
Chapter 1
Oscillation-Preserving Integrators
for Highly Oscillatory Systems
of Second-Order ODEs

In this chapter, from the point of view of Geometric Integration, i.e. the numer-
ical solution of differential equations using integrators that preserve as many as
possible the geometric/physical properties of them, we first introduce the concept
of oscillation preservation for Runge–Kutta–Nyström (RKN)-type methods and
then analyse the oscillation-preserving behaviour of RKN-type methods in detail.
This chapter is also accompanied by numerical experiments which show the
importance of the oscillation-preserving property for a numerical method, and the
remarkable superiority of oscillation-preserving integrators for solving nonlinear
multi-frequency highly oscillatory systems.

1.1 Introduction

This chapter focuses on oscillation-preserving integrators for ordinary differential
equations and time-integration of partial differential equations with highly oscil-
latory solutions. As is known, one of the most difficult problems in the numerical
simulation of evolutionary problems is to deal with highly oscillatory problems, and
here we refer to two important review articles on this subject by Petzold et al. [1]
and Cohen et al. [2]. These type of problems occur in a variety of fields in science
and engineering such as quantum physics, fluid dynamics, acoustics, celestial
mechanics and molecular dynamics, including the semidiscretisation of nonlinear
wave equations and Klein–Gordon (KG) equations. The computation of highly
oscillatory problems contains numerous enduring challenges (see, e.g. [1–8]). It is
important to note that standard methods need a very small stepsize and hence a long
runtime to reach an acceptable accuracy for highly oscillatory differential equations.
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In this chapter, we focus on the following initial value problem of nonlinear multi-
frequency highly oscillatory second-order ordinary differential equations

{
y ′′ + My = f (y, y ′), t ∈ [0, T ],
y(0) = y0, y ′(0) = y ′

0,
(1.1)

where y ∈ R
d , and M ∈ R

d×d is a positive semi-definite matrix that implicitly
contains the dominant frequencies of the highly oscillatory problem and ‖M‖ �
max

{
1,

∥∥∥∥∂f

∂y

∥∥∥∥
}
. In some applications, the dimension d of the matrix M refers

to the number of degrees of freedom in the space semidiscretisation such as
semilinear wave equations, and then ‖M‖ will tend to infinity as finer space
semi-discretisations are carried out. Among typical examples of this type are semi-
discretised KG equations (see, e.g. [9–11]).

In the case where M = 0, (1.1) reduces to the conventional initial value problem
of second-order differential equations

{
y ′′ = f (y, y ′), t ∈ [0, T ],
y(0) = y0, y ′(0) = y ′

0.
(1.2)

As is known, the standard RKN methods (see [12]) are very popular for solving
(1.2). However, it may be believed that the standard RKN methods were not
initially designed for the nonlinear multi-frequency highly oscillatory system (1.1).
The standard RKN methods, including symplectic and symmetric RKN methods
may result in unfavorable numerical behaviour when applied to highly oscillatory
systems (see, e.g. [10, 13]). As a result, various RKN-type methods for solving
highly oscillatory differential equations have received a lot of attention (see, e.g.
[1, 2, 6, 8, 11, 13–28]).

In designing numerical integrators for efficiently solving (1.1), the so-called
matrix-variation-of-constants formula plays an important role, which is summarised
as follows:

Theorem 1.1 (Wu et al. [25]) If M ∈ R
d×d is a positive semi-definite matrix and

f : Rd × R
d → R

d in (1.1) is continuous, then the exact solution of (1.1) and its
derivative satisfy the following formula

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(t) =φ0
(
t2M

)
y0 + tφ1

(
t2M

)
y ′
0 +

∫ t

0
(t − τ )φ1

(
(t − τ )2M

)
f̂ (τ )dτ,

y ′(t) = − tMφ1
(
t2M

)
y0 + φ0

(
t2M

)
y ′
0 +

∫ t

0
φ0

(
(t − τ )2M

)
f̂ (τ )dτ,

(1.3)
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for t ∈ [0, T ], where

f̂ (τ ) = f
(
y(τ), y ′(τ )

)
and the matrix-valued functions φ0(V ) and φ1(V ) of V ∈ R

d×d are defined by

φi(V ) =
∞∑

k=0

(−1)kV k

(2k + i)! , (1.4)

for i = 0, 1, 2, · · · .

Remark 1.1 Actually, the matrix-variation-of-constants formula (1.3) provides an
implicit expression of the solution of the nonlinear multi-frequency highly oscil-
latory system (1.1), which gives a valuable insight into the underlying highly
oscillatory solution. The formula (1.3) also makes it possible to gain a new insight
into the standard RKN methods for (1.2) (see Sect. 1.2 for details).

If f (y, y ′) = 0, (1.3) yields

{
y(t) =φ0

(
t2M

)
y0 + tφ1

(
t2M

)
y ′
0,

y ′(t) = − tMφ1
(
t2M

)
y0 + φ0

(
t2M

)
y ′
0,

(1.5)

which exactly solves the system of multi-frequency highly oscillatory linear homo-
geneous equations

{
y ′′ + My = 0,

y(0) = y0, y ′(0) = y ′
0,

(1.6)

associated with the nonlinear highly oscillatory system (1.1).
Assume that both y(tn) and y ′(tn) at t = tn ∈ [0, T ] are prescribed, it follows

from the formula (1.3) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(tn + μh) = φ0(μ
2V )y(tn)

+ μhφ1(μ
2V )y′(tn) + h2

∫ μ

0
(μ − ζ )φ1

(
(μ − ζ )2V

)
f̂
(
tn + ζh

)
dζ,

y′(tn + μh) = − μhMφ1(μ
2V )y(tn)

+ φ0(μ
2V )y′(tn) + h

∫ μ

0
φ0

(
(μ − ζ )2V

)
f̂
(
tn + ζh

)
dζ,

(1.7)



4 1 Oscillation-Preserving Integrators for Highly Oscillatory Systems of Second-. . .

where V = h2M and 0 < μ � 1. The special case where μ = 1 in (1.7) gives

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(tn + h) = φ0(V )y(tn) + hφ1(V )y ′(tn) + h2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
f̂ (tn + hz)dz,

y ′(tn + h) = −hMφ1(V )y(tn) + φ0(V )y ′(tn) + h

∫ 1

0
φ0

(
(1 − z)2V

)
f̂ (tn + hz)dz.

(1.8)

Remark 1.2 We here remark that since the formula (1.3) is an implicit expression
of the solution of the nonlinear multi-frequency highly oscillatory system (1.1), the
formula (1.7) with 0 < μ < 1 exposes the structure of the internal stages, and
(1.8) expresses the structure of the updates in the design of an RKN-type integrator
specially for solving the nonlinear multi-frequency highly oscillatory system (1.1).

In applications, an important special case of (1.1) is that the right-hand side function
f does not depend on y ′, i.e.,

{
y ′′ + My = f (y), t ∈ [0, T ],
y(0) = y0, y ′(0) = y ′

0.
(1.9)

The case where M = 0 in (1.9) gives

{
y ′′ = f (y), t ∈ [0, T ],
y(0) = y0, y ′(0) = y ′

0.
(1.10)

Remark 1.3 Here it is important to realise that the matrix-variation-of-constants
formula (1.3) is also valid for the nonlinear multi-frequency highly oscillatory
system (1.9), and so are the formulae (1.5), (1.7) and (1.8), provided we replace
f̂ (τ ) = f

(
y(τ), y ′(τ )

)
appearing in (1.3) with f̂ (τ ) = f̂

(
y(τ)

)
.

Obviously, the formula (1.5) implies that if yn = y(tn) and y ′
n = y ′(tn), then we

have {
y(tn + cih) =φ0

(
c2i V

)
yn + cihφ1

(
c2i V

)
y ′
n,

y ′(tn + cih) = − cihMφ1
(
c2i V

)
yn + φ0

(
c2i V

)
y ′
n,

(1.11)

for any tn, t = tn + cih ∈ [0, T ], where h > 0 and 0 < ci � 1 for i = 1, · · · , s.
In what follows, it is convenient to introduce the block vector which will be used

in the analysis of oscillation preservation in Sect. 1.4:

Ŷ = (Ŷ
ᵀ
1 , · · · , Ŷᵀ

s )ᵀ, (1.12)
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where

Ŷi = y(tn + cih),

express the exact solutions to the multi-frequency highly oscillatory linear homoge-
neous equation (1.6) at t = tn + cih for i = 1, · · · , s. It is clear from (1.11) and
(1.12) that Ŷ is a block vector, which can be expressed in the block-matrix notation
with Kronecker products as

Ŷ = φ0(C
2 ⊗ V )(e ⊗ yn) + h(C ⊗ Id)φ1(C

2 ⊗ V )(e ⊗ y ′
n), (1.13)

where e = (1, 1, · · · , 1)ᵀ is an s × 1 vector,

C = diag(c1, · · · , cs)

is an s × s diagonal matrix, and the block diagonal matrices are given by

φ0(C
2 ⊗ V ) = diag(φ0(c

2
1V ), · · · , φ0(c

2
s V )),

(C ⊗ Id)φ1(C
2 ⊗ V ) = diag(c1φ1(c

2
1V ), · · · , csφ1(c

2
s V )).

If t = tn + h, namely, ci = 1, the formula (1.11) is identical to

{
y(tn + h) =φ0

(
V
)
yn + hφ1

(
V
)
y ′
n,

y ′(tn + h) = − hMφ1
(
V
)
yn + φ0

(
V
)
y ′
n.

(1.14)

Historically, the ARKNmethods and ERKN integrators were successively proposed
and investigated in order to solve the highly oscillatory system (1.1) and (1.9),
respectively. Although both ARKN methods and ERKN integrators were proposed
and developed from single frequency to multi-frequency oscillatory problems in
chronological order, throughout this chapter we are only interested in nonlinear
multi-frequency highly oscillatory systems.

1.2 Standard Runge–Kutta–Nyström Schemes
from the Matrix-Variation-of-Constants Formula

It is interesting to point out that the formula (1.7) provides an enlightening approach
to standard RKN methods for solving second-order initial value problems (1.2)
numerically, although Nyström established them in 1925 (see Nyström [12]). To
clarify this, using the matrix-variation-of-constants formula (1.7) with M = 0, we
are easily led to the following formulae of integral equations for second-order initial
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value problems (1.2):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(tn + μh) = y(tn) + μhy ′(tn) + h2
∫ μ

0
(μ − z)f̂ (tn + hz) dz,

y ′(tn + μh) = y ′(tn) + h

∫ μ

0
f̂ (tn + hz) dz,

(1.15)

for 0 < μ < 1, and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(tn + h) = y(tn) + hy ′(tn) + h2
∫ 1

0
(1 − z)f̂ (tn + hz) dz,

y ′(tn + h) = y ′(tn) + h

∫ 1

0
f̂ (tn + hz) dz,

(1.16)

for μ = 1, where f̂ (ν) := f
(
y(ν), y ′(ν)

)
.

Clearly, the formulae (1.15) and (1.16) contain and generate the structure of
the internal stages and updates of a Runge–Kutta-type integrator for solving (1.2),
respectively. This indicates the standard RKN scheme in a quite simple and natural
way compared with the original idea (with the block vector (yᵀ, y ′ᵀ)ᵀ regarded as
the new variable, (1.2) can be transformed into a system of first-order differential
equations of doubled dimension, and then we apply Runge–Kutta methods to the
system of first-order differential equations, accompanying some simplifications).
Approximating the integrals in (1.15) and (1.16) by using a suitable quadrature
formula with nodes c1, · · · , cs , we straightforwardly obtain the standard RKN
methods (see Nyström [12]) as follows.

Definition 1.1 An s-stage RKN method for the initial value problem (1.2) is
defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + cihy ′
n + h2

s∑
j=1

āij f (Yj , Y
′
j ), i = 1, · · · , s,

Y ′
i = y ′

n + h

s∑
j=1

aij f (Yj , Y
′
j ), i = 1, · · · , s,

yn+1 = yn + hy ′
n + h2

s∑
i=1

b̄if (Yi, Y
′
i ),

y ′
n+1 = y ′

n + h

s∑
i=1

bif (Yi, Y
′
i ),

(1.17)

where āij , aij , b̄i , bi, ci for i, j = 1, · · · , s are real constants.
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The standard RKN method (1.17) also can be expressed in the partitioned Butcher
tableau as follows:

c Ā A

b̄ᵀ bᵀ
=

c1 ā11 · · · ā1s a11 · · · a1s
...

...
. . .

...
...

. . .
...

cs ās1 · · · āss as1 · · · ass

b̄1 · · · b̄s b1 · · · bs

,

where b̄ = (b̄1, · · · , b̄s )
ᵀ, b = (b1, · · · , bs)

ᵀ and c = (c1, · · · , cs)
ᵀ are s-

dimensional vectors, and Ā = (āij ) and A = (aij ) are s × s constant matrices.

1.3 ERKN Integrators and ARKN Methods Based
on the Matrix-Variation-of-Constants Formula

The integration of highly oscillatory differential equations has been a challenge for
numerical computation for a long time. Much effort has been focused on preserving
important high-frequency oscillations. The adapted RKN (ARKN) methods and
extended RKN (ERKN) integrators were proposed one after another.

1.3.1 ARKN Integrators

What is the difference between a standard RKN method and an ARKN method for
(1.1)? Inheriting the internal stages of standard RKN methods (ignoring the matrix-
variation-of-constants formula (1.7)) and approximating the integrals appearing
in (1.8) by a suitable quadrature formula with nodes c1, · · · , cs to modify only
the updates of standard RKN methods yields the ARKN methods for the nonlinear
multi-frequency highly oscillatory system (1.1).
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Definition 1.2 (Wu et al. [29]) An s-stage ARKN method with stepsize h > 0 for
solving the multi-frequency highly oscillatory system (1.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + hciy
′
n + h2

s∑
j=1

āij

(
f (Yj , Y

′
j ) − MYj

)
, i = 1, · · · , s,

Y ′
i = y ′

n + h

s∑
j=1

aij

(
f (Yj , Y

′
j ) − MYj

)
, i = 1, · · · , s,

yn+1 = φ0(V )yn + hφ1(V )y ′
n + h2

s∑
i=1

b̄i(V )f (Yi, Y
′
i ),

y ′
n+1 = −hMφ1(V )yn + φ0(V )y ′

n + h

s∑
i=1

bi(V )f (Yi, Y
′
i ),

(1.18)

where āij , aij , ci for i, j = 1, · · · , s are real constants, and b̄i(V ), bi(V ) for
i = 1, · · · , s in the updates are matrix-valued functions of V = h2M . The ARKN
method (1.18) can also be denoted by the partitioned Butcher tableau

c Ā A

b̄ᵀ(V ) bᵀ(V )

=

c1 ā11 · · · ā1s a11 · · · a1s
...

...
. . .

...
...

. . .
...

cs ās1 · · · āss as1 · · · ass

b̄1(V ) · · · b̄s(V ) b1(V ) · · · bs(V )

.

In the block-matrix notation with Kronecker products, (1.18) can be expressed as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y = e ⊗ yn + hc ⊗ y ′
n + h2(Ā ⊗ Id)

(
f (Y, Y ′) − (Is ⊗ M)Y

)
,

Y ′ = e ⊗ y ′
n + h(A ⊗ Id)

(
f (Y, Y ′) − (Is ⊗ M)Y

)
,

yn+1 = φ0(V )yn + hφ1(V )y ′
n + h2b̄ᵀ(V )f (Y, Y ′),

y ′
n+1 = −hMφ1(V )yn + φ0(V )y ′

n + hbᵀ(V )f (Y, Y ′),

(1.19)

where e is an s × 1 vector of units, and the block vectors involved are defined by

Y = (
Y
ᵀ
1 , · · · , Yᵀ

s

)ᵀ
, Y ′ = (

Y ′
1
ᵀ
, · · · , Y ′

s
ᵀ)ᵀ

,

f (Y, Y ′) = (
f (Y1, Y

′
1)

ᵀ, · · · , f (Ys, Y
′
s )

ᵀ)ᵀ.
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It is noted again that the internal stages of an ARKNmethod are the same as those
of standard RKN methods, and only its updates have been modified. Concerning
single-frequency ARKN methods, readers are referred to [14, 30], and the research
on symplectic ARKNmethods can be found in [31, 32]. Besides, Franco was the first
to attempt to extend his single-frequencyARKNmethods in [14] to multi-frequency
systems (1.9), but his order conditions are based on single-frequency theory (see
[30, 33]).

It is also important to emphasise that the internal stages and the updates for
an RKN-type method when applied to (1.1) should play the same role in the
approximation based on its matrix-variation-of-constants formula (1.7), and the
well-known fact that

Yi ≈ y(tn + cih), Y ′
i ≈ y ′(tn + cih),

for i = 1, · · · , s and

yn+1 ≈ y(tn+1) = y(tn + h), y ′
n+1 ≈ y ′(tn+1) = y ′(tn + h).

Unfortunately, from this point of view, it can be observed from (1.18) that the
internal stages of an ARKN method are not put on an equal footing in the light
of the matrix-variation-of-constants formula (1.7). This means that the revision or
modification of an ARKN method for the multi-frequency highly oscillatory system
does not go far enough and is still far from being satisfactory from both a theoretical
and practical perspective. This key observation motivates ERKN integrators for the
nonlinearmulti-frequency highly oscillatory system (1.9), which can also be thought
of as improved ARKN methods.

1.3.2 ERKN Integrators

Since we have mentioned that the ARKN method is still not satisfactory due to its
internal stages, it is natural to improve both the internal stages and updates of an
RKN method in the light of the matrix-variation-of-constants formulae (1.7) and
(1.8) with f̂ (ζ ) = f

(
y(ζ )

)
. To this end, approximating the integrals appearing in

the formulae by using a suitable quadrature formula with nodes c1, · · · , cs leads to
the following ERKN integrator for the nonlinear multi-frequency highly oscillatory
system (1.9).
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Definition 1.3 (Wu et al. [25]) An s-stage ERKN integrator for the numerical
integration of the nonlinear multi-frequency highly oscillatory system (1.9) with
stepsize h > 0 is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V )yn + cihφ1(c

2
i V )y ′

n + h2
s∑

j=1

āij (V )f (Yj ), i = 1, · · · , s,

yn+1 = φ0(V )yn + hφ1(V )y ′
n + h2

s∑
i=1

b̄i(V )f (Yi),

y ′
n+1 = −hMφ1(V )yn + φ0(V )y ′

n + h

s∑
i=1

bi(V )f (Yi),

(1.20)

where ci for i = 1, · · · , s are real constants, bi(V ), b̄i(V ) for i = 1, · · · , s, and
āij (V ) for i, j = 1, · · · , s are matrix-valued functions of V = h2M .

The scheme (1.20) can also be denoted by the following partitioned Butcher
tableau

c Ā(V )

b̄ᵀ(V )

bᵀ(V )

=

c1 ā11(V ) · · · ā1s(V )
...

...
. . .

...

cs ās1(V ) · · · āss(V )

b̄1(V ) · · · b̄s(V )

b1(V ) · · · bs(V )

.

It will be convenient to express the equations of (1.20) in block-matrix notation in
terms of Kronecker products

⎧⎪⎪⎨
⎪⎪⎩

Y = φ0(C
2 ⊗ V )(e ⊗ yn) + h(C ⊗ Id)φ1(C

2 ⊗ V )(e ⊗ y ′
n) + h2Ā(V )f (Y ),

yn+1 = φ0(V )yn + hφ1(V )y ′
n + h2b̄ᵀ(V )f (Y ),

y ′
n+1 = −hMφ1(V )yn + φ0(V )y ′

n + hbᵀ(V )f (Y ),

(1.21)
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where e = (1, 1, · · · , 1)ᵀ is an s × 1 vector of units, c = (c1, · · · , cs)
ᵀ is an s × 1

vector of nodes, C = diag(c1, · · · , cs) is an s × s diagonal matrix, and the block
vectors and block diagonal matrices are given by

Y =
⎡
⎢⎣

Y1
...

Ys

⎤
⎥⎦ , f (Y ) =

⎡
⎢⎣

f (Y1)
...

f (Ys)

⎤
⎥⎦ ,

φ0(C
2 ⊗ V ) = diag(φ0(c

2
1V ), · · · , φ0(c

2
s V )),

(C ⊗ Id)φ1(C
2 ⊗ V ) = diag(c1φ1(c

2
1V ), · · · , csφ1(c

2
s V )).

Here, it should be remarked that both internal stages and updates of an ERKN
integrator have been revised and improved in terms of the matrix-variation-of-
constants formulae (1.7) and (1.8) with f̂ (ζ ) = f

(
y(ζ )

)
. This class of ERKN

integrators has been well developed, and we will further present their stability and
convergence analysis in Chap. 3. Moreover, we will also make an attempt to discuss
ERKN integrators combined with Fourier pseudospectral discretisation for solving
semilinear wave equations in Chap. 3.

If f (y) = 0 in (1.9), then accordingly (1.20) reduces to

⎧⎪⎪⎨
⎪⎪⎩

Yi = φ0(c
2
i V )yn + cihφ1(c

2
i V )y ′

n, i = 1, · · · , s,

yn+1 = φ0(V )yn + hφ1(V )y ′
n,

y ′
n+1 = −hMφ1(V )yn + φ0(V )y ′

n.

(1.22)

In terms of Kronecker products with block-matrix notation, (1.22) can be expressed
by

⎧⎪⎪⎨
⎪⎪⎩

Y = φ0(C
2 ⊗ V )(e ⊗ yn) + h(C ⊗ Id)φ1(C

2 ⊗ V )(e ⊗ y ′
n),

yn+1 = φ0(V )yn + hφ1(V )y ′
n,

y ′
n+1 = −hMφ1(V )yn + φ0(V )y ′

n.

(1.23)

It follows from (1.13) and (1.14) that both the internal stages and updates of
an ERKN integrator exactly solve the multi-frequency highly oscillatory linear
homogeneous equation (1.6) on noticing the fact that

Y = Ŷ , yn+1 = y(tn+1), y ′
n+1 = y ′(tn+1). (1.24)

It is worth pointing out that (1.24) is an essential feature of ERKN integrators,
especially for the effective treatment of nonlinear multi-frequency highly oscillatory
systems and this property inherits and develops the idea of the Filon-type method
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for highly oscillatory integrals (see, e.g. [34, 35]), since the dominant oscillation
source introduced by the linear term My has been calculated explicitly.

It is known that energy-preservingmethods can be expressed as so-called contin-
uous stage Runge–Kutta methods. Here, from the perspective of the continuous-
stage Runge–Kutta methods (see, e.g. [36–41]), it is also worth noting that
continuous-stage ERKN integrators for (1.9) have not received enough attention.
We will next introduce the definition of continuous-stage ERKN integrators.

Definition 1.4 A continuous-stage ERKN integrator for solving the nonlinear
Hamiltonian system (1.9) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yτ = φ0(τ
2V )yn + τhφ1(τ

2V )y ′
n + h2

∫ 1

0
Āτ,σ (V )f (Yσ )dσ, 0 � τ � 1,

yn+1 = φ0(V )yn + hφ1(V )y ′
n + h2

∫ 1

0
b̄τ (V )f (Yτ )dτ,

y ′
n+1 = −hMφ1(V )yn + φ0(V )y ′

n + h

∫ 1

0
bτ (V )f (Yτ )dτ,

(1.25)

where b̄τ (V ), bτ (V ) are matrix-valued functions of τ and V , and Āτ,σ (V ) is a
matrix-valued function depending on τ, σ and V .

We will further discuss continuous-stage extended Runge–Kutta–Nyströmmeth-
ods for highly oscillatory Hamiltonian systems in Chap. 2. Continuous-stage Leap-
frog schemes for semilinear Hamiltonian wave equations will be investigated in
detail in Chap. 12.

1.4 Oscillation-Preserving Integrators

It is well known that efficiency is often an important consideration for solving
multiple high-frequency oscillatory ordinary differential equations over long-time
intervals, although standard RKN methods are popular and effective for second-
order ordinary differential equations in many applications. One needs to select
an appropriate mathematical or numerical approach to track the high-frequency
oscillation in order to use larger stepsizes over long-time intervals.

In the last few decades, geometric numerical integration for differential equations
has received more and more attention in order to respect their structural invari-
ants and geometry. The geometric numerical integration for nonlinear differential
equations has led to the development of numerical schemes which systematically
incorporate qualitative features of the underlying problem into their structures.
Accordingly, first of all, a numerical algorithm should respect the highly oscillatory
structure of the underlying continuous system (1.1) or (1.9), in the sense of Geomet-
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ric Integration. On noticing that the Filon-type method (see, e.g. [34, 35]) for highly
oscillatory integrals is very successful, and the idea behind this method is that the
oscillatory part involved in these integrals must be calculated explicitly, this point is
also essential for efficiently solving the nonlinear multi-frequency highly oscillatory
system (1.1) or (1.9). This idea for exponential or trigonometric integrators, in fact,
has been used for decades by many authors (see, e.g. [4, 15, 16, 42–46]).

It is noted that a comprehensive review of exponential integrators can be found
in Hochbruck and Ostermann [46], in which Gautschi-type methods, impulse and
mollified impulse methods (see, e.g. Grubmüller et al. [47]), multiple time-stepping
methods (see Hairer et al. [15], Chapter VIII. 4), and adiabatic integrators (see
Lorenz et al. [48]) were reviewed in detail for the highly oscillatory second-order
differential equation, and for the singularly perturbed second-order differential
equation, respectively. Hence, in this chapter, we won’t cover them again.

Here, it is clear that high oscillations are brought by the linear part My of (1.1)
or (1.9) which should be solved explicitly and exactly for an efficient numerical
integrator. Therefore, it will be convenient to introduce the concept of oscillation-
preserving numerical methods for solving the nonlinear highly oscillatory system
(1.1) or (1.9). Taking into account the significant fact that the internal stages Yi

for i = 1, · · · , s, must be nonlinearly involved in the updates yn+1 and y ′
n+1 at

each time step for an RKN-type method when applied to (1.1) or (1.9), we present
the following definition of oscillation-preserving numerical methods for efficiently
solving the nonlinear multi-frequency highly oscillatory system (1.1) or (1.9).

Definition 1.5 An RKN-type method for solving the nonlinear multi-frequency
highly oscillatory system (1.1) or (1.9) is oscillation preserving, if its internal stages
Yi for i = 1, · · · , s, together with its updates yn+1 and y ′

n+1 at each time step
explicitly and exactly solve the highly oscillatory homogeneous linear equation (1.6)
associated with (1.1) or (1.9). Apart from this, if only the updates of an RKN-type
method can exactly solve the highly oscillatory homogeneous linear equation (1.6),
then the RKN-type method is called to be partly oscillation preserving.

Theorem 1.2 An ERKN integrator is oscillation preserving, but an ARKN method
is partly oscillation preserving, and a standard RKN method is neither oscillation
preserving, nor partly oscillation preserving.

Proof In the light of Definition 1.5, it is very clear from (1.22) or (1.23) that an
ERKN integrator is oscillation preserving.

Unfortunately, an ARKN method is not oscillation preserving due to its internal
stages. In fact, applying the internal stages of the ARKN method (1.18) to (1.6)
gives

Yi = yn + cihy ′
n − h2M

s∑
j=1

āij Yj ,
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for i = 1, · · · , s, which leads to

Y = e ⊗ yn + h(C ⊗ Id)(e ⊗ y ′
n) − h2(Ā ⊗ Id)(Is ⊗ M)Y, (1.26)

where e is an s × 1 vector of units,

h(C ⊗ Id) = diag(hc1Id , · · · , hcsId),

and ⊗ represents Kronecker products. We then obtain

Y = (
Is ⊗ Id + h2(Ā ⊗ Id)(Is ⊗ M)

)−1(
e ⊗ yn + h(C ⊗ Id)(e ⊗ y ′

n)
)

= (
Is ⊗ Id + h2(Ā ⊗ Id)(Is ⊗ M)

)−1(
e ⊗ yn

)
+(

Is ⊗ Id + h2(Ā ⊗ Id)(Is ⊗ M)
)−1

h(C ⊗ Id)
(
e ⊗ y ′

n

)
, (1.27)

provided det
(
Is ⊗ Id + h2(Ā ⊗ Id)(Is ⊗ M)

) 
= 0. In comparison with Ŷ defined
in (1.13), this implies that

Y 
= Ŷ = φ0(C
2 ⊗ V )(e ⊗ yn) + h(C ⊗ Id)φ1(C

2 ⊗ V )(e ⊗ y ′
n),

i.e.,

Yi 
= Ŷi = φ0
(
c2i V

)
yn + cihφ1

(
c2i V

)
y ′
n,

for i = 1, · · · , s, on noticing the fact that

(C ⊗ Id)φ1(C
2 ⊗ V ) = φ1(C

2 ⊗ V )(C ⊗ Id)

and

φ0
(
c2i V

) 
= φ1
(
c2i V

)
,

for i = 1, · · · , s. Therefore, it follows from Definition 1.5 that an ARKN method
cannot be oscillation preserving, although it is partly oscillation preserving due to
its updates. Since the internal stages of standard RKNmethods are the same as those
of ARKNmethods, a standard RKNmethod is not oscillation preserving.Moreover,
in a similar way, it can be shown that the updates of a standard RKN method cannot
exactly solve (1.6). This implies that a standard RKN method is neither oscillation
preserving nor partly oscillation preserving, because both its internal stages and
updates fail to exactly solve the highly oscillatory homogeneous linear equation
(1.6) associated with (1.1) or (1.9).

The proof is complete. ��
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Clearly, it follows from (1.25) that a continuous-stage ERKN method for (1.9) is
also oscillation preserving.

Theorem 1.2 presents and confirms a fact that an ERKN integrator possesses
excellent oscillation-preserving behaviour for solving the nonlinear highly oscilla-
tory system (1.9) in comparison with RKN and ARKN methods.

With regard to the construction of arbitrary order ERKN integrators for (1.9),
readers are referred to a recent paper (see [18]). Concerning the order conditions of
ERKN integrators for (1.9), readers are referred to [26, 49].

1.5 Towards Highly Oscillatory Nonlinear Hamiltonian
Systems

As is known, Hamiltonian systems have very important applications. Nonlinear
Hamiltonian systems with highly oscillatory solutions frequently occur in areas
of physics and engineering such as molecular dynamics, classical and quantum
mechanics. Numerical methods used to treat them also depend on the knowledge
of certain other characteristics of the solution besides high-frequency oscillation.

We now consider the initial value problem of the nonlinear multi-frequency
highly oscillatory Hamiltonian system

{
q̈ + Mq = f (q), t ∈ [0, T ],
q(0) = q0, q̇(0) = q̇0,

(1.28)

where M is a d × d symmetric positive semi-definite matrix and f : Rd → R
d is a

continuous nonlinear function of q with f (q) = −∇U(q) for a real-valued function
U(q). Then, the highly oscillatory Hamiltonian system (1.28) can be rewritten as the
standard format {

ṗ = −∇qH(p, q),

q̇ = ∇pH(p, q),
(1.29)

with the initial values q(0) = q0, p(0) = p0 = q̇0 and the Hamiltonian

H(p, q) = 1

2
pᵀp + 1

2
qᵀMq + U(q). (1.30)

It is well known that two remarkable features of a Hamiltonian system are the
symplecticity of its flow and the conservation of the Hamiltonian. Consequently,
for a numerical integrator for (1.29), in addition to oscillation preservation, these
two features should be respected as much as possible in the spirit of geometric
numerical integration. In the development of symplectic integration, the earliest
significant contributions to this field were due to Feng Kang, who was a pioneer
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in stressing the importance of using symplectic integrators when the equations to be
solved are Hamiltonian systems (see [50–52]). It is also worth noting the earlier
important work on symplectic integration by J. M. Sanz-Serna, who first found
and analysed symplectic Runge–Kutta schemes for Hamiltonian systems (see Sanz-
Serna [53]). For the survey papers and monographs on numerical approaches to
dealing with nonlinear Hamiltonian differential equations with highly oscillatory
solutions, readers are referred to [1, 2, 13, 15, 54, 55].

1.5.1 SSMERKN Integrators

Symplecticity is an important characteristic property of Hamiltonian systems and
symplectic methods have been well developed (see, e.g. [15, 52, 53, 56–60]).
Symplectic ERKN methods for highly oscillatory Hamiltonian systems have been
analysed (see Wu et al. [24]). Symplectic and symmetric multi-frequency ERKN
integrators (SSMERKN integrators) have been proposed and analysed for the
nonlinear multi-frequency highly oscillatory Hamiltonian system (1.29) in Wu et
al. [49].

We now state the coupled conditions of explicit SSMERKN integrators for
(1.29).

Theorem 1.3 An s-stage explicit multi-frequency ERKN integrator for integrating
(1.29) is symplectic and symmetric if its coefficients are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ci = 1 − cs+1−i , di = ds+1−i 
= 0, i = 1, 2, · · · , s,

bi(V ) = diφ0(c
2
s+1−iV ), i = 1, 2, · · · , s,

b̄i(V ) = dics+1−iφ1(c
2
s+1−iV ), i = 1, 2, · · · , s,

āij (V ) = 1

di

(
bi(V )b̄j (V ) − b̄i(V )bj (V )

)
, i > j, i, j = 1, 2, · · · , s.

(1.31)

The detailed proof of this theorem can be found in Wu et al. [49]. It is noted
that when V → 0d×d , the ERKN methods reduce to standard RKN methods for

solving Hamiltonian systems with the Hamiltonian H(p, q) = 1

2
pᵀp + U(q). The

following result can be deduced from Theorem 1.3.

Theorem 1.4 An s-stage explicit RKN method with the coefficients

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci = 1 − cs+1−i, di = ds+1−i 
= 0, i = 1, 2, · · · , s,

bi = di, b̄i = dics+1−i , i = 1, 2, · · · , s,

āij = 1

di

(
bib̄j − b̄ibj

)
, i > j, i, j = 1, 2, · · · , s,

(1.32)
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is symplectic and symmetric. In (1.32), di for i = 1, 2, · · · ,

⌊
s + 1

2

⌋
, are real

numbers and can be chosen based on the order conditions of RKN methods or other

requirements, where

⌊
s + 1

2

⌋
denotes the integer part of

s + 1

2
.

The proof of Theorem 1.4 can be found in [49].

Theorem 1.5 An SSMERKN integrator is oscillation preserving. However, a sym-
plectic and symmetric RKN method is neither oscillation preserving, nor partly
oscillation preserving.

Proof It follows directly from the definition of oscillation preservation (Definition
1.5). ��

Hence, we conclude from Theorem 1.5 that a symplectic and symmetric RKN
method may not be a good choice for efficiently solving the nonlinear multi-
frequency and highly oscillatory Hamiltonian system (1.29) due to its lack of
oscillation preservation, whereas an SSMERKN integrator is preferred. This point
will also be observed from the results of numerical experiments in Sect. 1.7.

With regard to energy-preserving continuous-stage extended Runge–Kutta–
Nyström methods for nonlinear Hamiltonian systems with highly oscillatory solu-
tions, see Chap. 2 for details.

1.5.2 Trigonometric Fourier Collocation Methods

Geometric numerical integration is still a very active subject area andmuchwork has
yet to be done. Accordingly, the exponential/trigonometric integrator has become
increasingly important (see, e.g. [8, 13, 15, 20, 61–64]). The original attempts at
exploring exponential/trigonometric algorithms for the oscillatory system (1.28)
with the special structure brought by the linear term Mq were motivated by many
fields of research such as mechanics, astronomy, quantum physics, theoretical
physics, molecular dynamics, semidiscrete wave equations approximated by the
method of lines or spectral discretisation. The exponential/trigonometric methods
take advantage of the special structure to achieve an improved qualitative behaviour,
and produce a more accurate long-time integration than standard methods.

We next consider the highly oscillatory system (1.28) which is restricted to the
interval [0, h] :

q̈(t) + Mq(t) = f (q(t)), q(0) = q0, q̇(0) = q̇0, t ∈ [0, h]. (1.33)
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It follows from the matrix-variation-of-constants formula that the exact solution of
the system (1.33) and its derivative satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(h) = φ0(V )q0 + hφ1(V )p0 + h2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
f (q(hz))dz,

p(h) = −hMφ1(V )q0 + φ0(V )p0 + h

∫ 1

0
φ0

(
(1 − z)2V

)
f (q(hz))dz,

(1.34)

for stepsize h > 0, where V = h2M .
Choose an orthogonal polynomial basis {P̃j }∞j=0 on the interval [0, 1]: e.g.,

the shifted Legendre polynomials over the interval [0, 1], scaled in order to be
orthonormal. Hence, we have

∫ 1

0
P̃i (x)P̃j (x)dx = δij , deg

(
P̃j

) = j, i, j � 0,

where δij is the Kronecker symbol. The right-hand side of (1.33) can be rewritten
as

f (q(ξh)) =
∞∑

j=0

P̃j (ξ)γj (q), ξ ∈ [0, 1]; γj (q) :=
∫ 1

0
P̃j (τ )f (q(τh))dτ.

(1.35)

For the sake of simplicity we now use γj (q) to denote the coefficients γj (h, f (q))

involved in the Fourier expansion.
We now state a result which follows from (1.34) and (1.35), and the proof can be

found in Wang et al. [8].

Theorem 1.6 The solution of (1.33) and its derivative satisfy⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(h) = φ0(V )q0 + hφ1(V )p0 + h2
∞∑

j=0

I1,j γj (q),

p(h) = −hMφ1(V )q0 + φ0(V )p0 + h

∞∑
j=0

I2,j γj (q),

(1.36)

where

I1,j :=
∫ 1

0
P̃j (z)(1 − z)φ1

(
(1 − z)2V

)
dz, I2,j :=

∫ 1

0
P̃j (z)φ0

(
(1 − z)2V

)
dz.

(1.37)
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Naturally, a practical scheme to solve (1.28) needs to truncate the series (1.35)
after r (r � 2) terms and this means replacing the initial value problem (1.28) with
the following approximate problem

⎧⎪⎪⎨
⎪⎪⎩

q̃ ′(ξh) = p̃(ξh), q̃(0) = q0,

p̃′(ξh) = −Mq̃(ξh) +
r−1∑
j=0

P̃j (ξ)γj (q̃), p̃(0) = p0.
(1.38)

We then obtain the implicit solution of (1.38) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̃(h) = φ0(V )q0 + hφ1(V )p0 + h2
r−1∑
j=0

I1,j γj (q̃),

p̃(h) = −hMφ1(V )q0 + φ0(V )p0 + h

r−1∑
j=0

I2,j γj (q̃).

(1.39)

The analysis stated above leads to the following definition of the trigonometric
Fourier collocation methods.

Definition 1.6 (Wang et al. [8]) A trigonometric Fourier collocation (TFC)
method for integrating the oscillatory system (1.28) or (1.29) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi = φ0(c
2
i V )q0 + cihφ1(c

2
i V )p0 + (cih)2

r−1∑
j=0

I1,j,ci

k∑
l=1

blP̃j (cl)f (vl),

i = 1, 2, · · · , k,

v(h) = φ0(V )q0 + hφ1(V )p0 + h2
r−1∑
j=0

I1,j

k∑
l=1

blP̃j (cl)f (vl),

u(h) = −hMφ1(V )q0 + φ0(V )p0 + h

r−1∑
j=0

I2,j

k∑
l=1

blP̃j (cl)f (vl),

(1.40)

where h is the stepsize, r is an integer satisfying 2 � r � k, P̃j are defined by

P̃j (x) = (−1)j
√
2j + 1

j∑
k=0

(
j

k

) (
j + k

k

)
(−x)k, j = 0, 1, · · · , x ∈ [0, 1],

(1.41)
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and cl, bl for l = 1, 2, · · · , k, are the nodes, and the quadrature weights of a
quadrature formula, respectively. I1,j , I2,j , and I1,j,ci are well determined by the
generalised hypergeometric functions (see Wang et al. [8] for details):

mFn

[
α1, α2, · · · , αm;
β1, β2, · · · , βn;x

]
=

∞∑
l=0

m∏
i=1

(αi)l

n∏
i=1

(βi)l

xl

l! . (1.42)

In (1.42), the Pochhammer symbol (z)l is recursively defined by (z)0 = 1 and (z)l =
z(z + 1) · · · (z + l − 1), l ∈ N, and the parameters αi and βi are arbitrary complex
numbers, except that βi can be neither zero nor a negative integer.

Remark 1.4 We remark that φ0(V ) and φ1(V ) defined by (1.4) can also be
expressed by the generalised hypergeometric function 0F1:

φ0(V ) = 0F1

⎡
⎣−;
1

2
; − V

4

⎤
⎦ , φ1(V ) = 0F1

⎡
⎣−;
3

2
; − V

4

⎤
⎦ . (1.43)

The other φj (V ) for j � 2 can be recursively obtained from φ0(V ) and φ1(V )

(see, e.g. [54]). This hypergeometric representation is useful, and most modern
software, e.g., Maple, Mathematica, andMatlab, is well equipped for the calculation
of generalised hypergeometric functions.

Remark 1.5 Although the TFC method (1.40) approximates the solution q(t), p(t)

of the system (1.28) or (1.29) only in the time interval [0, h], the values v(h), u(h)

can be considered as the initial values for a new initial value problem approximating
q(t), p(t) in the next time interval [h, 2h]. In such a time-stepping routine manner,
we can extend the TFC methods to the interval [(i − 1)h, ih] for any i � 2 and
finally obtain a TFC method for q(t), p(t) in an arbitrary interval [0, Nh]. For
more details, readers are referred to Wang et al. [8].

Concerning the order of TCF methods, we assume that the quadrature formula
for γj (q) in (1.35) is of order m − 1. Then the order of TFC methods is of order
n = min{m, 2r}. The details can be found in Wang et al. [8].

Theorem 1.7 The TFC method (1.40) is oscillation preserving.

Proof Clearly, it follows from the definition of TFC method (1.40) that the TFC
method (1.40) is a kind of k-stage RKN-type method, and both its internal stages
and updates exactly solve the system of multi-frequency highly oscillatory linear
homogeneous equations (1.6). Consequently, the TFC method (1.40) is oscillation
preserving. ��
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It is worth mentioning that the TFC method (1.40) is based on the variation-of-
constants formula and a local Fourier expansion of the underlying problem, via the
approximation of orthogonal polynomial basis. The approximation of orthogonal
trigonometric basis is another possible strategy in the effort to solve (1.33).

1.5.3 The AAVF Method and AVF Formula

It is known that one of the important characteristic properties of a Hamiltonian
system is energy conservation. The study of numerical energy conservation for
oscillatory systems has appeared in the literature (see, e.g. Hairer et al. [65, 66], Li
et al. [7]). In particular, the average-vector-field (AVF) formula (see, e.g. [67, 68])
for (1.10) is of great importance, once (1.10) is a Hamiltonian system.

It follows from the matrix-variation-of-constants formula (1.3) that the solution
of (1.28) and its derivative satisfy the following equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(t) =φ0
(
t2M

)
q0 + tφ1

(
t2M

)
p0 +

∫ t

0
(t − ζ )φ1

(
(t − ζ )2M

)
f̂ (ζ )dζ,

p(t) = − tMφ1
(
t2M

)
q0 + φ0

(
t2M

)
p0 +

∫ t

0
φ0

(
(t − ζ )2M

)
f̂ (ζ )dζ,

(1.44)

where t is any real numbers and f̂ (ζ ) = f
(
q(ζ )

)
.

The formula (1.44)motivates the following integrator with stepsize h of the form:

{
qn+1 = φ0(V )qn + hφ1(V )pn + h2IQ1,

pn+1 = −hMφ1(V )qn + φ0(V )pn + hIQ2,
(1.45)

where V = h2M , and IQ1, IQ2 can be determined by the energy-preserving
condition at each time step:

H(pn+1, qn+1) = H(pn, qn).

We now state a sufficient condition (see, e.g. Wang and Wu [21]) for the scheme
(1.45) to yield energy preservation.

Theorem 1.8 If

IQ1 = φ2(V )

∫ 1

0
f
(
(1 − τ )qn + τqn+1

)
dτ, IQ2 = φ1(V )

∫ 1

0
f
(
(1 − τ )qn + τqn+1

)
dτ,

(1.46)
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then the scheme (1.45) exactly preserves the Hamiltonian (1.30), i.e.,

H(pn+1, qn+1) = H(pn, qn), n = 0, 1, · · · . (1.47)

Thus, we state the adapted average-vector-field (AAVF) method (see [21, 23]) as
follows:

Definition 1.7 An adapted average-vector-field (AAVF) method with stepsize h for
the multi-frequency highly oscillatory Hamiltonian system (1.28) is defined by

⎧⎪⎪⎨
⎪⎪⎩

qn+1 = φ0(V )qn + hφ1(V )pn + h2φ2(V )

∫ 1

0
f
(
(1 − τ )qn + τqn+1

)
dτ,

pn+1 = −hMφ1(V )qn + φ0(V )pn + hφ1(V )

∫ 1

0
f
(
(1 − τ )qn + τqn+1

)
dτ,

(1.48)

where φ0(V ), φ1(V ) and φ2(V ) are determined by (1.4).

It follows from Theorem 1.8 that the AAVF method (1.48) is energy preserving.
It can be observed that when M = 0 in (1.48), the AAVF method reduces to the

well-known AVF formula for (1.10) with y = q and f (q) = −∇U(q) (see, e.g.
[67, 68]):

⎧⎪⎪⎨
⎪⎪⎩

qn+1 = qn + hpn + h2

2

∫ 1

0
f
(
(1 − τ )qn + τqn+1

)
dτ,

pn+1 = pn + h

∫ 1

0
f
(
(1 − τ )qn + τqn+1

)
dτ.

(1.49)

Remark 1.5.1 This class of discrete gradient methods is very important in Geo-
metric Integrators, and the first actual appearance of the integrator that came to be
known as the AVF method was in [68]. On the basis of this idea, we will analyse
linearly-fitted conservative (dissipative) schemes for nonlinear wave equations
in Chap. 8. We also consider the volume-preserving exponential integrators for
different vector fields in Chap. 6. Furthermore, we will present energy-preserving
integrators for Poisson systems in Chap. 4 and energy-preserving schemes for high-
dimensional nonlinear KG equations in Chap. 9.

Many physical problems have time reversibility and this structure of the original
continuous system can be preserved by symmetric integrators (readers are referred
to Chapter V of Hairer et al. [15] for a rigorous definition of reversibility). The
AAVF methods were also proved to be symmetric (see, e.g. [21]). However, it
follows from the definition of oscillation preservation (Definition 1.5) that an AAVF
method is neither oscillation preserving nor is the AVF method. Fortunately, an
AAVF method is partly oscillation preserving due to its updates, and the result is
stated as follows.
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Theorem 1.9 The AAVF method for (1.28) is partly oscillation preserving.

Proof Similarly to the AVF method, the AAVF method defined by (1.48) is also
dependent on the integral and, in practice, the integral usually must be approximated
by a numerical integral formula (see, e.g. [23]), a weighted summation of the
evaluations of function f at s different values Yi = (1 − τi)qn + τiqn+1 for
i = 1, · · · , s, which can be regarded as the internal stages of the AAVF method.
Obviously, the updates of an AAVF method can exactly solve the highly oscillatory
homogeneous linear equation (1.6), but the internal stages cannot. The proof is
complete. ��
Remark 1.6 It is worth mentioning that in a recent paper, the AAVF methods have
been extended to the computation of high-dimensional semilinear KG equations.
Readers are referred to Chap. 9 for details. Moreover, long-time momentum and
actions behaviour of the AAVF methods for Hamiltonian wave equations are
presented in Chap. 14. Furthermore, the global error bounds of one-stage ERKN
integrators for semilinear wave equations are analysed in Chap. 7. We also discussed
the resonance instability for AAVF methods (see [54]).

1.6 Other Concerns Relating to Highly Oscillatory Problems

Gautschi-type methods have been intensively studied in the literature, and general
ERKN methods for highly oscillatory problems have been proposed. Here, it is also
important to recognise that the numerical solution of semilinear Hamiltonian wave
equations is closely related to oscillation-preserving integrators.

1.6.1 Gautschi-Type Methods

This section starts from the Gautschi-type methods which have been well investi-
gated in the literature (see, e.g. [4, 16, 69]). Gautschi-type methods for the nonlinear
highly oscillatory Hamiltonian system (1.29) can be traced back to a profound paper
of Gautschi [43]. Gautschi-type methods are special explicit ERKN methods of
order two (see [10]). An error and stability analysis of the Gautschi-type methods
can be found in [16]. Thus, Gautschi-type methods are oscillation preserving in
the light of Definition 1.5. However, it is noted that ERKN methods for the highly
oscillatory Hamiltonian system (1.29) can be of an arbitrarily high order which can
be thought of as generalised Gautschi-type methods.
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1.6.2 General ERKN Methods for (1.1)

We next turn to the general ERKN methods for solving nonlinear multi-frequency
highly oscillatory second-order ordinary differential equations (1.1).

Definition 1.8 (You et al. [27]) An s-stage general extended Runge–Kutta–
Nyström (ERKN) method for the numerical integration of the IVP (1.1) is defined
by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V )yn + ciφ1(c

2
i V )hy ′

n + h2
s∑

j=1

āij (V )f (Yj , Y
′
j ), i = 1, · · · , s,

hY ′
i = −ciV φ1(c

2
i V )yn + φ0(c

2
i V )hy ′

n + h2
s∑

j=1

aij (V )f (Yj , Y
′
j ), i = 1, · · · , s,

yn+1 = φ0(V )yn + φ1(V )hy ′
n + h2

s∑
i=1

b̄i (V )f (Yi, Y
′
i ),

hy ′
n+1 = −V φ1(V )yn + φ0(V )hy ′

n + h2
s∑

i=1

bi(V )f (Yi , Y
′
i ),

(1.50)

where φ0(V ), φ1(V ), āij (V ), aij (V ), b̄i(V ) and bi(V ) for i, j = 1, · · · , s, are
matrix-valued functions of V = h2M .

The general ERKN method (1.50) in Definition 1.8 can also be represented
briefly in a partitioned Butcher tableau of the coefficients:

c A(V ) Ā(V )

bᵀ(V ) b̄ᵀ(V )

=

c1 ā11(V ) ā12(V ) · · · ā1s(V ) a11(V ) a12(V ) · · · a1s(V )

c2 ā21(V ) ā22(V ) · · · ā2s(V ) a21(V ) a22(V ) · · · a2s(V )
...

...
...

. . .
...

...
...

. . .
...

cs as1(V ) as2(V ) · · · ass(V ) as1(V ) as2(V ) · · · ass(V )

b̄1(V ) b̄2(V ) · · · b̄s(V ) b1(V ) b2(V ) · · · bs(V )

. (1.51)

Obviously, the general ERKN method (1.50) for the nonlinear multi-frequency
highly oscillatory system (1.1) is oscillation preserving in the light of Definition
1.5. The general ERKN method (1.50) can be of an arbitrarily high order and the
analysis of order conditions for the general ERKN method (1.50) can be found in
[13, 28].
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1.6.3 Towards the Application to Semilinear KG Equations

We note a fact that one of the major applications of oscillation-preserving integrators
is to solve semilinear Hamiltonian wave equations such as semilinear KG equations:

{
utt − a2u = f (u), t0 < t � T , x ∈ Ω,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ Ω̄,
(1.52)

where u(x, t) represents the wave displacement at position x and time t , and the
nonlinear function f (u) is the negative derivative of a potential energy V (u) � 0:

V (u) = −
∫ u

0
f (σ)dσ.

Here, suppose that the initial value problem (1.52) is subject to the periodic
boundary condition on the domain Ω = (−π, π),

u(x, t) = u(x + 2π, t), x ∈ (−π, π], (1.53)

where 2π is the fundamental period with respect to x. It is known that, as a
relativistic counterpart of the Schrödinger equation, the KG equation is used to
model diverse nonlinear phenomena, such as the propagation of dislocations in
crystals and the behaviour of elementary particles and of Josephson junctions (see
[70] Chap. 2). Its efficient computation,without a doubt, induces numerous enduring
challenges (see, e.g. [9, 11, 71]).

In practice, a suitable space semidiscretisation for semilinear KG equations can
lead to (1.9), where the matrix M is derived from the space semidiscretisation. If
we denote the total number of spatial mesh grids by N , then the larger N is, the
larger ‖M‖ becomes. This means that the semidiscrete wave equation is a highly
oscillatory system. In our recent work (see Mei et al. [10]), it has been proved under
the so-called finite-energy condition that the error bound of ERKN integrators when
applied to semilinear wave equations is independent of ‖M‖. This point is crucial
to the numerical solution of the underlying semilinear KG equation.

Another approach to the numerical solution of KG equations is that we try to
gain an abstract formulation for the problem (1.52)–(1.53), and then deal with it
numerically. To this end, we first consider the following differential operator A
defined by

(A v)(x) = −a2vxx(x). (1.54)

In (1.54), A is a linear, unbounded positive semi-definite operator, whose
domain is

D(A ) :=
{
v ∈ H 1(Ω) : v(x) = v(x + 2π)

}
.
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Fortunately, however, the operator A has a complete system of orthogonal eigen-
functions

{
eikx : k ∈ Z

}
and the linear span of all these eigenfunctions

X := lin
{
ei�x : � ∈ Z

}
(1.55)

is dense in the Hilbert space L2(Ω). We then obtain the orthonormal basis of
eigenvectors of the operatorA with the corresponding eigenvalues a2�2 for � ∈ Z.

Define the bounded functions through the following series (see [72])

φk(x) :=
∞∑

j=0

(−1)jxj

(2j + k)! , k ∈ N for ∀x � 0. (1.56)

Accordingly, these functions (1.56) can induce the bounded operators

φk(tA ) : L2(Ω) → L2(Ω)

for k ∈ N and t0 � t � T :

φk(tA )v(x) =
∞∑

�=−∞
v̂�φk(ta

2�2)ei�x for v(x) =
∞∑

�=−∞
v̂�ei�x, (1.57)

and the boundedness follows from the definition of the operator norm that

‖φk(tA )‖2∗ = sup
‖v‖
=0

‖φk(tA )v‖2
‖v‖2 � sup

t0�t�T

|φk(ta
2�2)|2 � γ 2

k , (1.58)

where ‖ · ‖∗ is the Sobolev norm ‖ · ‖L2(Ω)←L2(Ω), and γk for k ∈ N are the uniform
bounds of the functions |φk(x)| for k ∈ N and x � 0. With regard to the analysis for
the boundedness, readers are referred to Liu and Wu [72].

We are now in a position to define u(t) as the function that maps x to u(x, t),
u(t) := [x �→ u(x, t)], and in this way the system (1.52)–(1.53) can be formulated
as an abstract second-order ordinary differential equation

{
u′′(t) + A u(t) = f

(
u(t)

)
, t0 < t � T ,

u(t0) = ϕ1(x), u′(t0) = ϕ2(x).
(1.59)

on the closed subspace

X :=
{
u(x, ·) ∈ X

∣∣ u(x, ·) satisfies the corresponding boundary conditions
}

⊆ L2(Ω).

(1.60)
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With this premise, the solution of the abstract second-order ordinary differential
equations (1.59) can be expressed by the following operator-variation-of-constants
formula (see, e.g. [73–75]).

Theorem 1.10 The solution of (1.59) and its derivative satisfy the following
operator-variation-of-constants formula

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) =φ0
(
(t − t0)

2A
)
u(t0) + (t − t0)φ1

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

u′(t) = − (t − t0)A φ1
(
(t − t0)

2A
)
u(t0) + φ0

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

(1.61)

for t0 � t � T , where both φ0
(
(t − t0)

2A
)
and φ1

(
(t − t0)

2A
)
are bounded

operators.

Remark 1.6.1 We here remark that the special case where f (u) = 0, the operator-
variation-of-constants formula (1.61) yields the closed-form solution to (1.59).
Moreover, the idea of the operator-variation-of-constants formula (1.61) also pro-
vides a useful approach to the development of the so-called semi-analytical ERKN
integrators for solving high-dimensional nonlinear wave equations. See Chap. 13 for
details.

According to Theorem 1.10, the solution of (1.59) and its derivative at a time
point tn+1 = tn + t , n ∈ N are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(tn+1) =φ0
(
V
)
u(tn) + tφ1

(
V
)
u′(tn) + t2

∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
f̃ (z)dz,

u′(tn+1) = − tA φ1
(
V
)
u(tn) + φ0

(
V
)
u′(tn) + t

∫ 1

0
φ0

(
(1 − z)2V

)
f̃ (z)dz,

(1.62)

where V = t2A and f̃ (z) = f
(
u(tn + zt)

)
.

If the nonlinear integrals

I1 :=
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
f̃ (z)dz and I2 :=

∫ 1

0
φ0

(
(1 − z)2V

)
f̃ (z)dz

(1.63)

are efficiently approximated, then we are hopeful of obtaining some new integrators
based on (1.62). For example, using the operator-variation-of-constants formula
(1.62) and the two-point Hermite interpolation, we developed a class of arbitrarily
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high-order and symmetric time integration formulae (see Chap. 10). The preserva-
tion of symmetry by a numerical scheme is also very important because the KG
equation (1.52) is time reversible. Hairer et al. [15] have emphasised that symmetric
methods have excellent long-time behaviour when solving reversible differential
systems. Therefore, the preservation of time symmetry for a numerical scheme is
also one of the favourable features.

Here it is worth emphasising that since A is a linear, unbounded positive semi-
definite operator, it is a wise choice to approximate the operatorA by a symmetric
and positive semi-definite differentiation matrix M on a d-dimensional space when
spatial discretisations of the underlying KG equation are carried out, and this will
assist in structure preservation.

It is noted that a symmetric and arbitrarily high order time integration formula
can be designed in operatorial terms in an infinite-dimensional function space X
(see, e.g. [73, 74]). Using this approach, we also consider symplectic approxima-
tions for semilinear KG equations in Chap. 11. In practice, the differential operator
A must be replaced with a suitable differentiation matrix M so that we may obtain
a proper full discrete numerical scheme. Fortunately, there exist many research
publications discussing the replacement of spatial derivatives of the semilinear KG
equation (1.52) with periodic boundary conditions (1.53) in the literature. Thus, it is
not a main point in this chapter. Here, however, again it is notable that the operator
A should be approximated by a symmetric and positive semi-definite differentiation
matrix M and the norm of M will change with the accuracy requirement of spatial
discretisations. The higher the accuracy of spatial discretisations is required, the
larger ‖M‖ will be. This implies that the spatial structure preservation is required
for the full discretisation of KG equation (1.52). A full discretisation for the KG
equation (1.52) with periodic boundary conditions (1.53) is spatially structure-
preserving if the operator A is approximated by a d × d symmetric and positive
semi-definite differentiation matrix M , and the norm of M , ‖M‖, tends to infinity
as d tends to infinity, where d is the number of degrees of freedom in the space
discretisation.

Obviously, the global error of a fully discrete scheme for the KG equation
(1.52) depends on the accuracy of both time integrators and space discretisations.
As the mesh partition in the space discretisation increases for (1.59), ‖M‖ will
increase, and the larger ‖M‖ is, the higher the accuracy will be increased in space
approximations.

Remark 1.7 Actually, the family of matrices {Md×d} approximates the infinite-
dimensional, unbounded, operator A . ‖Md×d‖ tends to infinity with d , where d

is the dimension of the matrix Md×d ; i.e., the number of degrees of freedom in
the spatial discretisation. Consequently, the family of matrices {Md×d} inherits the
unbounded property of A . This objectively reflects an important fact that the norm
of the differentiation matrix Md×d could be arbitrarily large, depending on the
requirement of computational accuracy, and the corresponding system of second-
order differential equations must be a multi-frequency highly oscillatory system
once high global accuracy is required. In this case, an oscillation-preserving time
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integrator is needed for the numerical simulation of semilinear wave equations,
including the KG equation (1.52), during a long-time computation. Moreover, the
accuracy of the oscillation-preserving time integrator will be required to match
that of the space discretisation. Hence, oscillation-preserving ERKN integrators of
arbitrarily high order are favourable in applications, especially when applied to the
semidiscrete KG equation, and high-accuracy time integrators will be required for
the underlying PDEs in practice.

1.7 Numerical Experiments

This section concerns numerical experiments, and we will consider four problems
which are closely related to (1.1) or (1.9). Since explicit methods are cheaper (use
less CPU time in general) than implicit methods, we use three explicit RKN-type
methods and two implicit methods. These methods are chosen as follows:

• ERKN3s4: the explicit three-stage ERKN method of order four presented in [18]
(with its Butcher tableau given by Table 1.1);

• ARKN3s4: the explicit three-stage ARKN method of order four proposed in [76]
(with its Butcher tableau given by Table 1.2);

• ERKN7s6: the explicit seven-stage ERKN method of order six derived in [77]
with the coefficients

c5 = 1 − c3 = 0.06520862987680341024,

c6 = 1 − c2 = 0.65373769483744778901,

c7 = 1 − c1 = 0.05586607811787376572,

c4 = 0.5,

d4 = 0.26987577187133640373,

d5 = d3 = 0.92161977504885189358,

d6 = d2 = 0.13118241020105280626,

d7 = d1 = −0.68774007118557290171,

b̄i(V ) = dic8−iφ1
(
c28−iV

)
, bi(V ) = diφ0

(
c28−iV

)
,

for i = 1, 2, · · · , 7,

āij (V ) = dj (ci − cj )φ1
(
(ci − cj )

2V
)
,

for i = 2, 3, · · · , 7, j = 1, 2, · · · , i − 1;
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Table 1.2 Butcher tableau of ARKN3s4

1

8
0 0

23

42

71

441
0

11

12

2641

14058

4123

18744
2024φ2(V ) − 5904φ3(V ) + 8064φ4(V )

1349

−1617φ2(V ) + 14700φ3(V ) − 28224φ4(V )

2201
2024φ1(V ) − 5904φ2(V ) + 8064φ3(V )

1349

−1617φ1(V ) + 14700φ2(V ) − 28224φ3(V )

2201
1

8
0

23

42
0

11

12
0

138φ2(V ) − 1356φ3(V ) + 4032φ4(V )

589
138φ1(V ) − 1356φ2(V ) + 4032φ3(V )

589

Table 1.3 Butcher tableau of
TFCr2 c1 c21b1

r−1∑
j=0

I1,j,c1 P̂j (c1) c21b2

r−1∑
j=0

I1,j,c1 P̂j (c2)

c2 c22b1

r−1∑
j=0

I1,j,c2 P̂j (c1) c22b2

r−1∑
j=0

I1,j,c2 P̂j (c2)

r−1∑
j=0

I1,j b1P̂j (c1)
r−1∑
j=0

I1,j b2P̂j (c2)

r−1∑
j=0

I2,j b1P̂j (c1)
r−1∑
j=0

I2,j b2P̂j (c2)

• TFCr2: the TFC method (1.40) of order four described in [8] (with its Butcher

tableau given by Table 1.3 with the coefficients c1 = 3 − √
3

6
, c2 = 3 + √

3

6
,

b1 = b2 = 1

2
, and r = 2);

• TFCr3: the TFC method (1.40) of order six described in [8] (with its Butcher

tableau given by Table 1.4 with the coefficients c1 = 5 − √
15

10
, c2 = 1

2
, c3 =

5 + √
15

10
, b1 = 5

18
, b2 = 4

9
, b3 = 5

18
, and r = 3).

We remark that an ERKN method reduces to an RKN method when M → 0.
Hence, the reduced method ERKN3s4 is assigned as the corresponding RKN
method, which is denoted by RKN3s4. In the numerical experiments, we use fixed-
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Table 1.4 Butcher tableau of TFCr3

c1 c21b1

r−1∑
j=0

I1,j,c1 P̂j (c1) c21b2

r−1∑
j=0

I1,j,c1 P̂j (c2) c21b3

r−1∑
j=0

I1,j,c1 P̂j (c3)

c2 c22b1

r−1∑
j=0

I1,j,c2 P̂j (c1) c22b2

r−1∑
j=0

I1,j,c2 P̂j (c2) c22b3

r−1∑
j=0

I1,j,c2 P̂j (c3)

c3 c23b1

r−1∑
j=0

I1,j,c3 P̂j (c1) c23b2

r−1∑
j=0

I1,j,c3 P̂j (c2) c23b3

r−1∑
j=0

I1,j,c3 P̂j (c3)

r−1∑
j=0

I1,j b1P̂j (c1)
r−1∑
j=0

I1,j b2P̂j (c2)
r−1∑
j=0

I1,j b3P̂j (c3)

r−1∑
j=0

I2,j b1P̂j (c1)
r−1∑
j=0

I2,j b2P̂j (c2)
r−1∑
j=0

I2,j b3P̂j (c3)

point iteration for the implicit TFC methods. We set 10−16 as the error tolerance and
10 as the maximum number of each iteration. It will be observed from the numerical
experiments that the numerical behaviour of the ERKN methods and TFC methods
is much better than that of the ARKN and RKN methods.

In these methods, the matrix-valued functions φi(V ), for i = 0, 1, · · · , 4, are
defined by (1.4).

Problem 1.1 Consider the Duffing equation (see, e.g. [10, 13, 78, 79])

{
q̈ + ω2q = k2(2q3 − q),

q(0) = 0, q̇(0) = ω,

where 0 � k < ω. As is known, this is a Hamiltonian system with the Hamiltonian

H(p, q) = 1

2
p2 + 1

2
ω2q2 + k2

2
(q2 − q4).

The analytic solution is given by

q(t) = sn(ωt, k/ω),

where sn denotes the Jacobian elliptic function (see, e.g. [80]).

Problem 1.1 is solved on the interval [0, 10000] with k = 0.03 and ω = 50.
Figure 1.1a presents the global errors results (in logarithmic scale) with the stepsizes

h = 0.1

2j
for j = 1, · · · , 4. We here remark that some global errors for RKN3s4

are too large to be plotted in Fig. 1.1a due to its instability and nonconvergence
with the stepsize h = 0.05. In the next problems, similar situations are encountered
and the corresponding points are not plotted either. We also show the global errors
against the CPU time in Fig. 1.1b. It can be observed from these figures, ERKN3s4,
ERKN7s6 and TFC methods are much more accurate than ARKN3s4 and RKN3s4,
and RKN3s4 gives disappointing accuracy in comparison with the other methods,
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although it is a symplectic and symmetric method. This observation implies that
the property of oscillation preservation for numerical methods is also of great
importance in Geometric Integration. What can we learn from this observation?
This experiment demonstrates that for a nonlinear highly oscillatory differential
equation, the most important consideration should be the oscillation preservation
when concerning numerical solutions.

Meanwhile, we also show the curves of the Hamiltonian error growth with

h = 1

40
as the integration interval is extended in Fig. 1.1c for all the methods, where

the ERKN methods and TFC methods show better numerical energy preservation
than the reduced RKN method: RKN3s4, and ARKN3s4 method. It follows
from Fig. 1.1c that both the ERKN and RKN methods can preserve the energy
approximately, whereas the ARKN3s4 method cannot. In fact, it is clear from
Fig. 1.1c that the energy of the ARKN3s4 method grows as the integration interval
is extended. This is because both the ERKN and RKN methods are symplectic and
symmetric methods, whereas the ARKN3s4 method is not a symplectic method.
Another important aspect is that, just as its algebraic accuracy, the accuracy of
energy preservation of RKN3s4 method is also disappointing, even though RKN3s4
method possesses both favourable properties of symplecticity preservation and
symmetry preservation. It is worth noting that, although the TFC methods are not
symplectic, they are oscillation preserving and preserve the energy approximately.
Hence, we should take full account of the oscillation-preserving structure in the
design of numerical methods for efficiently solving a highly oscillatory nonlinear
Hamiltonian system, although we cannot ignore the other structures.

Problem 1.2 Consider the sine-Gordon equation (see, e.g. [81])

∂2u

∂t2
= ∂2u

∂x2 − sin u,

on the region −10 � x � 10 and t0 � t � T with the initial conditions

u(x, t0) = − 4arctan
(
c−1sech(κx) sin(−t0cκ)

)
,

ut (x, t0) = 4κ cos(−t0cκ)sech(κx)

1 + c−2sech2(κx) sin2(−t0cκ)
,

and the boundary conditions

u(−10, t) = u(10, t) = −4arctan
(
c−1sech(10κ) sin(cκt)

)
,

where κ = 1/
√
1 + c2. The exact solution is

u(x, t) = −4 arctan
(
c−1sech(κx) sin(cκt)

)
.
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Fig. 1.1 Results for Problem 1.1. (a) The log-log plot of global error GE against h. (b) The log-log
plot of global error GE against CPU time. (c) The logarithm of the global energy error GE against t

For this problem, we use the Chebyshev pseudospectral discretisation with 240
spatial mesh grids and select the parameter c = 0.5, which leads to a discretisation
of the type (1.9). This equation is solved on the interval [0, 100]. Figure 1.2a, b

show the global errors results (in logarithmic scale) with the stepsizes h = 1

2k
for

k = 1, · · · , 4. We then integrate this equation with the stepsize h = 1

10
on the

interval [0, 10000] and the numerical energy conservation is presented in Fig. 1.2c.
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Fig. 1.2 Results for Problem 1.2. (a) The log-log plot of global error GE against h. (b) The log-log
plot of global error GE against CPU time. (c) The logarithm of the global energy error GE against t

Again it can be observed from the numerical results that the numerical behaviour
of ERKN methods and TFC methods is much better than that of ARKN3s4 and
RKN3s4. In summary, an oscillation-preserving numerical method gives much
better results than those methods which are not oscillation preserving. In particular,
the symplectic and symmetric RKN3s4 performs badly and leads to completely
disappointing numerical results in this numerical experiment.
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Problem 1.3 Consider the semilinear wave equation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
− a(x)

∂2u

∂x2 + 92u = f (t, x, u), 0 < x < 1, t > 0,

u(x, 0) = a(x), ut (x, 0) = 0,

u(0, t) = 0, u(1, t) = 0,

where

a(x) = 4x(1 − x)

and

f (t, x, u) = u5 − a2(x)u3 + a5(x)

4
sin2(20t) cos(10t).

The exact solution of this problem is

u(x, t) = a(x) cos(10t),

which represents a vibrating string.
Differently from Problem 1.2, we now consider semidiscretisation of the spatial

variable with second-order symmetric differences, and this results in

d2U

dt2
+ MU = F(t, U), U(0) = (

a(x1), · · · , a(xN−1)
)ᵀ

, U ′(0) = 0, (1.64)

where U(t) = (
u1(t), · · · , uN−1(t)

)ᵀ with ui(t) ≈ u(xi, t), xi = ix for i =
1, · · · , N − 1, and x = 1/N .

M = 92IN−1 + 1

x2

⎛
⎜⎜⎜⎜⎜⎝

2a(x1) −a(x1)

−a(x2) 2a(x2) −a(x2)

. . .
. . .

. . .

−a(xN−2) 2a(xN−2) −a(xN−2)

−a(xN−1) 2a(xN−1)

⎞
⎟⎟⎟⎟⎟⎠ ,

and

F(t, U) = (
f (t, x1, u1), · · · , f (t, xN−1, uN−1)

)ᵀ
.
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Fig. 1.3 Results for Problem 1.3. (a) The log-log plot of global error GE against h. (b) The log-log
plot of global error GE against CPU time

(1.64) is a highly oscillatory system, but not a Hamiltonian system. We solve this

problem on the interval [0, 10] with N = 256 and h = 0.1

2j
for j = 1, · · · , 4. The

global errors are shown in Fig. 1.3. Once again, it can be observed from Fig. 1.3
that the numerical behaviour of the oscillation-preserving ERKN methods and TFC
methods is much better than the others. In Fig. 1.3, the global errors figures of both
ERKN methods and TFC methods almost coincide with each other.

We next consider a damped wave equation. For this problem, we choose time
integrators as follows:

• ERKN3s3: the explicit three-stage ERKNmethod of order three proposed in [27]
and denoted by the Butcher tableau

0 0 0 0 0 0 0

1

3

1

3
0 0 0 0 0

2

3
0

2

3
0

2

9
0 0

b̄1(V ) b̄2(V ) b̄3(V ) b1(V ) b2(V ) b3(V )
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where

b1(V ) =φ1(V ) − 9

2
φ2(V ) + 9φ3(V ),

b2(V ) =6φ2(V ) − 18φ3(V ),

b3(V ) = − 3

2
φ2(V ) + 9φ3(V ),

b̄1(V ) =φ2(V ) − 9

2
φ3(V ) + 9φ4(V ),

b̄2(V ) =6φ3(V ) − 18φ4(V ),

b̄3(V ) = − 3

2
φ3(V ) + 9φ4(V ).

• ARKN3s3: the explicit three-stage ARKN method of order three given in [82]
and denoted by the Butcher tableau

0 0 0 0 0 0 0

1

2

1

2
0 0

1

8
0 0

1 −1 2 0
1

2
0 0

b̄1(V ) b̄2(V ) b̄3(V ) b1(V ) b2(V ) b3(V )

where

b1(V ) =φ1(V ) − 3φ2(V ) + 4φ3(V ),

b2(V ) =4φ2(V ) − 8φ3(V ),

b3(V ) = − φ2(V ) + 4φ3(V ),

b̄1(V ) =φ2(V ) − 3

2
φ3(V ),

b̄2(V ) =φ3(V ),

b̄3(V ) =1

2
φ3(V ).
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• RKN3s3: the explicit three-stage RKN method of order three with the Butcher
tableau

0 0 0 0 0 0 0

1

2

1

2
0 0

1

8
0 0

1 −1 2 0
1

2
0 0

1

6

2

3

1

6

1

4

1

6

1

12

Problem 1.4 Consider the damped wave equation (see, e.g. [27, 82])

⎧⎪⎪⎨
⎪⎪⎩

∂2u

∂t2
+ ∂u

∂t
− ∂2u

∂x2 = f (u), −1 < x < 1, t > 0,

u(−1, t) = u(1, t).

A semidiscretisation in the spatial variable by using second-order symmetric
differences yields the type of (1.1)

Ü + MU = F(U, U̇), (1.65)

where U(t) = (
u1(t), · · · , uN(t)

)ᵀ with ui(t) ≈ u(xi, t), xi = −1 + ix for
i = 1, · · · , N, x = 2/N ,

M = 1

x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠ ,

and

F(U, U̇) = (
f (u1) − u̇1, · · · , f (uN) − u̇N

)ᵀ
.

In this experiment, we consider the damped sine-Gordon equation with f (u) =
− sinu and with the initial conditions

U(0) = (π)Ni=1, U̇ (0) = √
N
(
0.01 + sin(

2πi

N
)
)N

i=1
.
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Fig. 1.4 Results for Problem 1.4. (a) The log-log plot of global error GE against h. (b) The log-log
plot of global error GE against CPU time

This equation is integrated on [0, 100]with N = 256 and h = 0.1

2i
for i = 2, 3, 4, 5.

The global errors against the stepsizes and the CPU time are shown in Fig. 1.4.
It can be observed again from the results that the oscillation-preserving integrator
ERKN3s3 performs much better than the other methods. It is easy to see that the
ERKN3s3 integrator provides a considerably more accurate numerical solution than
other methods.

1.8 Conclusions and Discussion

In practice, nonlinear second-order differential equations with highly oscillatory
solution behaviour are ubiquitous in science and engineering applications. The
overarching question now is how to preserve high frequency oscillations in the
numerical treatment of nonlinear multi-frequency highly oscillatory second-order
ordinary differential equations (1.1) or (1.9). This chapter presented systematic
oscillation-preserving analysis, which began with the concept of oscillation preser-
vation for RKN-type methods, and then analysed oscillation-preserving behaviour
for RKN-type methods, including ERKN integrators, TFC methods, AVF methods,
AAVF methods, ARKN methods, symplectic and symmetric RKN methods, and
standard RKN methods, designed to solve the initial value problem of nonlinear
multi-frequency highly oscillatory second-order ordinary differential equations
(1.1) or (1.9). It was found that the ERKN integrators and TFC methods are
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oscillation preserving, whereas neither the ARKN methods nor the standard RKN
methods, including symplectic and symmetric RKN methods, and AVF methods,
are oscillation preserving. However, ARKN and AAVF methods are partly oscilla-
tion preserving. An oscillation-preserving integrator shows much better numerical
behaviour than those methods which are not oscillation preserving when applied
to nonlinear multi-frequency highly oscillatory second-order ordinary differential
equations. The least favourable results are for the RKN method, in comparison with
the ARKN method and ERKN method when solving nonlinear multi-frequency
highly oscillatory problems. Here the most interesting conclusion is that the
oscillation-preserving property depends essentially on the internal stages rather
than the updates of an RKN-type method when applied to highly oscillatory second-
order systems. This chapter also mentioned the potential developments of ERKN
integrators and TCF methods for the nonlinear multi-frequency highly oscillatory
second-order ordinary differential equation (1.9).

An important concern relating to oscillation-preserving integrators is to effi-
ciently solve a semidiscrete nonlinear wave equation, which usually is approximated
by a system of nonlinear highly oscillatory second-order ordinary differential
equations derived from a suitable space discretisation of semilinear wave equations
such as KG equations, i.e., the operatorA appearing in (1.59) is approximated by a
d × d symmetric and positive semi-definite differentiation matrix M . Therefore, the
analysis of oscillation-preserving behaviour for RKN-type methods in this chapter
is also significant for numerical PDEs. In this case, the standard RKN method, in
comparison with an oscillation-preserving integrator such as the ERKN method,
may not be a satisfactory choice for efficiently dealing with such highly oscillatory
problems.

This chapter focuses on highly oscillatory second-order differential equations
(1.1) or (1.9). Other highly oscillatory systems will also be discussed in this
monograph. For instance, in Chap. 5, using exponential collocation methods, we
will deal with the following highly oscillatory system:

q ′′(t)−Nq ′(t)+Υ q(t) = −∇U(q(t)), q(0) = q0, q ′(0) = q ′
0, t ∈ [0, T ],

where N is a symmetric negative semi-definite matrix, Υ is a symmetric positive
semi-definite matrix, and U : Rd → R is a differentiable function.

Last, but not least, we believe that the oscillation-preserving concept introduced
and analysed in this chapter for numerical methods for solving nonlinear multi-
frequency highly oscillatory differential equations is significant and interesting
within the broader framework of the subject of Geometric Integration. The results
of numerical experiments in this chapter have strengthened the impression that an
oscillation-preserving integrator is required when efficiently solving a nonlinear
multi-frequency highly oscillatory system, or a semidiscrete nonlinear wave equa-
tion.

The material in this chapter is based on the work by Wu et al. [83].
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