) by replacing
the operator A in V with a suitable differentiation matrix M , and remember
that the ERKN method for (13.6) is oscillation preserving as stated in Chap. 1.
For convenience, we denote this ERKN integrator corresponding to (13.8) by a
partitioned Butcher tableau

C A(V )

B̄(V )
ᵀ

B(V )ᵀ

=

C1 A11(V ) · · · A1s(V )
...

...
...

Cs As1(V ) · · · Ass(V )

B̄1(V ) · · · B̄s(V )

B1(V ) · · · Bs(V )

. (13.9)

Despite the superior properties we have mentioned, the semi-analytical ERKN
integrators (13.8) as well as the energy-preserving and symmetric scheme in [3]
could not be easily applied to (13.1) for general nonlinear cases, since it is difficult
to calculate and implement the operator-argument functions involved in these
integrators. This fact greatly confines the potential and further application of these
semi-analytical integrators, although they have been successfully applied to some
linear or homogeneous wave equations (see, e.g. [10]). A feasible approach to
implementing (13.8) in practice is approximating the operator A by a suitable
differentiation matrix M , once the spatial discretisation is carried out. When
sufficient spatial mesh grids are appropriately chosen, the spatial discretisation error
will be smaller than the roundoff error in theory (see, e.g. [11, 12]). Hence, in
the sense of numerical computation, we can expect and consider that the spatial
precision and continuity are nearly preserved by the ERKN integrators (13.8),
because it turns out that the global error of ERKN integrators is independent of
the spatial refinement (see, e.g. [13]). Moreover, it has been emphasised that the
global error bounds of the ERKN integrators are completely independent of the
differentiation matrix M in Chap. 3.

However, for the sake of the near preservation of spatial continuity, the dimension
of the differentiation matrix M will be selected so large that the error of spatial
discretisations can be almost ignored. This results in the following three difficulties
in the practical implementation of (13.8). First, the computation of matrix-valued
functions Aij (V ), Bi(V ), and B̄i(V ) will be of high complexity for such a high-
dimensional matrix M , since they are in fact expressed in the series of M . Second,
the multiplication at each time step between these matrices and vectors is also
highly costly. For instance, if we denote N as the dimension of the matrix M , the
multiplication betweenAi(V ) and f (Yi) containsN2 basic scalar multiplication and



13.1 Introduction 431

N(N − 1) basic scalar addition, which are an order of magnitude O(N2). Hence,
the computational cost of basic operation in each time step will be rapidly increased
in the magnitude of O(N2) as N increases. Third, the necessary computer memory
to store Aij (V ), Bi(V ) and B̄i (V ) will also sharply increase, which may result in
the computer running out of memory, in particular for high-dimensional problems.
In order to obtain the near preservation of the spatial continuity in the application
of semi-analytical ERKN integrators (13.8), and overcome the above mentioned
obstacles in the practical implementation after a possibly highly refined spatial
discretisation, it is wise to avoid the calculation and storage of such matrix-valued
functions, as well as the direct multiplication between matrix-valued functions and
the corresponding vectors. Consequently, in this chapter, we consider solving the
nonlinear wave equations in Fourier space. Then the system of ordinary differential
equations with respect to the Fourier coefficients will have a natural harmony with
the ERKN method, i.e., the matrix-vector multiplication will disappear when the
ERKN method is used to solve this system. Since the Fourier coefficients can be
obtained by the Fast Fourier Transform (FFT) with O(N logN) operations (see,
e.g. [14]), we are hopeful of obtaining a fast implementation approach to ERKN
integrators when applied to the nonlinear wave equations, even if N is very large.
This motivates the presentation of Algorithm 1 in this chapter. Furthermore, making
use of the equivalence between the splitting method and an important class of
symplectic ERKN methods, we present Algorithm 2, which is shown to be more
efficient than Algorithm 1.

The finite difference method could also yield the near preservation of spatial
continuity, in theory, for the nonlinearwave equation (13.1), once the spatial stepsize

x → 0 and the convergence of the numerical solution to the exact solution
is satisfied. Unfortunately, however, it follows from the Courant–Friedrichs–Lewy
(CFL) condition in the literature (see, e.g. [15–17]) that the mesh ratio should satisfy
h/
x � γ for the sake of numerical stability, where γ is a positive constant
depending only on the selected difference scheme. This implies that the time
stepsize hwould be restricted to a very tiny magnitude, once the
x is selected as so
small that it can ensure near preservation of the spatial continuity. This fact greatly
confines the application of the finite difference method. Fortunately, the stability
analysis of the ERKN integrator (13.8) in [18] shows that the time stepsize is
independent of the spatial stepsize, but dependent only on the coefficients of ERKN
integrator (13.8) and the Lipschitz constant of the function f (u). This advantage
admits the use of a large time stepsize even though 
x is very small after the
requirement of spatial-mesh refinement, once the semi-analytical ERKN integrator
(13.8) is applied to solve the nonlinear wave equations.

Another noteworthy aspect of scientific research related to the theme of this
chapter is the application of the Fourier spectral method and the FFT techniques. In
the literature (see, e.g. [19–22]), the authors respectively discussed the applications
of Fourier spectral discretisation for different types of partial differential equations.
In particular, in [19, 20, 22] and Chap. 2 in [23], the authors also incorporated
the FFT into the implementation to try to achieve smaller computational cost and
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lower memory storage. However, all such methods used a difference scheme or a
Runge–Kutta-type discretisation for the time derivative. It is very clear that these
procedures are not suitable for oscillatory nonlinear wave equations due to the high
oscillation of the semidiscrete system. Moreover, the CFL condition is also required
and crucial for these methods (see, e.g. [22]), which results in the same fatal defect
of a tiny time stepsize for the finite difference method. On noticing that ERKN
methods can efficiently solve a highly oscillatory system of ordinary differential
equations, the two proposed algorithms combined with the FFT technique are really
useful and promising in the implementation of semi-analytical ERKN integrator
(13.8) for efficiently solving a nonlinear wave equations. Apart from the exponential
integrators studied in this chapter we also note that there exist alternative approaches
for effectively providing numerical solutions for (13.1) in the literature (see, e.g.
[24–29]).

13.2 Preliminaries

We begin by considering initial value problems of second-order differential equa-
tions

{
y ′′ = f (y), t ∈ [t0, T ],
y(t0) = y0, y ′(t0) = y ′

0.
(13.10)

The standard Runge–Kutta–Nyström (RKN) method (see, e.g. [30, 31]) for
(13.10) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + cihy ′
n + h2

s∑
j=1

aij f (Yj ), i = 1, · · · , s,

yn+1 = yn + hy ′
n + h2

s∑
i=1

b̄if (Yi),

y ′
n+1 = y ′

n + h

s∑
i=1

bif (Yi),

(13.11)

where aij , b̄i , bi, ci for i, j = 1, · · · , s are real constants. An intrinsic relation
between ERKN methods and RKN methods has been explored in [4], in which
the authors revealed the underlying extension from the RKN method to the ERKN
method. We summarise the following three theorems, which are useful for our
subsequent analysis and the details can be found in [4].

Theorem 13.1 (See [4]) Let a RKN method be of order r for (13.10) with coeffi-
cients ci , bi , b̄i and aij for i, j = 1, · · · , s. Then the ERKN method determined by
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the mapping:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ci = ci,

Aij (V ) = aijφ1((ci − cj )
2V ),

B̄i (V ) = b̄iφ1((1 − ci)
2V ),

Bi(V ) = biφ0((1 − ci)
2V ),

(13.12)

is also of order r for (13.6).

Theorem 13.2 (See [4]) Let a RKN method be symplectic for (13.10) with coeffi-
cients ci , bi , b̄i and aij for i, j = 1, · · · , s. Then the ERKN method determined by
(13.12) is also symplectic for (13.6).

Theorem 13.3 (See [4]) Let a RKN method be symmetric for (13.10), whose
coefficients ci , bi , b̄i and aij satisfy the simplifying assumption b̄i = bi(1 − ci) for
i, j = 1, · · · , s. Then the ERKN method determined by (13.12) is also symmetric
for (13.6).

During the implementation of ERKN integrators, the matrix-valued coefficients
Aij (V ), B̄i (V ) andBi(V ) should be calculated in advance. Due to their complicated
computation, we note that the coefficients of the ERKN integrators in this chapter
share the form in (13.12), since the special cases where φ0(x) = cos

√
x and

φ1(x) = sin
√

x/
√

x can highly simplify the calculation of Aij (V ), B̄i (V ) and
Bi(V ). Another advantage of the formula (13.12) is that the ERKN integrator
obtained from (13.12) and the corresponding RKN method nearly has the best
structure-preserving properties among its congruence class, which will reduce to
the same RKN method (see [4]).

A preliminary step to simplifying the calculation of the computational cost of
ERKN integratorswill be made, providedwe carry out the following transformation.
If we set Fi = f (Ui), then the first formula of (13.8) can be rewritten as

Ui = φ0(C
2
i V )un + Cihφ1(C

2
i V )u′

n + h2
s∑

j=1

Aij (V )Fj , i = 1, · · · , s,

by replacing f (Ui) with Fi . Using Fi = f (Ui) once again with the above equation,
we obtain

Fi = f
(
φ0(C

2
i V )un + Cihφ1(C

2
i V )u′

n + h2
s∑

j=1

Aij (V )Fj

)
, i = 1, · · · , s.

(13.13)
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Finally, replacing f (Ui) with Fi in the last two equations of (13.8) and combining
with (13.13) we can deduce the equivalent formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fi = f
(
φ0(C

2
i V )un + Cihφ1(C

2
i V )u′

n + h2
s∑

j=1

Aij (V )Fj

)
, i = 1, · · · , s,

un+1 = φ0(V )un + hφ1(V )u′
n + h2

s∑
i=1

B̄i (V )Fi,

u′
n+1 = −hA φ1(V )un + φ0(V )u′

n + h

s∑
i=1

Bi(V )Fi.

(13.14)

It is clear that, in comparison with (13.8), the ERKN integrator rewritten in the
form of (13.14) reduces the number of function evaluations of f (u) from s2 + 2s
to s for each time step, while it maintains the same number (s + 2)2, of matrix-
vector multiplications. Therefore, the practical formulation of ERKN integrators in
applications should be (13.14), rather than (13.8) for the nonlinear wave equation
(13.1).

Since the error analysis of ERKN integrators as well as of Gauschi-type methods
for nonlinear wave equations has been made in [13, 18, 32, 33], we will not consider
this issue further, but pay attention to the practical implementation of these semi-
analytical ERKN integrators for nonlinear wave equations.

13.3 Fast Implementation of ERKN Integrators

For s � 0, we have Hs+1(Ω) ⊂ L2(Ω), whereL2(Ω) is the complex Hilbert space
equipped with the inner product and the norm

(u, v) = 1

2π

∫
Ω

u(x)v̄(x)dx, ‖u‖ = (u, u). (13.15)

Consider the Fourier series of u(x, t) as follows

u∗(x, t) =
+∞∑

k=−∞
ûk(t)eikx, (13.16)

where the Fourier coefficients ûk(t) are determined by

ûk(t) = (u, eikx) = 1

2π

∫
Ω

u(x, t)e−ikxdx, k ∈ Z. (13.17)
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Taking account of the completeness of the Fourier/trigonometric system
{
eikx :

k ∈ Z
}
in L2(Ω) (see, e.g. [34]), we obtain that ||u(x, t) − u∗(x, t)||L2(Ω) = 0.

In the sense of L2(Ω)-norm, it is sufficient to find u∗(x, t) instead of the exact
u(x, t). Note that the complete orthonormal set

{
eikx : k ∈ Z

}
constitutes the set of

orthogonal eigenfunctions of the operatorA in the Hilbert space L2(Ω), i.e.,

A (eikx) = a2k2eikx, k ∈ Z. (13.18)

With the formulae (13.4) and (13.18), we consequently have that

φj (h
2A )eikx = φj (a

2k2h2)eikx. (13.19)

Two special cases of (13.19) are j = 0 and j = 1:

φ0(h
2A )eikx = cos(akh)eikx, φ1(h

2A )eikx = sin(akh)

akh
eikx. (13.20)

Let N denote the number of spatial mesh grids after spatial discretisation, and
we only consider the even integer case for N . Since u is a real function, the Fourier
coefficients ûk satisfy û−k = ûk . Let XN = span

{
eikx : −N/2 � k � N/2

}
, and

PN : L2(Ω) → XN be the L2-orthogonal projection. It is obvious that PNu will be
the truncated Fourier series

(
PNu

)
(x) =

N/2∑
k=−N/2

ûkeikx, (13.21)

which is also the best approximation to u(x) in L2-norm. The truncated Fourier
series (13.21) provides us an efficient way to approximate u(x). However, it is clear
that the Fourier coefficients f̂k(u(x)) of f (u) are hard to obtain, on noticing the
integral in (13.17), since the expression of f (u(x)) with respect to x is always
unknown. Therefore, we will not use the truncated Fourier series (13.21) in practice,
but consider the following Fourier/trigonometric interpolation instead.

Let

xj = jh = j
2π

N
, 1 � j � N, (13.22)

be N equispaced points in [0, 2π]. Since N is even, we set

YN =
{
u(x) =

N/2∑
k=−N/2

ũkeikx : ũ−N/2 = ũN/2

}
. (13.23)
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Then the Fourier/trigonometric interpolation polynomial on the equispaced points
xj (1 � j � N) can be obtained by the interpolation operator IN : L2(Ω) → YN

as follows:

(
INu

)
(x) =

N/2∑
k=−N/2

ũkeikx. (13.24)

This satisfies

(
INu

)
(xj ) = u(xj ), 1 � j � N. (13.25)

Differently from the Fourier coefficients ûk in (13.16), the interpolation coeffi-
cients ũk can be effectively obtained from uj = u(xj ) (1 � j � N) by the Discrete
Fourier Transform (DFT)

ũk = 1

ωkN

N∑
j=1

uje−ikxj , k = −N/2, · · · , N/2, (13.26)

where ωk = 1 for |k| < N/2, and ωk = 2 for k = ±N/2. Meanwhile, it follows
from (13.24) and (13.25) that uj can also be obtained by the inverse DFT

uj =
N/2∑

k=−N/2

ũkeikxj , j = 1, · · · , N. (13.27)

The DFT (13.26) and inverse DFT (13.27) can be carried out by the Fast Fourier
Transform (FFT) and inverse Fast Fourier Transform (IFFT) with only O(N logN)

operations (see, e.g. [14]), rather than by the direct matrix-vector multiplication
with O(N2) operations. This computational process for FFT and IFFT can be easily
accomplished by using MATLAB (see, e.g. [12]).

Although the Fourier interpolation approximation INu in (13.24) to u(x) is
usually not better than the truncation PNu in (13.21), the rigorous error analysis
in [11] shows that ‘the penalty for using interpolation instead of truncation is at
worst a factor of two’. Hence, we can still have the spectral accuracy of exponential
convergence of the Fourier/trigonometric interpolation approximation (see, e.g.
[12]). With regard to more details on the truncation error of the Fourier truncation
and the interpolation error of the Fourier/trigonometric interpolation, readers are
referred to [23, 35, 36].

Now replacing u(x, t) with the trigonometric interpolation polynomial INu in
(13.1) leads to the nonlinear system

ũ′′
k + a2k2ũk = f̃k(t), k = −N/2, · · · , N/2. (13.28)
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Algorithm 1 Fast implementation of explicit ERKN integrator (13.14) with largeN

1: set Uj

0 = ϕ(xj ), V
j

0 = ψ(xj )

2: for n = 1 to NT do
3: FFT: Un−1 −→ Ûn−1, Vn−1 −→ V̂n−1
4: set Û = cos(c1hK)Ûn−1 + K−1 sin(c1hK)V̂n−1
5: inverse FFT: Û −→ U

6: set F1 = f (U)

7: FFT: F1 −→ F̂1
8: set Ûn = cos(hK)Ûn−1+K−1 sin(hK)V̂n−1+h2b̄1 ·((1−c1)hK)−1 sin((1−c1)hK)·F̂1

V̂n = −K sin(hK)Ûn−1 + cos(hK)V̂n−1 + hb1 cos((1 − c1)hK) · F̂1
9: for i = 2 to s do
10: set Û = cos(cihK)Ûn−1 + K−1 sin(cihK)V̂n−1
11: for k = 1 to i − 1 do
12: Û = Û + h2aik · ((ci − ck)hK)−1 sin((ci − ck)hK) · F̂k

13: end for
14: inverse FFT: Û −→ U

15: set Fi = f (U)

16: FFT: Fi −→ F̂i

17: Ûn = Ûn + h2b̄i · ((1 − ci)hK)−1 sin((1 − ci)hK) · F̂i

V̂n = V̂n + hbi cos((1 − ci)hK) · F̂i

18: end for
19: inverse FFT: Ûn −→ Un, V̂n −→ Vn

20: end for

where the f̃k(t) for k = −N/2, · · · , N/2 are the trigonometric interpolation
coefficients of f (u(x)) at time t . Since ũk and f̃k are easily obtained by the FFT,
by means of the variation-of-constants formula for (13.28) and the FFT, we propose
an algorithm to implement the explicit ERKN integrator determined by (13.12).
With the notation xj = j
x, tn = t0 + nh, U

j
n ≈ u(xj , tn), V

j
n ≈ ut (xj , tn),

NT = (T − t0)/h and K = |a · (−N/2, · · · , N/2)|ᵀ, this algorithm is stated in
Algorithm 1.

Note that in Algorithm 1, we do not directly apply the ERKN formula to
thenonlinear system (13.28). That is, the wave equation (13.1) cannot be solved
merely in Fourier space, since f̃k(t) cannot be directly expressed by ũk for general
nonlinear functions f (u). This differs from [32], where the author considered the
particular nonlinear case of f (u) = up for p � 2. In that case, the wave equation
(13.1) can be converted into a nonlinear system for ũk with respect to t , where all
the f̃k are obtained by the discrete convolution

f̃ (u) = u ∗ u ∗ · · · ∗ u︸ ︷︷ ︸
p times

, (y ∗ z)j =
∑

k+l≡j mod 2N

ykzl, j = −N/2, · · · , N/2.

(13.29)

That is why we carry out the FFT for each internal stage Fi in Algorithm 1. Here,
it is important to note that we consider the general nonlinear function f (u), which
is the negative derivative of a potential energy V (u). It is also worth mentioning
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that for the special case of c1 = 0, we can simplify Step 4, 5, 6 in Algorithm 1 as
F1 = f (Un−1), since U = Un−1 under this situation.

13.4 The Case of Symplectic ERKN Integrators

As is known, the symplectic structure has many important physical and mathemati-
cal consequences, and it is therefore usually important to preserve it if possible.

We have presented Algorithm 1 in the previous section, which is used for the
fast implementation of explicit ERKN integrators (13.8) whose coefficients are
determined by (13.12). However, taking into account an important class of explicit
symplectic ERKN integrators, we can design another fast implementation algorithm
apart from Algorithm 1 on the basis of the equivalence between this important class
of explicit symplectic ERKNmethods and the corresponding splitting methods. The
equivalence is stated below, and a similar result can be found in [37], where the
author conducted the presentation and the proof in a different manner.

Theorem 13.4 Let Ψ be an explicit symplectic ERKN method whose coefficients
Ci , Bi , B̄i and Aij are determined by (13.12), and ci , bi , b̄i and aij satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b̄i = bi(1 − ci),

aij = bj (ci − cj ),

ci =
i∑

k=1

bk − 1

2
bi,

(13.30)

for all i, j = 1, · · · , s. Then the ERKN method is equivalent to a splitting method
(see, e.g. [30])

�h = ϕ
[1]
αs+1h

◦ ϕ
[2]
βsh

◦ ϕ
[1]
αsh

◦ · · · ◦ ϕ
[2]
β2h

◦ ϕ
[1]
α2h

◦ ϕ
[2]
β1h

◦ ϕ
[1]
α1h

, (13.31)

where

⎧⎨
⎩

βi = bi, i = 1, · · · , s,

α1 = 1

2
b1, αs+1 = 1

2
bs, αj = 1

2
(bj + bj−1), j = 2, · · · , s,

(13.32)

ϕ
[1]
t and ϕ

[2]
t respectively denote the exact phase flows of the following first-order

systems

{
q ′ = p,

p′ = −Mq,
(13.33)
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and
{

q ′ = 0,

p′ = f (q),
(13.34)

by denoting q = y and p = y ′.

Proof We will complete the proof by showing that such a splitting method of the
type (13.31) can be equivalently expressed by an ERKN method as stated in the
theorem. Since ϕ

[1]
t denotes the exact phase flow of (13.33), we then derive from

the group property of the exact phase flow that

ϕ
[1]
α1h

= ϕ
[1]
β1h/2, ϕ

[1]
αs+1h

= ϕ
[1]
βsh/2, ϕ

[1]
αih

= ϕ
[1]
βi+1h/2 ◦ ϕ

[1]
βih/2, i = 2, · · · , s,

(13.35)

due to the equalities in (13.32). Using the associativity of the combination operation
◦, we can write the splitting method �h (13.31) as

�h = Ψβsh ◦ Ψβs−1h ◦ · · · ◦ Ψβ2h ◦ Ψβ1h, (13.36)

where Ψβih = ϕ
[1]
bih/2 ◦ ϕ

[2]
bih

◦ ϕ
[1]
bih/2 for all i = 1, · · · , s.

We now show that Ψβih is equivalent to an ERKN method with the stepsize bih.
Let (p0, q0) and (p1, q1) be initial values and the corresponding numerical solutions
after applyingΨβih to the initial values, respectively.We can derive the scheme from
the formulation of Ψβih as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = φ0

(
1

4
b2i V

)
q0 + 1

2
bihφ1

(
1

4
b2i V

)
p0,

P1 = −1

2
bihMφ1

(
1

4
b2i V

)
q0 + φ0

(
1

4
b2i V

)
p0,

Q2 = Q1,

P2 = P1 + bihf (Q2),

q1 = φ0

(
1

4
b2i V

)
Q2 + 1

2
bihφ1

(
1

4
b2i V

)
P2,

p1 = −1

2
bihMφ1

(
1

4
b2i V

)
Q2 + φ0

(
1

4
b2i V

)
P2,

(13.37)

where V ≡ h2M . It follows from the identities

{
λφ0(κ

2V )φ1(λ
2V ) + κφ0(λ

2V )φ1(κ
2V ) = (λ + κ)φ1((λ + κ)2V ),

φ0(λ
2V )φ0(κ

2V ) + λκV φ1(κ
2V )φ1(λ

2V ) = φ0((λ − κ)2V ),

(13.38)
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that the direct calculation by eliminating P1, P2, and Q1 from (13.37) leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = φ0

(
1

4
b2i V

)
q0 + 1

2
bihφ1

(
1

4
b2i V

)
p0,

q1 = φ0(b
2
i V )q0 + bihφ1(b

2
i V )p0 + 1

2
(bih)2φ1

(
1

4
b2i V

)
f (Q1),

p1 = −bihMφ1(b
2
i V )q0 + φ0(b

2
i V )p0 + bihφ0

(
1

4
b2i V

)
f (Q1).

(13.39)

It can be easily verified that (13.39) is just a particular ERKN method with the
stepsize bih, whose Butcher tableau reads

1/2 0

φ1(V /4)/2

φ0(V /4)

. (13.40)

Let (p
(1)
n+1, q

(1)
n+1) = Ψβ1h(pn, qn), (p

(i+1)
n+1 , q

(i+1)
n+1 ) = Ψβi+1h(p

(i)
n+1, q

(i)
n+1) for

i = 1, · · · , s − 1, and (pn+1, qn+1) = (p
(s)
n+1, q

(s)
n+1). In consequence, we

have (pn+1, qn+1) = �h(pn, qn). In what follows, we aim at showing that the
transformation �h : (pn, qn) �→ (pn+1, qn+1) can be explicitly expressed by an
ERKNmethod, which has exactly the property required in the theorem. To complete
the proof, we just need to prove the following proposition by induction on the
superscript i.

The mapping Ψβih ◦ Ψβi−1h ◦ · · · ◦ Ψβ2h ◦ Ψβ1h : (pn, qn) �→ (p
(i)
n+1, q

(i)
n+1) can

be expressed by an ERKN scheme as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qk = φ0(c
2
kV )qn + ckhφ1(c

2
kV )pn + h2

k−1∑
j=1

A
(i)
kj f (Qj ), k = 1, · · · , i,

q
(i)
n+1 = φ0(μ

2
i V )qn + μihφ1(μ

2
i V )pn + h2

i∑
k=1

B̄
(i)
k f (Qk),

p
(i)
n+1 = −μihMφ1(μ

2
i V )qn + φ0(μ

2
i V )pn + h

i∑
k=1

B
(i)
k f (Qk),

(13.41)

where μi = ∑i
j=1 bi , ci = μi − bi

2
, A(i)

kj = bj (ck − cj )φ1((ck − cj )
2V ), B̄(i)

k =
bk(μi − ck)φ1((μi − ck)

2V ) and B
(i)
k = bkφ0((μi − ck)

2V ).
For i = 1, (13.41) naturally holds on account of (13.39). Suppose that (13.41)

holds for any i < s. Then we turn to showing that it also holds for the case of i + 1.
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On noticing the fact that (p
(i+1)
n+1 , q

(i+1)
n+1 ) = Ψβi+1h(p

(i)
n+1, q

(i)
n+1) and Ψβi+1h is also

an ERKNmethod, it follows from the composition law for ERKNmethod in [4] that
the mapping Ψβi+1h ◦ Ψβih ◦ · · · ◦ Ψβ2h ◦ Ψβ1h : (pn, qn) �→ (p

(i+1)
n+1 , q

(i+1)
n+1 ) really

can be expressed in an ERKN method, whose coefficients read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(i+1)
kj = A

(i)
kj , k = 1, · · · , i, j = 1, · · · , k − 1,

A
(i+1)
i+1,j = φ0

(
b2i+1

4
V

)
B̄

(i)
j + bi+1

2
φ1

(
b2i+1

4
V

)
B

(i)
j , j = 1, · · · , i,

B̄
(i+1)
j = φ0(b

2
i+1V )B̄

(i)
j + bi+1φ1(b

2
i+1V )B

(i)
j , j = 1, · · · , i,

B̄
(i+1)
i+1 = b2i+1

2
φ1

(
b2i+1

4
V

)
,

B
(i+1)
j = φ0(b

2
i+1V )B

(i)
j − bi+1V φ1(b

2
i+1V )B̄

(i)
j , j = 1, · · · , i,

B
(i+1)
i+1 = bi+1φ1

(
b2i+1

4
V

)
.

(13.42)

Then with the help of the induction hypothesis and the identities in (13.38), it
follows from (13.42) that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A
(i+1)
kj = bj (ck − cj )φ1((ck − cj )

2V ), k = 1, · · · , i + 1, j = 1, · · · , k − 1,

B̄
(i+1)
j = bj (μi+1 − cj )φ1((μi+1 − cj )

2V ), j = 1, · · · , i + 1,

B
(i+1)
j = bjφ0((μi+1 − cj )

2V ), j = 1, · · · , i + 1,

(13.43)

which confirms that the result also holds for the case of i + 1. Moreover, the
consistency of the splitting method means that μs = ∑s

j=1 bj = 1. By setting
i = s in (13.41) we finally conclude that the splitting method in (13.31) can be
written as an ERKN method, whose coefficients satisfy (13.12) and (13.30). This
completes the proof. ��

We set q = y, p = y ′, and then the phase flow ϕ
[1]
h and ϕ

[2]
h can be respectively

expressed as

ϕ
[1]
h : (y0, y

′
0) �→ (φ0(V )y0+hφ1(V )y ′

0, −hMφ1(V )y0+φ0(V )y ′
0), (13.44)

and

ϕ
[2]
h : . (y0, y

′
0) �→ (y0, y ′

0 + hf (y0)). (13.45)
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Algorithm 2 Fast implementation of special symplectic ERKN integrator

1: set Uj

0 = ϕ(xj ), V
j

0 = ψ(xj )

2: for n = 1 to NT do
3: set U = Un−1, V = Vn−1
4: for k = 1 to s do
5: FFT: U −→ Û , V −→ V̂

6: Û(0) = cos(αkhK)Û + K−1 sin(αkhK)V̂ ,
V̂(0) = −K sin(αkhK)Û + cos(αkhK)V̂

7: inverse FFT: Û(0) −→ U , V̂(0) −→ V

8: V = V + βkhf (U)

9: end for
10: FFT: U −→ Û , U −→ V̂

11: Û(0) = cos(αs+1hK)Û + K−1 sin(αs+1hK)V̂ ,
V̂(0) = −K sin(αs+1hK)Û + cos(αs+1hK)V̂

12: inverse FFT: Û(0) −→ U , V̂(0) −→ V

13: set Un = U , Vn = V

14: end for

With the help of Theorem 13.4, if we solve (13.44) and (13.45) in the Fourier space
with the FFT and IFFT, we can obtain Algorithm 2, which is specially designed
for the implementation of the symplectic ERKN integrators stated in Theorem 13.4.
Note that the multiplication of the two vectors occurring in both Algorithms 1 and
2 is in the componentwise sense.

13.5 Analysis of Computational Cost and Memory Usage

13.5.1 Computational Cost at Each Time Step

In this section, we focus on the analysis of computational cost at each time step for
the three implementation approaches, i.e., the direct calculation approach of (13.14)
with matrix-vector multiplication, Algorithm 1 for general ERKN integrators
determined by (13.12) and Algorithm 2 for symplectic ERKN integrators that are
equivalent to splitting methods. We estimate the computational cost for an explicit
ERKN integrator denoted by Nd and Nf , which respectively denote the basic
scalar operations (multiplication or addition) and function evaluations of f (u). Note
that the multiplication between an N-dimensional matrix-valued function and a
corresponding vector contains N2 basic scalar multiplications and N(N − 1) basic
scalar additions. Since the FFT (or IFFT) can be accomplished with O(N logN)

operations for an N-dimensional vector, we assume thatO(N logN) = C̃ ·N logN ,
where C̃ is a positive constant independent of N .

We assume that the underlying ERKN integrator is of s-stages. The computa-
tional cost for each approach is shown in Table 13.1. This shows that the number of
function evaluations in one time step is the same for the three different approaches,
i.e., s. However, they differ greatly in the number of basic scalar operations. The
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Table 13.1 The number of floating point of calculation for the three implementation approaches

Number

Approach Nd Nf

Direct calculation (s2 + 7s + 6)N2 − (s + 2)N s

Algorithm 1 (2s + 3)C̃ · N logN +
(
3s2

2
+ 15s

2
+ 4

)
N s

Algorithm 2 4(s + 1)C̃ · N logN + (9s + 8)N s

primary difference is that the cost of the direct calculation approach is O(N2),
whereas the other two algorithms proposed in this chapter are O(N logN), which
will sharply decrease the calculation cost once the spatial grid number N isso large
that the spatial continuity can be nearly preserved by ERKN integrators, in the
sense of numerical computation. A careful observation shows that this advantage
essentially derives from the faster calculation of spectral derivatives by the FFT.

We now turn to the comparison between Algorithms 1 and 2. A rough estimate
may give that Algorithm 2 takes more basic operations than Algorithm 1, since
the coefficient of the dominant part N logN of the former is 4(s + 1), which
is more than that of the latter, i.e., 2s + 3. However, our numerical simulations
in Sect. 13.6 show that for a symplectic ERKN integrator of the type stated in
Theorem 13.4, Algorithm 2 consumes less CPU time than Algorithm 1. In order
to explain this phenomenon, we make a detailed comparison between the two
algorithms as follows.

For a fixed integer N , let � = C̃ logN > 0. Then a comparison between
the computational cost of the two algorithms reduces to the comparison between

(2s + 3)� +
(
3s2

2
+ 15s

2
+ 4

)
= 3s2

2
+
(
15

2
+ 2�

)
s + (4 + 3�) and

4(s + 1)� + (9s + 8) = (9 + 4�)s + (8 + 4�). Since s is positive, the only

zero point of

(
3s2

2
+
(
15

2
+ 2�

)
s + (4 + 3�)

)
−
(
(9 + 4�)s + (8 + 4�)

)
=

3s2

2
−
(
3

2
+ 2�

)
s−(4+�) is s0 =

(
1

2
+ 2

3
�

)
+ 1

3

√(
3

2
+ 2�

)2
+ (24 + 6�).

Therefore, the computational cost for Algorithm 2 will be less than that for
Algorithm 1 provided s � s0. On the contrary, Algorithm 2 costs more once s < s0.
Here, we list some possible values of s0 for different � in Table 13.2. On noticing
that s denotes the stage of ERKN integrator and larger s always implies higher order,
we can roughly conclude that Algorithm 2 will be more efficient than Algorithm 1
for high-order symplectic ERKN integrators. Though the constant C̃ ofO(N logN)

cannot be precisely determined, the numerical experiments in the following section
confirm that Algorithm 2 consumes less CPU time than Algorithm 1, even for the
symplectic ERKN integrator of 3 stages, which clearly supports the higher efficiency
of Algorithm 2.
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Table 13.2 Values of s0 for
different �

� 1 2 3 4

s0 3.3333 4.5465 5.8040 7.0860

Here it is remarked that we are concerned only with explicit ERKN integrators
in Algorithm 1. For implicit integrators, a similar analysis can be made, in which
iterative solutions are needed in the implementation. Likewise, the computational
cost for implicit ERKN integrators will have an order of magnitude O(N logN),
which is also much smaller than that of direct calculation, i.e., an order of magnitude
O(N2).

13.5.2 Occupied Memory and Maximum Number of Spatial
Mesh Grids

For the numerical experiments in Sect. 13.6, the program runs in MATLAB 2012a
on a computer Lenovo Yangtian A6860f (CPU: Intel (R) Core (TM) i5-6500 CPU@
3.20GHz (4CPUs), Memory: 8GB, Os: Microsoft Windows 7 with 64bit). Hence,
the maximum possible occupied memory is set as 8GB to avoid memory overflow.
Besides, each real number is stored in the double-precision floating-point format,
which occupies 8 Bytes of memory.

Concerning the direct calculation procedure, all the coefficients Aij (V ), Bi(V ),
B̄i (V ), φ0(C

2
i V ), φ1(C

2
i V ), φ0(V ) and φ1(V ) should be calculated and stored

in advance. Since N denotes the number of spatial mesh grids, the numerical
solutions un+1 and u′

n+1 are all N-dimensional vectors. This implies that each
coefficient of the ERKN integrators will be an N × N matrix, which needs N

times more memory storage than that of un+1 or u′
n+1. Thus, we count up the

occupied memory by mainly considering the coefficients of the ERKN integrator
due to the large magnitude of N . We now estimate the maximum value of N under
the environment of 8GB memory storage for an s-stage explicit ERKN integrator
determined by (13.12). It should be noted that both φ0(C

2
1V ) and φ1(C

2
1V ) do not

need be calculated once C1 = 0 for some explicit ERKN integrators.
For the one-dimensional case of the nonlinear wave equation (13.1), the least

required Bytes of memory storage is 8

(
s(s − 1)

2
+ 4s

)
N2 = 4s(s + 7)N2. This

implies that N should satisfy

4s(s + 7)N2 � 8 × 10243, (13.46)

which yields

N � Nmax = 32768

√
2

s(s + 7)
. (13.47)
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For the two-dimensional case, we admit the assumption that the numberNx of grids
in the x-direction equals to the number Ny of grids in the y-direction, i.e., Nx =
Ny . In this case, un+1 and u′

n+1 will be NxNy-dimensional vectors, and V is an
NxNy × NxNy matrix. Then we can obtain that Nx(= Ny) �

√
Nmax. Likewise,

the result Nx(= Ny = Nz) � 3
√

Nmax can be obtained in a similar manner under the
assumption Nx = Ny = Nz.

However, it follows from the description of Algorithms 1 and 2 that the only
stored values are un+1, u′

n+1 and some other intermediate variables. Thus, we can
obtain the estimations as follows:

N � Ñmax = 10243

2 + �
,

Nx(= Ny) �
√

Ñmax ,

Nx(= Ny = Nz) � 3
√

Ñmax ,

(13.48)

respectively for the one-dimensional, two-dimensional and three-dimensional cases.
Here the positive integer � denotes the number of intermediate variables during the
implementation of the two algorithms, and � = s + 2 for Algorithm 1 while � = 4
for Algorithm 2.

In Table 13.3, we list some values of Nmax (or Ñmax) for different approaches
in all the three-dimensional cases with s = 4, 10, and 16. Some points can be
concluded from this table. First, the value of Ñmax is much larger than that of Nmax,
which indicates that the two algorithms presented in this chapter can admit more
dense spatial grids than the direct calculation procedure in order to nearly preserve
the spatial continuity. Second, for the one-dimensional case, all the values of Nmax
and Ñmax are larger than 1024, which means that all the three approaches can
nearly preserve the spatial continuity with sufficient spatial mesh grids. Third, for
the two-dimensional and three-dimensional cases, the direct calculation procedure
onlyallows a mesh grid number of which is no more than 100. In particular, for
the three-dimensional case, the admissible value of Nmax is less than 20. This
implies that ERKN integrators can hardly preserve the spatial continuity once the
direct calculation procedure is applied. However, for the algorithms presented in
this chapter, Ñmax is at least of magnitude of 512, which is nearly sufficient for the
most nonlinear wave equations to nearly preserve the spatial continuity. Finally, a
comparison between Algorithms 1 and 2 shows that the former will occupy a little
more memory than the latter.

13.6 Numerical Experiments

In this section, we conduct the numerical experiments with different ERKN
integrators in order to show the remarkable efficiency of the algorithms presented
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Table 13.3 The value of Nmax (or ˜Nmax) for different approaches in all the three-dimensional
cases with s = 4, 10, 16

Dimension

Approach One Two Three

s = 4
Direct calculation 6986 83 19

Algorithm 1 128 × 10242 11.31 × 1024 512

Algorithm 2 170.67 × 10242 13.06 × 1024 1.10 × 512

s = 10
Direct calculation 3554 59 15

Algorithm 1 73.14 × 10242 8.55 × 1024 0.83 × 512

Algorithm 2 170.67 × 10242 13.06 × 1024 1.10 × 512

s = 16
Direct calculation 2415 49 13

Algorithm 1 51.20 × 10242 7.16 × 1024 0.74 × 512

Algorithm 2 170.67 × 10242 13.06 × 1024 1.10 × 512

in this chapter when applied to nonlinear wave equations. The selected ERKN
integrators are as follows:

• ERKN3s4: the 3-stage fourth-order symmetric and symplectic ERKN integrator
[4, 38] that can be written as a splitting method ;

• ERKN3s4b: the 3-stage fourth-order ERKN integrator obtained by the RKN
method in [31];

• ERKN4s5: the 4-stage fifth-order ERKN integrator obtained by the RKNmethod
in [31];

• ERKN7s6: the 7-stage sixth-order symmetric and symplectic ERKN integrator
[38] that can be written as a splitting method;

• ERKN7s6b: the 7-stage sixth-order symplectic ERKN integrator proposed in [4];
• ERKN17s8: the 17-stage eighth-order symmetric and symplectic ERKN integra-

tor derived in [4, 38] that can be written as a splitting method.

We remark that, except for ERKN3s4, ERKN7s6 and ERKN17s8, the other three
methods cannot be written as splitting methods. For the three implementation
approaches, we respectively use the symbols D, A, and F to denote the direct
calculation procedure, Algorithms 1 and 2. For instance, the three implementations
of ERKN3s4 are respectively denoted by D3s4, A3s4 and F3s4. During the
numerical experiments, the numerical solution computed by ERKN16s10 (16-stage
ERKN method of order 10 derived in [4]) with sufficiently small stepsize is thought
of as the reference solution, when the analytical solution is not available. Note that
the Fourier spectral discretisation is used for all the problems considered in this
section. Hence, the discrete Hamiltonian energy corresponding to (13.3) has the
following form

Hn = 1

2
u′ᵀ

nu′
n + 1

2
uᵀnMun + V (un),
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where M is the spectral differentiation matrix. In this sense, the global Hamiltonian
energy error is measured by GHEn = |Hn − H0|.
Problem 13.1 (Breather Soliton) We first consider the well-known sine-Gordon
equation (see, e.g. [13, 18])

∂2u

∂t2
= ∂2u

∂x2 − sin u,

on the region (x, t) ∈ [−L,L] × [0, T ], with the initial conditions

u(x, 0) = 0, ut (x, 0) = 4κ sech(κx),

and the boundary conditions

u(−L, t) = u(L, t) = 4 arctan
(
c−1 sech(κL) sin(cκt)

)
,

where κ = 1/
√
1 + c2. The exact solution is given by

u(x, t) = 4 arctan
(
c−1 sech(κx) sin(cκt)

)
, (13.49)

which is known as the breather solution of the sine-Gordon equation.

We set L = 40, T = 40 and c = 0.5 for this problem in the numerical
experiment. We use this problem having the exact solution (13.49) to verify and
show that the algorithms presented in this chapter work very well. The global error
(GE) results for each ERKN integrator with N = 512 and the time stepsize h = 0.2
are shown in Fig. 13.1, which are implemented by Algorithm1. It confirms that these
algorithms perform perfectly for this problem. Meanwhile, the CPU times taken by
A3s4, A3s4b, A4s5, A7s6, A7s6b, and A17s8 are respectively 0.112, 0.114, 0.126,
0.178, 0.184, 0.429 s. These small values really support the theoretical prediction of
the high efficiency of Algorithm 1. Furthermore, for the three ERKN integrators that
are equivalent to splitting methods, we also implement them by Algorithm 2. The
difference between a numerical solution obtained by Algorithm 2 and its counterpart
Algorithm 1 is in the magnitude of O(10−11) for all the three ERKN integrators.
This fact confirms the consistency between the two algorithms. The CPU times of
F3s4, F7s6, and F17s8 are respectively 0.105, 0.147, and 0.242 s, which are less
than that of Algorithm 1. This fact strongly supports the earlier claim of the higher
efficiency of Algorithm 2 than Algorithm 1. In addition, the global Hamiltonian
energy errors (GHE) corresponding to Fig. 13.1 are shown in Fig. 13.2. It can be
observed from Fig. 13.2 that these ERKN integrators preserve the energy very well.

Note that since the mesh ratio h/
x = 1.28 > 1, the finite difference
scheme may be numerical unstable for such a large mesh ratio. To illustrate this
point, we conduct further numerical experiments with the compact fourth-order
centraldifference scheme [39] for the spatial derivative. Meanwhile, we use the
3-stage fourth-order RKN method in [31] to discretise the temporal derivative.
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Fig. 13.1 Global errors (GE) of different methods on the region (x, t) ∈ [−40, 40] × [0, 40]. (a)
GE of ERKN3s4. (b) GE of ERKN3s4b. (c) GE of ERKN4s5. (d) GE of ERKN7s6. (e) GE of
ERKN7s6b. (f) GE of ERKN17s8

Exactly as we predicted, this method is unstable for these fixed h and 
x due to the
numerical overflow of solutions. This fact clearly shows the broader applicability
of the algorithms presented in this chapter than the finite difference method in
solving nonlinear wave equations, since the former admit large time stepsizes. To
numerically check the convergence of the integrators presented in this chapter, we
list their global errors at the final time T = 40 with different spatial stepsize 
x and
time stepsize h in Table 13.4, from which it can be observed that more dense mesh
grids indicate smaller global errors. This clearly supports the numerical convergence
of the semi-analytical integrators.
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Fig. 13.2 Global Hamiltonian energy errors (GHE) of different methods

Table 13.4 Global errors at the final time T = 40 with different mesh grids

(
x, h) (5/4,1/5) (5/8,1/10) (5/16,1/20) (5/32,1/40)

ERKN3s4 4.2905 5.0385 × 10−3 1.0681 × 10−4 1.4253 × 10−4

ERKN3s4b 4.2633 5.0056 × 10−3 2.1863 × 10−4 1.6716 × 10−4

ERKN4s5 4.3140 6.0142 × 10−3 9.4580 × 10−6 4.1583 × 10−7

ERKN7s6 4.3101 5.8759 × 10−3 8.7842 × 10−7 2.8212 × 10−9

ERKN7s6b 4.3104 5.8812 × 10−3 9.5823 × 10−7 6.6574 × 10−9

ERKN17s8 4.3098 5.8720 × 10−3 8.6836 × 10−7 1.2319 × 10−11

Problem 13.2 Consider the nonlinear Klein–Gordon equation (see, e.g. [40, 41])

{
utt − uxx + u + u3 = 0, 0 < x < L, t ∈ (0, T ),

u(0, t) = u(L, t),

with the periodic boundary condition. The initial conditions are given by

u(x, 0) = A

[
1 + cos

(
2π

L
x

)]
, ut (x, 0) = 0,

where L = 1.28 and A is the amplitude.

We set A = 20 for this problem in the numerical experiment. Such a large
amplitude makes this problem challenging for its numerical solution (see, e.g.
[40, 41]), since the solution will have an abrupt change in both time and space
directions. This phenomenon can be observed from Fig. 13.3, where we plot the
reference numerical solution in the region (x, t) ∈ [0, 1.28] × [0, 10]. To show the
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Fig. 13.3 Reference solution with ERKN10

effectiveness of the ERKN integrators, we plot the global errors of these methods
in Fig. 13.4 with the time stepsize h = 0.001. It can be observed from Fig. 13.4
that ERKN integrators really can solve this problem with some accuracy. It is
noted that, the difference between numerical solutions obtained from the three
implementation approaches for each ERKN integrator are of magnitude O(10−12),
which confirms that the two algorithms presented in this chapter are promising.
The global Hamiltonian energy errors corresponding to Fig. 13.4 are presented in
Fig. 13.5, which show the good preservation of the ERKN integrator presented in
this chapter.

To compare the efficiency of the three implementation approaches, we carry
out these methods with different numbers N of spatial grid points and the fixed
time stepsize h = 0.001. The numerical results for the consumed CPU time are
shown in Tables 13.5, and 13.6 indicates the detailed ratio of CPU time of the
direct calculation procedure to that of Algorithm 1 (or Algorithm 2). It is clear
from the two tables that the two algorithms cost much less time than the direct
calculation procedure for all the six ERKN integrators. This fact supports the
theoretical analysis that the algorithms described in this chapter really can nearly
preserve the spatial continuity with a large number N of spatial grid points and
reasonable computational cost. In Table 13.6, for the underlying ERKN methods
larger N always implies a larger ratio, which confirms that the superiority of these
algorithms over the direct calculation procedure will be more marked for a larger
grid number N . Moreover, the comparison between Algorithms 1 and 2 in the two
tables shows that Algorithm 2 always consumes less CPU time than Algorithm 1.
In particular, for a fixed N , Algorithm 2 becomes more efficient (larger ratio in
Table 13.6) than Algorithm 1 for ERKN methods of higher order (hence with more
stages, i.e., a bigger s).
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Fig. 13.4 Global errors (GE) of different methods on the region (x, t) ∈ [0, 1.28] × [9, 10]. (a)
GE of ERKN3s4 with N = 27. (b) GE of ERKN3s4b with N = 28. (c) GE of ERKN3s5 with
N = 28. (d) GE of ERKN7s6 with N = 28. (e) GE of ERKN7s6b with N = 28. (f) GE of
ERKN17s8 with N = 29

Problem 13.3 We then consider the two-dimensional sine-Gordon equation

utt − (uxx + uyy) = − sin(u), t > 0

with the homogeneous Neumann boundary condition

ux(±14, y, t) = 0, uy(x,±14, t) = 0



452 13 Semi-Analytical ERKN Integrators for Solving High-Dimensional Nonlinear. . .

Fig. 13.5 Global energy errors (GHE) of different methods corresponding to Fig. 13.4

Table 13.5 CPU time
(seconds) consumed by each
method for different N with
the time stepsize h = 0.001

N = 64 N = 128 N = 256 N = 512

D3s4 3.180 8.807 39.573 241.768

A3s4 1.266 2.144 3.626 6.286

F3s4 0.935 1.706 3.106 5.569

D3s4b 2.534 10.096 38.341 242.901

A3s4b 1.241 2.147 3.569 6.337

D4s5 2.796 12.767 46.291 310.244

A4s5 1.487 2.792 4.344 7.432

D7s6 7.228 25.079 83.279 568.355

A7s6 2.374 4.347 6.665 11.645

F7s6 1.714 3.222 5.571 10.422

D7s6b 7.236 24.720 70.033 574.093

A7s6b 2.366 4.319 6.685 11.857

D17s8 30.047 102.216 319.589 2093.492

A17s8 6.663 10.357 16.204 29.152

F17s8 3.616 6.665 11.654 21.877

in the region (x, y) ∈ [−14, 14] × [−14, 14]. The initial conditions are given by

u(x, y, 0)=4 arctan
(
exp
(
3 −√x2 + y2

))
, ut (x, y, 0)=0,

(x, y) ∈ [−14, 14] × [−14, 14].

The solutions of this problem are circular ring solitons (see, e.g. [18, 42, 43]).

For solving this problem, the eighth-order integrator ERKN17s8 implemented
by F17s8 is used to make a comparison with the method GLC4 in [18]. Note that
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Table 13.6 Ratio of CPU
time of direct calculation
approach to that of the two
algorithms

N = 64 N = 128 N = 256 N = 512

D3s4/A3s4 2.5118 4.1077 10.9137 38.4613

D3s4/F3s4 3.4011 5.1624 12.7408 43.4132

D3s4b/A3s4b 2.0419 4.7024 10.7428 38.3306

D4s5/A4s5 1.8803 4.5727 10.6563 41.7443

D7s6/A7s6 3.0447 5.7693 12.4950 48.8068

D7s6/F7s6 4.2170 7.7837 14.9487 54.5342

D7s6b/F7s6b 3.0583 5.7235 10.761 48.4181

D17s8/A17s8 4.5085 9.8693 19.7228 71.8130

D17s8/F17s8 8.3095 15.3362 27.4231 95.6937

GLC4 is also of order eight. Here, we select the same time stepsize h = 0.1 and
mesh region size 400 × 400 as those in [18]. Numerical results of sin(u/2) and the
corresponding contour plots at the time points t = 0, 4, 8, 11.5, 13, and 15 are
shown in Figs. 13.6 and 13.7, which are nearly the same as the corresponding figures
in [18]. This shows the effectiveness of F17s8 in solving this problem. In particular,
for t = 15 the CPU time of F17s8 is only 38.67 s, which is much less than that of
GLC4, i.e. 668.05 s (see [18]). This fact again gives a further support for the high
efficiency of the algorithms presented in this chapter. Finally, we display the good
energy conservation of ERKN17s8 in Fig. 13.8.

With regard to the formulation and analysis of energy-preserving schemes for
Klein–Gordon equations, see Chap. 9 (see also [44]). The framework of semi-
analytical integrators for solving partial differential equations was initially proposed
in [10], and this chapter focuses on the efficient implementation issue of the semi-
analytical integrators.

13.7 Conclusions and Discussions

Although there has been far less numerical treatment of PDEs in the structure-
preserving literature than that of ODEs, the recent growth of geometric integration
for nonlinear Hamiltonian PDEs has led to the development of numerical schemes
which systematically incorporate qualitative features of the underlying problem
into their structure. In general, the qualitative characteristics of structure-preserving
integrators are mainly concerned with the symmetry, the symplecticity, the multi-
symplecticity, the conservation of energy or first integrals, the high oscillation or
stiffness, and so on (see, e.g. [30, 45–47]). In this chapter, by presenting a class of
semi-analytical ERKN integrators and their implementation approaches for solving
nonlinear wave equations, we incorporated the spatial continuity into the structure-
preserving property as well. These ERKN integrators can nearly preserve both
the spatial continuity and the high oscillation of the original problem, in theory.
In order to effectively realize the ERKN integrators on a computer, we presented
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Fig. 13.6 Circular ring solitons: the function of sin(u/2) at the time t = 0, 4, 8, 11.5, 13 and 15

two algorithms accompanied with FFT technique, besides the direct calculation
procedure. It follows from the detailed analysis of the computational cost and the
memory storage that the algorithms presented in this chapter possess the superiority
of smaller computational cost and lower memory storage over the direct calculation
procedure. In particular, for nonlinear wave equations of high dimension, the direct
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Fig. 13.7 Circular ring solitons: contours of sin(u/2) at the time t = 0, 4, 8, 11.5, 13 and 15

calculation procedure could hardly be used to preserve the spatial continuity, due
to the crucial restriction on the dimension of the spatial grid points, while the
two algorithms, Algorithms 1 and 2, do not suffer from this trouble, due to the
larger maximum number of admissible spatial grid point. Moreover, Algorithm 2,
which is suitable for important symplectic ERKN integrators for Hamiltonian
systems, is a bit more efficient than Algorithm 1. Finally, we conducted numerical
experiments including one-dimensional and two-dimensional wave equations in
Sect. 13.6, and the numerical results show strong support for the theoretical analysis
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Fig. 13.8 Global energy errors (GHE) of ERKN17s8

presented in this chapter. The numerical results also demonstrate an important fact
that, in comparison with the finite difference method, the algorithms presented in
this chapter, which can nearly preserve both the spatial continuity and the high
oscillation, are robust and efficient when applied to nonlinear wave equations.

It is noted that for nonlinear wave equations equipped with other boundary
conditions, such as the homogeneous Dirichlet or Neumann boundary conditions,
we can also design such kind of efficient algorithms by just replacing the FFT with
the Discrete Fast Cosine/Sine Transform, once the Fourier spectral discretisation
is replaced by the cosine/sine scheme [18, 42, 43]. Furthermore, for general
boundary conditions, the Chebyshev spectral discretisation accompanied with the
FFT technique is also possible, and a further research in this area is needed.

The material in this chapter is based on the work by Mei et al. [48].
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