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Dedicated to the memory of Professor Feng
Kang on the centenary of his birth.

The profound and seminal contributions of Professor Feng Kang, on symplectic
geometric algorithms for Hamiltonian systems, have opened up a rich and new field
of numerical mathematics research in China and throughout the world.



Foreword

The numerical integration of ordinary differential equations has a long and dis-
tinguished history inaugurated by Euler in the eighteenth century. The use of
numerical methods was of course extremely limited before computers became
available and it is only around 1955 that the subject took off. Important theoretical
developments, which used very beautiful mathematics, were carried out by Lax (the
celebrated equivalence theorem), Dahlquist (linear multistep methods) and Butcher
(Runge–Kutta methods). The theory made it possible, starting in the 1960s, to
write powerful general-purpose software that may be routinely used by practitioners
to solve initial or boundary value problems. For the first time in history, it was
possible for engineers and scientists facing a possibly very complicated, nonlinear
differential equation to find its solutions in next to no time by plugging it into one
of the general-purpose codes that became widely available. This was a revolution
whose importance is easily overlooked by those that have grown up surrounded by
computers and software. One of the strengths of the numerical differential equations
solvers in software libraries is that, as I have mentioned, they are general purpose:
they are carefully crafted black boxes that will deal with all initial value problems (to
be more precise, one needs one black box for stiff problems and a second black box
for nonstiff problems). Without questioning the strengths and validity of general-
purpose numerical methods and software (that we may call “classical”), a very
different new paradigm appeared in the 1980s. The new paradigm brought many
innovative changes. In the classical approach what was demanded of the numerical
method was to find accurate numerical value of the solution at any desired time.
The new paradigm wanted to identify the long-time behaviour of the solutions
or perhaps the existence of conservation laws or some other qualitative feature
of the dynamics. The success of the classical software was based on a one-size-
fits-all approach; in the new paradigm, the numerical method and the software
were tailored to the application at hand, trying to capture as much as possible the
structure of the problem being dealt with. In addition, the new paradigm often used
mathematical techniques, mainly from differential geometry, that had not hitherto
been connected with numerical integration. Finally, the new paradigm introduced or
popularized new ways of analysing errors, notably the modified equation approach.
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viii Foreword

In 1996, a State of the Art in Numerical Analysis conference was held in York
(England) with the purpose of analysing the main developments that had taken
place in the field of numerical computation in the previous decade. I was asked to
prepare a survey presentation on the area of ordinary differential equations, and for
that talk and the subsequent publication, I chose the title “Geometric Integration”,
because I thought at the time that geometry was the unifying theme (or at least
one of the unifying themes) in the new paradigm. The terminology caught on and
it is now widely used in the literature. As discussed above, one of the salient
features of geometric integration is that specific classes of problems now take
centre stage. The first class to be considered was that of Hamiltonian problems,
whose study was pioneered by Professor Feng Kang; we commemorated his birth
centenary the year I wrote this foreword. Professor Feng Kang, who had made
other important contributions to mathematics, was the most important figure in
convincing the international community that, first, it is important for the applications
to create numerical algorithms specifically designed to solve Hamiltonian problems
and that, second, geometric notion of symplecticness is essential to build the
new integrators—traditional ideas of stability and consistency were not sufficient.
Professor Feng Kang’s work was followed and is still being followed by many
hundreds or perhaps thousands of publications in China and throughout the world.
Another area that has kept growing in importance within geometric integration is
the study of highly oscillatory problems: problems where the solutions are periodic
or quasiperiodic and have to be studied in time intervals that include an extremely
large number of periods. Examples abound in manifold applications: for instance,
we may wish to ascertain the future evolution of the solar system in intervals of
time where the planets have performed billions of revolutions. The authors of the
present book, Professors Xinyuan Wu and Bin Wang, are among the scientists who,
in the international scene, have contributed most to the development and analysis
of geometric integrators for highly oscillatory differential equations, ordinary or
partial. This book will no doubt be a valuable addition to a long list of publications
that started with the seminal papers of Professor Feng Kang and his students.

President, Royal Academy of Sciences of Spain J. M. Sanz-Serna
Excellence Chair in Applied Mathematics, Universidad
Carlos III de Madrid
SIAM Fellow
Fellow of the American Mathematical Society
Fellow of the Institute of Mathematics and its Applications



Preface

Differential equations that have highly oscillatory solutions arise in a variety of
fields in science and engineering such as astrophysics, classical and quantum
physics, and molecular dynamics, and their computation presents numerous chal-
lenges. As is known, these equations cannot be solved efficiently using conventional
methods. Although notable progress has been made in numerical integrators for
highly oscillatory differential equations, it is not obvious for these integrators what
effects on their long-time behaviour are produced by preserving certain geometric
properties. A further study of novel geometric integrators has become increasingly
important in recent years. The objective of this book is to explore further geometric
integrators for highly oscillatory problems that can be formulated as systems of
ordinary and partial differential equations.

This book has grown out of recent research work published in professional
journals by the research group of the authors. This book is divided into two parts.
The first part deals with highly oscillatory systems of ordinary differential equations
(ODEs), and the second part is concerned with time-integration of partial differential
equations (PDEs) having oscillatory solutions.

The first part includes six chapters, dealing with highly oscillatory ODEs, and
the second part consists of eight chapters, providing some novel insights into
geometric integrators for PDEs. Chapter 1 is a review of oscillation-preserving
integrators for systems of second-order ODEs with highly oscillatory solutions.
As is known, continuous-stage Runge–Kutta–Nyström (RKN) methods have been
developed for this class of problems. Chapter 2 proposes and derives continuous-
stage extended Runge–Kutta–Nyström (ERKN) integrators for second-order ODEs
with highly oscillatory solutions. Since stability and convergence are essential
aspects of numerical analysis, we provide nonlinear stability and convergence
analysis of ERKN integrators for second-order ODEs with highly oscillatory
solutions in Chap. 3. Poisson systems occur very frequently in physics, so in
Chap. 4, we investigate functionally fitted energy-preserving integrators for Poisson
systems. We then consider exponential collocation methods for conservative or
dissipative systems in Chap. 5. It is known that various dynamical systems including
all Hamiltonian systems preserve volume in phase space, and hence we discuss
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volume-preserving exponential integrators for first-order ODEs in Chap. 6. Chap-
ter 7 analyses global error bounds of one-stage ERKN integrators for semilinear
wave equations. In Chap. 8, we derive linearly fitted conservative (dissipative)
schemes for efficiently solving conservative (dissipative) nonlinear wave PDEs.
Chapter 9 focuses on the formulation and analysis of energy-preserving schemes
for solving high-dimensional nonlinear Klein–Gordon equations. In Chap. 10, we
introduce symmetric and arbitrarily high-order Hermite–Birkhoff time integrators
for solving nonlinear Klein–Gordon equations. Chapter 11 describes a symplectic
approximation with nonlinear stability and convergence analysis for efficiently
solving semilinear Klein–Gordon equations. Chapter 12 proposes and analyses
a continuous-stage modified leap-frog scheme for high-dimensional semilinear
Hamiltonian wave equations. Chapter 13 is concerned with semi-analytical expo-
nential RKN integrators for efficiently solving high-dimensional nonlinear wave
equations based on fast Fourier transform (FFT) techniques. Chapter 14 considers
long-time momentum and actions behaviour of energy-preserving methods for wave
equations.

The presentation in this book provides some new perspectives of the sub-
ject which is based on theoretical derivations and mathematical analysis, facing
challenging scientific computational problems, and providing high-performance
numerical simulations. In order to show the long-time numerical behaviour of the
simulation, all the integrators presented in this book have been tested and verified on
highly oscillatory systems from a wide range of applications in the field of science
and engineering. They are more efficient than existing schemes in the literature for
differential equations that have highly oscillatory solutions.

We take this opportunity to thank all colleagues and friends for their selfless
help during the preparation of this book. Among them, we particularly express our
heartfelt thanks to John Butcher of the University of Auckland, Christian Lubich of
Universität Tübingen, Arieh Iserles of the University of Cambridge, J. M. Sanz-
Serna of Universidad Carlos III de Madrid, and Reinout Quispel of La Trobe
University for their encouragement.

The authors are also grateful to many colleagues and friends for reading the
manuscript and for their valuable comments. Special thanks go to Robert Peng Kong
Chan of the University of Auckland, Qin Sheng of Baylor University, Jichun Li of
the University of Nevada Las Vegas, David McLaren of La Trobe University, Adrian
Hill of the University of Bath, Xiaowen Chang of McGill University, Jianlin Xia of
Purdue University and Marcus David Webb of the University of Manchester.

Thanks go as well to the following colleagues and friends for their help and
support in various forms: Zuhe Shen, Jinxi Zhao, Yiqian Wang and Jiansheng Geng
of Nanjing University; Fanwei Meng of Qufu Normal University; Yaolin Jiang
and Jing Gao of Xi’an Jiaotong University; Yongzhong Song, Yushun Wang and
Qikui Du of Nanjing Normal University; Chunwu Wang of Nanjing University of
Aeronautics and Astronautics; Xinru Wang of Nanjing Medical University; Qiying
Wang of the University of Sydney; Shixiao Wang of the University of Auckland;
Robert Mclachlan of Massey University; Tianhai Tian of Monash University; Choi-
Hong Lai of University of Greenwich; Jialin Hong, Zaijiu Shang, Yifa Tang and



Preface xi

Yajuan Sun of the Chinese Academy of Sciences; Yuhao Cong of Shanghai Customs
College; Guangda Hu of Shanghai University; Zhizhong Sun and Hongwei Wu of
Southeast University; Shoufo Li, Aiguo Xiao and Liping Wen of Xiangtan Univer-
sity; Chuanmiao Chen of Hunan Normal University; Siqing Gan and Xiaojie Wang
of Central South University; Chengjian Zhang, Chengming Huang and Dongfang Li
of Huazhong University of Science & Technology; Hongjiong Tian and Wansheng
Wang of Shanghai Normal University; Yongkui Zou of Jilin University; Jingjun
Zhao of Harbin Institute of Technology; Xiaofei Zhao and Jiwei Zhang of Wuhan
University; Xiong You of Nanjing Agricultural University; Wei Shi of Nanjing Tech
University, Qinghe Ming and Yonglei Fang of Zaozhuang University; Qinghong
Li of Chuzhou University, Fan Yang, Xianyang Zeng and Hongli Yang of Nanjing
Institute of Technology; Kai Liu of Nanjing University of Finance and Economics;
Jiyong Li of Hebei Normal University; and Fazhan Geng of Changshu Institute of
Technology.

We would like to thank Kai Hu and Ji Luo for their help with the editing, and the
production team of Science Press and Springer-Verlag.

We are grateful to our family members for their love and support throughout all
these years.

The work on this book was supported in part by the National Natural Science
Foundation of China under Grant No. 11671200.

Nanjing, China Xinyuan Wu
Xi’an, China Bin Wang
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Chapter 1
Oscillation-Preserving Integrators
for Highly Oscillatory Systems
of Second-Order ODEs

In this chapter, from the point of view of Geometric Integration, i.e. the numer-
ical solution of differential equations using integrators that preserve as many as
possible the geometric/physical properties of them, we first introduce the concept
of oscillation preservation for Runge–Kutta–Nyström (RKN)-type methods and
then analyse the oscillation-preserving behaviour of RKN-type methods in detail.
This chapter is also accompanied by numerical experiments which show the
importance of the oscillation-preserving property for a numerical method, and the
remarkable superiority of oscillation-preserving integrators for solving nonlinear
multi-frequency highly oscillatory systems.

1.1 Introduction

This chapter focuses on oscillation-preserving integrators for ordinary differential
equations and time-integration of partial differential equations with highly oscil-
latory solutions. As is known, one of the most difficult problems in the numerical
simulation of evolutionary problems is to deal with highly oscillatory problems, and
here we refer to two important review articles on this subject by Petzold et al. [1]
and Cohen et al. [2]. These type of problems occur in a variety of fields in science
and engineering such as quantum physics, fluid dynamics, acoustics, celestial
mechanics and molecular dynamics, including the semidiscretisation of nonlinear
wave equations and Klein–Gordon (KG) equations. The computation of highly
oscillatory problems contains numerous enduring challenges (see, e.g. [1–8]). It is
important to note that standard methods need a very small stepsize and hence a long
runtime to reach an acceptable accuracy for highly oscillatory differential equations.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Wu, B. Wang, Geometric Integrators for Differential Equations with Highly
Oscillatory Solutions, https://doi.org/10.1007/978-981-16-0147-7_1
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2 1 Oscillation-Preserving Integrators for Highly Oscillatory Systems of Second-. . .

In this chapter, we focus on the following initial value problem of nonlinear multi-
frequency highly oscillatory second-order ordinary differential equations

{
y ′′ +My = f (y, y ′), t ∈ [0, T ],
y(0) = y0, y ′(0) = y ′0,

(1.1)

where y ∈ R
d , and M ∈ R

d×d is a positive semi-definite matrix that implicitly
contains the dominant frequencies of the highly oscillatory problem and ‖M‖ �
max

{
1,

∥∥∥∥∂f∂y
∥∥∥∥
}

. In some applications, the dimension d of the matrix M refers

to the number of degrees of freedom in the space semidiscretisation such as
semilinear wave equations, and then ‖M‖ will tend to infinity as finer space
semi-discretisations are carried out. Among typical examples of this type are semi-
discretised KG equations (see, e.g. [9–11]).

In the case where M = 0, (1.1) reduces to the conventional initial value problem
of second-order differential equations

{
y ′′ = f (y, y ′), t ∈ [0, T ],
y(0) = y0, y ′(0) = y ′0.

(1.2)

As is known, the standard RKN methods (see [12]) are very popular for solving
(1.2). However, it may be believed that the standard RKN methods were not
initially designed for the nonlinear multi-frequency highly oscillatory system (1.1).
The standard RKN methods, including symplectic and symmetric RKN methods
may result in unfavorable numerical behaviour when applied to highly oscillatory
systems (see, e.g. [10, 13]). As a result, various RKN-type methods for solving
highly oscillatory differential equations have received a lot of attention (see, e.g.
[1, 2, 6, 8, 11, 13–28]).

In designing numerical integrators for efficiently solving (1.1), the so-called
matrix-variation-of-constants formula plays an important role, which is summarised
as follows:

Theorem 1.1 (Wu et al. [25]) If M ∈ R
d×d is a positive semi-definite matrix and

f : Rd × R
d → R

d in (1.1) is continuous, then the exact solution of (1.1) and its
derivative satisfy the following formula

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(t) =φ0
(
t2M

)
y0 + tφ1

(
t2M

)
y ′0 +

∫ t

0
(t − τ )φ1

(
(t − τ )2M

)
f̂ (τ )dτ,

y ′(t) =− tMφ1
(
t2M

)
y0 + φ0

(
t2M

)
y ′0 +

∫ t

0
φ0

(
(t − τ )2M

)
f̂ (τ )dτ,

(1.3)
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for t ∈ [0, T ], where

f̂ (τ ) = f
(
y(τ), y ′(τ )

)
and the matrix-valued functions φ0(V ) and φ1(V ) of V ∈ R

d×d are defined by

φi(V ) =
∞∑
k=0

(−1)kV k

(2k + i)! , (1.4)

for i = 0, 1, 2, · · · .
Remark 1.1 Actually, the matrix-variation-of-constants formula (1.3) provides an
implicit expression of the solution of the nonlinear multi-frequency highly oscil-
latory system (1.1), which gives a valuable insight into the underlying highly
oscillatory solution. The formula (1.3) also makes it possible to gain a new insight
into the standard RKN methods for (1.2) (see Sect. 1.2 for details).

If f (y, y ′) = 0, (1.3) yields

{
y(t) =φ0

(
t2M

)
y0 + tφ1

(
t2M

)
y ′0,

y ′(t) =− tMφ1
(
t2M

)
y0 + φ0

(
t2M

)
y ′0,

(1.5)

which exactly solves the system of multi-frequency highly oscillatory linear homo-
geneous equations

{
y ′′ +My = 0,

y(0) = y0, y ′(0) = y ′0,
(1.6)

associated with the nonlinear highly oscillatory system (1.1).
Assume that both y(tn) and y ′(tn) at t = tn ∈ [0, T ] are prescribed, it follows

from the formula (1.3) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(tn + μh) = φ0(μ
2V )y(tn)

+ μhφ1(μ
2V )y′(tn)+ h2

∫ μ

0
(μ− ζ )φ1

(
(μ− ζ )2V

)
f̂
(
tn + ζh

)
dζ,

y′(tn + μh) =− μhMφ1(μ
2V )y(tn)

+ φ0(μ
2V )y′(tn)+ h

∫ μ

0
φ0

(
(μ− ζ )2V

)
f̂
(
tn + ζh

)
dζ,

(1.7)
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where V = h2M and 0 < μ � 1. The special case where μ = 1 in (1.7) gives

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y(tn + h) = φ0(V )y(tn)+ hφ1(V )y

′(tn)+ h2
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
f̂ (tn + hz)dz,

y ′(tn + h) = −hMφ1(V )y(tn)+ φ0(V )y
′(tn)+ h

∫ 1

0
φ0

(
(1− z)2V

)
f̂ (tn + hz)dz.

(1.8)

Remark 1.2 We here remark that since the formula (1.3) is an implicit expression
of the solution of the nonlinear multi-frequency highly oscillatory system (1.1), the
formula (1.7) with 0 < μ < 1 exposes the structure of the internal stages, and
(1.8) expresses the structure of the updates in the design of an RKN-type integrator
specially for solving the nonlinear multi-frequency highly oscillatory system (1.1).

In applications, an important special case of (1.1) is that the right-hand side function
f does not depend on y ′, i.e.,

{
y ′′ +My = f (y), t ∈ [0, T ],
y(0) = y0, y ′(0) = y ′0.

(1.9)

The case where M = 0 in (1.9) gives

{
y ′′ = f (y), t ∈ [0, T ],
y(0) = y0, y ′(0) = y ′0.

(1.10)

Remark 1.3 Here it is important to realise that the matrix-variation-of-constants
formula (1.3) is also valid for the nonlinear multi-frequency highly oscillatory
system (1.9), and so are the formulae (1.5), (1.7) and (1.8), provided we replace
f̂ (τ ) = f

(
y(τ), y ′(τ )

)
appearing in (1.3) with f̂ (τ ) = f̂

(
y(τ)

)
.

Obviously, the formula (1.5) implies that if yn = y(tn) and y ′n = y ′(tn), then we
have {

y(tn + cih) =φ0
(
c2
i V

)
yn + cihφ1

(
c2
i V

)
y ′n,

y ′(tn + cih) =− cihMφ1
(
c2
i V

)
yn + φ0

(
c2
i V

)
y ′n,

(1.11)

for any tn, t = tn + cih ∈ [0, T ], where h > 0 and 0 < ci � 1 for i = 1, · · · , s.
In what follows, it is convenient to introduce the block vector which will be used

in the analysis of oscillation preservation in Sect. 1.4:

Ŷ = (Ŷ
ᵀ
1 , · · · , Ŷᵀ

s )
ᵀ, (1.12)
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where

Ŷi = y(tn + cih),

express the exact solutions to the multi-frequency highly oscillatory linear homoge-
neous equation (1.6) at t = tn + cih for i = 1, · · · , s. It is clear from (1.11) and
(1.12) that Ŷ is a block vector, which can be expressed in the block-matrix notation
with Kronecker products as

Ŷ = φ0(C
2 ⊗ V )(e⊗ yn)+ h(C ⊗ Id)φ1(C

2 ⊗ V )(e ⊗ y ′n), (1.13)

where e = (1, 1, · · · , 1)ᵀ is an s × 1 vector,

C = diag(c1, · · · , cs)

is an s × s diagonal matrix, and the block diagonal matrices are given by

φ0(C
2 ⊗ V ) = diag(φ0(c

2
1V ), · · · , φ0(c

2
s V )),

(C ⊗ Id)φ1(C
2 ⊗ V ) = diag(c1φ1(c

2
1V ), · · · , csφ1(c

2
s V )).

If t = tn + h, namely, ci = 1, the formula (1.11) is identical to

{
y(tn + h) =φ0

(
V
)
yn + hφ1

(
V
)
y ′n,

y ′(tn + h) =− hMφ1
(
V
)
yn + φ0

(
V
)
y ′n.

(1.14)

Historically, the ARKN methods and ERKN integrators were successively proposed
and investigated in order to solve the highly oscillatory system (1.1) and (1.9),
respectively. Although both ARKN methods and ERKN integrators were proposed
and developed from single frequency to multi-frequency oscillatory problems in
chronological order, throughout this chapter we are only interested in nonlinear
multi-frequency highly oscillatory systems.

1.2 Standard Runge–Kutta–Nyström Schemes
from the Matrix-Variation-of-Constants Formula

It is interesting to point out that the formula (1.7) provides an enlightening approach
to standard RKN methods for solving second-order initial value problems (1.2)
numerically, although Nyström established them in 1925 (see Nyström [12]). To
clarify this, using the matrix-variation-of-constants formula (1.7) with M = 0, we
are easily led to the following formulae of integral equations for second-order initial
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value problems (1.2):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y(tn + μh) = y(tn)+ μhy ′(tn)+ h2

∫ μ

0
(μ− z)f̂ (tn + hz) dz,

y ′(tn + μh) = y ′(tn)+ h

∫ μ

0
f̂ (tn + hz) dz,

(1.15)

for 0 < μ < 1, and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y(tn + h) = y(tn)+ hy ′(tn)+ h2

∫ 1

0
(1− z)f̂ (tn + hz) dz,

y ′(tn + h) = y ′(tn)+ h

∫ 1

0
f̂ (tn + hz) dz,

(1.16)

for μ = 1, where f̂ (ν) := f
(
y(ν), y ′(ν)

)
.

Clearly, the formulae (1.15) and (1.16) contain and generate the structure of
the internal stages and updates of a Runge–Kutta-type integrator for solving (1.2),
respectively. This indicates the standard RKN scheme in a quite simple and natural
way compared with the original idea (with the block vector (yᵀ, y ′ᵀ)ᵀ regarded as
the new variable, (1.2) can be transformed into a system of first-order differential
equations of doubled dimension, and then we apply Runge–Kutta methods to the
system of first-order differential equations, accompanying some simplifications).
Approximating the integrals in (1.15) and (1.16) by using a suitable quadrature
formula with nodes c1, · · · , cs , we straightforwardly obtain the standard RKN
methods (see Nyström [12]) as follows.

Definition 1.1 An s-stage RKN method for the initial value problem (1.2) is
defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + cihy
′
n + h2

s∑
j=1

āij f (Yj , Y
′
j ), i = 1, · · · , s,

Y ′i = y ′n + h

s∑
j=1

aij f (Yj , Y
′
j ), i = 1, · · · , s,

yn+1 = yn + hy ′n + h2
s∑

i=1

b̄if (Yi, Y
′
i ),

y ′n+1 = y ′n + h

s∑
i=1

bif (Yi, Y
′
i ),

(1.17)

where āij , aij , b̄i , bi, ci for i, j = 1, · · · , s are real constants.
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The standard RKN method (1.17) also can be expressed in the partitioned Butcher
tableau as follows:

c Ā A

b̄ᵀ bᵀ
=

c1 ā11 · · · ā1s a11 · · · a1s
...

...
. . .

...
...

. . .
...

cs ās1 · · · āss as1 · · · ass
b̄1 · · · b̄s b1 · · · bs

,

where b̄ = (b̄1, · · · , b̄s )ᵀ, b = (b1, · · · , bs)ᵀ and c = (c1, · · · , cs)ᵀ are s-
dimensional vectors, and Ā = (āij ) and A = (aij ) are s × s constant matrices.

1.3 ERKN Integrators and ARKN Methods Based
on the Matrix-Variation-of-Constants Formula

The integration of highly oscillatory differential equations has been a challenge for
numerical computation for a long time. Much effort has been focused on preserving
important high-frequency oscillations. The adapted RKN (ARKN) methods and
extended RKN (ERKN) integrators were proposed one after another.

1.3.1 ARKN Integrators

What is the difference between a standard RKN method and an ARKN method for
(1.1)? Inheriting the internal stages of standard RKN methods (ignoring the matrix-
variation-of-constants formula (1.7)) and approximating the integrals appearing
in (1.8) by a suitable quadrature formula with nodes c1, · · · , cs to modify only
the updates of standard RKN methods yields the ARKN methods for the nonlinear
multi-frequency highly oscillatory system (1.1).
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Definition 1.2 (Wu et al. [29]) An s-stage ARKN method with stepsize h > 0 for
solving the multi-frequency highly oscillatory system (1.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + hciy
′
n + h2

s∑
j=1

āij
(
f (Yj , Y

′
j )−MYj

)
, i = 1, · · · , s,

Y ′i = y ′n + h

s∑
j=1

aij
(
f (Yj , Y

′
j )−MYj

)
, i = 1, · · · , s,

yn+1 = φ0(V )yn + hφ1(V )y
′
n + h2

s∑
i=1

b̄i(V )f (Yi, Y
′
i ),

y ′n+1 = −hMφ1(V )yn + φ0(V )y
′
n + h

s∑
i=1

bi(V )f (Yi, Y
′
i ),

(1.18)

where āij , aij , ci for i, j = 1, · · · , s are real constants, and b̄i(V ), bi(V ) for
i = 1, · · · , s in the updates are matrix-valued functions of V = h2M . The ARKN
method (1.18) can also be denoted by the partitioned Butcher tableau

c Ā A

b̄ᵀ(V ) bᵀ(V )
=

c1 ā11 · · · ā1s a11 · · · a1s
...

...
. . .

...
...

. . .
...

cs ās1 · · · āss as1 · · · ass

b̄1(V ) · · · b̄s(V ) b1(V ) · · · bs(V )

.

In the block-matrix notation with Kronecker products, (1.18) can be expressed as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y = e ⊗ yn + hc ⊗ y ′n + h2(Ā⊗ Id)
(
f (Y, Y ′)− (Is ⊗M)Y

)
,

Y ′ = e ⊗ y ′n + h(A⊗ Id)
(
f (Y, Y ′)− (Is ⊗M)Y

)
,

yn+1 = φ0(V )yn + hφ1(V )y
′
n + h2b̄ᵀ(V )f (Y, Y ′),

y ′n+1 = −hMφ1(V )yn + φ0(V )y
′
n + hbᵀ(V )f (Y, Y ′),

(1.19)

where e is an s × 1 vector of units, and the block vectors involved are defined by

Y = (
Y
ᵀ
1 , · · · , Yᵀ

s

)ᵀ
, Y ′ = (

Y ′1
ᵀ
, · · · , Y ′sᵀ

)ᵀ
,

f (Y, Y ′) = (
f (Y1, Y

′
1)

ᵀ, · · · , f (Ys, Y ′s )ᵀ
)ᵀ
.
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It is noted again that the internal stages of an ARKN method are the same as those
of standard RKN methods, and only its updates have been modified. Concerning
single-frequency ARKN methods, readers are referred to [14, 30], and the research
on symplectic ARKN methods can be found in [31, 32]. Besides, Franco was the first
to attempt to extend his single-frequency ARKN methods in [14] to multi-frequency
systems (1.9), but his order conditions are based on single-frequency theory (see
[30, 33]).

It is also important to emphasise that the internal stages and the updates for
an RKN-type method when applied to (1.1) should play the same role in the
approximation based on its matrix-variation-of-constants formula (1.7), and the
well-known fact that

Yi ≈ y(tn + cih), Y ′i ≈ y ′(tn + cih),

for i = 1, · · · , s and

yn+1 ≈ y(tn+1) = y(tn + h), y ′n+1 ≈ y ′(tn+1) = y ′(tn + h).

Unfortunately, from this point of view, it can be observed from (1.18) that the
internal stages of an ARKN method are not put on an equal footing in the light
of the matrix-variation-of-constants formula (1.7). This means that the revision or
modification of an ARKN method for the multi-frequency highly oscillatory system
does not go far enough and is still far from being satisfactory from both a theoretical
and practical perspective. This key observation motivates ERKN integrators for the
nonlinear multi-frequency highly oscillatory system (1.9), which can also be thought
of as improved ARKN methods.

1.3.2 ERKN Integrators

Since we have mentioned that the ARKN method is still not satisfactory due to its
internal stages, it is natural to improve both the internal stages and updates of an
RKN method in the light of the matrix-variation-of-constants formulae (1.7) and
(1.8) with f̂ (ζ ) = f

(
y(ζ )

)
. To this end, approximating the integrals appearing in

the formulae by using a suitable quadrature formula with nodes c1, · · · , cs leads to
the following ERKN integrator for the nonlinear multi-frequency highly oscillatory
system (1.9).
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Definition 1.3 (Wu et al. [25]) An s-stage ERKN integrator for the numerical
integration of the nonlinear multi-frequency highly oscillatory system (1.9) with
stepsize h > 0 is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V )yn + cihφ1(c

2
i V )y

′
n + h2

s∑
j=1

āij (V )f (Yj ), i = 1, · · · , s,

yn+1 = φ0(V )yn + hφ1(V )y
′
n + h2

s∑
i=1

b̄i(V )f (Yi),

y ′n+1 = −hMφ1(V )yn + φ0(V )y
′
n + h

s∑
i=1

bi(V )f (Yi),

(1.20)

where ci for i = 1, · · · , s are real constants, bi(V ), b̄i(V ) for i = 1, · · · , s, and
āij (V ) for i, j = 1, · · · , s are matrix-valued functions of V = h2M .

The scheme (1.20) can also be denoted by the following partitioned Butcher
tableau

c Ā(V )

b̄ᵀ(V )

bᵀ(V )

=

c1 ā11(V ) · · · ā1s(V )
...

...
. . .

...

cs ās1(V ) · · · āss(V )
b̄1(V ) · · · b̄s(V )

b1(V ) · · · bs(V )

.

It will be convenient to express the equations of (1.20) in block-matrix notation in
terms of Kronecker products

⎧⎪⎪⎨
⎪⎪⎩
Y = φ0(C

2 ⊗ V )(e ⊗ yn)+ h(C ⊗ Id)φ1(C
2 ⊗ V )(e ⊗ y ′n)+ h2Ā(V )f (Y ),

yn+1 = φ0(V )yn + hφ1(V )y
′
n + h2b̄ᵀ(V )f (Y ),

y ′n+1 = −hMφ1(V )yn + φ0(V )y
′
n + hbᵀ(V )f (Y ),

(1.21)
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where e = (1, 1, · · · , 1)ᵀ is an s × 1 vector of units, c = (c1, · · · , cs)ᵀ is an s × 1
vector of nodes, C = diag(c1, · · · , cs) is an s × s diagonal matrix, and the block
vectors and block diagonal matrices are given by

Y =
⎡
⎢⎣
Y1
...

Ys

⎤
⎥⎦ , f (Y ) =

⎡
⎢⎣
f (Y1)
...

f (Ys)

⎤
⎥⎦ ,

φ0(C
2 ⊗ V ) = diag(φ0(c

2
1V ), · · · , φ0(c

2
s V )),

(C ⊗ Id)φ1(C
2 ⊗ V ) = diag(c1φ1(c

2
1V ), · · · , csφ1(c

2
s V )).

Here, it should be remarked that both internal stages and updates of an ERKN
integrator have been revised and improved in terms of the matrix-variation-of-
constants formulae (1.7) and (1.8) with f̂ (ζ ) = f

(
y(ζ )

)
. This class of ERKN

integrators has been well developed, and we will further present their stability and
convergence analysis in Chap. 3. Moreover, we will also make an attempt to discuss
ERKN integrators combined with Fourier pseudospectral discretisation for solving
semilinear wave equations in Chap. 3.

If f (y) = 0 in (1.9), then accordingly (1.20) reduces to

⎧⎪⎪⎨
⎪⎪⎩
Yi = φ0(c

2
i V )yn + cihφ1(c

2
i V )y

′
n, i = 1, · · · , s,

yn+1 = φ0(V )yn + hφ1(V )y
′
n,

y ′n+1 = −hMφ1(V )yn + φ0(V )y
′
n.

(1.22)

In terms of Kronecker products with block-matrix notation, (1.22) can be expressed
by

⎧⎪⎪⎨
⎪⎪⎩
Y = φ0(C

2 ⊗ V )(e ⊗ yn)+ h(C ⊗ Id)φ1(C
2 ⊗ V )(e ⊗ y ′n),

yn+1 = φ0(V )yn + hφ1(V )y
′
n,

y ′n+1 = −hMφ1(V )yn + φ0(V )y
′
n.

(1.23)

It follows from (1.13) and (1.14) that both the internal stages and updates of
an ERKN integrator exactly solve the multi-frequency highly oscillatory linear
homogeneous equation (1.6) on noticing the fact that

Y = Ŷ , yn+1 = y(tn+1), y
′
n+1 = y ′(tn+1). (1.24)

It is worth pointing out that (1.24) is an essential feature of ERKN integrators,
especially for the effective treatment of nonlinear multi-frequency highly oscillatory
systems and this property inherits and develops the idea of the Filon-type method
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for highly oscillatory integrals (see, e.g. [34, 35]), since the dominant oscillation
source introduced by the linear term My has been calculated explicitly.

It is known that energy-preserving methods can be expressed as so-called contin-
uous stage Runge–Kutta methods. Here, from the perspective of the continuous-
stage Runge–Kutta methods (see, e.g. [36–41]), it is also worth noting that
continuous-stage ERKN integrators for (1.9) have not received enough attention.
We will next introduce the definition of continuous-stage ERKN integrators.

Definition 1.4 A continuous-stage ERKN integrator for solving the nonlinear
Hamiltonian system (1.9) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yτ = φ0(τ
2V )yn + τhφ1(τ

2V )y ′n + h2
∫ 1

0
Āτ,σ (V )f (Yσ )dσ, 0 � τ � 1,

yn+1 = φ0(V )yn + hφ1(V )y
′
n + h2

∫ 1

0
b̄τ (V )f (Yτ )dτ,

y ′n+1 = −hMφ1(V )yn + φ0(V )y
′
n + h

∫ 1

0
bτ (V )f (Yτ )dτ,

(1.25)

where b̄τ (V ), bτ (V ) are matrix-valued functions of τ and V , and Āτ,σ (V ) is a
matrix-valued function depending on τ, σ and V .

We will further discuss continuous-stage extended Runge–Kutta–Nyström meth-
ods for highly oscillatory Hamiltonian systems in Chap. 2. Continuous-stage Leap-
frog schemes for semilinear Hamiltonian wave equations will be investigated in
detail in Chap. 12.

1.4 Oscillation-Preserving Integrators

It is well known that efficiency is often an important consideration for solving
multiple high-frequency oscillatory ordinary differential equations over long-time
intervals, although standard RKN methods are popular and effective for second-
order ordinary differential equations in many applications. One needs to select
an appropriate mathematical or numerical approach to track the high-frequency
oscillation in order to use larger stepsizes over long-time intervals.

In the last few decades, geometric numerical integration for differential equations
has received more and more attention in order to respect their structural invari-
ants and geometry. The geometric numerical integration for nonlinear differential
equations has led to the development of numerical schemes which systematically
incorporate qualitative features of the underlying problem into their structures.
Accordingly, first of all, a numerical algorithm should respect the highly oscillatory
structure of the underlying continuous system (1.1) or (1.9), in the sense of Geomet-
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ric Integration. On noticing that the Filon-type method (see, e.g. [34, 35]) for highly
oscillatory integrals is very successful, and the idea behind this method is that the
oscillatory part involved in these integrals must be calculated explicitly, this point is
also essential for efficiently solving the nonlinear multi-frequency highly oscillatory
system (1.1) or (1.9). This idea for exponential or trigonometric integrators, in fact,
has been used for decades by many authors (see, e.g. [4, 15, 16, 42–46]).

It is noted that a comprehensive review of exponential integrators can be found
in Hochbruck and Ostermann [46], in which Gautschi-type methods, impulse and
mollified impulse methods (see, e.g. Grubmüller et al. [47]), multiple time-stepping
methods (see Hairer et al. [15], Chapter VIII. 4), and adiabatic integrators (see
Lorenz et al. [48]) were reviewed in detail for the highly oscillatory second-order
differential equation, and for the singularly perturbed second-order differential
equation, respectively. Hence, in this chapter, we won’t cover them again.

Here, it is clear that high oscillations are brought by the linear part My of (1.1)
or (1.9) which should be solved explicitly and exactly for an efficient numerical
integrator. Therefore, it will be convenient to introduce the concept of oscillation-
preserving numerical methods for solving the nonlinear highly oscillatory system
(1.1) or (1.9). Taking into account the significant fact that the internal stages Yi
for i = 1, · · · , s, must be nonlinearly involved in the updates yn+1 and y ′n+1 at
each time step for an RKN-type method when applied to (1.1) or (1.9), we present
the following definition of oscillation-preserving numerical methods for efficiently
solving the nonlinear multi-frequency highly oscillatory system (1.1) or (1.9).

Definition 1.5 An RKN-type method for solving the nonlinear multi-frequency
highly oscillatory system (1.1) or (1.9) is oscillation preserving, if its internal stages
Yi for i = 1, · · · , s, together with its updates yn+1 and y ′n+1 at each time step
explicitly and exactly solve the highly oscillatory homogeneous linear equation (1.6)
associated with (1.1) or (1.9). Apart from this, if only the updates of an RKN-type
method can exactly solve the highly oscillatory homogeneous linear equation (1.6),
then the RKN-type method is called to be partly oscillation preserving.

Theorem 1.2 An ERKN integrator is oscillation preserving, but an ARKN method
is partly oscillation preserving, and a standard RKN method is neither oscillation
preserving, nor partly oscillation preserving.

Proof In the light of Definition 1.5, it is very clear from (1.22) or (1.23) that an
ERKN integrator is oscillation preserving.

Unfortunately, an ARKN method is not oscillation preserving due to its internal
stages. In fact, applying the internal stages of the ARKN method (1.18) to (1.6)
gives

Yi = yn + cihy
′
n − h2M

s∑
j=1

āij Yj ,
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for i = 1, · · · , s, which leads to

Y = e ⊗ yn + h(C ⊗ Id)(e ⊗ y ′n)− h2(Ā⊗ Id)(Is ⊗M)Y, (1.26)

where e is an s × 1 vector of units,

h(C ⊗ Id) = diag(hc1Id , · · · , hcsId),

and⊗ represents Kronecker products. We then obtain

Y = (
Is ⊗ Id + h2(Ā⊗ Id)(Is ⊗M)

)−1(
e ⊗ yn + h(C ⊗ Id)(e ⊗ y ′n)

)
= (

Is ⊗ Id + h2(Ā⊗ Id)(Is ⊗M)
)−1(

e ⊗ yn
)

+(Is ⊗ Id + h2(Ā⊗ Id)(Is ⊗M)
)−1

h(C ⊗ Id)
(
e ⊗ y ′n

)
, (1.27)

provided det
(
Is ⊗ Id + h2(Ā⊗ Id)(Is ⊗M)

) 
= 0. In comparison with Ŷ defined
in (1.13), this implies that

Y 
= Ŷ = φ0(C
2 ⊗ V )(e ⊗ yn)+ h(C ⊗ Id)φ1(C

2 ⊗ V )(e ⊗ y ′n),

i.e.,

Yi 
= Ŷi = φ0
(
c2
i V

)
yn + cihφ1

(
c2
i V

)
y ′n,

for i = 1, · · · , s, on noticing the fact that

(C ⊗ Id)φ1(C
2 ⊗ V ) = φ1(C

2 ⊗ V )(C ⊗ Id)

and

φ0
(
c2
i V

) 
= φ1
(
c2
i V

)
,

for i = 1, · · · , s. Therefore, it follows from Definition 1.5 that an ARKN method
cannot be oscillation preserving, although it is partly oscillation preserving due to
its updates. Since the internal stages of standard RKN methods are the same as those
of ARKN methods, a standard RKN method is not oscillation preserving. Moreover,
in a similar way, it can be shown that the updates of a standard RKN method cannot
exactly solve (1.6). This implies that a standard RKN method is neither oscillation
preserving nor partly oscillation preserving, because both its internal stages and
updates fail to exactly solve the highly oscillatory homogeneous linear equation
(1.6) associated with (1.1) or (1.9).

The proof is complete. ��
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Clearly, it follows from (1.25) that a continuous-stage ERKN method for (1.9) is
also oscillation preserving.

Theorem 1.2 presents and confirms a fact that an ERKN integrator possesses
excellent oscillation-preserving behaviour for solving the nonlinear highly oscilla-
tory system (1.9) in comparison with RKN and ARKN methods.

With regard to the construction of arbitrary order ERKN integrators for (1.9),
readers are referred to a recent paper (see [18]). Concerning the order conditions of
ERKN integrators for (1.9), readers are referred to [26, 49].

1.5 Towards Highly Oscillatory Nonlinear Hamiltonian
Systems

As is known, Hamiltonian systems have very important applications. Nonlinear
Hamiltonian systems with highly oscillatory solutions frequently occur in areas
of physics and engineering such as molecular dynamics, classical and quantum
mechanics. Numerical methods used to treat them also depend on the knowledge
of certain other characteristics of the solution besides high-frequency oscillation.

We now consider the initial value problem of the nonlinear multi-frequency
highly oscillatory Hamiltonian system

{
q̈ +Mq = f (q), t ∈ [0, T ],
q(0) = q0, q̇(0) = q̇0,

(1.28)

where M is a d × d symmetric positive semi-definite matrix and f : Rd → R
d is a

continuous nonlinear function of q with f (q) = −∇U(q) for a real-valued function
U(q). Then, the highly oscillatory Hamiltonian system (1.28) can be rewritten as the
standard format {

ṗ = −∇qH(p, q),

q̇ = ∇pH(p, q),
(1.29)

with the initial values q(0) = q0, p(0) = p0 = q̇0 and the Hamiltonian

H(p, q) = 1

2
pᵀp + 1

2
qᵀMq + U(q). (1.30)

It is well known that two remarkable features of a Hamiltonian system are the
symplecticity of its flow and the conservation of the Hamiltonian. Consequently,
for a numerical integrator for (1.29), in addition to oscillation preservation, these
two features should be respected as much as possible in the spirit of geometric
numerical integration. In the development of symplectic integration, the earliest
significant contributions to this field were due to Feng Kang, who was a pioneer
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in stressing the importance of using symplectic integrators when the equations to be
solved are Hamiltonian systems (see [50–52]). It is also worth noting the earlier
important work on symplectic integration by J. M. Sanz-Serna, who first found
and analysed symplectic Runge–Kutta schemes for Hamiltonian systems (see Sanz-
Serna [53]). For the survey papers and monographs on numerical approaches to
dealing with nonlinear Hamiltonian differential equations with highly oscillatory
solutions, readers are referred to [1, 2, 13, 15, 54, 55].

1.5.1 SSMERKN Integrators

Symplecticity is an important characteristic property of Hamiltonian systems and
symplectic methods have been well developed (see, e.g. [15, 52, 53, 56–60]).
Symplectic ERKN methods for highly oscillatory Hamiltonian systems have been
analysed (see Wu et al. [24]). Symplectic and symmetric multi-frequency ERKN
integrators (SSMERKN integrators) have been proposed and analysed for the
nonlinear multi-frequency highly oscillatory Hamiltonian system (1.29) in Wu et
al. [49].

We now state the coupled conditions of explicit SSMERKN integrators for
(1.29).

Theorem 1.3 An s-stage explicit multi-frequency ERKN integrator for integrating
(1.29) is symplectic and symmetric if its coefficients are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ci = 1− cs+1−i , di = ds+1−i 
= 0, i = 1, 2, · · · , s,
bi(V ) = diφ0(c

2
s+1−iV ), i = 1, 2, · · · , s,

b̄i(V ) = dics+1−iφ1(c
2
s+1−iV ), i = 1, 2, · · · , s,

āij (V ) = 1

di

(
bi(V )b̄j (V )− b̄i(V )bj (V )

)
, i > j, i, j = 1, 2, · · · , s.

(1.31)

The detailed proof of this theorem can be found in Wu et al. [49]. It is noted
that when V → 0d×d , the ERKN methods reduce to standard RKN methods for

solving Hamiltonian systems with the Hamiltonian H(p, q) = 1

2
pᵀp + U(q). The

following result can be deduced from Theorem 1.3.

Theorem 1.4 An s-stage explicit RKN method with the coefficients

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ci = 1− cs+1−i, di = ds+1−i 
= 0, i = 1, 2, · · · , s,
bi = di, b̄i = dics+1−i , i = 1, 2, · · · , s,
āij = 1

di

(
bib̄j − b̄ibj

)
, i > j, i, j = 1, 2, · · · , s,

(1.32)
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is symplectic and symmetric. In (1.32), di for i = 1, 2, · · · ,
⌊
s + 1

2

⌋
, are real

numbers and can be chosen based on the order conditions of RKN methods or other

requirements, where

⌊
s + 1

2

⌋
denotes the integer part of

s + 1

2
.

The proof of Theorem 1.4 can be found in [49].

Theorem 1.5 An SSMERKN integrator is oscillation preserving. However, a sym-
plectic and symmetric RKN method is neither oscillation preserving, nor partly
oscillation preserving.

Proof It follows directly from the definition of oscillation preservation (Definition
1.5). ��

Hence, we conclude from Theorem 1.5 that a symplectic and symmetric RKN
method may not be a good choice for efficiently solving the nonlinear multi-
frequency and highly oscillatory Hamiltonian system (1.29) due to its lack of
oscillation preservation, whereas an SSMERKN integrator is preferred. This point
will also be observed from the results of numerical experiments in Sect. 1.7.

With regard to energy-preserving continuous-stage extended Runge–Kutta–
Nyström methods for nonlinear Hamiltonian systems with highly oscillatory solu-
tions, see Chap. 2 for details.

1.5.2 Trigonometric Fourier Collocation Methods

Geometric numerical integration is still a very active subject area and much work has
yet to be done. Accordingly, the exponential/trigonometric integrator has become
increasingly important (see, e.g. [8, 13, 15, 20, 61–64]). The original attempts at
exploring exponential/trigonometric algorithms for the oscillatory system (1.28)
with the special structure brought by the linear term Mq were motivated by many
fields of research such as mechanics, astronomy, quantum physics, theoretical
physics, molecular dynamics, semidiscrete wave equations approximated by the
method of lines or spectral discretisation. The exponential/trigonometric methods
take advantage of the special structure to achieve an improved qualitative behaviour,
and produce a more accurate long-time integration than standard methods.

We next consider the highly oscillatory system (1.28) which is restricted to the
interval [0, h] :

q̈(t)+Mq(t) = f (q(t)), q(0) = q0, q̇(0) = q̇0, t ∈ [0, h]. (1.33)
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It follows from the matrix-variation-of-constants formula that the exact solution of
the system (1.33) and its derivative satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q(h) = φ0(V )q0 + hφ1(V )p0 + h2

∫ 1

0
(1− z)φ1

(
(1− z)2V

)
f (q(hz))dz,

p(h) = −hMφ1(V )q0 + φ0(V )p0 + h

∫ 1

0
φ0

(
(1− z)2V

)
f (q(hz))dz,

(1.34)

for stepsize h > 0, where V = h2M .
Choose an orthogonal polynomial basis {P̃j }∞j=0 on the interval [0, 1]: e.g.,

the shifted Legendre polynomials over the interval [0, 1], scaled in order to be
orthonormal. Hence, we have

∫ 1

0
P̃i (x)P̃j (x)dx = δij , deg

(
P̃j

) = j, i, j � 0,

where δij is the Kronecker symbol. The right-hand side of (1.33) can be rewritten
as

f (q(ξh)) =
∞∑
j=0

P̃j (ξ)γj (q), ξ ∈ [0, 1]; γj (q) :=
∫ 1

0
P̃j (τ )f (q(τh))dτ.

(1.35)

For the sake of simplicity we now use γj (q) to denote the coefficients γj (h, f (q))
involved in the Fourier expansion.

We now state a result which follows from (1.34) and (1.35), and the proof can be
found in Wang et al. [8].

Theorem 1.6 The solution of (1.33) and its derivative satisfy⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q(h) = φ0(V )q0 + hφ1(V )p0 + h2
∞∑
j=0

I1,j γj (q),

p(h) = −hMφ1(V )q0 + φ0(V )p0 + h

∞∑
j=0

I2,j γj (q),

(1.36)

where

I1,j :=
∫ 1

0
P̃j (z)(1− z)φ1

(
(1− z)2V

)
dz, I2,j :=

∫ 1

0
P̃j (z)φ0

(
(1− z)2V

)
dz.

(1.37)
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Naturally, a practical scheme to solve (1.28) needs to truncate the series (1.35)
after r (r � 2) terms and this means replacing the initial value problem (1.28) with
the following approximate problem

⎧⎪⎪⎨
⎪⎪⎩
q̃ ′(ξh) = p̃(ξh), q̃(0) = q0,

p̃′(ξh) = −Mq̃(ξh)+
r−1∑
j=0

P̃j (ξ)γj (q̃), p̃(0) = p0.
(1.38)

We then obtain the implicit solution of (1.38) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̃(h) = φ0(V )q0 + hφ1(V )p0 + h2
r−1∑
j=0

I1,j γj (q̃),

p̃(h) = −hMφ1(V )q0 + φ0(V )p0 + h

r−1∑
j=0

I2,j γj (q̃).

(1.39)

The analysis stated above leads to the following definition of the trigonometric
Fourier collocation methods.

Definition 1.6 (Wang et al. [8]) A trigonometric Fourier collocation (TFC)
method for integrating the oscillatory system (1.28) or (1.29) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi = φ0(c
2
i V )q0 + cihφ1(c

2
i V )p0 + (cih)

2
r−1∑
j=0

I1,j,ci

k∑
l=1

blP̃j (cl)f (vl),

i = 1, 2, · · · , k,

v(h) = φ0(V )q0 + hφ1(V )p0 + h2
r−1∑
j=0

I1,j

k∑
l=1

blP̃j (cl)f (vl),

u(h) = −hMφ1(V )q0 + φ0(V )p0 + h

r−1∑
j=0

I2,j

k∑
l=1

blP̃j (cl)f (vl),

(1.40)

where h is the stepsize, r is an integer satisfying 2 � r � k, P̃j are defined by

P̃j (x) = (−1)j
√

2j + 1
j∑

k=0

(
j

k

) (
j + k

k

)
(−x)k, j = 0, 1, · · · , x ∈ [0, 1],

(1.41)
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and cl, bl for l = 1, 2, · · · , k, are the nodes, and the quadrature weights of a
quadrature formula, respectively. I1,j , I2,j , and I1,j,ci are well determined by the
generalised hypergeometric functions (see Wang et al. [8] for details):

mFn

[
α1, α2, · · · , αm;
β1, β2, · · · , βn;x

]
=

∞∑
l=0

m∏
i=1

(αi)l

n∏
i=1

(βi)l

xl

l! . (1.42)

In (1.42), the Pochhammer symbol (z)l is recursively defined by (z)0 = 1 and (z)l =
z(z+ 1) · · · (z+ l − 1), l ∈ N, and the parameters αi and βi are arbitrary complex
numbers, except that βi can be neither zero nor a negative integer.

Remark 1.4 We remark that φ0(V ) and φ1(V ) defined by (1.4) can also be
expressed by the generalised hypergeometric function 0F1:

φ0(V ) = 0F1

⎡
⎣−;1

2
; −

V

4

⎤
⎦ , φ1(V ) = 0F1

⎡
⎣−;3

2
; −

V

4

⎤
⎦ . (1.43)

The other φj (V ) for j � 2 can be recursively obtained from φ0(V ) and φ1(V )

(see, e.g. [54]). This hypergeometric representation is useful, and most modern
software, e.g., Maple, Mathematica, and Matlab, is well equipped for the calculation
of generalised hypergeometric functions.

Remark 1.5 Although the TFC method (1.40) approximates the solution q(t), p(t)
of the system (1.28) or (1.29) only in the time interval [0, h], the values v(h), u(h)
can be considered as the initial values for a new initial value problem approximating
q(t), p(t) in the next time interval [h, 2h]. In such a time-stepping routine manner,
we can extend the TFC methods to the interval [(i − 1)h, ih] for any i � 2 and
finally obtain a TFC method for q(t), p(t) in an arbitrary interval [0, Nh]. For
more details, readers are referred to Wang et al. [8].

Concerning the order of TCF methods, we assume that the quadrature formula
for γj (q) in (1.35) is of order m − 1. Then the order of TFC methods is of order
n = min{m, 2r}. The details can be found in Wang et al. [8].

Theorem 1.7 The TFC method (1.40) is oscillation preserving.

Proof Clearly, it follows from the definition of TFC method (1.40) that the TFC
method (1.40) is a kind of k-stage RKN-type method, and both its internal stages
and updates exactly solve the system of multi-frequency highly oscillatory linear
homogeneous equations (1.6). Consequently, the TFC method (1.40) is oscillation
preserving. ��
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It is worth mentioning that the TFC method (1.40) is based on the variation-of-
constants formula and a local Fourier expansion of the underlying problem, via the
approximation of orthogonal polynomial basis. The approximation of orthogonal
trigonometric basis is another possible strategy in the effort to solve (1.33).

1.5.3 The AAVF Method and AVF Formula

It is known that one of the important characteristic properties of a Hamiltonian
system is energy conservation. The study of numerical energy conservation for
oscillatory systems has appeared in the literature (see, e.g. Hairer et al. [65, 66], Li
et al. [7]). In particular, the average-vector-field (AVF) formula (see, e.g. [67, 68])
for (1.10) is of great importance, once (1.10) is a Hamiltonian system.

It follows from the matrix-variation-of-constants formula (1.3) that the solution
of (1.28) and its derivative satisfy the following equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q(t) =φ0

(
t2M

)
q0 + tφ1

(
t2M

)
p0 +

∫ t

0
(t − ζ )φ1

(
(t − ζ )2M

)
f̂ (ζ )dζ,

p(t) =− tMφ1
(
t2M

)
q0 + φ0

(
t2M

)
p0 +

∫ t

0
φ0

(
(t − ζ )2M

)
f̂ (ζ )dζ,

(1.44)

where t is any real numbers and f̂ (ζ ) = f
(
q(ζ )

)
.

The formula (1.44) motivates the following integrator with stepsize h of the form:

{
qn+1 = φ0(V )qn + hφ1(V )pn + h2IQ1,

pn+1 = −hMφ1(V )qn + φ0(V )pn + hIQ2,
(1.45)

where V = h2M , and IQ1, IQ2 can be determined by the energy-preserving
condition at each time step:

H(pn+1, qn+1) = H(pn, qn).

We now state a sufficient condition (see, e.g. Wang and Wu [21]) for the scheme
(1.45) to yield energy preservation.

Theorem 1.8 If

IQ1 = φ2(V )

∫ 1

0
f
(
(1− τ )qn + τqn+1

)
dτ, IQ2 = φ1(V )

∫ 1

0
f
(
(1− τ )qn + τqn+1

)
dτ,

(1.46)
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then the scheme (1.45) exactly preserves the Hamiltonian (1.30), i.e.,

H(pn+1, qn+1) = H(pn, qn), n = 0, 1, · · · . (1.47)

Thus, we state the adapted average-vector-field (AAVF) method (see [21, 23]) as
follows:

Definition 1.7 An adapted average-vector-field (AAVF) method with stepsize h for
the multi-frequency highly oscillatory Hamiltonian system (1.28) is defined by

⎧⎪⎪⎨
⎪⎪⎩
qn+1 = φ0(V )qn + hφ1(V )pn + h2φ2(V )

∫ 1

0
f
(
(1− τ )qn + τqn+1

)
dτ,

pn+1 = −hMφ1(V )qn + φ0(V )pn + hφ1(V )

∫ 1

0
f
(
(1− τ )qn + τqn+1

)
dτ,

(1.48)

where φ0(V ), φ1(V ) and φ2(V ) are determined by (1.4).

It follows from Theorem 1.8 that the AAVF method (1.48) is energy preserving.
It can be observed that when M = 0 in (1.48), the AAVF method reduces to the

well-known AVF formula for (1.10) with y = q and f (q) = −∇U(q) (see, e.g.
[67, 68]):

⎧⎪⎪⎨
⎪⎪⎩
qn+1 = qn + hpn + h2

2

∫ 1

0
f
(
(1− τ )qn + τqn+1

)
dτ,

pn+1 = pn + h

∫ 1

0
f
(
(1− τ )qn + τqn+1

)
dτ.

(1.49)

Remark 1.5.1 This class of discrete gradient methods is very important in Geo-
metric Integrators, and the first actual appearance of the integrator that came to be
known as the AVF method was in [68]. On the basis of this idea, we will analyse
linearly-fitted conservative (dissipative) schemes for nonlinear wave equations
in Chap. 8. We also consider the volume-preserving exponential integrators for
different vector fields in Chap. 6. Furthermore, we will present energy-preserving
integrators for Poisson systems in Chap. 4 and energy-preserving schemes for high-
dimensional nonlinear KG equations in Chap. 9.

Many physical problems have time reversibility and this structure of the original
continuous system can be preserved by symmetric integrators (readers are referred
to Chapter V of Hairer et al. [15] for a rigorous definition of reversibility). The
AAVF methods were also proved to be symmetric (see, e.g. [21]). However, it
follows from the definition of oscillation preservation (Definition 1.5) that an AAVF
method is neither oscillation preserving nor is the AVF method. Fortunately, an
AAVF method is partly oscillation preserving due to its updates, and the result is
stated as follows.
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Theorem 1.9 The AAVF method for (1.28) is partly oscillation preserving.

Proof Similarly to the AVF method, the AAVF method defined by (1.48) is also
dependent on the integral and, in practice, the integral usually must be approximated
by a numerical integral formula (see, e.g. [23]), a weighted summation of the
evaluations of function f at s different values Yi = (1 − τi)qn + τiqn+1 for
i = 1, · · · , s, which can be regarded as the internal stages of the AAVF method.
Obviously, the updates of an AAVF method can exactly solve the highly oscillatory
homogeneous linear equation (1.6), but the internal stages cannot. The proof is
complete. ��
Remark 1.6 It is worth mentioning that in a recent paper, the AAVF methods have
been extended to the computation of high-dimensional semilinear KG equations.
Readers are referred to Chap. 9 for details. Moreover, long-time momentum and
actions behaviour of the AAVF methods for Hamiltonian wave equations are
presented in Chap. 14. Furthermore, the global error bounds of one-stage ERKN
integrators for semilinear wave equations are analysed in Chap. 7. We also discussed
the resonance instability for AAVF methods (see [54]).

1.6 Other Concerns Relating to Highly Oscillatory Problems

Gautschi-type methods have been intensively studied in the literature, and general
ERKN methods for highly oscillatory problems have been proposed. Here, it is also
important to recognise that the numerical solution of semilinear Hamiltonian wave
equations is closely related to oscillation-preserving integrators.

1.6.1 Gautschi-Type Methods

This section starts from the Gautschi-type methods which have been well investi-
gated in the literature (see, e.g. [4, 16, 69]). Gautschi-type methods for the nonlinear
highly oscillatory Hamiltonian system (1.29) can be traced back to a profound paper
of Gautschi [43]. Gautschi-type methods are special explicit ERKN methods of
order two (see [10]). An error and stability analysis of the Gautschi-type methods
can be found in [16]. Thus, Gautschi-type methods are oscillation preserving in
the light of Definition 1.5. However, it is noted that ERKN methods for the highly
oscillatory Hamiltonian system (1.29) can be of an arbitrarily high order which can
be thought of as generalised Gautschi-type methods.
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1.6.2 General ERKN Methods for (1.1)

We next turn to the general ERKN methods for solving nonlinear multi-frequency
highly oscillatory second-order ordinary differential equations (1.1).

Definition 1.8 (You et al. [27]) An s-stage general extended Runge–Kutta–
Nyström (ERKN) method for the numerical integration of the IVP (1.1) is defined
by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = φ0(c
2
i V )yn + ciφ1(c

2
i V )hy

′
n + h2

s∑
j=1

āij (V )f (Yj , Y
′
j ), i = 1, · · · , s,

hY ′i = −ciV φ1(c
2
i V )yn + φ0(c

2
i V )hy

′
n + h2

s∑
j=1

aij (V )f (Yj , Y
′
j ), i = 1, · · · , s,

yn+1 = φ0(V )yn + φ1(V )hy
′
n + h2

s∑
i=1

b̄i (V )f (Yi, Y
′
i ),

hy ′n+1 = −Vφ1(V )yn + φ0(V )hy
′
n + h2

s∑
i=1

bi(V )f (Yi , Y
′
i ),

(1.50)

where φ0(V ), φ1(V ), āij (V ), aij (V ), b̄i(V ) and bi(V ) for i, j = 1, · · · , s, are
matrix-valued functions of V = h2M .

The general ERKN method (1.50) in Definition 1.8 can also be represented
briefly in a partitioned Butcher tableau of the coefficients:

c A(V ) Ā(V )

bᵀ(V ) b̄ᵀ(V )

=

c1 ā11(V ) ā12(V ) · · · ā1s(V ) a11(V ) a12(V ) · · · a1s(V )

c2 ā21(V ) ā22(V ) · · · ā2s(V ) a21(V ) a22(V ) · · · a2s(V )
...

...
...

. . .
...

...
...

. . .
...

cs as1(V ) as2(V ) · · · ass(V ) as1(V ) as2(V ) · · · ass(V )
b̄1(V ) b̄2(V ) · · · b̄s(V ) b1(V ) b2(V ) · · · bs(V )

. (1.51)

Obviously, the general ERKN method (1.50) for the nonlinear multi-frequency
highly oscillatory system (1.1) is oscillation preserving in the light of Definition
1.5. The general ERKN method (1.50) can be of an arbitrarily high order and the
analysis of order conditions for the general ERKN method (1.50) can be found in
[13, 28].
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1.6.3 Towards the Application to Semilinear KG Equations

We note a fact that one of the major applications of oscillation-preserving integrators
is to solve semilinear Hamiltonian wave equations such as semilinear KG equations:

{
utt − a2u = f (u), t0 < t � T , x ∈ Ω,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ Ω̄,
(1.52)

where u(x, t) represents the wave displacement at position x and time t , and the
nonlinear function f (u) is the negative derivative of a potential energy V (u) � 0:

V (u) = −
∫ u

0
f (σ)dσ.

Here, suppose that the initial value problem (1.52) is subject to the periodic
boundary condition on the domain Ω = (−π, π),

u(x, t) = u(x + 2π, t), x ∈ (−π, π], (1.53)

where 2π is the fundamental period with respect to x. It is known that, as a
relativistic counterpart of the Schrödinger equation, the KG equation is used to
model diverse nonlinear phenomena, such as the propagation of dislocations in
crystals and the behaviour of elementary particles and of Josephson junctions (see
[70] Chap. 2). Its efficient computation, without a doubt, induces numerous enduring
challenges (see, e.g. [9, 11, 71]).

In practice, a suitable space semidiscretisation for semilinear KG equations can
lead to (1.9), where the matrix M is derived from the space semidiscretisation. If
we denote the total number of spatial mesh grids by N , then the larger N is, the
larger ‖M‖ becomes. This means that the semidiscrete wave equation is a highly
oscillatory system. In our recent work (see Mei et al. [10]), it has been proved under
the so-called finite-energy condition that the error bound of ERKN integrators when
applied to semilinear wave equations is independent of ‖M‖. This point is crucial
to the numerical solution of the underlying semilinear KG equation.

Another approach to the numerical solution of KG equations is that we try to
gain an abstract formulation for the problem (1.52)–(1.53), and then deal with it
numerically. To this end, we first consider the following differential operator A
defined by

(A v)(x) = −a2vxx(x). (1.54)

In (1.54), A is a linear, unbounded positive semi-definite operator, whose
domain is

D(A ) :=
{
v ∈ H 1(Ω) : v(x) = v(x + 2π)

}
.
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Fortunately, however, the operator A has a complete system of orthogonal eigen-
functions

{
eikx : k ∈ Z

}
and the linear span of all these eigenfunctions

X := lin
{
ei�x : � ∈ Z

}
(1.55)

is dense in the Hilbert space L2(Ω). We then obtain the orthonormal basis of
eigenvectors of the operator A with the corresponding eigenvalues a2�2 for � ∈ Z.

Define the bounded functions through the following series (see [72])

φk(x) :=
∞∑
j=0

(−1)jxj

(2j + k)! , k ∈ N for ∀x � 0. (1.56)

Accordingly, these functions (1.56) can induce the bounded operators

φk(tA ) : L2(Ω)→ L2(Ω)

for k ∈ N and t0 � t � T :

φk(tA )v(x) =
∞∑

�=−∞
v̂�φk(ta

2�2)ei�x for v(x) =
∞∑

�=−∞
v̂�ei�x, (1.57)

and the boundedness follows from the definition of the operator norm that

‖φk(tA )‖2∗ = sup
‖v‖
=0

‖φk(tA )v‖2

‖v‖2 � sup
t0�t�T

|φk(ta2�2)|2 � γ 2
k , (1.58)

where ‖ · ‖∗ is the Sobolev norm ‖ · ‖L2(Ω)←L2(Ω), and γk for k ∈ N are the uniform
bounds of the functions |φk(x)| for k ∈ N and x � 0. With regard to the analysis for
the boundedness, readers are referred to Liu and Wu [72].

We are now in a position to define u(t) as the function that maps x to u(x, t),
u(t) := [x �→ u(x, t)], and in this way the system (1.52)–(1.53) can be formulated
as an abstract second-order ordinary differential equation

{
u′′(t)+A u(t) = f

(
u(t)

)
, t0 < t � T ,

u(t0) = ϕ1(x), u′(t0) = ϕ2(x).
(1.59)

on the closed subspace

X :=
{
u(x, ·) ∈ X

∣∣ u(x, ·) satisfies the corresponding boundary conditions
}
⊆ L2(Ω).

(1.60)
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With this premise, the solution of the abstract second-order ordinary differential
equations (1.59) can be expressed by the following operator-variation-of-constants
formula (see, e.g. [73–75]).

Theorem 1.10 The solution of (1.59) and its derivative satisfy the following
operator-variation-of-constants formula

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) =φ0
(
(t − t0)

2A
)
u(t0)+ (t − t0)φ1

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

u′(t) =− (t − t0)A φ1
(
(t − t0)

2A
)
u(t0)+ φ0

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

(1.61)

for t0 � t � T , where both φ0
(
(t − t0)

2A
)
and φ1

(
(t − t0)

2A
)
are bounded

operators.

Remark 1.6.1 We here remark that the special case where f (u) = 0, the operator-
variation-of-constants formula (1.61) yields the closed-form solution to (1.59).
Moreover, the idea of the operator-variation-of-constants formula (1.61) also pro-
vides a useful approach to the development of the so-called semi-analytical ERKN
integrators for solving high-dimensional nonlinear wave equations. See Chap. 13 for
details.

According to Theorem 1.10, the solution of (1.59) and its derivative at a time
point tn+1 = tn +t , n ∈ N are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(tn+1) =φ0
(
V
)
u(tn)+tφ1

(
V
)
u′(tn)+t2

∫ 1

0
(1− z)φ1

(
(1− z)2V

)
f̃ (z)dz,

u′(tn+1) =−tA φ1
(
V
)
u(tn)+ φ0

(
V
)
u′(tn)+t

∫ 1

0
φ0

(
(1− z)2V

)
f̃ (z)dz,

(1.62)

where V = t2A and f̃ (z) = f
(
u(tn + zt)

)
.

If the nonlinear integrals

I1 :=
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
f̃ (z)dz and I2 :=

∫ 1

0
φ0

(
(1− z)2V

)
f̃ (z)dz

(1.63)

are efficiently approximated, then we are hopeful of obtaining some new integrators
based on (1.62). For example, using the operator-variation-of-constants formula
(1.62) and the two-point Hermite interpolation, we developed a class of arbitrarily
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high-order and symmetric time integration formulae (see Chap. 10). The preserva-
tion of symmetry by a numerical scheme is also very important because the KG
equation (1.52) is time reversible. Hairer et al. [15] have emphasised that symmetric
methods have excellent long-time behaviour when solving reversible differential
systems. Therefore, the preservation of time symmetry for a numerical scheme is
also one of the favourable features.

Here it is worth emphasising that since A is a linear, unbounded positive semi-
definite operator, it is a wise choice to approximate the operator A by a symmetric
and positive semi-definite differentiation matrix M on a d-dimensional space when
spatial discretisations of the underlying KG equation are carried out, and this will
assist in structure preservation.

It is noted that a symmetric and arbitrarily high order time integration formula
can be designed in operatorial terms in an infinite-dimensional function space X
(see, e.g. [73, 74]). Using this approach, we also consider symplectic approxima-
tions for semilinear KG equations in Chap. 11. In practice, the differential operator
A must be replaced with a suitable differentiation matrix M so that we may obtain
a proper full discrete numerical scheme. Fortunately, there exist many research
publications discussing the replacement of spatial derivatives of the semilinear KG
equation (1.52) with periodic boundary conditions (1.53) in the literature. Thus, it is
not a main point in this chapter. Here, however, again it is notable that the operator
A should be approximated by a symmetric and positive semi-definite differentiation
matrix M and the norm of M will change with the accuracy requirement of spatial
discretisations. The higher the accuracy of spatial discretisations is required, the
larger ‖M‖ will be. This implies that the spatial structure preservation is required
for the full discretisation of KG equation (1.52). A full discretisation for the KG
equation (1.52) with periodic boundary conditions (1.53) is spatially structure-
preserving if the operator A is approximated by a d × d symmetric and positive
semi-definite differentiation matrix M , and the norm of M , ‖M‖, tends to infinity
as d tends to infinity, where d is the number of degrees of freedom in the space
discretisation.

Obviously, the global error of a fully discrete scheme for the KG equation
(1.52) depends on the accuracy of both time integrators and space discretisations.
As the mesh partition in the space discretisation increases for (1.59), ‖M‖ will
increase, and the larger ‖M‖ is, the higher the accuracy will be increased in space
approximations.

Remark 1.7 Actually, the family of matrices {Md×d} approximates the infinite-
dimensional, unbounded, operator A . ‖Md×d‖ tends to infinity with d , where d

is the dimension of the matrix Md×d ; i.e., the number of degrees of freedom in
the spatial discretisation. Consequently, the family of matrices {Md×d} inherits the
unbounded property of A . This objectively reflects an important fact that the norm
of the differentiation matrix Md×d could be arbitrarily large, depending on the
requirement of computational accuracy, and the corresponding system of second-
order differential equations must be a multi-frequency highly oscillatory system
once high global accuracy is required. In this case, an oscillation-preserving time
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integrator is needed for the numerical simulation of semilinear wave equations,
including the KG equation (1.52), during a long-time computation. Moreover, the
accuracy of the oscillation-preserving time integrator will be required to match
that of the space discretisation. Hence, oscillation-preserving ERKN integrators of
arbitrarily high order are favourable in applications, especially when applied to the
semidiscrete KG equation, and high-accuracy time integrators will be required for
the underlying PDEs in practice.

1.7 Numerical Experiments

This section concerns numerical experiments, and we will consider four problems
which are closely related to (1.1) or (1.9). Since explicit methods are cheaper (use
less CPU time in general) than implicit methods, we use three explicit RKN-type
methods and two implicit methods. These methods are chosen as follows:

• ERKN3s4: the explicit three-stage ERKN method of order four presented in [18]
(with its Butcher tableau given by Table 1.1);

• ARKN3s4: the explicit three-stage ARKN method of order four proposed in [76]
(with its Butcher tableau given by Table 1.2);

• ERKN7s6: the explicit seven-stage ERKN method of order six derived in [77]
with the coefficients

c5 = 1− c3 = 0.06520862987680341024,

c6 = 1− c2 = 0.65373769483744778901,

c7 = 1− c1 = 0.05586607811787376572,

c4 = 0.5,

d4 = 0.26987577187133640373,

d5 = d3 = 0.92161977504885189358,

d6 = d2 = 0.13118241020105280626,

d7 = d1 = −0.68774007118557290171,

b̄i(V ) = dic8−iφ1
(
c2

8−iV
)
, bi(V ) = diφ0

(
c2

8−iV
)
,

for i = 1, 2, · · · , 7,

āij (V ) = dj (ci − cj )φ1
(
(ci − cj )

2V
)
,

for i = 2, 3, · · · , 7, j = 1, 2, · · · , i − 1;
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Table 1.2 Butcher tableau of ARKN3s4

1

8
0 0

23

42

71

441
0

11

12

2641

14058

4123

18744
2024φ2(V )− 5904φ3(V )+ 8064φ4(V )

1349

−1617φ2(V )+ 14700φ3(V )− 28224φ4(V )

2201
2024φ1(V )− 5904φ2(V )+ 8064φ3(V )

1349

−1617φ1(V )+ 14700φ2(V )− 28224φ3(V )

2201
1

8
0

23

42
0

11

12
0

138φ2(V )− 1356φ3(V )+ 4032φ4(V )

589
138φ1(V )− 1356φ2(V )+ 4032φ3(V )

589

Table 1.3 Butcher tableau of
TFCr2 c1 c2

1b1

r−1∑
j=0

I1,j,c1 P̂j (c1) c2
1b2

r−1∑
j=0

I1,j,c1 P̂j (c2)

c2 c2
2b1

r−1∑
j=0

I1,j,c2 P̂j (c1) c2
2b2

r−1∑
j=0

I1,j,c2 P̂j (c2)

r−1∑
j=0

I1,j b1P̂j (c1)
r−1∑
j=0

I1,j b2P̂j (c2)

r−1∑
j=0

I2,j b1P̂j (c1)
r−1∑
j=0

I2,j b2P̂j (c2)

• TFCr2: the TFC method (1.40) of order four described in [8] (with its Butcher

tableau given by Table 1.3 with the coefficients c1 = 3−√3

6
, c2 = 3+√3

6
,

b1 = b2 = 1

2
, and r = 2);

• TFCr3: the TFC method (1.40) of order six described in [8] (with its Butcher

tableau given by Table 1.4 with the coefficients c1 = 5−√15

10
, c2 = 1

2
, c3 =

5+√15

10
, b1 = 5

18
, b2 = 4

9
, b3 = 5

18
, and r = 3).

We remark that an ERKN method reduces to an RKN method when M → 0.
Hence, the reduced method ERKN3s4 is assigned as the corresponding RKN
method, which is denoted by RKN3s4. In the numerical experiments, we use fixed-
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Table 1.4 Butcher tableau of TFCr3

c1 c2
1b1

r−1∑
j=0

I1,j,c1 P̂j (c1) c2
1b2

r−1∑
j=0

I1,j,c1 P̂j (c2) c2
1b3

r−1∑
j=0

I1,j,c1 P̂j (c3)

c2 c2
2b1

r−1∑
j=0

I1,j,c2 P̂j (c1) c2
2b2

r−1∑
j=0

I1,j,c2 P̂j (c2) c2
2b3

r−1∑
j=0

I1,j,c2 P̂j (c3)

c3 c2
3b1

r−1∑
j=0

I1,j,c3 P̂j (c1) c2
3b2

r−1∑
j=0

I1,j,c3 P̂j (c2) c2
3b3

r−1∑
j=0

I1,j,c3 P̂j (c3)

r−1∑
j=0

I1,j b1P̂j (c1)
r−1∑
j=0

I1,j b2P̂j (c2)
r−1∑
j=0

I1,j b3P̂j (c3)

r−1∑
j=0

I2,j b1P̂j (c1)
r−1∑
j=0

I2,j b2P̂j (c2)
r−1∑
j=0

I2,j b3P̂j (c3)

point iteration for the implicit TFC methods. We set 10−16 as the error tolerance and
10 as the maximum number of each iteration. It will be observed from the numerical
experiments that the numerical behaviour of the ERKN methods and TFC methods
is much better than that of the ARKN and RKN methods.

In these methods, the matrix-valued functions φi(V ), for i = 0, 1, · · · , 4, are
defined by (1.4).

Problem 1.1 Consider the Duffing equation (see, e.g. [10, 13, 78, 79])

{
q̈ + ω2q = k2(2q3 − q),

q(0) = 0, q̇(0) = ω,

where 0 � k < ω. As is known, this is a Hamiltonian system with the Hamiltonian

H(p, q) = 1

2
p2 + 1

2
ω2q2 + k2

2
(q2 − q4).

The analytic solution is given by

q(t) = sn(ωt, k/ω),

where sn denotes the Jacobian elliptic function (see, e.g. [80]).

Problem 1.1 is solved on the interval [0, 10000] with k = 0.03 and ω = 50.
Figure 1.1a presents the global errors results (in logarithmic scale) with the stepsizes

h = 0.1

2j
for j = 1, · · · , 4. We here remark that some global errors for RKN3s4

are too large to be plotted in Fig. 1.1a due to its instability and nonconvergence
with the stepsize h = 0.05. In the next problems, similar situations are encountered
and the corresponding points are not plotted either. We also show the global errors
against the CPU time in Fig. 1.1b. It can be observed from these figures, ERKN3s4,
ERKN7s6 and TFC methods are much more accurate than ARKN3s4 and RKN3s4,
and RKN3s4 gives disappointing accuracy in comparison with the other methods,
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although it is a symplectic and symmetric method. This observation implies that
the property of oscillation preservation for numerical methods is also of great
importance in Geometric Integration. What can we learn from this observation?
This experiment demonstrates that for a nonlinear highly oscillatory differential
equation, the most important consideration should be the oscillation preservation
when concerning numerical solutions.

Meanwhile, we also show the curves of the Hamiltonian error growth with

h = 1

40
as the integration interval is extended in Fig. 1.1c for all the methods, where

the ERKN methods and TFC methods show better numerical energy preservation
than the reduced RKN method: RKN3s4, and ARKN3s4 method. It follows
from Fig. 1.1c that both the ERKN and RKN methods can preserve the energy
approximately, whereas the ARKN3s4 method cannot. In fact, it is clear from
Fig. 1.1c that the energy of the ARKN3s4 method grows as the integration interval
is extended. This is because both the ERKN and RKN methods are symplectic and
symmetric methods, whereas the ARKN3s4 method is not a symplectic method.
Another important aspect is that, just as its algebraic accuracy, the accuracy of
energy preservation of RKN3s4 method is also disappointing, even though RKN3s4
method possesses both favourable properties of symplecticity preservation and
symmetry preservation. It is worth noting that, although the TFC methods are not
symplectic, they are oscillation preserving and preserve the energy approximately.
Hence, we should take full account of the oscillation-preserving structure in the
design of numerical methods for efficiently solving a highly oscillatory nonlinear
Hamiltonian system, although we cannot ignore the other structures.

Problem 1.2 Consider the sine-Gordon equation (see, e.g. [81])

∂2u

∂t2
= ∂2u

∂x2 − sin u,

on the region−10 � x � 10 and t0 � t � T with the initial conditions

u(x, t0) =− 4arctan
(
c−1sech(κx) sin(−t0cκ)

)
,

ut (x, t0) = 4κ cos(−t0cκ)sech(κx)

1+ c−2sech2(κx) sin2(−t0cκ)
,

and the boundary conditions

u(−10, t) = u(10, t) = −4arctan
(
c−1sech(10κ) sin(cκt)

)
,

where κ = 1/
√

1+ c2. The exact solution is

u(x, t) = −4 arctan
(
c−1sech(κx) sin(cκt)

)
.
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Fig. 1.1 Results for Problem 1.1. (a) The log-log plot of global error GE against h. (b) The log-log
plot of global error GE against CPU time. (c) The logarithm of the global energy error GE against t

For this problem, we use the Chebyshev pseudospectral discretisation with 240
spatial mesh grids and select the parameter c = 0.5, which leads to a discretisation
of the type (1.9). This equation is solved on the interval [0, 100]. Figure 1.2a, b

show the global errors results (in logarithmic scale) with the stepsizes h = 1

2k
for

k = 1, · · · , 4. We then integrate this equation with the stepsize h = 1

10
on the

interval [0, 10000] and the numerical energy conservation is presented in Fig. 1.2c.
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Fig. 1.2 Results for Problem 1.2. (a) The log-log plot of global error GE against h. (b) The log-log
plot of global error GE against CPU time. (c) The logarithm of the global energy error GE against t

Again it can be observed from the numerical results that the numerical behaviour
of ERKN methods and TFC methods is much better than that of ARKN3s4 and
RKN3s4. In summary, an oscillation-preserving numerical method gives much
better results than those methods which are not oscillation preserving. In particular,
the symplectic and symmetric RKN3s4 performs badly and leads to completely
disappointing numerical results in this numerical experiment.
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Problem 1.3 Consider the semilinear wave equation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2u

∂t2
− a(x)

∂2u

∂x2 + 92u = f (t, x, u), 0 < x < 1, t > 0,

u(x, 0) = a(x), ut (x, 0) = 0,

u(0, t) = 0, u(1, t) = 0,

where

a(x) = 4x(1− x)

and

f (t, x, u) = u5 − a2(x)u3 + a5(x)

4
sin2(20t) cos(10t).

The exact solution of this problem is

u(x, t) = a(x) cos(10t),

which represents a vibrating string.
Differently from Problem 1.2, we now consider semidiscretisation of the spatial

variable with second-order symmetric differences, and this results in

d2U

dt2
+MU = F(t, U), U(0) = (

a(x1), · · · , a(xN−1)
)ᵀ
, U ′(0) = 0, (1.64)

where U(t) = (
u1(t), · · · , uN−1(t)

)ᵀ with ui(t) ≈ u(xi, t), xi = ix for i =
1, · · · , N − 1, and x = 1/N .

M = 92IN−1 + 1

x2

⎛
⎜⎜⎜⎜⎜⎝

2a(x1) −a(x1)

−a(x2) 2a(x2) −a(x2)

. . .
. . .

. . .

−a(xN−2) 2a(xN−2) −a(xN−2)

−a(xN−1) 2a(xN−1)

⎞
⎟⎟⎟⎟⎟⎠ ,

and

F(t, U) = (
f (t, x1, u1), · · · , f (t, xN−1, uN−1)

)ᵀ
.
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Fig. 1.3 Results for Problem 1.3. (a) The log-log plot of global error GE against h. (b) The log-log
plot of global error GE against CPU time

(1.64) is a highly oscillatory system, but not a Hamiltonian system. We solve this

problem on the interval [0, 10] with N = 256 and h = 0.1

2j
for j = 1, · · · , 4. The

global errors are shown in Fig. 1.3. Once again, it can be observed from Fig. 1.3
that the numerical behaviour of the oscillation-preserving ERKN methods and TFC
methods is much better than the others. In Fig. 1.3, the global errors figures of both
ERKN methods and TFC methods almost coincide with each other.

We next consider a damped wave equation. For this problem, we choose time
integrators as follows:

• ERKN3s3: the explicit three-stage ERKN method of order three proposed in [27]
and denoted by the Butcher tableau

0 0 0 0 0 0 0

1

3

1

3
0 0 0 0 0

2

3
0

2

3
0

2

9
0 0

b̄1(V ) b̄2(V ) b̄3(V ) b1(V ) b2(V ) b3(V )
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where

b1(V ) =φ1(V )− 9

2
φ2(V )+ 9φ3(V ),

b2(V ) =6φ2(V )− 18φ3(V ),

b3(V ) =− 3

2
φ2(V )+ 9φ3(V ),

b̄1(V ) =φ2(V )− 9

2
φ3(V )+ 9φ4(V ),

b̄2(V ) =6φ3(V )− 18φ4(V ),

b̄3(V ) =− 3

2
φ3(V )+ 9φ4(V ).

• ARKN3s3: the explicit three-stage ARKN method of order three given in [82]
and denoted by the Butcher tableau

0 0 0 0 0 0 0

1

2

1

2
0 0

1

8
0 0

1 −1 2 0
1

2
0 0

b̄1(V ) b̄2(V ) b̄3(V ) b1(V ) b2(V ) b3(V )

where

b1(V ) =φ1(V )− 3φ2(V )+ 4φ3(V ),

b2(V ) =4φ2(V )− 8φ3(V ),

b3(V ) =− φ2(V )+ 4φ3(V ),

b̄1(V ) =φ2(V )− 3

2
φ3(V ),

b̄2(V ) =φ3(V ),

b̄3(V ) =1

2
φ3(V ).
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• RKN3s3: the explicit three-stage RKN method of order three with the Butcher
tableau

0 0 0 0 0 0 0

1

2

1

2
0 0

1

8
0 0

1 −1 2 0
1

2
0 0

1

6

2

3

1

6

1

4

1

6

1

12

Problem 1.4 Consider the damped wave equation (see, e.g. [27, 82])

⎧⎪⎪⎨
⎪⎪⎩
∂2u

∂t2
+ ∂u

∂t
− ∂2u

∂x2 = f (u), −1 < x < 1, t > 0,

u(−1, t) = u(1, t).

A semidiscretisation in the spatial variable by using second-order symmetric
differences yields the type of (1.1)

Ü +MU = F(U, U̇), (1.65)

where U(t) = (
u1(t), · · · , uN(t)

)ᵀ with ui(t) ≈ u(xi, t), xi = −1 + ix for
i = 1, · · · , N, x = 2/N ,

M = 1

x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠ ,

and

F(U, U̇) = (
f (u1)− u̇1, · · · , f (uN)− u̇N

)ᵀ
.

In this experiment, we consider the damped sine-Gordon equation with f (u) =
− sinu and with the initial conditions

U(0) = (π)Ni=1, U̇ (0) = √N
(

0.01+ sin(
2πi

N
)
)N
i=1

.
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Fig. 1.4 Results for Problem 1.4. (a) The log-log plot of global error GE against h. (b) The log-log
plot of global error GE against CPU time

This equation is integrated on [0, 100]with N = 256 and h = 0.1

2i
for i = 2, 3, 4, 5.

The global errors against the stepsizes and the CPU time are shown in Fig. 1.4.
It can be observed again from the results that the oscillation-preserving integrator
ERKN3s3 performs much better than the other methods. It is easy to see that the
ERKN3s3 integrator provides a considerably more accurate numerical solution than
other methods.

1.8 Conclusions and Discussion

In practice, nonlinear second-order differential equations with highly oscillatory
solution behaviour are ubiquitous in science and engineering applications. The
overarching question now is how to preserve high frequency oscillations in the
numerical treatment of nonlinear multi-frequency highly oscillatory second-order
ordinary differential equations (1.1) or (1.9). This chapter presented systematic
oscillation-preserving analysis, which began with the concept of oscillation preser-
vation for RKN-type methods, and then analysed oscillation-preserving behaviour
for RKN-type methods, including ERKN integrators, TFC methods, AVF methods,
AAVF methods, ARKN methods, symplectic and symmetric RKN methods, and
standard RKN methods, designed to solve the initial value problem of nonlinear
multi-frequency highly oscillatory second-order ordinary differential equations
(1.1) or (1.9). It was found that the ERKN integrators and TFC methods are
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oscillation preserving, whereas neither the ARKN methods nor the standard RKN
methods, including symplectic and symmetric RKN methods, and AVF methods,
are oscillation preserving. However, ARKN and AAVF methods are partly oscilla-
tion preserving. An oscillation-preserving integrator shows much better numerical
behaviour than those methods which are not oscillation preserving when applied
to nonlinear multi-frequency highly oscillatory second-order ordinary differential
equations. The least favourable results are for the RKN method, in comparison with
the ARKN method and ERKN method when solving nonlinear multi-frequency
highly oscillatory problems. Here the most interesting conclusion is that the
oscillation-preserving property depends essentially on the internal stages rather
than the updates of an RKN-type method when applied to highly oscillatory second-
order systems. This chapter also mentioned the potential developments of ERKN
integrators and TCF methods for the nonlinear multi-frequency highly oscillatory
second-order ordinary differential equation (1.9).

An important concern relating to oscillation-preserving integrators is to effi-
ciently solve a semidiscrete nonlinear wave equation, which usually is approximated
by a system of nonlinear highly oscillatory second-order ordinary differential
equations derived from a suitable space discretisation of semilinear wave equations
such as KG equations, i.e., the operator A appearing in (1.59) is approximated by a
d× d symmetric and positive semi-definite differentiation matrix M . Therefore, the
analysis of oscillation-preserving behaviour for RKN-type methods in this chapter
is also significant for numerical PDEs. In this case, the standard RKN method, in
comparison with an oscillation-preserving integrator such as the ERKN method,
may not be a satisfactory choice for efficiently dealing with such highly oscillatory
problems.

This chapter focuses on highly oscillatory second-order differential equations
(1.1) or (1.9). Other highly oscillatory systems will also be discussed in this
monograph. For instance, in Chap. 5, using exponential collocation methods, we
will deal with the following highly oscillatory system:

q ′′(t)−Nq ′(t)+Υ q(t) = −∇U(q(t)), q(0) = q0, q ′(0) = q ′0, t ∈ [0, T ],

where N is a symmetric negative semi-definite matrix, Υ is a symmetric positive
semi-definite matrix, and U : Rd → R is a differentiable function.

Last, but not least, we believe that the oscillation-preserving concept introduced
and analysed in this chapter for numerical methods for solving nonlinear multi-
frequency highly oscillatory differential equations is significant and interesting
within the broader framework of the subject of Geometric Integration. The results
of numerical experiments in this chapter have strengthened the impression that an
oscillation-preserving integrator is required when efficiently solving a nonlinear
multi-frequency highly oscillatory system, or a semidiscrete nonlinear wave equa-
tion.

The material in this chapter is based on the work by Wu et al. [83].
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Chapter 2
Continuous-Stage ERKN Integrators
for Second-Order ODEs with Highly
Oscillatory Solutions

In this chapter, continuous-stage extended Runge–Kutta–Nyström (CSERKN) inte-
grators for solving highly oscillatory systems of second-order ODEs are derived
and analysed. These integrators are incorporated into the special structure of highly
oscillatory systems so that their internal stages and updates can integrate the
associated highly oscillatory homogeneous systems exactly. When the underlying
highly oscillatory systems are Hamiltonian systems, sufficient conditions for energy
preservation are shown for CSERKN methods. The symmetry and stability of
CSERKN integrators are also analysed in detail. Preliminary numerical results
highlight the effectiveness of CSERKN methods.

2.1 Introduction

We consider the following system of second-order ordinary differential equations
with oscillatory solutions

{
q ′′(t)+Mq(t) = f (q(t)), t ∈ [t0, T ],
q(t0) = q0, q ′(t0) = q ′0,

(2.1)

where M ∈ R
d×d is a symmetric positive semi-definite matrix that implicitly

contains the dominant frequencies of the system, q ∈ R
d and f (q) : Rd → R

d

is a nonlinear function which is independent of q ′. If ‖M‖ � max

{
1,

∥∥∥∥∂f∂q
∥∥∥∥
}

then

(2.1) is a highly oscillatory problem. This kind of problem frequently occurs in
science and engineering fields such as quantum mechanics, astrophysics, quantum
chemistry and electronics. It is particularly interesting when this highly oscillatory
problem is obtained from a spatial semidiscretisation of a semilinear wave equation
within the framework of the method of lines [1]. In practice, the system (2.1) can
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be integrated with general purpose methods [2, 3] or other codes adapted to its
special structure. However, it is worth noting that adaptive methods will be more
efficient than general purpose methods since adaptive methods make good use of
the information transmitted from the special structure of (2.1) introduced by the
linear term Mq(t).

For the particular case where M = ω2Id with a single frequency ω > 0 and
the d × d identity matrix Id , methods with frequency-dependent coefficients using
techniques like trigonometrical/exponential fitting can be traced back to the 1960s
(see, e.g. [4]). Here, we refer the reader to the reviews of the literature (see, [5,
6]) and the relevant papers (see, e.g. [7–18]). If M is a symmetric positive semi-
definite matrix, exponential integrators (see, e.g. [19, 20]), adapted Runge–Kutta–
Nyström (ARKN) methods (see [21, 22]) and other adaptive methods (see, e.g. [23–
28]) have been developed. Wu et al. proposed and analysed extended Runge–Kutta–
Nyström (ERKN) methods (see, e.g. [29–31]), whose internal stages and updates
exactly integrate the following highly oscillatory homogeneous linear system

q ′′(t)+Mq(t) = 0 (2.2)

associated with (2.1). This property plays an important role in oscillation-preser-
ving integrators as stated in Chap. 1. The global error analysis of ERKN methods
was presented and collocation techniques were also studied in [32–34].

If f (q) = −∇U(q) for some smooth functionU(q), the system (2.1) is identical
to a separable Hamiltonian system of the following form

{
p′(t) = −∇qH(p, q),

q ′(t) = ∇pH(p, q),
(2.3)

with the initial values q(t0) = q0, p(t0) = p0 = q ′0, and the Hamiltonian

H(p, q) = 1

2
pᵀp + 1

2
qᵀMq + U(q), (2.4)

where q : R → R
d and p : R → R

d are known as generalised position
and generalised momenta, respectively. It is clear that (2.3) is a highly oscillatory

Hamiltonian system once ‖M‖ � max

{
1,

∥∥∥∥∂f∂q
∥∥∥∥
}

. As is known, for Hamiltonian

system (2.3), the corresponding map is symplectic and the true solution preserves
the energy H(p, q) for all t ∈ [t0, T ] (see, e.g. [35]). In the spirit of geometric
numerical integration, an integrator that inherits such geometric properties as much
as possible would be preferable. Unfortunately, however, it is often difficult to
design numerical integrators which inherit both symplecticity and energy preserva-
tion. A numerical method which is energy preserving at each step and defined by a
symplectic map has been discussed in [36, 37]. Since there is no symplectic B-series
method that conserves arbitrary Hamiltonians [38, 39], methods satisfying one of
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these properties have been developed in the past few decades [20]. Research work
has shown that symplectic methods perform very well in approximately preserving
the energy of Hamiltonian systems and we refer the reader to [20], for instance.
However, it is worth noting that symplectic methods just approximately, rather
than exactly, preserve the energy (2.4). In practical applications, apart from the
accuracy of approximate solutions, high-precision energy-preserving integrators are
also required. Moreover, in comparison with symplectic methods, energy-preserving
integrators have better nonlinear stability characteristics, are easier to adapt the time
step for, and are more suitable for the integration of chaotic systems (see, e.g. [40–
43]). Therefore, energy-preserving algorithms are becoming more popular.

As is known, for first-order ordinary differential equations of the form

y ′(t) = G(y(t)), y(t0) = y0, t ∈ [t0, T ], (2.5)

continuous-stage Runge–Kutta (CSRK) methods were firstly researched in [44, 45].
Then, some relevant papers appeared (see, e.g. [46, 47]). Hairer proposed a family
of CSRK methods and studied the corresponding energy conservation (see [48]).
Miyatake and Butcher proved a sufficient and necessary energy-preserving condi-
tion of CSRK methods (see [49]). Recently, some developments in this field have
been made (see, e.g. [50–52]). The exponentially and functionally-fitted version
of the CSRK method appeared in [53, 54]. The conservation of energy has been
approached by means of the definition of the discrete line integral [55–57].

More recently, for second-order ordinary differential equations of the form

q ′′(t) = F(q(t)), q(t0) = q0, q ′(t0) = q ′0, t ∈ [t0, T ], (2.6)

Tang et al. [58] discussed continuous-stage Runge–Kutta–Nyström (CSRKN) meth-
ods and studied symplecticity-preserving algorithms. Energy-preserving CSRKN
methods were studied in [59]. The corresponding result in [58] has been extended
to high-order symplectic CSRKN methods [60].

2.2 Extended Runge–Kutta–Nyström Methods

Suppose that M is a positive semi-definite matrix. We begin with the following
matrix-valued φ-functions

φj (M) =
∞∑
k=0

(−1)kMk

(2k + j)! , j � 0, M ∈ R
d×d . (2.7)

which originally appeared in [22]. It can be observed from (2.7) that j !φj (M)→ Id
when M → 0, where Id is the d × d identity matrix. The following proposition
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establishes the properties of matrix-valued φ-functions which will be used in
Sect. 2.4 of this chapter.

Proposition 2.1 The matrix-valued φ-functions defined by (2.7) satisfy:

• (i) M ∈ R
d×d ,

φj+2(M) =
∫ 1

0

(1− z)φ1
(
M(1− z)2

)
zj

j ! dz, j = 0, 1, · · · ,

φj+1(M) =
∫ 1

0

φ0
(
M(1− z)2

)
zj

j ! dz, j = 0, 1, · · · ; (2.8)

• (ii) IfM is invertible, then

φj+2(M) = M−1
(

1

j !Id − φj (M)

)
, j = 0, 1, · · · ; (2.9)

• (iii) φ2
0(M)+Mφ2

1(M) = Id .

The proofs of Proposition 2.1 and further details about the matrix-valued φ-
functions can be found in [22, 31]. As shown in Chap. 1 (see also [31]), an s-stage
ERKN method for the numerical integration of the system (2.1) is defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0(c
2
i V )qn + hciφ1(c

2
i V )q

′
n + h2

s∑
j=1

aij (V )f (Qj ), i = 1, · · · , s,

qn+1 = φ0(V )qn + hφ1(V )q
′
n + h2

s∑
i=1

b̄i(V )f (Qi) ,

q ′n+1 = −hMφ1(V )qn + φ0(V )q
′
n + h

s∑
i=1

bi(V )f (Qi) ,

(2.10)

where ci are real numbers, and aij (V ), b̄i(V ) and bi(V ) for i, j = 1, · · · , s are
matrix-valued functions of V = h2M . The method (2.10) can be represented briefly
in Butcher’s notation by the following block tableau of coefficients:

c φ0(c
2V ) cφ1(c

2V ) A(V )

φ0(V ) φ1(V ) b̄ᵀ(V )

−hMφ1(V ) φ0(V ) bᵀ(V )
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=

c1 φ0(c
2
1V ) c1φ1(c

2
1V ) a11(V ) · · · a1s(V )

...
...

...
...

. . .
...

cs φ0(c
2
s V ) csφ1(c

2
s V ) as1(V ) · · · ass(V )

φ0(V ) φ1(V ) b̄1(V ) · · · b̄s(V )

−hMφ1(V ) φ0(V ) b1(V ) · · · bs(V )

(2.11)

The order conditions for an ERKN method (2.10) have been investigated in [31]
by using the B-series theory associated with the set of extended special Nyström
trees (see [61]). To learn more about this point the reader is referred to the relevant
references for all the definitions and notations.

Let

aij (V ) =
∞∑
k=0

a
(2k)
ij V k, (2.12)

where the coefficients a(2k)ij define the expansion of aij (V ). Then the local truncation
errors of qn+1 and q ′n+1 can be expanded in the form

en+1 =qn+1 − q(tn+1)

=
∑

βτ∈ESNT

hρ(βτ)+1

(
γ (βτ )

ρ(βτ )!
s∑

i=1

b̄i (V )Φi(βτ )− φρ(βτ)+1(V )

)
α(βτ )F(βτ )(qn, q

′
n),

e′n+1 =q ′n+1 − q ′(tn+1)

=
∑

βτ∈ESNT

hρ(βτ)

(
γ (βτ )

ρ(βτ )!
s∑

i=1

bi(V )Φi(βτ )− φρ(βτ)(V )

)
α(βτ )F(βτ )(qn, q

′
n),

where the set ESNT of extended special Nyström trees βτ , functions ρ(βτ), α(βτ)
and elementary differential F(βτ)(q, q ′) are defined in [31, 61]. The following
theorem states the order conditions for ERKN methods.

Theorem 2.1 The ERKN method (2.10) is convergent of order p if and only if

s∑
i=1

b̄i(V )Φi(βτ) = ρ(βτ)!
γ (βτ)

φρ(βτ)+1(V )+O(hp−ρ(βτ)), ρ(βτ) � p − 1,

s∑
i=1

bi(V )Φi(βτ) = ρ(βτ)!
γ (βτ)

φρ(βτ)(V )+O(hp+1−ρ(βτ)), ρ(βτ) � p,

(2.13)

where βτ ∈ ESNT.
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With regard to the follow-up work of ERKN methods, we refer the reader to [32],
in which trigonometric Fourier collocation methods were studied. The symplectic
conditions for ERKN methods were derived and analysed in [29, 30].

2.3 Continuous-Stage ERKN Methods and Order Conditions

Similarly to the CSRK method, Tang et al. considered the continuous-stage Runge–
Kutta–Nyström (CSRKN) method for (2.6) as follows (see [58]).

Definition 2.1 Let Aτσ be a function of variables τ, σ ∈ [0, 1] and B̄τ , Bτ and Cτ

be functions of τ ∈ [0, 1]. A continuous-stage Runge–Kutta–Nyström (CSRKN)
method for solving (2.6) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qτ = qn + hCτ q
′
n + h2

∫ 1

0
AτσF (Qσ ) dσ, τ ∈ [0, 1],

qn+1 = qn + hq ′n + h2
∫ 1

0
B̄τF (Qτ ) dτ,

q ′n+1 = q ′n + h

∫ 1

0
BτF (Qτ ) dτ.

(2.14)

The order conditions for CSRKN methods (2.14) have been given as those for

classical RKN methods with
∑

, ci , aij , b̄i , and bi , replaced by
∫ 1

0
, Cτ , Aτσ , B̄τ ,

and Bτ , respectively. For a more detailed description of the order conditions of the
CSRKN methods, we refer the reader to [58].

On the basis of the matrix-variation-of-constants formula of (2.1), applying the
continuous-stage idea to the ERKN methods leads to continuous-stage extended
Runge–Kutta–Nyström methods as follows.

Definition 2.2 An s-degree continuous-stage extended Runge–Kutta–Nyström
(CSERKN) method for the numerical integration of the system (2.1) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qτ = Cτ (V )qn + hDτ (V )q
′
n + h2

∫ 1

0
Āτσ (V )f (Qσ ) dσ, τ ∈ [0, 1],

qn+1 = φ0(V )qn + hφ1(V )q
′
n + h2

∫ 1

0
b̄τ (V )f (Qτ ) dτ,

q ′n+1 = −hMφ1(V )qn + φ0(V )q
′
n + h

∫ 1

0
bτ (V )f (Qτ ) dτ,

(2.15)
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where Qτ is a polynomial of degree s with respect to τ satisfying Q0 = qn and
Q1 = qn+1, Cτ (V ), Dτ (V ), b̄τ (V ), and bτ (V ) are polynomials of degree s and
depend on V , Āτσ (V ) is a polynomial of degree s for τ , and s−1 for σ and depend
on V , where τ, σ ∈ [0, 1] and V = h2M . In addition, the relations Ā0σ (V ) = 0 and
Ā1σ (V ) = b̄σ (V ) hold. The polynomials Cτ (V ) and Dτ (V ) satisfy

Cci (V ) = φ0(c
2
i V ), Dci (V ) = ciφ1(c

2
i V ), (2.16)

where ci for i = 0, · · · , s are the fitting nodes, and one of them should be 1. We
take c0 = 0 and cs = 1 in general. Cτ (V ) and Dτ (V ) can be expressed as

Cτ (V ) =
s∑

i=0

Li(τ )φ0(c
2
i V ), Dτ (V ) =

s∑
i=0

Li(τ )ciφ1(c
2
i V ), (2.17)

where Li(τ ) for i = 0, · · · , s are the following Lagrange interpolations functions

Li(τ ) =
s∏

j=0,j 
=i

τ − cj

ci − cj
.

The CSERKN method can be expressed by the following block Butcher tableau

Cτ Cτ (V ) Dτ (V ) Āτσ (V )

φ0(V ) φ1(V ) b̄τ (V )

−hMφ1(V ) φ0(V ) bτ (V )

. (2.18)

A CSERKN method (2.15) is of order p, if for sufficiently smooth problem (2.1),
the local truncation errors satisfy

en+1 = qn+1 − q(tn+1) = O(hp+1), e′n+1 = q ′n+1 − q ′(tn+1) = O(hp+1),

under the so-called local assumptions. In order to obtain the order conditions for
CSERKN methods, it is assumed that

Āτσ (V ) =
∞∑
k=0

Ā(2k)
τσ V k, (2.19)
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where the coefficients Ā
(2k)
τσ define the expansion of Āτσ (V ). Similarly to the

analysis of the paper [31], we have

en+1 =qn+1 − q(tn+1)

=
∑

βτ∈ESNT

hρ(βτ)+1
(
γ (βτ)

ρ(βτ)!
∫ 1

0
b̄τ (V )Φτ (βτ)dτ − φρ(βτ)+1(V )

)
α(βτ)F (βτ)(qn, q

′
n),

e′n+1 =q ′n+1 − q ′(tn+1)

=
∑

βτ∈ESNT

hρ(βτ)
(
γ (βτ)

ρ(βτ)!
∫ 1

0
bτ (V )Φτ (βτ)dτ − φρ(βτ)(V )

)
α(βτ)F (βτ)(qn, q

′
n).

The weights Φτ (βτ) can be given similarly to the ones for ERKN methods with
∑

,

cki , a(2k)ij , b̄i(V ), and bi(V ) replaced by
∫ 1

0
,

s∑
i=1

Li(τ )c
k
i , Ā(2k)

τσ , b̄τ (V ), and bτ (V ),

respectively. Therefore, we obtain the order conditions for a CSERKN method as
follows.

Theorem 2.2 The CSERKN method (2.15) is convergent of order p if and only if

∫ 1

0
b̄τ (V )Φτ (βτ)dτ = ρ(βτ)!

γ (βτ)
φρ(βτ)+1(V )+ O(hp−ρ(βτ)), ρ(βτ) � p − 1,

∫ 1

0
bτ (V )Φτ (βτ)dτ = ρ(βτ)!

γ (βτ)
φρ(βτ)(V )+O(hp+1−ρ(βτ)), ρ(βτ) � p,

(2.20)

where βτ is the extended special Nyström-tree.

In what follows, we provide a list of the p-th order conditions (2.20) for
the CSERKN method (2.15) up to the extended special Nyström trees with
ρ(βτ) � 4.

• For the tree βτ with ρ(βτ) = 1, (2.20) gives∫ 1

0
b̄τ (V )dτ = φ2(V )+O(hp−1),

∫ 1

0
bτ (V )dτ = φ1(V )+O(hp).

• For the tree βτ with ρ(βτ) = 2, it follows from (2.20) that∫ 1

0
b̄τ (V )

s∑
i=0

Li(τ )cidτ = φ3(V )+O(hp−2),

∫ 1

0
bτ (V )

s∑
i=0

Li(τ )cidτ = φ2(V )+O(hp−1).
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• For the trees βτ with ρ(βτ) = 3, the order conditions are∫ 1

0
b̄τ (V )

s∑
i=0

Li(τ )c
2
i dτ = 2φ4(V )+O(hp−3),

∫ 1

0

∫ 1

0
b̄τ (V )Ā

(0)
τσ dτdσ = φ4(V )+O(hp−3),

∫ 1

0
bτ (V )

s∑
i=0

Li(τ )c
2
i dτ = 2φ3(V )+O(hp−2),

∫ 1

0

∫ 1

0
bτ (V )Ā

(0)
τσ dτdσ = φ3(V )+O(hp−2).

• For the trees βτ with ρ(βτ) = 4, we have∫ 1

0
b̄τ (V )

s∑
i=0

Li(τ )c
3
i dτ = 6φ5(V )+O(hp−4),

∫ 1

0

∫ 1

0
b̄τ (V )

s∑
i=0

Li(τ )ciĀ
(0)
τσ dτdσ = 3φ5(V )+O(hp−4),

∫ 1

0

∫ 1

0
b̄τ (V )Ā

(0)
τσ

s∑
i=0

Li(σ )cidτdσ = φ5(V )+ O(hp−4),

∫ 1

0
bτ (V )

s∑
i=0

Li(τ )c
3
i dτ = 6φ4(V )+O(hp−3),

∫ 1

0

∫ 1

0
bτ (V )

s∑
i=0

Li(τ )ciĀ
(0)
τσ dτdσ = 3φ4(V )+O(hp−3),

∫ 1

0

∫ 1

0
bτ (V )Ā

(0)
τσ

s∑
i=0

Li(σ )cidτdσ = φ4(V )+ O(hp−3).

Likewise, we can list more order conditions for trees with ρ(βτ) � 5. It should
be pointed out that, when s � p and the abscissae c1, c2, · · · , cs are distinct, we
have

∑s
i=0 Li(τ )c

p
i = τp.

2.4 Energy-Preserving Conditions and Symmetric
Conditions

In what follows, we show sufficient conditions for energy preservation for a
CSERKN method (2.15) when applied to the highly oscillatory Hamiltonian system
(2.1).
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Theorem 2.3 A CSERKN method (2.15) solving highly oscillatory Hamiltonian
systems (2.1) is energy preserving if the coefficients satisfy

Vφ0(V )b̄τ (V )− V φ1(V )bτ (V ) = C′τ (V ),

φ0(V )bτ (V )+ Vφ1(V )b̄τ (V ) = D′τ (V ),

bτ (V )bσ (V )+ V b̄τ (V )b̄σ (V ) = Ā′τσ (V )+ Ā′στ (V ),

(2.21)

where Ā′τσ (V ) =
∂

∂τ
Āτσ (V ), C′τ (V ) =

d

dτ
Cτ (V ) and D′τ (V ) =

d

dτ
Dτ (V ).

Proof For a CSERKN method (2.15) and HamiltonianH(p, q) determined by (2.4)
with p = q ′, we have

H(pn+1, qn+1)−H(pn, qn)

=1

2
p
ᵀ
n+1pn+1 + 1

2
q
ᵀ
n+1Mqn+1 + U(qn+1)− 1

2
pᵀ
npn −

1

2
qᵀnMqn − U(qn)

=1

2

(
−hMφ1(V )qn + φ0(V )pn + h

∫ 1

0
bτ (V )f (Qτ ) dτ

)ᵀ

·
(
−hMφ1(V )qn + φ0(V )pn + h

∫ 1

0
bτ (V )f (Qτ ) dτ

)

+1

2

(
φ0(V )qn + hφ1(V )pn + h2

∫ 1

0
b̄τ (V )f (Qτ ) dτ

)ᵀ

·M
(
φ0(V )qn + hφ1(V )pn + h2

∫ 1

0
b̄τ (V )f (Qτ ) dτ

)

+
∫ 1

0

[∇U (Qτ )
]ᵀdQτ − 1

2
pᵀ
npn −

1

2
qᵀnMqn. (2.22)

After some calculation, we obtain

H(pn+1, qn+1)−H(pn, qn)

=1

2
p
ᵀ
n

(
φ2

0 (V )+ V φ2
1 (V )

)
pn − 1

2
p
ᵀ
n pn + 1

2
q
ᵀ
n M

(
φ2

0 (V )+ V φ2
1 (V )

)
qn − 1

2
q
ᵀ
n Mqn
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+ q
ᵀ
n V

(
φ0(V )

∫ 1

0
b̄τ (V )f (Qτ ) dτ − φ1(V )

∫ 1

0
bτ (V )f (Qτ ) dτ

)

+ hp
ᵀ
n

(
φ0(V )

∫ 1

0
bτ (V )f (Qτ ) dτ + V φ1(V )

∫ 1

0
b̄τ (V )f (Qτ ) dτ

)

+ h2

2

(∫ 1

0
bτ (V )f (Qτ ) dτ

)ᵀ (∫ 1

0
bτ (V )f (Qτ ) dτ

)

+ h2

2

(∫ 1

0
b̄τ (V )f (Qτ ) dτ

)ᵀ
V

(∫ 1

0
b̄τ (V )f (Qτ ) dτ

)

+
∫ 1

0

[∇U (Qτ )
]ᵀd

(
Cτ (V )qn + hDτ (V )pn + h2

∫ 1

0
Āτσ (V )f (Qσ ) dσ

)
.

(2.23)

It follows from Proposition 2.1 that

H(pn+1, qn+1)−H(pn, qn)

=qᵀn
∫ 1

0

(
V φ0(V )b̄τ (V )− V φ1(V )bτ (V )− C′τ (V )

)
f (Qτ ) dτ

+ hpᵀ
n

∫ 1

0

(
φ0(V )bτ (V )+ V φ1(V )b̄τ (V )−D′τ (V )

)
f (Qτ ) dτ

+ h2

2

∫ 1

0

∫ 1

0
f (Qτ )

ᵀ bτ (V )bσ (V )f (Qσ ) dτdσ

+ h2

2

∫ 1

0

∫ 1

0
f (Qτ )

ᵀ V b̄τ (V )b̄σ (V )f (Qσ ) dτdσ

+ h2
∫ 1

0

[∇U (Yτ )
]ᵀd

(∫ 1

0
Āτσ (V )f (Qσ ) dσ

)
.

Using the first two equations of (2.21) and f (Qτ ) = −∇U (Qτ ), we obtain

H(pn+1, qn+1)−H(pn, qn)

=h2

2

∫ 1

0

∫ 1

0
f (Qτ )

ᵀ
(
bτ (V )bσ (V )+ V b̄τ (V )b̄σ (V )− 2Ā′τσ (V )

)
f (Qσ ) dτdσ.
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Letting τ ↔ σ and adding the resulting identities gives

H(pn+1, qn+1)−H(pn, qn) =h2

2

∫ 1

0

∫ 1

0
f (Qτ )

ᵀ
(
bτ (V )bσ (V )+ V b̄τ (V )b̄σ (V )

− Ā′τσ (V )− Ā′στ (V )
)
f (Qσ ) dτdσ.

It then follows from the third equation of (2.21) that H(pn+1, qn+1)−H(pn, qn) =
0. The proof is complete. ��
Remark 2.4.1 When V → 0 (M → 0), the CSERKN method (2.15) reduces to
CSRKN method. In this case, the energy-preserving conditions of (2.21) reduce to

bτ = D′τ ,

bτ bσ = Ā′τσ + Ā′στ ,
(2.24)

where D′τ I , Āτσ Id , b̄τ Id and bτ Id are the limit values of D′τ (V ), Āτσ (V ), b̄τ (V )
and bτ (V ) as V → 0. It follows from (2.17) that Dτ = τ and bτ = 1. This result
has been shown in [59].

A detailed investigation of the numerical integration of reversible systems has been
made in [3], and it has been shown that symmetric integration methods often have
excellent long-time behaviour for such systems. Therefore, we turn to the discussion
about the symmetry of CSERKN methods.

Definition 2.3 (See [3]) The adjoint method Φ∗h of a method Φh is defined as the
inverse map of the original method with reversed time step −h, i.e., Φ∗h = Φ−1

−h . A
method with Φ∗h = Φh is called symmetric.

The following theorem gives the symmetric conditions of CSERKN methods:

Theorem 2.4 A CSERKN methods (2.15) is symmetric if and only if the coefficients
satisfy following conditions

φ1(V )bτ (V )− φ0(V )b̄τ (V ) = b̄1−τ (V ),

φ0(V )bτ (V )+ V φ1(V )b̄τ (V ) = b1−τ (V ),

Cτ (V )φ0(V )+ VDτ (V )φ1(V ) = C1−τ (V ),

Cτ (V )φ1(V )−Dτ (V )φ0(V ) = D1−τ (V ),

Cτ (V )

(
φ1(V )bσ (V )− φ0(V )b̄σ (V )

)

−Dτ (V )

(
φ0(V )bσ (V )+ Vφ1(V )b̄σ (V )

)
+ Āτσ (V ) = Ā1−τ,1−σ (V ).

(2.25)
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Proof Exchanging qn+1 ↔ qn, q ′n+1 ↔ q ′n, tn+1 ↔ tn and replacing h by −h in
scheme (2.15) leads to

Q̄τ = Cτ (V )qn+1 − hDτ (V )q
′
n+1 + h2

∫ 1

0
Āτσ (V )f

(
Q̄σ

)
dσ,

qn = φ0(V )qn+1 − hφ1(V )q
′
n+1 + h2

∫ 1

0
b̄τ (V )f

(
Q̄τ

)
dτ,

q ′n = hMφ1(V )qn+1 + φ0(V )q
′
n+1 − h

∫ 1

0
bτ (V )f

(
Q̄τ

)
dτ.

(2.26)

Using (2.26) and Proposition 2.1, we obtain

qn+1 =φ0(V )qn + hφ1(V )q
′
n

+ h2
∫ 1

0

(
φ1(V )bτ (V )− φ0(V )b̄τ (V )

)
f
(
Q̄τ

)
dτ,

q ′n+1 =− hMφ1(V )qn + φ0(V )q
′
n

+ h

∫ 1

0

(
φ0(V )bτ (V )+ V φ1(V )b̄τ (V )

)
f
(
Q̄τ

)
dτ,

Q̄τ =
(
Cτ (V )φ0(V )+ VDτ (V )φ1(V )

)
qn +

(
Cτ (V )φ1(V )−Dτ (V )φ0(V )

)
hq ′n

+ h2
∫ 1

0

[
Cτ (V )

(
φ1(V )bσ (V )− φ0(V )b̄σ (V )

)

−Dτ(V )

(
φ0(V )bσ (V )+ Vφ1(V )b̄σ (V )

)
+ Āτσ

]
f (Qσ )dσ.

(2.27)

We replace all indices τ and σ by 1 − τ and 1 − σ , respectively, and denote
Q̄1−τ = Qτ . It is clear that the scheme defined by (2.27) coincides with the scheme
(2.15) if and only if the coefficients satisfy the conditions (2.25). This proves the
theorem. ��
Remark 2.4.2 When V → 0 (M → 0), the CSERKN method (2.15) reduces to a
CSRKN method. In this case, the symmetric conditions reduce to

bτ − b̄τ = b̄1−τ , bτ = b1−τ ,

bσ − b̄σ − τbσ + Āτσ = Ā1−τ,1−σ .
(2.28)

where Āτσ Id , b̄τ Id and bτ Id are the limit values of Āτσ (V ), b̄τ (V ) and bτ (V ) as
V → 0. This result has been given in [62].
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2.5 Linear Stability Analysis

In order to analyse the stability of CSERKN methods, we consider the following
linear scalar test equation

q ′′(t)+ ω2q(t) = −εq(t), (2.29)

where ω represents an estimate of the dominant frequency λ and ε = λ2 −ω2 is the
error of the estimate. Applying the CSERKN method (2.15) to (2.29) yields

Qτ = Cτ (V )qn + hDτ (V )q
′
n − z

∫ 1

0
Āτσ (V )Qσ dσ,

qn+1 = φ0(V )qn + hφ1(V )q
′
n − z

∫ 1

0
b̄τ (V )Qτdτ, (2.30)

hq ′n+1 = −Vφ1(V )qn + hφ0(V )q
′
n − z

∫ 1

0
bτ (V )Qτdτ,

where V = ω2h2 and z = εh2. Considering Qτ is a polynomial of degree s with
respect to τ , we have

Qτ =
s∑

i=0

QiLi(τ ), Qi = Qci

where c0 = 0, c1 = 1 and Q0 = qn, Qs = qn+1, and then obtain

Qi = Ci(V )qn + hDi(V )q
′
n − z

∫ 1

0
Āiσ (V )

⎛
⎝ s∑
j=0

Lj(σ)Qj

⎞
⎠ dσ,

qn+1 = φ0(V )qn + hφ1(V )q
′
n − z

∫ 1

0
b̄τ (V )

(
s∑

i=0

Li(τ )Qi

)
dτ,

hq ′n+1 = −Vφ1(V )qn + hφ0(V )q
′
n − z

∫ 1

0
bτ (V )

(
s∑

i=0

Li(τ )Qi

)
dτ,

(2.31)

where Ci(V ) = Cci (V ), Di(V ) = Dci (V ) and Āiσ (V ) = Āciσ (V ). We can express
(2.31) in a vector form

Q = C(V )qn + hD(V )q ′n − zĀ(V )Q,

qn+1 = φ0(V )qn + hφ1(V )q
′
n − zB̄(V )Q,

hq ′n+1 = −Vφ1(V )qn + hφ0(V )q
′
n − zB(V )Q,

(2.32)
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where Q = (Q0, · · · ,Qs)
ᵀ and

C(V ) = (C0(V ), · · · , Cs(V ))
ᵀ, D(V ) = (D0(V ), · · · ,Ds(V ))

ᵀ,

Ā(V ) =

⎛
⎜⎜⎜⎜⎜⎝

∫ 1

0
Ā0σ (V )L0(σ )dσ · · ·

∫ 1

0
Ā0σ (V )Ls(σ )dσ

...
. . .

...∫ 1

0
Āsσ (V )L0(σ )dσ · · ·

∫ 1

0
Āsσ (V )Ls(σ )dσ

⎞
⎟⎟⎟⎟⎟⎠ ,

B̄(V ) =
(∫ 1

0
b̄σ (V )L0(σ )dσ, · · · ,

∫ 1

0
b̄σ (V )Ls(σ )dσ

)
,

B(V ) =
(∫ 1

0
bσ (V )L0(σ )dσ, · · · ,

∫ 1

0
bσ (V )Ls(σ )dσ

)
.

The elimination of the vector Q in (2.32) yields the recursion

(
qn+1

hq ′n+1

)
= M(V, z)

(
qn

hq ′n

)
, (2.33)

where

M =
(

φ0(V )− zB̄(V )N−1C(V ) φ1(V )− zB̄(V )N−1D(V )

−Vφ1(V )− zB(V )N−1C(V ) φ0(V )− zB(V )N−1D(V )

)
, (2.34)

and N = I + zĀ(V ). The matrix M is called the stability matrix. The behaviour of
the numerical solution will depend on the spectral radius ρ(M). Geometrically, the
characterization of stability involves a two-dimensional region in (V , z) space for a
CSERKN method.

Definition 2.4 For the CSERKN method (2.15) with the stability matrix M(V, z),
the region of the two-dimensional space

� := {(V , z) : V � 0, |ρ(M(V, z))| � 1}

is called the region of stability. The closed surface defined by ρ(M(V, z)) = 1 and
V � 0 is the stability boundary of the method.

Definition 2.5 Denoting ζ = √V + z, the two quantities

φ(ζ ) = ζ − arccos

(
tr(M)

2
√

det(M)

)
, d(ζ ) = 1−√

det(M)

are called the dispersion error and the dissipation error of the underlying CSERKN
method, respectively. The method is said to be dispersive of order γ and dissipative
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of order r , if φ(ζ ) = O(ζ γ+1) and d(ζ ) = O(ζ r+1), respectively. If φ(ζ ) = 0 or
d(ζ ) = 0, then the method is said to be zero dispersive or zero dissipative.

2.6 Construction of CSERKN Methods

In this section, we present second and fourth order symmetric and energy-preser-
ving CSERKN schemes. The derivation process of higher-order methods is com-
pletely similar. In the construction of the method, we always choose Dτ = τ , as
described in Remark 2.4.1.

In a CSERKN method, there is a restrictive relation between the internal and
final stages for the consistency of the method, because qn+1 should coincide with
Qcs while cs = 1. Therefore, b̄σ (V ) should be expressed as b̄σ (V ) = Ā1σ (V ).

2.6.1 The Case of Order Two

According to Definition 2.2, a one-degree CSERKN formulation has coefficients
with the following form:

Āτσ (V ) = ā11(V )τ, b̄τ (V ) = b̄1(V ), bτ (V ) = b1(V ). (2.35)

On the basis of the energy-preserving conditions (2.21), the coefficients satisfy

ā11(V ) = φ2((c1 − c2)
2V ),

b̄1(V ) = (1− c2)
2φ2((1− c2)

2V )− (1− c1)
2φ2((1− c1)

2V )

c1 − c2
,

b1(V ) = (1− c2)φ1((1− c2)
2V )− (1− c1)φ1((1− c1)

2V )

c1 − c2
.

(2.36)

Under the assumption that the coefficients in (2.36) satisfy the symmetric conditions
(2.25), we obtain

ā11(V ) = φ2

(
(2c1 − 1)2V

)
, c2 = 1− c1,

b̄1(V ) = c2
1φ2(c

2
1V )− (1− c1)

2φ2((1− c1)
2V )

2c1 − 1
,

b1(V ) = c1φ1(c
2
1V )− (1− c1)φ1((1− c1)

2V )

2c1 − 1
.

(2.37)
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Fig. 2.1 The stability regions of the method SEPCSERKN2P (a) and the method SEPCSERKN4P
(b)

Let Ā1σ (V ) = b̄σ (V ) in (2.37), and this gives

c1 = 0, c2 = 1,

ā11(V ) = φ2(V ), b̄1(V ) = φ2(V ), b1(V ) = φ1(V ).
(2.38)

It then can be verified that the coefficients satisfy all the conditions of order two. We
denote the CSERKN method determined by (2.38) as SEPCSERKN2P. With regard
to the dispersion error and the dissipation error of the method SEPCSERKN2P, we
have

φ(ζ ) = ε2ζ 3

12(ε2 +w2)
+O(ζ 5), d(ζ ) = 0.

This shows that the method is dispersive of order two and zero dissipative,
respectively. The stability region of the method SEPCSERKN2P is depicted in
Fig. 2.1a.

Remark 2.6.1 Actually, the method SEPCSERKN2P can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qτ =
(
τφ0(V )+ 1− τ

)
qn + hτφ1(V )q

′
n + h2τ

∫ 1

0
φ2(V )f (Qσ ) dσ, τ ∈ [0, 1],

qn+1 = φ0(V )qn + hφ1(V )q
′
n + h2

∫ 1

0
φ2(V )f (Qτ ) dτ,

q ′n+1 = −hMφ1(V )qn + φ0(V )q
′
n + h

∫ 1

0
φ1(V )f (Qτ ) dτ.

(2.39)



64 2 Continuous-Stage ERKN Integrators for Second-Order ODEs with Highly. . .

Using the first two expressions of (2.39), we write Qτ as a linear combination of qn
and qn+1.

Qτ = τqn+1 + (1− τ )qn. (2.40)

The method SEPCSERKN2P then can be expressed as

qn+1 = φ0(V )qn + hφ1(V )q
′
n + h2φ2(V )

∫ 1

0
f (τqn+1 + (1− τ )qn) dτ,

q ′n+1 = −hMφ1(V )qn + φ0(V )q
′
n + hφ1(V )

∫ 1

0
f (τqn+1 + (1− τ )qn) dτ.

(2.41)

This formula (2.41) has been proposed in [63, 64] and is termed the adapted AVF
(AAVF) formula in [64]. The authors in [65] studied the application of AAVF
formula to Hamiltonian partial differential equations. Therefore, CSERKN methods
can be thought of as an extension of the AAVF method (2.41).

2.6.2 The Case of Order Four

A two-degree CSERKN method has the coefficients of the form

Āτσ (V ) = ā11(V )τ + ā12(V )τσ + ā21(V )τ
2 + ā22(V )τ

2σ,

b̄τ (V ) = b̄1(V )+ b̄2(V )τ, bτ (V ) = b1(V )+ b2(V )τ.
(2.42)

It then follows from the first two energy-preserving conditions of (2.21) that

b̄1(V ) =
(
(−c2

2 + c2
3)(1 − c1)

2φ2((1 − c1)
2V )+ (c2

1 − c2
3)(1 − c2)

2φ2((1 − c2)
2V )

+ (−c2
1 + c2

2)(1− c3)
2φ2((1 − c3)

2V )

)/(
(c1 − c2)(c1 − c3)(c2 − c3)

)
,

b̄2(V ) =
(

2((c2 − c3)(1 − c1)
2φ2((1− c1)

2V )+ (−c1 + c3)(1 − c2)
2φ2((1 − c2)

2V )

+ (c1 − c2)(1 − c3)
2φ2((1 − c3)

2V ))

)/(
(c1 − c2)(c1 − c3)(c2 − c3)

)
,
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b1(V ) =
(
(c2

2 − c2
3)(1 − c1)φ1((1 − c1)

2V )+ (−c2
1 + c2

3)(1 − c2)φ1((1 − c2)
2V )

+ (c2
1 − c2

2)(1 − c3)φ1((1 − c3)
2V )

)/(
(c1 − c2)(c1 − c3)(c2 − c3)

)
,

b2(V ) = 2

(
(−c2 + c3)(1 − c1)φ1((1 − c1)

2V )+ (c1 − c3)(1 − c2)φ1((1 − c2)
2V )

+ (−c1 + c2)(1− c3)φ1((1− c3)
2V )

)/(
(c1 − c2)(c1 − c3)(c2 − c3)

)
.

(2.43)

Using the last energy-preserving conditions of (2.21), we obtain

ā11(V ) = 1

2

(
b2

1(V )+ b̄2
1(V )V

)
,

ā21(V ) = 1

2

(
− a12(V )+ b1(V )b2(V )+ b̄1(V )b̄2(V )V

)
,

ā22(V ) = 1

4

(
b2

2(V )+ b̄2
2(V )V

)
.

(2.44)

Letting the coefficients in (2.6.2) and (2.44) satisfy the symmetric conditions and
Ā1σ (V ) = b̄σ (V ), we obtain

c1 = 0, c2 = 1

2
, c3 = 1, ā11(V ) = 4φ2

(
1

4
V

)
− 3φ2

(
V
)
,

ā12(V ) = −φ2
1

(
1

16
V

)(
1+ V

4
φ2

(
V

4

))
,

ā21(V ) = 1

2
φ2

1

(
1

16
V

)(
1− 3V

4
φ2

(
V

4

))
, ā22(V ) = V

4
φ4

1

(
1

16
V

)
,

b̄1(V ) = 3φ2

(
V

)
− φ2

(
1

4
V

)
, b̄2(V ) = 2φ2

(
1

4
V

)
− 4φ2

(
V
)
,

b1(V ) = −2φ1

(
1

4
V

)
+ 3φ1

(
V
)
, b2(V ) = 4φ1

(
1

4
V

)
− 4φ1

(
V
)
.

(2.45)

It can be verified that the coefficients satisfy all the conditions of order four. We
denote the CSERKN method (2.15) determined by (2.45) as SEPCSERKN4P. Con-
cerning the dispersion error and the dissipation error of the method SEPCSERKN4P,
we have

φ(ζ ) = ε2(4ε2 + 3w2)ζ 5

2880(ε2 + w2)2
+O(ζ 7), d(ζ ) = 0,
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which indicates that the method SEPCSERKN4P is dispersive of order four and
zero dissipative, respectively. The stability region of the method SEPCSERKN4P is
depicted in Fig. 2.1b.

2.7 Numerical Experiments

In this section, in order to demonstrate the superiority of the continuous-stage
ERKN methods in comparison with the existing methods in the literature, we
consider three model problems. Since these methods are implicit, iterative solutions
are required. We use fixed point iteration with the tolerance 10−15, and the
maximum number of iterations is 100. The integrals appearing in the right-hand
side of method (2.15) are integrated by using quad with the tolerance 10−12. The
integrators we select for comparison are

• EPCSRK2P: The energy-preserving CSRK method of order two derived in [48];
• EPCSRK4P: The energy-preserving CSRK method of order four derived in [48];
• SEPCSERKN2P: The symmetric and energy-preserving CSERKN method of

order two presented in Sect. 2.6 of this chapter;
• SEPCSERKN4P: The symmetric and energy-preserving CSERKN method of

order four presented in Sect. 2.6 of this chapter.

The numerical results are executed on the computer Lenovo M6600 (Inter(R)
Pentium(R) CPU 3.00 GHz, 0.99 GB), and the programming language MATLAB is
used.

Problem 2.1 We consider the Duffing equation

{
q ′′ + ω2q = 2k2q3 − k2q, t ∈ [0, tend],
q(0) = 0, q ′(0) = ω.

(2.46)

The Hamiltonian is given by

H(p, q) = 1

2
p2 + 1

2
(ω2 + k2)q2 − k2

2
q4,

where k = 0.03. The exact solution of this initial-value problem is q(t) =
sn(ωt; k/ω), where sn is the so-called Jacobian elliptic function. We choose the
frequency ω = 50 in this experiment. Accordingly, this is a highly oscillatory
Hamiltonian system.

We first solve this problem on the interval [0, 100] with the stepsizes h = 1/2j

for j = 4, · · · , 7 for each method. We then integrate the problem with a fixed
stepsize h = 1/100 on the interval [0, 100] to examine the preservation of the
Hamiltonian for the four methods. The numerical results are presented in Fig. 2.2.
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Fig. 2.2 Efficiency curves (a) and energy conservation (b) for Problem 2.1

Problem 2.2 We consider the two coupled oscillators with different frequen-cies
[17]

{
q ′′1 + q1 = 2εq1q2, q1(0) = 1, q ′1(0) = 0,

q ′′2 + 2q2 = εq2
1 + 4εq3

2 , q2(0) = 1, q ′2(0) = 0.

The Hamiltonian of this system is given by

H(p, q) = 1

2
(p2

1 + p2
2)+

1

2
(q2

1 + 2q2
2)− ε

(
q2

1q2 + q4
2

)
.

In this numerical experiment we choose ε = 10−3. We first solve this problem on the
interval [0, 100] with the stepsizes h = 1/2j for j = 2, · · · , 5 for all the methods.
We then integrate the problem with a fixed stepsize h = 1/10 on [0, 100] and
examine the preservation of the Hamiltonian. The numerical results are presented
in Fig. 2.3.



68 2 Continuous-Stage ERKN Integrators for Second-Order ODEs with Highly. . .

Fig. 2.3 Efficiency curves (a) and energy conservation (b) for Problem 2.2

Problem 2.3 Consider the semilinear wave equation⎧⎪⎪⎨
⎪⎪⎩
∂2u

∂t2
− ∂2u

∂x2 = −
1

5
u3, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, u(x, 0) = sin(πx)

2
, ut (x, 0) = 0.

By using second-order symmetric differences, this problem is converted into a
system of ODEs in time

⎧⎪⎪⎨
⎪⎪⎩

d2ui

dt2
− ui+1 − 2ui + ui−1

x2 = −1

5
u3
i , 0 < t � tend,

ui(0) = sin(πxi)

2
, u

′
i (0) = 0, i = 1, · · · , N − 1,

where x = 1/N is the spatial mesh stepsize and xi = ix. Then this semidiscrete
oscillatory system has the form

⎧⎪⎪⎨
⎪⎪⎩

d2U

dt2
+MU = F(U), 0 < t � tend,

U(0) =
(

sin(πx1)

2
, · · · , sin(πxN−1)

2

)ᵀ
, U ′(0) = 0,
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where U(t) = (u1(t), · · · , uN−1(t))
ᵀ with ui(t) ≈ u(xi, t) for i = 1, · · · , N − 1,

and

M = 1

x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞
⎟⎟⎟⎟⎟⎠ , (2.47)

F(U) =
(
−1

5
u3

1, · · · ,−
1

5
u3
N−1

)ᵀ
.

The Hamiltonian of this system is given by

H(p, q) = 1

2
pᵀp + 1

2
qᵀMq + 1

20
eᵀq4,

where e = (1, · · · , 1)ᵀ. In this numerical experiment we choose N = 100. We
first solve this problem on the interval [0, 100] with the stepsizes h = 1/2j for
j = 5, · · · , 8. We then integrate the problem with a fixed stepsize h = 1/128
on [0, 100] and examine the preservation of the Hamiltonian by each code. The
numerical results are shown in Fig. 2.4.

It can be observed from Figs. 2.2, 2.3, and 2.4 of the three numerical experiments
that the right-hand figures show all the integrators derived in this chapter preserve
the Hamiltonian well. The results of the numerical experiments confirm that, for
a given stepsize h, the SEPCSERKN integrators are more accurate than EPCSRK
methods with the same convergence order.

Remark 2.7.1 In general, the computational cost per step of high order methods is
larger than that of low order methods. In order to objectively evaluate these effects,
we present in Fig. 2.5 the error versus CPU time for each problem, which indicates
that SEPCSERKN4P is the best of these four methods. The related data are the same
as those shown in Figs. 2.2a, 2.3a, and 2.4a.

2.8 Conclusions and Discussions

In this chapter, we derived and analysed continuous-stage extended Runge–Kutta–
Nyström (CSERKN) methods for (2.1). This class of CSERKN methods is oscil-
lation preserving since the internal stages and the updates exactly integrate the
highly oscillatory homogeneous system (2.2) associated with (2.1). Symmetric and
energy-preserving conditions for CSERKN methods were derived and analysed for
highly oscillatory Hamiltonian systems. In terms of these conditions, two symmetric
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Fig. 2.4 Efficiency curves (a) and energy conservation (b) for Problem 3.3

Fig. 2.5 The error versus CPU time for three problems
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and energy-preserving CSERKN methods were constructed, of orders two and
four respectively. The results of the numerical experiments show that the energy-
preserving CSERKN methods preserve the energy well, and are more accurate than
EPCSRK methods.

CSERKN methods for semilinear Hamiltonian wave equations could be investi-
gated further. We expect that they may exactly preserve the energy of the underlying
Hamiltonian wave equations, including the Klein–Gordon (KG) equation which has
received a great deal of attention, both numerical and analytical. We refer the reader
to [65] for this topic. A promising approach to the approximation is based on the so-
called operator-variation-constants formula (the Duhamel Principle), and we refer
the reader to some relevant papers [66–68]. In Chap. 11, symplectic approximations
will be derived and analysed in detail for efficiently solving semilinear KG equa-
tions. Moreover, continuous-stage leap-frog schemes for semilinear Hamiltonian
wave equations will be presented in Chap. 12.

The material in this chapter is based on the work by Li and Wu [69].
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Chapter 3
Stability and Convergence Analysis
of ERKN Integrators for Second-Order
ODEs with Highly Oscillatory Solutions

In this chapter, we commence the nonlinear stability and convergence analysis
of ERKN integrators for second-order ODEs with highly oscillatory solutions,
depending on a frequency matrix. As one of the most important applications, we
also rigorously analyse the global errors of the blend of the ERKN time integrators
and the Fourier pseudospectral spatial discretisation (ERKN-FP) when applied to
semilinear wave equations. The theoretical results show that the nonlinear stability
and the global error bounds are entirely independent of the frequency matrix, and
the spatial mesh size. The analysis also provides a new perspective on the class of
ERKN time integrators. That is, the ERKN-FP methods are free from the restriction
on the Courant-Friedrichs-Lewy (CFL) condition.

3.1 Introduction

Nonlinear highly oscillatory problems occur in a variety of fields in science and
engineering. The computation of nonlinear highly oscillatory problems contains
numerous enduring challenges. In recent years, the investigation of efficient numer-
ical methods for solving such problems has received increasing attention. In this
chapter, we consider nonlinear multi-frequency highly oscillatory systems which
can be formulated by the following initial value problem of second-order ODEs

{
q̈(t)+ κ2Aq(t) = g

(
q(t)

)
, t ∈ [t0, T ],

q(t0) = ϕ, q̇(t0) = ψ,
(3.1)

where κ2 > 0 is a takanami number, q ∈ R
d , and A ∈ R

d×d is a positive
semi-definite matrix that implicitly contains the dominant frequencies of the highly

oscillatory problem with κ2‖A‖ � max

{
1,

∥∥∥∥ ∂g∂q
∥∥∥∥
}

. This type of problem plays
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an important role in a wide variety of practical application areas in science and
engineering, including nonlinear optics, molecular dynamics, solid state physics
and quantum field theory. It is well known that the method of lines is an effective
approach for the numerical integration of PDEs such as semilinear wave equations.
With suitable spatial discretisation strategies, for example the finite difference
method and the pseudospectral or spectral method (see, e.g. [1–6]), semilinear
wave equations can be converted into highly oscillatory second-order ODEs (3.1).
Therefore, research of the nonlinear multi-frequency highly oscillatory system (3.1)
will also be significant for the numerical investigation of semilinear wave equations,
including the important Klein–Gordon (KG) equation, in applications.

As is known, if the nonlinear function g(·) satisfies a Lipschitz condition, then the
nonlinear highly oscillatory problem (3.1) has a unique solution (see, e.g. [7, 8]) over
the interval [t0, T ]. Therefore, throughout this chapter we assume that the nonlinear
function g(·) is locally Lipschitz continuous in a strip along the exact solution q(t),
i.e., there is a positive constant L, s.t.

‖g(α(t)) − g
(
β(t)

)‖ � L‖α(t) − β(t)‖ (3.2)

for all t ∈ [t0, T ] and

max{‖α(t) − q(t)‖, ‖β(t)− q(t)‖} � R. (3.3)

The numerical treatment of the highly oscillatory system (3.1) has received a great
deal of attention (see, e.g. [9–15]). Over the last decade, in order to systematically
and comprehensively study the nonlinear multi-frequency highly oscillatory second-
order ODEs (3.1) from both the analytical and numerical aspects, Wu et al. (see, e.g.
[15, 16]) established the following matrix-variation-of-constants formula

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) =φ0
(
(t − t0)

2κ2A
)
q(t0)+ (t − t0)φ1

(
(t − t0)

2κ2A
)
q̇(t0)

+
∫ t

t0

(t − z)φ1
(
(t − z)2κ2A

)
g
(
q(z)

)
dz,

q̇(t) =− (t − t0)κ
2Aφ1

(
(t − t0)

2κ2A
)
q(t0)+ φ0

(
(t − t0)

2κ2A
)
q̇(t0)

+
∫ t

t0

φ0
(
(t − z)2κ2A

)
g
(
q(z)

)
dz,

(3.4)

where t ∈ [t0, T ] and the functions φ0(A) and φ1(A) are defined by the following
unconditionally convergent matrix-valued functions:

φj (A) :=
∞∑
k=0

(−1)kAk

(2k + j)! , j ∈ N, (3.5)

where A is a positive semi-definite matrix. Since the matrix A appearing in (3.4) is
symmetric and positive semi-definite with A = Ω2, where Ω is also symmetric and
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positive semi-definite, (3.4) can also read (see, e.g. [8, 10])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = cos((t − t0)κΩ)q(t0)+ κ−1Ω−1 sin
(
(t − t0)κΩ

)
q̇(t0)

+
∫ t

t0

κ−1Ω−1 sin((t − τ )κΩ)g
(
q(τ)

)
dτ,

q̇(t) =− κΩ sin((t − t0)κΩ)q(t0)+ cos((t − t0)κΩ)q̇(t0)

+
∫ t

t0

cos((t − τ )κΩ)g
(
q(τ)

)
dτ.

(3.6)

It is noted that (3.6) depends on the decomposition of the matrix A, but (3.4) does
not. Throughout this chapter we use (3.4).

The matrix-variation-of-constants formula (3.4) has received a lot of attention
in the literature over the past decades. In particular, this formula can be used to
design and analyse effective and efficient numerical integrators for solving the
multi-frequency highly oscillatory system (3.1), such as the Gautschi-type methods
of order two (see, e.g. [10, 11, 17, 18]), the exponentially fitted Runge–Kutta
(EFRK) method [19], the exponentially fitted Runge–Kutta–Nyström (EFRKN)
method [20], the functionally-fitted energy-preserving method [21], the adapted
Runge–Kutta–Nyström (ARKN) method (see, e.g. [16, 22]), the extended Runge–
Kutta–Nyström (ERKN) method (see, e.g. [23–27]), and arbitrarily high-order
time-stepping methods (see, e.g. [28, 29]) and trigonometric Fourier collocation
methods (see, e.g. [30, 31]). These methods share the fact that they can exactly
integrate the unperturbed multi-frequency highly oscillatory system

q ′′(t)+ κ2Aq(t) = 0. (3.7)

In particular, it is important to note that both the internal stages and updates of
an ERKN integrator can solve (3.7) exactly. This property of ERKN method is
essential for efficiently solving the nonlinear initial value problem (3.1) with highly
oscillatory solutions. Therefore, ERKN integrators are oscillation preserving (see
Chap. 1 for details and [32]).

Moreover, we also note that the classical stability analysis for numerical methods
deals with the following prototype scalar test equation (see, e.g. [15, 33]):

q̈(t)+ ω2q(t) = −εq(t) with ω2 + ε > 0, (3.8)

where ω represents an estimate of the frequency λ and ε = λ2 − ω2 is the error
of the estimation. This is a linear system with a single-frequency, and hence this
kind of stability analysis is termed as the linear stability analysis. However, it
should be pointed out that the original system (3.1) is a nonlinear highly oscillatory
system with multiple frequencies. In particular, it may be a large scale system
of nonlinear multi-frequency highly oscillatory ODEs yielded by the refinement
of spatial discretisations for semilinear wave equations. Therefore, it would be
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insufficient to apply the linear and single frequency test equation (3.8) to the stability
analysis for a numerical method designed for the nonlinear multi-frequency highly
oscillatory system (3.1). This implies that it is important to investigate the nonlinear
stability for (3.1). Taking into account the special structure brought by the linear
term κ2Aq(t) of the system, and approximating the nonlinear integrals appearing
in the variation-of-constants formula (3.4) by suitable quadrature formulas, ERKN
integrators for solving the nonlinear multi-frequency highly oscillatory system (3.1)
have been proposed and developed in the literature. However, in contrast to classical
methods, the theoretical analysis associated with ERKN integrators is not sufficient.
Therefore, one of our main purposes in this chapter is to analyse the nonlinear
stability and convergence for the ERKN integrators based on the matrix-variation-
of-constants formula (3.4).

Another important issue in this chapter is to investigate the applications of ERKN
time integrators to semilinear wave equations:

utt (x, t)− ε2u(x, t)+ ρu = f
(
u(x, t)

)
, x ∈ T = R/(2πZ), t ∈ [t0, T ],

(3.9)

where ε2 > 0 and ρ > 0 are parameters, and the function f (·) is smooth and real-
valued, satisfying f (0) = 0. The wave equation (3.9) is studied with 2π-periodic
boundary conditions in one space dimension and its solution is assumed to be real-
valued. The initial values at time t = t0 are given by

u(x, t0) = ϕ(x), ut (x, t0) = ψ(x). (3.10)

In the literature, there exist many numerical strategies for solving the semilinear
wave equation, such as the finite difference method [3–5, 34], the pseudospectral or
spectral method [2, 6], the radial basis functions methods [35], the dual reciprocity
boundary integral equation technique [36] and the He’s variational iteration method
[37]. In this chapter, using the idea of the so-called operator-variation-of-constants
formula described in Chap. 1, we will combine the ERKN time integrators with
Fourier pseudospectral spatial discretisation (ERKN-FP) to solve (3.9) with 2π-
periodic boundary conditions and initial conditions (3.10), and this leads to a fully
discrete scheme. On the basis of energy techniques, which are widely used in
the numerical analysis of partial differential equations (see, e.g. [38–44]), we will
conclude that the global error bounds of the ERKN-FP schemes are independent
of any restriction of the time stepsize and the spatial stepsize. Moreover, it is
well known that restriction (CFL) of the time stepsize and the spatial stepsize
for the traditional numerical schemes in the literature is required for solving
semilinear wave equations. This means that the CFL condition is an essential
element associated with numerical PDEs in practice and the traditional schemes
for PDEs usually suffer from this crucial condition. Fortunately, however, our
analysis of the global errors in this chapter confirms that the ERKN-FP schemes
are completely independent of the CFL condition when applied to the semilinear
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wave equation. This is one of the most essential properties of ERKN time integrators
when applied to the semilinear wave equation.

3.2 Nonlinear Stability and Convergence Analysis for ERKN
Integrators

This section concerns the study of nonlinear stability and convergence for ERKN
integrators over a finite time interval. We begin this study with the nonlinear stability
analysis of the matrix-variation-of-constants formula for the nonlinear highly
oscillatory system (3.1), possessing multiple frequencies. After completing this,
we turn to the nonlinear stability and convergence analysis for ERKN integrators.
Throughout this section, ‖·‖ represents the vector 2-norm or matrix 2-norm (spectral
norm).

3.2.1 Nonlinear Stability of the Matrix-Variation-of-Constants
Formula

To begin with the stability analysis, we assume that the perturbed problem of (3.1)
is {

p̈(t)+ κ2Ap(t) = g
(
p(t)

) + ε(t), t ∈ [t0, T ],
p(t0) = ϕ + ϕ̃, ṗ(t0) = ψ + ψ̃,

(3.11)

whereA is symmetric and positive semi-definite, ϕ̃, ψ̃ are perturbations of the initial
conditions, and ε(t) is the perturbation of the nonlinear term. We let η(t) = p(t) −
q(t). Subtracting (3.1) from (3.11) leads to the following perturbation system:

{
η̈(t)+ κ2Aη(t) = g

(
p(t)

) − g
(
q(t)

)+ ε(t), t ∈ [t0, T ],
η(t0) = ϕ̃, η̇(t0) = ψ̃.

(3.12)

We choose the time stepsize t = (T − t0)/N , where N is a positive integer, and
denote the steps as

tn = t0 + nt, n = 0, 1, 2, · · · , N.
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Applying the matrix-variation-of-constants formula (3.4) to the perturbation system
(3.12) yields
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(tn + μt) =φ0(μ
2V )η(tn)+ μtφ1(μ

2V )η̇(tn)

+t2
∫ μ

0
(μ− z)φ1

(
(μ− z)2V

)(
g
(
p(tn + zt)

)− g
(
q(tn + zt)

))
dz

+t2
∫ μ

0
(μ− z)φ1

(
(μ− z)2V

)
ε(tn + zt)dz,

η̇(tn + μt) =− μtκ2Aφ1(μ
2V )η(tn)+ φ0(μ

2V )η̇(tn)

+t

∫ μ

0
φ0

(
(μ− z)2V

)(
g
(
p(tn + zt)

)− g
(
q(tn + zt)

))
dz

+t

∫ μ

0
φ0

(
(μ− z)2V

)
ε(tn + zt)dz,

(3.13)

where 0 � μ � 1 and V = t2κ2A. Since the matrix A can be decomposed as
A = Ω2, we denote the matrix D = κΩ , and then the decomposition of matrix κ2A

reads:

κ2A = D2,

where D is positive semi-definite matrix. Accordingly, the formula (3.13) can be
rewritten as the following compact form:

[
Dη(tn + μt)

η̇(tn + μt)

]
= Ψ (μ, 0, V )

[
Dη(tn)

η̇(tn)

]

+t
∫ μ

0
Ψ (μ, z, V )

[
0

g
(
p(tn + zt)

)− g
(
q(tn + zt)

)
]

dz

+t
∫ μ

0
Ψ (μ, z, V )

[
0

ε(tn + zt)

]
dz, (3.14)

where

Ψ (μ, z, V ) =
[

φ0((μ− z)2V ) t(μ− z)Dφ1((μ− z)2V )

−t(μ− z)Dφ1((μ− z)2V ) φ0((μ− z)2V )

]
.

(3.15)

Before going into the details of stability analysis, we summarise some useful
properties related to the matrix-valued functions φj (μ2V ) for j ∈ N and clarify
the spectral norm of Ψ (μ, z, V ) for 0 � μ, z � 1.
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Lemma 3.1 (See, e.g. [28, 45]) The matrix-valued functions defined by (3.5) satisfy

∫ 1

0
(1− z)φ1

(
μ2(1− z)2V

)
zjdz = Γ (j + 1)φj+2(μ

2V ), j = 0, 1, 2, · · · ,
∫ 1

0
φ0

(
μ2(1− z)2V

)
zjdz = Γ (j + 1)φj+1(μ

2V ), j = 0, 1, 2, · · · ,
(3.16)

where Γ (j + 1) is the Gamma function.

Lemma 3.2 The matrix-valued functions defined by (3.5) are bounded, i.e.,

‖φj (μ2V )‖ � 1

Γ (j + 1)
, j ∈ N. (3.17)

In particular, we have ‖φ0(μ
2V )‖ � 1 and ‖φ1(μ

2V )‖ � 1. Moreover, we also
have

‖μtDφ1(μ
2V )‖ � 1 and ‖μtDφj (μ

2V )‖ � 1

Γ (j)
, j = 2, 3, · · · ,

(3.18)

where μ is a positive number with 0 � μ � 1.

Proof The boundedness of ‖φj (μ2V )‖ and ‖μtDφ1(μ
2V )‖ can be confirmed

straightforwardly from the definition of the matrix-valued functions (3.5) and
Lemma 3.1. We thus need only to prove the boundedness of ‖μtDφj (μ

2V )‖ for
j = 2, 3, · · · . Clearly, it follows from the definition of φj (·) in (3.5) that

μtD(1 − z)φ1
(
μ2(1− z)2V

) = sin
(
μ(1− z)tD

)
.

Therefore, the conclusion of Lemma 3.1 yields that

μtDφj (μ
2V ) = μtD

Γ (j − 1)

∫ 1

0
(1− z)φ1

(
μ2(1− z)2V

)
zj−2dz

= 1

Γ (j − 1)

∫ 1

0
sin

(
μ(1− z)tD

)
zj−2dz. (3.19)

Taking the spectral norms on both sides of (3.19) leads to

‖μtDφj (μ
2V )‖ � 1

Γ (j − 1)

∫ 1

0
‖ sin

(
μ(1− z)tD

)‖zj−2dz � 1

Γ (j)
.

(3.20)

The statement of the lemma is confirmed. ��



82 3 Stability and Convergence Analysis of ERKN Integrators for Second-Order. . .

Lemma 3.3 (See, e.g. [13, 15]) The boundedmatrix-valued functions φ0(μ
2V ) and

φ1(μ
2V ) defined by (3.5) satisfy

φ2
0(μ

2V )+ μ2Vφ2
1(μ

2V ) = I, (3.21)

where V is any positive semi-definite matrix and I is the identity matrix.

The other conclusions of Lemmas 3.1–3.3 can be proved by direct calculation, see
[13, 15, 28, 45], and we here ignore the details of the proof.

Theorem 3.1 The spectral norms of the matrices Ψ (μ, z, V ) satisfy

‖Ψ (μ, z, V )‖ = 1, ∀ μ, z ∈ [0, 1], (3.22)

where V = h2κ2A and A is a symmetric and positive semi-definite matrix.

Proof Obviously, the matrix Ψ (μ, z, V ) is well defined in (3.15) because A is a
symmetric and positive semi-definite matrix. Moreover, it is easy to verify that

Ψ (μ, z, V )ᵀΨ (μ, z, V ) = I2d×2d .

Thus, we have

‖Ψ (μ, z, V )‖ = 1, ∀μ, z ∈ [0, 1].

The conclusion of the lemma is confirmed. ��
According to the assumption of the finite-energy conditions (see, e.g. [11, 12, 18])

1

2
‖q̇(t)‖2 + κ2

2
q(t)ᵀAq(t) � K2

2
, (3.23)

where K is a constant, the error bounds of the Gaustchi-type methods of order
two were proved to be independent of κ2‖A‖. Here, we observe that Gautschi-
type time integrators are special ERKN integrators of order two. Therefore, it seems
reasonable to assume that the finite-energy condition (3.23) is also satisfied in a strip
along the exact solution. Using this assumption, we will investigate the nonlinear
stability and the error bounds of the ERKN integrators. To this end, we also need to
quote the following Gronwall’s inequality (see, e.g. [29]), which plays an important
role for the remainder of our analysis.

Lemma 3.4 Let σ be a positive number and ak, bk (k = 0, 1, 2, · · · ) be nonnega-
tive and satisfy

ak � (1+ σt)ak−1 +tbk, k = 1, 2, 3, · · · ,
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then

ak � exp(σkt)
(
a0 +t

k∑
m=1

bm

)
, k = 1, 2, 3, · · · .

In what follows, we first show the nonlinear stability of the matrix-variation-of-
constants formula (3.4) whose perturbation formula is given by (3.13).

Theorem 3.2 Assume that the solution η(t) of the perturbation system (3.12) and
its derivative η̇(t) satisfy the finite-energy condition. If the time stepsize t satisfies

t �
√

1

2L
, then we have

‖η(tn)‖ � exp
(
T (1+ 4L)

)(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + 4t

n∑
k=0

max
0�z�1

‖ε(tk + zt)‖
)
,

‖η̇(tn)‖ � exp
(
T (1+ 4L)

)(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + 4t

n∑
k=0

max
0�z�1

‖ε(tk + zt)‖
)
.

(3.24)

That is, the matrix-variation-of-constants formula is nonlinearly stable over the time
interval [t0, T ].
Proof We take the l2-norm on both sides of the first formula (3.13) and (3.14),
respectively, and obtain

‖η(tn +t)‖ � ‖η(tn)‖ +t‖η̇(tn)‖ +t2
∫ 1

0

∥∥g(p(tn + zt)
)− g

(
q(tn + zt)

)∥∥dz

+t2
∫ 1

0
‖ε(tn + zt)‖dz,

(3.25)

and√
‖η̇(tn +t)‖2 + κ2η(tn +t)ᵀAη(tn +t) �

√
‖η̇(tn)‖2 + κ2η(tn)ᵀAη(tn)

+t
∫ 1

0

∥∥g(p(tn + zt)
)− g

(
q(tn + zt)

)∥∥dz+t

∫ 1

0
‖ε(tn + zt)‖dz.

(3.26)
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We then sum up the results in (3.25) and (3.26) and apply the Lipschitz condition.
This leads to

‖η(tn +t)‖ +
√
‖η̇(tn +t)‖2 + κ2η(tn +t)ᵀAη(tn +t)

� ‖η(tn)‖+
√
‖η̇(tn)‖2+κ2η(tn)

ᵀAη(tn)+t‖η̇(tn)‖ + Lt(1 +t) max
0�z�1

‖η(tn + zt)‖

+t(1+t) max
0�z�1

‖ε(tn + zt)‖.
(3.27)

It follows from the first equality in (3.13) that

‖η(tn+μt)‖ � ‖η(tn)‖+t‖η̇(tn)‖+t2L max
0�z�1

‖η(tn+ zt)‖+t2 max
0�z�1

‖ε(tn+ zt)‖.

Under the assumption that time stepsize t satisfies t �
√

1

2L
, we then obtain

max
0�z�1

‖η(tn + zt)‖ � 2‖η(tn)‖ + 2t‖η̇(tn)‖ + 2t2 max
0�z�1

‖ε(tn + zt)‖.
(3.28)

Inserting (3.28) into (3.27) gives

‖η(tn +t)‖ +
√
‖η̇(tn +t)‖2 + κ2η(tn +t)ᵀAη(tn +t)

�
(
1+t(1+ 4L)

)(‖η(tn)‖ +√
‖η̇(tn)‖2 + κ2η(tn)ᵀAη(tn)

)
+2t(1+t) max

0�z�1
‖ε(tn + zt)‖. (3.29)

Applying the Gronwall’s inequality (Lemma 3.4) to (3.29) yields

‖η(tn +t)‖ +
√
‖η̇(tn +t)‖2 + κ2η(tn +t)ᵀAη(tn +t)

� exp
(
nt(1+ 4L)

)(‖η(t0)‖ +√
‖η̇(t0)‖2 + κ2η(t0)ᵀAη(t0)

+4t
n∑

k=0

max
0�z�1

‖ε(tk + zt)‖
)
. (3.30)
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We thus obtain the estimations

‖η(tn)‖ � exp
(
T (1+ 4L)

)(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + 4t

n∑
k=0

max
0�z�1

‖ε(tk + zt)‖
)
,

‖η̇(tn)‖ � exp
(
T (1+ 4L)

)(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + 4t

n∑
k=0

max
0�z�1

‖ε(tk + zt)‖
)
.

Theorem 3.2 is proved. ��
The matrix-variation-of-constants formula (3.4) is fundamental to a true under-

standing of ERKN integrators for the multi-frequency highly oscillatory system
(3.1). Hence, its nonlinear stability is crucial for the nonlinear stability of ERKN
integrators for (3.1).

3.2.2 Nonlinear Stability and Convergence of ERKN
Integrators

The main theme of this subsection is the nonlinear stability and convergence analy-
sis of ERKN integrators for the nonlinear multi-frequency highly oscillatory system
(3.1). Choosing suitable nodes c1, c2, · · · , cs and approximating the nonlinear
integrals appearing in the formula (3.4) by suitable numerical quadrature formulae
leads to the following ERKN integrators (see, e.g. [15]).

Definition 3.1 (See [15]) An s-stage multidimensional multi-frequency ERKN
integrator with a stepsize t for the multidimensional and multi-frequency oscil-
latory nonlinear system (3.1) is defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qn+1 = φ0(V )qn +tφ1(V )q̇n +t2
s∑

i=1

B̄i(V )g
(
Qni

)
,

q̇n+1 = −tκ2Aφ1(V )qn + φ0(V )q̇n +t

s∑
i=1

Bi(V )g
(
Qni

)
,

Qni = φ0(c
2
i V )qn + citφ1(c

2
i V )q̇n +t2

s∑
j=1

Aij (V )g
(
Qnj

)
, i = 1, 2, · · · , s,

(3.31)

where 0 � ci � 1 for i = 1, 2, · · · , s are real constants and B̄i (V ), Bi(V ) and
Aij (V ) for i, j = 1, 2, · · · , s are matrix-valued functions of V = t2κ2A.

Using the SSEN-tree set and the corresponding B-series theory (see, e.g. [13]),
we now recall the order conditions of ERKN integrators which are summarised
in the following theorem. The weights B̄i (V ), Bi(V ) and Aij (V ) of an ERKN
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integrator for i, j = 1, 2, · · · , s can be determined by the following order
conditions.

Theorem 3.3 The ERKN integrator (3.31) has order r if and only if the order
conditions are satisfied

s∑
i=1

B̄i (V )�i(τ ) = ρ(τ)!
γ̃ (τ )s(τ )

φρ(τ)+1(V )+ O
(
tr−ρ(τ)

)
, ∀τ ∈ SSRNTm, m � r − 1,

s∑
i=1

Bi(V )�i(τ ) = ρ(τ)!
γ̃ (τ )s(τ )

φρ(τ)(V )+O
(
tr−ρ(τ)+1), ∀τ ∈ SSRNTm, m � r,

(3.32)

where the definitions and properties of the order ρ(τ), the sgn s(τ ), the density
γ̃ (τ ), and the weight �i(τ) are well established and can be found in [13].

The conclusions of Theorem 3.3 indicate that the weights B̄i(V ), Bi(V ) and
Aij (V ) are the linear combination of φj (V ). Furthermore, it is evident from the first
conditions of (3.32) that the weights B̄i (V ) are independent of φ0(V ). Therefore,
combining this fact with Lemma 3.2, we can establish the uniform boundedness
of the weights B̄i (V ), Bi(V ) and Aij (V ), which will be used in our theoretical
analysis.

Lemma 3.5 The weights B̄i (V ), Bi(V ) and Aij (V ) are uniformly bounded, i.e.,

‖B̄i (V )‖ � B̄, ‖tDB̄i (V )‖ � B̂, ‖Bi(V )‖ � B, ‖Aij (V )‖ � β,

(3.33)

for i, j = 1, 2, · · · , s, where B̄, B̂, B and β are all constants independent oft , κ2

and the matrix V and D.

Applying an ERKN integrator (3.31) to the perturbed system (3.12), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηn+1 = φ0(V )ηn +tφ1(V )η̇n +t2
s∑

i=1

B̄i (V )
(
g
(
Pni

)− g
(
Qni

)+ ε(tn + cit)
)
,

η̇n+1 = −tκ2Aφ1(V )ηn + φ0(V )η̇n

+t

s∑
i=1

Bi(V )
(
g
(
Pni

)− g
(
Qni

)+ ε(tn + cit)
)
,

ηni = φ0(c
2
i V )ηn + citφ1(c

2
i V )η̇n

+t2
s∑

j=1

Aij (V )
(
g
(
Pnj

)− g
(
Qnj

)+ ε(tn + cjt)
)
,

i = 1, 2, · · · , s.
(3.34)
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The first two equalities of (3.34) can be rewritten as the compact form:

[
Dηn+1

η̇n+1

]
= Ψ (1, 0, V )

[
Dηn

η̇n

]

+t
s∑

i=1

⎡
⎣tDB̄i (V )

(
g
(
Pni

)− g
(
Qni

)+ ε(tn + cit)
)

Bi(V )
(
g
(
Pni

)− g
(
Qni

)+ ε(tn + cit)
)

⎤
⎦ .

(3.35)

We next present the nonlinear stability analysis for ERKN integrators over the
finite time interval [t0, T ].
Theorem 3.4 It is assumed that the nonlinear function g(·) is locally Lipschitz
continuous and the finite-energy condition (3.23) is satisfied. Then, if the time

stepsize t satisfies the condition t �
√

1

2sLβ
, we have the following estimates

for the perturbation system (3.12)

‖ηn‖ � exp(C1T )

(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + C2t

n∑
k=0

s∑
i=1

‖ε(tk + cit)‖
)
,

‖η̇n‖ � exp(C1T )

(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + C2t

n∑
k=0

s∑
i=1

‖ε(tk + cit)‖
)
,

(3.36)

where C1 and C2 are constants independent of t , κ2 and the dominant frequency
matrix A.

Proof Under the hypothesis of the finite-energy condition (3.23), by taking l2-
norm on both sides of the first equality in (3.34) and (3.35), we obtain

‖ηn+1‖ � ‖ηn‖ +t‖η̇n‖ +t2B̄

s∑
i=1

(
L‖ηni‖ + ‖ε(tn + cit)‖

)
,

and √
‖η̇n+1‖2 + κ2η

ᵀ
n+1Aηn+1 �

√
‖η̇n‖2 + κ2η

ᵀ
nAηn +t

(
B̂

+ B
) s∑
i=1

(
L‖ηni‖ + ‖ε(tn + cit)‖

)
.
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Summing up the above inequalities leads to

‖ηn+1‖ +
√
‖η̇n+1‖2 + κ2η

ᵀ
n+1Aηn+1 � ‖ηn‖ +

√
‖η̇n‖2 + κ2η

ᵀ
nAηn +t‖η̇n‖

+t(B̄ + B̂ + B
) s∑
i=1

(
L‖ηni‖ + ‖ε(tn + cit)‖

)
, (3.37)

where we have used the uniform boundedness of the weights B̄i (V ),tDB̄i (V ),

Bi(V ),Aij (V ) (see Lemma 3.5). Likewise, it follows from taking norms on both
sides of the third equality in (3.34) that

‖ηni‖ � ‖ηn‖ + cit‖η̇n‖ +t2β

s∑
i=1

(
L‖ηni‖ + ‖ε(tn + cit)‖

)
. (3.38)

Under the assumption that the time stepsize t satisfies t �
√

1

2sLβ
, it then

follows from the inequality (3.38) that

s∑
i=1

‖ηni‖ � 2s
(
‖ηn‖ +t‖η̇n‖

)
+ 1

L

s∑
i=1

‖ε(tn + cit)‖. (3.39)

Inserting (3.39) into (3.37) results in

‖ηn+1‖ +
√
‖η̇n+1‖2 + κ2η

ᵀ
n+1Aηn+1

�
(
1+ C1t

)(‖ηn‖ +√
‖η̇n‖2 + κ2η

ᵀ
nAηn

)

+ C2t

s∑
i=1

‖ε(tn + cit)‖,

where C1 = 1 + sLC2 and C2 = 2
(
B̄ + B̂ + B

)
are constants. Thus, using the

discrete Gronwall’s inequality (Lemma 3.4), we obtain

‖ηn‖ +
√
‖η̇n‖2 + κ2η

ᵀ
nAηn

� exp(C1T )

(
‖ϕ̃‖ +

√
‖ψ̃‖2 + κ2ϕ̃ᵀAϕ̃ + C2t

n∑
k=0

s∑
i=1

‖ε(tk + cit)‖
)
.

This completes the proof. ��
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We denote

ζn = q(tn)−qn, ζ̇n = q̇(tn)−q̇n, ζni = q(tn+cit)−Qni for i = 1, 2, · · · , s.

Subtracting (3.31) from the exact solution (3.4) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζn+1 =φ0(V )ζn +tφ1(V )ζ̇n +t2
s∑

i=1

B̄i(V )
(
g
(
q(tn + cit)

) − g(Qni)
)

+t2
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
g
(
q(tn + zt)

)
dz−t2

s∑
i=1

B̄i (V )g
(
q(tn + cit)

)
,

ζ̇n+1 =−tκ2Aφ1(V )ζn + φ0(V )ζ̇n +t

s∑
i=1

Bi(V )
(
g
(
q(tn + cit)

)− g(Qni)
)

+t

∫ 1

0
φ0

(
(1− z)2V

)
g
(
q(tn + zt)

)
dz−t

s∑
i=1

Bi(V )g
(
q(tn + cit)

)
,

ζni =φ0(c
2
i V )ζn + citφ1(c

2
i V )ζ̇n +t2

s∑
j=1

Aij (V )
(
g
(
q(tn + cjt)

) − g(Qnj )
)

+ c2
i t

2
∫ 1

0
(1 − z)φ1

(
(1− z)2c2

i V
)
g
(
q(tn + zcit)

)
dz

−t2
s∑

j=1

Aij (V )g
(
q(tn + cjt)

)
,

i = 1, 2, · · · , s.
(3.40)

We then expand g
(
q(tn + zt)

)
at tn into a Taylor series with remainder in integral

form:

g
(
q(tn + zt)

) = r−1∑
k=0

zktk

k! g(k)
(
q(tn)

)+tr
∫ z

0

(z − τ)r−1

(r − 1)! g(r)
(
q(tn + τt)

)
dτ.

(3.41)
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Inserting the Taylor expression into the right-hand sides of (3.40) leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζn+1 = φ0(V )ζn +tφ1(V )ζ̇n +t2
s∑

i=1

B̄i (V )gni + δn+1,

ζ̇n+1 = −tκ2Aφ1(V )ζn + φ0(V )ζ̇n +t

s∑
i=1

Bi(V )gni + δ̇n+1,

ζni = φ0(c
2
i V )ζn + citφ1(c

2
i V )ζ̇n +t2

s∑
j=1

Aij (V )gnj +ni, i = 1, 2, · · · , s,

(3.42)

where gni = g
(
q(tn + cit)

) − g(Qni) and the remainders can be explicitly
represented as

δn+1 =
r−1∑
k=0

tk+2

(
φk+2(V )−

s∑
i=1

B̄i (V )
cki

k!

)
g(k)

(
q(tn)

)

+tr+2
∫ 1

0
(1− z)φ1

(
(1− z)2V

) ∫ z

0

(z− τ )r−1

(r − 1)! g(r)
(
q(tn + τt)

)
dτdz

−tr+2
s∑

i=1

B̄i (V )

∫ ci

0

(ci − τ )r−1

(r − 1)! g(r)
(
q(tn + τt)

)
dτ, (3.43)

δ̇n+1 =
r−1∑
k=0

tk+1

(
φk+1(V )−

s∑
i=1

Bi(V )
cki

k!

)
g(k)

(
q(tn)

)

+tr+1
∫ 1

0
φ0

(
(1− z)2V

) ∫ z

0

(z − τ )r−1

(r − 1)! g(r)
(
q(tn + τt)

)
dτdz

−tr+1
s∑

i=1

Bi(V )

∫ ci

0

(ci − τ )r−1

(r − 1)! g(r)
(
q(tn + τt)

)
dτ, (3.44)
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and

ni =
r−1∑
k=0

tk+2

⎛
⎝ck+2

i φk+2(c
2
i V )−

s∑
j=1

Aij (V )
ckj

k!

⎞
⎠ g(k)

(
q(tn)

)

+ cr+2
i

tr+2
∫ 1

0
(1− z)φ1

(
(1− z)2c2

i V
) ∫ z

0

(z− τ)r−1

(r − 1)! g(r)
(
q(tn + τcit)

)
dτdz

−tr+2
s∑

i=1

Ai,j (V )

∫ cj

0

(cj − τ)r−1

(r − 1)! g(r)
(
q(tn + τt)

)
dτ.

(3.45)

Note that if the weights B̄i (V ), Bi (V ) and Aij (V ) satisfy the r-th order condition
(3.32) in Lemma 3.3 and the exact solution of the multi-frequency highly oscillatory
system (3.1) is of a suitable smoothness such that g(r) ∈ L∞

([t0, T ],Rd
)
, then the

remainders δn+1, δ̇n+1 and ni satisfy the following estimates

‖δn+1‖ � C̃1t
r+2, ‖δ̇n+1‖ � C̃1t

r+1,

s∑
i=1

‖ni‖ � C̃1t
r+1, ‖Dδn+1‖ � C̃1t

r+1,

(3.46)

where C̃1 is constant and obviously independent of t , the takanami number κ2 and
the dominant frequency-matrixA. Similarly to the stability analysis, we rewrite the
first two equalities of (3.42) as the following matrix-vector form:

[
Dζn+1

ζ̇n+1

]
=Ψ(1, 0, V )

[
Dζn

ζ̇n

]
+t

s∑
i=1

[
tDB̄i(V )gni

Bi(V )gni

]
+
[
Dδn+1

δ̇n+1

]
. (3.47)

Taking norms on both sides of (3.47) and using the estimates in (3.46), we obtain

√
‖ζ̇n+1‖2 + κ2ζ

ᵀ
n+1Aζn+1 �

√
‖ζ̇n‖2 + κ2ζ

ᵀ
n Aζn +tL(B̂ + B)

s∑
i=1

‖ζni‖ + C̃tr+1.

(3.48)

In what follows, we will investigate the convergence of the ERKN integrator
(3.31) for solving the system (3.1) of nonlinear multi-frequency highly oscillatory
second-order ODEs.

Theorem 3.5 Assume that the weights B̄i (V ), Bi (V ) and Aij (V ) satisfy the r-th
order conditions (3.32) and the exact solution q(t) of the nonlinear highly oscil-
latory system (3.1) satisfies suitable smoothness such that g(r) ∈ L∞

([t0, T ],Rd
)
.
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Then, if the time stepsize t satisfies t �
√

1

2sLβ
, we have the estimates

‖q(tn)− qn‖ � C̃tr and ‖q̇(tn)− q̇n‖ � C̃tr , (3.49)

where the constant C̃ is independent of t , κ2 and the dominant frequency-
matrix A.

Proof In a similar way to the proof of Theorem 3.4, it follows from taking norms
on both sides of the first equation in (3.42) and summing up the obtained results
with (3.48) that

‖ζn+1‖ +
√
‖ζ̇n+1‖2 + κ2ζ

ᵀ
n+1Aζn+1 � ‖ζn‖ +

√
‖ζ̇n‖2 + κ2ζ

ᵀ
n Aζn +t‖ζ̇n‖

+tL(B̄ + B̂ + B)

s∑
i=1

‖ζni‖ + 2C̃1t
r+1.

(3.50)

Taking norms on both sides of the third equation in (3.42) and noting that the time

stepsize t satisfies t �
√

1

2sLβ
, we obtain

s∑
i=1

‖ζni‖ � 2s
(
‖ζn‖ +t‖ζ̇n‖ + C̃1t

r+1
)
. (3.51)

Inserting (3.51) into (3.50) yields

‖ζn+1‖ +
√
‖ζ̇n+1‖2 + κ2ζ

ᵀ
n+1Aζn+1

�
(
1+ C1t

) (‖ζn‖ +√
‖ζ̇n‖2 + κ2ζ

ᵀ
n Aζn

)
+

(
sLC2C̃1t + 2C̃1

)
tr+1

�
(
1+ C1t

) (‖ζn‖ +√
‖ζ̇n‖2 + κ2ζ

ᵀ
n Aζn

)
+ C̃3t

r+1,

where C̃3 = sLC2C̃1 + 2C̃1 is a constant independent of t , κ2 and ‖A‖, whereas
C1 and C2 are given in the proof of Theorem 3.4. Therefore, using the Gronwall’s
inequality (Lemma 3.4), we obtain

‖ζn‖ +
√
‖ζ̇n‖2 + κ2ζ

ᵀ
n Aζn � exp

(
C1nt

) (‖ζ0‖ +
√
‖ζ̇0‖2 + κ2ζ

ᵀ
0 Aζ0 + C̃3nt

r+1
)

� C̃3T exp
(
C1T

)
tr � C̃tr ,

where C̃ = C̃3T exp
(
C1T

)
is a constant independent of t , κ2 and ‖A‖. ��
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Theorem 3.5 shows an important fact that, with the finite-energy condition (3.23),
the error bounds of an ERKN integrator for solving the system (3.1) of multi-
frequency highly oscillatory second-order ODEs are independent of the takanami
number κ2, and the norm ‖A‖ of the dominant frequency matrix A. This property
is crucial for effectively and efficiently dealing with the system (3.1) of nonlinear
multi-frequency highly oscillatory second-order ODEs.

Remark 3.2.1 According to the Theorem 3.4 and Theorem 3.5, the limitation of

the time stepsize t �
√

1

2sLβ
yields that the ERKN integrator for solving the

system (3.1) is unconditionally stable and convergent.

3.3 ERKN Integrators with Fourier Pseudospectral
Discretisation for Semilinear Wave Equations

This section presents an effective approach to the numerical solution of semilinear
wave equation (3.9) by combining the ERKN time integrators with the Fourier pseu-
dospectral spatial discretisation, which will have better computational efficiency
than that of traditional schemes in the literature. The rigorous convergence analysis
of the underlying numerical schemes will be based on energy techniques.

To simplify the analysis and practical computation, we truncate the whole space
R = (−∞,∞) onto an interval Ω = (0, 2π) with periodic boundary conditions.
We will only present and analyse the numerical schemes for the one-dimensional
semilinear wave equation:

⎧⎪⎪⎨
⎪⎪⎩
utt − ε2u+ ρu = f (u), (x, t) ∈ Ω × (t0, T ],
u(0, t) = u(2π, t), ut (0, t) = ut (2π, t), t ∈ [t0, T ],
u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ Ω̄,

(3.52)

where ε2 > 0, ρ > 0 are parameters, and 2π is assumed to be the fundamental
period. However, the generalisation to higher dimensions is straightforward and the
result remains valid without modification.

3.3.1 Time Discretisation: ERKN Time Integrators

We here define A as the operator:

(A v)(x) = (−ε2+ ρI)v(x),
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where A is a linear, unbounded positive semi-definite operator, whose domain is

D(A ) :=
{
v ∈ H 1(Ω) : v(x) = v(x + 2π)

}
,

and u(t) as the function that maps x to u(t, x), i.e.

u(t) = [x �→ u(x, t)].

Then the semilinear wave equation can be formulated as the following abstract
second-order ordinary differential equation:

{
ü(t)+A u(t) = f

(
u(t)

)
, t0 < t � T ,

u(t0) = ϕ1(x), u̇(t0) = ϕ2(x),
(3.53)

where ü denotes the second-order temporal derivatives ∂2
t u. It follows from the

Duhamel Principle that the solution of the abstract system (3.53) can be charac-
terised by the following operator-variation-of-constants formula (see [28, 29, 45–49]
for details).

Theorem 3.6 The solution of the abstract ODE (3.53) and its derivative satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) =φ0
(
(t − t0)

2A
)
u(t0)+ (t − t0)φ1

(
(t − t0)

2A
)
u̇(t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

u̇(t) =− (t − t0)A φ1
(
(t − t0)

2A
)
u(t0)+ φ0

(
(t − t0)

2A
)
u̇(t0)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

for t � t0, where φ0
(
(t − t0)

2A
)
and φ1

(
(t − t0)

2A
)
are bounded operator-

argument functions ofA .

Clearly, the r-th order ERKN integrators (3.31) could be used for the temporal
discretisation of the abstract ODE (3.53), i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 = φ0(V )un +tφ1(V )u̇n +t2
s∑

i=1

B̄i (V )f (uni),

u̇n+1 = −tA φ1(V )un + φ0(V )u̇n +t

s∑
i=1

Bi(V )f (uni),

uni = φ0(c
2
i V )un + citφ1(c

2
i V )u̇n +t2

s∑
j=1

Aij (V )f (unj ), i = 1, 2, · · · , s,

(3.54)
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where V = t2A and φ0(V ), φ1(V ), Bi(V ), B̄i (V ) and Aij (V ) are bounded
operators.

3.3.2 Spatial Discretisation: Fourier Pseudospectral Method

We implement the spatial discretisation based on the Fourier pseudospectral method.
To this end, we choose x = 2π/M with the mesh size M , a positive even
integer, to discrete the domain Ω̄ . The grid points are denoted as xj = jx for
j = 0, 1, · · · ,M . We define

XM = span
{

eikx, k = −M/2, · · · ,M/2 − 1
}

and

YM =
{
v = (

v0, v1, · · · , vM
)ᵀ ∈ R

M+1 : v0 = vM

}
.

For a periodic function v(x) defined on Ω̄ and a vector v ∈ YM , let PM : L2(Ω̄)→
XM be the standard L2-projection operator, and IM : C(Ω̄)→ XM or YM → XM

be the interpolation operator, i.e.

(
PMv

)
(x) =

M/2−1∑
k=−M/2

v̂keikx,
(
IMv

)
(x) =

M/2−1∑
k=−M/2

ṽkeikx, 0 � x � 2π,

where v̂k and ṽk are the Fourier and discrete Fourier transform coefficients of the
periodic function v(x) and vector v, respectively, defined as

v̂k = 1

2π

∫ 2π

0
v(x)e−ikxdx and ṽk = 1

M

M−1∑
j=0

vj e−ikxj .

To obtain the fully discrete scheme, the Fourier spectral method is used to discretise
the ERKN integrators (3.54). This is described as follows. Find un+1

M (x), u̇n+1
M (x),

uniM(x) ∈ XM , i.e.,

un+1
M (x) =

M/2−1∑
k=−M/2

û n+1
k eikx , u̇n+1

M (x) =
M/2−1∑
k=−M/2

̂̇u n+1
k eikx , uniM(x) =

M/2−1∑
k=−M/2

û ni
k eikx ,

(3.55)



96 3 Stability and Convergence Analysis of ERKN Integrators for Second-Order. . .

such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û n+1
k = φ0(λ

2
k )̂u

n
k +tφ1(λ

2
k )̂u̇

n
k +t2

s∑
i=1

B̄i(λ
2
k)

̂f
(
uniM(x)

)
k
,

̂̇u n+1
k = −tβ2

kφ1(λ
2
k )̂u

n
k + φ0(λ

2
k )̂u̇

n
k +t

s∑
i=1

Bi(λ
2
k)

̂f
(
uniM(x)

)
k
,

û ni
k = φ0(c

2
i λ

2
k )̂u

n
k + citφ1(c

2
i λ

2
k )̂u̇

n
k +t2

s∑
j=1

Aij (λ
2
k)

̂

f
(
u
nj
M(x)

)
k
,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1,
(3.56)

where λ2
k = t2β2

k with β2
k = ρ + ε2k2 and φ0(λ

2
k) = cos(λk), φ1(λ

2
k) =

sin(λk)

λk
.

The blend of the ERKN time integrator and the Fourier spectral discretisation
(ERKN-FS) can be represented by the Butcher tableau:

c A(λ2
k)

B̄ᵀ(λ2
k)

Bᵀ(λ2
k)

=

c1 A11(λ
2
k) A12(λ

2
k) · · · A1s(λ

2
k)

c2 A21(λ
2
k) A22(λ

2
k) · · · A2s(λ

2
k)

...
...

...
...

cs As1(λ
2
k) As2(λ

2
k) · · · Ass(λ

2
k)

B̄1(λ
2
k) B̄2(λ

2
k) · · · B̄s(λ

2
k)

B1(λ
2
k) B2(λ

2
k) · · · Bs(λ

2
k)

.

However, the computation of the Fourier coefficient defined in integral form is
unsuitable in practice. In order to achieve an efficient implementation, we usually
use the interpolation to replace the integral. Thus, the ERKN time integrator with
the Fourier pseudospectral spatial discretisation (ERKN-FP) for the semilinear wave
equation (3.52) can be formulated as follows.

Let

unj ≈ u(xj , tn), u̇nj ≈ ∂tu(xj , tn), unij ≈ u(xj , tn+ cit), j = 0, 1, · · · ,M,

and choose u0
j = ϕ1(xj ), u̇

0
j = ϕ2(xj ), we then have

un+1
j =

M/2−1∑
k=−M/2

ũ n+1
k eikxj , u̇n+1

j =
M/2−1∑
k=−M/2

˜̇u n+1
k eikxj , unij =

M/2−1∑
k=−M/2

ũ ni
k eikxj ,

(3.57)
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for j = 0, 1, · · · ,M, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũ n+1
k = φ0(λ

2
k )̃u

n
k +tφ1(λ

2
k )̃u̇

n
k +t2

s∑
i=1

B̄i (λ
2
k)

˜f (uni)k,

˜̇u n+1
k = −tβ2

k φ1(λ
2
k )̃u

n
k + φ0(λ

2
k )̃u̇

n
k +t

s∑
i=1

Bi(λ
2
k)

˜f (uni)k,

ũ ni
k = φ0(c

2
i λ

2
k )̃u

n
k + citφ1(c

2
i λ

2
k )̃u̇

n
k +t2

s∑
j=1

Aij (λ
2
k)

˜f (unj )k,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1.

(3.58)

It is obvious that the ERKN-FP method (3.57)–(3.58) can be efficiently imple-
mented due to the fast Fourier transform (FFT). Its memory cost is O(M) and the
computational cost per time step is O(M log(M)).

3.3.3 Error Bounds of the ERKN-FP Method (3.57)–(3.58)

Before dealing with the error estimation of the ERKN-FP method (3.57)–(3.58), we
clarify some notations and assumptions:

• Denote the Soblev space

Hm
p (Ω) =

{
u(x) ∈ Hm(Ω)

∣∣ ∂lxu(0) = ∂lxu(2π), l = 0, 1, · · · ,m
}

and the L2-norm and the H 1-norm as:

‖v‖2
L2 =

∑
k∈Z
|v̂k|2 and ‖v‖2

H 1 =
∑
k∈Z

(1+k2)|v̂k|2 with v(x) =
∑
k∈Z

v̂keikx.

• The solutions (u(x, t), ∂tu(x, t)) of the semilinear wave equation are studied in
the space H 1

p(Ω)× L2(Ω) with the energy norm:

|||(u, ∂tu)||| =
√
‖u‖2

H 1 + ‖∂tu‖2
L2 .

• Assume that the nonlinear function f (·) and the exact solution of the semilinear
wave equation (3.52) satisfy

f (·) ∈ Cr(R), u ∈ Cr
(
[0, T ],Hm0+1

p (Ω)
)

(m0 � 1, r � 0).
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Under this assumption, we denote

K1 = max
{
‖u(·, t)‖L∞([0,T ];H 1), ‖∂tu(·, t)‖L∞([0,T ];L2)

}
� 1

and

K2 = max
0�l�r

max
‖w‖

L2�K1

∥∥f (l)(w)
∥∥
L2 � 1.

With unk , u̇
n
k and unik , which are obtained from (3.57)–(3.58), define the error

functions as

en(x) :=u(x, tn)−
(
IMun

)
(x),

ėn(x) :=u(x, tn)−
(
IMu̇n

)
(x),

eni(x) :=u(x, tn + cit)−
(
IMuni

)
(x).

To proceed to the proof of the error bound for the ERKN-FP method, we define the
projected error as

enM(x) :=PMu(x, tn)− unM(x),

ėnM(x) :=PM∂tu(x, tn)− u̇nM(x),

eniM(x) :=PMu(x, tn + cit)− uniM(x),

where unM(x), u̇nM(x) and uniM(x) are yielded from the ERKN-FS method (3.55)–
(3.56). It then follows from the triangle inequality and estimates on the projection
error [6, 50] that

‖en‖H 1 + ‖ėn‖L2 � ‖enM‖H 1 + ‖ėnM‖L2 + ‖unM(·)− (
IMun

)
(·)‖H 1 + ‖u̇nM(·)− (

IMu̇n
)
(·)‖L2

+ ‖u(·, tn)− PMu(·, tn)‖H 1 + ‖∂t u(·, tn)− PM∂tu(·, tn)‖L2

� ‖enM‖H 1 + ‖ėnM‖L2 +xm0 ,

(3.59)

and

‖eni‖L2 � ‖eniM‖L2 + ‖uniM(·)− (
IMuni

)
(·)‖L2 + ‖u(·, tni )− PMu(·, tni )‖L2

� ‖enM‖L2 +xm0+1.

Hence, the error estimates for the ERKN-FP methods can be converted to the
estimates for the ERKN-FS methods. Moreover, the theoretical analysis for PDEs
is quite different from that for ODEs. In particular, the assumption for the nonlinear
function f (·) satisfying the Lipschitz condition will not be the same. Fortunately, the
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boundedness of the numerical solutions will be helpful to the theoretical analysis. In
what follows, we will first analyse the boundedness of the numerical solutions for
the ERKN-FS methods (3.55)–(3.56). We then will deduce the convergence of the
ERKN-FP methods (3.57)–(3.58).

With regard to the boundedness of the numerical methods, we start with the
explicit ERKN-FS methods (3.55)–(3.56), which can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û n+1
k = φ0(λ

2
k )̂u

n
k +tφ1(λ

2
k )̂u̇

n
k +t2

s∑
i=1

B̄i(λ
2
k)

̂f
(
uniM(x)

)
k
,

̂̇u n+1
k = −tβ2

kφ1(λ
2
k )̂u

n
k + φ0(λ

2
k )̂u̇

n
k +t

s∑
i=1

Bi(λ
2
k)

̂f
(
uniM(x)

)
k
,

û ni
k = φ0(c

2
i λ

2
k )̂u

n
k + citφ1(c

2
i λ

2
k )̂u̇

n
k +t2

i−1∑
j=1

Aij (λ
2
k)

̂

f
(
u
nj
M(x)

)
k
,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1,
(3.60)

with the Butcher tableau:

c A(λ2
k)

B̄ᵀ(λ2
k)

Bᵀ(λ2
k)

=

c1 0 0 · · · 0 0
c2 A21(λ

2
k) 0 · · · 0 0

...
...

...
...

...

cs As1(λ
2
k) As2(λ

2
k) · · · As,s−1(λ

2
k) 0

B̄1(λ
2
k) B̄2(λ

2
k) · · · B̄s−1(λ

2
k) B̄s(λ

2
k)

B1(λ
2
k) B2(λ

2
k) · · · Bs−1(λ

2
k) Bs(λ

2
k)

.

Theorem 3.7 (Boundedness for a Single Time Step: Explicit ERKN-FS
Method) Let the weights B̄i (λ

2
k), Bi(λ

2
k) and Aij (λ

2
k) of the explicit ERKN-

FS method (3.55)–(3.60) satisfy the r-th order conditions (3.32). There exists a
sufficiently small 0 < τ0 � 1 such that the time stepsize t � τ0. If the numerical
solution (unM, u̇nM) ∈ H 1

p(Ω) × L2(Ω) of the explicit ERKN-FS method satisfies
|||(unM, u̇nM)||| � K , then we have

‖uniM‖ � 1, i = 1, 2, · · · , s,

and (un+1
M , u̇n+1

M ) ∈ H 1
p(Ω)× L2(Ω) with

‖un+1
M ‖H 1 � CK and ‖u̇n+1

M ‖L2 � CK,

where CK is independent of the time stepsize t and spatial mesh sizeM .
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Proof 1. “Estimations for update stage procedures: un+1
M (x) and u̇n+1

M (x)”.
For the first equality in (3.60), an application of the triangle inequality results in

|̂u n+1
k | � |̂u n

k | +t |̂u̇ n
k | +t2B̄

s∑
i=1

| ̂f
(
uniM(x)

)
k
|

and

√
1+ k2

∣∣̂u n+1
k

∣∣ � √
1+ k2

∣∣̂u n
k

∣∣+
√

1+ k2√
ρ + ε2k2

∣∣̂u̇ n
k

∣∣+tB̂

s∑
i=1

∣∣ ̂f (unj )k
∣∣.

Then, applying Minkowski’s inequality and Parseval’s identity to the above inequal-
ities, we have

‖un+1
M ‖L2 � ‖unM‖L2 +t‖u̇nM‖L2 +t2B̄

s∑
i=1

∥∥∥PMf
(
uniM

)∥∥∥
L2

(3.61)

and

‖un+1
M ‖H 1 � ‖unM‖H 1 + ς‖u̇nM‖L2 +tB̂

s∑
i=1

∥∥∥PMf
(
uniM

)∥∥∥
L2
, (3.62)

where ς = 1/min
{√

ρ, ε
}
> 0 is a constant parameter. Likewise, it follows from

the second equality in (3.60) that

|̂u̇ n+1
k | �

√
ρ + ε2k2 |̂u n

k | + |̂u̇ n
k | +tB

s∑
i=1

| ̂f
(
uniM(x)

)
k
|

�  
√

1+ k2|̂u n
k | + |̂u̇ n

k | +tB

s∑
i=1

| ̂f
(
uniM(x)

)
k
|,

where  = max{√ρ, ε} > 0 is also a constant parameter. Similarly, we have the
following estimate

‖u̇n+1
M ‖L2 �  ‖unM‖H 1 + ‖u̇nM‖L2 +tB

s∑
i=1

∥∥∥PMf
(
uniM

)∥∥∥
L2
. (3.63)
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Consequently, summing up (3.62) and (3.63) leads to

‖un+1
M ‖H 1 + ‖u̇n+1

M ‖L2 � Ĉ1

(
‖unM‖H 1 + ‖u̇nM‖L2

)
+t

(
B̂ + B

) s∑
i=1

∥∥∥f (uniM)∥∥∥
L2
,

(3.64)

where Ĉ1 = max
{
 , ς

} + 1 is a constant parameter.

2. “Estimations for internal stage procedures: uniM(x)”.
Using the third equality in (3.60), we obtain

∣∣̂u ni
k

∣∣ � ∣∣̂u n
k

∣∣+ cit
∣∣̂u̇ n

k

∣∣+t2β

i−1∑
j=1

∣∣ ̂f (unj )k
∣∣.

Applying Minkowski’s inequality and Parseval’s identity to the above inequality
yields

‖un1
M ‖L2 � ‖unM‖L2 + cit‖u̇nM‖L2,

‖uniM‖L2 � ‖unM‖L2 + cit‖u̇nM‖L2 +t2β

i−1∑
j=1

∥∥PMf (u
nj
M)

∥∥
L2, i = 2, · · · , s.

(3.65)

3. “Boundedness of the numerical solutions”.
According to the inequalities of (3.65), if the solution (unM, u̇nM) ∈ H 1

p(Ω) ×
L2(Ω) of the explicit ERKN-FS method (3.55)–(3.60) satisfies

|||(unM, u̇nM)||| � K,

then, the following approximations can be obtained by recursion:

‖uniM‖L2 � (1+t)iK � 1, i = 1, 2, · · · , s, (3.66)

where we have used the fact that ‖unM‖L2 � ‖unM‖H 1 � K and the sufficiently
small time stepsize t such that tβK2 � 1. Inserting the result (3.66) into (3.64)
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yields

‖un+1
M ‖H 1 + ‖u̇n+1

M ‖L2 � Ĉ1

(
‖unM‖H 1 + ‖u̇nM‖L2

)

+t
(
B̂ + B

) s∑
i=1

∥∥∥ ∫ 1

0
f ′

(
τuniM

)
dτ · uniM

∥∥∥
L2

� Ĉ1

(
‖unM‖H 1 + ‖u̇nM‖L2

)
+t

(
B̂ + B

)
K2

s∑
i=1

‖uniM‖L2

� Ĉ2

(
1+t +t

s∑
i=1

(1+t)i
)
� CK,

where Ĉ2 = K1 max
{
Ĉ1, (B̂ + B)K2

}
is a constant and CK is obviously indepen-

dent of time stepsize t and spatial mesh size M . ��
For the implicit ERKN-FS method (3.55)–(3.56):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û n+1
k = φ0(λ

2
k )̂u

n
k +tφ1(λ

2
k )̂u̇

n
k +t2

s∑
i=1

B̄i(λ
2
k)

̂f
(
uniM(x)

)
k
,

̂̇u n+1
k = −tβ2

kφ1(λ
2
k )̂u

n
k + φ0(λ

2
k )̂u̇

n
k +t

s∑
i=1

Bi(λ
2
k)

̂f
(
uniM(x)

)
k
,

û ni
k = φ0(c

2
i λ

2
k )̂u

n
k + citφ1(c

2
i λ

2
k )̂u̇

n
k +t2

s∑
j=1

Aij (λ
2
k)

̂

f
(
u
nj
M(x)

)
k
,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1,
(3.67)

with the Butcher tableau:

c A(λ2
k)

B̄ᵀ(λ2
k)

Bᵀ(λ2
k)

=

c1 A11(λ
2
k) A12(λ

2
k) · · · A1s(λ

2
k)

c2 A21(λ
2
k) A22(λ

2
k) · · · A2s(λ

2
k)

...
...

...
...

cs As1(λ
2
k) As2(λ

2
k) · · · Ass(λ

2
k)

B̄1(λ
2
k) B̄2(λ

2
k) · · · B̄s(λ

2
k)

B1(λ
2
k) B2(λ

2
k) · · · Bs(λ

2
k)

,

iteration is needed for practical application. In this chapter, we use the waveform
relaxation iteration, which can be split into the following two phases.
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I. Iteration procedure:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

û ni
k,[0] = φ0(c

2
i λ

2
k)̂u

n
k + citφ1(c

2
i λ

2
k)̂u̇

n
k ,

û ni
k,[l+1] = φ0(c

2
i λ

2
k )̂u

n
k + citφ1(c

2
i λ

2
k )̂u̇

n
k +t2

s∑
j=1

Aij (λ
2
k)

̂

f
(
u
nj

M,[l](x)
)
k
,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2− 1, l = 1, 2, · · · .
(3.68)

For any error tolerance ε > 0, if the condition

‖uniM,[l+1] − uniM,[l]‖L2 � ε

is satisfied, we define

uniM(x) := uniM,[l+1](x) =
M/2−1∑
k=−M/2

û ni
k,[l+1]eikx.

II. Output procedure:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

û n+1
k = φ0(λ

2
k )̂u

n
k +tφ1(λ

2
k )̂u̇

n
k +t2

s∑
i=1

B̄i (λ
2
k)

̂f
(
uniM(x)

)
k
,

̂̇u n+1
k = −tβ2

k φ1(λ
2
k )̂u

n
k + φ0(λ

2
k )̂u̇

n
k +t

s∑
i=1

Bi(λ
2
k)

̂f
(
uniM(x)

)
k
,

(3.69)

and define

un+1
M (x) =

M/2−1∑
k=−M/2

û n+1
k eikx, u̇n+1

M (x) =
M/2−1∑
k=−M/2

̂̇u n+1
k eikx.

In practice, the application of procedure (3.68)–(3.69) of the implicit ERKN-FS
method could be understood as an explicit method. Therefore, if the solution
(unM, u̇nM) ∈ H 1

p(Ω)× L2(Ω) of the implicit ERKN-FS method satisfies

|||(unM, u̇nM)||| � K,

we then obtain

‖uniM,[l]‖L2 � (1+t)l+1K � 1, i = 1, 2, · · · , s. (3.70)
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In a similar way to the proof of Theorem 3.7, we can deduce the boundedness for
the implicit ERKN-FS methods (3.55)–(3.67).

Theorem 3.8 (Boundedness for a Single Time Step: Implicit ERKN-FS Meth-
ods) Let the weights B̄i (λ

2
k), Bi(λ

2
k) and Aij (λ

2
k) of the implicit ERKN-FS method

(3.55)–(3.67) satisfy the r-th order conditions (3.32). There exists a sufficiently
small 0 < τ0 � 1 such that t � τ0. If the numerical solution (unM, u̇nM) ∈
H 1
p(Ω) × L2(Ω) of the implicit ERKN-FS method satisfies |||(unM, u̇nM)||| � K ,

then we have

‖uniM‖ � 1, i = 1, 2, · · · , s,

and (un+1
M , u̇n+1

M ) ∈ H 1
p(Ω)× L2(Ω) with

‖un+1
M ‖H 1 � C̃K and ‖u̇n+1

M ‖L2 � C̃K,

where C̃K is independent of the time stepsize t and spatial mesh sizeM .

According to the conclusion in Theorem 3.7 and Theorem 3.8 and using mathe-
matical induction, suitable smoothness assumptions for the initial values ϕ1(·) and
ϕ2(·) yield the boundedness of numerical solutions over a long-time interval [t0, T ].
Theorem 3.9 Assume that the weights B̄i (λ

2
k), Bi(λ

2
k) and Aij (λ

2
k) of the ERKN-

FS method (3.55)–(3.56) satisfy the r-th order conditions (3.32). There exists a
sufficiently small 0 < τ0 � 1 such that t � τ0. If the initial conditions(
ϕ1(x), ϕ2(x)

) ∈ H 1
p(Ω) × L2(Ω) satisfy |||(ϕ1, ϕ2)||| � K0, then we have

(unM, u̇nM) ∈ H 1
p(Ω)× L2(Ω) with

|||(un+1
M , u̇n+1

M )||| � CK0 and ‖uniM‖L2 � CK0, i = 1, 2, · · · , s,

where CK0 is independent of the time stepsize t and spatial mesh sizeM .

Proof By mathematical induction, the proof of the theorem is quite similar to
Theorem 3.7 and Theorem 3.8, we omit the details here for brevity. ��

Using the boundedness of numerical solutions, we will analyse the error bounds
for the ERKN-FS methods. To this end, we introduce the modified H 1-norm and
modified energy norm:

|[uM ]|H 1 =
⎛
⎝ M/2−1∑
k=−M/2

(ρ + ε2k2)|ûk|2
⎞
⎠

1/2

and ||[(uM, u̇M)]|| =
√
|[uM ]|2H 1 + ‖u̇M‖2

L2 .

Obviously, the modified H 1-norm is equivalent to the normal H 1-norm, namely

min{√ρ, ε} ‖uM‖H 1 � |[uM]|H 1 � max{√ρ, ε} ‖uM‖H 1 . (3.71)
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We also assume that the weights B̄i (λ
2
k), Bi(λ

2
k) and Aij (λ

2
k) satisfy the r-th order

conditions and the nonlinear function f (·) satisfies ∂rt f ∈ L∞
([t0, T ], L2(Ω)

)
.

Then the error system of ERKN-FS methods is to find enM(x), ėnM(x) and eniM(x) in
the space XM , i.e.,

en+1
M (x) =

M/2−1∑
k=−M/2

ê n+1
k eikx, ėn+1

M (x) =
M/2−1∑
k=−M/2

̂̇e n+1
k eikx , eniM(x) =

M/2−1∑
k=−M/2

ê ni
k eikx

(3.72)

such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ê n+1
k = φ0(λ

2
k )̂e

n
k +tφ1(λ

2
k )̂ė

n
k +t2

s∑
i=1

B̄i (λ
2
k)f̂

ni
k + δ̂ n+1

k ,

̂̇e n+1
k = −tβ2

k φ1(λ
2
k )̂e

n
k + φ0(λ

2
k )̂ė

n
k +t

s∑
i=1

Bi(λ
2
k)f̂

ni
k +̂̇δ n+1

k ,

ê ni
k = φ0(c

2
i λ

2
k )̂e

n
k + citφ1(c

2
i λ

2
k )̂ė

n
k +t2

s∑
j=1

Aij (λ
2
k)f̂

nj
k + ̂ ni

k ,

i = 1, 2, · · · , s, k = −M/2, · · · ,M/2 − 1.
(3.73)

where f̂ ni
k = ̂f (u)k(tn + cit) − ̂f

(
uniM

)
k

and the remainders δ̂ n+1
k , ̂̇δ n+1

k and

̂ ni
k can be represented as

δ̂ n+1
k

=
r−1∑
l=0

tk+2

⎛
⎝φk+2(λ

2
k)−

s∑
i=1

B̄i (λ
2
k)
cki

k!

⎞
⎠ dl

dt l
̂f (u)k(tn)

+tr+2
∫ 1

0
(1− z)φ1

(
(1− z)2λ2

k

) ∫ z

0

(z − τ)r−1

(r − 1)!
dr

dt r
̂f (u)k(tn + τt)dτdz

−tr+2
s∑

i=1

B̄i (λ
2
k)

∫ ci

0

(ci − τ)r−1

(r − 1)!
dr

dt r
̂f (u)k(tn + τt)dτ,

(3.74)

̂̇δ n+1
k =

r−1∑
k=0

tk+1

(
φk+1(λ

2
k)−

s∑
i=1

Bi(λ
2
k)
cki

k!

)
dl

dt l
̂f (u)k(tn)

+tr+1
∫ 1

0
φ0

(
(1− z)2λ2

k

) ∫ z

0

(z − τ )r−1

(r − 1)!
dr

dtr
̂f (u)k(tn + τt)dτdz

−tr+1
s∑

i=1

Bi(λ
2
k)

∫ ci

0

(ci − τ )r−1

(r − 1)!
dr

dtr
̂f (u)k(tn + τt)dτ, (3.75)
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and

̂ ni
k =

r−1∑
k=0

tk+2

⎛
⎝ck+2

i φk+2(c
2
i λ

2
k)−

s∑
j=1

Aij (λ
2
k)
ckj

k!

⎞
⎠ dl

dt l
̂f (u)k(tn)

+ cr+2
i tr+2

∫ 1

0
(1− z)φ1

(
(1− z)2c2

i λ
2
k

) ∫ z

0

(z− τ)r−1

(r − 1)!
dr

dt r
̂f (u)k(tn + τcit)dτdz

−tr+2
s∑

i=1

Ai,j (λ
2
k)

∫ cj

0

(cj − τ)r−1

(r − 1)!
dr

dt r
̂f (u)k(tn + τt)dτ.

(3.76)

Using energy techniques, we can obtain the convergence result for the ERKN-FP
methods.

Theorem 3.10 (H 1 × L2 Error Bounds of the ERKN-FP Method) Let un, u̇n

and uni be the approximations obtained from the ERKN-FP method (3.57)–(3.58),
and the weights B̄i(λ

2
k), Bi(λ

2
k) and Aij (λ

2
k) satisfy the r-th order conditions

(3.32). Then, under the assumption of Theorem 3.9, there exist two sufficiently small
constants 0 < τ0 � 1 and 0 < h0 � 1, such that

‖u(·, tn)− (IMun)(·)‖H 1 + ‖ut (·, tn)− (IMu̇n)(·)‖L2 � tr +xm0,

when 0 < t � τ0 and 0 < x � h0.

Proof According to Lemma 3.5, it is easy to obtain the following estimates for the

remainders δ̂ n+1
k , ̂̇δ n+1

k and ̂ ni
k :

|[δn+1
M ]|H 1 � K3t

r+1, ‖δ̇n+1
M ‖L2 � K3t

r+1,

s∑
i=1

‖ni
M‖L2 � K3t

r+2,

where the constant K3 is dependent on K2, B, B̂, B̄ and β, but independent of the
time stepsize t and the spatial mesh size M . Rewriting the first two equations in
(3.73) as

[
βkê

n+1
k̂̇e n+1

k

]
= Ω(1, 0, λ2

k)

[
βkê

n
k̂̇e n

k

]
+t

s∑
i=1

[
βkB̄i(λ

2
k)f̂

ni
k

Bi(λ
2
k)f̂

ni
k

]
+

[
βkδ̂

n+1
k̂̇δ n+1

k

]
,
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by taking the l2 inner product on both sides and using the Cauchy inequality, we
have

β2
k | ê n+1

k |2 + | ̂̇e n+1
k |2 �

(
1+t(s + 1)

)(
β2
k | ê n

k |2 + | ̂̇e n
k |2

)
+ 3t(B̂2 + B2)

s∑
i=1

∣∣f̂ ni
k

∣∣2

+ (2+ 1

t
)
(
β2
k |̂δ n+1

k |2 + |̂δ̇ n+1
k |2

)
.

Summing up the above inequality for k from−M/2 to M/2−1 and using Parseval’s
identity yields

||[(en+1
M , ėn+1

M )]||2 �
(
1+t(1+ s)

)||[(enM, ėnM)]||2

+ 3t(B̂2 + B2)

s∑
i=1

∥∥f (u(·, tn + cit)
)− f

(
uniM

)∥∥2
L2 + 4K3t

2r+1.

(3.77)

It then follows from the conclusion of Theorem 3.9 and the assumptions for f (·)
that ∥∥f (u(·, tn + cit)

)− f
(
uniM

)∥∥
L2

=
∥∥∥∥
∫ 1

0
f ′

(
τuniM + (1− τ )u(·, tn + cit)

)
dτ · (uniM(·)− u(·, tn + cit)

)∥∥∥∥
L2

�K2
∥∥uniM(·)− u(·, tn + cit)

∥∥
L2 � K2

(∥∥eniM∥∥
L2 +xm0+1

)
.

Hence, inserting the above inequality into (3.77), we have

||[(en+1
M , ėn+1

M )]||2 �
(
1+ (1+ s)t

)||[(enM, ėnM)]||2 +K4t

s∑
i=1

‖eniM‖2
L2

+K5t
(
t2r +x2m0+2

)
, (3.78)

where K4 and K5 are constants and independent of t and x. Clearly, to show the
required error bounds, we need to estimate the term

∑s
i=1 ‖eniM‖L2 . It follows from

taking the L2 norm on both sides of the third equation in (3.73) that

‖eniM‖L2 � ‖enM‖L2 + ‖ėnM‖L2 +t2β

s∑
i=1

∥∥f (u(·, tn + cit)
)− f

(
uniM

)∥∥
L2 +

s∑
i=1

‖ni
M‖L2

� ||[(enM, ėnM)]||L2 +t2βK2

s∑
i=1

(∥∥eniM∥∥
L2 +xm0+1)+ s∑

i=1

‖ni
M‖L2 .
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This, together with the assumption that the time stepsize satisfies t �
√

1

2sβK2
,

implies

s∑
i=1

∥∥eniM∥∥
L2 � 2s||[(enM, ėnM)]||L2 + 2sK3t

r+2 + sxm0+1.

Inserting the result into (3.78) leads to

||[(en+1
M , ėn+1

M )]||2 �
(
1+K6t

)||[(enM, ėnM)]||2 +K7t
(
t2r +x2m0+2

)
.

(3.79)

Applying Gronwall’s inequality to (3.79) results in

||[(en+1
M , ėn+1

M )]|| � tr +xm0+1.

Since the modified H 1-norm is equivalent to the normal H 1-norm and the relation
(3.59), we obtain

‖en‖H 1 + ‖ėn‖L2 � tr +xm0 .

Theorem 3.10 is proved. ��
Remark 3.3.1 It follows from the convergence analysis stated above that we gain
an insight into the significance of the ERKN-FP methods. That is, the ERKN-FP
methods are independent of the restriction between the time stepsize t and the
spatial stepsize x. In other words, the ERKN-FP methods are free from the CFL
condition. This is another important property of ERKN integrators when applied
to the semilinear wave equation, which, unfortunately, is not shared by traditional
schemes for PDEs in the literature.

3.4 Numerical Experiments

In this section, we present results of numerical experiments to verify our theoretical
analysis for the ERKN time integrators. In order to demonstrate the superiority of
ERKN time integrators, we select the following time integrators for comparison:

• ISV: the improved explicit symplectic Störmer–Verlet formula of order two given
in [13];

• ERKN3s4: the three-stage symmetric and symplectic explicit ERKN method of
order four (see [15]);

• IERKN2s4: the two-stage implicit symplectic ERKN method of order four;
• IERKN3s6: the three-stage implicit symplectic ERKN method of order six;
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• SV: the classical explicit symplectic Strömer–Verlet formula of order two (see
[8]);

• RKN3s4: the three-stage explicit symplectic RKN method of order four (see
[8]);

• IRKN2s4: the two-stage implicit symplectic RKN method of order four (see
[51]);

• IRKN3s6: the three-stage implicit symplectic RKN method of order six (see
[51]).

Using the established mapping between the ERKN group and the RKN group
(see [52]), it is known that ERKN methods with an arbitrarily high order can be
obtained from the corresponding RKN methods. Hence, the IERKN2s4 method
and the IERKN3s6 method are yielded by the well-known IRKN2s4 method and
IRKN3s6 method, respectively. For implicit time integrators, we use fixed-point
iteration and choose the tolerance as 10−15 and the maximum iteration number as
100. Here, it is noted that when the error of a method under consideration is very
large for some t , we do not plot the corresponding points in the efficiency curves
in the numerical experiments. The efficiency curves are given as the log-log plots of
the errors.

Problem 3.1 We consider the Duffing equation

{
q̈ + ω2q = k2(2q3 − q),

q(0) = 0, q̇(0) = ω,

where 0 � k < ω. This is a Hamiltonian system with the conservation of the
following Hamiltonian

H
(
q(t), q̇(t)

) = 1

2
q̇(t)2 + 1

2
ω2q(t)2 + k2

2

(
q(t)2 − q(t)4

)
.

The analytic solution of the Duffing equation is well known, and given by

q(t) = sn(ωt, k/ω),

where sn means the Jacobian elliptic function. Obviously, the analytic solution q(t)
satisfies |q(t)| � 1, i.e., q2 � q4. Therefore, for each ω > 0 (no matter how big ω

is) there exists a constant K such that

1

2
q̇(t)2 + 1

2
ω2q(t)2 � H

(
q(0), q̇(0)

)
� K2

2
.

Then, the finite-energy condition (3.23) is verified. We choose k = 0.03 and
different frequencies ω = 5, 10 and 20 which are similar to those in [53]. We
integrate the Problem 3.1 on the interval [0, 1000] to verify our error estimates for
the ISV method, the ERKN3s4 method, the IERKN2s4 method and the IERKN3s6
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Table 3.1 Temporal accuracy of the “ISV” method for solving Problem 3.1 with different ω and
t up to T = 1000

t

ω t0 = 0.08 t0/2 t0/22 t0/23 t0/24

ω = 5 3.6227E − 7 8.4317E − 8 2.0714E − 8 5.1545E − 9 1.2843E − 9

Rate * 2.1032 2.0252 2.0067 2.0048

ω = 10 4.0951E − 7 7.1460E − 8 1.6455E − 8 4.0277E − 9 9.9857E − 10

Rate * 2.5187 2.1186 2.0305 2.0120

ω = 20 1.2973E − 5 9.1229E − 8 1.5503E − 8 3.5447E − 9 8.5937E − 10

Rate * – 2.5569 2.1288 2.0443

Table 3.2 Temporal accuracy of the “ERKN3s4” method for solving Problem 3.1 with different
ω and t up to T = 1000

t

ω t0 = 0.08 t0/2 t0/22 t0/23

ω = 5 4.4048E − 8 2.7520E − 9 1.7404E − 10 1.3915E − 11

Rate * 4.0005 3.9830 3.6447

ω = 10 1.1427E − 7 6.5012E − 9 4.0112E − 10 3.0784E − 11

Rate * 4.1356 4.0186 3.7038

ω = 20 6.2331E − 6 2.0477E − 8 1.0892E − 9 7.1579E − 11

Rate * 8.2498 4.2327 3.9276

Table 3.3 Temporal precision of the “IERKN2s4” method for solving Problem 3.1 with different
ω and t up to T = 1000

t

ω t0 = 0.1 t0/2 t0/22 t0/23 t0/24

ω = 5 1.9339E − 6 1.2139E − 7 7.6054E − 9 4.7731E − 10 3.0324E − 11

Rate * 3.9938 3.9964 3.9940 3.9764

ω = 10 1.5263E − 5 9.6938E − 7 6.0899E − 8 3.8101E − 9 2.4023E − 10

Rate * 3.9768 3.9926 3.9985 3.9873

ω = 20 1.1468E − 4 7.6411E − 6 4.8518E − 7 3.0467E − 8 1.9073E − 9

Rate * 3.9077 3.9772 3.9932 3.9976

method with the different frequencies. The results in Tables 3.1 and 3.2 indicate that
the convergence order of the ISV method and the ERKN3s4 method are of order
two and order four, respectively. Tables 3.3 and 3.4 demonstrate that the IERKN2s4
method and the IERKN3s6 method are of order four and order six, respectively. The
computational results are coincide with our theoretical analysis results.

The logarithm of the global errors GE= ‖qN − q(1000)‖2 against different
stepsizes for Problem 3.1 are plotted in Fig. 3.1. The logarithm of the global errors
against different frequencies ω are displayed in Fig. 3.2. It can be observed from
Fig. 3.2 that the ERKN integrators are independent of the frequency ω, whereas
other traditional integrators depend on the frequency. In conclusion, Figs. 3.1
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Table 3.4 Temporal precision of the “IERKN3s6” method for solving Problem 3.1 with different
ω and t up to T = 1000

t

ω t0 = 0.4 t0/2 t0/22 t0/23 t0/24

ω = 5 1.3355E − 5 2.2286E − 7 3.4864E − 9 5.6017E − 11 3.4615E − 12

Rate * 5.9051 5.9983 5.9597 4.0164

ω = 10 3.3252E − 4 6.5535E − 6 1.0957E − 7 1.7381E − 9 2.8857E − 10

Rate * 5.6650 5.9024 5.9782 5.9124

ω = 20 4.0302E − 3 1.6588E − 4 3.2996E − 6 5.4632E − 8 8.6855E − 9

Rate * 4.6026 5.6517 5.9164 5.9750

and 3.2 demonstrate that the ERKN time integrators are much more superior to
the traditional numerical methods in the literature.

Problem 3.2 We consider the nonlinear KG equation (see, e.g. [5, 29])

utt (x, t)− a2u(x, t)+ au(x, t)− bu3(x, t) = 0,

in the region (x, t) ∈ [−20, 20] × [0, 10] with the initial conditions

u(x, 0) =
√

2a

b
sech(λx), ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx),

where λ = √
a/(a2 − c2) and a, b, a2 − c2 > 0. The exact solution of Problem 3.2

is given by

u(x, t) =
√

2a

b
sech(λ(x − ct)).

The real parameter
√

2a/b represents the amplitude of a soliton which travels with
velocity c. We use the parameters a = 0.3, b = 1 and c = 0.25 which are similar to
those in [5, 29]. We integrate Problem 3.2 by using the IERKN3s6 time integrator
with Fourier pseudospectral spatial discretisation (IERKN3s6-FP). The error graphs
are shown in Fig. 3.3, with fixed time stepsize t = 0.01 and several values of
spatial mesh size M . Numerical results demonstrate the spectral accuracy of the
spatial discretisation.

In Tables 3.5 and 3.6, we fixed the spatial mesh size M = 800 and integrate the
Problem 3.2 with different time stepsizes t to compute the temporal convergence
order. The results demonstrate that the temporal accuracy is completely consistent
with our theoretical analysis. In Fig. 3.4, we plot the logarithms of the global error
GE = ‖U(t; T ) − u(·, T )‖2 against different time stepsizes, where U(t; T )
denotes the numerical solution at time T with the time stepsize t . The results
illustrate that the ERKN time integrators have much better precision than the RKN
time integrators.
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Fig. 3.1 Efficiency curves for Problem 3.1: The logarithm of the global errors GE = ‖qN −
q(1000)‖2 against different time stepsizes with frequencies ω = 5 (a), 10 (b) and 20 (c)
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Fig. 3.2 Results of Problem 3.1: The logarithm of the global errors (GE) against different
frequencies ω. (a) t = 0.001. (b) t = 0.005

Problem 3.3 Consider the nonlinear KG equation in the nonrelativistic limit
regime (see [54, 55]):

⎧⎪⎪⎨
⎪⎪⎩
ε2utt (x, t)−u(x, t)+ 1

ε2 u(x, t)+ f
(
u(x, t)

) = 0,

u(x, 0) = ψ1(x), ut (x, 0) = 1

ε2ψ2(x),

(3.80)

in the region (x, t) ∈ [−30, 30] × [0, T ] with the initial functions

ψ1(x) = 2e−x2
, ψ2(x) = 3e−x2

and the cubic nonlinearity, i.e. f (u) = u3. Here 0 < ε � 1 is a dimensionless
parameter which is inversely proportional to the speed of light, ψ1 and ψ2 are two
given pieces of real-valued initial data which are independent of ε. We simulate the
experiment by using the IERKN3s6-FP method with the time stepsize t = 10−4

and spatial mesh size M = 1200. The simulation results are displayed in Figs. 3.5
and 3.6. Obviously, the problem is highly oscillatory in time with respect to different
values of parameter ε.

To test the temporal accuracy of the time integrators “ISV”, “ERKN3s4”,
“IERKN2s4” and “IERKN3s6”, we fixed the spatial mesh size as M = 1200.
As is known, the exact solution of the Problem 3.3 cannot be represented explic-
itly. Therefore, we use a posterior error estimate, i.e. RE = ‖U(t; T ) −
U(t/2; T )‖2, to compute the convergence order. The computational results are
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Fig. 3.3 The errors for Problem 3.2 obtained by using the IERKN3s6-FP method for t = 0.01
with (a) M = 200, (b) M = 400, and (c) M = 800

Table 3.5 Temporal
precision of “ISV” and
“ERKN3s4” methods for
solving Problem 3.2 with
different t up to
T = 10 (t0 = 0.1)

ISV ERKN3s4

Global error Rate Global error Rate

t0 1.2884E − 1 * 6.9442E − 4 *

t0/2 3.3095E − 2 1.9609 4.3965E − 5 3.9814

t0/22 8.3311E − 3 1.9900 2.7567E − 6 3.9953

t0/23 2.0864E − 3 1.9975 1.7244E − 7 3.9988

Table 3.6 Temporal
precision of “IERKN2s4” and
“IERKN3s6” methods for
solving Problem 3.2 with
different t up to
T = 10 (t0 = 0.4)

IERKN2s4 IERKN3s6

Global error Rate Global error Rate

t0 1.4215E − 3 * 9.0669E − 6 *

t0/2 9.0773E − 5 3.9690 1.4335E − 7 5.9830

t0/22 5.7039E − 6 3.9922 2.2590E − 9 5.9877

t0/23 3.5696E − 7 3.9981 1.7062E − 11 7.0488
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Fig. 3.4 Efficiency curves for Problem 3.2: The logarithm of the errors GE = ‖U(t; T ) −
u(·, T )‖2 against different time stepsizes. (a) Explicit methods. (b) Implicit methods

Fig. 3.5 The graphs of Problem 3.3 obtained by using the IERKN3s6-FP method for ε = 0.5,
t = 10−4 and x = 1/20. (a) ε = 0.5, (b) t = 2, (c) t = 4, (d) t = 6, (e) t = 8, (f) t = 10
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Fig. 3.6 The graphs of Problem 3.3 obtained by using the IERKN3s6-FP method for ε = 0.1,
t = 10−4 and x = 1/20. (a) ε = 0.1, (b) t = 1, (c) t = 2, (d) t = 3, (e) t = 4, (f) t = 5

Table 3.7 Temporal accuracy of the “ISV” method for solving Problem 3.3 with different ε and
t at time T = 2

t

ε t0 = 0.1 t0/2 t0/22 t0/23 t0/24

ε = 1 4.1772E − 2 9.8027E − 3 2.4133E − 3 6.0104E − 4 1.5012E − 4

Rate * 2.0913 2.0222 2.0055 2.0014

t0 = 0.04 t0/2 t0/22 t0/23 t0/24

ε = 0.5 3.8736E − 2 9.5530E − 3 2.3790E − 3 5.9416E − 4 1.4850E − 4

Rate * 2.0196 2.0056 2.0014 2.0004

ε = 0.1 1.9373E − 2 5.1113E − 3 1.2885E − 3 3.2271E − 4 8.0712E − 5

Rate * 1.9223 1.9880 1.9974 1.9994

listed in Tables 3.7, 3.8, 3.9 and 3.10 demonstrating that the temporal accuracy is
completely consistent with our theoretical analysis.

In comparison with the corresponding time integrators “SV”, “RKN3s4”,
“IRKN2s4” and “IRKN3s6”, we fix the spatial mesh size as M = 1200 and
integrate with different time stepsizes at time T = 2. The logarithms of the relative
errors log10(RE) are plotted in Fig. 3.7. It can be observed from Fig. 3.7 that the
ERKN time integrators are more accurate than these traditional methods.
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Table 3.8 Temporal accuracy of the “ERKN3s4” method for solving Problem 3.3 with different ε
and t at time T = 2

t

ε t0 = 0.1 t0/2 t0/22 t0/23 t0/24

ε = 1 4.0049E − 2 2.0521E − 3 1.2269E − 4 7.5856E − 6 4.7283E − 7

Rate * 4.2866 4.0641 4.0156 4.0039

t0 = 0.04 t0/2 t0/22 t0/23 t0/24

ε = 0.5 4.3176E − 2 2.3654E − 3 1.4380E − 4 8.9274E − 6 5.5704E − 7

Rate * 4.1900 4.0400 4.0096 4.0024

ε = 0.1 3.4882E − 2 2.2846E − 3 1.4431E − 4 9.0431E − 6 5.6556E − 7

Rate * 3.9325 3.9847 3.9962 3.9991

Table 3.9 Temporal precision of the “IERKN2s4” method for solving Problem 3.3 with different
ε and t at time T = 2

t

ε t0 = 0.1 t0/2 t0/22 t0/23 t0/24

ε = 1 2.3594E − 4 1.4193E − 5 8.8175E − 7 5.5037E − 8 3.4388E − 9

Rate * 4.0551 4.0087 4.0019 4.0004

t0 = 0.05 t0/2 t0/22 t0/23 t0/24

ε = 0.5 6.5929E − 4 3.4212E − 5 2.0537E − 6 1.2721E − 7 7.9337E − 9

Rate * 4.2683 4.0582 4.0129 4.0031

t0 = 0.005 t0/2 t0/22 t0/23 t0/24

ε = 0.1 2.1318E − 3 2.0379E − 4 1.3783E − 5 8.7673E − 7 5.5029E − 8

Rate * 3.3869 3.8861 3.9746 3.9939

Table 3.10 Temporal precision of the “IERKN3s6” method for solving Problem 3.3 with different
ε and t at time T = 2

t

ε t0 = 0.1 t0/2 t0/22 t0/23 t0/24

ε = 1 3.0107E − 6 3.5378E − 8 5.2866E − 10 8.1239E − 12 2.6356E − 13

Rate * 6.4111 6.0644 6.0240 –

t0 = 0.05 t0/2 t0/22 t0/23 t0/24

ε = 0.5 2.3162E − 5 2.9908E − 7 4.5292E − 9 7.0507E − 11 1.2447E − 12

Rate * 6.2751 6.0451 6.0053 5.8239

t0 = 0.005 t0/2 t0/22 t0/23 t0/24

ε = 0.1 4.3967E − 4 2.0432E − 6 3.0716E − 8 4.7584E − 10 6.6287E − 12

Rate * 7.7494 6.0557 6.0124 6.1656

In Fig. 3.8, we use the numerical solution obtained by the sixth-order IERKN3s6-
FP method with the very small time stepsize t = 10−4 and the spatial mesh size
M = 1200, as the reference solution of the exact solution. The logarithms of the
global errors against different parameters are plotted in Fig. 3.8. The results again
show that the ERKN time integrators for solving the highly oscillatory problems are
much superior to the RKN time integrators.
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Fig. 3.7 Efficiency curves for Problem 3.3: The logarithm of the relative errors RE =
‖U(t; T ) − U(t/2; T )‖2 against different time stepsizes with parameters ε = 1 (a), 0.5 (b)
and 0.1 (c)

3.5 Conclusions

In this chapter, we have made a comprehensive investigation on the nonlinear
stability and convergence of ERKN integrators for solving the system of nonlin-
ear multi-frequency highly oscillatory second-order ODEs (3.1) with a takanami
number. On the basis of the finite-energy condition, it turns out that the nonlinear
stability and the global error bounds are independent of the dominant frequency-
matrix and the takanami number. Employing the energy technique, we also analysed
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Fig. 3.8 Results of Problem 3.3: The logarithm of the global errors (GE) against different
parameters 1/ε2. (a) t = 0.001. (b) t = 0.005

the convergence of the ERKN time integrators with the Fourier pseudospectral
spatial discretisation when applied to semilinear wave equations. Another important
issue is that the ERKN-FP method eliminates necessity for the CFL restriction,
when applied to semilinear wave equations, whereas traditional schemes for solving
PDEs suffer from this crucial restriction which greatly affects the efficiency of
these schemes. This outstanding property of ERKN integrators ensures that an
ERKN-type time integrator can use a larger time stepsize in comparison with the
traditional methods for numerical solution of semilinear wave equations. This point
is significant in the long-time numerical simulation of nonlinear phenomena in a
wide variety of practical application areas in Science and Engineering.

The material in this chapter is based on the work by Liu and Wu [56].
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Chapter 4
Functionally-Fitted Energy-Preserving
Integrators for Poisson Systems

This chapter presents a class of energy-preserving integrators for Poisson systems
based on the functionally-fitted strategy, and these energy-preserving integrators can
have arbitrarily high order. This approach permits us to obtain the energy-preserving
methods proposed in [1] by Cohen and Hairer and [2] by Brugnano et al. for Poisson
systems.

4.1 Introduction

It is well known that Poisson systems arise in many applications. Moreover, it
is noted that Poisson systems often have periodic or oscillatory solutions. This
chapter is devoted to efficient numerical integrators for solving Poisson systems
(non-canonical Hamiltonian systems)

y ′(t) = B(y(t))∇H(y(t)), y(0) = y0 ∈ R
d, t ∈ [0, T ], (4.1)

where the prime denotes
d

dt
, B(y) is a skew-symmetric matrix, H(y) is a scalar

function, and both are sufficiently smooth. It is assumed that the system (4.1) has a
unique solution y = y(t) defined for all t ∈ [0, T ]. An important feature of (4.1) is
that the energy H(y) is preserved along the exact solution y(t), since we have

d

dt
H (y(t)) = ∇H(y(t))ᵀy ′(t) = ∇H(y(t))ᵀB(y(t))∇H(y(t)) = 0.

Numerical integrators that preserve H(y) are termed energy-preserving (EP) inte-
grators. The main aim of this chapter is to formulate and analyse some EP integrators
for efficiently solving Poisson systems. Other geometric properties of the Poisson
systems such as the preservation of Casimir functions and the Poisson map of the
flow will not be considered in this chapter.
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If the matrix B(y) is independent of y, d is an even number and

B = J =
(

0 d
2

I d
2

−I d
2

0 d
2

)
,

then the system (4.1) is a canonical Hamiltonian system. Much effort has been made
for solving this system, and we refer the reader to [3–13] and references therein. For
canonical Hamiltonian systems, EP integrators are important and efficient methods
and a variety of EP methods have been derived and studied in the past few decades,
such as the average vector field (AVF) method (see, e.g. [14–16]), discrete gradient
methods (see, e.g. [17, 18]), Hamiltonian Boundary Value Methods (HBVMs) (see,
e.g. [19, 20]), EP collocation methods (see, e.g. [21]) and exponential/trigonometric
EP methods (see, e.g. [22–26]).

Among typical EP methods for solving ẏ = J∇H(y) is the well-known AVF
method given by Quispel and McLaren [16] as follows:

y1 = y0 + h

∫ 1

0
J∇H(y0 + σ(y1 − y0))dσ. (4.2)

Quispel and McLaren in [16] pointed out that this method is a B-series method.
Hairer extended this second-order method to higher-order schemes by introducing
the so-called continuous-stage Runge–Kutta methods [21]. On noticing the fact that
the dependence of the matrix B(y) should be discretised in a different manner,
an additional strategy will be required for Poisson systems. This means that it is
necessary to design and analyse the EP methods specifically for Poisson systems.
As is known, McLachlan et al. [18] discussed DG methods for various kinds of
ODEs including Poisson systems, and Cohen et al. [1] succeeded in constructing
arbitrary high-order EP schemes for Poisson systems and the following second-
order EP scheme for (4.1) was derived

y1 = y0 + hB
(
(1/2)(y1 + y0)

) ∫ 1

0
∇H(y0 + σ(y1 − y0))dσ. (4.3)

In the light of HBVMs, Brugnano et al. gave an alternative derivation of such
methods and presented a new proof of their orders in [27]. EP exponentially-
fitted integrators for Poisson systems were researched by Miyatake [28]. Using
discrete gradients, Dahlby et al. [29] constructed useful methods that simultaneously
preserve several invariants in systems of type (4.1). With regard to other multiple
invariant-preserving integrators we refer the reader to [2, 20, 30–32].

We note that the functionally-fitted (FF) technique is a very useful approach to
the construction of effective numerical methods for solving differential equations.
In general, an FF method can be derived by requiring it to integrate members of
a given finite-dimensional function space X exactly. The corresponding methods
are termed trigonometrically-fitted (TF) or exponentially-fitted (EF) methods if
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X is generated by trigonometrical or exponential functions. Using the FF/TF/EF
technique, many efficient methods have been constructed for canonical Hamiltonian
systems including the symplectic methods (see, e.g. [33–40]) and EP methods (see,
e.g. [23, 41]). This technique has also been used successfully for Poisson systems in
[28] and second- and fourth-order schemes were derived. In this chapter, using the
functionally-fitted technology, we will design and analyse efficient EP integrators
for Poisson systems. These integrators of arbitrarily high order can be derived in
a routine and convenient manner, and different EP schemes can be obtained by
considering different function spaces. We will show that choosing a special function
space allows us to obtain the EP schemes proposed by Cohen and Hairer [1] and
Brugnano et al. [27].

4.2 Functionally-Fitted EP Integrators

In order to derive the EP integrators for Poisson systems (4.1), we first define a
vector function space Y=span{Φ0(t), · · · ,Φr−1(t)} on [0, T ] by (see [41])

Y =
{
w : w(t) =

r−1∑
i=0

Φi(t)Wi, t ∈ [0, T ], Wi ∈ R
d

}
,

where the real functions {Φi(t)}r−1
i=0 are linearly independent and C

1 ([0, T ] → R).
In this chapter, we choose a stepsize h > 0 and consider the following two function
spaces

Yh=span {Φ0(τh), · · · ,Φr−1(τh)} , Xh=span

{
1,

∫ τh

0
Φ0(s)ds, · · · ,

∫ τh

0
Φr−1(s)ds

}
,

(4.4)

where τ is a variable with τ ∈ [0, 1], the stepsize h is a positive parameter with
0 < h � h0 � T , and h0 depends on the underlying problem.

We now introduce a projection (see [41]), which will be used in this chapter and
we summarise its definition as follows.

Definition 4.1 (See [41]) Let Ph be a linear operator that maps d-vector valued
real functions defined on [0, h] into the finite dimensional space Yh. The definition
of Phw(τh) is given by

〈v(τh),Phw(τh)〉 = 〈v(τh),w(τh)〉, for any v ∈ Yh, (4.5)

where w(τh) be a continuous Rd -valued function for τ ∈ [0, 1] and Phw(τh) is a
projection of w onto Yh. The scalar product 〈·, ·〉 is defined as an inner product in
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C([0, 1] → R
d ) so that for

u = u(τh) = (u1(τh), · · · , ud(τh))ᵀ , v = v(τh) = (v1(τh), · · · , vd(τh))ᵀ ,

〈u, v〉 is a d-dimensional vector with components
∫ 1

0
ui(τh)vi(τh) dτ for i =

1, · · · , d .

The following property of Ph is also needed, which has been proved in [41].

Lemma 4.1 (See [41]) The projectionPhw(τh) can be explicitly expressed as

Phw(τh) = 〈Pτ,σ ,w(σh)〉σ ,

where

Pτ,σ =
r−1∑
i=0

ψi(τh)ψi(σh),

and {ψ0, · · · , ψr−1} is a standard orthonormal basis of Yh under the inner product
〈·, ·〉.

With these preliminaries, we first present the definition of the integrators and
then show that they exactly preserve the energy of Poisson system (4.1).

Definition 4.2 Let u = u(τh) be the unique solution of the following initial value
problem

1

h

du(τh)

dτ
= B(u(τh))Ph

(∇H(u(τh))
)
, u(0) = y0, τ ∈ [0, 1]. (4.6)

If u ∈ Xh, then the numerical solution after one step is defined by y1 = u(h). In
this chapter, the integrator is termed a functionally-fitted EP (FFEP) integrator.

Remark 4.1 It is important to note that the exact solution of the Poisson system (4.1)
may not belong to the function space Xh. In this definition, the function u ∈ Xh is
considered as a numerical approximation of the exact solution. This approach is
similar to that given by Cohen and Hairer in [1], where they consider a polynomial
function as the approximation of the exact solution. In particular, we remark that, for
the Euler equation considered as a numerical experiment in Sect. 4.7, the solution of
(4.6) belongs to Xh.

Theorem 4.1 The FFEP integrator (4.6) exactly preserves the energy, i.e.,

H(y1) = H(y0).
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Proof It follows from u ∈ Xh that u′ ∈ Yh. Using the definition of Ph yields

∫ 1

0
u′(τh)i

(
Ph

(∇H(u(τh))
))

i
dτ =

∫ 1

0
u′(τh)i

(∇H(u(τh))
)
i
dτ, i = 1, 2, · · · , d,

where (·)i denotes the i-th entry of a vector. We then obtain

∫ 1

0
u′(τh)ᵀPh

(∇H(u(τh))
)
dτ =

∫ 1

0
u′(τh)ᵀ∇H(u(τh))dτ.

Hence, we have

H(y1)−H(y0) =
∫ 1

0

d

dτ
H(u(τh))dτ

= h

∫ 1

0
u′(τh)ᵀ∇H(u(τh))dτ

= h

∫ 1

0
u′(τh)ᵀPh

(∇H(u(τh))
)
dτ.

Inserting (4.6) into this formula gives

H(y1)−H(y0) = h

∫ 1

0
Ph

(∇H(u(τh))
)ᵀ
B(u(τh))ᵀPh

(∇H(u(τh))
)
dτ.

This proves the result by considering that B(u) is a skew-symmetric matrix. ��
Remark 4.2 If B(y) is a constant skew-symmetric matrix, (4.1) is a canonical
Hamiltonian system. In this case, the FFEP integrator (4.6) is identical to the
functionally-fitted EP method derived in Li and Wu [41]. Apart from this, if Yh is
generated by the shifted Legendre polynomials on [0, 1], then the FFEP integrator
(4.6) reduces to the EP collocation method given by Cohen and Hairer [21] and
Brugnano et al. [27].

4.3 Implementation Issues

We next pay attention to practical implementation issues of the FFEP integrator. We
choose the generalised Lagrange interpolation functions l̂i (τ ) ∈ Yh with respect to
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r distinct points d̂i ∈ [0, 1] for i = 1, · · · , r as follows:

(l̂1(τ ), · · · , l̂r (τ )) = (Φ0(τh),Φ1(τh), · · · ,Φr−1(τh))

·

⎛
⎜⎜⎜⎝
Φ0(d̂1h) Φ1(d̂1h) · · · Φr−1(d̂1h)

Φ0(d̂2h) Φ1(d̂2h) · · · Φr−1(d̂2h)
...

...
...

Φ0(d̂rh) Φ1(d̂rh) · · · Φr−1(d̂rh)

⎞
⎟⎟⎟⎠
−1

. (4.7)

Clearly, {l̂i (τ )}ri=1 provides another basis of Yh, satisfying l̂i (d̂j ) = δij . As u′ ∈ Yh,
u′ can be expressed in

u′(τh) =
r∑

i=1

l̂i (τ )u
′(d̂ih).

It follows from Lemma 4.1 that the FFEP integrator (4.6) is identical to

u′(τh) = B(u(τh))

∫ 1

0
Pτ,σ∇H(u(σh))dσ,

which leads to

u′(d̂ih) = B(u(d̂ih))

∫ 1

0
P
d̂i,σ
∇H(u(σh))dσ.

We then obtain

u′(τh) =
r∑

i=1

l̂i (τ )u
′(d̂ih) =

r∑
i=1

l̂i (τ )
(
B(u(d̂ih))

∫ 1

0
P
d̂i,σ
∇H(u(σh))dσ

)
.

(4.8)

Integrating (4.8) gives

u(τh) = y0 +
∫ τh

0
u′(x)dx = y0 + h

∫ τ

0
u′(αh)dα

= y0 + h

∫ τ

0

r∑
i=1

l̂i (α)dαB(u(d̂ih))
∫ 1

0
P
d̂i,σ
∇H(u(σh))dσ.

Let yσ = u(σh), and we are now in a position to present the FFEP integrator
(4.6) for Poisson system (4.1).
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Definition 4.3 An FFEP integrator (4.6) for Poisson system (4.1) is defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yτ = y0 + h

r∑
i=1

∫ 1

0

(
P
d̂i,σ

∫ τ

0
l̂i (α)dα

)
B(y

d̂i
)∇H(yσ)dσ, 0 < τ < 1,

y1 = y0 + h

r∑
i=1

∫ 1

0

(
P
d̂i ,σ

∫ 1

0
l̂i (α)dα

)
B(y

d̂i
)∇H(yσ )dσ.

(4.9)

Remark 4.3 It can be observed from (4.9) that this integrator has a pattern similar
to the formula (2.4) given by Cohen and Hairer in [1]. We need the first formula of
(4.9) only for τ = d̂1, · · · , d̂r and this leads to a nonlinear system of equations for
the unknowns y

d̂1
, · · · , y

d̂r
which can be solved by a fixed-point iteration method.

Remark 4.4 It is noted that the integrals
∫ τ

0 l̂i (α)dα and
∫ 1

0 l̂i (α)dα can be calcu-
lated exactly if Yh is generated by many kinds of functions such as polynomials,
exponential and trigonometrical functions. The integral

∫ 1
0 P

d̂i,σ
∇H(yσ )dσ appear-

ing in (4.9) can also be calculated exactly for many cases. If these integrals cannot be
explicitly calculated, they can be approximated by quadrature to any desired degree
of accuracy.

4.4 The Existence, Uniqueness and Smoothness

We note that the FFEP integrator (4.6) fails to be well defined unless its existence
and uniqueness is shown. This section is devoted to this issue.

In what follows, we assume that the solution y = y(t) of (4.1) is contained in the
following ball for t ∈ [0, h0]

B̄(y0, R) =
{
y ∈ R

d : ||y − y0|| � R
}
,

where R is a positive constant and ‖ · ‖ is a fixed norm in R
d which is the same as

that stated in Assumption 4.1 below. Besides, it has been shown in [41] that Pτ,σ is a

smooth function of h. In this setting, we assume that An = maxτ,σ,h∈[0,1]
∣∣∣∣∂nPτ,σ∂hn

∣∣∣∣
for n = 0, 1. Furthermore, the nth-order derivative of ∇H at y is a multilinear map
from R

d × · · · × R
d︸ ︷︷ ︸

n−f old
to R

d defined by

∇H(n)(y)(z1, · · · , zn) =
∑

1�α1,··· ,αn�d

∂n∇H
∂yα1 · · · ∂yαn

(y)z
α1
1 · · · zαnn ,
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where y = (y1, · · · , yd)ᵀ and zi = (z1
i , · · · , zdi )ᵀ for i = 1, · · · , n. The same

notation is used for B(y). Before presenting the result, we also need the following
assumption.

Assumption 4.1 Denote D0 = maxy∈B̄(y0,R)
||∇H(y)|| and C0 = maxy∈B̄(y0,R)

||B(y)||. It is assumed that∇H and ∇H(1) are Lipschitz-continuous, i.e., there exist
D1, D2 > 0 such that

||∇H(y1)−∇H(y2)|| � D1||y1 − y2||, ||∇H(1)(y1)−∇H(1)(y2)|| � D2||y1 − y2||

for all y1, y2 ∈ B̄(y0, R). The same assumption is required for B(y) and B(1)(y),
and the corresponding Lipschitz constants are denoted by C1 and C2, respectively.

Theorem 4.2 Under the assumptions stated above, the FFEP integrator (4.6) has
a unique solution u(τh) provided the stepsize h satisfies

0 � h � δ < min

{
1

A0C0D1 + A0C1D0
,

R

A0C0D0
, h0,1

}
. (4.10)

Moreover, u(τh) is smoothly dependent on h for any fixed τ ∈ (0, 1].
Proof Existence and uniqueness. It follows from Lemma 4.1 that the FFEP
integrator (4.6) can be written as

u′(τh) = B(u(τh))

∫ 1

0
Pτ,σ∇H(u(σh))dσ.

By integration we obtain

u(τh) = y0 + h

∫ τ

0
B(u(αh))

∫ 1

0
Pα,σ∇H(u(σh))dσdα. (4.11)

The formula (4.11) generates a function series {un(τh)}∞n=0 by the following
recursive definition

un+1(τh)= y0 + h

∫ 1

0

(∫ τ

0
B(un(αh))Pα,σ dα

)
∇H(un(σh))dσ, n= 0, 1, · · · ,

(4.12)

which will be shown to be uniformly convergent by proving the uniform conver-
gence of the infinite series

∑∞
n=0(un+1(τh) − un(τh)). Then the integrator (4.6)

has a solution lim
n→∞ un(τh).

We next prove the uniform convergence of
∑∞

n=0(un+1(τh) − un(τh)). First, it
is clear that ||u0(τh) − y0|| = 0 � R. We assume that ||un(τh) − y0|| � R for
n = 0, · · · ,m. It then follows from (4.10) and (4.12) that

||um+1(τh)− y0|| � hA0C0D0 � R,
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which implies that un(τh) are uniformly bounded by ||un(τh) − y0|| � R for n =
0, 1, · · · . Then using (4.12) and the Lipschitz conditions, we obtain

‖un+1(τh)− un(τh)‖c

� h

∫ 1

0

∫ τ

0

∥∥∥[B(un(αh))Pα,σ∇H(un(σh))−B(un−1(αh))Pα,σ∇H(un−1(σh))
]∥∥∥

c
dαdσ

� h

∫ 1

0

∫ τ

0

∥∥∥[B(un(αh))Pα,σ∇H(un(σh))− B(un(αh))Pα,σ∇H(un−1(σh))

+ B(un(αh))Pα,σ∇H(un−1(σh))− B(un−1(αh))Pα,σ∇H(un−1(σh))
]∥∥∥

c
dαdσ

� h(A0C0D1 + A0C1D0)

∫ 1

0
||un(σh)− un−1(σh)||dσ � β||un(τh)− un−1(τh)||c,

where β = δ(A0C0D1 + A0C1D0) and ||w||c = maxτ∈[0,1] ||w(τh)|| for a
continuous Rd -valued function w on [0, 1]. This implies that

||un+1 − un||c � β||un − un−1||c
and then

||un+1 − un||c � βn||u1 − y0||c � βnR, n = 0, 1, · · · .

Using the Weierstrass M-test and the fact that β < 1, we confirm that∑∞
n=0(un+1(τh)− un(τh)) is uniformly convergent.
With regard to the uniqueness, we suppose that the integrator has another solution

v(τh). We then have

||u(τh)− v(τh)|| � β||u(τh)− v(τh)|| � β||u− v||c,

and

‖u− v‖c � β||u− v||c.

Hence, we obtain ||u− v||c = 0 and u(τh) ≡ v(τh). Therefore, the solution of the
FFEP integrator (4.6) exists and is unique.

Smoothness We next prove the result that u(τh) is smoothly dependent on h

for any fixed τ ∈ (0, 1]. This is true if the series

{
∂kun

∂hk
(τh)

}∞
n=0

is uniformly

convergent for k � 1. We note that the analysis of this part needs the bounds
on ∇H(1)(y) and B(1)(y), which are also denoted by D1 and C1, respectively.



132 4 Functionally-Fitted Energy-Preserving Integrators for Poisson Systems

Differentiating (4.12) with respect to h yields

∂un+1

∂h
(τh) =

∫ 1

0

(∫ τ

0
B(un(αh))Pα,σ dα

)
∇H(un(σh))dσ

+h
∫ 1

0

(∫ τ

0
B(1)(un(αh))

∂un(αh)

∂h
Pα,σdα

)
∇H(un(σh))dσ

+h
∫ 1

0

(∫ τ

0
B(un(αh))

∂Pα,σ

∂h
dα

)
∇H(un(σh))dσ

+h
∫ 1

0

(∫ τ

0
B(un(αh))Pα,σ dα

)
∇H(1)(un(σh))

∂un(σh)

∂h
dσ. (4.13)

We then have∥∥∥∥∂un+1

∂h

∥∥∥∥
c

� α + β

∥∥∥∥∂un∂h

∥∥∥∥
c

with α = A0C0D0 + δA1C0D0,

which yields that

{
∂un

∂h
(τh)

}∞
n=0

is uniformly bounded as follows:

∥∥∥∥∂un∂h

∥∥∥∥
c

� α(1+ β + · · · + βn−1) � α

1− β
=: C∗, n = 0, 1, · · · .

It follows from (4.13) that

∂un+1

∂h
− ∂un

∂h

=
∫ 1

0

∫ τ

0

[
B(un(αh))Pα,σ∇H(un(σh))− B(un−1(αh))Pα,σ∇H(un−1(σh))

]
dαdσ

+ h

∫ 1

0

∫ τ

0

[
B(1)(un(αh))

∂un(αh)

∂h
Pα,σ∇H(un(σh))

− B(1)(un−1(αh))
∂un−1(αh)

∂h
Pα,σ∇H(un−1(σh))

]
dαdσ

+ h

∫ 1

0

∫ τ

0

[
B(un(αh))

∂Pα,σ

∂h
∇H(un(σh))

− B(un−1(αh))
∂Pα,σ

∂h
∇H(un−1(σh))

]
dαdσ

+ h

∫ 1

0

∫ τ

0

[
B(un(αh))Pα,σ∇H(1)(un(σh))

∂un(σh)

∂h

− B(un−1(αh))Pα,σ∇H(1)(un−1(σh))
∂un−1(σh)

∂h

]
dαdσ.
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Adding and removing some expressions with careful simplifications gives∥∥∥∥∂un+1

∂h
− ∂un

∂h

∥∥∥∥
c

� γβn−1 + β

∥∥∥∥∂un∂h
− ∂un−1

∂h

∥∥∥∥
c

,

where

γ = (C0A0D1 + C1A0D0 + δC0A1D1 + δC1A1D0 + 2δC1A0D1C
∗

+ δA0D0C
∗C2 + δC0A0C

∗D2)R.

Hence, by induction, it is true that∥∥∥∥∂un+1

∂h
− ∂un

∂h

∥∥∥∥
c

� nγβn−1 + βnC∗, n = 1, 2, · · · ,

which confirms the uniform convergence of
∑∞

n=0

(
∂un+1

∂h
(τh)− ∂un

∂h
(τh)

)
.

Thus,

{
∂un

∂h
(τh)

}∞
n=0

is uniformly convergent.

Likewise, the uniform convergence of other function series

{
∂kun

∂hk
(τh)

}∞
n=0

for

k � 2 can be shown as well. Therefore, u(τh) is smoothly dependent on h. ��

4.5 Algebraic Order

We consider the algebraic order of the FFEP integrator in this section. For this
purpose, we begin with the regularity of the integrators. Following [41], if an h-
dependent function w(τh) can be expanded as

w(τh) =
r−1∑
n=0

w[n](τh)hn +O(hr ),

thenw(τh) is termed regular, wherew[n](τh) = 1

n!
∂nw(τh)

∂hn

∣∣∣∣
h=0

is a vector-valued

function with polynomial entries of degrees � n.

Lemma 4.2 The FFEP integrator (4.6) gives a regular h-dependent function
u(τh).

Proof It has been proved in Theorem 4.2 that u(τh) is smoothly dependent on h.
We then can expand u(τh) with respect to h at zero as follows:

u(τh) =
r−1∑
m=0

u[m](τh)hm +O(hr ).
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Let  = u(τh)−y0 and it is clear that  = O(h). Expanding∇H(u(τh)) at h = 0
and inserting the above equalities into (4.11) leads to

r−1∑
m=0

u[m](τh)hm

= y0 + h

∫ 1

0

∫ τ

0
Pα,σB(u(αh))dα

r−1∑
n=0

1

n!∇H
(n)(y0)(, · · · ,︸ ︷︷ ︸

n−f old
)dσ + O(hr ). (4.14)

In what follows, we prove the following result by induction

u[m](τh) ∈ Pd
m = Pm([0, 1])× · · · × Pm([0, 1])︸ ︷︷ ︸

d−f old
for m = 0, 1, · · · , r − 1,

where Pm([0, 1]) consists of polynomials with degrees � m on [0, 1].
First, it is clear that u[0](τh) = y0 ∈ Pd

0 . Assume that u[n](τh) ∈ Pd
n for n =

0, 1, · · · ,m. Compare the coefficients of hm+1 on both sides of (4.14) and then we
have

u[m+1](τh) =
∑

k+n=m

∫ 1

0

∫ τ

0

[
Pα,σB(u(αh))

][k]dαhn(σh)dσ, hn(σh) ∈ Pd
n .

Because Pα,σ is regular (see [41]) and u[n](τh) ∈ Pd
n , it can be verified that[

Pα,σB(u(αh))
][k] ∈ Pd×d

k . Hence, with the condition k + n = m, we have

∑
k+n=m

∫ 1

0

∫ τ

0

[
Pα,σB(u(αh))

][k]dαhn(σh)dσ ∈ Pd
m+1.

Thus, it is true that

u[m+1](τh) ∈ Pd
m+1.

��
Let us now quote a result which is needed in the analysis of algebraic order.

Lemma 4.3 (See [41]) Given a regular function w and an h-independent suffi-
ciently smooth function g, the composition (if it exists) is regular. Moreover, one
has

Phg(w(τh))− g(w(τh)) = O(hr ).
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Before presenting the algebraic order of the integrators, we recall the following
elementary theory of ordinary differential equations. Denoting by y(·, t̃, ỹ) the
solution of y ′(t) = B(y(t))∇H(y(t)) satisfying the initial condition y(t̃, t̃ , ỹ) = ỹ 1

for any given t̃ ∈ [0, h] and setting

Φ(s, t̃ , ỹ) = ∂y(s, t̃ , ỹ)

∂ỹ
,

one has the standard result

∂y(s, t̃ , ỹ)

∂ t̃
= −Φ(s, t̃ , ỹ)B(ỹ)∇H(ỹ).

Theorem 4.3 The FFEP integrator (4.6) is of order 2r , which implies

u(h)− y(t0 + h) = O(h2r+1).

Moreover, we have

u(τh)− y(t0 + τh) = O(hr+1), 0 < τ < 1.

Proof On the basis of the previous preliminaries, we obtain

u(h)− y(t0 + h)

= y(t0 + h, t0 + h, u(h))− y(t0 + h, t0, y0)

=
∫ 1

0

d

dα
y(t0 + h, t0 + αh, u(αh))dα

=
∫ 1

0

(
h
∂y

∂t̃
(t0 + h, t0 + αh, u(αh)) + ∂y

∂ỹ
(t0 + h, t0 + αh, u(αh))hu′(αh)

)
dα

=
∫ 1

0

(
− h

∂y

∂ỹ
(t0 + h, t0 + αh, u(αh))B(u(αh))∇H(u(αh))

+ ∂y

∂ỹ
(t0 + h, t0 + αh, u(αh))hB(u(αh))Ph∇H(u(αh))

)
dα

= −h
∫ 1

0
Φ1(α)B(u(αh)) (∇H(u(αh))−Ph∇H(u(αh))) dα,

0 1 Clearly, since the problem is autonomous, then y(t, t̃ , ỹ) = y(t − t̃ , 0, ỹ).
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where

Φ1(α) = ∂y

∂ỹ
(t0 + h, t0 + αh, u(αh)).

It follows from Lemmas 4.2 and 4.3 that

Ph∇H(u(τh))−∇H(u(τh)) = O(hr).

Partition the matrix-valued function Φ1(α) as Φ1(α) = (Φ1
1 (α), · · · ,Φ1

d (α))
ᵀ and

then it follows from Lemma 4.2 that

Φ1
i (α) =PhΦ

1
i (α)+O(hr ), i = 1, 2, · · · , d.

As PhΦ
1
i (α) ∈ Yh, we obtain

∫ 1

0
(PhΦ

1
i (α))

ᵀ∇H(u(αh))dα=
∫ 1

0
(PhΦ

1
i (α))

ᵀPh∇H(u(αh))dα, i= 1, 2, · · · , d.

Hence, we have

u(h)− y(t0 + h)

= − h

∫ 1

0

⎛
⎜⎝
⎛
⎜⎝
(PhΦ

1
1 (α))

ᵀ
...

(PhΦ
1
d (α))

ᵀ

⎞
⎟⎠+ O(hr )

⎞
⎟⎠ (∇H(u(αh))−Ph∇H(u(αh))) dα

= − h

∫ 1

0

⎛
⎜⎝
(PhΦ

1
1 (α))

ᵀ(∇H(u(αh))−Ph∇H(u(αh))
)

...

(PhΦ
1
d (α))

ᵀ(∇H(u(αh))−Ph∇H(u(αh))
)
⎞
⎟⎠ dα

− h

∫ 1

0
O(hr )×O(hr )dα

= 0+O(h2r+1) = O(h2r+1).

Similarly, we deduce that

u(τh)− y(t0 + τh) = y(t0 + τh, t0 + τh, u(τh)) − y(t0 + τh, t0, y0)

= −h
∫ τ

0
Φτ (α)B(u(αh))

(∇H(u(αh)) −Ph∇H(u(αh))
)
dα

= −h
∫ τ

0
Φτ (α)B(u(αh))O(hr )dα = O(hr+1).

��
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4.6 Practical FFEP Integrators

In what follows, we consider two illustrative examples of FFEP integrators.

Example 1 We choose

Φk(τh) = (τh)k, k = 0, 1, · · · , r − 1,

for the function spaces Xh and Yh, and then we have

l̂i (τ ) =
r∏

j=1,j 
=i

τ − d̂j

d̂i − d̂j
,

for i = 1, 2, · · · , r . The Gram–Schmidt process leads to the standard orthonormal
basis of Yh as follows:

p̂j (τh) = (−1)j
√

2j + 1
j∑

k=0

(
j

k

)(
j + k

k

)
(−τ )k, t ∈ [0, 1],

for j = 0, 1, · · · , r − 1, which are the shifted Legendre polynomials on [0, 1].
Consequently, Pτ,σ can be determined by

Pτ,σ =
r−1∑
i=0

p̂i(τh)p̂i (σh).

Here it is important to note that all the above functions are independent of h. In this
situation, the FFEP integrator (4.6) is identical to the EP method given by Cohen
and Hairer [21] and Brugnano et al. [27].

If we choose r = 1 and d̂1 = 1/2, we obtain

l̂1(τ ) = 1, Pτ,σ = 1.

Accordingly, the integrator (4.9) yields

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yτ = y0 + hτB(y 1

2
)

∫ 1

0
∇H(yσ)dσ,

y1 = y0 + hB(y 1
2
)

∫ 1

0
∇H(yσ )dσ,

(4.15)

which gives

yτ = y0 + hτB(y 1
2
)

∫ 1

0
∇H(yσ )dσ = y0 + τ (y1 − y0).
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Let τ = 1/2 for the first equality of (4.15), and then we have

y 1
2
= y0 + 1

2
hB(y 1

2
)

∫ 1

0
∇H(yσ )dσ = y0 + 1

2
(y1 − y0) = 1

2
(y0 + y1).

This leads to

y1 = y0 + hB

(
1

2
(y0 + y1)

)∫ 1

0
∇H(y0 + σ(y1 − y0))dσ.

This second-order integrator has been given by Cohen and Hairer in [1].

Example 2 Let us consider another choice for Yh by

Yh = span {cos(ωτh)} ,

and this gives

l̂1(τ ) = cos(τv)

cos(d̂1v)
, Pτ,σ = 4v cos(σv) cos(τv)

2v + sin(2v)
,

where v = ωh. With this choice, the integrator (4.9) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yτ = y0 + h

∫ τ

0
l̂1(α)dαB(yd̂1

)

∫ 1

0
P
d̂1,σ
∇H(yσ )dσ,

y1 = y0 + h

∫ 1

0
l̂1(α)dαB(yd̂1

)

∫ 1

0
P
d̂1,σ
∇H(yσ )dσ.

(4.16)

Let τ = d̂1 = 1

2
in (4.16). We then obtain

y1/2 = y0 + h
tan(v/2)

v
B(y1/2)

∫ 1

0
P1/2,σ∇H(yσ)dσ,

y1 = y0 + h
2 sin(v/2)

v
B(y1/2)

∫ 1

0
P1/2,σ∇H(yσ )dσ.

It follows from these two equalities that

y1/2 = y0 + tan(v/2)

v

v(y1 − y0)

2 sin(v/2)
= y0 + 1

2 cos(v/2)
(y1 − y0),

yτ = y0 + sin(vτ )

v cos(v/2)

v(y1 − y0)

2 sin(v/2)
= y0 + sin(vτ )

sin(v)
(y1 − y0).
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This then results in

y1 = y0 + h
2 sin(v/2)

v
B
(
y0 + y1 − y0

2 cos(v/2)

) ∫ 1

0
P1/2,σ∇H

(
y0 + sin(vσ)

sin(v)
(y1 − y0)

)
dσ.

(4.17)

Clearly, this integrator reduces to (4.3) when v = 0. We denote the second-order
scheme by FFEP1.

Example 3 We now consider

Yh = span {cos(ωτh), sin(ωτh)} .

This choice of Yh leads to

l̂1(τ ) = sin((τ − d̂2)v)

sin((d̂1 − d̂2)v)
, l̂2(τ ) = sin((τ − d̂1)v)

sin((d̂2 − d̂1)v)

and

Pτ,σ = 2v(2v cos((σ − τ )v)+ sin((−2+ σ + τ )v)− sin((σ + τ )v))

−1+ 2v2 + cos(2v)
.

We here choose τ = d̂1 and d̂2 for the integrator (4.9). We then obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
d̂1
= y0 + h

∫ 1

0

(
Ā11(σ )B(yd̂1

)+ Ā12(σ )B(yd̂2
)
)∇H(yσ )dσ,

y
d̂2
= y0 + h

∫ 1

0

(
Ā21(σ )B(yd̂1

)+ Ā22(σ )B(yd̂2
)
)∇H(yσ )dσ,

y1 = y0 + h

∫ 1

0

(
b̄1(σ )B(yd̂1

)+ b̄2(σ )B(yd̂2
)
)∇H(yσ )dσ,

(4.18)

where

Āij (σ ) = P
d̂j ,σ

∫ d̂i

0
l̂j (α)dα, b̄j (σ ) = P

d̂j ,σ

∫ 1

0
l̂j (α)dα i, j = 1, 2.
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We denote this fourth-order integrator (4.18) by FFEP2. It is worth noting that when
v = 0 and d̂1,2 = 1/2∓√3/6, this scheme becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
d̂1
= y0 + h

∫ 1

0

(1

2
l1(σ )B(yd̂1

)+
(

1

2
−
√

3

3

)
l2(σ )B(yd̂2

)
)
∇H(yσ )dσ,

y
d̂2
= y0 + h

∫ 1

0

((
1

2
+
√

3

3

)
l1(σ )B(yd̂1

)+ 1

2
l2(σ )B(yd̂2

)

)
∇H(yσ )dσ,

y1 = y0 + h

∫ 1

0

(
l1(σ )B(yd̂1

)+ l2(σ )B(yd̂2
)
)∇H(yσ )dσ,

where

l1(σ ) = σ − d̂2

d̂1 − d̂2

and

l2(σ ) = σ − d̂1

d̂2 − d̂1
.

This fourth-order integrator has been proposed by Cohen and Hairer in [1].

Remark 4.5 We remark that different choices of Yh and Xh will derive different
practical integrators. We do not pursue this point further for brevity.

4.7 Numerical Experiments

To illustrate the efficiency and robustness of the integrators derived in this chapter,
we apply our integrators FFEP1 and FFEP2 to the Euler equation. For comparison,
we consider the second-order and fourth-order EP collocation methods given in [1]
and denote them by EPCM1 and EPCM2, respectively. We also choose the following
second-order trigonometrically-fitted EP method (see [28])

y1 = y0 + h
2 sinh(v/2)

v cosh(v/2)
B((1/2)(y0 + y1))

∫ 1

0
∇H(y0 + σ(y1 − y0))dσ,

(4.19)

which is denoted by TFEP1. Since these five methods are all implicit, we use fixed-
point iteration. We set 10−16 as the error tolerance and 10 as the maximum number
of each iteration.
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We will use as a test problem the following Euler equations (see [28, 33]) given
by

ẏ = (
(α − β)y2y3, (1− α)y3y1, (β − 1)y1y2

)ᵀ
, t ∈ [0, T ],

which describes the motion of a rigid body under no forces. This system can be
written as a Poisson system

ẏ =
⎛
⎝ 0 αy3 −βy2

−αy3 0 y1

βy2 −y1 0

⎞
⎠∇H(y)

with

H(y) = y2
1 + y2

2 + y2
3

2
.

Following [28, 33], the initial value is chosen as y(0) = (0, 1, 1), and the parameters
are given by

α = 1+ 1√
1.51

, β = 1− 0.51√
1.51

.

The exact solution is given by

y(t) = (
√

1.51sn(t, 0.51), cn(t, 0.51), dn(t, 0.51))ᵀ,

where sn, cn, dn are the Jacobi elliptic functions. This solution is periodic with the
period

Tp = 7.450563209330954,

and thence we consider choosing ω = 2π/Tp for the methods FFEP1 and TFEP1.
We integrate this problem with the stepsizes h = 0.5 and h = 0.2 on the interval
[0, 10000]. The energy conservation for different methods is shown in Fig. 4.1. We
then solve the problem on the interval [0, T ] with different stepsizes h = 1/2i for
i = 4, 5, 6, 7. The global errors are presented in Fig. 4.2 for T = 10, 100.

We also consider another case. As mentioned in [28], when β ≈ 1, it is expected
that ẏ3 ≈ 0 and thus y3(t) ≈ 1. Therefore, the variables y1 and y2 seem to behave
like the harmonic oscillator with the period Tp = 2π/(α − 1). We choose α = 2
and β = 1.01. We integrate this problem with h = 0.5 and h = 0.2 on the interval
[0, 10000]. The energy conservation for different methods is shown in Fig. 4.3.

Then the problem is solved on the interval [0, T ]with h = 1/2i for i = 4, 5, 6, 7,
and see Fig. 4.4 for the global errors of T = 10, 100.
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Fig. 4.1 The logarithm of the error of Hamiltonian against t

It is very clear from the numerical results that our FFEP methods when applied
to the underlying Euler equations show remarkable numerical behaviour compared
with the existing EP methods in the literature.

4.8 Conclusions

The Poisson system is an important model in applications. It is well known that the
energy of Poisson system is preserved along its exact solution. This chapter paid
attention to the analysis of preserving the energy exactly in the numerical treatment,
so that we can obtain H(y1) = H(y0) after one step of the method starting
from y0 with a time stepsize h. In this chapter, we presented functionally-fitted
energy-preserving integrators for Poisson systems by using a functionally-fitted
strategy. It has been shown that these integrators preserve exactly the energy of
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Fig. 4.2 The logarithm of the global error against the logarithm of t/h

Fig. 4.3 The logarithm of the error of Hamiltonian against t
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Fig. 4.4 The logarithm of the global error against the logarithm of t/h

Poisson systems and can be of arbitrarily high order by choosing a sufficiently large
integer r for the function spaces Yh and Xh. These integrators contain the energy-
preserving schemes given by Cohen and Hairer [1] and Brugnano et al. [27]. The
remarkable efficiency and robustness of the integrators were demonstrated through
the numerical experiments for the Euler equations. In a similar way, it is possible to
develop functionally-fitted energy-diminishing integrators for gradient systems.

The materials in this chapter are based on the work by Wang and Wu [42].
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Chapter 5
Exponential Collocation Methods
for Conservative or Dissipative Systems

The main purpose of this chapter is to present exponential collocation methods
(ECMs) for solving conservative or dissipative systems. ECMs can be of arbitrarily
high order and preserve exactly or approximately first integrals or Lyapunov
functions. In particular, the application of ECMs to stiff gradient systems is dis-
cussed in detail, and it turns out that ECMs are unconditionally energy-diminishing
and strongly damped even for very stiff gradient systems. As a consequence of
this discussion, arbitrary-order trigonometric/RKN collocation methods are also
presented and analysed for second-order highly oscillatory/general systems. The
chapter is accompanied by numerical results that demonstrate the potential value of
this research.

5.1 Introduction

In this chapter, we consider systems of ordinary differential equations (ODEs) of
the form

y ′(t) = Q∇H(y(t)), y(0) = y0 ∈ R
d, t ∈ [0, T ], (5.1)

where Q is an invertible and d × d real matrix, and H : Rd → R is defined by

H(y) = 1

2
yᵀMy + V (y). (5.2)

Here M is a d × d symmetric real matrix, and V : Rd → R is a differentiable
function.
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It is important to note that the system (5.1) exhibits remarkable geometrical/
physical structures, which should be preserved by a numerical method in the spirit
of geometric numerical integration. In fact, if the matrix Q is skew symmetric, then
(5.1) is a conservative system with the first integral H : i.e.,

H(y(t)) ≡ H(y0) for any t � 0.

If the matrix Q is negative semi-definite, then (5.1) is a dissipative system with the
Lyapunov function H : i.e.,

H(y(t2)) � H(y(t1)) if t2 � t1.

Throughout this chapter, we call H energy for both cases in a broad sense. The
objective of this chapter is to design and analyse a class of arbitrary-order expo-
nential energy-preserving collocation methods which can preserve first integrals or
Lyapunov functions of the underlying conservative/dissipative system (5.1).

It is convenient to express

A = QM, g(y(t)) = Q∇V (y(t)).

We then rewrite the system (5.1) as

y ′(t) = Ay(t)+ g(y(t)), y(0) = y0 ∈ R
d . (5.3)

As is known, the exact solution of (5.1) or (5.3) can be represented by the variation-
of-constants formula (the Duhamel Principle)

y(t) = etAy0 + t

∫ 1

0
e(1−τ )tAg(y(τ t))dτ. (5.4)

The system (5.1) or (5.3) plays a prominent role in a wide range of applications
in physics and engineering, including mechanics, astronomy, molecular dynamics,
and in problems of wave propagation in classical and quantum physics (see, e.g. [1–
4]). Some highly oscillatory problems and semidiscrete PDEs such as semilinear
Schrödinger equations fit this pattern. Among typical examples are the multi-
frequency highly oscillatory Hamiltonian systems with the Hamiltonian

H(p, q) = 1

2
pᵀM̄−1p + 1

2
qᵀK̄q + U(q), (5.5)

where K̄ is a symmetric positive semi-definite stiffness matrix, M̄ is a symmetric
positive definite mass matrix, and U(q) is a smooth potential with moderately
bounded derivatives.
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As an interesting class of numerical methods for (5.3), exponential integrators
have been widely investigated and developed in recent decades, and we refer
the reader to [5–17] for example. Exponential integrators make good use of the
variation-of-constants formula (5.4), and their performance has been evaluated on a
range of test problems. A systematic survey of exponential integrators is presented
in [2]. However, apart from symplectic exponential integrators (see, e.g. [18]), most
existing publications dealing with exponential integrators focus on the construction
and analysis of the schemes and pay little attention to energy-preserving exponential
integrators which can preserve the first integrals/Lyapunov functions. Energy-
preserving exponential integrators, especially higher-order schemes have not been
well researched yet in the literature.

On the other hand, various effective energy-preserving methods have been
proposed and researched for (5.3) in the special case of A = 0, such as the average
vector field (AVF) method [19–21], discrete gradient (DG) methods [22–24],
Hamiltonian Boundary Value Methods (HBVMs) [25–28], the Runge–Kutta-type
energy-preserving collocation (RKEPC) methods [29, 30], time finite elements
(TFE) methods [31–35], and energy-preserving exponentially-fitted (EPEF) meth-
ods [36, 37]. Some numerical methods preserving Lyapunov functions have also
been studied for (5.3) with A = 0 (see, e.g. [38–40]). It is noted that all these
methods are constructed and studied for the special case A = 0 and thus they do not
take advantage of the structure brought by the linear term Ay in the system (5.3).
These methods could be applied to (5.3) with A 
= 0 if the right-hand side of (5.3)
is considered as a whole (function), i.e., y ′ = f (y) ≡ Ay + g(y).

Recently, in order to take advantage of the structure of the underlying system
and preserve its energy simultaneously, a novel energy-preserving method has been
studied in [41, 42] for second-order ODEs and a new energy-preserving exponential
scheme for the conservative or dissipative system has been researched in [43].
However, those two kinds of methods are both based on the AVF methods and
thence they are only of order two, in general. This may not be sufficient to deal
with some practical problems for high-precision numerical simulations in sciences
and engineering.

On noting the above observation, we are concerned in this chapter with deriving
and analysing structure-preserving exponential collocation methods. To this end we
make good use of the variation-of-constants formula and the structure introduced
by the underlying system. These exponential integrators can in such a way exactly
or approximately preserve the first integral or the Lyapunov function of (5.1).
Very recently, there have been some publications on the numerical solution of
Hamiltonian PDEs, and the analysis is related to the approach of this chapter (see,
e.g. [44–48]).
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5.2 Formulation of Methods

Following [34], we begin by defining the finite-dimensional function spaces Yh as
follows:

Yh = span {ϕ̃0(τ ), · · · , ϕ̃r−1(τ )}

=
{
w̃ : w̃(τ ) =

r−1∑
i=0

ϕ̃i(τ )Wi, τ ∈ [0, 1], Wi ∈ R
d

}
, (5.6)

where {ϕ̃i}r−1
i=0 are supposed to be linearly independent on I = [0, T ] and suffi-

ciently smooth. We use ϕ̃i(τ ) to denote ϕi(τh) for all the functions ϕi throughout
this chapter and h > 0 is the stepsize. With this definition, we consider another
finite-dimensional function space Xh such that w̃′ ∈ Yh for any w̃ ∈ Xh.

We introduce the idea of the formulation of methods. Find ũ(τ ) with ũ(0) = y0,
satisfying

ũ′(τ ) = Aũ(τ)+Phg(ũ(τ )), (5.7)

where the projection operation Ph is given by (see [34])

〈ṽ(τ ),Phw̃(τ )〉 = 〈ṽ(τ ), w̃(τ )〉 for any ṽ(τ ) ∈ Yh (5.8)

and the inner product 〈·, ·〉 is defined by (see [34])

〈w1, w2〉 = 〈w1(τ ),w2(τ )〉τ =
∫ 1

0
w1(τ ) ·w2(τ )dτ.

With regard to the projection operation Ph, we have the following property (see
[34]) which is needed in this chapter.

Lemma 5.1 The projectionPhw̃ can be explicitly expressed as

Phw̃(τ ) = 〈Pτ,σ , w̃(σ )〉σ ,

where

Pτ,σ = (ϕ̃0(τ ), · · · , ϕ̃r−1(τ ))Θ
−1(ϕ̃0(σ ), · · · , ϕ̃r−1(σ ))

ᵀ,

Θ = (〈ϕ̃i(τ ), ϕ̃j (τ )〉)0�i,j�r−1. (5.9)

When h tends to 0, the limit of Pτ,σ exists. If Pτ,σ is computed by a standard

orthonormal basis
{
ψ̃0, · · · , ψ̃r−1

}
of Yh under the inner product 〈·, ·〉, then Θ
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is an identity matrix and Pτ,σ has a simpler expression:

Pτ,σ =
r−1∑
i=0

ψ̃i (τ )ψ̃i (σ ). (5.10)

As ũ(τ ) = u(τh), (5.7) can be expressed in

u′(τh) = Au(τh)+ 〈Pτ,σ , g(u(σh))〉σ .
Applying the variation-of-constants formula (5.4) to (5.7), we obtain

ũ(τ ) = u(τh) = eτhAy0 + τh

∫ 1

0
e(1−ξ)τhA〈Pξτ,σ , g(u(σh))〉σ dξ

= eτhAy0 + τh

∫ 1

0
e(1−ξ)τhA〈Pξτ,σ , g(ũ(σ ))〉σdξ (5.11)

Inserting (5.10) into (5.11) yields

ũ(τ ) = eτhAy0 + τh

∫ 1

0
e(1−ξ)τhA

∫ 1

0

r−1∑
i=0

ψ̃i (ξτ )ψ̃i (σ )g(ũ(σ ))dσdξ

= eτhAy0 + τh

∫ 1

0

r−1∑
i=0

∫ 1

0
e(1−ξ)τhAψ̃i(ξτ )dξψ̃i (σ )g(ũ(σ ))dσ.

We are now in a position to define exponential collocation methods.

Definition 5.1 An exponential collocation method for solving the system (5.1) or
(5.3) is defined as follows:

ũ(τ ) = eτhAy0 + τh

∫ 1

0
Āτ,σ (A)g(ũ(σ ))dσ, y1 = ũ(1), (5.12)

where h is a stepsize,

Āτ,σ (A) =
∫ 1

0
e(1−ξ)τhAPξτ,σ dξ =

r−1∑
i=0

∫ 1

0
e(1−ξ)τhAψ̃i(ξτ )dξψ̃i (σ ), (5.13)

and
{
ψ̃0, · · · , ψ̃r−1

}
is a standard orthonormal basis of Yh. We denote the method

as ECr.
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Remark 5.1 Once the stepsize h is chosen, the method (5.12) approximates the
solution of (5.1) in the time interval I0. Obviously, the obtained result can be
considered as the initial condition for a new initial value problem and it can be
approximated in the next time interval I1. In general, the method can be extended to
the approximation of the solution in the interval [0, T ].
Remark 5.2 It can be observed that the ECr method (5.12) exactly integrates the
homogeneous linear system y ′ = Ay. The scheme (5.12) can be classified into the
category of exponential integrators (which can be thought of as continuous-stage
exponential integrators). This is an interesting and important class of numerical
methods for first-order ODEs (see, e.g. [2, 13, 14, 49, 50]). In [43], the authors
researched a new energy-preserving exponential scheme for the conservative or
dissipative system. Here we note that its order is only two since this scheme
combines the ideas of DG and AVF methods. We have proposed a kind of
arbitrary-order exponential Fourier collocation methods in [16]. However, those
methods cannot preserve energy exactly. Fortunately, we will show that the ECr
method (5.12) can be of arbitrarily high order and can preserve energy exactly or
approximately, and which is different from the existing exponential integrators in
the literature. This feature is significant and makes the methods more efficient and
robust.

Remark 5.3 In the case of M = 0 and Q =
(
Od1×d1 −Id1×d1

Id1×d1 Od1×d1

)
, (5.1) is a

Hamiltonian system. In this special case, if we choose Xh and Yh as

Yh = span {ϕ̃0(τ ), · · · , ϕ̃r−1(τ )} ,

Xh = span

{
1,

∫ τ

0
ϕ̃0(s)ds, · · · ,

∫ τ

0
ϕ̃r−1(s)ds

}
,

then the ECr method (5.12) becomes the following energy-preserving Runge–Kutta
type collocation methods

ũ(τ ) = y0 + τh

∫ 1

0

∫ 1

0
Pξτ,σdξg(ũ(σ ))dσ, y1 = ũ(1),

which yields the functionally-fitted TFE method derived in [34]. Moreover, under
the above choices of M and Q, if Yh is particularly generated by the shifted
Legendre polynomials on [0, 1], then the ECr method (5.12) reduces to the RKEPC
method of order 2r given in [30] or HBVM(∞, r) presented in [26]. Consequently,
the ECr method (5.12) can be regarded as a generalisation of these existing methods
in the literature.
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5.3 Methods for Second-Order ODEs with Highly
Oscillatory Solutions

We first consider the following systems of second-order ODEs with highly oscilla-
tory solutions

q ′′(t)−Nq ′(t) + Υ q(t) = −∇U(q(t)), q(0) = q0, q ′(0) = q ′0, t ∈ [0, T ],
(5.14)

where N is a symmetric negative semi-definite matrix, Υ is a symmetric positive
semi-definite matrix, and U : Rd → R is a differentiable function. By introducing
p = q ′, (5.14) can be transformed into

(
q

p

)′
=

(
0 I

−I N

)
∇H(p, q) (5.15)

with

H(p, q) = 1

2
pᵀp + 1

2
qᵀΥ q + U(q). (5.16)

This is exactly the same as the problem (5.1). Since N is symmetric negative semi-
definite, (5.15) is a dissipative system with the Lyapunov function (5.16). In the
particular case N = 0, (5.15) becomes a conservative Hamiltonian system with the
first integral (5.16). This is an important highly oscillatory system which has been
investigated by many researchers (see, e.g. [4, 51–58]).

Applying the ECr method (5.12) to (5.15) yields the trigonometric collocation
method for second-order highly oscillatory systems. In particular, for Hamiltonian
systems

q ′′(t)+ Υ q(t) = −∇U(q(t)), (5.17)

the case where N = 0 in (5.14), the ECr method (5.12) leads to the following form.

Definition 5.2 The trigonometric collocation (denoted by TCr) method for (5.17)
is defined as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q̃(τ ) = φ0(K)q0 + τhφ1(K)p0 − τ2h2

∫ 1

0
Aτ,σ (K)f (q̃(σ ))dσ, q1 = q̃(1),

p̃(τ) = −τhΥ φ1(K)q0 + φ0(K)p0 − τh

∫ 1

0
Bτ,σ (K)f (q̃(σ ))dσ, p1 = p̃(1),

(5.18)
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where K = τ 2h2Υ, f (q) = ∇U(q),

φi(K) :=
∞∑
l=0

(−1)lKl

(2l + i)! ,

for i = 0, 1, · · · , and

Aτ,σ (K) =
r−1∑
i=0

∫ 1

0
(1− ξ)φ1

(
(1− ξ)2K

)
ψ̃i (ξτ )dξψ̃i (σ ),

Bτ,σ (K) =
r−1∑
i=0

∫ 1

0
φ0

(
(1− ξ)2K

)
ψ̃i (ξτ )dξψ̃i (σ ). (5.19)

Remark 5.4 In [59], the authors developed and researched a type of trigonometric
Fourier collocation methods for second-order ODEs q ′′(t) + Mq(t) = f (q(t)).
However, as shown in [59], those methods cannot preserve the energy exactly.
From the analysis to be presented in this chapter, it turns out that the trigonometric
collocation scheme (5.18) derived here can attain arbitrary algebraic order and can
preserve the energy of (5.16) exactly or approximately.

Remark 5.5 It is remarked that the multi-frequency highly oscillatory Hamil-
tonian system (5.5) is a kind of second-order system q ′′(t) + M̄−1K̄q(t) =
−M̄−1∇U(q(t)) and applying the ECr method (5.12) to it leads to the TCr method
(5.18) with K = τ 2h2M̄−1K̄ and f (q) = M̄−1∇U(q).

In the special case where N = 0 and Υ = 0, the system (5.14) reduces to the
conventional second-order ODEs

q ′′(t) = −∇U(q(t)), q(0) = q0, q ′(0) = q ′0, t ∈ [0, T ]. (5.20)

Then the TCr method has the following form.

Definition 5.3 A TCr method for solving (5.20) is defined as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q̃(τ ) = q0 + τhp0 − τ 2h2

∫ 1

0

¯Aτ,σ∇U(q̃(σ ))dσ, q1 = q̃(1),

p̃(τ ) = p0 − τh

∫ 1

0
B̄τ,σ∇U(q̃(σ ))dσ, p1 = p̃(1),

(5.21)

where

¯Aτ,σ =
r−1∑
i=0

∫ 1

0
(1− ξ)ψ̃i (ξτ )dξψ̃i (σ ), B̄τ,σ =

r−1∑
i=0

∫ 1

0
ψ̃i (ξτ )dξψ̃i (σ ).

(5.22)
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This scheme looks like a continuous-stage RKN method, and is denoted by RKNCr
in this chapter.

5.4 Energy-Preserving Analysis

In this section, we analyse the energy-preserving property of the ECr methods.

Theorem 5.1 If Q is skew symmetric and ũ(τ ) ∈ Xh, the first integral H
determined by (5.2) of the conservative system (5.1) can be preserved exactly by
the ECr method (5.12): i.e., H(y1) = H(y0). If ũ(τ ) /∈ Xh, the ECr method
(5.12) approximately preserves the energy H with the following accuracyH(y1) =
H(y0)+O(h2r+1).

Proof We begin with the first part of this proof under the assumption that Q is
skew symmetric and ũ(τ ) ∈ Xh. It follows from ũ(τ ) ∈ Xh that ũ′(τ ) ∈ Yh and
Q−1ũ′(τ ) ∈ Yh. Then, in the light of (5.8), we obtain

∫ 1

0
ũ′(τ )ᵀ(Q−1)ᵀũ′(τ )dτ =

∫ 1

0
ũ′(τ )ᵀ(Q−1)ᵀ

(
Aũ(τ)+Phg(ũ(τ ))

)
dτ

=
∫ 1

0
ũ′(τ )ᵀ(Q−1)ᵀ

(
Aũ(τ)+ g(ũ(τ ))

)
dτ.

Here Q is skew symmetric, so is Q−1. We then have

0 =
∫ 1

0
ũ′(τ )ᵀ(Q−1)ᵀũ′(τ )dτ = −

∫ 1

0
ũ′(τ )ᵀQ−1(Aũ(τ)+ g(ũ(τ ))

)
dτ.

On the other hand, it is clear that

H(y1)−H(y0) =
∫ 1

0

d

dτ
H(ũ(τ ))dτ = h

∫ 1

0
ũ′(τ )ᵀ∇H(ũ(τ ))dτ.

It follows from (5.1) and (5.3) that

∇H(ũ(τ )) = Q−1(Aũ(τ)+ g(ũ(τ ))
)
.

Therefore, we obtain

H(y1)−H(y0) = h

∫ 1

0
ũ′(τ )ᵀQ−1(Aũ(τ)+ g(ũ(τ ))

)
dτ = h · 0 = 0.
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We next prove the second part of this theorem under the assumption that ũ(τ ) /∈
Xh. With the above analysis for the first part of the proof, we have

H(y1)−H(y0)

= h

∫ 1

0
ũ′(τ )ᵀQ−1(Aũ(τ)+ g(ũ(τ ))

)
dτ

= h

∫ 1

0
ũ′(τ )ᵀQ−1(Aũ(τ)+Phg(ũ(τ ))+ g(ũ(τ ))−Phg(ũ(τ ))

)
dτ

= −h
∫ 1

0
ũ′(τ )ᵀ(Q−1)ᵀũ′(τ )dτ + h

∫ 1

0
ũ′(τ )ᵀQ−1(g(ũ(τ ))−Phg(ũ(τ ))

)
dτ

= h

∫ 1

0
ũ′(τ )ᵀQ−1(g(ũ(τ ))−Phg(ũ(τ ))

)
dτ.

Exploiting Lemma 3.4 presented in [34] and Lemma 5.2 proved in Sect. 5.6, we
obtain ũ′(τ ) =Phũ

′(τ )+O(hr ). Therefore, one arrives at

H(y1)−H(y0)

= h

∫ 1

0

(
Phũ

′(τ )+O(hr )
)ᵀ
Q−1(g(ũ(τ ))−Phg(ũ(τ ))

)
dτ

= h

∫ 1

0

(
Phũ

′(τ )
)ᵀ
Q−1(g(ũ(τ ))−Phg(ũ(τ ))

)
dτ + O(h2r+1)

= h

∫ 1

0

(
Phũ

′(τ )
)ᵀ
Q−1(g(ũ(τ ))− g(ũ(τ ))

)
dτ +O(h2r+1) = O(h2r+1),

where the result (5.28) in Sect. 5.6 is used.
The proof is complete. ��

Remark 5.6 It is noted that for the special case g(y) = 0 or A = 0, it is easy to
choose Yh and Xh such that ũ(τ ) ∈ Xh. For the case A 
= 0 and g(y) ≡ C, if we
consider Yh = span

{
1, eτhA

}
and Xh = span

{
1, τh, eτhA

}
, it follows from (5.12)

that ũ(τ ) = eτhAy0+A−1(eτhA− I)C. This also leads to ũ(τ ) ∈ Xh. However, for
the general situation, it is usually not easy to check whether the fact ũ(τ ) ∈ Xh is
true or not for the considered Yh and Xh. Therefore, we present the results for two
different cases ũ(τ ) ∈ Xh and ũ(τ ) /∈ Xh in Theorem 5.1.

Remark 5.7 For the result of ũ(τ ) /∈ Xh, we only present the local error of the
energy conservation, which is a direct consequence of Theorem 5.4. For the long-
time energy conservation, we have proved the result for exponential integrators in
[60]. It is possible to perform the long-time analysis for the methods presented in
this chapter by using modulated Fourier expansions.



5.5 Existence, Uniqueness and Smoothness of the Solution 157

Theorem 5.2 IfQ is negative semi-definite and ũ(τ ) ∈ Xh, thenH , the Lyapunov
function of the dissipative system (5.1), given by (5.2), can be preserved by the
ECr method (5.12); i.e., H(y1) � H(y0). If ũ(τ ) /∈ Xh, it is true that H(y1) �
H(y0)+O(h2r+1).

Proof Applying the fact that
∫ 1

0 ũ′(τ )ᵀQ−1ũ′(τ )dτ � 0, this theorem can be
proved in a similar way to the proof of Theorem 5.1. ��

5.5 Existence, Uniqueness and Smoothness of the Solution

In this section, we focus on the study of the existence and uniqueness of ũ(τ )
associated with the ECr method (5.12).

According to Lemma 3.1 given in [50], it is easily verified that the coefficients
eτhA and Āτ,σ (A) of the methods for 0 � τ � 1 and 0 � σ � 1 are uniformly
bounded. We begin by assuming that

Mk = max
τ,σ,h∈[0,1]

∥∥∥∥∂kĀτ,σ

∂hk

∥∥∥∥ , Ck = max
τ,h∈[0,1]

∥∥∥∥∂keτhA

∂hk
y0

∥∥∥∥ , k = 0, 1, · · · .

Furthermore, denoting n-th-order derivative of g at y by g(n)(y), we then have the
following result about the existence and uniqueness of the methods.

Theorem 5.3 Let B(ȳ0, R) =
{
y ∈ R

d : ||y − ȳ0|| � R
}
and

Dn = max
y∈B(ȳ0,R)

||g(n)(y)||, n = 0, 1, · · · ,

whereR is a positive constant, ȳ0 = eτhAy0, ||·|| = ||·||∞ is the maximum norm for
vectors in R

d or the corresponding induced norm for the multilinear maps g(n)(y).
If h satisfies

0 � h � κ < min

{
1

M0D1
,

R

M0D0
, 1

}
, (5.23)

then the ECr method (5.12) has a unique solution ũ(τ ) which is smoothly dependent
on h.

Proof Set ũ0(τ ) = ȳ0 and define

ũn+1(τ ) = eτhAy0 + τh

∫ 1

0
Āτ,σ (A)g(ũn(σ ))dσ, n = 0, 1, · · · , (5.24)

which leads to a function sequence {ũn(τ )}∞n=0. We note that lim
n→∞ ũn(τ ) is a

solution of the TCr method (5.12) if {ũn(τ )}∞n=0 is uniformly convergent, which will
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be shown by proving the uniform convergence of the infinite series
∑∞

n=0(ũn+1(τ )−
ũn(τ )).

By induction and according to (5.23) and (5.24), we obtain ||ũn(τ ) − ȳ0|| � R

for n = 0, 1, · · · . It then follows from (5.24) that

||ũn+1(τ )− ũn(τ )||

� τh

∫ 1

0
M0D1||ũn(σ )− ũn−1(σ )||dσ

� h

∫ 1

0
M0D1||ũn(σ )− ũn−1(σ )||dσ � β||ũn − ũn−1||c, β = κM0D1,

where || · ||c is the maximum norm for continuous functions defined as ||w||c =
maxτ∈[0,1] ||w(τ)|| for a continuous R

d -valued function w on [0, 1]. Hence, we
obtain

||ũn+1 − ũn||c � β||ũn − ũn−1||c
and

||ũn+1 − ũn||c � βn||ũ1 − y0||c � βnR, n = 0, 1, · · · .

It then immediately follows from Weierstrass M-test and the fact of β < 1 that∑∞
n=0(ũn+1(τ )− ũn(τ )) is uniformly convergent.
If the ECr method (5.12) has another solution ṽ(τ ), we obtain the following

inequalities

||ũ(τ )− ṽ(τ )|| � h

∫ 1

0
||Āτ,σ (A)

(
g(ũ(σ ))− g(ṽ(σ ))

)||dσ � β||ũ− ṽ||c,

and ‖ũ− ṽ‖c � β||ũ − ṽ||c. This yields ||ũ − ṽ||c = 0 and ũ(τ ) ≡ ṽ(τ ). The
existence and uniqueness have been proved.

With respect to the result that ũ(τ ) is smoothly dependent of h, since each ũn(τ )

is a smooth function of h, we need only to prove that the sequence

{
∂kũn

∂hk
(τ )

}∞
n=0

is uniformly convergent for k � 1. Differentiating (5.24) with respect to h gives

∂ũn+1

∂h
(τ) = τAeτhAy0 + τ

∫ 1

0

(
Āτ,σ (A)+ h

∂Āτ,σ

∂h

)
g(ũn(σ ))dσ

+τh
∫ 1

0
Āτ,σ (A)g

(1)(ũn(σ ))
∂ũn

∂h
(σ )dσ, (5.25)
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which yields

∥∥∥∥∂ũn+1

∂h

∥∥∥∥
c

� α + β

∥∥∥∥∂ũn∂h

∥∥∥∥
c

, α = C1 + (M0 + κM1)D0.

By induction, it is easy to show that

{
∂ũn

∂h
(τ )

}∞
n=0

is uniformly bounded:

∥∥∥∥∂ũn∂h

∥∥∥∥
c

� α(1 + β + · · · + βn−1) � α

1− β
= C∗, n = 0, 1, · · · . (5.26)

It follows from (5.25)–(5.26) that

∥∥∥∥∂ũn+1

∂h
− ∂ũn

∂h

∥∥∥∥
c

� τ

∫ 1

0
(M0 + hM1) ‖g(ũn(σ )) − g(ũn−1(σ ))‖ dσ

+ τh

∫ 1

0
M0

(∥∥∥∥(g(1)(ũn(σ )) − g(1)(ũn−1(σ ))
) ∂ũn
∂h

(σ)

∥∥∥∥
+

∥∥∥∥g(1)(ũn−1(σ ))

(
∂ũn

∂h
(σ) − ∂ũn−1

∂h
(σ)

)∥∥∥∥
)

dσ � γβn−1 + β

∥∥∥∥∂ũn∂h
− ∂ũn−1

∂h

∥∥∥∥
c

,

where γ = (M0D1 + κM1D1 + κM0L2C
∗)R, and L2 is a constant satisfying

||g(1)(y)− g(1)(z)|| � L2||y − z||, for y, z ∈ B(ȳ0, R).

Therefore, the following result is obtained by induction

∥∥∥∥∂ũn+1

∂h
− ∂ũn

∂h

∥∥∥∥
c

� nγβn−1 + βnC∗, n = 1, 2, · · · .

This shows the uniform convergence of
∑∞

n=0

(
∂ũn+1

∂h
(τ)− ∂ũn

∂h
(τ )

)
and then{

∂ũn

∂h
(τ )

}∞
n=0

is uniformly convergent.

Likewise, it can be shown that other function series

{
∂kũn

∂hk
(τ )

}∞
n=0

for k � 2 are

uniformly convergent as well. Therefore, ũ(τ ) is smoothly dependent on h. ��
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5.6 Algebraic Order

In this section, we analyse the algebraic order of the ECr method (5.12). To express
the dependence of the solutions of y ′(t) = Ay(t)+ g(y(t)) on the initial values, we
denote by y(·, t̃, ỹ) the solution satisfying the initial condition y(t̃ , t̃ , ỹ) = ỹ for any

given t̃ ∈ [0, h] and set �(s, t̃ , ỹ) = ∂y(s, t̃ , ỹ)

∂ỹ
. Recalling the elementary theory

of ODEs, we have the following standard result

∂y(s, t̃ , ỹ)

∂ t̃
= −�(s, t̃ , ỹ)(Aỹ + g(ỹ)

)
.

Throughout this section, for convenience, an h-dependent functionw(τ) is called
regular if it can be expanded as w(τ) =∑r−1

n=0 w
[n](τ )hn+O(hr ), wherew[n](τ ) =

1

n!
∂nw(τ)

∂hn
|h=0 is a vector-valued function with polynomial entries of degrees � n.

It can be deduced from Proposition 3.3 in [34] that Pτ,σ is regular. Moreover, we
can prove the following result.

Lemma 5.2 The ECr method (5.12) generates a regular h-dependent function
ũ(τ ).

Proof By the result given in [34], we know that Pτ,σ can be smoothly extended
to h = 0 by setting Pτ,σ |h=0 = lim

h→0
Pτ,σ (h). Furthermore, it follows from

Theorem 5.3 that ũ(τ ) is smoothly dependent on h. Therefore, ũ(τ ) and Āτ,σ (A)

can be expanded with respect to h at zero as follows:

ũ(τ ) =
r−1∑
m=0

ũ[m](τ )hm +O(hr ), Āτ,σ (A) =
r−1∑
m=0

Ā[m]τ,σ (A)h
m + O(hr).

Then let δ = ũ(σ )− y0 and we have

δ = ũ[0](σ )− y0 +O(h) = y0 − y0 + O(h) = O(h).

We expand f (ũ(σ )) at y0 and insert the above equalities into the first equation of
the ECr method (5.12). This manipulation yields

r−1∑
m=0

ũ[m](τ )hm =
r−1∑
m=0

τmAmy0

m! hm

+τh
∫ 1

0

r−1∑
k=0

Ā[k]τ,σ (A)hk
r−1∑
n=0

1

n!g
(n)(y0)(δ, · · · , δ︸ ︷︷ ︸

n−f old
)dσ +O(hr ). (5.27)
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In order to show that ũ(τ ) is regular, we need only to prove that

ũ[m](τ ) ∈ Pd
m = Pm([0, 1])× · · · × Pm([0, 1])︸ ︷︷ ︸

d−f old
for m = 0, 1, · · · , r − 1,

where Pm([0, 1]) consists of polynomials of degree � m on [0, 1]. This can be
confirmed by induction as follows.

Firstly, it is clear that ũ[0](τ ) = y0 ∈ Pd
0 . We assume that ũ[n](τ ) ∈ Pd

n for
n = 0, 1, · · · ,m. Comparing the coefficients of hm+1 on both sides of (5.27) and
using (5.13) lead to

ũ[m+1](τ )

= τm+1Am+1

(m+ 1)! y0 +
∑

k+n=m
τ

∫ 1

0
Ā[k]τ,σ (A)hn(σ )dσ

= τm+1Am+1

(m+ 1)! y0 +
∑

k+n=m
τ

∫ 1

0

∫ 1

0

[
e(1−ξ)τhAPξτ,σ

][k]
hn(σ )dσdξ,

hn(σ ) ∈ Pd
n .

Since Pξτ,σ is regular, it is easy to check that e(1−ξ)τhAPξτ,σ is also regular. Thus,
under the condition k + n = m, we have

∫ 1

0

[
e(1−ξ)τhAPξτ,σ

][k]
hn(σ )dσ := p̌km(ξτ ) ∈ Pd

m([0, 1]).

Then, the above result can be simplified as

ũ[m+1](τ ) = τm+1Am+1

(m+ 1)! y0 +
∑

k+n=m
τ

∫ 1

0
p̌km(ξτ )dξ

= τm+1Am+1

(m+ 1)! y0 +
∑

k+n=m

∫ τ

0
p̌km(α)dα ∈ Pd

m+1.

��
According to Lemma 3.4 presented in [34] and the above lemma, we obtain

Phg(ũ(τ ))− g(ũ(τ )) = O(hr ), (5.28)

which will be used in the analysis of algebraic order. We are now ready to present
the result about the algebraic order of the ECr method (5.12).
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Theorem 5.4 About the stage order and order of the ECr method (5.12), we have

ũ(τ )− y(t0 + τh) = O(hr+1), 0 < τ < 1,

ũ(1)− y(t0 + h) = O(h2r+1).

Proof According to the previous preliminaries, we obtain

ũ(τ )− y(t0 + τh)

= y(t0 + τh, t0 + τh, ũ(τ ))− y(t0 + τh, t0, y0)

=
∫ τ

0

d

dα
y(t0 + τh, t0 + αh, ũ(α))dα

=
∫ τ

0
(h
∂y

∂t̃
(t0 + τh, t0 + αh, ũ(α))+ ∂y

∂ỹ
(t0 + τh, t0 + αh, ũ(α))hũ′(α))dα

=
∫ τ

0

(
− h

∂y

∂ỹ
(t0 + τh, t0 + αh, ũ(α))

(
Aũ(α)+ g(ũ(α))

)

+ ∂y

∂ỹ
(t0 + τh, t0 + αh, ũ(α))

(
hAũ(α)+ h〈Pτ,σ , g(ũ(α))〉α

))
dα

= −h
∫ τ

0
�τ(α)

(
g(ũ(α))−Ph(g ◦ ũ)(α)

)
dα = O(hr+1), (5.29)

where �τ (α) = ∂y

∂ỹ
(t0 + τh, t0 + αh, ũ(α)). Letting τ = 1 in (5.29) yields

ũ(1)− y(t0 + h) = −h
∫ 1

0
�1(α)

(
g(ũ(α)) −Ph(g ◦ ũ)(α)

)
dα. (5.30)

We partition the matrix-valued function �1(α) as �1(α) = (�1
1(α), · · · ,�1

d(α))
ᵀ.

It follows from Lemma 5.2 that

�1
i (α) =Ph�

1
i (α)+O(hr ), i = 1, · · · , d. (5.31)

On the other hand, we have

∫ 1

0
(Ph�

1
i (α))

ᵀg(ũ(α))dα =
∫ 1

0
(Ph�

1
i (α))

ᵀPh(g ◦ ũ)(α)dα, i = 1, · · · , d.
(5.32)
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Therefore, it follows from (5.30), (5.31) and (5.32) that

ũ(1) − y(t0 + h)

= −h
∫ 1

0

⎛
⎜⎜⎝
⎛
⎜⎜⎝
(Ph�

1
1(α))

ᵀ
...

(Ph�
1
d (α))

ᵀ

⎞
⎟⎟⎠+ O(hr )

⎞
⎟⎟⎠(

g(ũ(α)) −Ph(g ◦ ũ)(α)
)
dα

= −h
∫ 1

0

⎛
⎜⎜⎝
(Ph�

1
1(α))

ᵀ(g(ũ(α)) −Ph(g ◦ ũ)(α)
)

...

(Ph�
1
d (α))

ᵀ(g(ũ(α)) −Ph(g ◦ ũ)(α)
)
⎞
⎟⎟⎠ dα − h

∫ 1

0
O(hr )× O(hr )dα

= 0+ O(h2r+1) = O(h2r+1).

��

5.7 Application in Stiff Gradient Systems

When the matrix Q in (5.1) is the identity matrix, the system (5.1) is a stiff gradient
system as follows:

y ′ = −∇U(y), y(0) = y0 ∈ R
d, t ∈ [0, T ], (5.33)

where the potential U has the form

U(y) = 1

2
yᵀMy + V (y). (5.34)

Such problems arise from the spatial discretisation of Allen–Cahn and Cahn–
Hilliard PDEs (see, e.g. [61]). Along every exact solution, it is true that

d

dt
U(y(t)) = ∇U(y(t))ᵀy ′(t) = −y ′(t)ᵀy ′(t) � 0,

which implies that U(y(t)) is monotonically decreasing.
For solving this stiff gradient system, it follows from Theorem 5.2 that the

practical ECr method (5.40) is unconditionally energy-diminishing. For a quadratic
potential (i.e., V (y) = 0 in (5.34)), the numerical solution of the method is given by

y1 = R(−hA)y0 = e−hAy0.

The importance of the damping property |R(∞)| < 1 for the approximation
properties of Runge–Kutta methods has been studied and well understood in
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[62, 63] for solving semilinear parabolic equations. The role of the condition
|R(∞)| < 1 in the approximation of stiff differential equations has been researched
in Chapter VI of [64]. It has been shown in [39] that for each Runge–Kutta
method the energy decreases once the stepsize satisfies some conditions. Discrete-
gradient methods, AVF methods and AVF collocation methods derived in [39] are
unconditionally energy-diminishing methods but they show no damping for very
stiff gradient systems. However, it is clear that the methods are unconditionally
energy-diminishing methods and they have

|R(∞)| = |e−∞| = 0.

This implies that the methods are strongly damped even for very stiff gradient
systems and this is a significant feature.

5.8 Practical Examples of Exponential Collocation Methods

In this section, we present practical examples of exponential collocation methods.
Choosing ϕ̃k(τ ) = (τh)k for k = 0, 1, · · · , r − 1 and using the Gram–Schmidt
process, we obtain the standard orthonormal basis of Yh as follows:

p̂j (τ ) = (−1)j
√

2j + 1
j∑

k=0

(
j

k

)(
j + k

k

)
(−τ )k,

j = 0, 1, · · · , r − 1, τ ∈ [0, 1],

which are the shifted Legendre polynomials on [0, 1]. Therefore, Pτ,σ can be
determined by (5.10) as follows Pτ,σ =∑r−1

i=0 p̂i(τ )p̂i(σ ).

5.8.1 An Example of ECr Methods

For the ECr method (5.12), we need to calculate Āτ,σ (A) appearing in the methods.
It follows from (5.13) that

Āτ,σ (A) =
∫ 1

0
e(1−ξ)τhAPξτ,σdξ =

r−1∑
i=0

∫ 1

0
e(1−ξ)τhAp̂i(ξτ )dξp̂i (σ )

=
r−1∑
i=0

∫ 1

0
e(1−ξ)τhA(−1)i

√
2i + 1

i∑
k=0

(
i

k

)(
i + k

k

)
(−ξτ )kdξp̂i (σ )

=
r−1∑
i=0

√
2i + 1

i∑
k=0

(−1)i+k (i + k)!
k!(i − k)! ϕ̄k+1(τhA)p̂i(σ ). (5.35)
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Here the ϕ̄-functions (see, e.g. [2, 14, 49, 50]) are defined by:

ϕ̄0(z) = ez, ϕ̄k(z) =
∫ 1

0
e(1−σ)z σ k−1

(k − 1)!dσ, k = 1, 2, · · · .

It is noted that a number of approaches have been developed which work with the
application of the ϕ-functions on a vector (see [2, 65, 66], for example).

5.8.2 An Example of TCr Methods

For the TCr method (5.18) solving q ′′(t) + �q(t) = −∇U(q(t)), we need to
compute Aτ,σ and B1,σ . It follows from (5.19) that

Aτ,σ (K)

=
r−1∑
j=0

∫ 1

0
(1 − ξ)φ1

(
(1− ξ)2K

)
p̂j (ξτ)dξ p̂j (σ )

=
r−1∑
j=0

√
2j + 1

∞∑
l=0

(−1)j
j∑

k=0

(
j

k

)(
j + k

k

)∫ 1

0
(−ξ)k(1 − ξ)2l+1dξ

(−1)lKl

(2l + 1)! τ
kp̂j (σ )

=
r−1∑
j=0

√
2j + 1

∞∑
l=0

j∑
k=0

(−1)j+k
(
j

k

)(
j + k

k

)
k!(2l + 1)!
(2l + k + 2)!

(−1)lKl

(2l + 1)!τ
kp̂j (σ )

=
r−1∑
j=0

√
2j + 1p̂j (σ )

∞∑
l=0

j∑
k=0

(−1)j+k+l (j + k)!
k!(j − k)!(2l + k + 2)!τ

kKl.

Recall that the generalised hypergeometric function mFn is defined by

mFn

[
α1, α2, · · · , αm;
β1, β2, · · · , βn;x

]
=

∞∑
l=0

m∏
i=1

(αi)l

n∏
i=1

(βi)l

xl

l! , (5.36)

where αi and βi are arbitrary complex numbers, except that βi can be neither zero
nor a negative integer, and (z)l is the Pochhammer symbol which is defined as

(z)0 = 1, (z)l = z(z+ 1) · · · (z+ l − 1), l ∈ N.
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Then, Aτ,σ can be expressed by

Aτ,σ (K) =
r−1∑
j=0

√
2j + 1p̂j (σ )

∞∑
l=0

(−1)j+l

(2l + 2)!2F1

[−j, j + 1;
2l + 3; τ

]
Kl. (5.37)

Likewise, we can obtain

B1,σ (K) =
r−1∑
j=0

√
2j + 1p̂j (σ )Sj (K), (5.38)

where Sj (K) are

S2j (K) = (−1)j
(2j)!

(4j + 1)!K
j

0F1

⎡
⎢⎣
−;
1

2
;
− K

16

⎤
⎥⎦ 0F1

⎡
⎢⎣

−;

2j + 3

2
;
− K

16

⎤
⎥⎦ ,

S2j+1(K) = (−1)j
(2j+2)!
(4j+4)!K

j+1
0F1

⎡
⎢⎣
−;
3

2
;
− K

16

⎤
⎥⎦ 0F1

⎡
⎢⎣

−;

2j+ 5

2
;
− K

16

⎤
⎥⎦ , j=0, 1, · · · .

(5.39)

5.8.3 An Example of RKNCr Methods

By letting K = 0 in the above analysis, we obtain an example of RKNCr methods
for solving the general second-order ODEs (5.20) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qdi =q0 + dihp0 − d2
i h

2
∫ 1

0

¯Adi ,σ∇U
(

r∑
m=1

qdmlm(σ )

)
dσ, i = 1, · · · , r,

q1 =q0 + hp0 − h2
∫ 1

0

¯A1,σ∇U
(

r∑
m=1

qdmlm(σ )

)
dσ,

p1 =p0 − h

∫ 1

0
B̄1,σ∇U

(
r∑

m=1

qdmlm(σ )

)
dσ,

where ¯Aτ,σ =∑r−1
i=0

∫ 1
0 (1−ξ)p̂i(ξτ )dξp̂i (σ ) and B̄1,σ =∑r−1

i=0

∫ 1
0 p̂i (ξ)dξp̂i (σ ).
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Remark 5.8 It is noted that one can make different choices of Yh and Xh and the
whole analysis presented in this chapter still holds. Different choices will produce
different practical methods, and in this chapter, we do not pursue this point for
brevity.

5.9 Numerical Experiments

Applying the r-point Gauss–Legendre quadrature to the integral of (5.12) yields

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yci = ecihAy0 + cih

r∑
j=1

bj Āci ,cj (A)g(ycj ), i = 1, · · · , r,

y1 = ehAy0 + h

r∑
j=1

bj Ā1,cj (A)g(ycj ),

(5.40)

where cj and bj for j = 1, · · · , r are the nodes and weights of the quadrature,
respectively. It is shown that the quadrature formula used here is not exact in
general for arbitrary g. According to Theorem 5.4 and the order of Gauss–Legendre
quadrature, it is obtained that this scheme approximately preserves the energy H

with the accuracy H(y1) = H(y0)+O(h2r+1).

In this section, we use fixed-point iteration in practical computation. Concerning
the convergence of the fixed-point iteration for the above scheme (5.40), we have
the following result.

Theorem 5.5 Assume that g satisfies a Lipschitz condition in the variable y, i.e.,
there exists a constant L with the property that ‖g(y1)− g(y2)‖ � L ‖y1 − y2‖. If
the stepsize h satisfies

0 < h <
1

LC max
i=1,··· ,r ci max

j=1,··· ,r |bj |
, (5.41)

then the fixed-point iteration for the scheme (5.40) is convergent, where the constant
C depends on r but is independent of A.

Proof We rewrite the first formula of (5.40) as

Y = echAy0 + hK̄(A)g(Y ), (5.42)
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where c = (c1, c2, · · · , cr )ᵀ, Y = (y1, y2, · · · , yr )ᵀ, K̄(A) = (K̄ij (A))r×r and
K̄ij (A) are defined by

K̄ij (A) := cibj Āci ,cj (A).

It then follows from (5.35) that

∥∥K̄ij (A)
∥∥ � ci |bj |

r−1∑
l=0

√
2l + 1

l∑
k=0

(l + k)!
k!(l − k)! ‖ϕ̄k+1(cihA)‖

∣∣p̂l(cj )∣∣ � Cci |bj |,

where the constant C depends on r but is independent of A. It then follows that∥∥K̄(A)
∥∥ � C max

i=1,··· ,r
ci max

j=1,··· ,r
|bj |. Letting

ϕ(x) = echAy0 + hK̄(A)g(x),

we obtain that

‖ϕ(x)− ϕ(y)‖ = ∥∥hK̄(A)g(x)− hK̄(A)g(y)
∥∥ � hL

∥∥K̄(A)
∥∥ ‖x − y‖

� hLC max
i=1,··· ,r ci max

j=1,··· ,r |bj | ‖x − y‖ .

The proof is complete by the Contraction Mapping Theorem. ��
Remark 5.9 It can be concluded from this theorem that the convergence of the
method (5.40) is independent of ‖A‖. However, it can be checked easily that the
convergence of some other methods such as RKEPC methods given in [30] depends
on ‖A‖. This fact confirms the efficiency of the method (5.40) and is demonstrated
numerically by the experiments presented in this section. This is also a reason why
the RKEPC2 formula does not precisely conserve the energy of Problem 5.1.

In order to show the efficiency and robustness of the methods, we take r = 2 and
denote the corresponding method by EC2P. Then we choose the same Yh and Xh

for the functionally fitted energy-preserving method developed in [34], and by this
choice, the method becomes the 2rth order RKEPC method given in [30]. For this
method, we choose r = 2 and approximate the integral by the Lobatto quadrature
of order eight, which is precisely the “extended Labatto IIIA method of order four”
in [67]. We denote this corresponding method as RKEPC2. Another integrator we
select for comparison is the explicit three-stage exponential integrator of order four
derived in [14] which is denoted by EEI3s4. It is noted that the first two methods
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Fig. 5.1 The logarithm of the global error against the logarithm of T /h

are implicit and we set 10−16 as the error tolerance and 5 as the maximum number1

demonstrate the efficiency of ECr methods when applied to first-order systems, for
brevity.

Problem 5.1 Consider the Duffing equation defined by

(
q

p

)′
=

(
0 1

−ω2 − k2 0

)(
q

p

)
+

(
0

2k2q3

)
,

(
q(0)
p(0)

)
=

(
0
ω

)
.

It is a Hamiltonian system with the Hamiltonian:

H(p, q) = 1

2
p2 + 1

2
(ω2 + k2)q2 − k2

2
q4.

The exact solution of this system is q(t) = sn(ωt; k/ω) with the Jacobi elliptic
function sn. Choose k = 0.07, ω = 5, 10, 20 and solve the problem on the interval
[0, 1000]with different stepsizes h = 0.1/2i for i = 0, · · · , 3. The global errors are
presented in Fig. 5.1. Then, we integrate this problem with the stepsize h = 1/100
on the interval [0, 10000]. See Fig. 5.2 for the energy conservation for different
methods. Finally, we solve this problem on the interval [0, 10] with ω = 20, h =
0.01 and different error tolerances in the fixed-point iteration. See Table 5.1 for the
total numbers of iterations for the implicit methods EC2P and RKEPC2.

11 It is noted that in order to show that the methods can perform well even for few iterations, a
low maximum number 5 of fixed-point iterations is used in this section. It is possible to increase to
other bigger maximum number of fixed-point iterations, but we do not go further here for brevity.
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Fig. 5.2 The logarithm of the error of Hamiltonian against t

Table 5.1 Results for Problem 5.1: the total numbers of iterations for different error tolerances
(tol)

Methods tol = 1.0× 10−6 tol = 1.0× 10−8 tol = 1.0 × 10−10 tol = 1.0 × 10−12

EC2P 859 992 1000 1651

RKEPC2 6886 8907 10, 647 11, 899

Problem 5.2 Consider the following averaged system in wind-induced oscillation
(see [40])

(
x1

x2

)′
=

(−ζ −λ
λ −ζ

)(
x1

x2

)
+

⎛
⎝ x1x2

1

2
(x2

1 − x2
2)

⎞
⎠ ,

where ζ � 0 is a damping factor and λ is a detuning parameter. By setting

ζ = r cos θ, λ = r sin θ, r � 0, 0 � θ � π/2,

this system can be transformed into the scheme (5.1) with

Q =
(− cos θ − sin θ

sin θ − cos θ

)
, M =

(
r 0
0 r

)
,

V = −1

2
sin θ

(
x1x

2
2 −

1

3
x3

1

)
+ 1

2
cos θ

(
−x2

1x2 + 1

3
x3

2

)
.
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Fig. 5.3 (a) The logarithm of the global error against the logarithm of T /h. (b) The logarithm of
the error of Hamiltonian against t

Its first integral (conservative case, when θ = π/2) or Lyapunov function
(dissipative case, when θ < π/2) is

H = 1

2
r(x2

1 + x2
2)−

1

2
sin θ

(
x1x

2
2 −

1

3
x3

1

)
+ 1

2
cos θ

(
−x2

1x2 + 1

3
x3

2

)
.

The initial values are given by x1(0) = 0, x2(0) = 1. Firstly we consider the
conservative case and choose θ = π/2, r = 20. The problem is integrated on
[0, 1000] with the stepsize h = 0.1/2i for i = 1, · · · , 4 and the global errors
are given in Fig. 5.3a. Then we solve this system with the stepsize h = 1/200 on
the interval [0, 10000] and Fig. 5.3b shows the results of the energy preservation.
Secondly we choose θ = π/2 − 10−4 and this gives a dissipative system. The
system is solved on [0, 1000] with h = 0.1/2i for i = 1, · · · , 4 and the
errors are presented in Fig. 5.4a. See Fig. 5.4b for the results of the Lyapunov
function with h = 1/20. Here we consider the results given by EC2P with a
smaller stepsize h = 1/1000 as the ‘exact’ values of the Lyapunov function.
Table 5.2 gives the total numbers of iterations when applying the methods to this
problem on [0, 10] with θ = π/2, r = 20, h = 0.01 and different error
tolerances.
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Fig. 5.4 (a) The logarithm of the global error against the logarithm of T /h. (b) The results for the
Lyapunov function against t

Table 5.2 Results for Problem 5.2: the total number of iterations for different error tolerances
(tol)

Methods tol = 1.0× 10−6 tol = 1.0× 10−8 tol = 1.0 × 10−10 tol = 1.0 × 10−12

EC2P 2000 3000 3434 4000

RKEPC2 6000 8000 9999 11, 000

Problem 5.3 Consider the nonlinear Schrödinger equation (see [68])

iψt + ψxx + 2|ψ|2ψ = 0, ψ(x, 0) = 0.5+ 0.025 cos(μx),

with the periodic boundary conditionψ(0, t) = ψ(L, t). Following [68], we choose
L = 4

√
2π and μ = 2π/L. The initial condition chosen here is in the vicinity of

the homoclinic orbit. Using ψ = p + iq, this equation can be rewritten as a pair of
real-valued equations

pt + qxx + 2(p2 + q2)q = 0,

qt − pxx − 2(p2 + q2)p = 0.

Discretising the spatial derivative ∂xx by the pseudospectral method given in [68],
this problem is converted into the following system:

(
p

q

)′
=

(
0 −D2

D2 0

)(
p

q

)
+

(−2(p2 + q2) · q
2(p2 + q2) · p

)
, (5.43)
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where p = (p0, p1, · · · , pN−1)
ᵀ, q = (q0, q1, · · · , qN−1)

ᵀ and D2 =
(D2)0�j,k�N−1 is the pseudospectral differentiation matrix defined by:

(D2)jk =

⎧⎪⎪⎨
⎪⎪⎩

1

2
μ2(−1)j+k+1 1

sin2(μ(xj − xk)/2)
, j 
= k,

−μ2 2(N/2)2 + 1

6
, j = k,

with xj = j
L

N
for j = 0, 1, · · · , N − 1. The Hamiltonian of (5.43) is

H(p, q) = 1

2
pᵀD2p + 1

2
qᵀD2q + 1

2

N−1∑
i=0

(p2
i + q2

i )
2.

We choose N = 128 and first solve the problem on the interval [0, 10] with h =
0.1/2i for i = 3, · · · , 6. See Fig. 5.5a for the global errors. Then, this problem is
integrated with h = 1/200 on [0, 1000] and the energy conservation is presented in
Fig. 5.5b. The total numbers of iterations when solving this problem on [0, 10] with
N = 32, h = 0.1 and different error tolerances are shown in Table 5.3.

Fig. 5.5 (a) The logarithm of the global error against the logarithm of T /h. (b) The logarithm of
the Hamiltonian error against t



174 5 Exponential Collocation Methods for Conservative or Dissipative Systems

Table 5.3 Results for Problem 5.3: the total number of iterations for different error tolerances
(tol)

Methods tol = 1.0× 10−6 tol = 1.0× 10−8 tol = 1.0 × 10−10 tol = 1.0 × 10−12

EC2P 488 632 796 963

RKEPC2 2558 4229 6991 8551

It can be concluded from these numerical experiments that the EC2P method
definitely shows higher accuracy, better invariant-preserving property, and good
long-term behaviour in the numerical simulations, compared to the other effective
methods in the literature.

5.10 Concluding Remarks and Discussions

For several decades, exponential integrators have constituted an important class
of methods for the numerical simulation of first-order ODEs, including the semi-
discrete nonlinear Schrödinger equation etc. Finite element methods for ODEs
can be traced back to the early 1960s and they have been investigated by many
researchers. In this chapter, combining the ideas of these two types of effective
methods, we derived and analysed a type of exponential collocation method for
the conservative or dissipative system (5.1). We have also rigorously analysed its
properties including existence and uniqueness, and algebraic order. It has been
proved that the exponential collocation methods can achieve an arbitrary order of
accuracy as well as preserve first integrals or Lyapunov functions exactly or approx-
imately. The application of the methods to stiff gradient systems was discussed. The
efficiency and superiority of exponential collocation methods were demonstrated by
numerical results. By the analysis of this chapter, arbitrary-order energy-preserving
methods were presented for second-order highly oscillatory/general systems.

Last, but not least, it is noted that the application of the methodology presented in
this chapter to other ODEs such as general gradient systems (see [69]) and Poisson
systems (see [70]) has been presented recently. We also note that there are some
further issues of these methods to be considered.

• The error bounds and convergence properties of exponential collocation methods
can be investigated.

• Another issue for exploration is the application of the methodology to PDEs such
as nonlinear Schrödinger equations and wave equations (see, e.g. [71]).

• The long-time energy conservation of exponential collocation methods as well
as its analysis by modulated Fourier expansion is another point which can be
researched.

The material in this chapter is based on the work by Wang and Wu [72].
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Chapter 6
Volume-Preserving Exponential
Integrators

Since various dynamical systems preserve volume in phase space, such as all
Hamiltonian systems, this qualitative geometrical property of the analytical solution
should be preserved within the framework of Geometric Integration. This chapter
considers the volume-preserving exponential integrators for different vector fields.
We first analyse a necessary and sufficient condition of volume preservation for
exponential integrators. We then discuss volume-preserving exponential integrators
for four kinds of vector fields. It turns out that symplectic exponential integrators can
be volume preserving for a much larger class of vector fields than Hamiltonian sys-
tems. On the basis of this profound analysis, the applications of volume-preserving
exponential integrators are demonstrated. For solving highly oscillatory second-
order systems, efficient volume-preserving exponential integrators are derived,
and for separable partitioned systems, volume-preserving ERKN integrators are
presented. Moreover, volume-preserving RKN methods are also investigated.

6.1 Introduction

Geometric numerical integrators (also known as structure-preserving algorithms)
have been an active area of great interest in recent decades. A remarkable advantage
of such integrators for solving ordinary differential equations (ODEs) is that
they can exactly preserve some qualitative geometrical property of the analytical
solution, such as the symplecticity, preservation of energy, momentum, angular
momentum, phase-space volume, and symmetries. These geometric properties are
of crucial importance in physical applications. Various geometric integrators have
been designed and researched recently and we refer the reader to [1–11]. For a
good theoretical foundation in connection with geometric numerical integration for
ODEs, we refer the reader to [12, 13]. Highly oscillatory differential equations are
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currently a subject of great interest, and surveys of structure-preserving algorithms
for them are presented in [14–17].

As is known, volume preservation is an important property of numerous dynam-
ical systems. It is clear from the classical theorem due to Liouville that all
Hamiltonian systems are volume preserving. In the sense of geometric integrators,
the structure of volume preservation should also be respected when the underlying
dynamical system is discretised. Some numerical methods have been proposed and
shown to be (or not to be) volume preserving (see, e.g. [18–25] and references
therein). It has been shown that all symplectic methods are volume preserving
for Hamiltonian systems. However, it is important to recognise that this result
does not hold for the non-Hamiltonian systems (see [19, 20, 22]). The authors
in [26] have pointed out that the derivation of efficient volume-preserving (VP)
methods is still an open problem in geometric numerical integration. Recently,
various VP methods have been constructed and analysed, such as splitting methods
(see [23, 25]), Runge–Kutta (RK) methods (see [18]) and the methods based on
generating functions (see [24, 27]).

On the other hand, exponential integrators have been developed and researched
as an efficient approach to the numerical integration of ODEs/PDEs. The reader is
referred to [28–31] for some examples of exponential integrators. In comparison
with RK methods, exponential integrators exactly solve the linear system associated
with the underlying ODEs. Accordingly, exponential integrators can be expected
to perform better than RK methods when solving highly oscillatory systems and
the results of many numerical experiments have demonstrated this point (see [29,
31]). Hence, the study of this chapter focuses on volume-preserving exponential
integrators. More precisely, we are concerned with systems of ODEs of the form

y ′(t) = Ky(t)+ g(y(t)) := f (y(t)), y(0) = y0 ∈ R
n, (6.1)

where K is an n × n matrix which is assumed to satisfy
∣∣ehK ∣∣ 
= −1 for 0 <

h < 1, and g : Rn → R
n is a differentiable nonlinear function. In this chapter, |·|

denotes the determinant. The function f is assumed to be divergence free so that this
system is volume preserving. It is well known that the exact solution of (6.1) can be
represented by the variation-of-constants formula (or Volterra integral equation)

y(t) = etKy0 + t

∫ 1

0
e(1−τ )tKg(y(τ t))dτ. (6.2)

The focus of our attention in this chapter is to derive the volume-preserving
condition for exponential integrators and analyse the qualitative feature of vol-
ume preservation for larger classes of vector fields than Hamiltonian systems.
Furthermore, on the basis of the analysis, volume-preserving adapted exponential
integrators are formulated for highly oscillatory systems of second-order ODEs
and volume-preserving extended Runge–Kutta–Nyström (ERKN) integrators are
derived for separable partitioned systems. We also discuss the volume preservation
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of Runge–Kutta–Nyström (RKN) methods by considering them as a special class of
ERKN integrators.

6.2 Exponential Integrators

We approximate the integral appearing in (6.2) by a quadrature formula with
suitable nodes c1, c2, · · · , cs . This leads to the following definition of exponential
integrators for (6.1).

Definition 6.1 (See [29]) An s-stage exponential integrator applied with stepsize h
for numerically solving (6.1) is defined by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ki = ecihKyn + h

s∑
j=1

āij (hK)g(kj ), i = 1, 2, · · · , s,

yn+1 = ehKyn + h

s∑
i=1

b̄i(hK)g(ki),

(6.3)

where ci for i = 1, · · · , s are real constants, and b̄i(hK) and āij (hK) for i, j =
1, · · · , s are matrix-valued functions of hK .

The exponential integrator can be represented briefly in Butcher’s notation by the
following block tableau of coefficients:

c Ā

b̄ᵀ
=

c1 ā11 · · · ā1s
...

...
. . .

...

cs ās1 · · · āss
b̄1 · · · b̄s

,

where (hK) is suppressed for brevity. This kind of exponential integrator has been
successfully used for solving different kinds of ODEs/PDEs (see [28–31]). Clearly,
when K = 0, an s-stage exponential integrator reduces to a classical s-stage RK
method represented by the Butcher tableau

c A

bᵀ
=

c1 a11 · · · a1s
...

...
. . .

...

cs as1 · · · ass
b1 · · · bs

.

In what follows, we consider an important and special kind of exponential
integrators which was first proposed in [32].
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Definition 6.2 (See [32]) A kind of special s-stage exponential integrator applied
with stepsize h is defined by

āij (hK) = aije(ci−cj )hK, b̄i(hK) = bie
(1−ci)hK, i, j = 1, · · · , s, (6.4)

where

c = (c1, · · · , cs)ᵀ, b = (b1, · · · , bs)ᵀ, A = (aij )s×s (6.5)

are the coefficients of an s-stage Runge–Kutta (RK) method.

Two useful properties of this kind of exponential integrator are shown in [32] and
are summarised below.

Theorem 6.1 (See [32]) If a Runge–Kutta method with the coefficients (6.5) is of
order m, then the exponential integrator given by (6.4) is also of order m.

Theorem 6.2 (See [32]) The exponential integrator defined by (6.4) is symplectic
if the corresponding Runge–Kutta method (6.5) is symplectic.

In this chapter, we supplement an additional requirement for b and use the
following two abbreviations.

Definition 6.3 An s-stage exponential integrator (6.4) is called as a symplectic
exponential integrator (SEI) if the RK method (6.5) is symplectic. Moreover, we
call the integrator (6.4) a special symplectic exponential integrator (SSEI) if bj 
= 0
for all j = 1, · · · , s and BA+ AᵀB − bbᵀ = 0 with B = diag(b).

Remark 6.2.1 It is important to note that a kind of special symplectic RK (SSRK)
methods has been considered in [18] and the SSEI integrators reduce to the SSRK
methods when K = 0.

6.3 VP Condition of Exponential Integrators

This section is devoted to VP condition of exponential integrators. To this end, we
denote the s-stage exponential integrator (6.3) applied with stepsize h by a map
ϕh : Rn → R

n, which is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ϕh(y) = ehKy + h

s∑
i=1

b̄i(hK)g(ki(y)),

ki(y) = ecihKy + h

s∑
j=1

āij (hK)g(kj (y)), i = 1, 2, · · · , s.
(6.6)

We first derive the Jacobian matrix of ϕh and then present the result of its
determinant.
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Lemma 6.1 The Jacobian matrix of the exponential integrator (6.6) can be
expressed as

ϕ′h(y) = ehK + hb̄ᵀF(Is ⊗ I − hĀF )−1echK,

where F = diag(g′(k1), · · · , g′(ks)), Is and I are the s × s and n × n identity
matrices, respectively, and echK = (ec1hK, · · · , ecshK)ᵀ. Its determinant reads

∣∣ϕ′h(y)∣∣ =
∣∣ehK ∣∣ ∣∣Is ⊗ I − h(Ā− e(c−1)hKb̄ᵀ)F

∣∣∣∣Is ⊗ I − hĀF
∣∣ , (6.7)

where e(c−1)hK = (e(c1−1)hK, · · · , e(cs−1)hK)ᵀ. Here we make use of the Kronecker
product⊗ throughout this chapter.

Proof The proof is similar to that of Lemma 2.1 in [18] but with some modifica-
tions. According to the first formula of (6.6), we obtain

ϕ′h(y) = ehK + h

s∑
i=1

b̄ig
′(ki(y))k′i(y) = ehK + hb̄ᵀF(k′1, · · · , k′s)ᵀ. (6.8)

Likewise, it follows from ki(y) in (6.6) that

⎛
⎜⎜⎜⎝
I − hā11g

′(k1) −hā12g
′(k2) · · · −hā1sg

′(ks)
−hā21g

′(k1) I − hā22g
′(k2) · · · −hā2sg

′(ks)
...

...
...

−hās1g
′(k1) −hās2g

′(k2) · · · I − hāssg
′(ks)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
k′1
k′2
...

k′s

⎞
⎟⎟⎟⎠ = echK,

which can be rewritten as

(Is ⊗ I − hĀF )(k′1, · · · , k′s)ᵀ = echK. (6.9)

Substituting (6.9) into (6.8) yields the first statement of this lemma.
For the second statement, we will use the following block determinant identity

(see [13, 18]):

|U |
∣∣∣X −WU−1V

∣∣∣ =
∣∣∣∣ U V

W X

∣∣∣∣ = |X|
∣∣∣U − VX−1W

∣∣∣ ,
which is yielded by Gaussian elimination. Let

X = ehK, W = −hb̄ᵀF, U = Is ⊗ I − hĀF, V = echK.
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It is clear that

∣∣Is ⊗ I − hĀF
∣∣ ∣∣ϕ′h(y)∣∣ = ∣∣∣ehK ∣∣∣ ∣∣∣Is ⊗ I − hĀF + hechKe−hKb̄ᵀF

∣∣∣
=

∣∣∣ehK ∣∣∣ ∣∣∣Is ⊗ I − h(Ā− e(c−1)hKb̄ᵀ)F
∣∣∣ ,

which leads to the result (6.7). ��
By Lemma 6.1, a necessary and sufficient condition for the SSEI methods to be

volume preserving is shown in the following lemma.

Lemma 6.2 An s-stage SSEI method defined in Definition 6.3 is volume preserving
if and only if the following VP condition is satisfied

|Is ⊗ I − h(A⊗ I. ∗ E(hK))F | =
∣∣∣ehK ∣∣∣ ∣∣Is ⊗ I + h(Aᵀ ⊗ I. ∗ E(hK))F

∣∣ ,
(6.10)

where E(hK) is a block matrix defined by

E(hK) = (Ei,j (hK))s×s =

⎛
⎜⎜⎜⎝

I e(c1−c2)hK · · · e(c1−cs)hK
e(c2−c1)hK I · · · e(c2−cs)hK

...
...

...

e(cs−c1)hK e(cs−c2)hK · · · I

⎞
⎟⎟⎟⎠ , (6.11)

and .∗ denotes the element-wise multiplication of two matrices.

Proof From the choice (6.4) of the coefficients, we calculate

Ā− e(c−1)hKb̄ᵀ

= (A⊗ I ). ∗ E(hK)− (e(c1−1)hK, · · · , e(cs−1)hK)ᵀ(b1e(1−c1)hK, · · · , bse(1−cs)hK)

= (A⊗ I ). ∗ E(hK)− (1bᵀ ⊗ I ). ∗E(hK)

= (A− 1bᵀ)⊗ I. ∗ E(hK).

We then obtain

∣∣ϕ′h(y)∣∣ =
∣∣ehK ∣∣ |Is ⊗ I − h(A− 1bᵀ)⊗ I. ∗ E(hK)F |∣∣Is ⊗ I − hĀF

∣∣ . (6.12)

Furthermore, it can be verified that for B = diag(b1, · · · , bs), the following result
holds ∣∣Is ⊗ I − h(A− 1bᵀ)⊗ I. ∗ E(hK)F

∣∣
=

∣∣∣Is ⊗ I − h(B ⊗ I)(A− 1bᵀ)⊗ I. ∗ E(hK)F(B−1 ⊗ I)

∣∣∣
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=
∣∣∣Is ⊗ I − h(B ⊗ I)(A− 1bᵀ)⊗ I. ∗ E(hK)(B−1 ⊗ I)F

∣∣∣
=

∣∣∣Is ⊗ I − hB(A− 1bᵀ)B−1 ⊗ I. ∗E(hK)F

∣∣∣ . (6.13)

because the RK method is symplectic, we have BA + AᵀB − bbᵀ = 0 (see [13]),
which leads to B(A− 1bᵀ)B−1 = −Aᵀ. The result (6.13) then can be simplified as

|Is ⊗ I − h(A− 1bᵀ)⊗ I. ∗E(hK)F | = |Is ⊗ I + h(Aᵀ ⊗ I. ∗E(hK))F | .

The proof is complete by considering (6.12). ��
Remark 6.3.1 Clearly, when K = 0, the VP condition (6.10) reduces to the
condition of RK methods presented in [18]. This implies that the condition (6.10)
can be regarded as a generalisation of that of RK methods.

6.4 VP Results for Different Vector Fields

This section concerns the volume-preserving properties of exponential integrators
for the following four kinds of vector fields.

Definition 6.4 (See [18]) Define the following four classes of vector fields on
Euclidean space using vector fields f (y)

H = {f (y)| there exists a matrix P such that for all y, Pf ′(y)P−1 = −f ′(y)ᵀ},
S = {f (y)| there exists a matrix P such that for all y, Pf ′(y)P−1 = −f ′(y)},

F (∞) = {f (y1, y2) = (u(y1), v(y1, y2))
ᵀ where u ∈H ∪F (∞)| there exists

a matrix P such that for all y1, y2, P ∂y2v(y1, y2)P
−1 = −∂y2v(y1, y2)

ᵀ},
F (2) = {f (y1, y2) = (u(y1), v(y1, y2))

ᵀ where u ∈H ∪S ∪F (2)| there exists a

matrix P such that for all y1, y2, either P∂y2v(y1, y2)P
−1 = −∂y2v(y1, y2)

ᵀ,

or P∂y2v(y1, y2)P
−1 = −∂y2v(y1, y2)}.

Remark 6.4.1 As shown in [18], all these fields are equal to divergence free vector
fields. The relationships of these vector fields are also given in [18] as

H ⊂ F (∞) ⊂ F (2) and S ⊂ F (∞) ⊂F (2).

It follows from Lemma 3.2 of [18] that the set H contains all Hamiltonian systems.
We denote the set of Hamiltonian systems by H and see Fig. 6.1 for the venn
diagram illustrating the relationships. It can be seen from this figure that the sets
H , F (∞) and F (2) are larger classes of vector fields than Hamiltonian systems. It
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Fig. 6.1 Venn diagram illusting the relationships

is noted that the volume-preserving properties of RK methods for these vector fields
have been researched in [18]. Following this work and in what follows, we consider
extending those results for exponential integrators.

6.4.1 Vector Fields in H

The following theorem shows the volume-preserving feature of SSEI methods for
vector fields in H .

Theorem 6.3 All SSEI methods for solving (6.1) are volume preserving for vector
fields f and g inH with the same P .

Proof For vector fields f and g in H with the same P , we obtain that
Pf ′(y)P−1= −f ′(y)ᵀ and Pg′(y)P−1 = −g′(y)ᵀ. According to these conditions
and the expression f (y) = Ky + g(y), one has that PKP−1 = −Kᵀ. Thus it is
clear that P ehKP−1 = e−hKᵀ

. In the light of this result, we have

∣∣∣P ehKP−1
∣∣∣ = ∣∣∣ehK ∣∣∣ = ∣∣∣e−hKᵀ ∣∣∣ = ∣∣∣e−hK ∣∣∣ = ∣∣∣(ehK)−1

∣∣∣ = 1∣∣ehK ∣∣ ,
which yields

∣∣ehK ∣∣ = 1 (it is assumed that
∣∣ehK ∣∣ 
= −1 in the introduction of this

chapter). We then compute the left-hand side of (6.10) as follows:

|Is ⊗ I − h(A⊗ I. ∗E(hK))F |
=

∣∣∣(Is ⊗ P)(Is ⊗ P−1)− h(Is ⊗ P)(A⊗ I. ∗E(hK))(Is ⊗ P−1)(Is ⊗ P)F(Is ⊗ P−1)
∣∣∣

=
∣∣∣Is ⊗ I + h(Is ⊗ P)(A⊗ I. ∗ E(hK))(Is ⊗ P−1)Fᵀ

∣∣∣
= ∣∣Is ⊗ I + h(A⊗ I. ∗E(−hKᵀ))Fᵀ∣∣
= ∣∣Is ⊗ I + hF(Aᵀ ⊗ I. ∗ E(−hKᵀ)ᵀ)

∣∣ (transpose)

= ∣∣Is ⊗ I + h(Aᵀ ⊗ I. ∗E(−hKᵀ)ᵀ)F
∣∣ (Sylvester’s law).
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It follows from the definition (6.11) that

E(−hKᵀ)ᵀ = (Ei,j (−hKᵀ))ᵀs×s = (Ej,i (−hK))s×s = (Ei,j (hK))s×s = E(hK).

(6.14)
Thus, we have

|Is ⊗ I − h(A⊗ I. ∗E(hK))F | = ∣∣Is ⊗ I + h(Aᵀ ⊗ I. ∗ E(hK))F
∣∣ .

This shows the statement of this theorem by considering Lemma 6.2. ��

6.4.2 Vector Fields in S

Theorem 6.4 All one-stage SSEI methods and all two-stage SSEI methods with

e(c2−c1)hKg′(k2)e(c1−c2)hKg′(k1) = e(c1−c2)hKg′(k2)e(c2−c1)hKg′(k1) (6.15)

(and any composition of such methods) are volume preserving for vector fields f
and g in S with the same P .

Proof In a similar way to the proof of the previous theorem, we obtain that
PKP−1 = −K . Thus it is true that P ehKP−1 = e−hK and

∣∣ehK ∣∣ = 1.
For the one-stage SSEI methods, according to Lemma 6.2, they are volume

preserving if and only if

∣∣I − ha11g
′(k1)

∣∣ = ∣∣I + ha11g
′(k1)

∣∣ ,
which can be verified by considering

∣∣I − ha11g
′(k1)

∣∣ = ∣∣∣PP−1 − ha11Pg
′(k1)P

−1
∣∣∣ = ∣∣I + ha11g

′(k1)
∣∣ .

For a two-stage SSEI method, according to Lemma 6.2 again, this two-stage
SSEI method is volume preserving if and only if

∣∣∣∣ I − ha11g
′(k1) −ha12e(c1−c2)hKg′(k2)

−ha21e(c2−c1)hKg′(k1) I − ha22g
′(k2)

∣∣∣∣
=

∣∣∣∣ I + ha11g
′(k1) ha21e(c1−c2)hKg′(k2)

ha12e(c2−c1)hKg′(k1) I + ha22g
′(k2)

∣∣∣∣ ,
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which gives the necessary & sufficient condition

|I − ha11g
′(k1)− ha22g

′(k2)+ h2a11a22g
′(k1)g

′(k2)

−h2a12a21e(c1−c2)hKg′(k2)e(c2−c1)hKg′(k1)|
= |I + ha11g

′(k1)+ ha22g
′(k2)+ h2a11a22g

′(k1)g
′(k2)

−h2a12a21e(c1−c2)hKg′(k2)e(c2−c1)hKg′(k1)|.
(6.16)

Next, we show that (6.16) is satisfied by all two-stage SSEI methods obeying (6.15).
Now, the left-hand side of (6.16)

= | PP−1 − ha11Pg
′(k1)P

−1 − ha22Pg
′(k2)P

−1 + h2a11a22Pg
′(k1)g

′(k2)P
−1

−h2a12a21P e(c1−c2)hKg′(k2)e
(c2−c1)hKg′(k1)P

−1 |
= | I + ha11g

′(k1)+ ha22g
′(k2)+ h2a11a22Pg

′(k1)P
−1Pg′(k2)P

−1

−h2a12a21P e(c1−c2)hKP−1Pg′(k2)P
−1P e(c2−c1)hKP−1Pg′(k1)P

−1 |
= | I + ha11g

′(k1)+ ha22g
′(k2)+ h2a11a22g

′(k1)g
′(k2)

−h2a12a21e(c2−c1)hKg′(k2)e
(c1−c2)hKg′(k1) | .

Under the assumption (6.15), the last line becomes

| I + ha11g
′(k1)+ ha22g

′(k2)+ h2a11a22g
′(k1)g

′(k2)

−h2a12a21e(c1−c2)hKg′(k2)e(c2−c1)hKg′(k1) | .

Thus (6.16) is obtained immediately, and then all two-stage SSEI methods
with (6.15) are volume preserving. ��
Remark 6.4.2 It is noted that for the vector fields in S and two-stage SSEI
methods, the condition (6.15) can be true for many special cases such as for some
special matrix K or some special function g. The same situation will happen in the
analysis of Sect. 6.4.4.

6.4.3 Vector Fields in F (∞)

For vector fields in F (∞), if the function f (y) := Ky+g(y) has the pattern (u(y1),
v(y1, y2))

ᵀ, this means that K and g can be expressed in blocks as

K =
(
K11 0

0 K22

)
, g(y) =

(
g1(y1)

g2(y1, y2)

)
. (6.17)
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Then the following relation is true

u(y1) = K11y1 + g1(y1), v(y1, y2) = K22y2 + g2(y1, y2). (6.18)

Theorem 6.5 Consider an s-stage SSEI method for solving y ′1 = u(y1) that is
volume preserving for the vector field u(y1) : Rm → R

m. Let v(y1, y2) : Rm+n →
R
m+n and assume that there exists an invertible matrix P such that for all y1, y2,

P∂y2v(y1, y2)P
−1 = −∂y2v(y1, y2)

ᵀ, P∂y2g2(y1, y2)P
−1 = −∂y2g2(y1, y2)

ᵀ.

Then the SSEI method is volume preserving for vector fields f (y1, y2) = (u(y1),
v(y1, y2))

ᵀ inF (∞).

Proof It follows from the property of v that PK22P
−1 = −Kᵀ

22 and
∣∣ehK22

∣∣ = 1.
Thus

∣∣ehK ∣∣ = ∣∣ehK11
∣∣ ∣∣ehK22

∣∣ = ∣∣ehK11
∣∣ . The Jacobian matrix of g(y) is block

triangular as follows

g′(y1, y2) =
(
∂y1g1(y1) 0

∗ ∂y2g2(y1, y2)

)
.

In what follows, we prove the condition (6.10). Using the block transformation, we
can bring the left-hand side of (6.10) to the block form

|Is ⊗ I − h(A⊗ I. ∗ E(hK))F | =
(
Φ1 0
∗ Φ2

)
,

where

Φ1 =
⎛
⎜⎝
I − hā11(hK11)∂y1g1(k1) · · · −hā1s(hK11)∂y1g1(ks)

...
. . .

...

−hās1(hK11)∂y1g1(k1) · · · I − hāss(hK11)∂y1g1(ks)

⎞
⎟⎠ ,

Φ2 =
⎛
⎜⎝
I − hā11(hK22)∂y2g2(k1) · · · −hā1s(hK22)∂y2g2(ks)

...
. . .

...

−hās1(hK22)∂y2g2(k1) · · · I − hāss(hK22)∂y2g2(ks)

⎞
⎟⎠ .

Let F1= diag(∂y1g1(k1), · · · , ∂y1g1(ks)) and F2= diag(∂y2g2(k1), · · · , ∂y2g2(ks)).

The above result can be simplified as

|Is ⊗ I − h(A⊗ I. ∗ E(hK))F |
= |Is ⊗ I − h(A⊗ I. ∗ E(hK11))F1| |Is ⊗ I − h(A⊗ I. ∗ E(hK22))F2| .
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Since the SSEI method is volume preserving for the vector field u(y1), the following
condition is true

|Is ⊗ I − h(A⊗ I. ∗ E(hK11))F1| =
∣∣∣ehK11

∣∣∣ ∣∣Is ⊗ I + h(Aᵀ ⊗ I. ∗ E(hK11))F1
∣∣ .

On the other hand, we compute

|Is ⊗ I − h(A⊗ I. ∗ E(hK22))F2|
=

∣∣∣(Is ⊗ P )(Is ⊗ P−1)− h(Is ⊗ P )(A⊗ I. ∗E(hK22))(Is ⊗ P−1)(Is ⊗ P )F (Is ⊗ P−1)

∣∣∣
=

∣∣∣Is ⊗ I + h(Is ⊗ P )(A⊗ I. ∗E(hK22))(Is ⊗ P−1)F
ᵀ
2

∣∣∣
= ∣∣Is ⊗ I + h(A⊗ I. ∗E(−hKᵀ

22))F
ᵀ
2

∣∣
= ∣∣Is ⊗ I + hF2(A

ᵀ ⊗ I. ∗ E(−hKᵀ
22)

ᵀ)
∣∣ (transpose)

= ∣∣Is ⊗ I + h(Aᵀ ⊗ I. ∗E(−hKᵀ
22)

ᵀ)F2
∣∣ (Sylvester’s law)

= ∣∣Is ⊗ I + h(Aᵀ ⊗ I. ∗E(hK22))F2
∣∣ (property (6.14)).

Hence, the VP condition (6.10) holds and the SSEI method is volume preserving for
vector fields in F (∞). ��

6.4.4 Vector Fields in F (2)

It is assumed that the function f (y) of (6.1) falls into F (2). Under this situa-
tion, (6.17) and (6.18) are still true. This leads to the following result about the
VP property of SSEI methods.

Theorem 6.6 Consider a one-stage or two-stage SSEI with (6.15) (or a composi-
tion of such method) that is volume preserving for the vector field u(y1) : Rm → R

m.
Letting v(y1, y2) : Rm+n → R

m+n, we assume that there exists an invertible matrix
P such that for all y1, y2,

P∂y2v(y1, y2)P
−1 = −∂y2v(y1, y2), P∂y2g2(y1, y2)P

−1 = −∂y2g2(y1, y2).

Then the SSEI method is volume preserving for the vector fields f (y1, y2) = (u(y1),
v(y1, y2))

ᵀ inF (2).

Proof It follows from the conditions of this theorem that PK22P
−1 = −K22 and∣∣ehK22

∣∣ = 1.
For the one-stage SSEI, the condition for volume preservation is

∣∣I − ha11g
′(k1)

∣∣ = ∣∣I + ha11g
′(k1)

∣∣ ,
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which can be rewritten as

∣∣I − ha11∂y1g1
∣∣ ∣∣I − ha11∂y2g2

∣∣ = ∣∣I + ha11∂y1g1
∣∣ ∣∣I + ha11∂y2g2

∣∣ . (6.19)

Since the method is volume preserving for the vector field u(y1), we have

∣∣I − ha11∂y1g1
∣∣ = ∣∣I + ha11∂y1g1

∣∣ .
On the other hand,

∣∣I − ha11∂y2g2
∣∣ = ∣∣∣PP−1 − ha11P∂y2g2P

−1
∣∣∣ = ∣∣I + ha11∂y2g2

∣∣ .
Thus (6.19) is proved.

For the two-stage SSEI, it is volume preserving if and only if (6.16) is true. Using
the special result of g′, we obtain

the left hand side of (6.16)

= |I − ha11∂y1g1(k1)− ha22∂y1g1(k2)+ h2a11a22∂y1g1(k1)∂y1g1(k2)

−h2a12a21∂y1g1(k2)∂y1g1(k1)|
|I − ha11∂y2g2(k1)− ha22∂y2g2(k2)+ h2a11a22∂y2g2(k1)∂y2g2(k2)

−h2a12a21∂y2g2(k2)∂y2g2(k1)|
= |I + ha11∂y1g1(k1)+ ha22∂y1g1(k2)+ h2a11a22∂y1g1(k1)∂y1g1(k2)

−h2a12a21∂y1g1(k2)∂y1g1(k1)|
|I − ha11∂y2g2(k1)− ha22∂y2g2(k2)+ h2a11a22∂y2g2(k1)∂y2g2(k2)

−h2a12a21∂y2g2(k2)∂y2g2(k1)|.

It then can be verified that

|I − ha11∂y2g2(k1)− ha22∂y2g2(k2)+ h2a11a22∂y2g2(k1)∂y2g2(k2)

−h2a12a21∂y2g2(k2)∂y2g2(k1)|
= |PP−1 − ha11P∂y2g2(k1)P

−1 − ha22P∂y2g2(k2)P
−1 + h2a11a22P∂y2g2(k1)P

−1

P∂y2g2(k2)P
−1 − h2a12a21P∂y2g2(k2)P

−1P∂y2g2(k1)P
−1|

= | I + ha11∂y2g2(k1)+ ha22∂y2g2(k2)+ h2a11a22∂y2g2(k1)∂y2g2(k2)

−h2a12a21∂y2g2(k2)∂y2g2(k1) | .
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Hence,

the left hand side of (6.16)

= |I + ha11∂y1g1(k1)+ ha22∂y1g1(k2)+ h2a11a22∂y1g1(k1)∂y1g1(k2)

−h2a12a21∂y1g1(k2)∂y1g1(k1)|
|I + ha11∂y2g2(k1)+ ha22∂y2g2(k2)+ h2a11a22∂y2g2(k1)∂y2g2(k2)

−h2a12a21∂y2g2(k2)∂y2g2(k1)|
= the right hand side of (6.16).

Consequently, all two-stage SSEI methods with (6.15) are volume preserving. ��
Remark 6.4.3 We here remark that when K = 0, all the results given in this section
reduce to those proposed in [18], which demonstrates the wider applications of the
analysis. Moreover, using these results of exponential integrators, we will formulate
and study different volume-preserving methods for different problems in the next
section.

6.5 Applications to Various Problems

In this section, our sole goal is to demonstrate the applications of the SSEI methods
to various problems. Using the analysis given in Sect. 6.4, we will show the volume
preservation of different integrators.

6.5.1 Highly Oscillatory Second-Order Systems

Consider the following first-order systems

y ′(t) = J−1My(t)+ J−1∇V (y(t)), (6.20)

where the matrix J is constant and invertible, M is a symmetric matrix and V is a
differentiable function.

Corollary 6.1 All SSEI methods are volume preserving for solving the
system (6.20).

Proof This system is the exact pattern (6.1) with

K = J−1M, g(y(t)) = J−1∇V (y(t)). (6.21)
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It can be verified that

Jg′(y)J−1 = JJ−1∇2V (y)J−1 = ∇2V (y)J−1 = −g′(y)ᵀ

and

J (K + g′(y))J−1 = −(K + g′(y))ᵀ.

This shows that the set H contains all vector fields of (6.20) with the same P = J .
Consequently, according to Theorem 6.3, the result is proved. ��

Remark 6.5.1 When J =
(

0 I

−I 0

)
, the system (6.20) is a Hamiltonian system

y ′(t) = J−1∇H(y(t)) with the Hamiltonian H(y) = 1

2
yᵀMy + V (y). Corol-

lary 6.1 shows that all SSEI methods are volume preserving for this Hamiltonian
system. This is another explanation of the fact that symplectic exponential integra-
tors are volume preserving for Hamiltonian systems.

Consider another special and important case of (6.20) by choosing

y =
(
q

p

)
, J−1 =

(
0 I

−I N

)
, M =

(
Ω 0
0 I

)
, V (y) = V1(q),

which gives the following second-order ODE

q ′′ − Nq ′ +Ωq = −∇V1(q). (6.22)

This system stands for highly oscillatory problems and many problems fall into this
kind of equation such as the dissipative molecular dynamics, the (damped) Duffing,
charged-particle dynamics in a constant magnetic field and semidiscrete nonlinear
wave equations. Applying the SSEI methods to (6.22) and considering Theorem 6.3,
we obtain the following corollary.

Corollary 6.2 The following s-stage adapted exponential integrator applied with
stepsize h

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ki= exp11(cihK)qn + exp12(cihK)q ′n − h

s∑
j=1

aij exp12((ci − cj )hK)∇V1(kj ),

i = 1, 2, · · · , s,
qn+1 = exp11(hK)qn + exp12(hK)q ′n − h

s∑
i=1

bi exp12((1− ci)hK)∇V1(ki),

q ′n+1 = exp21(hK)qn + exp22(hK)q ′n − h

s∑
i=1

bi exp22((1− ci)hK)∇V1(ki)

(6.23)
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are volume preserving for the second-order highly oscillatory equation (6.22),
where exp(hK) is partitioned into

(
exp11(hK) exp12(hK)

exp21(hK) exp22(hK)

)

and the same denotations are used for other matrix-valued functions. Here (c1, · · · ,
cs)

ᵀ, (b1, · · · , bs)ᵀ and (aij )s×s are given in Definition 6.2. IfN commutes withΩ ,
the results of expij for i, j = 1, 2 can be expressed explicitly:

exp11(hK) = e
h
2 N

(
cosh

(h
2

√
N2 − 4Ω

)−N sinh
(h

2

√
N2 − 4Ω

)
(
√
N2 − 4Ω)−1

)
,

exp12(hK) = 2e
h
2 N sinh

(h
2

√
N2 − 4Ω

)
(
√
N2 − 4Ω)−1,

exp21(hK) = −Ω exp12(hK),

exp22(hK) = e
h
2 N

(
cosh

(h
2

√
N2 − 4Ω

)+N sinh
(h

2

√
N2 − 4Ω

)
(
√
N2 − 4Ω)−1

)
.

(6.24)

These results are still true if we replace h by kh with any k ∈ R.

If we further assume that Ω = 0, equation (6.22) becomes

q ′′ = Nq ′ − ∇V1(q). (6.25)

One typical example of this type of system is charged-particle dynamics in a
constant magnetic field (see [33])

x ′′ = x ′ × B + F(x). (6.26)

Here x(t) ∈ R
3 describes the position of a particle moving in an electro-magnetic

field, F(x) = −∇xU(x) is an electric field with the scalar potential U(x), and B =
∇x ×A(x) is a constant magnetic field with the vector potential A(x) = −1

2
x ×B.

Under the condition that Ω = 0, the formula (6.24) can be rewritten more
succinctly as:

exp11(hK) = I, exp12(hK) = hϕ1(hN), exp21(hK) = 0, exp22(hK) = ϕ0(hN),

where the ϕ-functions are defined by (see [29, 30])

ϕ0(z) = ez, ϕk(z) =
∫ 1

0
e(1−σ)z

σ k−1

(k − 1)!dσ, k = 1, 2, · · · . (6.27)
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We then obtain the following volume-preserving methods for the special and
important second-order system (6.25).

Corollary 6.3 The following s-stage integrator applied with stepsize h

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ki = qn + cihϕ1(cihN)q ′n − h2
s∑

j=1

aij (ci − cj )ϕ1((ci − cj )hN)∇V1(kj ),

i = 1, 2, · · · , s,
qn+1 = qn + hϕ1(hN)q ′n − h2

s∑
i=1

bi(1− ci)ϕ1((1− ci)hN)∇V1(ki),

q ′n+1 = ϕ0(hN)q ′n − h

s∑
i=1

biϕ0((1− ci)hN)∇V1(ki)

(6.28)

are volume preserving for the highly oscillatory second-order system (6.25), where
(c1, · · · , cs)ᵀ, (b1, · · · , bs)ᵀ and (aij )s×s are given in Definition 6.2.

Remark 6.5.2 We remark that the above two corollaries are meaningful discoveries
which are of great importance to Geometric Integration for second-order highly
oscillatory problems.

6.5.2 Separable Partitioned Systems

The authors in [18] have proved that the set S contains all separable partitioned
systems. For instance, we consider

(
q

p

)′
=

(
p

−Ωq + g̃(q)

)
=

(
0 I

−Ω 0

)(
q

p

)
+

(
0

g̃(q)

)
, (6.29)

which is exactly the system (6.1) with

K =
(

0 I

−Ω 0

)
, g =

(
0

g̃(q)

)
, f =

(
p

−Ωq + g̃(q)

)
.

It is easy to see that f and g both fall into S with the same P = diag(I,−I). For
this special matrix K , it is clear that

exK =
(

φ0(x
2Ω) xφ1(x

2Ω)

−xΩφ1(x
2Ω) φ0(x

2Ω)

)
for x ∈ R, (6.30)



196 6 Volume-Preserving Exponential Integrators

where

φi(Ω) :=
∞∑
l=0

(−1)lΩl

(2l + i)!

for i = 0, 1. Hence, the exponential integrator (6.3) has a special form, and then we
present it by the following definition.

Definition 6.5 (See [34]) An s-stage ERKN integrator applied with stepsize h for
solving (6.29) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = φ0(c
2
i V )qn + hciφ1(c

2
i V )pn + h2

s∑
j=1

āij (V )g̃(Qj ), i = 1, · · · , s,

qn+1 = φ0(V )qn + hφ1(V )pn + h2
s∑

i=1

b̄i(V )g̃(Qi),

pn+1 = −hΩφ1(V )qn + φ0(V )pn + h

s∑
i=1

bi(V )g̃(Qi),

where ci for i = 1, · · · , s are real constants, and bi(V ), b̄i(V ) and āij (V ) for
i, j = 1, · · · , s are matrix-valued functions of V ≡ h2Ω.

ERKN integrators were first proposed in [34], which are oscillation preserving
as stated in Chap. 1. Further efforts in connection with ERKN integrators have been
made, including symmetric integrators (see [35]), symplectic integrators (see [17]),
energy-preserving integrators (see [36]) and other kinds of integrators (see [37, 38]).
However, the volume-preserving property of ERKN integrators has not received
much attention in the literature. With the analysis given in this chapter, we obtain
the following VP result of ERKN integrators.

Corollary 6.4 Consider a type of s-stage ERKN integrator applied with stepsize h
for (6.29)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi=φ0(c
2
i V )qn + hciφ1(c

2
i V )pn + h2

s∑
j=1

aij (ci − cj )φ1((ci − cj )
2V )g̃(Qj ),

i = 1, · · · , s,
qn+1 = φ0(V )qn + hφ1(V )pn + h2

s∑
i=1

bi(1− ci)φ1((1− ci)
2V )g̃(Qi),

pn+1 = −hΩφ1(V )qn + φ0(V )pn + h

s∑
i=1

biφ0((1− ci)
2V )g̃(Qi),

(6.31)
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where (c1, · · · , cs)ᵀ, (b1, · · · , bs)ᵀ and (aij )s×s are given in Definition 6.2. Under
the condition that bj 
= 0 for j = 1, · · · , s, all one-stage and two-stage (with
(6.15)) ERKN integrators (6.31) (and any composition of these methods) are volume
preserving for solving the separable partitioned system (6.29).

Proof According to Definition 6.2 and the result (6.30), we adapt the SSEI methods
to the system (6.29) and then obtain (6.31). Hence, the volume-preserving result
of (6.31) immediately follows from Theorem 6.4. ��
Remark 6.5.3 It is noted that this is an important result which shows the volume-
preserving ERKN integrators for (6.29). Moreover, it can be observed from (6.31)
that all one-stage ERKN integrators are explicit, which implies that explicit
volume preserving ERKN integrators are obtained for the separable partitioned
system (6.29).

Remark 6.5.4 If Ω is a symmetric and positive semi-definite matrix and g̃(q) =
−∇U(q), the system (6.29) is an oscillatory Hamiltonian system

(
q

p

)′
=

(
0 I

−I 0

)
∇H(p, q)

with the Hamiltonian

H(p, q) = 1

2
pᵀp + 1

2
qᵀΩq + U(q). (6.32)

It has been addressed in Sect. 6.5.1 that this vector field falls into the set H . Thus
Theorem 6.3 provides another way to prove the well-known fact that all symplectic
ERKN integrators (6.31) are volume preserving for the oscillatory Hamiltonian
system (6.32).

We next investigate the volume-preserving property of RKN methods for
standard second-order ODEs. Consider the special case where Ω = 0 for the
above analysis and under this situation, ERKN integrators reduce to RKN methods.
Therefore, we are now in a position to present the following volume-preserving
property for RKN methods.

Corollary 6.5 Consider the following s-stage RKN methods applied with stepsize
h for the standard second-order ODE q ′′ = g̃(q)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qi = qn + hciq
′
n + h2

s∑
j=1

aij (ci − cj )g̃(Qj ), i = 1, · · · , s,

qn+1 = qn + hq ′n + h2
s∑

i=1

bi(1− ci)g̃(Qi),

q ′n+1 = q ′n + h

s∑
i=1

big̃(Qi)

(6.33)
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with the coefficients c = (c1, · · · , cs)ᵀ, b = (b1, · · · , bs)ᵀ and A = (aij )s×s of an
s-stage RK method. If this RK method is symplectic and bj 
= 0 for all j = 1, · · · , s,
then all one-stage and two-stage RKN methods (6.33) (and compositions thereof)
are volume preserving for the standard second-order ODE q ′′ = g̃(q).

Remark 6.5.5 The fact of this corollary can be derived in a different way. Hairer,
Lubich and Wanner have proved in [13] that any symplectic RK method with at
most two stages (and any composition of such methods) is volume preserving for
separable divergence free vector fields. Rewriting the second-order ODE q ′′ =
g̃(q) as a first-order system and applying symplectic RK methods to it implies
the result of Corollary 6.5. In other words, the analysis of volume-preserving
ERKN integrators provides an alternative derivation of the volume-preserving RKN
methods.

6.5.3 Other Applications

It has been shown in [18] that F (∞) contains the affine vector fields f (y) = Ly+d

such that

∣∣∣∣I + h

2
L

∣∣∣∣ =
∣∣∣∣I − h

2
L

∣∣∣∣ for all h > 0. For solving the system in the affine

vector fields, the exponential integrator (6.3) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ki = ecihLyn + h

s∑
j=1

āij (hL)d, i = 1, 2, · · · , s,

yn+1 = ehLyn + h

s∑
i=1

b̄i(hL)d.

In the light of Theorem 6.5, this SSEI method is volume preserving for the affine
vector fields.

It was also noted in [18] that F (∞) contains the vector fields f (y) such that
f ′(y) = JS(y) with a skew-symmetric matrix J and the symmetric matrix S(y).
Assume that

K = JM, g′(y) = JS(y), (6.34)

where M is a symmetric matrix. The system (6.1) with the vector field (6.34) falls
into F (∞). Thus all SSEI methods are volume preserving for the vector field (6.34).
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6.6 Numerical Examples

The purpose of this section is to present a numerical study of our SSEI methods in
comparison with other numerical methods in the literature. To this end, the methods
chosen for comparison are as follows:

• SSRK1: the Gauss-Legendre method of order two whose coefficients are given
as

1

2

1

2

1

• SSEI1: the one-stage SSEI method of order two with the coefficients

1

2

1

2

e
1
2hK

• SSRK2: the Gauss-Legendre method of order four whose coefficients are given
as

3−√3

6

1

4

3− 2
√

3

12

3+√3

6

3+ 2
√

3

12

1

4

1

2

1

2

• SSEI2: the two-stage SSEI method of order four with the coefficients

3−√3

6

1

4

3− 2
√

3

12
e−

√
3

3 hK

3+√3

6

3+ 2
√

3

12
e
√

3
3 hK 1

4

1

2
e

3+√3
6 hK 1

2
e

3−√3
6 hK
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It is noted that all these methods are implicit in general and iterative solutions are
needed. We use fixed-point iteration. We set 10−16 as the error tolerance and 100 as
the maximum number of fixed-point iterations per time step.

Problem 6.1 As the first numerical example, we consider the Duffing equation(
q

p

)′
=

(
0 1

−ω2 − k2 0

)(
q

p

)
+

(
0

2k2q3

)
,

(
q(0)
p(0)

)
=

(
0
ω

)
.

The exact solution of this system is q(t) = sn(ωt; k/ω) with the Jacobi elliptic
function sn. Since it is a Hamiltonian system, all the methods chosen for comparison
are volume preserving. For this problem, we choose k = 0.07 and ω = 20 and then
solve it on the interval [0, 100]with different stepsizes h = 1/2, 1/10, 1/50, 1/200.

The numerical flows at the time points

{
1

2
i

}
i=1,··· ,200

of the four methods are

given in Fig. 6.2. It can be observed from the numerical results that the integrators

Fig. 6.2 Problem 6.1: The flows of different methods
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Fig. 6.3 Problem 6.1: The relative global errors

SSEI1 and SSEI2 perform better than Runge–Kutta methods since they present
a uniform result for every different stepsizes. Finally, we integrate this problem
on [0, tend] with the stepsizes h = 0.1/2i for i = 1, · · · , 4. The relative global
errors for different tend are presented in Fig. 6.3. These results show again that
exponential integrators have better accuracy than Runge–Kutta methods. It is noted
that in Fig. 6.3, some methods do not show the correct convergence. The reason
for this observation might be that we set 10−16 as the error tolerance and 100 as
the maximum number of each fixed-point iteration, and implicit iterations converge
incompletely for these methods.

Problem 6.2 Consider the following divergence free ODEs

⎛
⎝ x

y

z

⎞
⎠
′

=
⎛
⎝ 0 −ω 0
ω 0 −ω
0 ω 0

⎞
⎠

⎛
⎝ x

y

z

⎞
⎠+

⎛
⎝ sin(x − z)

0
sin(x − z)

⎞
⎠ .

The choice of

P =
⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ ,
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Fig. 6.4 Problem 6.2: The flows of different methods

ensures the vector field of this problem fall into S . We consider ω = 100 and the
initial value (x(0), y(0), z(0))ᵀ = (0.5, 0.5, 0.5)ᵀ. This problem is first integrated
on [0, 100] with the stepsizes h = 1/50, 1/100, 1/200, 1/400 and the numerical

flows x and y at the time points

{
1

2
i

}
i=1,··· ,200

are shown in Fig. 6.4. Then the

relative global errors for different tend with the stepsizes h = 0.1/2i for i = 2, · · · , 5
are given in Fig. 6.5. These results demonstrate clearly again that SSEI methods
perform better than SSRK methods.
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Fig. 6.5 Problem 6.2: The relative global errors

Problem 6.3 Consider the damped Helmholtz-Duffing oscillator (see [39])

q ′′ + 2υq ′ + Aq = −Bq2 − εq3,

where q denotes the displacement of the system, A is the natural frequency, ε is a
nonlinear system parameter, υ is the damping factor, and B is a system parameter
independent of time. It is well known that the dynamical behaviour of eardrum
oscillations, elasto-magnetic suspensions, thin laminated plates, graded beams, and
other physical phenomena all fall into this category of equations. We choose the
parameters

υ = 0.01, A = 200, B = −0.5, ε = 1

and the initial values q(0) = 1 and q ′(0) = 15.199. This problem is first
integrated on [0, 200] with the stepsizes h = 1/2, 1/10, 1/50, 1/200. We present

the numerical flows q and p = q ′ at the time points

{
1

2
i

}
i=1,··· ,400

in Fig. 6.6.

We then solve the problem with different tend = 10, 100, 1000 and the stepsizes
h = 0.1/2i for i = 0, · · · , 3. The relative global errors are shown in Fig. 6.7. It
follows again from the results that SSEI methods perform much better than SSRK
methods.
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Fig. 6.6 Problem 6.3: The flows of different methods

Problem 6.4 This numerical experiment concerns the charged particle system with
a constant magnetic field (see [33]). The system is given by (6.26) with the potential

U(x) = 1

100
√
x2

1 + x2
2

and the constant magnetic field B = (0, 0, 10)ᵀ. The initial

values are chosen as x(0) = (0.7, 1, 0.1)ᵀ and x ′(0) = (0.9, 0.5, 0.4)ᵀ. We first
integrate this system on [0, 100] with the stepsizes h = 1/2, 1/10, 1/50, 1/200

and show the numerical flows x2 and v2 = x ′2 at the time points

{
1

2
i

}
i=1,··· ,200
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Fig. 6.7 Problem 6.3: The relative global errors

in Fig. 6.8. Then the problem is solved with tend = 10, 100, 1000 and the stepsizes
h = 0.1/2i for i = 0, · · · , 3 and the relative global errors are shown in Fig. 6.9.
The SSEI methods are also shown to be robust for this problem. Here, it is
important to note that the SSEI1 method is explicit (see (6.28)) when applied to this
problem, whereas the SSRK1 method is implicit and iterative solutions are required
for solving this problem. This fact shows another significant advantage of our
volume-preserving exponential integrators in comparison with volume-preserving
RK methods.

Problem 6.5 We consider the following dynamical system for investigating fluid
particle motion (see [25])

ẋ1 = 1

2
(w2x3 −w3x2)+ 1

2

[
(5r2 − 3)

x1

1+ α
− 2x1

(
x2

1

1+ α
+ αx2

1

1+ α
− x2

3

)]
,

ẋ2 = 1

2
(w3x1 −w1x3)+ 1

2

[
(5r2 − 3)

αx2

1+ α
− 2x2

(
x2

1

1+ α
+ αx2

1

1+ α
− x2

3

)]
,

ẋ3 = 1

2
(w1x2 −w2x1)+ 1

2

[
−(5r2 − 3)x3 − 2x3

(
x2

1

1+ α
+ αx2

1

1+ α
− x2

3

)]
,
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Fig. 6.8 Problem 6.4: The flows of different methods

with α = 1, (w1, w2, w3) = (300, 500, 400), and the initial value (x1(0), x2(0),
x3(0))ᵀ = (−0.1689, 0,−0.0437)ᵀ. We solve this problem on [0, 1000] with
the stepsizes h = 1/50, 1/200, 1/500, 1/1000. The numerical flows through the

(x1, x3) plane at the time points

{
1

50
i

}
i=1,··· ,1000

are plotted in Fig. 6.10. Then the

problem is integrated with tend = 10, 100, 1000 and the stepsizes h = 0.01/2i for
i = 0, · · · , 3 and the relative global errors are shown in Fig. 6.11.

Counterexample We here present a counterexample to show that higher-order
methods do not preserve the volume of the phase space for some vector fields. To
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Fig. 6.9 Problem 6.4: The relative global errors

Fig. 6.10 Problem 6.5: The flows of different methods
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Fig. 6.11 Problem 6.5: The relative global errors

Fig. 6.12 The determinant of the derivative of the numerical flow as a function of time

this end, we consider the following dynamic system

ẋ = −y + sin(z),

ẏ = −x + z + cos(z),

ż = y + cos(x)+ sin(y),

with the initial value (x(0), y(0), z(0))ᵀ = (0, 0, 0)ᵀ. This problem is solved
on [0, 10] with the stepsize h = 0.1. The determinant of the derivative of the
numerical flow as a function of time is given in Fig. 6.12. It can be observed from
the results that only the second-order method SSEI1 is volume-preserving, whereas
the fourth-order method SSEI2 does not preserve the volume. It is noted here that
for higher-order methods, the volume-preserving property is more likely to fail than
low order methods, and one should pay attention to this point in the study of volume-
preserving methods.
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6.7 Conclusions

This chapter studied volume-preserving exponential integrators for dynamical
systems. The necessary and sufficient volume-preserving condition for exponential
integrators was derived and volume-preserving properties were discussed for four
kinds of vector fields. It was shown that symplectic exponential integrators can be
volume preserving for a much larger class of vector fields than just Hamiltonian
systems. It should be noted that some interesting results on Geometric Integration
were presented for second-order highly oscillatory problems and separable parti-
tioned systems. In particular, an important result for Geometric Integration has
been obtained that a type of adapted exponential integrator is volume preserving
for the second-order highly oscillatory systems (6.22) and (6.25). Moreover, the
volume-preserving property of ERKN/RKN methods was analysed for separable
partitioned systems. Numerical experiments are implemented and the numerical
results demonstrate the remarkable robustness and superiority of our volume-
preserving exponential integrators in comparison with volume-preserving Runge–
Kutta methods.

The material in this chapter is based on the work by Wang and Wu [40].
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Chapter 7
Global Error Bounds of One-Stage
Explicit ERKN Integrators
for Semilinear Wave Equations

In this chapter, we analyse global error bounds for one-stage explicit extended
Runge–Kutta–Nyström integrators for semilinear wave equations with periodic
boundary conditions. We show optimal second-order convergence without requiring
Lipschitz continuity and higher regularity of the exact solution.

7.1 Introduction

First of all, we denote by Hs the Sobolev space Hs(T). In this chapter we pursue
the error analysis of one-stage explicit extended Runge–Kutta–Nyström (ERKN)
integrators for the semilinear wave equation with some integer p � 2

utt = uxx + up, u = u(x, t), t ∈ [t0, T ]. (7.1)

The initial values are given by u(·, t0) ∈ Hs+1 and ut (·, t0) ∈ Hs for s � 0. We
consider here real-valued solutions to (7.1) with 2π-periodic boundary conditions
in one space dimension (x ∈ T = R/(2πZ)). It is noted that the energy is finite in
the special case s = 0.

Using a semidiscretisation in space, we can transform equation (7.1) into a
system of second-order ordinary differential equations (ODEs) of the form

ÿ(t) = My(t)+ f (y(t)), (7.2)

where the matrix M describes the discretised second spatial derivative and f (y)

denotes the polynomial nonlinearity. It is very important to note that the eigenvalues
of the matrix M range from 0 to O(K), where 2K stands for the number of
internal discretisation points in space (see, e.g. [1, 2]). This implies that the
spatial semidiscretisation exhibits oscillations with a variety of frequencies, and the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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solution of (7.2) typically contains high-frequency oscillatory terms. Many effective
integrators have been researched (see, e.g. [3–10], and the references therein)
for (7.2). Gautschi-type methods have been well researched and analysed in [6, 11].
Exponential integrators have been widely developed and the reader is referred
to [12–14] for instance. These methods have been applied to semilinear wave
equations (see, e.g. [15–19]). As a standard form of trigonometric integrator (TI),
ERKN integrators were formulated for highly oscillatory second-order differential
equations in [20]. Further researches of these integrators are contained in [21–23].

As is known, the error analysis of TI for ODEs has been researched by many
papers (see, e.g. [11–13, 24–27]). Unfortunately, however, this work is obviously
insufficient because the nonlinearity is assumed to be Lipschitz continuous in all
these publications. There is also much work about the error analysis of TI for PDEs
(see, e.g. [28–31]). The author in [32] showed error bounds of TI for wave equations
without requiring higher regularity of the exact solution, which was achieved by
performing the error analysis in two stages. These two-stage arguments have also
been used by many researchers such as in [33–37]. Recently, an error analysis
has been presented for different schemes for quasilinear wave equations (see, e.g.
[38–40]).

We note the fact that the error analysis of ERKN integrators has not been
well researched yet in the literature for spatial semidiscretisations of (7.1) with
initial values of finite energy. Thus, in this chapter, using the approach described
in [32], we will analyse and present error bounds for one-stage explicit ERKN
integrators when applied to a spectral semidiscretisation in space, requiring only
that the exact solution is of finite energy. First, low-order error bounds will be
considered in a higher-order Sobolev space, where the nonlinearity is, at least
locally, Lipschitz continuous. From this low-order error bound, suitable regularity
of the ERKN integrator will be obtained. Then higher-order error bounds will be
shown in these spaces based on the regularity of the ERKN integrator. Optimal
second-order convergence will be achieved without requiring Lipschitz continuity
and higher regularity of the exact solution. Moreover, this approach to the error
analysis is not restricted to spectral semidiscretisations in space.

7.2 Preliminaries

7.2.1 Spectral Semidiscretisation in Space

We consider the following trigonometric polynomial as an ansatz for the solution of
the nonlinear wave equation (7.1)

uK (x, t) =
∑
j∈K

yj (t)eijx with K = {−K,−K + 1, · · · ,K − 1}, (7.3)
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where yj (t) for j ∈ K are the Fourier coefficients (see, e.g. [32, 41]). Inserting this
ansatz into (7.1) and evaluating at the collocation points xk = πk/K with k ∈ K ,
we obtain a system of second-order ODEs

ÿ(t) = −Ω2y(t)+ f (y(t)), (7.4)

where y(t) = (yj (t))j∈K ∈ C
K is the vector of Fourier coefficients, Ω is

a nonnegative diagonal matrix Ω = diag(ωj )j∈K with ωj = |j |, and the
nonlinearity f is given by

f (y) = y ∗ · · · ∗ y︸ ︷︷ ︸
p times

with (y ∗ z)j =
∑

k+l≡j mod 2K

ykzl, j ∈ K . (7.5)

Here, ‘∗’ denotes the discrete convolution. The initial values y(t0) and ẏ(t0) for (7.4)
are given respectively by

yj (t0) =
∑

k∈Z: k≡j mod 2K

uk(t0), ẏj (t0) =
∑

k∈Z: k≡j mod 2K

u̇k(t0), j ∈ K ,

(7.6)
where uk(t) and u̇k(t) are the Fourier coefficients of u(·, t) and ut (·, t), respectively.
Once the initial values u(·, t0) and ut (·, t0) are given in terms of their Fourier
coefficients, we have the simpler expression:

yj (t0) = uj (t0), ẏj (t0) = u̇j (t0), j ∈ K . (7.7)

It is clear that the exact solution of the semidiscrete system (7.4) can be expressed
by

(
y(t)

ẏ(t)

)
= R(t − t0)

(
y(t0)

ẏ(t0)

)
+

∫ t

t0

(
cos(hΩ) (t − τ )sinc(hΩ)

−Ω sin(hΩ) cos(hΩ)

)(
0

f (y(τ ))

)
dτ,

(7.8)

where sincx = sin x/x and

R(t) =
(

cos(tΩ) tsinc(tΩ)

−Ω sin(tΩ) cos(tΩ)

)
.

Throughout this chapter, we measure the error by the norm (see, e.g. [32, 41])

‖y‖s :=
⎛
⎝∑
j∈K

〈j 〉2s |yj |2
⎞
⎠

1/2

with 〈j 〉 = max(1, |j |) (7.9)
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for y ∈ C
K , where s ∈ R. This norm is (equivalent to) the Sobolev Hs-norm

of the trigonometric polynomial
∑

j∈K yjeijx . Clearly, using this norm, we have
‖y‖s1

� ‖y‖s2
if s1 � s2. The following result presented in [32] is needed in this

chapter.

Proposition 7.1 (See [32]) Assume that σ, σ ′ ∈ R with σ ′ � |σ | and σ ′ � 1. If
‖y‖σ ′ � M and ‖z‖σ ′ � M, then we have

‖f (y)− f (z)‖σ � C ‖y − z‖σ , (7.10)

‖f (y)‖σ ′ � C, (7.11)

with a constant C depending only onM, |σ |, σ ′, and p.

7.2.2 ERKN Integrators

It is known that ERKN integrators are oscillation preserving for (7.4), as stated in
Chap. 1. In this chapter, we consider one-stage explicit ERKN integrators which are
formulated as follows.

Definition 7.1 (See [20]) A one-stage explicit ERKN integrator with stepsize h for
solving (7.4) is defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y(n+c1) = φ0(c
2
1V )y

n + hc1φ1(c
2
1V )ẏ

n,

y(n+1) = φ0(V )y
n + hφ1(V )ẏ

n + h2b̄1(V )f (y
(n+c1)),

ẏ(n+1) = −hΩ2φ1(V )y
n + φ0(V )ẏ

n + hb1(V )f (y
(n+c1)),

(7.12)

where c1 is real constant, b1(V ) and b̄1(V ) are matrix-valued functions of V ≡
h2Ω2, and φj (V ) :=∑∞

k=0
(−1)kV k

(2k + j)! for j = 0, 1, · · · .

In particular, for V = h2Ω2, we have

φ0(V ) = cos(hΩ), φ1(V ) = sinc(hΩ), φ2(V ) = (hΩ)−2(I−cos(hΩ)).

In this chapter, we present five practical one-stage explicit ERKN integrators whose
coefficients are displayed in Table 7.1. It can be seen from Table 7.1 that there
are many different one-stage explicit ERKN integrators, and various methods with
different properties can be constructed.
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Table 7.1 Five one-stage explicit ERKN integrators

Methods c1 b̄1(V ) b1(V ) Symmetric Symplectic

ERKN1 1/2 φ2(V ) φ0(V/4) Non Non

ERKN2 1/2 φ2(V ) φ1(V ) Symmetric Non

ERKN3 1/2 1/2 φ1(V/4) φ0(V/4) Symmetric Symplectic

ERKN4 1/2 1/2 φ2
1(V/4) φ1(V/4)φ0(V/4) Symmetric Non

ERKN5 1/2 1/2 φ1(V )φ1(V/4) φ1(V )φ0(V/4) Symmetric Non

7.3 Main Result

In order to present the error bounds, we need the following assumptions for the
coefficients of the ERKN integrators. Similar assumptions on the filter functions of
some trigonometric methods have been considered in [32].

Assumption 7.1 It is assumed that for a given−1 � β � 1, there exists a constant
c such that

|b̄1(ξ
2)| � cξβ, if − 1 � β � 0, (7.13)

|1/2sinc2(ξ/2)− b̄1(ξ
2)| � cξβ, if 0 < β � 1, (7.14)

|1− b1(ξ
2)| � cξ(1+β), (7.15)

for all ξ = hωj with j ∈ K and ωj 
= 0. Furthermore, we assume that c1 = 1

2
for

the ERKN integrators determined by (7.12).

It is easy to see that all the ERKN integrators displayed in Table 7.1 satisfy this
assumption uniformly for −1 � β � 1 and h > 0. Under this assumption, we
have the following property, which can be verified easily by the definition of the
norm (7.9).

Proposition 7.2 With the conditions of Assumption 7.1 it holds that

‖y − b1(V )y‖s−β � ch(1+β) ‖y‖s+1

for s ∈ R. Moreover, we have

∥∥b̄1(V )y
∥∥
s−β � chβ ‖y‖s

for −1 � β � 0, and

∥∥∥∥
(

1

2
sinc2

(
hΩ

2

)
− b̄1(V )

)
y

∥∥∥∥
s−β

� chβ ‖y‖s

for 0 < β � 1.
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The following theorem presents the main result of this chapter.

Theorem 7.1 Let c � 1 and s � 0. Assume that the exact solution (y(t), ẏ(t)) of
the spatial semidiscretisation (7.4) satisfies

‖y(t)‖s+1 + ‖ẏ(t)‖s � M for 0 � t − t0 � T . (7.16)

Under Assumption 7.1 with the constant c for β = 0 and β = α ∈ [−1, 1], there
exists h0 > 0 such that for 0 < h � h0, the error bound for the numerical solution
(yn, ẏn) obtained from the ERKN integrator (7.12) is given by

∥∥y(tn)− yn
∥∥
s+1−α +

∥∥ẏ(tn)− ẏn
∥∥
s−α � Ch(1+α) for 0 � tn − t0 = nh � T ,

where the constants C and h0 depend only on M and s from (7.16), the power p,
the final time T , and the constant c in Assumption 7.1.

Using the two-stage arguments described in [32, 33, 35–37], we divide the proof
of Theorem 7.1 into two parts. We first show the proof of the lower-order error
bounds in higher-order Sobolev spaces (i.e., −1 � α � 0) in Sect. 7.4. We then
present the proof of the higher-order error bounds in lower-order Sobolev spaces
(i.e., 0 < α � 1) in Sect. 7.5.

Remark 7.1 We remark that the authors in [31] present an error analysis of ERKN
integrators when applied to wave equations. The result is given by using the norm
of a matrix and is proved by following [27, 42]. It is noted that the normal result and
its proof, given in this chapter, are different from those in [31]. Moreover, Lipschitz
continuity and higher regularity of the exact solution are not required in the analysis
of this chapter, which is also different from [31].

Remark 7.2 One-stage ERKN integrators contain some trigonometric integrators
of [32], and some ERKN integrators can be considered as trigonometric integrators
of [32]. However, there is no inclusive relation for these two kinds of methods,
which means that the analysis of [32] cannot be directly used for one-stage ERKN
integrators. The analysis presented here essentially follows from [32] with some
modifications arising from the ERKN discretisation.

7.4 The Lower-Order Error Bounds in Higher-Order
Sobolev Spaces

Throughout the proof in this subsection, we assume that 0 < h � 1 and use the
norm |||(y, ẏ)|||σ = (‖y‖2

σ+1 + ‖ẏ‖2
σ )

1/2 on Hσ+1 ×Hσ for σ ∈ R.
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7.4.1 Regularity Over One Time Step

We first show the preservation of regularity of (7.12) over one time step.

Lemma 7.1 Let s � 0 and −1 � α � 0. Suppose that Assumption 7.1 holds for
β = α with a constant c and |||(y0, ẏ0)|||s � M, then for the solution given by
the ERKN integrator (7.12), we have |||(y1, ẏ1)|||s � C, where C depends only on
M, s, p, and c.

Proof On noticing sinc(0) = 1 � h−1 and the bound |sinc(ξ)| � ξ−1 for ξ > 0, it
follows from (7.12) that∥∥∥y 1

2

∥∥∥
s+1

�
∥∥∥y0

∥∥∥
s+1

+
∥∥∥ẏ0

∥∥∥
s
� 2M, (7.17)

which gives

∥∥∥f (y 1
2 )

∥∥∥
s+1

� C, (7.18)

by considering (7.11) with σ ′ = s + 1. On noticing the fact that −1 � α � 0 and
the bound (7.13) of b̄1, we have∥∥∥y1

∥∥∥
s+1

�
∥∥∥y0

∥∥∥
s+1

+
∥∥∥ẏ0

∥∥∥
s
+ h2+α

∥∥∥f (y 1
2 )

∥∥∥
s+1+α

�
∥∥∥y0

∥∥∥
s+1

+
∥∥∥ẏ0

∥∥∥
s
+ h2+α

∥∥∥f (y 1
2 )

∥∥∥
s+1

.

It follows from (7.18) that
∥∥y1

∥∥
s+1 � C. Similarly, we obtain

∥∥ẏ1
∥∥
s
� C, and then

the proof is complete. ��

7.4.2 Local Error Bound

We now turn to the local error of the ERKN integrator (7.12).

Lemma 7.2 (Local Error in Hs+1−α × Hs−α for −1 � α � 0) With the
conditions of Lemma 7.1, if |||(y(τ ), ẏ(τ ))|||s � M for t0 � τ � t1, it holds
that |||(y(t1), ẏ(t1))− (y1, ẏ1)|||s−α � Ch2+α, where the constant C depends only
onM, s, p, and c.

Proof Throughout the proof, C stands for a generic constant depending only on
M, s, p, and c.
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(I) The local error of y(t1)− y1.
Using (7.8) and (7.12) we obtain

y(t1)− y1 =
∫ t1

t0

(t1 − τ )sinc((t1 − τ )Ω)f (y(τ ))dτ − h2b̄1(V )f (y
1
2 ).

We note the fact that for ξ > 0 and −1 � α � 0, |sinc(ξ)| � ξα, and hα � 1.
By these results, (7.13) and (7.17), we have∥∥∥y(t1)− y1

∥∥∥
s+1−α � h2+α sup

t0�τ�t1

‖f (y(τ ))‖s+1 + ch2+α
∥∥∥f (y 1

2 )

∥∥∥
s+1

.

It follows from (7.11) and (7.18) that ‖f (y(τ ))‖s+1 � C, which leads to

∥∥∥y(t1)− y1
∥∥∥
s+1−α � Ch2+α.

(II) The local error of ẏ(t1)− ẏ1.
It follows from (7.8) and (7.12) that

ẏ(t1)− ẏ1 =
∫ t1

t0

[cos((t1 − τ )Ω)− I ]f (y(τ ))dτ (7.19)

+
∫ t1

t0

f (y(τ ))dτ − hf

(
y

(
t0 + t1

2

))
(7.20)

+hf
(
y

(
t0 + t1

2

))
− hf (y

1
2 ) (7.21)

+h(I − b1(V ))f (y
1
2 ). (7.22)

• Bound of (7.19). For ξ > 0 and −1 � α � 0, it is easy to obtain that | cos(ξ) −
1| � 2ξ1+α. On noticing (7.11) with σ ′ = s + 1, one arrives at

∥∥∥∥
∫ t1

t0

[cos((t1 − τ )Ω)− I ]f (y(τ ))dτ
∥∥∥∥
s−α

� 2h1+α
∫ t1

t0

Cdτ � Ch2+α.

• Bound of (7.20). Since 1 � ξ1+α + ξα for ξ > 0, we rewrite (7.20) as

∥∥∥∥
∫ t1

t0

f (y(τ ))dτ − hf

(
y

(
t0 + t1

2

))∥∥∥∥
s−α

� h1+α

×
∥∥∥∥
∫ t1

t0

f (y(τ ))dτ − hf

(
y

(
t0 + t1

2

))∥∥∥∥
s+1

+hα
∥∥∥∥
∫ t1

t0

f (y(τ ))dτ − hf

(
y

(
t0 + t1

2

))∥∥∥∥
s

.
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It then follows from (7.11) with σ ′ = s + 1 that

∥∥∥∥
∫ t1

t0

f (y(τ ))dτ − hf

(
y

(
t0 + t1

2

))∥∥∥∥
s+1

�
∫ t1

t0

Cdτ + Ch � Ch.

For an estimate in the norm ‖·‖s , it is remarked that (7.20) is the quadrature error
of the mid-point rule. With its first-order Peano kernel K1(τ ) and by the Peano
kernel theorem, we obtain∥∥∥∥

∫ t1

t0

f (y(τ ))dτ − hf

(
y

(
t0 + t1

2

))∥∥∥∥
s

= h2
∥∥∥∥
∫ t1

t0

K1(τ )
d

dt
f (y(t0 + τh))dτ

∥∥∥∥
s

� Ch2,

where we have used (3.4a) in [32]. Thus, it is true that

∥∥∥∥
∫ t1

t0

f (y(τ ))dτ − hf

(
y

(
t0 + t1

2

))∥∥∥∥
s−α

� Ch2+α. (7.23)

• Bound of (7.21). Using (7.10) with σ = s − α, we have

∥∥∥∥hf
(
y

(
t0 + t1

2

))
− hf (y

1
2 )

∥∥∥∥
s−α

� Ch

∥∥∥∥y
(
t0 + t1

2

)
− y

1
2

∥∥∥∥
s−α

.

It follows from (7.8) and (7.12) that

y

(
t0 + t1

2

)
− y

1
2 =

∫ t0+t1
2

t0

(
t0 + t1

2
− τ

)
sinc

((
t0 + t1

2
− τ

)
Ω

)
f (y(τ ))dτ.

(7.24)

In a similar way to the first part of this proof, we obtain

∥∥∥∥y
(
t0 + t1

2

)
− y

1
2

∥∥∥∥
s+1−α

� h2+α sup
t0�τ� t0+t1

2

‖f (y(τ ))‖s+1 � Ch2+α.

Then, it is true that∥∥∥∥y
(
t0 + t1

2

)
− y

1
2

∥∥∥∥
s−α

�
∥∥∥∥y

(
t0 + t1

2

)
− y

1
2

∥∥∥∥
s+1−α

� Ch2+α,

which leads to

∥∥∥∥hf
(
y

(
t0 + t1

2

))
− hf (y

1
2 )

∥∥∥∥
s−α

� Ch3+α.
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• Bound of (7.22). According to (7.18) and the bound (7.15), we have

∥∥∥h(I − b1(V ))f (y
1
2 )

∥∥∥
s−α � Ch2+α

∥∥∥f (y 1
2 )

∥∥∥
s+1

� Ch2+α.

Clearly, all these estimates imply
∥∥ẏ(t1)− ẏ1

∥∥
s−α � Ch2+α.

The proof is complete. ��

7.4.3 Stability

In this subsection we analyse the stability of the ERKN integrator (7.12).

Lemma 7.3 (Stability in Hs+1−α ×Hs−α for−1 � α � 0) Under the conditions
of Lemma 7.1, if we consider the ERKN integrator (7.12)with different initial values
(y0, ẏ0) and (z0, ż0) satisfying |||(y0, ẏ0)|||s � M and |||(z0, ż0)|||s � M, then it
holds that

|||(y1, ẏ1)− (z1, ż1)|||s−α � (1+ Ch)|||(y0, ẏ0)− (z0, ż0)|||s−α,

where the constant C depends only onM, s, p, and c.

Proof It follows from the result (3.8) in [32] and ERKN integrators (7.12) that

|||(y1, ẏ1)− (z1, ż1)|||s−α � |||(y0, ẏ0)− (z0, ż0)|||s−α
+h|ẏ0

0 − ż0
0| (7.25)

+h2
∥∥∥b̄1(V )

(
f (y

1
2 )− f (z

1
2 )
)∥∥∥

s+1−α (7.26)

+h
∥∥∥b1(V )

(
f (y

1
2 )− f (z

1
2 )
)∥∥∥

s−α . (7.27)

• It is trivial for (7.25), that h|ẏ0
0 − ż0

0| � h
∥∥ẏ0

0 − ż0
0

∥∥
s−α .

• With regard to (7.26), combining the bound (7.13) of b̄1 and (7.10) with σ =
σ ′ = s + 1 yields

h2
∥∥∥b̄1(V )

(
f (y

1
2 )− f (z

1
2 )
)∥∥∥

s+1−α � Ch2+α
∥∥∥y 1

2 − z
1
2

∥∥∥
s+1

.

Using the formula for ERKN integrators (7.12) again, we confirm that∥∥∥y 1
2 − z

1
2

∥∥∥
s+1

�
∥∥y0 − z0

∥∥
s+1 +

∥∥ẏ0 − ż0
∥∥
s
. This implies

h2
∥∥∥b̄1(V )

(
f (y

1
2 )− f (z

1
2 )
)∥∥∥

s+1−α � Ch2+α
∥∥∥y0 − z0

∥∥∥
s+1

+ Ch2+α
∥∥∥ẏ0 − ż0

∥∥∥
s
.



7.4 The Lower-Order Error Bounds in Higher-Order Sobolev Spaces 223

• Concerning (7.27), it follows from (7.15) that |b1(ξ)| � 1+ cξ1+α, and then we
have

h

∥∥∥b1(V )
(
f (y

1
2 )− f (z

1
2 )
)∥∥∥

s−α

� h

∥∥∥f (y 1
2 )− f (z

1
2 )

∥∥∥
s−α + ch2+α

∥∥∥f (y 1
2 )− f (z

1
2 )

∥∥∥
s+1

� Ch

∥∥∥y 1
2 − z

1
2

∥∥∥
s−α + Ch2+α

∥∥∥y 1
2 − z

1
2

∥∥∥
s+1

� C(h+ h2+α)
∥∥∥y0 − z0

∥∥∥
s+1

+ C(h+ h2+α)
∥∥∥ẏ0 − ż0

∥∥∥
s
.

The above estimates of (7.25)–(7.27) with −1 � α � 0 complete the proof. ��

7.4.4 Proof of Theorem 7.1 for −1 � α � 0

We are now in a position to present the proof of Theorem 7.1 for −1 � α � 0,
based on the three lemmas stated above.

Proof

(I) We begin with the proof for the case where α = 0. Let C1 and C2 be the
constants of Lemmas 7.2 and 7.3 with α = 0, respectively. It is noted that
Lemma 7.3 is considered with 2M instead of M . Let h0 = M/(C1T eC2T ) and
we show by induction on n that for h � h0

|||(yn, ẏn)− (y(tn), ẏ(tn))|||s � C1eC2nhnh2, (7.28)

as long as tn − t0 = nh � T .

We first have |||(y0, ẏ0) − (y(t0), ẏ(t0))|||s = 0 � C1. We assume that the
result (7.28) is true for n = 0, · · · ,m− 1. This implies that

|||(ym−1, ẏm−1)− (y(tm−1), ẏ(tm−1))|||s � C1eC2(m−1)h(m− 1)h2,

which gives

|||(ym−1, ẏm−1)|||s � M + C1eC2(m−1)h(m− 1)h2 � M + C1eC2T T h � 2M,

as long as tm−1− t0 = (m− 1)h � T . Denoting by E one time step with the ERKN
integrator (7.12), we obtain

|||(ym, ẏm)− (y(tm), ẏ(tm))|||s = |||E (ym−1, ẏm−1)− (y(tm), ẏ(tm))|||s
� |||E (ym−1, ẏm−1)− E (y(tm−1), ẏ(tm−1))|||s (7.29)

+|||E (y(tm−1), ẏ(tm−1))− (y(tm), ẏ(tm))|||s . (7.30)
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In terms of Lemma 7.3, (7.29) admits the bound

|||E (ym−1, ẏm−1)− E (y(tm−1), ẏ(tm−1))|||s
� (1+ C2h)|||(ym−1, ẏm−1)− (y(tm−1), ẏ(tm−1))|||s
� (1+ C2h)C1eC2(m−1)h(m− 1)h2.

With regard to (7.30), it follows from Lemma 7.2 that |||E (y(tm−1), ẏ(tm−1)) −
(y(tm), ẏ(tm))|||s � C1h

2. We then obtain

|||(ym, ẏm)− (y(tm), ẏ(tm))|||s � (1+ C2h)C1eC2(m−1)h(m− 1)h2 + C1h
2.

Using Taylor expansions, we obtain that

(1+ C2h)C1eC2(m−1)h(m− 1)h2 + C1h
2 � C1eC2mhmh2.

Consequently, (7.28) holds, and hence

|||(yn, ẏn)− (y(tn), ẏ(tn))|||s � C1T eC2T h � Ch,

which proves the statement of Theorem 7.1 for α = 0.

(II) We next consider the case −1 � α < 0. Let h0 be as above and let C1 and C2
be as above but for the new α instead of α = 0. We then prove, by induction
on n, that

|||(yn, ẏn)− (y(tn), ẏ(tn))|||s−α � C1eC2nhnh2+α, (7.31)

as long as tn − t0 = nh � T .

Obviously, this holds for n = 0. It follows from the proof stated above for the
case α = 0 that |||(yn−1, ẏn−1)|||s � 2M , as long as tn−1 − t0 = (n − 1)h � T .

This allows us to apply Lemmas 7.2 and 7.3 to (7.31), which gives

|||(yn, ẏn)− (y(tn), ẏ(tn))|||s−α � |||E (yn−1, ẏn−1)

−E (y(tn−1), ẏ(tn−1))|||s−α
+|||E (y(tn−1), ẏ(tn−1))− (y(tn), ẏ(tn))|||s−α

� (1+ C2h)C1eC2(n−1)h(n− 1)h2+α + C1h
2+α � C1eC2nhnh2+α.

This confirms that (7.31) is true, and then we have

|||(yn, ẏn)− (y(tn), ẏ(tn))|||s−α � C1T eC2T h1+α � Ch1+α.

The proof is complete. ��
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Remark 7.3 It follows from the above proof for α = 0 that the numerical solutions
are bounded in Hs+1 ×Hs

|||(yn, ẏn)|||s � 2M for 0 � tn − t0 = nh � T . (7.32)

This regularity of the numerical solution is essential for the proof of Theorem 7.1
for 0 < α � 1 in the next section.

7.5 Higher-Order Error Bounds in Lower-Order Sobolev
Spaces

The following three lemmas are needed for the proof of Theorem 7.1 in lower-order
Sobolev spaces.

Lemma 7.4 Let s � 0 and 0 < α � 1. Suppose that Assumption 7.1 holds for
β = α with constant c and |||(y0, ẏ0)|||s � M. We have |||(y1, ẏ1)|||s � C with a
constant C depending only onM, s, p, and c.

We omit the proof of Lemma 7.4 which is quite similar to that of Lemma 7.1.

Lemma 7.5 (Local Error in Hs+1−α × Hs−α for 0 < α � 1) Under the
conditions of Lemma 7.4, if |||(y(τ ), ẏ(τ ))|||s � M for t0 � τ � t1, then it holds
that |||(y(t1), ẏ(t1))− (y1, ẏ1)|||s−α � Ch2+α, where the constant C depends only
onM, s, p, and c.

Proof

(I) Local error of y(t1)− y1.

It follows from (7.8), (7.12) and

∫ t1

t0

(t1 − τ )sinc((t1 − τ )Ω)dτ = 1

2
h2sinc2

(
1

2
hΩ

)
,

that

y(t1)− y1 =
∫ t1

t0

(t1 − τ )sinc((t1 − τ )Ω)

[
f (y(τ ))− f

(
y

(
t0 + t1

2

))]
dτ (7.33)

+1

2
h2sinc2

(
1

2
hΩ

)[
f

(
y

(
t0 + t1

2

))
− f (y

1
2 )

]
(7.34)

+h2
[

1

2
sinc2

(
1

2
hΩ

)
− b̄1(V )

]
f (y

1
2 ). (7.35)
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• Bound of (7.33). For ξ > 0 and 0 < α � 1, it is clear that |sinc(ξ)| � ξ−1+α.
Using this result, the estimate (7.10) with σ = s, and the fact

∥∥∥∥y(τ)− y

(
t0 + t1

2

)∥∥∥∥
s

�
∫ τ

t0+t1
2

‖ẏ(t)‖s dt � Ch,

we obtain∥∥∥∥
∫ t1

t0

(t1 − τ )sinc((t1 − τ )Ω)

[
f (y(τ ))− f

(
y

(
t0 + t1

2

))]
dτ

∥∥∥∥
s+1−α

� h−1+α
∫ t1

t0

|t1 − τ |
∥∥∥∥f (y(τ ))− f

(
y

(
t0 + t1

2

))∥∥∥∥
s

dτ

� Ch−1+α
∫ t1

t0

|t1 − τ |
∥∥∥∥y(τ)− y

(
t0 + t1

2

)∥∥∥∥
s

dτ � Ch2+α.

• For (7.34), according to the fact that |sinc(ξ)|2 � 1 · ξ
ξ2 = ξ−1 for ξ > 0 and the

estimate (7.10) with σ = s − α, we have∥∥∥∥1

2
h2sinc2

(
1

2
hΩ

)[
f

(
y

(
t0 + t1

2

))
− f (y

1
2 )

]∥∥∥∥
s+1−α

� Ch

∥∥∥∥f
(
y

(
t0 + t1

2

))
− f (y

1
2 )

∥∥∥∥
s−α

� Ch

∥∥∥∥y
(
t0 + t1

2

)
− y

1
2

∥∥∥∥
s−α

.

Furthermore, the estimate (7.11) with σ ′ = s + 1 gives

∥∥∥∥y
(
t0 + t1

2

)
− y

1
2

∥∥∥∥
s−α

�
∥∥∥∥y( t0 + t1

2
)− y

1
2

∥∥∥∥
s+2−α

=
∥∥∥∥∥
∫ t0+t1

2

t0

(
t0 + t1

2
− τ )sinc((

t0 + t1

2
− τ )Ω)f (y(τ ))dτ

∥∥∥∥∥
s+2−α

(7.36)

� h−1+α
∫ t0+t1

2

t0

∣∣∣∣ t0 + t1

2
− τ

∣∣∣∣ ‖f (y(τ ))‖s+1 dτ � Ch1+α.

Thus, we obtain

∥∥∥∥1

2
h2sinc2

(
1

2
hΩ

)[
f

(
y

(
t0 + t1

2

))
− f (y

1
2 )

]∥∥∥∥
s+1−α

�

Ch2+α.
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• With regard to (7.35), considering (7.14) and the estimate (7.11) with σ ′ = s+ 1
yields

∥∥∥∥h2
[

1

2
sinc2

(
1

2
hΩ

)
− b̄1(V )

]
f (y

1
2 )

∥∥∥∥
s+1−α

� h2+α
∥∥∥f (y 1

2 )

∥∥∥
s+1

� Ch2+α.

Finally, all the bounds of (7.33)–(7.35) imply

∥∥∥y(t1)− y1
∥∥∥
s+1−α � Ch2+α.

(II) Local error of ẏ(t1)− ẏ1.

Likewise, this error bound can be derived as the bound given in (II) of Lemma 7.2
with the first-order Peano kernel replaced by the second-order Peano kernel. ��
Lemma 7.6 (Stability in Hs+1−α ×Hs−α for 0 < α � 1) With the conditions of
Lemma 7.4, we consider different initial values (y0, ẏ0) and (z0, ż0) for the ERKN
integrator (7.12). If max{|||(y0, ẏ0)|||s, |||(z0, ż0)|||s} � M , then we have

|||(y1, ẏ1)− (z1, ż1)|||s−α � (1+ Ch)|||(y0, ẏ0)− (z0, ż0)|||s−α,

where the constant C depends only onM, s, p, and c.

Proof We begin with

|||(y1, ẏ1)− (z1, ż1)|||s−α � |||(y0, ẏ0)− (z0, ż0)|||s−α + h|ẏ0
0 − ż0

0|
+h2

∥∥∥b̄1(V )
(
f (y

1
2 )− f (z

1
2 )
)∥∥∥

s+1−α (7.37)

+h
∥∥∥b1(V )

(
f (y

1
2 )− f (z

1
2 )
)∥∥∥

s−α . (7.38)

It is clear that |b̄1(ξ)| � 1

2
+ cξα due to (7.14). Hence, the bound of (7.37) is

h2
∥∥∥b̄1(V )

(
f (y

1
2 )− f (z

1
2 )
)∥∥∥

s+1−α � 1

2
h2

∥∥∥f (y 1
2 )− f (z

1
2 )

∥∥∥
s+1−α

+1

2
h2+α

∥∥∥f (y 1
2 )− f (z

1
2 )

∥∥∥
s+1

� Ch2(1/2+ hα)

∥∥∥y 1
2 − z

1
2

∥∥∥
s+1

� Ch2(1/2+ hα)

∥∥∥y0 − z0
∥∥∥
s+1

+ Ch2(1/2+ hα)

∥∥∥ẏ0 − ż0
∥∥∥
s
.
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We turn to (7.38). Clearly, |b1(ξ)| � 1+ cξ1+α due to (7.15), and then we obtain

h

∥∥∥b1(V )
(
f (y

1
2 )− f (z

1
2 )
)∥∥∥

s−α � h

∥∥∥f (y 1
2 )− f (z

1
2 )

∥∥∥
s−α

+ch2+α
∥∥∥f (y 1

2 )− f (z
1
2 )

∥∥∥
s+1

� C(h+ h2+α)
∥∥∥y0 − z0

∥∥∥
s+1

+ C(h+ h2+α)
∥∥∥ẏ0 − ż0

∥∥∥
s
.

The proof is complete as a consequence of the above bounds. ��
Proof of Theorem 7.1 for 0 < α � 1 .

Proof This proof is the same as that for−1 � α < 0 given in Sect. 7.4. A key point
used here is that the numerical solution is bounded in Hs+1 × Hs on the basis of
Remark 7.3. ��
Remark 7.4 We only consider one-stage ERKN integrators in the error analysis.
The extension of the analysis to higher-stage ERKN integrators is not obvious since
there are some technical difficulties which need to be overcome. This issue needs to
be considered in future investigations.

7.6 Numerical Experiments

This section presents a numerical experiment to illustrate the error bounds of two
one-stage explicit ERKN integrators.

We solve the problem (7.1) with p = 2, and use the spatial semidiscretisation
with K = 26 and K = 28. Following [32], we choose the initial conditions for
the coefficients yj (t0) and ẏj (t0) on the complex unit circle and then scale them by
〈j 〉−1.51 and 〈j 〉−0.51, respectively. Here, it is important to note that these complex
numbers are chosen such that the corresponding trigonometric polynomial (7.3)
takes real values at the collocation points. Then, the corresponding initial values
satisfy the condition (7.16) of Theorem 7.1 at time t = t0 uniformly in K for s = 0.
For the time discretisation, we choose ERKN3 and ERKN4 whose coefficients are
displayed in Table 7.1. For comparison, we also consider a one-stage RKN method,
which is obtained from these ERKN integrators by letting M = 0.

The problem is solved on the interval [0, 10] with the stepsizes h = 1/2j for
j = 0, 1, · · · , 10. We measure the errors

erry = ∥∥y(tn)− yn
∥∥

1−α , errdy = ∥∥ẏ(tn)− ẏn
∥∥−α

in different Sobolev norms α = 1,
1

2
, 0,−1

2
,−1. For the RKN method, it has been

checked that the errors are too large for some big stepsizes. Therefore we use smaller
stepsizes h = 1/2j for j = 4, · · · , 14. We plot the logarithm of the errors against
the logarithm of stepsizes for the results displayed in Figs. 7.1 and 7.2.
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Fig. 7.1 The logarithm of the errors against the logarithm of stepsizes for K = 26



230 7 Global Error Bounds of One-Stage Explicit ERKN Integrators for Semilinear. . .

Fig. 7.2 The logarithm of the errors against the logarithm of stepsizes for K = 28
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It follows from these results that the convergence order is not uniform for α,
and when α goes from 1 to −1, the errors of ERKN integrators become large. This
supports the result given in Theorem 7.1. Moreover, it can be observed from the
computed results that ERKN integrators work much better for larger stepsizes, and
they are more accurate for smaller stepsizes than the corresponding RKN method.

At the end of this section, we remark that the results for ERKN4 with a small
stepsize are considered as the “exact” solutions of the underlying system for both
values of K . We also note that a few errors for ERKN integrators for K = 28 are
smaller than those for K = 26. This phenomenon may be caused by the choices of
“exact” solutions for different K .

7.7 Concluding Remarks

In this chapter, we have analysed the error bounds of ERKN integrators when
applied to spatial semidiscretisations of semilinear wave equations. Optimal second-
order convergence has been obtained without requiring Lipschitz continuity and
higher regularity of the exact solution. Moreover, the analysis is uniform in the
spatial discretisation parameter. On the basis of this work, we are hopeful of
obtaining an extension to two-stage ERKN integrators for semidiscrete semilinear
wave equations. Another issue for future exploration is the error analysis of ERKN
integrators in the case of quasi-linear wave equations.

The material in this chapter is based on the work by Wang and Wu [43].
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Chapter 8
Linearly-Fitted Conservative
(Dissipative) Schemes for Nonlinear
Wave Equations

The discrete gradient method is a well-known scheme for the numerical integration
of dynamic systems. Its extension to highly oscillatory Hamiltonian systems is
called extended discrete gradient method. In this chapter, on the basis of the
extended discrete gradient method, we present an efficient approach to devising
a structure-preserving scheme for numerically solving conservative (dissipative)
nonlinear wave equations. This scheme can preserve the energy exactly for conser-
vative wave equations. With a minor improvement to the extended discrete gradient
method, this scheme is applicable to dissipative wave equations, and can preserve
the dissipation structure of the underlying dissipative wave equation.

8.1 Introduction

The idea of geometric integration has led to the rapid development of numerical
integration. Numerical schemes that conserve geometric structure have been shown
to possess excellent qualitative properties in studies of the long-time behaviour of
dynamical systems. Such schemes are sometimes called geometric or structure-
preserving integrators. The structure includes physical/geometric properties such
as first integrals, symplecticity, oscillations, symmetries or reversing symmetries,
phase-space volume, Lyapunov functions, and foliations. Since geometric inte-
grators are excellent in preserving qualitative features of simulated differential
equations, they have important applications in many fields, such as fluid dynam-
ics, celestial mechanics, molecular dynamics, quantum physics, plasma physics,
quantum mechanics, and meteorology. We refer the reader to [1–4] for surveys of
this research. The consideration of qualitative properties in ordinary and partial
differential equations is very important when designing numerical schemes. It
is possible to devise relatively general frameworks for structure preservation for
ordinary differential equations (ODEs). However, this seems somewhat much more
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difficult for partial differential equations (PDEs) because PDEs are a huge and
diverse collection of problems and each equation under consideration normally
requires a dedicated scheme (see, e.g. [5–9]). Fortunately, many attempts have
been made to give a fairly general methodology to develop geometric schemes for
PDEs. For example, in [10], by discretising the energy of the PDEs to get an ODE
system, then applying the average vector field method to the resulting system, the
authors proposed a systematic procedure to deal with evolutionary PDEs as far as
conservation or dissipation of energy is concerned. Another example is the class of
PDEs that can be formulated into multi-symplectic form to which, one can apply a
scheme which preserves a discrete version of this form (see, e.g. [11] for a review
of this approach). Many energy-preserving or multi-symplectic methods have been
derived for Hamiltonian PDEs based on the multi-symplectic formulation (see, e.g.
[12–17]), although further theoretical analysis for them is still needed.

It is noted that there has been an enormous advance during recent years in dealing
with the system of highly oscillatory ODEs

q̈ +Mq = f (q), (8.1)

where ‖M‖ � max

{
1,

∥∥∥∥∂f∂q
∥∥∥∥
}

, which are frequently generated by spatial semidis-

cretisations of nonlinear wave equations. In the literature, some useful approaches
for constructing Runge–Kutta–Nyström (RKN)-type integrators have been proposed
(see, e.g. [18–23]). Taking full advantage of the special structure introduced by
the linear term Mq , Wu et al. [23] formulated a standard form of extended RKN
(ERKN) integrators for (8.1). ERKN integrators exhibit the correct qualitative
behaviour much better than classical RKN methods due to the use of the special
structure brought by the linear term Mq from (8.1). An essential feature is that this
class of ERKN integrators is oscillation preserving (see Chap. 1). For further work
on this topic, we refer the reader to [22, 24, 25]. If f is the negative gradient of a
scalar function V , i.e., f = −∇V , where the operator ∇ is the standard gradient,
then (8.1) is a multi-frequency highly oscillatory Hamiltonian system. Energy-
preserving integrators, such as the AVF method, are an important approach for
Hamiltonian systems. As is known, the AVF method is related to discrete gradient
methods (see [26]). Combining the idea of the discrete gradient method with
the ERKN integrator, the authors in [27] presented an extended discrete gradient
formula for the highly oscillatory Hamiltonian system (8.1).

In this chapter, we will present an efficient approach for dealing with nonlinear
wave equations following the line of [10]. We first approximate the function whose
negative variational derivative is the right-hand side term of the underlying wave
equation, and semidiscretise the conservative wave equations into a Hamiltonian
system of ODEs, or the dissipative wave equations into a dissipative system of
ODEs. We then apply the extended discrete gradient method to the resulting system
of ODEs. This process yields a conservative scheme for conservative wave equations
and a dissipative scheme for dissipative wave equations, and can be applied to a
broad class of wave equations in a systematic and routine manner.
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8.2 Preliminaries

In this chapter, we consider nonlinear wave equations of the form

∂2u

∂t2
= −δG

δu
, (8.2)

where

G [u] =
∫
Ω

G[u]dx, Ω ⊆ R
d , (8.3)

and u : Rd × R → R
m, dx = dx1 · · · dxd . The square brackets appearing in (8.3)

denote that a function depends on u itself as well as the derivatives of u with respect
to the independent variables x = (x1, · · · , xd) up to and including some degree v.

The variational derivative
δG

δu
is anm-vector, which can be defined via the following

relation

d

dε

∣∣∣∣
ε=0

G [u+ εv] =
∫
Ω

δG

δu
· vdx, (8.4)

for any sufficiently smooth m-vector of functions v(x).
In what follows, we assume that the solution has sufficient regularity and the

boundary conditions on Ω are chosen such that the boundary terms vanish when
calculating integration by parts (for example, periodic boundary conditions).

We take d = 1, m = 1 as an example. This case gives

G [u] =
∫
Ω

G

(
u,

∂u

∂x
, · · · , ∂

vu

∂xv

)
dx,

and

δG

δu
= ∂G

∂u
− ∂

∂x

(
∂G

∂ux

)
+ ∂

∂x2

(
∂G

∂uxx

)
+ · · · + (−1)v

∂

∂xv

(
∂G

∂u(v)

)
.

In general, for any positive integers m, d , the variational derivatives can be
calculated by applying the Euler operator to G[u] (see, e.g. [28] for details).

It follows from our assumption that equations of the form (8.2) have in common
with the energy conservation property

d

dt
H [u] = d

dt

∫
Ω

1

2

(
∂u

∂t

)2

+G[u]dx = 0, (8.5)
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and we call them conservative systems. It is important to note that the wave
equation (8.2) can be represented as a system of first-order PDEs

(
ut

wt

)
=

(
0 I

−I 0

)⎛
⎜⎜⎝
δH̃

δu

δH̃

δw

⎞
⎟⎟⎠ , (8.6)

where

H̃ [u,w] =
∫
Ω

1

2
w2 +G[u]dx, (8.7)

and w = ut is an intermediate function. As

S =
(

0 I

−I 0

)
,

and S is skew-symmetric, with (8.6), the conservation property is rewritten as the
modified energy conservation property

d

dt
H̃ [u,w] = 0. (8.8)

Discretising the energy functional H̃ based on a consistent approximation H̄x,
the authors in [10] semidiscretised the conservative PDEs (8.6) into a Hamiltonian
system of ODEs with ‘skew-gradient’ form

ẏ = S∇H̄ (y), y =
(
U

W

)
, (8.9)

where U and W denote the discrete values of u and w = ut at the mesh points,
respectively. Then applying the discrete gradient method (see the next section for
details) to the semidiscretised system leads to the following scheme

yn+1 − yn

t
= S∇̄H̄ (yn, yn+1),

for advancing the numerical solution yn at time tn to yn+1 at time tn+1 = tn + t ,
where ∇̄H̄ (yn, yn+1) is the discrete gradient of H̄ . A distinct feature of this scheme
is that it preserves the discretised energy exactly.

In this chapter, we here also consider wave equations with a damping term

∂2u

∂t2
+ α

∂u

∂t
= −δG

δu
, (8.10)
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where α > 0 is a small positive constant. The term αut appearing in (8.10)
represents a damping force proportional to the velocity ut . Since these type of
equations (8.10) have in common the energy dissipation property

d

dt
H [u] = −α

∫
Ω

(
∂u

∂t

)2

dx < 0, (8.11)

we usually call them dissipative systems. In this case, H [u] is a Lyapunov function
of (8.10). It is clear that wave equations (8.10) can be rewritten as

(
ut

wt

)
= D

⎛
⎜⎜⎝
δH̃

δu

δH̃

δw

⎞
⎟⎟⎠ , (8.12)

where

D =
(

0 I

−I −αI
)
.

It is easy to see that D is semi-negative definite. In a similar way to the conservative
case, semidiscretising the dissipative PDEs (8.12) results in a dissipative system of
ODEs as follows

ẏ = D∇H̄ (y), y =
(
U

W

)
, (8.13)

and then applying the discrete gradient method to system (8.13), we obtain the
scheme

yn+1 − yn

t
= D∇̄H̄ (yn, yn+1).

An advantage of this scheme is that it preserves the decay of the energy (see, e.g.
[10]).

Remark 8.2.1 We here remark that in the case of the wave equations, in order
to fit the framework in [10], we need to double the dimension of the systems,
which should be avoided from the computational point of view. Moreover, the wave
equations have their own structures, which cannot be fully taken account of, once
they are transformed into the form (8.6) or (8.12). For instance, the nonlinear Klein–
Gordon equation can be written in the form (8.2):

∂2u

∂t2
= −δG

δu
, G[u] = u2

x

2
+ η(u).
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When spatial semidiscretisations are used, a linear term naturally arises due to the

quadratic term
u2
x

2
in G[u]. The special structure brought by the linear term can be

taken advantage of when an efficient numerical scheme is designed. The extended
discrete gradient method is an example of such a scheme.

On noticing the fact stated above, in this chapter, instead of transforming the
PDEs under consideration into the form (8.6), we deal directly with the original
form (8.2). Furthermore, we apply the extended discrete gradient method instead of
the traditional discrete gradient method to the semidiscretised system of ODEs.

Next, we discretise the functional G using a consistent approximation Ḡx.
Before doing this, we quote the following lemma whose proof can be found in [10].

Lemma 8.1 Let

H [u] =
∫
Ω

H [u]dx, Ω ⊆ R
d, (8.14)

and assume that H̄ (U)x is any consistent (finite difference) approximation to
H [u] (where x = x1 · · ·xd) with N degrees of freedom. Then in the finite-
dimensional Hilbert space R

N with the Euclidean inner product, the variational

derivative
δ

δU
(H̄ (U)x) is given by ∇H̄ (U).

Remark 8.2.2 We here remark that when approximating H [u] by a spectral
discretisation, despite that the approximation is not of the form in Lemma 8.1,
the lemma still works since such an approximation can be thought of as a finite
difference approximation where the finite difference stencil has the same number of
entries as the number of grid points on which it is defined.

In what follows, we let U represent the discrete values of u at the mesh
grid points, in the multidimensional case after choosing an order. According to

Lemma 8.1, the variational derivative
δG

δu
is approximated by ∇Ḡ. Hence, the wave

equation (8.2) is semidiscretised into

d2U

dt2
= −∇Ḡ(U), (8.15)

and the wave equation (8.10) with damping term is semidiscretised into

d2U

dt2
+ α

dU

dt
= −∇Ḡ(U). (8.16)

Then apply the extended discrete gradient method to the systems (8.15) and (8.16),
respectively. This process leads to a conservative scheme for conservative wave
equations, and a dissipative scheme for dissipative wave equations. Remember that
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one of the benefits of using the extended discrete gradient method is that the scheme
is linearly-fitted, which will be shown in the next section.

8.3 Extended Discrete Gradient Method

As is known, discrete gradient methods for ODEs were introduced by Gonzalez
[29], for research on discrete gradient methods, and we refer the reader to [26, 30–
34].

We take a look back at the definition of a discrete gradient. If Q : Rk → R, the
discrete gradient of Q is defined as follow.

Definition 8.1 Assume that Q is a differentiable function. Then ∇Q is a discrete
gradient of Q provided it is continuous and for ∀ u, v ∈ R

k, u 
= v, satisfies

{∇Q(u, v) · (u− v) = Q(u)−Q(v),

∇Q(u, u) = ∇Q(u).
(8.17)

We next consider continuous time systems of linear-gradient form:

ẏ = L(y)∇Q(y), (8.18)

where L(y) is a matrix-valued function, and is skew-symmetric for all y. We
remark that any ODE system preserving Q can be written in this form. Then the
corresponding discrete gradient method for (8.18) has the following form:

yn+1 − yn

h
= L(yn, yn+1, h)∇Q(yn, yn+1), (8.19)

where L(yn, yn+1, h) is a skew-symmetric matrix, which approximates the original
L(y). Here, it is required that L(y, y, 0) = L(y) and ∇Q(y, y) = ∇Q(y) for the
sake of consistency.

In the literature, there have been many possible choices of discrete gradients
for a function Q (see, e.g. [29, 30, 35]). Among potential candidates is the version
used in the average vector field (AVF) method due to the fact that the AVF method
has some good features such as linear covariance, automatic preservation of linear
symmetries, and reversibility with respect to linear reversing symmetries. Therefore,
we next consider only the AVF method. The so-called average vector field is defined
by

∇Q(yn, yn+1) :=
∫ 1

0
∇Q((1− τ )yn + τyn+1)dτ. (8.20)
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As is known, a particular form of linear-gradient system (8.18) is the Hamiltonian
system

ẏ = J−1∇H(y), (8.21)

with the Hamiltonian

H(p, q) = 1

2
pᵀp + 1

2
qᵀMq + V (q), (8.22)

where y = (pᵀ, qᵀ)ᵀ, q = (q1, q2, · · · , qN)ᵀ, p = (p1, p2, · · · , pN )ᵀ, M ∈
R
N×N is a symmetric and positive semi-definite matrix. J is the 2N × 2N skew-

symmetric matrix

J =
(

0 I

−I 0

)
.

Applying the AVF method to the system (8.21) leads to the following scheme

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qn+1 = qn + hpn − h2

2

(
1

2
M(qn + qn+1)+

∫ 1

0
∇V ((1− τ )qn + τqn+1)dτ

)
,

pn+1 = pn − h

(
1

2
M(qn + qn+1)+

∫ 1

0
∇V ((1− τ )qn + τqn+1)dτ

)
.

(8.23)

Actually, (8.21) is exactly the following highly oscillatory Hamiltonian system
of second-order ODEs

{
q̈(t)+Mq(t) = f (q(t)), t ∈ [t0, T ],
q(t0) = q0, q̇(t0) = p0,

(8.24)

where f : RN → R
N is the negative gradient of V (q) for some smooth function

V (q).
It is important to note from Sect. 8.2 that the semidiscretised systems of many

conservative wave equations can be formulated in the form (8.24) if all the linear
terms with respect to Ui for i = 1, · · · , N are attributed to MU .

We are now in a position to present the extended discrete gradient method
for (8.24). Before doing that, we define the matrix-valued functions which originally
appeared in [22]

φl(M) :=
∞∑
k=0

(−1)kMk

(2k + l)! , l = 0, 1, · · · . (8.25)
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Then the following extended discrete gradient formula is derived for (8.24) (see
[27])

{
qn+1 = φ0(K)qn + hφ1(K)pn − h2φ2(K)∇V (qn, qn+1),

pn+1 = −hMφ1(K)qn + φ0(K)pn − hφ1(K)∇V (qn, qn+1),
(8.26)

where h is the stepsize, K = h2M , pn = q̇n, and ∇V (qn, qn+1) is the discrete
gradient of V (q).

Remark 8.3.1 The matrix-valued functions φi for i = 0, 1, 2 can be approximated
by truncation of the Taylor expansion. Since the matrix-valued functions φi for
i = 0, 1, 2 only need to be calculated once for every fixed stepsize h, it does not need
much extra computational cost at each iteration step. In terms of the relationship
among the φi for i = 0, 1, 2, other efficient algorithms for the computation of
matrix-valued functions φi for i = 0, 1, 2 can be found in [36] and the references
therein.

If we choose ∇V (qn, qn+1) in (8.26) to be the average vector field (8.20), then
we obtain the extended AVF method as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qn+1 = φ0(K)qn + hφ1(K)pn

− h2φ2(K)

∫ 1

0
∇V ((1− τ )qn + τqn+1)dτ,

pn+1 = −hMφ1(K)qn

+ φ0(K)pn − hφ1(K)

∫ 1

0
∇V ((1− τ )qn + τqn+1)dτ.

(8.27)

It is obvious that the extended discrete gradient method is linearly-fitted in the sense
that in the particular case where ∇V (q) ≡ ∇V0 is constant, the extended discrete
gradient method gives the exact solution of the system (8.21) or (8.24).

Due to the fact that all the schemes under consideration are implicit, the iterative
solution is required, in general. A simple and common choice would be fixed-point
iteration. Fortunately, it has been shown in [27] that the convergence of fixed-
point iteration for the extended discrete gradient method is independent of ‖M‖.
Unfortunately, however, the traditional discrete gradient method depends on ‖M‖.
This observation implies that, in general, a larger stepsize can be chosen for the
extended discrete gradient scheme than that for the traditional discrete gradient
method. The convergence rate of fixed-point iteration for the extended discrete
gradient method is faster than that for the traditional discrete gradient method.

Remark 8.3.2 It is noted that the extended gradient methods can conserve the
energy exactly when applied to the Hamiltonian system (8.15) (after reformulated
into the form (8.24)). However, it cannot be applied directly to a system of the
form (8.16) because of the existence of the damping term.
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We now turn to the following damped system

{
q̈(t)+ αq̇(t)+Mq(t) = f (q(t)), t ∈ [t0, T ],
q(t0) = q0, q̇(t0) = p0.

(8.28)

We next try to revise the extended gradient method so that the revision version can
be applied to (8.28). To this end, we move the term αq̇ to the right-hand side of the
system and consider formally f̃ (q) = f (q) − αq̇ as the negative gradient of the

potential Ṽ (q) = V (q) + α

2
q̇2. Accordingly, the system (8.28) is rewritten in the

form ⎧⎨
⎩
q̈(t)+Mq(t) = f̃ (q(t)), t ∈ [t0, T ],
q(t0) = q0, q̇(t0) = p0.

(8.29)

As pn = q̇n, applying the extended discrete gradient method to (8.29), we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qn+1 = φ0(K)qn + hφ1(K)pn − h2φ2(K)

(
∇V (qn, qn+1)+ α

pn + pn+1

2

)
,

pn+1 = −hMφ1(K)qn + φ0(K)pn − hφ1(K)

(
∇V (qn, qn+1)+ α

pn + pn+1

2

)
.

(8.30)

The extended AVF method for (8.28) then is identical to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qn+1 = φ0(K)qn + hφ1(K)pn

− h2φ2(K)

(∫ 1

0
∇V ((1− τ )qn + τqn+1)dτ + α

pn + pn+1

2

)
,

pn+1 = −hMφ1(K)qn + φ0(K)pn

− hφ1(K)

(∫ 1

0
∇V ((1− τ )qn + τqn+1)dτ + α

pn + pn+1

2

)
.

(8.31)

Now all that remains is to prove that (8.30) preserves the dissipation or the decay of
Lyapunov function H(p, q). Before doing this, we present the following properties
of matrix-valued functions which play an important role in the proof:

φ2
0(K)+Kφ2

1(K) = I, K
(
φ2

1(K)− φ0(K)φ2(K)
) = I − φ0(K),

φ2
1(K)+Kφ2

2(K) = 2φ2(K), φ0(K)+Kφ2(K) = I.
(8.32)

The properties of matrix-valued functions can be verified straightforwardly.
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Theorem 8.1 Let h be sufficiently small. Then the scheme (8.30) with the stepsize h
preserves the dissipation or the decay of Lyapunov function H(p, q) when applied
to the damped system (8.28), i.e.,

H(pn+1, qn+1) � H(pn, qn), n = 0, 1, · · · .

Proof Let

∇Ṽ (qn, qn+1) = ∇V (qn, qn+1)+ α
pn + pn+1

2
.

We compute

H(pn+1, qn+1) = 1

2
p
ᵀ
n+1pn+1 + 1

2
q
ᵀ
n+1Mqn+1 + V (qn+1). (8.33)

According to the symmetry of K and commutativity of K and all the φl(K) and
inserting (8.30) into (8.33), a tedious computation gives

H(pn+1, qn+1)

= 1

2
pᵀ
n

(
φ2

0(K)+Kφ2
1(K)

)
pn + 1

2
qᵀnM

(
φ2

0(K)+Kφ2
1(K)

)
qn

+qᵀn K
(
φ2

1(K)− φ0(K)φ2(K)
)∇Ṽ (qn, qn+1)

−hpᵀ
n

(
φ0(K)φ1(K)+Kφ1(K)φ2(K)

)∇Ṽ (qn, qn+1)

+1

2
h2∇Ṽ (qn, qn+1)

ᵀ(φ1(K)2 +Kφ2(K)2
)∇Ṽ (qn, qn+1)+ V (qn+1).

(8.34)

Then substituting (8.32) into (8.34) yields

H(pn+1, qn+1) = 1

2
pᵀ
n pn +

1

2
qᵀn Mqn + qᵀn

(
I − φ0(K)

)∇Ṽ (qn, qn+1)

−hpᵀ
nφ1(K)∇Ṽ (qn, qn+1)

+h2∇Ṽ (qn, qn+1)
ᵀφ2(K)∇Ṽ (qn, qn+1)+ V (qn+1)

= 1

2
pᵀ
n pn +

1

2
qᵀn Mqn +

(
qn −

(
φ0(K)qn + hφ1(K)pn

−h2φ2(K)∇Ṽ (qn, qn+1)
))ᵀ∇Ṽ (qn, qn+1)+ U(qn+1)

= 1

2
pᵀ
n pn +

1

2
qᵀn Mqn +

(
qn − qn+1

)ᵀ∇Ṽ (qn, qn+1)+ V (qn+1)

= 1

2
pᵀ
n pn +

1

2
qᵀn Mqn + α

(
qn − qn+1

)ᵀpn + pn+1

2
+ V (qn). (8.35)
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The last equality follows from the definition of discrete gradient. Therefore, we
obtain

H(pn+1, qn+1)−H(pn, qn) = α
(
qn − qn+1

)ᵀpn + pn+1

2
. (8.36)

Solving the second equation of (8.30) for ∇Ṽ (qn, qn+1) and substituting it into the
first equation of (8.30), we have

qn+1 = φ0(K)qn + hφ1(K)pn + φ−1
1 (K)φ2(K) (hpn+1 +Kφ1(K)qn − φ0(K)hpn) .

(8.37)

Substituting (8.37) into (8.36) gives

H(pn+1, qn+1)−H(pn, qn)

= −α
(
Φ(K)+ φ−1

1 (K)φ2(K) (hpn+1 +Kφ1(K)qn − φ0(K)hpn)
)ᵀ pn + pn+1

2

= −2αh

(
pn + pn+1

2

)ᵀ
φ−1

1 (K)φ2(K)
pn + pn+1

2
, (8.38)

where

Φ(K) = (φ0(K)− I
)
qn + hφ1(K)pn.

According to the definition of matrix-valued functions and the hypothesis on h, it
can be verified that φ−1

1 (K)φ2(K) is positive semi-definite. Hence, we obtain

H(pn+1, qn+1)−H(pn, qn) � 0.

Thus, the statement is proved. ��
Remark 8.3.3 When M → 0, the extended discrete gradient method (8.30) reduces
to the traditional discrete gradient method and (8.38) is identical to

H(pn+1, qn+1)−H(pn, qn)

h
= −α

(
pn + pn+1

2

)ᵀ pn + pn+1

2
.

Then the scheme preserves the dissipation property regardless of the magnitude
of the stepsize h. This coincides with the fact that discrete gradient methods are
unconditionally energy-diminishing methods for dissipative gradient system (see
[37]).
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We now summarise the extended discrete gradient scheme presented in this
chapter (denoted by EAVF) as follows:

• First discretise the functional G [u] =
∫
Ω

G[u]dx using some consistent approx-

imation Ḡ(U)x to yield a system of ODEs ((8.15) or (8.16)) as described in
this chapter.

• Then the quadratic terms with respect to U in Ḡ(U) lead to the linear terms
∇Ḡ(U) of the semidiscretised system of ODEs. By attributing all these linear
terms toMU , we can rewrite the system of ODEs in a form to which the extended
AVF method is applicable.

• Finally, apply the extended AVF method to the resulting system of ODEs.

Remark 8.3.4 It follows from (8.36) that

H(pn+1, qn+1)−H(pn, qn)

h
= −α(qn+1 − qn

h

)ᵀpn + pn+1

2
. (8.39)

We can consider
qn+1 − qn

h
and

pn + pn+1

2
as two different approximations of

pn = q̇n, and in this sense (8.39) is the discrete analogy of the dissipation property

d

dt
H [u] = −α

∫
Ω

(
∂u

∂t

)2

dx.

Remark 8.3.5 In the case where the damping coefficient α in (8.10) is space-
dependent, i.e., α = α(x) with the property α(x) > c, where c > 0 is a positive
constant, it can be verified that (8.10) is still dissipative. In order to design a
corresponding linearly-fitted dissipative scheme, we only need to replace α in (8.30)
by the diagonal matrix with diagonal entries being the discrete values of α at the
mesh grid points. Then, in a similar way, the preservation of dissipation can be
proved.

8.4 Numerical Experiments

In this section, we apply the scheme EAVF described in this chapter to conservative
and dissipative wave equations to illustrate its efficiency in comparison with
the scheme presented in [10]. The scheme given in [10] (denoted by AVF) for
comparison is stated as follow:

• First discretise the energy functional H [u] =
∫
Ω

1

2

(
∂u

∂t

)2

+ G[u]dx using

some consistent approximation H̄ (U)x to give a system of ODEs. We here

choose H̄ (U) = ∑
j

1

2
U̇2
j + Ḡ(U) when comparing the two schemes. In such
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a way, the resulting system of ODEs is the same as that obtained by the scheme
EAVF.

• Then apply the traditional AVF method to the resulting system of ODEs.

In this section, five numerical experiments are described. All the computations
and graphics are implemented in MATLAB 7 in IEEE double precision arithmetic.

8.4.1 Implementation Issues

1. Evaluation of the AVF method

We first consider the evaluation of the average vector field

∫ 1

0
∇V ((1− τ )qn + τqn+1)dτ.

For the system of ODEs obtained by semidiscretising the underlying wave equation,
the potential V (q) is typically of the form V (q) = ∑N

i=1 aiW(qi), where W is
a scalar function, qi is the i-th entry of q and a = (a1, · · · , aN)ᵀ ∈ R

N is a
constant vector (usually a = (1, · · · , 1)ᵀ). As the following lemma claims, the
average vector field can be evaluated exactly for this kind of special potential.

Lemma 8.2 Let V (q) =∑N
i=1 aiW(qi). We then have

∫ 1

0
∇V ((1− τ )qn + τqn+1)dτ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
W(q1

n+1)−W(q1
n)

q1
n+1 − q1

n
...

ai
W(qin+1)−W(qin)

qin+1 − qin
...

aN
W(qNn+1)−W(qNn )

qNn+1 − qNn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof The proof is straightforward and we omit it. ��
2. Choice of starting approximations for fixed-point iteration

All the schemes considered in this chapter are implicit, so we need to solve a
system of nonlinear algebraic equations iteratively. In this case, a good starting
approximation will improve the efficiency of the iteration process. We here refer the
reader to [1] for details on the choice of good starting approximations for implicit
schemes.
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With regard to conservative system, the unknowns qn+1 and pn+1 appearing in
the two schemes AVF and EAVF are decoupled. This implies that we only need to
solve qn+1 implicitly and pn+1 can be calculated explicitly. Unfortunately, however,
for dissipative system, the unknowns qn+1 and pn+1 are no longer decoupled.
Consequently, we have to solve them simultaneously by an implicit iteration
process.

It can be observed from the AVF formula that simple starting approximations
for qn+1 and pn+1 are qn+1 = qn, pn+1 = pn or qn+1 = qn + hpn, pn+1 =
pn. However, they are not accurate enough. Moreover, it follows from Lemma 8.2
that the denominators in the evaluation of the integral are of the form qin+1 − qin.
Hence, it is not wise to choose the starting approximation qn+1 = qn or qn+1 =
qn + hpn if pn = 0, since the implicit iteration will diverge immediately in this
case. Consequently, it is very subtle and takes much effort to give a suitable starting
approximation for the AVF method.

Fortunately, however, the scheme EAVF enlightens us to choose suitable starting
approximations for qn+1 and pn+1. In fact, we can choose

qn+1 = φ0(K)qn + hφ1(K)pn, pn+1 = −hMφ1(K)qn + φ0(K)pn

as the starting approximations q(0)n+1 and p
(0)
n+1 which are accurate enough because

the EAVF scheme integrates unperturbed systems exactly. Moreover, this process
does not entail extra computational cost since they are exactly parts of the EAVF
scheme.

In the numerical experiments, we choose the same starting approximations for
both schemes, i.e.,

q
(0)
n+1 = φ0(K)qn + hφ1(K)pn, p

(0)
n+1 = −hMφ1(K)qn + φ0(K)pn,

to compare their efficiency and convergence rate.

8.4.2 Conservative Wave Equations

Problem 8.1 We consider the sine-Gordon equation

∂2u

∂t2
= ∂2u

∂x2 − sin u, t > 0.

Here, we only consider the so-called breather-solution [38]

u(x, t) = 4 arctan

(√
1− ω2

ω

cosωt

cosh(x
√

1− ω2)

)
. (8.40)
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The initial conditions are

u(x, 0) = 4 arctan

(√
1− ω2

ω

1

cosh(x
√

1− ω2)

)
,

and

ut (x, 0) = ∂

∂t

{
4 arctan

(√
1− ω2

ω

cosωt

cosh(x
√

1− ω2)

)}
t=0

where ω = 0.9. This is a bump shaped solution which oscillates up and down on
an infinite domain, with period 2π/ω. To exclude boundary effects, we use periodic
boundary conditions with L = 20, i.e., we consider the sine-Gordon equation on
the interval [−20, 20].

It is clear that the sine-Gordon equation is of the type (8.2), where

G [u] =
∫ L

−L
1

2

(
∂u

∂x

)2

+ (1− cosu)dx. (8.41)

We denote xj = −L+ jx for j = 0, 1, · · · , N , where x = 2L

N
. Let

Ḡ(U)x =
⎛
⎝N−1∑

j=0

1

2(x)2
(uj+1 − uj )

2 + (1− cos(uj ))

⎞
⎠x

be the approximation of G [u]. Then the resulting system of ODEs is given by

d2U

dt2
+MU = f (U), (8.42)

where

U = (u1, · · · , uN)ᵀ,

M = 1

x2

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠ , (8.43)

f (U) = −∇V (U) = − sin(U) = −( sin u1, · · · , sin uN
)ᵀ
,
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Fig. 8.1 The sine-Gordon equation with finite differences semidiscretisation: (a) The logarithm
of energy error, and (b) the logarithm of global error vs time for AVF and EAVF methods

and

V (U) = 1− cos(u1)+ · · · + 1− cos(uN).

Note that we here use uj to refer the value of u at xj with a fixed time level.
First, system (8.42) is integrated on the interval [0, 20] with N = 400 and

h = 0.01. With regard to the fixed-point iteration at each time step, we set the
error tolerance as 10−15. In Fig. 8.1, we plot the logarithm of the energy errors and
the logarithm of the global errors against time t , respectively. It can be observed
from Fig. 8.1 that the errors of energy and the global errors are comparable for the
two schemes. We show the numerical solution obtained by the EAVF scheme in
Fig. 8.2a.

Furthermore, to illustrate the computational efficiency of the two schemes, we set
the maximum iteration number as 1000 and the error tolerance as 10−15. We apply
the two schemes to the system on the interval [0, 2] with the stepsize h = 0.01. We
plot the total iteration number against the dimension of spatial discretisation N . The
numerical results are shown in Fig. 8.2b.

Problem 8.2 We now consider the same sine-Gordon equation as that in Prob-
lem 8.1, but instead of using finite differences for the spatial discretisation in (8.41),
we here use a spectral discretisation with a Fourier basis.

This means that the partial derivative
∂u

∂x
can now be approximated by discrete

Fourier transform (DFT), which is denoted by F−1
N DNFNU , where the DFT

matrix FN has entries [FN ]j,k = e−jki2π/N , [F−1
N ]j,k = 1

N
ejki2π/N , and DN
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Fig. 8.2 The sine-Gordon equation with finite differences semidiscretisation: (a) Numerical
solution obtained by EAVF method, and (b) efficiency: the total iteration number against the
dimension of spatial discretisation

is a diagonal matrix whose diagonal entries are given by (see, e.g. [10])

diag(DN) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π i

L

[
0, 1, 2, · · · , N − 1

2
,−N − 1

2
, · · · ,−2,−1

]
, for N is odd

π i

L

[
0, 1, 2, · · · , N

2
− 1, 0,−N

2
+ 1, · · · ,−2,−1

]
, for N is even.

Following the notation in Problem 8.1, (8.41) can be approximated by

Ḡ(U)x =
⎛
⎝N−1∑

j=0

1

2
[F−1

N DNFNU ]2j + (1− cos(uj ))

⎞
⎠x.

Accordingly, the resulting system of ODEs is of the form

d2U

dt2
+MU = f (U), (8.44)

where U and f (U) are the same as those in Problem 8.1. The matrix M now
becomes

M =
(
F−1

N DNFN

)ᵀ (
F−1

N DNFN

)
. (8.45)
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Fig. 8.3 The sine-Gordon equation with spectral semidiscretisation: (a) The logarithm of energy
error, and (b) the logarithm of global error vs time for AVF and EAVF methods

We integrate system (8.44) on the interval [0, 20] with N = 401 and h = 0.01.
We first set the error tolerance as 10−15 for the fixed-point iteration. We show the
logarithm of the energy errors and the logarithm of the global errors against time t in
Fig. 8.3, respectively. We plot the numerical solution obtained by the EAVF method
in Fig. 8.4a.

We then set the maximum iteration number as 1000 and the error tolerance as
10−15. We apply the two methods to system (8.44) on the interval [0, 2] with the
stepsize h = 0.01. Figure 8.4b indicates the numerical results for the total iteration
number against the dimension of spatial discretisation, N .

It can be observed from the numerical results that the errors of energy and the
global errors are comparable for the two methods. However, the total number of
iterations for the AVF method grows very fast with the increase of N . Fortunately,
the total number of iterations for the EAVF method remains almost the same as N
grows, which is much less than that of the AVF method. Here, it is important to note
that when N is large, the iteration of the AVF method does not converge for some
time steps within the maximum iteration number.

Problem 8.3 Consider the nonlinear 2D wave equation

∂2u

∂t2
= u− ∂V (u)

∂u
, (x, y) ∈ [−1, 1] × [−1, 1], t > 0,

where V (u) = u4

4
. This equation is subject to periodic boundary conditions, and

the initial conditions are given by

u(x, y, 0) = sech(10x)sech(10y).
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Fig. 8.4 The sine-Gordon equation with spectral semidiscretisation: (a) Numerical solution by
EAVF method, and (b) efficiency: the total iteration number against the dimension of spatial
discretisation

Obviously, this equation is of the type (8.2) with

G [u] =
∫ 1

−1

∫ 1

−1

1

2

((
∂u

∂x

)2

+
(
∂u

∂y

)2
)
+ V (u)dx. (8.46)

Following [10], we use the spectral elements method to semidiscretise the wave
equation. For the sake of self-containment in this chapter, we restate the setup given
in [10]. G [u] is discretised in space with a tensor product Lagrange quadrature
formula based on p + 1 Gauss–Lobatto–Legendre (GLL) quadrature nodes in each
space direction. We then obtain

Ḡ(U) = 1

2

p∑
j1=0

p∑
j2=0

wj1wj2

·
⎛
⎝(

p∑
k=0

dj1,kuk,j2

)2

+
(

p∑
m=0

dj2,muj1,m

)2

+ 1

2
u4
j1,j2

⎞
⎠ ,

where dj1,k =
dlk(x)

dx
, lk(x) is the k-th Lagrange basis function based on the GLL

quadrature nodes x0, · · · , xp, and w0, · · · , wp are the corresponding quadrature
weights. The numerical approximation of u is

up(x, y, t) =
p∑

k=0

p∑
m=0

uk,m(t)lk(x)lm(y)
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Fig. 8.5 2D wave equation with spectral elements semidiscretisation: The logarithm of energy
error vs time for AVF and EAVF methods

with the property up(xj1, yj2 , t) = uj1,j2(t). Here we remark that the quadratic
terms with respect to uj1,j2 for j1, j2 = 0, · · · , p in Ḡ(U) lead to the linear terms
in the semidiscretised system of ODEs, which will be attributed to MU . Moreover,
it can be verified that M is a symmetric positive semi-definite matrix.

The system of ODEs is integrated on the interval [0, 100] with p = 5 and h =
0.05. Likewise, the error tolerance of the fixed-point iteration is set as 10−15 in this
numerical experiment. The energy errors are indicated in Fig. 8.5. Some snapshots
of the numerical solution obtained by EAVF method are shown in Fig. 8.6.

8.4.3 Dissipative Wave Equations

We next consider dissipative nonlinear wave equations, including 1D and 2D,
respectively.

Problem 8.4 We first consider the dissipative sine-Gordon equation

∂2u

∂t2
+ α

∂u

∂t
= ∂2u

∂x2 − sinu, t > 0,

where α = 0.1.
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Fig. 8.6 Snapshots of the solution of the 2D wave equation at different times. EAVF method
with the time stepsize h = 0.05. Space discretisation with six Gauss Lobatto nodes in each
spatial direction. Numerical solution interpolated on an equidistant grid of 26 nodes in each spatial
direction

With the same setting as that in Problems 8.1 and 8.2, we show the energy curves
and the efficiency curves for finite differences and spectral semidiscretisation,
respectively. The results are presented in Figs. 8.7 and 8.8. We remark that once
the iteration number is too large, we do not plot the points in these figures. It can be
seen from the numerical results that the two schemes preserve the decay of energy,
and again EAVF method is much more efficient than AVF method regarding the
computational efficiency.

Problem 8.5 Finally, we consider the nonlinear 2D dissipative wave equation

∂2u

∂t2
+ α

∂u

∂t
= u− ∂V (u)

∂u
, (x, y) ∈ [−1, 1] × [−1, 1], t > 0

where α = 0.1.

We integrate this equation on the interval [0, 100] with p = 5 and h = 0.05. We
present the energy and some snapshots of the numerical solution obtained by EAVF
method in Figs. 8.9 and 8.10, respectively.

It can be observed from Figs. 8.10 and 8.6 that the shapes of the solutions of the
conservative and dissipative 2D wave equations are similar at the same time step.
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Fig. 8.7 Dissipative sine-Gordon equation with finite differences semidiscretisation: (a) Energy
vs time, and (b) the total iteration number against the dimension of spatial discretisation for AVF
and EAVF methods

Fig. 8.8 Dissipative sine-Gordon equation with spectral semidiscretisation: (a) Energy vs time,
and (b) the total iteration number against the dimension of spatial discretisation for AVF and EAVF
methods
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Fig. 8.9 2D dissipative wave equation with spectral elements semidiscretisation: Energy vs time
for AVF and EAVF methods

Because of the damping term, the magnitude of the solution diminishes as time
increases. This is consistent with the fact that the energy decays in the dissipative
case.

8.5 Conclusions

In this chapter, we presented and analysed an interesting approach to designing
conservative (dissipative) schemes for nonlinear conservative (dissipative) wave
equations. Following the framework in [10], but with some modifications, we
dealt directly with the original form of the underling wave equation rather than
transforming it into a system of first-order PDEs, and discretised the functional
G [u] instead of the energy functional H [u]. Using this approach leads to a system
of second-order ODEs in time. Under this framework, we apply the extended
AVF method instead of the traditional AVF method to the system of second-
order ODEs. This procedure presents an interesting linearly-fitted conservative
(dissipative) scheme for nonlinear conservative (dissipative) wave equations. An
outstanding benefit of this procedure is that, the implicit iteration involved in this
scheme, which incorporates with the extended AVF method, converges much faster
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Fig. 8.10 Snapshots of the solution of the 2D dissipative wave equation at different times. EAVF
method with time stepsize h = 0.05. Space discretisation with six Gauss Lobatto nodes in each
space direction. Numerical solution interpolated on an equidistant grid of 26 nodes in each space
direction

than those of the traditional AVF method. This implies that the procedure presented
in this chapter is much more efficient. Moreover, the numerical results also illustrate
this point.

The material in this chapter is based on the work by Liu et al. [39].

References

1. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving
Algorithms, 2nd edn. Springer-Verlag, Berlin (2006)

2. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)
3. Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian problems: An overview. Acta

Numer. 1, 243–286 (1992)
4. McLachlan, R.I., Quispel, G.R.W.: Geometric integrators for ODEs. J. Phys. A 39, 5251–5285

(2006)
5. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear

Schrödinger equation. J. Comput. Phys. 148, 397–415 (1999)
6. Chen, J.B., Qin, M.Z.: Multi-symplectic Fourier pseudospectral method for the nonlinear

Schrödinger equation. Electron. Trans. Numer. Anal. 12, 193–204 (2001)
7. Cai, J.X., Wang, Y.S., Liang, H.: Local energy-preserving and momentum-preserving algo-

rithms for coupled nonlinear Schrödinger system. J. Comput. Phys. 239, 30–50 (2013)



260 8 Linearly-Fitted Conservative (Dissipative) Schemes for Nonlinear Wave Equations

8. Cai, J.X., Wang, Y.S.: Local structure-preserving algorithms for the “good” Boussinesq
equation. J. Comput. Phys. 239, 72–89 (2013)

9. Yan, J.L., Zhang, X.Y.: New energy-preserving schemes using Hamiltonian Boundary Value
and Fourier pseudospectral methods for the numerical solution of the “good” Boussinesq
equation. Comput. Phys. Commun. 201, 33–42 (2016)

10. Celledoni, E., Grimm, V., McLachlan, R.I., et al.: Preserving energy resp. dissipation in
numerical PDEs using the ‘Average Vector Field’ method. J. Comput. Phys. 231, 6770–6789
(2012)

11. Bridges, T.J., Reich, S.: Numerical methods for Hamiltonian PDEs. J. Phys. A 39, 5287–5320
(2006)

12. Chabassier, J., Joly, P.: Energy preserving schemes for nonlinear Hamiltonian systems of wave
equations: Application to the vibrating piano string. Comput. Methods Appl. Mech. Eng. 199,
2779–2795 (2010)

13. Chen, Y.M., Song, S.H., Zhu, H.J.: The multi-symplectic Fourier pseudospectral method for
solving two-dimensional Hamiltonian PDEs. J. Comput. Appl. Math. 236, 1354–1369 (2011)

14. Shi, W., Wu, X., Xia, J.: Explicit multi-symplectic extended leap-frog methods for Hamiltonian
wave equations. J. Comput. Phys. 231, 7671–7694 (2012)

15. Wang, Y.S., Hong, J.L.: Multi-symplectic algorithms for Hamiltonian partial differential
equations. Commun. Appl. Math. Comput. 27, 163–230 (2013)

16. Gong, Y.Z., Cai, J.X., Wang, Y.S.: Some new structure-preserving algorithms for general multi-
symplectic formulations of Hamiltonian PDEs. J. Comput. Phys. 279, 80–102 (2014)

17. Li, Y.W., Wu, X.: General local energy-preserving integrators for solving multi-symplectic
Hamiltonian PDEs. J. Comput. Phys. 301, 141–166 (2015)

18. González, A.B., Martín, P., Farto, J.M.: A new family of Runge–Kutta type methods for the
numerical integration of perturbed oscillators. Numer. Math. 82, 635–646 (1999)

19. García-Archilla, B.J., Sanz-Serna, M., Skeel, R.D.: Long-time-step methods for oscillatory
differential equations. SIAM J. Sci. Comput. 20, 930–963 (1999)

20. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential
equations. Numer. Math. 83, 403–426 (1999)

21. Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory
differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

22. Wu, X., You, X., Xia, J.: Order conditions for ARKN methods solving oscillatory systems.
Comput. Phys. Commun. 180, 2250–2257 (2009)

23. Wu, X., You, X., Shi, W., et al.: ERKN integrators for systems of oscillatory second order
differential equations. Comput. Phys. Commun. 181, 1873–1887 (2010)

24. Yang, H.L., Wu, X.Y.: Trigonometrically-fitted ARKN methods for perturbed oscillators. Appl.
Numer. Math. 58, 1375–1395 (2008)

25. Wu, X., You, X., Li, J.: Note on derivation of order conditions for ARKN methods for perturbed
oscillators. Comput. Phys. Commun. 180, 1545–1549 (2009)

26. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradi-
ents. Philos. Trans. R. Soc. Lond. A 357, 1021–1045 (1999)

27. Liu, K., Shi, W., Wu, X.: An extended discrete gradient formula for oscillatory Hamiltonian
systems. J. Phys. A Math. Theor. 46, 165203 (2013)

28. Dahlby, M., Owren, B.A.: A general framework for deriving integral preserving numerical
methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)

29. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467
(1996)

30. Itoh, T., Abe, K.: Hamiltonian conserving discrete canonical equations based on variational
difference quotients. J. Comput. Phys. 77, 85–102 (1988)

31. Quispel, G.R.W., Capel, H.W.: Solving ODEs numerically while preserving a first integral.
Phys. Lett. A 218, 223–228 (1996)

32. Quispel, G.R.W., Turner, G.S.: Discrete gradient methods for solving ODEs numerically while
preserving a first integral. J. Phys. A Math. Gen. 29, L341–L349 (1996)



References 261

33. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration
methods. J. Phys. A Math. Theor. 41, 045206 (2008)
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Chapter 9
Energy-Preserving Schemes
for High-Dimensional Nonlinear
KG Equations

The main theme of this chapter is the analysis of energy-preserving schemes for
solving high-dimensional nonlinear Klein–Gordon equations. An energy-preserving
scheme is presented based on the discrete gradient method and the Duhamel
Principle. The local error, global convergence, and nonlinear stability of the scheme
are analysed in detail.

9.1 Introduction

The nonlinear Klein–Gordon (KG) equation is one of the important models in
quantum mechanics and mathematical physics. It is well known that a key feature
of the KG equation is energy preservation. The main purpose of this chapter
is to formulate and analyse energy-preserving schemes for the high-dimensional
nonlinear KG equation

⎧⎪⎪⎨
⎪⎪⎩
∂u

∂t
= v, u(x, 0) = g1(x),

∂v

∂t
= ω2u−G′(u), v(x, 0) = g2(x),

(9.1)

where

 =
d∑

j=1

∂2

∂x2
j

,

ω is a real parameter, the real-valued function u(x, t), representing the wave
displacement at position x and time t , is defined in (x, t) ∈ Ω × [0, T ] with
Ω := (0,X1)×· · ·× (0,Xd) ⊂ R

d , and G(u) is a smooth potential energy function
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with G(u) � 0. We consider (9.1) under periodic boundary conditions

u(x, t)|∂Ω∩{xj=0} = u(x, t)|∂Ω∩{xj=Xj }, j = 1, 2, · · · , d. (9.2)

As is known, the high-dimensional nonlinear KG equation is a Hamiltonian partial
differential equation and the Hamiltonian of system (9.1) is

H [u, v](t) =
∫
Ω

[
1

2
|v(x, t)|2 + 1

2
ω2|∇u(x, t)|2 +G

(
u(x, t)

)]
dx, (9.3)

where dx = dx1dx2 · · · dxd.
The KG equation (9.1) can be rewritten as the following infinite-dimensional

Hamiltonian system

zt = J
δH

δz
, (9.4)

where

J =
(

0 −1
−1 0

)
, z =

(
u

v

)
,

and

δH

δz
=

(
δH

δu
,
δH

δv

)ᵀ

is the functional derivative of H .
The nonlinear KG equation, which is also termed Schrödinger’s relativistic wave

equation, arises frequently in various fields of scientific applications such as solid
state physics, fluid dynamics, nonlinear optics, quantum field theory and relativistic
quantum mechanics. It is used to model many different nonlinear phenomena,
including the propagation of dislocations in crystals and the behaviour of elementary
particles. Several numerical schemes have been developed to solve KG equations
(see, e.g. [1–7]). In recent decades, geometric algorithms have been received much
attention and they have been shown to be important in studying the long-time
behaviour of dynamical systems. Various structure-preserving algorithms have been
designed to preserve as much as possible the physical/geometric properties of
the underlying systems. For research papers related to this topic, we refer the
reader to [8–17] and references therein. As for a good theoretical foundation
of structure-preserving algorithms for ordinary differential equations (ODEs), we
refer the reader to [18]. Surveys of structure-preserving algorithms for oscillatory
differential equations are given in [19–21]. By extending ideas and tools related to
structure-preserving algorithms of ODEs, various integrators have been proposed
and investigated for specific or general classes of partial differential equations
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(PDEs). Typical categories include multi-symplectic methods, semidiscretisation by
means of the method of lines, and energy-preserving schemes.

In the literature, many multi-symplectic schemes have been proposed for multi-
symplectic Hamiltonian PDEs. By assigning a distinct symplectic operator for each
unbounded space direction and time, the multi-symplectic structure for a class of
PDEs generalises the classical symplectic structure of Hamiltonian ODEs. Multi-
symplectic integrators precisely conserve a discrete space-time symplectic structure
of Hamiltonian PDEs and we refer to [22–28] for related work. With regard to the
method of lines, the spatial derivatives are usually approximated by finite differences
or by discrete Fourier transform and the resulting system is then integrated in time
by a suitable ODE integrator. This approach has become one of the central topics in
PDEs, and we refer the readers to [29–33] for examples on this subject.

Among the most widely used properties is energy preservation. The study of
energy-preserving schemes for Hamiltonian PDEs has a long history, which dates
back to an old paper of [34] where a discrete energy conservation law for the 5-
point finite difference approximation was derived. A historical survey of energy
preserving methods for PDEs and their applications has been made in [5]. Some
recent relevant work can be found in [27, 35–40]. Energy-conserving methods have
also been the subject of many investigations for ODEs in the last two decades.
Various effective energy-preserving methods have been proposed and investigated,
such as discrete gradient (DG) methods (see, e.g. [41–44]), time finite elements
(see, e.g. [45, 46]), the average vector field (AVF) method (see, e.g. [47–49]),
Hamiltonian boundary value methods (HBVMs) (see, e.g. [50, 51]), and the adapted
average vector field (AAVF) method (see, e.g. [52, 53]). All the energy-preserving
methods mentioned above were originally designed for ODEs and have also been
considered in the PDE setting. In [54], the authors discussed numerical methods for
PDEs that are based on the discrete gradient method. A systematic introduction
to finite element methods for efficient numerical solution of PDEs is presented
in [55]. The AVF method for discretising Hamiltonian PDEs was studied in [35],
and HBVMs related to the numerical solution of the semilinear wave equation
were researched in [56]. The authors in [57] analysed the AAVF method for one-
dimensional Hamiltonian wave equations.

We note that an important aspect in the numerical simulation of Hamiltonian
systems is the approximate conservation of the total energy over long times. DG
methods have also been applied to PDEs in the form of the AVF method in [35] and
in a somewhat more general setting, the discrete variational derivative method in
[54, 58]. On the other hand, the authors in [59] established an operator-variation-of-
constants formula for wave equations, and based on that, many efficient numerical
methods have been designed and analysed (see, e.g. [6, 33, 57, 60, 61]). In this
chapter we focus on the formulation and analyses of energy-preserving schemes for
high-dimensional nonlinear KG equations based on DG methods and the Duhamel
Principle. We will formulate the energy-preserving scheme and analyse its errors,
nonlinear stability, convergence and implementation issues. Numerical results will
be presented to show the remarkable superiority of the energy-preserving scheme in
comparison with well-known energy-preserving methods in the literature.
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9.2 Formulation of Energy-Preserving Schemes

The main aim of this section is to formulate energy-preserving schemes for high-
dimensional nonlinear KG equations. To this end, we first formulate Eq. (9.1) as
an abstract Hamiltonian system of ODEs on an infinity-dimensional Hilbert space
L2(Ω).

It will be convenient to define the linear differential operator A by

(A u)(x, t) = −ω2u(x, t). (9.5)

Then, for the periodic boundary condition (9.2), the domain of this operator is

D(A ) = {u ∈ H 1(Ω) : u(x, t)|∂Ω∩{xj=0} = u(x, t)|∂Ω∩{xj=Xj },
∇u(x, t)|∂Ω∩{xj=0} = ∇u(x, t)|∂Ω∩{xj=Xj },
j = 1, 2, · · · , d}.

(9.6)

In terms of self-adjoint operator theories, we introduce the following semi-group
generated by A :

φj (A ) :=
∞∑
k=0

(−1)kA k

(2k + j)! , j = 0, 1, 2, · · · . (9.7)

With regard to the definitions and properties of these operator-argument functions
for different boundary conditions, which have been studied in detail, we refer the
readers to [61]. We next summarise the following two useful properties which are
needed in this chapter.

Proposition 9.1 (See [61]) All the operator-argument functions φj for j ∈ N are
symmetric operators with respect to the inner product of the space L2(Ω):

(p, q) =
∫
Ω

p(x)q(x)dx. (9.8)

The norm of the function in L2(Ω) can be characterized in the frequency space by

‖q‖2 = (q, q) =
∫
Ω

|q(x)|2dx.

Proposition 9.2 (See [61]) All the operator-argument functions defined by (9.7)
are bounded as follows:

‖φj (tA )‖∗ � γj , j ∈ N, t � 0, (9.9)
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where ‖ · ‖∗ is the Sobolev norm, and γj are the bounds of the functions φj (x) with
x � 0. It follows from (9.9) that

‖φj (tA )‖∗ � 1, j = 0, 1, ‖φ2(tA )‖∗ � 1

2
.

It is clear that the operatorA defined by (9.5) is a positive semi-definite operator,
i.e., ∀ u(x, t) ∈ D(A )

(
A u(x, t), u(x, t)

)
=

∫
Ω

A u(x, t) · u(x, t)dx = ω2
∫
Ω

|∇u(x, t)|2dx � 0.

(9.10)
The exact energy (9.3) can be presented in the following form:

H [u, v](t) ≡ 1

2

(
v(x, t), v(x, t)

)
+ 1

2

(
A u(x, t), u(x, t)

)
+

∫
Ω

G
(
u(x, t)

)
dx

= H [u, v](0). (9.11)

We now define u(t) as the function that maps x to u(x, t):

u(t) = [x �→ u(x, t)].

We then formulate the original system (9.1) as follows:

{
u′(t) = v(t), u(0) = g1(x),

v′(t) = −A u(t)−G′(u(t)), v(0) = g2(x).
(9.12)

Using the Duhamel Principle leads to the following operator-variation-of-constants
formula for the nonlinear KG equation (9.1):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u(t) =φ0

(
t2A

)
u(0)+ tφ1

(
t2A

)
v(0)−

∫ t

0
(t − ζ )φ1

(
(t − ζ )2A

)
G′

(
u(ζ )

)
dζ,

v(t) =− tA φ1
(
t2A

)
u(0)+ φ0

(
t2A

)
v(0)−

∫ t

0
φ0

(
(t − ζ )2A

)
G′

(
u(ζ )

)
dζ,

(9.13)

where ∀t ∈ [0, T ].
Remark 9.1 For the nonlinear KG equation (9.12), the formula (9.13) is a pair
of nonlinear integral equations which reflect the changes of the solution and its
derivative with time t . This pattern will assist in the design of structure-preserving
schemes for solving (9.12).
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On the one hand, it follows from (9.13) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(tn+1) =φ0
(
V
)
u(tn)+ hφ1

(
V
)
v(tn)

− h2
∫ 1

0
(1− ζ )φ1

(
(1− ζ )2V

)
G′

(
u(tn + hζ )

)
dζ,

v(tn+1) =− hA φ1
(
V
)
u(tn)+ φ0

(
V
)
v(tn)

− h

∫ 1

0
φ0

(
(1− ζ )2V

)
G′

(
u(tn + hζ )

)
dζ,

(9.14)

where h is the time stepsize, tn = nh and V = h2A .
On the other hand, we recall the definition of a DG method and define the

following discrete gradient of function G(u)

{∇G(u, û) · (û− u
) = G(û)−G(u),

∇G(u, u) = G′(u).
(9.15)

Here, by replacing G′
(
u(tn + hζ )

)
with ∇G(un, un+1), the integrals appearing

in (9.14) can be approximated by:

∫ 1

0
(1− ζ )φ1

(
(1− ζ )2V

)
G′

(
u(tn + hζ )

)
dζ

≈
∫ 1

0
(1− ζ )φ1

(
(1− ζ )2V

)
dζ∇G(un, un+1) = φ2

(
V
)∇G(un, un+1),

∫ 1

0
φ0

(
(1− ζ )2V

)
G′

(
u(tn + hζ )

)
dζ ≈

∫ 1

0
φ0

(
(1− ζ )2V

)
dζ∇G(un, un+1)

= φ1
(
V
)∇G(un, un+1),

where we have used the following results (see [57]):

∫ 1

0
(1− ζ )φ1

(
(1− ζ )2V

)
dζ = φ2(V ),

∫ 1

0
φ0

(
(1− ζ )2V

)
dζ = φ1(V ).

Obviously, the above analysis leads to a continuous function un := un(x) ≈
u(x, tn). With this function, we then define the numerical scheme for the high-
dimensional nonlinear KG equation (9.12) as follows.
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Definition 9.1 The discrete gradient scheme for solving the high-dimensional
nonlinear KG equation (9.12) is defined by

{
un+1 = φ0

(
V
)
un + hφ1

(
V
)
vn − h2φ2

(
V
)∇G(un, un+1),

vn+1 = −hA φ1
(
V
)
un + φ0

(
V
)
vn − hφ1

(
V
)∇G(un, un+1),

(9.16)

which is called the KGDG scheme, where ∇G(un, un+1) is determined by (9.15).

Remark 9.2 Here, we remark that this KGDG scheme is relevant to the operator-
variation-of-constants formula. There have been some other numerical integrators
for KG equations, which are also relevant to the formula (see, e.g. [6, 60]). It
is important to note that they are derived for different purposes. Those schemes
proposed in [6, 60] are formulated to be of arbitrarily high order, and the KGDG
scheme is to preserve the continuous energy (9.3) exactly.

Theorem 9.1 The KGDG scheme (9.16) exactly preserves the Hamiltonian (9.11),
i.e.,

H [un+1, vn+1] =H [un, vn], n = 0, 1, · · · . (9.17)

Proof We insert (9.16) into (9.11) and calculate carefully with the Proposition 9.1.
This yields

H [un+1, vn+1] =1

2

((
φ2

0(V )

+ V φ2
1(V )

)
vn, vn

)
+ 1

2

(
A

(
φ2

0(V )+ V φ2
1(V )

)
un, un

)
+

(
V
(
φ2

1(V )− φ0(V )φ2(V )
)
un,∇G(un, un+1)

)
−

(
h
(
φ0(V )φ1(V )+ V φ1(V )φ2(V )

)
vn,∇G(un, un+1)

)

+ 1

2

(
h2(φ2

1(V )+ V φ2
2(V )

)∇G(un, un+1),∇G(un, un+1)
)

+
∫
Ω

G
(
un+1

)
dx.

(9.18)
It follows from the following results on the operator-argument functions (see [61])

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ2
0(V )+ V φ2

1(V ) = I,

φ2
1(V )− φ0(V )φ2(V ) = φ2(V ),

φ0(V )φ1(V )+ V φ1(V )φ2(V ) = φ1(V ),

1

2

(
φ2

1(V )+ V φ2
2(V )

) = φ2(V ),
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that (9.18) can be simplified as

H [un+1, vn+1] = 1

2
(vn, vn)+ 1

2
(A un, un)+

(
V φ2(V )un,∇G(un, un+1)

)
−

(
hφ1(V )vn,∇G(un, un+1)

)
+

(
h2φ2(V )∇G(un, un+1),∇G(un, un+1)

)

+
∫
Ω

G
(
un+1

)
dx. (9.19)

In what follows, we consider two cases. In the case where un+1 − un = 0, the
first equation of (9.16) gives

0 = un+1 − un =
(
φ0

(
V
)− I

)
un + hφ1

(
V
)
vn − h2φ2

(
V
)∇G(un, un+1)

= −V φ2(V )un + hφ1
(
V
)
vn − h2φ2

(
V
)∇G(un, un+1),

where we have used the following result presented in [61]

φ0(V )− I = −V φ2(V ).

Taking ∇G(un, un) = ∇G(un) into account, (9.19) becomes

H [un+1, vn+1] =H [un, vn+1]

=1

2
(vn, vn)+ 1

2
(A un, un)+

(
V φ2(V )un,G

′(un)
)

−
(
hφ1(V )vn,G

′(un)
)
+

(
h2φ2(V )G′(un),G′(un)

)
+

∫
Ω

G
(
un

)
dx

=1

2
(vn, vn)+ 1

2
(A un, un)+

∫
Ω

G
(
un

)
dx

+
(
V φ2(V )un − hφ1(V )vn + h2φ2(V )G′(un),∇G(un)

)
=H [un, vn] +

(
0,G′(un)

)
=H [un, vn].

In the case where un+1 − un 
= 0, we have

G
(
un+1

)−G
(
un

) = ∇G(un, un+1) ·
(
un+1 − un

)
,
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and we obtain∫
Ω

G
(
un+1

)
dx =

∫
Ω

G
(
un

)
dx +

∫
Ω

(
G
(
un+1

)−G
(
un

))
dx

=
∫
Ω

G
(
un

)
dx +

((
un+1 − un

)
I,∇G(un, un+1)

)
. (9.20)

It follows from the first equation of (9.16) that

un+1 − un = −V φ2(V )un + hφ1
(
V
)
vn − h2φ2

(
V
)∇G(un, un+1).

Accordingly, (9.20) can be rewritten as

∫
Ω

G
(
un+1

)
dx =

∫
Ω

G
(
un

)
dx −

(
V φ2(V )un,∇G(un, un+1)

)

+
(
hφ1

(
V
)
vn,∇G(un, un+1)

)
−

(
h2φ2

(
V
)∇G(un, un+1),∇G(un, un+1)

)
.

(9.21)

We insert (9.21) into (9.19) and obtain

H [un+1, vn+1]

=1

2
(vn, vn)+ 1

2
(A un, un)+

(
V φ2(V )un,∇G(un, un+1)

)
−

(
hφ1(V )vn,∇G(un, un+1)

)

+
(
h2φ2(V )∇G(un, un+1),∇G(un, un+1)

)
+
∫
Ω

G
(
un

)
dx

−
(
V φ2(V )un,∇G(un, un+1)

)
+

(
hφ1

(
V
)
vn,∇G(un, un+1)

)
−

(
h2φ2

(
V
)∇G(un, un+1),∇G(un, un+1)

)

=1

2
(vn, vn)+ 1

2
(A un, un)+

∫
Ω

G
(
un

)
dx =H [un, vn].

The proof is finished. ��
Remark 9.3 It is noted that there exist many possible choices of discrete gradients
for a function (see e.g. [18, 44]). Among typical discrete gradients is the well-known
AVF method defined by

∇AVFG(un, un+1) =
∫ 1

0
G′

(
(1− τ )un + τun+1

)
dτ.
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With this special choice, the KGDG scheme (9.16) reduces to the AAVF method
which has been studied in [57, 61] for nonlinear wave equations. Moreover, when
ω = 0, the energy-preserving scheme (9.16) reduces to the AVF method for the
semidiscretised Hamiltonian PDEs considered in [35]. In other words, the KGDG
scheme (9.16) is an essential extension of AAVF methods and AVF methods from
Hamiltonian ODEs to Hamiltonian PDEs. Furthermore, it is remarked that existing
analyses of errors, nonlinear stability and convergence of AAVF methods and AVF
methods for PDEs are insufficient. Therefore, a primary mission of this work is to
analyse the errors, nonlinear stability and convergence of KGDG methods for high-
dimensional nonlinear KG equations.

Remark 9.4 Here we remark that an extended DG method for Hamiltonian ODEs
was researched in [62] and applied to conservative (dissipative) nonlinear wave
PDEs in [58]. However, this method was presented in a scheme for ODEs and
applied only to semidiscrete PDEs; i.e., spatial derivatives are discretised in
advance. Thus, it cannot preserve the continuous energy of the PDEs exactly.
Moreover, the errors, nonlinear stability and convergence of this method were not
analysed in [58]. It is remarked that the scheme (9.16) reduces to the extended
DG method when applied to second-order oscillatory ODEs considered in [62].
Furthermore, the method for nonlinear KG equations is based on the operator-
variation-of-constants formula and depends on the differential operator V . This
means that the scheme does not require the PDEs to be discretised in space and
avoids the semidiscretisation of the spacial derivative. Moreover, the scheme can
preserve the continuous energy of the PDEs exactly. The scheme (9.16) is more
suitable and competitive since different efficient ways to approximate the operator
in the literature can be chosen in a flexible approach, according to different situations
and requirements.

Theorem 9.2 The KGDG scheme (9.16) is symmetric with respect to the time
variable.

Proof Exchanging un+1 ↔ un, vn+1 ↔ vn and replacing h by −h in (9.16) gives
this result straightforwardly. We here skip the details. ��

9.3 Error Analysis

This section will be devoted to local error bounds for the energy-preserving
scheme (9.16) under the following assumption.

Assumption 9.1 We assume that f (u) = −G′(u) : D(A ) → R is sufficiently
often Fréchet differentiable in a strip along the exact solution and is sufficiently
smooth with respect to the time. There exists a real number k such that

‖f (w1
)− f

(
w2

)‖ � k‖w1 −w2‖

for all w1, w1 ∈ L2(Ω).
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Theorem 9.3 Suppose that the KG equation (9.1) possesses uniformly bounded
and sufficiently smooth solutions with respect to the time and f (u) satisfies
Assumption 9.1. Assume that f

′′
t ∈ L∞(0, T ;L2(Ω)). Under the local assumptions

of un = u(tn), vn = v(tn), if the sufficiently small time stepsize h satisfies

0 < h �
√

2

k
, then the local error bounds of (9.16) are given by

‖u(tn+1)− un+1‖ � Ch3 and ‖v(tn+1)− vn+1‖ � Ch3. (9.22)

Proof Inserting the exact solution of (9.12) into the approximation (9.16) yields

{
u(tn+1) = φ0

(
V
)
u(tn)+ hφ1

(
V
)
v(tn)− h2φ2

(
V
)∇G(

u(tn), u(tn+1)
)+ δn+1,

v(tn+1) = −hA φ1
(
V
)
u(tn)+ φ0

(
V
)
v(tn)− hφ1

(
V
)∇G(

u(tn), u(tn+1)
)+ δ′n+1,

(9.23)

where δn+1 and δ′n+1 denote the discrepancies.
Using (9.23) and (9.14), we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δn+1 = h2

∫ 1

0
(1− ζ )φ1

(
(1− ζ )2V

)
f
(
u(tn + hζ )

)
dζ + h2φ2

(
V
)∇G(

u(tn), u(tn+1)
)
,

δ′n+1 = h

∫ 1

0
φ0

(
(1− ζ )2V

)
f
(
u(tn + hζ )

)
dζ + hφ1

(
V
)∇G(

u(tn), u(tn+1)
)
.

(9.24)

Expressing f and G of the formula (9.24) by the Taylor series expansion at u(tn)
gives

δn+1 = h2φ2
(
V
)
f
(
u(tn)

)+O(h3)− h2φ2
(
V
)
f
(
u(tn)

)+O(h3) = O(h3),

and

δ′n+1 =hφ1
(
V
)
f
(
u(tn)

)+ h2φ2
(
V
)∂f (u(t))

∂t
|t=tn +O(h3)

− hφ1
(
V
)
f
(
u(tn)

)− 1

2
hφ1

(
V
)
f ′

(
u(tn)

)(
u(tn+1)− u(tn)

)+ O(h3)

=h2φ2
(
V
)∂f (u(t))

∂t
|t=tn −

1

2
hφ1

(
V
)
f ′

(
u(tn)

)(
u(tn+1)− u(tn)

)+ O(h3)

=h2φ2
(
V
)∂f (u(t))

∂t
|t=tn −

1

2
hφ1

(
V
)
f ′

(
u(tn)

)(
h
∂u(t)

∂t
|t=tn + O(h2)

)
+ O(h3)

=h2
(
φ2

(
V
)− 1

2
φ1

(
V
)) ∂f (u(t))

∂t
|t=tn + O(h3) = O(h3).
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For convenience, define errors

eun = u(tn)− un, evn = v(tn)− vn.

Then, subtracting (9.16) from (9.23) yields

{
eun+1 = h2φ2

(
V
)∇G(un, un+1)− h2φ2

(
V
)∇G(

u(tn), u(tn+1)
)+ δn+1,

evn+1 = hφ1
(
V
)∇G(un, un+1)− hφ1

(
V
)∇G(

u(tn), u(tn+1)
)+ δ′n+1,

which leads to

‖eun+1‖ �h2‖φ2
(
V
)‖1

2
k‖eun+1‖ + ‖δn+1‖ � 1

4
h2k‖eun+1‖ + ‖δn+1‖,

‖evn+1‖ �h‖φ1
(
V
)‖1

2
k‖eun+1‖ + ‖δ′n+1‖ �

1

2
hk‖eun+1‖ + ‖δ′n+1‖.

(9.25)

Under the condition that the time stepsize h satisfies h �
√

2

k
, the first inequality

in (9.25) implies that

‖eun+1‖ � 2‖δn+1‖ � Ch3.

With this result and the second line of (9.25), we deduce that ‖evn+1‖ � Ch3. The
proof is complete. ��

9.4 Analysis of the Nonlinear Stability

In this section, we study the nonlinear stability of the energy-preserving
scheme (9.16). To accomplish this purpose, we consider the following perturbed
problem of (9.12)

{
ũ′(t) = ṽ(t), ũ(0) = g1(x)+ g̃1(x),

ṽ′(t) = −A ũ(t)−G′(ũ(t)), ṽ(0) = g2(x)+ g̃2(x),
(9.26)

where g̃1(x) and g̃2(x) are perturbation functions. Let

û(t) = ũ(t)− u(t), v̂(t) = ṽ(t)− v(t).
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It can be obtained by subtracting (9.12) from (9.26) that

{
û′(t) = v̂(t), û(0) = g̃1(x),

v̂′(t) = −A û(t)−G′(ũ(t))+G′(u(t)), v̂(0) = g̃2(x).
(9.27)

We then apply the approximation (9.16) respectively to (9.12) and (9.26), and obtain
two numerical schemes, which give an approximation of (9.27) as follows

⎧⎨
⎩
ûn+1 = φ0

(
V
)
ûn + hφ1

(
V
)
v̂n + h2φ2

(
V
)
Ĩ ,

v̂n+1 = −hA φ1
(
V
)
ûn + φ0

(
V
)
v̂n + hφ1

(
V
)
Ĩ ,

(9.28)

where

Ĩ = ∇G(un, un+1)−∇G(ũn, ũn+1). (9.29)

Clearly, contrary to the traditional manner, until now we have mostly considered
the situation where the PDE is discretised in time while remaining continuous
in space. To achieve practical numerical schemes, it remains to deal with the
differential operator A in an appropriate way. A straightforward approach to the
treatment of the space derivatives is simply to discretise them in the Hamiltonian.
In this situation, the operator A is approximated by a suitable differentiation
matrix. For ODEs it is common to devise relatively general frameworks for structure
preservation. Hence, we approximate the operator A by a symmetric and positive
semi-definite differentiation matrix. In such a way we can derive corresponding
Hamiltonian ODEs, and commence rigorous nonlinear stability and convergence
analysis. Fortunately, there have been many publications which proposed various
effective ways to deal with the spatial derivatives (see, e.g. [30, 63, 64]), and it is
not difficult to find the symmetric and positive semi-definite differentiation matrix.
Using the space discretisation of a Hamiltonian PDE, we can obtain a system of
Hamiltonian ODEs to which a geometric time integrator may be applied.

The following theorem presents the nonlinear stability of the energy-preserving
approximation (9.16) when the operator A is approximated by a suitable differen-
tiation matrix.

Theorem 9.4 Let the conditions of Theorem 9.3 hold and assume that the operator
A is approximated by a symmetric and positive semi-definite differentiation matrix

A. If the time stepsize h satisfies 0 < h �
√

2

k
, then

‖ûn‖ � exp
(
ĈT

)(‖g̃1‖ +
√
‖√Ag̃1‖2 + ‖g̃2‖2

)
,

‖v̂n‖ � exp
(
ĈT

)(‖g̃1‖ +
√
‖√Ag̃1‖2 + ‖g̃2‖2

)
,

(9.30)

where k > 0 is a Lipschitz constant, and Ĉ and
√
A are defined in the proof.
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Proof First of all, the matrix A can be expressed as

A = PD2Pᵀ = √A2
,

where P is an orthogonal matrix, D is a positive semi-definite diagonal matrix and√
A = PDPᵀ . Consequently, (9.28) becomes

⎧⎨
⎩
ûn+1 = φ0

(
K
)
ûn + hφ1

(
K
)
v̂n + h2φ2

(
K
)
Ĩ ,

v̂n+1 = −hAφ1
(
K
)
ûn + φ0

(
K
)
v̂n + hφ1

(
K
)
Ĩ ,

(9.31)

with K = h2A. It follows from the first formula of (9.31) that

∥∥ûn+1
∥∥ �

∥∥ûn∥∥+ h
∥∥v̂n∥∥+ 1

2
h2

∥∥∥Ĩ ∥∥∥ . (9.32)

Rewriting (9.31) as the following compact form:

(√
Aûn+1

v̂n+1

)
=

(
φ0(K) h

√
Aφ1(K)

−h√Aφ1(K) φ0(K)

)(√
Aûn

v̂n

)

+ h

(
h
√
Aφ2(K)

φ1(K)

)(
Ĩ

Ĩ

)
,

we then obtain√
‖√Aûn+1‖2 + ‖v̂n+1‖2 �

√
‖√Aûn‖2 + ‖v̂n‖2 + hα̃

∥∥∥Ĩ ∥∥∥ .
Here α̃ is the uniformly bound of

∥∥∥∥
(
h
√
Aφ2(K)

φ1(K)

)∥∥∥∥ and we have used the

fact (see [6]) that

∥∥∥∥
(

φ0(K) h
√
Aφ1(K)

−h√Aφ1(K) φ0(K)

)∥∥∥∥ = 1.

Summing up the above results yields

‖ûn+1‖ +
√
‖√Aûn+1‖2 + ‖v̂n+1‖2

�‖ûn‖ +
√
‖√Aûn‖2 + ‖v̂n‖2 + h‖v̂n‖ + h

(
α̃ + h

2

)∥∥∥Ĩ ∥∥∥ . (9.33)
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According to the definition (9.29) of Ĩ , the following result is obtained:

∥∥∥Ĩ ∥∥∥ � k

∫ 1

0

∥∥((1− τ )ûn + τ ûn+1
)∥∥ dτ � 1

2
k
( ∥∥ûn∥∥+ ∥∥ûn+1

∥∥ ). (9.34)

Inserting (9.34) into (9.32) yields

∥∥ûn+1
∥∥ �

∥∥ûn∥∥+ h
∥∥v̂n∥∥+ 1

4
h2k

( ∥∥ûn∥∥+ ∥∥ûn+1
∥∥ ),

and then we have(
1− 1

4
h2k

)∥∥ûn+1
∥∥ �

(
1+ 1

4
h2k

)∥∥ûn∥∥+ h
∥∥v̂n∥∥ .

Under the condition that h �
√

2

k
, we obtain

∥∥ûn+1
∥∥ � 3

∥∥ûn∥∥+ 2h
∥∥v̂n∥∥ .

Combining this result with (9.33)–(9.34) gives

‖ûn+1‖ +
√
‖√Aûn+1‖2 + ‖v̂n+1‖2

�‖ûn‖ +
√
‖√Aûn‖2 + ‖v̂n‖2 + h‖v̂n‖ + h

2

(
α̃ + h

2

)

k
( ∥∥ûn∥∥+ 3

∥∥ûn∥∥+ 2h
∥∥v̂n∥∥ )

�‖ûn‖ +
√
‖√Aûn‖2 + ‖v̂n‖2 +

(
h+ h2

(
α̃ + h

2

)
k

)

‖v̂n‖ + 2h

(
α̃ + h

2

)
k
∥∥ûn∥∥

�‖ûn‖ +
√
‖√Aûn‖2 + ‖v̂n‖2 + hĈ

(
‖ûn‖ +

√
‖√Aûn‖2 + ‖v̂n‖2

)
,

where Ĉ = max

(
1+ α̃kh+ kh2

2
, 2α̃k + kh

2

)
. Then, it follows from mathemati-

cal induction that

‖ûn+1‖ +
√
‖√Aûn+1‖2 + ‖v̂n+1‖2 �

(
1+ hĈ

)n(‖û0‖ +
√
‖√Aû0‖2 + ‖v̂0‖2

)
� exp

(
ĈT

)(‖g̃1‖ +
√
‖√Ag̃1‖2 + ‖g̃2‖2

)
.

This proves this theorem. ��
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9.5 Convergence

This section is concerned with the convergence of the fully discrete approximation.
Using some suitable spatial discretisation strategies, we discretise the original
continuous system (9.12) as follows:

{
U ′(t) = V (t), U(0) = g1(x),

V ′(t) = −AU(t)−∇G̃(U(t))+ δ̂(x), V (0) = g2(x),
(9.35)

where U, V ∈ R
M are vectors, A is a symmetric and positive semi-definite

differentiation matrix, x is the spatial stepsize for the space discretisation,
G̃(U) = ∑M

j=1 G
(
Uj

)
, and δ̂(x) is the truncation error introduced by the

approximation of spatial differential operator A through the matrix A.
Applying the numerical approximation (9.16) to (9.35) and ignoring δ̂(x)

yields

{
Un+1 = φ0

(
K
)
Un + hφ1

(
K)Vn − h2φ2

(
K
)∇G̃(Un,Un+1),

Vn+1 = −hAφ1
(
K
)
Un + φ0

(
K
)
Vn − hφ1

(
K
)∇G̃(Un,Un+1).

(9.36)

We then have the following convergence result of (9.36).

Theorem 9.5 Under the conditions of Theorem 9.4, there exists a constant C such
that ⎧⎨

⎩
‖U(tn)− Un‖ � CT exp(ĈT )

(
h2 + ‖δ̂(x)‖),

‖V (tn)− Vn‖ � CT exp(ĈT )
(
h2 + ‖δ̂(x)‖), (9.37)

where C is a constant independent of n, h and x.

Proof Inserting the exact solution of (9.35) into the numerical approxima-
tion (9.16), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(tn+1) = φ0
(
K
)
U(tn)+ hφ1

(
K)V (tn)

+ h2φ2
(
K
) ∫ 1

0
f
(
(1− τ )U(tn)+ τU(tn+1)

)
dτ + δ̂n+1,

V (tn+1) = −hAφ1
(
K
)
U(tn)+ φ0

(
K
)
V (tn)

+ hφ1
(
K
) ∫ 1

0
f
(
(1− τ )U(tn)+ τU(tn+1)

)
dτ + δ̂′n+1,

(9.38)
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where δ̂n+1 and δ̂′n+1 are the discrepancies. In terms of these formulae and the
operator-variation-of-constants formula (9.13) of (9.35), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ̂n+1 =h2
∫ 1

0
(1 − ζ )φ1

(
(1− ζ )2K

)
f
(
U(tn + hζ)

)
dζ + h2φ2

(
K
)∇G̃(Un,Un+1)

+ h2
∫ 1

0
(1− z)φ1

(
(1 − z)2K

)
δ̂(x)dz,

δ̂′n+1 =h
∫ 1

0
φ0

(
(1− ζ )2K

)
f
(
U(tn + hζ)

)
dζ + hφ1

(
K
)∇G̃(Un,Un+1)

+ h

∫ 1

0
φ0

(
(1 − z)2K

)
δ̂(x)dz.

(9.39)

Repeating the similar steps which we did in Sect. 9.3, we deduce the following
results associated with these discrepancies

∥∥∥δ̂n+1

∥∥∥ � C1h
3 + h2

∥∥∥∥
∫ 1

0
(1− z)φ1

(
(1− z)2K

)
δ̂(x)dz

∥∥∥∥ ,
∥∥∥δ̂′n+1

∥∥∥ � C2h
3 + h

∥∥∥∥
∫ 1

0
φ0

(
(1− z)2K

)
δ̂(x)dz

∥∥∥∥ .
Thus, we have

‖δ̂n+1‖ � C1h
3 + 1

2
h2‖δ̂(x)‖, ‖δ̂′n+1‖ � C2h

3 + h‖δ̂(x)‖. (9.40)

We now denote

eUn = U(tn)− Un, eVn = V (tn)− Vn.

Then, subtracting (9.36) from (9.38) results in

⎧⎨
⎩
eUn+1 = φ0(K)eUn + hφ1(K)eVn + h2φ2(K)Î + δ̂n+1,

eVn+1 = −hAφ1(K)eUn + φ0(K)eVn + hφ1(K)Î + δ̂′n+1,
(9.41)

where

Î = ∇G̃(Un,Un+1)−∇G̃
(
U(tn), U(tn+1)

)
(9.42)
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with the initial conditions eU0 = 0 and eV0 = 0. We rewrite (9.41) as follows:

(√
AeUn+1
eVn+1

)
=

(
φ0(K) h

√
Aφ1(K)

−h√Aφ1(K) φ0(K)

)(√
AeUn
eVn

)

+ h

(
h
√
Aφ2(K)

φ1(K)

)(
Î

Î

)
+

(√
Aδ̂n+1

δ̂′n+1

)
,

which implies

√
‖√AeUn+1‖2 + ‖eVn+1‖2 �

√
‖√AeUn ‖2 + ‖eVn ‖2 + hα̃

∥∥∥Î ∥∥∥
+

√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2.

According to (9.42), we obtain

∥∥∥Î ∥∥∥ � k

∫ 1

0

∥∥∥(1− τ )eUn + τeUn+1

∥∥∥ dτ � 1

2
k
( ∥∥∥eUn ∥∥∥+ ∥∥∥eUn+1

∥∥∥ ).
It then follows from the first equality of (9.41) that

∥∥∥eUn+1

∥∥∥ �
∥∥∥eUn ∥∥∥+ h

∥∥∥eVn ∥∥∥+ 1

2
h2

∥∥∥Î ∥∥∥+ ∥∥∥δ̂n+1

∥∥∥
�

∥∥∥eUn ∥∥∥+ h

∥∥∥eVn ∥∥∥+ 1

4
h2k

( ∥∥∥eUn ∥∥∥+ ∥∥∥eUn+1

∥∥∥ )+ ∥∥∥δ̂n+1

∥∥∥ .
Using the condition h �

√
2

k
, we obtain

∥∥∥eUn+1

∥∥∥ � 3
∥∥∥eUn ∥∥∥+ 2h

∥∥∥eVn ∥∥∥+ 2
∥∥∥δ̂n+1

∥∥∥ ,
and ∥∥∥Î ∥∥∥ � k

(
2
∥∥∥eUn ∥∥∥+ h

∥∥∥eVn ∥∥∥+ ∥∥∥δ̂n+1

∥∥∥ ).
Now summing up the above results gives

∥∥∥eUn+1

∥∥∥+√
‖√AeUn+1‖2 + ‖eVn+1‖2 �

∥∥∥eUn ∥∥∥+
√
‖√AeUn ‖2 + ‖eVn ‖2

+ h

∥∥∥eVn ∥∥∥+ h
(
α̃ + 1

2
h
) ∥∥∥Î ∥∥∥+ ∥∥∥δ̂n+1

∥∥∥+√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2
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�
∥∥∥eUn ∥∥∥+√

‖√AeUn ‖2 + ‖eVn ‖2 +
√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2

+ h

∥∥∥eVn ∥∥∥+ h
(
α̃ + 1

2
h
)
k
(

2
∥∥∥eUn ∥∥∥+ h

∥∥∥eVn ∥∥∥+ ∥∥∥δ̂n+1

∥∥∥ )+ ∥∥∥δ̂n+1

∥∥∥
�

(
1+ hĈ

) (∥∥∥eUn ∥∥∥+
√
‖√AeUn ‖2 + ‖eVn ‖2

)

+
√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2 +

(
1+ h

(
α̃ + 1

2
h

)
k

)∥∥∥δ̂n+1

∥∥∥ .
On noting that the truncation errors (9.40), there exists a constant C such that

√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2 +

(
1+ h

(
α̃ + 1

2
h

)
k

)∥∥∥δ̂n+1

∥∥∥ � Ch
(
h2 + ‖δ̂(x)‖).

It then follows form the Gronwall’s inequality that

∥∥∥eUn+1

∥∥∥+√
‖√AeUn+1‖2 + ‖eVn+1‖2

� exp(nhĈ)
(
‖eU0 ‖ +

√
‖√AeU0 ‖2 + ‖eV0 ‖2 + Cnh

(
h2 + ‖δ̂(x)‖)).

This confirms the theorem. ��

9.6 Implementation Issues of KGDG Scheme

This section focuses on the implementation issues of the energy-preserving KGDG
scheme (9.16). Obviously, (9.16) itself falls well short of being a practical scheme
unless the ∇G(un, un+1) can be approximated. Fortunately, however, due to the
special structure of the function G′(u) appearing in the KG equation (9.1), the
∇G(un, un+1) can be calculated as follows:

⎧⎨
⎩∇G(un, un+1) = 1(

un+1 − un
)G(un+1)−G

(
un

)
, if un+1 − un 
= 0,

∇G(un, un) = G′(un), if un+1 − un = 0.
(9.43)

Thus, we are now in a position to present the following practical energy-preserving
scheme for solving the high-dimensional nonlinear KG equation. We call it the
KGDG scheme again.
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Definition 9.2 A practical KGDG scheme for the high-dimensional nonlinear KG
equation (9.1) is defined by

⎧⎪⎪⎨
⎪⎪⎩
un+1 = φ0

(
V
)
un + hφ1

(
V
)
vn − h2φ2

(
V
) 1

un+1 − un

(
G(un+1)−G

(
un

))
,

vn+1 = −hA φ1
(
V
)
un + φ0

(
V
)
vn − hφ1

(
V
) 1

un+1 − un

(
G(un+1)−G

(
un

))
,

(9.44)

provided un+1 − un 
= 0, whereas if un+1 − un = 0, the corresponding scheme
reduces to{

un+1 = φ0
(
V
)
un + hφ1

(
V
)
vn − h2φ2

(
V
)
G′

(
un

)
,

vn+1 = −hA φ1
(
V
)
un + φ0

(
V
)
vn − hφ1

(
V
)
G′

(
un

)
.

(9.45)

As stated above, a notable feature of the analysis is that the underlying KG
equation is discretised in time while remaining continuous in space.

Contrarily, in practice, one usually discretises the spatial derivative first, for
instance, by finite differences methods or spectral methods. This implies that the
differential operator A is replaced by a symmetric and semi-definite matrix A,
namely, the high-dimensional nonlinear KG equation (9.1) is approximated by the
following system of ODEs

{
q ′(t) = p(t), q(0) = g1(x),

p′(t) = −Aq(t)−∇G̃(q(t)), p(0) = g2(x),
(9.46)

where q(t), p(t) ∈ R
M and

G̃
(
q(t)

) = M∑
j=1

G
(
qj (t)

)
.

This Hamiltonian system of ODEs has a corresponding energy conservation law of
the form:

H̃ (p, q) = x

2
pᵀp+ x

2
qᵀAq+xG̃

(
q(t)

) = · · · = H̃ (p(0), q(0)), (9.47)

wherex is the spatial stepsize. This energy H̃ (p, q) is termed semidiscrete energy,
which can be thought of as an approximate energy of the original nonlinear KG
equation (9.1). We then have the following practical energy-preserving scheme for
the nonlinear KG equation (9.1), which is termed semidiscrete KGDG (SKGDG)
scheme.
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Definition 9.3 An energy-preserving SKGDG scheme for (9.46) is defined by

{
qn+1 = φ0

(
K
)
qn + hφ1

(
K
)
pn − h2φ2

(
K
)∇SG(qn, qn+1),

pn+1 = −hAφ1
(
K
)
qn + φ0

(
K
)
pn − hφ1

(
K
)∇SG(qn, qn+1),

(9.48)

where K = h2A, ∇SG(qn, qn+1) is determined as follows:

⎧⎨
⎩
∇SG(qn, qn+1) =

(
G(qn+1)−G

(
qn

))
/(qn+1 − qn), if qn+1 − qn 
= 0,

∇SG(qn, qn) = ∇G̃(un), if qn+1 − qn = 0,
(9.49)

and ·/· denotes elementwise division of vectors. We here remark that for a vector
q = (q1, q2, · · · , qM)ᵀ, G(q) is defined by

G(q) =
(
G(q1),G(q2), · · · ,G(qM)

)ᵀ
. (9.50)

Remark 9.5 Actually, the SKGDG scheme (9.48) can be straightforwardly obtained
by replacing V , un,

(
G(un+1) − G(un)

)
/(un+1 − un), and G′(un) in the KGDG

scheme (9.44)–(9.45) with K , qn, ∇SG(qn, qn+1), and ∇SG(qn, qn), respectively.
Remember that V = h2A and K = h2A here. This provides new insight into the
design of geometric numerical integration for solving high-dimensional nonlinear
KG equations.

Theorem 9.6 The SKGDG scheme (9.48) exactly preserves the semidiscrete energy
H̃ , i.e., we have

H̃ (pn+1, qn+1) = H̃ (pn, qn), n = 0, 1, · · · .

Proof The proof is divided into two cases: qn+1 − qn 
= 0 and qn+1 − qn = 0.

Case (i): qn+1 − qn 
= 0.

In this case, we first need to show that

(qn+1 − qn)
ᵀ∇SG(qn, qn+1) = G̃ (qn+1)− G̃

(
qn

)
.

In fact, it follows from (9.48) and (9.50) that

(qn+1 − qn)
ᵀ∇SG(qn, qn+1) = (qn+1 − qn)

ᵀ
((
G(qn+1)−G(qn)

)
/(qn+1 − qn)

)

=
M∑
j=1

(
G(qn+1,j )−G(qn,j )

)
= G̃ (qn+1)− G̃

(
qn

)
,

(9.51)

where qn,j denotes the j -th component of the vector qn.
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We insert the SKGDG scheme (9.48) into the semidiscrete energy H̃ (9.47) with
some careful calculations, and obtain

H̃ (pn+1, qn+1) = x

2
pᵀ
n pn +

x

2
qᵀn Aqn +xG̃

(
qn

)+x
(
G̃ (qn+1)− G̃

(
qn

))
+xqᵀnKφ2(K)∇SG(qn, qn+1)

−xhpᵀ
nKφ1(K)∇SG(qn, qn+1)

+xh2∇SG(qn, qn+1)
ᵀφ2(K)∇SG(qn, qn+1). (9.52)

Then, using the first formula of (9.48) and (9.51) yields

G̃ (qn+1)− G̃
(
qn

) = (qn+1 − qn)
ᵀ∇SG(qn, qn+1) = −qᵀn Kφ2(K)∇SG(qn, qn+1)

+ hpᵀ
nKφ1(K)∇SG(qn, qn+1)− h2∇SG(qn, qn+1)

ᵀφ2(K)∇SG(qn, qn+1).

Inserting this result into (9.52), we immediately obtain

H̃ (pn+1, qn+1) = x

2
pᵀ
npn +

x

2
qᵀn Aqn +xG̃

(
qn

) = H̃ (pn, qn).

Case (ii): qn+1 − qn = 0.

In this case, the conclusion can be deduced straightforwardly from consider-
ing (9.48) and (9.52).

The proof is complete. ��
Remark 9.6 It can be observed that the schemes (9.44) and (9.48) are formulated in
a completely closed form since the ∇G(un, un+1) is evaluated exactly. This makes
the schemes more practical and robust, which can be thought of as an efficient
and straightforward approach to the implementation of the energy-preserving
scheme (9.16) for nonlinear KG equations.

Remark 9.7 It is very important to note that the schemes (9.44) and (9.48) for
nonlinear KG equations are different from the AVF method and AAVF method for
Hamiltonian ODEs since both the AVF method and the AAVF method are dependent
on the evaluation of the integrals appearing in their formulae. As time integration
methods for nonlinear KG equations, both the AVF method and the AAVF method
cannot exactly preserve the energy in practical computation, in general. Moreover,
for the scheme (9.48), the difference between the continuous energy and the discrete
energy is dependent only on the spatial discretisation and independent of the time
integration, since the integral appearing in the formula has been calculated without
error, which is completely different from the case for Hamiltonian ODEs.
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Remark 9.8 In the spirit of Geometric Integration, the scheme (9.48) is a gen-
uine energy-preserving formula from both theoretical and computation aspects
because (9.48) exactly preserves the discrete energy without error. This advantage
is significant for the study of structure-preserving algorithms for nonlinear Hamil-
tonian PDEs.

Remark 9.9 As is known, one of the important applications of numerical ODEs
is to solve PDEs efficiently. The traditional and popular way is to discretise
the spatial derivative first. Then numerical methods of ODEs are applied to the
underlying semidiscretised ODEs. Sometimes this approach will result in a gap
between PDEs and ODEs in view of numerical analysis. In particular, the analysis of
global errors, since the true solution of the underlying nonlinear PDEs, or the true
solution of the semidiscretised ODEs may not be available. Fortunately, however,
on the basis of the so-called operator-variation-of-constants formula and the matrix-
variation-of-constants formula, we can get an insight into the true solutions of
both the underlying PDEs and the semidiscretised ODEs. Hence, we can deal with
the important issues of numerical analysis for structure-preserving schemes when
applied to nonlinear KG equations.

In what follows, we analyse the convergence of fixed-point iteration for (9.16),
because the scheme (9.16) is implicit and an iterative procedure is required.

Theorem 9.7 It is assumed that the DG ∇G(·, y) satisfies the Lipschitz condition
with respect to y and the Lipschitz constant is L. If the time stepsize h satisfies

0 < h � h̃ �
√

2

L
, then the fixed-point iteration for (9.16) is convergent.

Proof Let

Ψ : y → φ0
(
V
)
un + hφ1

(
V
)
vn − h2φ2

(
V
)∇G(un, y).

Using Proposition 9.2, we obtain

‖Ψ (y1)− Ψ (y2)‖ � 1

2
h2L ‖y1 − y2‖ ,

which proves the result by the contraction mapping theorem. ��
Remark 9.10 It should be pointed out that the convergence of the fixed-point
iteration for the KGDG scheme is independent of A . Unfortunately, however, the
convergence of other methods such as the AVF method and HBVMs depends on
A . This allows us to use a large time stepsize and a simple iteration method with
a small iteration number for the KGDG scheme. This point will be demonstrated
clearly by the numerical experiments presented in next section.
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9.7 Numerical Experiments

The purpose of this section is to present the numerical results of applying the energy-
preserving KGDG scheme to several nonlinear KG equations in comparison with the
well-known leap-frog scheme and two classes of energy-preserving methods, AVF
methods and HBVMs.

We choose the following solvers for comparison:

• KGDG: the energy-preserving KGDG scheme of order two presented in this
chapter;

• AVF: the energy-preserving AVF method of order two proposed in [35];
• HBVM11: the HBVM(1,1) of order two derived in [50, 56];
• LFS: the well-known leap-frog scheme;
• HBVM22: the HBVM(2,2) of order four given in [50, 56].

It is remarked that the first four methods are all of order two while HBVM22
is of order four. The main aim of choosing the fourth-order method is to show the
superiority of the KGDG scheme of order two in comparison with higher-order
methods in the literature. It is also noted that KGDG, AVF, HBVM11 and HBVM22
are all implicit, and iterative solutions are required for them. In order to demonstrate
the advantage of the KGDG scheme, i.e., the KGDG scheme can perform well even
though a simple iteration method is employed with a small iteration number, we
use standard fixed-point iteration in the practical computations. We set 10−15 as the
error tolerance, and 10 as the maximum number of iterations for all the experiments.
Of course, it is possible to change standard fixed-point iteration to the quasi-Newton
or Newton iteration. In this chapter we do not consider this issue further for brevity.

9.7.1 One-Dimensional Problems

We start from three one-dimensional nonlinear KG equations and approximate the
operator A by the Fourier spectral collocation (FSC) (see [30, 64]) as follows:

A ≈ A = 1

(π/L)2

(
akj

)
M×M with akj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)k+j

2
sin−2

(
(k − j)π

M

)
, k 
= j,

M2

12
+ 1

6
, k = j.

(9.53)

Problem 9.1 Consider the following sine-Gordon equation (see, e.g. [56])

∂2u

∂t2
= ∂2u

∂x2
− sin u, x ∈ [−20, 20], t ∈ [0, T ].
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We here consider soliton-like solutions, defined by the initial conditions:

u(x, 0) ≡ 0, ut (x, 0) = 4/γ sech
(
x/γ

)
, γ � 0.

The solution of Problem 9.1 depends on the value of γ , and is given by

u(x, t) = 4 arctan
(
ψ(t, γ )sech(x/γ )

)
where

ψ(t, γ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sinh

(√
1− γ 2t

γ

)
/
√

1− γ 2, 0 < γ < 1,

t, γ = 1,

sin

(√
γ 2 − 1t

γ

)
/
√
γ 2 − 1, γ > 1.

The exact solutions with γ = 0.99, 1 and 1.01 are shown in Fig. 9.1. As is known,
the case 0 < γ < 1 is named kink-antikink and the case γ > 1 is termed breather.
The case γ = 1 is named double-pole which separates the two different types of
dynamics.

After the Fourier spectral collocation semidiscretisation of operator A by (9.53)
with M = 200, we integrate the semidiscrete system with h = 0.1 and T = 1000.
The errors of the semidiscrete energy conservation for γ = 0.99, 1, 1.01 are shown
in Fig. 9.2a. We here use the semidiscrete energy (9.47) at the initial values as
the “exact” energy of this problem and show the energy errors for each numerical
method. Similar situations are encountered in the next four problems.

Fig. 9.1 Exact solutions of Problem 9.1
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Fig. 9.2 Energy errors and efficiency curves for Problem 9.1

Problem 9.1 is solved on [0, 10] with different stepsizes h = 0.1/2j for j =
0, 1, 2, 3. We use the log-log plots of the global errors. The efficiency curves (the
global error versus N = T/h) are shown in Fig. 9.2b. It can be observed that the
KGDG scheme shows remarkable numerical behaviour.

Problem 9.2 Consider the dimensionless relativistic KG equation with highly
oscillatory solutions in time (see, e.g. [1])

⎧⎪⎪⎨
⎪⎪⎩
ε2 ∂

2u

∂t2
− ∂2u

∂x2
+ 1

ε2
u+ f (u) = 0, −L � x � L, 0 � t � T, u(−L, t) = u(L, t),

u(x, 0) = φ(x), ut (x, 0) = 1

ε2
γ (x),

(9.54)
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Fig. 9.3 The ‘exact’ solutions of Problem 9.2

where ε is a dimensionless parameter ε > 0. Similarly to [1], we choose

f (u) = 4u3, φ(x) = 2

exp(x2)+ exp(−x2)
, γ (x) = 0,

in (9.54).

Let u(x, t) be the ‘exact’ solution of this problem, which is obtained numerically
by using the fourth-order method HBVM22 with small time step h = 1/1000. The
results with ε = 0.5, 0.1, and 0.05 are presented in Fig. 9.3.

After the Fourier spectral collocation semidiscretisation of operator A with L =
10,M = 100 for ε = 0.5 and M = 400 for ε = 0.1 and 0.05, the problem is
solved with T = 1000, h = 0.05 for ε = 0.5, T = 200, h = 0.004 for ε = 0.1
and T = 100, h = 0.002 for ε = 0.05. The errors of the semidiscrete energy
conservation are shown in Fig. 9.4a. We then choose T = 10 and h = 0.04/2j

for j = 0, 1, 2, 3 with ε = 0.2 and for j = 2, 3, 4, 5 with ε = 0.1 and 0.05.
The efficiency curves are displayed in Fig. 9.4b. Clearly, the KGDG scheme shows
remarkable numerical behaviour. Moreover, it can be observed from Fig. 9.4b that
the KGDG method is allowed to take larger time stepsizes than the other methods
for this highly oscillatory system.

Problem 9.3 Consider the nonlinear KG equation (see, e.g. [31, 65])

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂t2
− a2 ∂

2u

∂x2
= bu3 − au, −20 � x � 20, 0 � t � T, u(−20, t) = u(20, t),

u(x, 0) =
√

2a

b
sech(λx), ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx)
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Fig. 9.4 Energy errors and efficiency curves for Problem 9.2

with λ =
√

a

a2 − c2 and a, b, a2 − c2 > 0. The exact solution of Problem 9.3 is

u(x, t) =
√

2a

b
sech(λ(x − ct)),

as shown in Fig. 9.5a. In this numerical experiment, we choose the parameters a =
0.3, b = 1 and c = 0.25. After the Fourier spectral collocation semi-discretisation
of operator A with M = 200, we integrate the semidiscrete system with T = 1000
and h = 0.2. The errors of the semidiscrete energy conservation are presented in
Fig. 9.5b. The efficiency curves with T = 10 and h = 0.05/2j for j = 0, 1, 2, 3 are
shown in Fig. 9.5c. Again, the KGDG scheme gives good numerical behaviour.
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Fig. 9.5 Exact solutions and energy errors and efficiency curves for Problem 9.3

9.7.2 Two-Dimensional Problems

We are now concerned with high-dimensional problems. We next show the remark-
able efficiency of the KGDG scheme for high-dimensional nonlinear KG equations
by considering two two-dimensional problems.

Problem 9.4 Consider the following two-dimensional nonlinear wave equation
(see, e.g. [35])

∂2u(x, y, t)

∂t2
= u(x, y, t)− u3(x, y, t), (x, y) ∈ [−1, 1] × [−1, 1], t > 0

with periodic boundary conditions. The initial conditions are

u(x, y, 0) = sech(10x)sech(10y), ut (x, y, 0) = 0.

Here, we use spectral elements method (see, e.g. [35]) to semidiscretise the
wave equation. The space is discretised with a tensor product Lagrange quadrature
formula using p + 1 Gauss–Lobatto–Legendre (GLL) quadrature nodes in each
space direction. This leads to (see [35] for more details)

H̃ (U) = 1

2

p∑
j1=0

p∑
j2=0

wj1wj2

⎛
⎝(

p∑
k=0

dj1,kuk,j2

)2

+
(

p∑
m=0

dj2,muj1,m

)2

+ 1

2
u4
j1,j2

⎞
⎠ ,
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where lk(x) is the k-th Lagrange basis function based on the GLL quadrature nodes
x0, · · · , xp with the corresponding quadrature weights w0, · · · , wp , and dj1,k =
dlk(x)

dx
. The numerical approximation of the solution can be expressed in the form

up(x, y, t) =
p∑

k=0

p∑
m=0

uk,m(t)lk(x)lm(y)

where up(xj1, yj2, t) = uj1,j2(t).
In Fig. 9.6, we show some snapshots of the numerical solutions by KGDG and

AVF with a small stepsize h = 0.005. In this experiment, the spatial derivatives
are discretised with six Gauss Lobatto nodes in each spatial direction and numerical
solutions interpolate on an equidistant grid of 26 nodes in each spatial direction.

Fig. 9.6 Snapshots of the solution of Problem 9.4
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Fig. 9.7 Energy errors and efficiency curves for Problem 9.4

Then the semidiscretised system is integrated with p = 5, h = 1

5
and T =

1000, and the results of energy conservation are presented in Fig. 9.7a. Finally,

we integrate the problem on the interval [0, 100] with h = 1

2i
for i = 0, 1, 2, 3.

The global errors are shown in Fig. 9.7b. It can be observed from Fig. 9.7b that the
KGDG scheme is the most efficient among the underlying methods.

Problem 9.5 Consider the following two-dimensional sine-Gordon equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

utt − (uxx + uyy) = − sin u, (x, y) ∈ [−1, 1] × [−1, 1], t > 0,

u(x, y, 0) = 4 arctan

(
exp

(
4−√

(x + 3)2 + (y + 3)2

0.436

))
,

ut (x, y, 0) = 4.13

cosh
(

exp
((

4−√
(x + 3)2 + (y + 3)2

)
/0.436

)) ,
with periodic boundary conditions.

Likewise, we use the spectral elements method to semidiscrete the two-
dimensional sine-Gordon equation, and space is discretised with a tensor product
Lagrange quadrature formula based on 6 GLL quadrature nodes in each spatial

direction. We first solve the system with h = 1

5
and T = 1000. The results of
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Fig. 9.8 Energy errors and efficiency curves for Problem 9.5

energy conservation are shown in Fig. 9.8a. We then integrate the problem on

[0, 100] with h = 1

2i
for i = 1, 2, 3, 4. The global errors are presented in Fig. 9.8b.

It can be seen again that the KGDG scheme is the most efficient among these
methods.

9.8 Concluding Remarks

Since the concept of energy preservation has far reaching consequences in the
physical sciences, many energy-preserving methods have been proposed for ODEs
and PDEs. In this chapter, using the blend of the discrete gradient method and
the operator-variation-of-constants formula, we have presented a systematic and
unified approach to the discretisation of high-dimensional nonlinear KG equations,
so that the semidiscrete energy can be preserved precisely. The resulting energy-
preserving scheme was analysed in detail for local truncation error, nonlinear
stability, convergence and implementations. Moreover, the remarkable efficiency
of the energy-preserving scheme was demonstrated by the numerical experiments
in comparison with some existing numerical methods in the literature. In this
chapter, we also make an effort to bridge the gap between numerical ODEs and
PDEs in numerical analysis based on the operator-variation-of-constants formula
for nonlinear KG equations. This formula provides insight into the solution to the
underlying nonlinear KG equation, which is needed for the numerical analysis. Both
the nonlinear stability analysis and convergence analysis are essential in the study
of Geometric Numerical Integration for Hamiltonian PDEs. We have addressed this
point in this chapter.
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Last but definitely not least, compared with symplectic methods, the prominent
advantage of energy-preserving methods is that they can preserve the energy
of the underlying Hamiltonian system exactly. However, we believe that further
exploration is needed. Future research should explore the numerical behaviour
of energy-preserving methods in other aspects, such as the long-time numerical
conservation of momentum and actions of Hamiltonian PDEs. The key technique
for the analysis is modulated Fourier expansion, and we are hopeful of obtaining
some interesting results on this important subject. In Chap. 14, we will commence
this potentially interesting study.

The material in this chapter is based on the work by Wang and Wu [66].
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Chapter 10
High-Order Symmetric
Hermite–Birkhoff Time Integrators
for Semilinear KG Equations

The computation of the Klein–Gordon equation featuring a nonlinear potential
function is of great importance in a wide range of application areas in science
and engineering. It represents major challenges because of the nonlinear potential.
The main aim of this chapter is to present symmetric and arbitrarily high-order
time-stepping integrators and analyse their stability, convergence and long-time
behaviour for the semilinear Klein–Gordon equation. To achieve this, under the
assumption of periodic boundary conditions, an abstract ordinary differential
equation (ODE) and its operator-variation-of-constants formula are formulated on
a suitable function space based on operator spectrum theory. By applying a two-
point Hermite–Birkhoff interpolation to the nonlinear integrals that appear in the
operator-variation-of-constants formula, as a result, a suitable spatial discretisation
leads to the fully discrete scheme, which needs only a weak temporal smoothness
assumption.

10.1 Introduction

It is well known that the nonlinear wave equation plays a prominent role in a wide
range of applications in engineering and science, including nonlinear optics, solid
state physics and quantum field theory [1]. Most importantly, the Klein–Gordon
(KG) equation, a relativistic counterpart of the Schrödinger equation, is used to
model diverse nonlinear phenomena, such as the propagation of dislocations in
crystals and the behaviour of elementary particles and of Josephson junctions (see
Chap. 2 in [2] for details). Numerical computations play an important role in the
study of nonlinear waves. We here restrict ourselves to the one-dimensional case,
although all ideas, algorithms and analysis described in this chapter can be easily
extended to the solution of semilinear KG equations in a moderate number of space
dimensions.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
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We now consider the following semilinear KG equation in a single space
variable: {

utt − a2u = f (u), t0 < t � T , x ∈ Ω,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ Ω̄,
(10.1)

where u(x, t) represents the wave displacement at position x and time t , and the
nonlinear function f (u) is the negative derivative of a potential energy V (u) � 0.
Here it is assumed that the initial value problem (10.1) is equipped with the periodic
boundary conditions on the domain Ω = (−π, π),

u(x, t) = u(x + 2π, t), x ∈ (−π, π], (10.2)

where 2π is the fundamental period with respect to x. The semilinear KG
equation (10.1) is used to model many different nonlinear phenomena, including
the propagation of dislocations in crystals and the behaviour of elementary particles
and of Josephson junctions (see Chap. 8.2 in [2] for details). In general, it has also
been the subject of detailed investigation in studies of solitons and in nonlinear
science. In the literature, there are various choices of the potential f (u). Among
typical examples is the best known sine-Gordon equation

utt − a2u+ sin(u) = 0,

and it also appears with polynomial f (u), and other nonlinear functions. Another
point is that, if u(·, t) ∈ H 1(Ω) and ut (·, t) ∈ L2(Ω), the energy conservation is a
key feature of the KG equation (10.1) with periodic boundary condition (10.2), that
is

E(t) = 1

2

∫
Ω

(
u2
t + a2|∇u|2 + 2V (u)

)
dx ≡ E(t0). (10.3)

This is an essential property in the theory of solitons. Therefore, it is also very
important to test the effectiveness of a numerical method for (10.1) for the
preservation of the corresponding discrete energy.

The KG equation has received much attention in both its numerical and analytical
aspects. With regard to analytical issues, the initial value problem (10.1) was
investigated by many authors (see, e.g. [3–7]). In particular, for the defocusing case,
V (u) � 0, u ∈ R, the global existence of solutions was established in [3], and for
the focusing case, V (u) � 0, u ∈ R, possible finite time blow-up was investigated.
In numerical analysis, various solution procedures have been proposed and studied
including classical finite difference methods such as explicit, semi-implicit, compact
finite difference and symplectic conservative discretisations [8–12]. Other effective
numerical methods, such as the finite element method and the spectral method were
also studied in [13–16]. Although various numerical methods for the semilinear
KG equation have been derived and investigated in the literature, their accuracy is



10.2 The Symmetric and High-Order Hermite–Birkhoff Time Integration. . . 301

limited, and little attention has been paid to the special structure brought by spatial
discretisations.

It is known that recent interest in exponential integrators for semilinear parabolic
problems has led to the development of numerical schemes (see, e.g. [17–21]).
Motivated by this and based on the operator spectrum theory (see, e.g. [22]), we
first formulate the nonlinear KG equation (10.1)–(10.2) as an abstract second-order
ordinary differential equation. Then, the operator-variation-of-constants formula
(also is termed theDuhamel Principle) for the abstract equation is introduced, which
is in fact an implicit expression of the solution of the semilinear KG equation (see
[23]). In a similar way to the useful approach to dealing with the semiclassical
Schrödinger equation in [24], we forego the standard steps, of first semidiscretising
and then dealing with the semidiscretisation, in a totally different approach which
greatly reduces the requirement of the smoothness with respect to time. Employing
the operator-variation-of-constants formula, we interpolate the nonlinear integrators
by two-point Hermite interpolation, and then a class of symmetric and arbitrarily
high-order time integration formulae is derived and analysed. In fact, the space
semidiscretisation is deferred to the very last moment, and this helps us take a subtle
but powerful advantage of dealing with the undiscretised operator and incorporate
the special structure brought by spatial discretisations into the underlying numerical
integrator.

10.2 The Symmetric and High-Order Hermite–Birkhoff
Time Integration Formula

In this section, using operator theory (see, e.g. [22]), we firstly formulate the
nonlinear problem (10.1)–(10.2) as an abstract ordinary differential equation
on the Hilbert space L2(Ω). Then, the operator-variation-of-constants formula
for the abstract equation is presented, which is in fact an implicit expression
of the solution for the system (see, e.g. [23, 25]). Keeping the eventual
discretisation in mind and applying Hermite–Birkhoff interpolation to the
operator-variation-of-constants formula, we will present a class of symmetric and
arbitrarily high-order time integrators in a suitable infinite-dimensional function
space.

10.2.1 The Operator-Variation-of-Constants Formula

In this subsection, we start with recalling the abstract second-order ordinary dif-
ferential equation and its operator-variation-of-constants formula (see [23]) before
considering the design of the numerical integrators,.
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To formulate an abstract formulation for the problem (10.1)–(10.2), we first
consider the differential operator A defined by

(A v)(x) = −a2vxx(x),

where A is a linear, unbounded positive semi-definite operator, whose domain is

D(A ) :=
{
v ∈ H 1(Ω) : v(x) = v(x + 2π)

}
.

Clearly, the operator A has a complete system of orthogonal eigenfunctions
{
eikx :

k ∈ Z
}
. The linear span of all these eigenfunctions

X := lin
{
eikx : k ∈ Z

}
(10.4)

is dense in the Hilbert space L2(Ω). Thus, we obtain the orthonormal basis of
eigenvectors of the operator A with the corresponding eigenvalues a2k2 for k ∈ Z.

We next introduce the functions as follows:

φj (x) :=
∞∑
k=0

(−1)kxk

(2k + j)! , j ∈ N for ∀x � 0. (10.5)

It is easy to see that the functions φj for j = 0, 1, 2, · · · are bounded for any x � 0.
For instance,

φ0(x) = cos(
√
x), φ1(x) = sinc(

√
x),

and it is obvious that |φj (x)| � 1 for j = 0, 1 and ∀x � 0. These functions (10.5)
can induce the bounded operators

φj (tA ) : L2(Ω)→ L2(Ω)

for j ∈ N and t0 � t � T :

φj (tA )v(x) =
∞∑

k=−∞
v̂kφj (ta

2k2)eikx for v(x) =
∞∑

k=−∞
v̂keikx. (10.6)

The boundedness follows from the definition of the operator norm that

‖φj (tA )‖2∗ = sup
‖v‖
=0

‖φj (tA )v‖2

‖v‖2 � sup
t0�t�T

|φj (ta2k2)|2 � γ 2
j , (10.7)

where ‖ · ‖∗ is the Sobolev norm ‖ · ‖L2(Ω)←L2(Ω), and γj for j ∈ N are the bounds
of the functions |φj (x)| for j ∈ N and x � 0.
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In what follows, we define u(t) as the function that maps x to u(x, t):

u(t) := [x �→ u(x, t)].

The system (10.1)–(10.2) can be formulated as an abstract second-order ordinary
differential equation

{
u′′(t)+A u(t) = f

(
u(t)

)
, t0 < t � T ,

u(t0) = ϕ1(x), u′(t0) = ϕ2(x),
(10.8)

on the closed subspace

X :=
{
u(x, ·) ∈ X

∣∣ u(x, ·) satisfies the corresponding boundary conditions
}

⊆ L2(Ω).

(10.9)

The next theorem characterizes the solution of the abstract second-order ordinary
differential equation (10.8) (see [23]).

Theorem 10.1 The solution of (10.8) and its derivative satisfy the following
operator-variation-of-constants formula

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) =φ0
(
(t − t0)

2A
)
u(t0)+ (t − t0)φ1

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

u′(t) =− (t − t0)A φ1
(
(t − t0)

2A
)
u(t0)+ φ0

(
(t − t0)

2A
)
u′(t0)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f
(
u(ζ )

)
dζ,

(10.10)

for t0 � t � T , where both φ0
(
(t − t0)

2A
)
and φ1

(
(t − t0)

2A
)
are bounded

operators.

10.2.2 The Formulation of the Time Integrators

According to the operator-variation-of-constants formula (10.12) and the two-point
Hermite interpolation, we develop a class of arbitrarily high-order and symmetric
time integration formulae. We start with a few useful preliminaries.
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Lemma 10.1 The bounded functions φj (A ), j ∈ N of the operator A reduced
by (10.5) satisfy

∫ 1

0
(1− z)φ1

(
(1− z)2A

)
zjdz = j !φj+2(A ), j ∈ N,

∫ 1

0
φ0

(
(1− z)2A

)
zjdz = j !φj+1(A ), j ∈ N.

(10.11)

Proof The first formula can be proved as follows

∫ 1

0
(1− z)φ1

(
(1− z)2A

)
zjdz =

∞∑
k=0

(−1)k
∫ 1

0 (1− z)2k+1zjdz

(2k + 1)! A k

=
∞∑
k=0

(−1)kj !
(2k + j + 2)!A

k = j !φj+2(A ).

Likewise, we can obtain the second formula. ��
Corollary 10.1 For every m,n ∈ N the operators (10.6) satisfy

∫ 1

0
(1− z)m+1φ1

(
(1− z)2A

)
zndz =

m∑
i=0

Ci
m(−1)m−i (m+ n− i)!φm+n−i+2(A ),

∫ 1

0
(1− z)mφ0

(
(1 − z)2A

)
zndz =

m∑
i=0

Ci
m(−1)m−i (m+ n− i)!φm+n−i+1(A ),

where Ci
m =

(
m
i

)
is the binomial symbol.

Proof We only prove the first formula

∫ 1

0
(1− z)m+1φ1

(
(1− z)2A

)
zndz

=
m∑
i=0

Ci
m(−1)m−i

∫ 1

0
(1− z)φ1

(
(1− z)2A

)
zm+n−idz

=
m∑
i=0

Ci
m(−1)m−i (m+ n− i)!φm+n−i+2(A ).

Likewise, the second formula can be obtained. ��
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It follows from Theorem 10.1 that the solution of (10.8) and its derivative at a
time point tn+1 = tn +t , n ∈ N are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(tn+1) =φ0
(
V
)
u(tn)+tφ1

(
V
)
u′(tn)+t2

∫ 1

0
(1− z)φ1

(
(1− z)2V

)
f̃ (z)dz,

u′(tn+1) =−tA φ1
(
V
)
u(tn)+ φ0

(
V
)
u′(tn)+t

∫ 1

0
φ0

(
(1− z)2V

)
f̃ (z)dz,

(10.12)

where V = t2A and f̃ (z) = f
(
u(tn + zt)

)
. Clearly, in order to obtain the

time integration formula from (10.12), we need to consider efficient integrators for
approximating the nonlinear integrals

I1 :=
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
f̃ (z)dz,

I2 :=
∫ 1

0
φ0

(
(1− z)2V

)
f̃ (z)dz.

(10.13)

Usually, the potential function f (u) is nonlinear, and only the endpoints’ informa-
tion can be used directly when we deal with the two nonlinear integrals in (10.13)
and design numerical methods. Accordingly, we are particularly concerned with
fitting function values and derivatives at the two boundary points of the finite interval
[0, 1]. This motivates us to interpolate f̃ (z) by a two-point Hermite interpolation
pr(z) of degree 2r + 1 (see, e.g. [26, 27]).

Lemma 10.2 Assume that f̃ ∈ C2r+2
([0, 1]). Then there exists a Hermite

interpolating polynomial pr(z) of degree 2r + 1

pr(z) =
r∑

j=0

[
βr,j (z)f̃

(j)(0)+ (−1)jβr,j (1− z)f̃ (j)(1)
]
, (10.14)

satisfying the interpolation conditions

p
(j)
r (0) = f̃ (j)(0), p

(j)
r (1) = f̃ (j)(1), j = 0, 1, 2, · · · , r,

where

βr,j (z) = zj

j ! (1− z)r+1
r−j∑
s=0

Cs
r+szs, (10.15)
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and the error on [0, 1] is

Rr = f̃ (z)−pr(z) = (−1)r+1zr+1(1−z)r+1 f̃
(2r+2)(ξ)

(2r + 2)! , ξ ∈ (0, 1). (10.16)

Replacing f̃ (z) in (10.13) by the Hermite interpolation pr(z) where f̃ (z) =
f
(
u(tn + zt)

)
and f̃ (j)(z) = tjf

(j)
t

(
u(tn + zt)

)
yields

Ĩ r1 =
r∑

j=0

tj
[
I1[βr,j (z)]f (j)

t

(
u(tn)

)+ (−1)j I1[βr,j (1− z)]f (j)
t

(
u(tn+1)

)]
,

Ĩ r2 =
r∑

j=0

tj
[
I2[βr,j (z)]f (j)

t

(
u(tn)

)+ (−1)j I2[βr,j (1− z)]f (j)
t

(
u(tn+1)

)]
,

(10.17)

where f (j)
t

(
u(t)

)
denotes the j -th derivative of f

(
u(t)

)
with respect to t . In terms of

the Hermite–Birkhoff quadrature formula (see, e.g. [28–30]), we will determine the
coefficients I1[βj (z)], I2[βj (z)], I1[βj (1−z)] and I2[βj (1−z)]. These coefficients
are given by

I1[βr,j (z)] :=
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
βr,j (z)dz

=
r−j∑
s=0

r+1∑
i=0

(−1)r−i+1Cs
r+sCi

r+1
(r + s + j − i + 1)!

j ! φr+s+j−i+3
(
V
)
,

(10.18)

I2[βr,j (z)] :=
∫ 1

0
φ0

(
(1− z)2V

)
βr,j (z)dz

=
r−j∑
s=0

r+1∑
i=0

(−1)r−i+1Cs
r+sCi

r+1
(r + s + j − i + 1)!

j ! φr+s+j−i+2
(
V
)
,

(10.19)

I1[βr,j (1− z)] :=
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
βr,j (1− z)dz

=
r−j∑
s=0

r+j∑
i=0

(−1)s+j−iCs
r+sCi

s+j
(r + s + j − i + 1)!

j ! φr+s+j−i+3
(
V
)
,

(10.20)

I2[βr,j (1− z)] :=
∫ 1

0
φ0

(
(1− z)2V

)
βr,j (1− z)dz

=
r−j∑
s=0

r+j∑
i=0

(−1)s+j−iCs
r+sCi

s+j
(r + s + j − i + 1)!

j ! φr+s+j−i+2
(
V
)
.

(10.21)
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From the definitions stated above, it is evident that the coefficients are bounded for
any j = 0, 1, · · · , r,

‖I1[βr,j (z)]‖∗ � max
0�z�1

|βr,j (z)| � 1 and ‖I1[βr,j (1− z)]‖∗

� max
0�z�1

|βr,j (1− z)| � 1,

‖I2[βr,j (z)]‖∗ � max
0�z�1

|βr,j (z)| � 1 and ‖I2[βr,j (1− z)]‖∗

� max
0�z�1

|βr,j (1− z)| � 1.

Suppose that the following approximations have been given

un ≈ u(tn) and μn ≈ u′(tn).

On the basis of the above analysis and the formula (10.12), we present the following
time integration formula for the abstract ODE (10.8).

Definition 10.1 The Hermite–Birkhoff (HB) time integration formula for solving
the abstract ODE (10.8) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 =φ0
(
V
)
un +tφ1

(
V
)
μn

+
r∑

j=0

tj+2
{
I1[βr,j (z)]f (j)

t (un)+ (−1)j I1[βr,j (1− z)]f (j)
t (un+1)

}
,

μn+1 =−tA φ1
(
V
)
un + φ0

(
V
)
μn

+
r∑

j=0

tj+1
{
I2[βr,j (z)]f (j)

t (un)+ (−1)j I2[βr,j (1− z)]f (j)
t (un+1)

}
,

(10.22)

where I1[βr,j (z)], I2[βr,j (z)], I1[βr,j (1− z)] and I2[βr,j (1− z)] have been defined
by (10.18)–(10.21), respectively.

Remark 10.1 The HB time integration formula (10.22) is derived by using a two-
point Hermite interpolation to approximate the nonlinear function f̃ (z) appearing

in the nonlinear integrals (10.13). Here, the high order derivatives
dmf̃ (z)

dzm
will be

used. Fortunately, the high order derivative u(m)(tn + zt) can be calculated from
lower order derivative via the abstract equation (10.8), namely,

dm

dzm
u(tn + zt) = dm−2

dzm−2

(
−A u(tn + zt)+ f

(
u(tn + zt)

))
t2, m � 2.
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Hence, the high order derivatives
dmf̃ (z)

dzm
satisfy the following recursive relation-

ship

f̃ ′(z) = f ′
(
u(tn + zt)

)
u′(tn + zt)t,

dmf̃ (z)

dzm
= dm−2

dzm−2

{
f ′′

(
u(tn + zt)

)(
u′(tn + zt)

)2

+f ′(u(tn + zt)
)(−A u(tn + zt)+ f

(
u(tn + zt)

))}
t2, m � 2.

This means that the high order derivatives u(m)(·) for m � 2 will not be affected in
the HB time integration formula (10.22).

Concerning the local error bounds of the formula (10.22), we have the following
theorem.

Theorem 10.2 Assume that f
(
u(·, t)) ∈ C2r+2([t0, T ]) and f

(2r+2)
t

(
u(x, ·)) ∈

L2(Ω). Under the local assumptions of un = u(tn), μn = u′(tn), the local error
bounds of the HB time integration formula (10.22) are

‖u(tn+1)− un+1‖ � C1t
2r+4 and ‖u′(tn+1)− μn+1‖ � C2t

2r+3,

(10.23)

where the constants C1 and C2 are given by

C1 = (r + 2)!(r + 1)!
(2r + 2)!(2r + 4)! max

t0�t�T

∥∥f (2r+2)
t

(
u(t)

)∥∥
and

C2 =
[
(r + 1)!]2

(2r + 2)!(2r + 3)! max
t0�t�T

∥∥f (2r+2)
t

(
u(t)

)∥∥.
Proof Using (10.12) and (10.22), we obtain

u(tn+1)− un+1 = t2
∫ 1

0
(1− z)φ1

(
(1− z)2V

)[
f
(
u(tn + zt)

)− pr(z)
]
dz,

(10.24)

and

u′(tn+1)− μn+1 = t

∫ 1

0
φ0

(
(1− z)2V

)[
f
(
u(tn + zt)

)− pr(z)
]
dz.

(10.25)
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As f̃ (j)(z) = tjf
(j)
t

(
u(tn + zt)

)
, it follows from Lemma 10.2 that

f
(
u(tn + zt)

)− pr(z) = t2r+2(−1)r+1zr+1(1− z)r+1 f
(2r+2)
t

(
u(tn + ξnt)

)
(2r + 2)! .

(10.26)

Then inserting (10.26) into (10.24) and (10.25) yields

‖u(tn+1)− un+1‖ � t2r+4

∥∥f (2r+2)
t

(
u(tn + ξnt)

)∥∥
(2r + 2)!

∫ 1

0
(1− z)r+2zr+1dz

� C1t
2r+4,

and

‖u′(tn+1)− μn+1‖ � t2r+3

∥∥f (2r+2)
t

(
u(tn + ξnt)

)∥∥
(2r + 2)!

∫ 1

0
(1− z)r+1zr+1dz

� C2t
2r+3.

The statement of this theorem is proved. ��
Since the KG equation (10.1) is time symmetric and a most welcome feature

of (10.22) is that it preserves time symmetry, in what follows, we show the symmetry
of the formula (10.22). As a first step, we introduce some useful properties of the
operator-valued functions φ0(A ), φ1(A ) and the coefficients defined by (10.18)–
(10.21) in the following two lemmas.

Lemma 10.3 The bounded operators φ0(A ) and φ1(A ) defined by (10.6) satisfy

φ2
0(A )+A φ2

1(A ) = I, (10.27)

where A is an arbitrary positive semi-definite operator or matrix.

Lemma 10.4 The coefficients I1[βr,j (z)], I2[βr,j (z)], I1[βr,j (1 − z)] and
I2[βr,j (1− z)] from (10.22) satisfy

φ0(V )I1[βr,j (z)] − φ1(V )I2[βr,j (z)] = −I1[βr,j (1− z)],
V φ1(V )I1[βr,j (z)] + φ0(V )I2[βr,j (z)] = I0[βr,j (1− z)], (10.28)

where βr,j (z) for j = 0, 1, · · · , r are defined by (10.15) and V = t2A with A ,
an arbitrary positive semi-definite operator or matrix.
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Proof According to the definitions of I1[βr,j (z)] and I2[βr,j (z)], we have

φ0(V )I1[βr,j (z)] − φ1(V )I2[βr,j (z)]

=
∫ 1

0

[
(1− z)φ0(V )φ1

(
(1− z)2V

)− φ1(V )φ0
(
(1− z)2V

)]
βr,j (z)dz

=
∫ 1

0

[
zφ0(V )φ1(z

2V )− φ1(V )φ0(z
2V )

]
βr,j (1− z)dz

=−
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
βj (1− z)dz = −I1[βr,j (1− z)],

and

V φ1(V )I1[βj(z)] + φ0(V )I2[βj(z)]

=
∫ 1

0

(
(1− z)V φ1(V )φ1

(
(1− z)2V

)+ φ0(V )φ0
(
(1− z)2V

))
βj (z)dz

=
∫ 1

0

(
zV φ1(V )φ1(z

2V )+ φ0(V )φ0(z
2V )

)
βj (1− z)dz

=
∫ 1

0
φ0

(
(1− z)2V

)
βj (1− z)dz = I0[βj (1− z)]. (10.29)

Hence, the theorem is proved. ��
We note that Hairer et al. [31] have pointed out that symmetric methods

have excellent long-time behaviour when solving reversible differential systems.
Therefore, it is an important aspect of the design and analysis of symmetric
integrators in numerical PDEs. We are now in a position to prove the time symmetry
of (10.22).

Theorem 10.3 The HB time integration formula (10.22) is symmetric with respect
to the time variable.

Proof Exchanging un+1 ↔ un,μn+1 ↔ μn and replacing t by −t in for-
mula (10.22), we obtain

un =φ0
(
V
)
un+1 −tφ1

(
V
)
μn+1

+
r∑

j=0

tj+2
{
(−1)j I1[βr,j (z)]f (j)

t (un+1)+ I1[βr,j (1− z)]f (j)
t (un)

}
,

(10.30)
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μn = tA φ1
(
V
)
un+1 + φ0

(
V
)
μn+1

−
r∑

j=0

tj+1
{
(−1)j I2[βr,j (z)]f (j)

t (un+1)+ I2[βr,j (1− z)]f (j)
t (un)

}
.

(10.31)

It follows from the calculation φ0(V )× (10.30)+tφ1(V )× (10.31) that

un+1 =φ0
(
V
)
un +tφ1

(
V
)
μn

−
r∑

j=0

tj+2
{
(−1)j

[
φ0(V )I1[βr,j (z)] − φ1(V )I2[βr,j (z)]

]
f
(j)
t (un+1)

+
[
φ0(V )I1[βr,j (1− z)] − φ1(V )I2[βr,j (1− z)]

]
f
(j)
t (un)

}
. (10.32)

Likewise, the calculation−tA φ1(V )× (10.30)+ φ0(V )× (10.31) results in

μn+1 =−tA φ1
(
V
)
un + φ0

(
V
)
μn

+
r∑

j=0

tj+1
{
(−1)j

[
V φ1(V )I1[βr,j (z)] + φ0(V )I2[βr,j (z)]

]
f
(j)
t (un+1)

+
[
V φ1(V )I1[βr,j (1− z)] + φ0(V )I2[βr,j (1− z)]

]
f
(j)
t (un)

}
.

(10.33)

Then applying Lemma 10.4 to (10.32) and (10.33) yields the statement of the
theorem. ��

10.3 Stability of the Fully Discrete Scheme

This section will show the stability of the fully discrete scheme after the differential
operator A is replaced by a suitable matrix A. Throughout this section ‖ · ‖
represents both the vector 2-norm and the matrix 2-norm (the spectral norm).

Under the assumption of the following finite-energy condition (see, e.g. [32–34])

1

2
‖u′(t)‖2 + κ2

2
u(t)ᵀAu(t) � K2

2
, (10.34)

where K is a constant, global error bounds of the Gaustchi-type method were
proved to be independent on ‖A‖. Consequently, the Gaustchi-type time integrator
of order two coupled with suitable spatial discretisation is an excellent choice to
solve nonlinear wave equations. Moreover, it is a most important result that the
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long-time energy conservation for numerical methods can be achieved with the
finite-energy condition (see, e.g. [33]). We here also suppose that the exact solution
of the nonlinear system (10.8) after suitable spatial discretisation satisfies the finite-
energy condition (10.34).

Assume that the perturbed problem of (10.8) is

{
v′′(t)+A v(t) = f

(
v(t)

)
, t ∈ [t0, T ],

v(t0) = ϕ1(x)+ ϕ̃1(x), v′(t0) = ϕ2(x)+ ϕ̃2(x),
(10.35)

where ϕ̃1 and ϕ̃2 are perturbation functions. Let

η(t) = v(t) − u(t).

Subtracting (10.8) from (10.35) yields

{
η′′(t)+A η(t) = f

(
v(t)

) − f
(
u(t)

)
, t ∈ [t0, T ],

η(t0) = ϕ̃1(x), η′(t0) = ϕ̃2(x).
(10.36)

We approximate the operator A by a symmetric positive semi-definite differentia-
tion matrix A on an M-dimensional space since this assists in structure preservation.
This implies that there exists an orthogonal matrix P and a diagonal matrix $ with
non-negative diagonal such that

A = P$Pᵀ.

Then A = D2, where D = P$
1
2Pᵀ. Accordingly, the bounded operators φj (t2A )

are replaced by the matrix functions φj (t2A). Likewise, we also have

‖φj (t2A)‖ =
√
λmax

(
φ2
j (t

2A)
)
� γj , j ∈ N. (10.37)

Moreover, it is clear that

‖Dα‖2 = αᵀAα, ∀α ∈ R
M,

because A is a symmetric positive semi-definite matrix.
We next analyse the stability for the HB time integrators (10.22). We assume that

ηn ≈ η(tn), ζ n ≈ η′(tn) and vn ≈ v(tn), wn ≈ v′(tn).
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Applying HB time integration to (10.36) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηn+1 =φ0
(
V
)
ηn +tφ1

(
V
)
ζ n +

r∑
j=0

tj+2
{
I1[βr,j (z)]

[
f
(j)
t (vn)

− f
(j)
t (un)

]+ (−1)j I1[βr,j (1 − z)][f (j)
t (vn+1)− f

(j)
t (un+1)

]}
,

ζ n+1 =−tAφ1
(
V
)
ηn + φ0

(
V
)
ζ n +

r∑
j=0

tj+1
{
I2[βr,j (z)]

[
f
(j)
t (vn)

− f
(j)
t (un)

]+ (−1)j I2[βr,j (1 − z)][f (j)
t (vn+1)− f

(j)
t (un+1)

]}
,

(10.38)

where V = t2A, I1[βr,j (z)], I2[βr,j (z)], I1[βr,j (1 − z)] and I2[βr,j (1 − z)] are
defined by (10.18)–(10.21), respectively. Similarly, we obtain

‖I1[βr,j (z)]‖ � max
0�z�1

|βr,j (z)| � 1 and ‖I1[βr,j (1− z)]‖ � max
0�z�1

|βr,j (1− z)| � 1,

‖I2[βr,j (z)]‖ � max
0�z�1

|βr,j (z)| � 1 and ‖I2[βr,j (1− z)]‖ � max
0�z�1

|βr,j (1− z)| � 1.

The schemes (10.38) can be rewritten in a compact form:

[
Dηn+1

ζ n+1

]
=Ψ (V )

[
Dηn

ζn

]
+

r∑
j=0

tj+1
∫ 1

0
Ψj

(
β(z), V

)
dz

[
0

f
(j)
t (vn)− f

(j)
t (un)

]

+
r∑

j=0

(−1)jtj+1
∫ 1

0
Ψj

(
β(1 − z), V

)
dz

[
0

f
(j)
t (vn+1)− f

(j)
t (un+1)

]
,

(10.39)

where

Ψ (V ) =
[

φ0(V ) tDφ1(V )

−tDφ1(V ) φ0(V )

]
(10.40)

and

Ψj

(
β(z), V

)= βr,j (z)

[
φ0((1− z)2V ) t(1− z)Dφ1((1− z)2V )

−t(1− z)Dφ1((1− z)2V ) φ0((1− z)2V )

]
.

(10.41)
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Before dealing with stability analysis, we should investigate the spectral norm of
matrices Ψ (V ) and Ψj

(
β(z), V

)
for j = 0, 1, · · · , r .

Lemma 10.5 Suppose that A is a symmetric positive semi-definite matrix and that
V = t2A. Then the spectral norms of matrices Ψ (V ) and Ψj

(
β(z), V

)
satisfy

‖Ψ (V )‖ = 1 and ‖Ψj

(
β(z), V

)‖ = |βr,j (z)| � 1,

z ∈ [0, 1], j = 0, 1, · · · , r. (10.42)

Proof It is trivial to verify the results based on Lemma 10.3, formulae (10.40)
and (10.41) and the definition of the matrix 2-norm. The reader is referred to [23]
for details. ��

10.3.1 Linear Stability Analysis

We begin with the stability analysis of HB time integrators for the linear problem,
i.e. f (u) = u. In this case, we have

f
(2k)
t

(
u(t)

) = (I −A )ku(t) and f
(2k+1)
t

(
u(t)

) = (I −A )ku′(t), k ∈ N.

(10.43)

Lemma 10.6 Suppose that A is a symmetric matrix. Then

‖(I − A)k‖ � [
1+ ρ(A)

]k
, k ∈ N,

where ρ(A) is the spectral radius of A.

Proof It is immediately from the definition of the spectral norm that

‖(I − A)k‖ =
√
λmax

(
(I − A)2k

)
�

(
1+ max

1�j�M
|λj |

)k = [
1+ ρ(A)

]k
,

where λj for j = 1, 2, · · · ,M are the eigenvalues of A. ��
Theorem 10.4 Assume that the operator A is approximated by a symmetric posi-
tive semi-definite differentiation matrix A and let the finite energy condition (10.34)
be satisfied. If the sufficiently small time stepsize t satisfies t2

(
1 + ρ(A)

)
� 1

with t � [4(r + 1)]−1, then we have the following stability results:

‖ηn‖ � exp
(
2(2r + 3)T

)(‖ϕ̃1‖ +
√
ϕ̃
ᵀ
1 Aϕ̃1 + ‖ϕ̃2‖2

)
,

‖ζ n‖ � exp
(
2(2r + 3)T

)(‖ϕ̃1‖ +
√
ϕ̃
ᵀ
1 Aϕ̃1 + ‖ϕ̃2‖2

)
,
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where ϕ̃l =
(
ϕ̃l(x0), ϕ̃l(x1), · · · , ϕ̃l(xM−1)

)ᵀ
, while ϕ̃l(xi) for l = 1, 2 are the

values of the perturbation functions ϕ̃l for l = 1, 2, at the grid points {xi}M−1
i=0 .

Proof Using the first formula in (10.38) and (10.39), we obtain

‖ηn+1‖ � ‖ηn‖ +t‖ζ n‖ +
r∑

j=0

tj+2(‖f (j)
t (vn)− f

(j)
t (un)‖ + ‖f (j)

t (vn+1)

− f
(j)
t (un+1)‖),

and √
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2 �

√
(ηn)ᵀAηn + ‖ζ n‖2

+
r∑

j=0

tj+1
(
‖f (j)

t (vn)− f
(j)
t (un)‖ + ‖f (j)

t (vn+1)− f
(j)
t (un+1)‖

)
.

Then summing up the above and using (10.43), we have

‖ηn+1‖ +
√
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2 � ‖ηn‖ +

√
(ηn)ᵀAηn + ‖ζ n‖2 +t‖ζ n‖

+t(1+t)

r∑
j=0

tj
∥∥(I − A)[

j
2 ]∥∥(‖ηn‖ + ‖ζ n‖ + ‖ηn+1‖ + ‖ζ n+1‖

)
.

(10.44)

Applying Lemma 10.6 to inequality (10.44) leads to

‖ηn+1‖ +
√
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2 � ‖ηn‖ +

√
(ηn)ᵀAηn + ‖ζ n‖2 +t‖ζ n‖

+t(1+t)

r∑
j=0

tj
(
1+ ρ(A)

)[ j2 ](‖ηn‖ + ‖ζ n‖ + ‖ηn+1‖ + ‖ζ n+1‖
)
.

Under the assumption that the stepsize satisfies t2
(
1+ ρ(A)

)
� 1, we obtain

‖ηn+1‖ +
√
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2

�
[

1+ t(2r + 3)

1− 2t(r + 1)

] (
‖ηn‖ +

√
(ηn)ᵀAηn + ‖ζ n‖2

)
.
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As t � [4(r + 1)]−1, we have

‖ηn+1‖ +
√
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2 �

[
1+ 2(2r + 3)t

]
(
‖ηn‖ +

√
(ηn)ᵀAηn + ‖ζ n‖2

)
.

Then an inductive argument yields the following result

‖ηn+1‖ +
√
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2 � exp

(
2(2r + 3)T

)
(
‖ϕ̃1‖ +

√
ϕ̃
ᵀ
1 Aϕ̃1 + ‖ϕ̃2‖2

)
.

Therefore, we have

‖ηn‖ � exp
(
2(4r + 5)T

)(‖ϕ̃1‖ +
√
‖Dϕ̃1‖2 + ‖ϕ̃2‖2

)
,

‖ζ n‖ � exp
(
2(4r + 5)T

)(‖ϕ̃1‖ +
√
‖Dϕ̃1‖2 + ‖ϕ̃2‖2

)
,

(10.45)

and linear stability is proved. ��

10.3.2 Nonlinear Stability Analysis

We will further analyse in this subsection the stability of HB time integrators for
nonlinear problems. The analysis relies upon some assumptions.

Assumption 10.1 It is assumed that both (10.8) and (10.35) possess sufficiently
smooth solutions and f : D(A )→ R is sufficiently Fréchet differentiable in a strip
along the exact solution.

As is known, it follows from Chap. 3 in [35] that

f
(k)
t

(
u(t)

) = ∑
t̃∈SENTfk+2

α(t̃ )F (t̃ )
(
u(t), u′(t)

)
, (10.46)

where SENTf = {τ2} ∪
{
t̃ = [t̃1, · · · , t̃m]2 : t̃i ∈ SENT

}
and SENT is the

set of special extended Nyström trees defined in [35], α(t̃) is the number of
possible monotonic labellings of an extended Nyström tree t̃ , and F (t̃ )

(
u, u′

)
is

the corresponding elementary differential.
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Assumption 10.2 We assume that dkf (u)/duk : D(A ) → R for k =
0, 1, 2, · · · , r are locally Lipschitz continuous in a strip along the exact solution u.

Hence, there exist real numbers L(R, ρ(A)# k2 $) such that

‖F (t̃ )
(
v(t), v′(t)

) −F (t̃ )
(
w(t),w′(t)

)‖
� L(R, ρ(A)#

k
2 $)

(
‖v(t) −w(t)‖ + ‖v′(t)−w′(t)‖

)
, ∀t̃ ∈ SENTf

k+2

for all t ∈ [t0, T ] and max
(
‖v−u(t)‖, ‖w−u(t)‖, ‖v′−u′(t)‖, ‖w′−u′(t)‖

)
� R.

The next theorem shows the statement on nonlinear stability.

Theorem 10.5 With Assumptions 10.1 and 10.2, suppose that the sufficiently small
time stepsize satisfies

t2L(R, ρ(A)) � 1 and t

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃) � 1

4
.

Then, if the operator A is approximated by a symmetric positive semi-definite
matrix A, we have the following stability results,

‖ηn‖ � exp

⎛
⎜⎝2T

⎛
⎜⎝1+ 2

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃ )

⎞
⎟⎠
⎞
⎟⎠

(
‖ϕ̃1‖ +

√
ϕ̃
ᵀ
1 Aϕ̃1 + ‖ϕ̃2‖2

)
,

‖ζ n‖ � exp

⎛
⎜⎝2T

⎛
⎜⎝1+ 2

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)

⎞
⎟⎠
⎞
⎟⎠(

‖ϕ̃1‖ +
√
ϕ̃
ᵀ
1 Aϕ̃1 + ‖ϕ̃2‖2

)
,

where ϕ̃l =
(
ϕ̃l(x0), ϕ̃l(x1), · · · , ϕ̃l(xM−1)

)ᵀ
and ϕ̃l(xi) for l = 1, 2 are the values

of the perturbation functions ϕ̃l for l = 1, 2, at the spatial grid points {xi}M−1
i=0 .

Proof Using the first formula in (10.38) and (10.39), we obtain

‖ηn+1‖ � ‖ηn‖ +t‖ζ n‖ +
r∑

j=0

tj+2
[
‖f (j)

t (vn)− f
(j)
t (un)‖

+ ‖f (j)
t (vn+1)− f

(j)
t (un+1)‖

]
,√

(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2 �
√
(ηn)ᵀAηn + ‖ζ n‖2

+
r∑

j=0

tj+1
[
‖f (j)

t (vn)− f
(j)
t (un)‖ + ‖f (j)

t (vn+1)− f
(j)
t (un+1)‖

]
.

(10.47)
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Summing up (10.47) and inserting (10.46) into the right-hand side, we have

‖ηn+1‖ +
√
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2 � ‖ηn‖ +

√
(ηn)ᵀAηn + ‖ζ n‖2 +t‖ζ n‖

+t(1+t)

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)tj
[∥∥F (t̃ )(vn,wn)−F (t̃ )(un, μn)

∥∥

+ ∥∥F (t̃ )(vn+1, wn+1)−F (t̃ )(un+1, μn+1)
∥∥].

(10.48)

On the other hand, the use of Assumption 10.2 on the right-hand side of (10.48)
gives

‖ηn+1‖ +
√
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2

� ‖ηn‖ +
√
(ηn)ᵀAηn + ‖ζ n‖2 +t‖ζ n‖

+t(1+t)

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)tjL(R, ρ(A)#
j
2 $)

(‖ηn‖ + ‖ζ n‖ + ‖ηn+1‖ + ‖ζ n+1‖).

(10.49)

As t satisfies t2L(R, ρ(A)) � 1, the inequality (10.49) results in

‖ηn+1‖ +
√
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1+

t
[
1+ 2

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)
]

1− 2t
r∑

j=0

∑
t̃∈SENTfj+2

α(t̃)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(
‖ηn‖ +

√
(ηn)ᵀAηn + ‖ζ n‖2

)
.

Furthermore, as t
∑r

j=0
∑

t̃∈SENTfj+2
α(t̃) � 1

4
, we obtain

‖ηn+1‖ +
√
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2

�

⎡
⎢⎣1+ 2t

(
1+ 2

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃ )
)⎤⎥⎦(

‖ηn‖ +
√
(ηn)ᵀAηn + ‖ζ n‖2

)
.
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Then an argument by induction gives the following result

‖ηn+1‖ +
√
(ηn+1)ᵀAηn+1 + ‖ζ n+1‖2

� exp

⎛
⎜⎝2T

⎛
⎜⎝1+ 2

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)

⎞
⎟⎠
⎞
⎟⎠(
‖ϕ̃1‖ +

√
ϕ̃
ᵀ
1 Aϕ̃1 + ‖ϕ̃2‖2

)
.

Consequently, we obtain

‖ηn‖ � exp

⎛
⎜⎝2T

⎛
⎜⎝1+ 2

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)

⎞
⎟⎠
⎞
⎟⎠(
‖ϕ̃1‖ +

√
ϕ̃
ᵀ
1 Aϕ̃1 + ‖ϕ̃2‖2

)
,

‖ζ n‖ � exp

⎛
⎜⎝2T

⎛
⎜⎝1+ 2

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)

⎞
⎟⎠
⎞
⎟⎠(
‖ϕ̃1‖ +

√
ϕ̃
ᵀ
1 Aϕ̃1 + ‖ϕ̃2‖2

)
,

This shows the stability of HB time integrators for nonlinear problems. ��

10.4 Convergence of the Fully Discrete Scheme

10.4.1 Consistency

Under suitable assumptions on smoothness and the spatial discretisation, it is not
difficult to obtain a spatial semidiscrete scheme which is consistent with the original
system (10.1) or (10.8). We only require that the truncation error δ(x) in (10.58)
satisfies δ(x)→ 0 as x → 0. In what follows, we analyse the consistency of the
fully discrete scheme (10.62) or (10.63). To this end, we first analyse the truncation
error of the fully discrete scheme (10.62) or (10.63).

Inserting the exact solution U(t) = (
u(x0, t), u(x1, t), · · · , u(xM−1, t)

)ᵀ
into

the fully discrete scheme (10.62), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T n = U(tn+1)− φ0(V )U(tn)−tφ1(V )U
′(tn)

−
r∑

j=0

tj+2
{
I1[βr,j (z)]f (j)

t

(
U(tn)

)+ (−1)j I1[βr,j (1− z)]f (j)
t

(
U(tn+1)

)}
,

Γ n = U ′(tn+1)+tAφ1(V )U(tn)− φ0(V )U
′(tn)

−
r∑

j=0

tj+1
{
I2[βr,j (z)]f (j)

t

(
U(tn)

)+ (−1)j I2[βr,j (1− z)]f (j)
t

(
U(tn+1)

)}
,

(10.50)
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where T n and Γ n are the truncation errors of the fully discrete scheme (10.62) at
time tn. Applying the variation-of-constants formula to (10.58) and comparing the
result with (10.50) leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T n =t2
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
f
(
U(tn + zt)

)
dz||

−
r∑

j=0

tj+2
{
I1[βr,j (z)]f (j)t

(
U(tn)

)+ (−1)j I1[βr,j (1− z)]f (j)t

(
U(tn+1)

)}

+t2
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
δ(x)dz,

Γ n =t
∫ 1

0
φ0

(
(1− z)2V

)
f
(
U(tn + zt)

)
dz −

r∑
j=0

tj+1
{
I2[βr,j (z)]f (j)t

(
U(tn)

)

+ (−1)j I2[βr,j (1− z)]f (j)t

(
U(tn+1)

)}+t

∫ 1

0
φ0

(
(1− z)2V

)
δ(x)dz.

(10.51)

Using the Hermite–Birkhoff interpolation polynomial (see Lemma 10.2) to approx-
imate the nonlinear function f

(
U(tn + zt)

)
appearing in (10.51), we have

T n =(−1)r+1t2r+4
∫ 1

0
(1− z)r+2φ1

(
(1− z)2V

)
zr+1dz

f
(2r+2)
t

(
U(tn + ξnt)

)
(2r + 2)!

+t2
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
δ(x)dz (10.52)

and

Γ n =(−1)r+1t2r+3
∫ 1

0
(1− z)r+1φ0

(
(1− z)2V

)
zr+1dz

f
(2r+2)
t

(
U(tn + ξnt)

)
(2r + 2)!

+t

∫ 1

0
φ0

(
(1− z)2V

)
δ(x)dz. (10.53)

We next prove consistency, based on the truncation error analysis.

Theorem 10.6 Suppose that the exact solution u(x, t) of the original continuous
equations (10.1) or (10.8) is sufficiently smooth such that f

(
u(·, t)) ∈

C2r+2([t0, T ]) and f
(2r+2)
t

(
u(x, ·)) ∈ L2(Ω). Then, the fully discrete

scheme (10.62) or (10.63) is consistent over a finite time interval t ∈ [t0, T ],
i.e.,

‖T n‖ → 0 and ‖Γ n‖ → 0 as t,x → 0. (10.54)
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Proof Taking the l2-norm on both sides of the truncation errors (10.52) and (10.53)
leads to

‖T n‖ � C̃1t
2r+4 + t2

2
‖δ(x)‖ and ‖Γ n‖ � C̃2t

2r+3 +t‖δ(x)‖,
(10.55)

where the constants C̃1 and C̃2 are given by

C̃1 = (r + 2)!(r + 1)!
(2r + 2)!(2r + 4)! max

t0�t�T

∥∥f (2r+2)
t

(
u(·, t))∥∥ (10.56)

C̃2 =
[
(r + 1)!]2

(2r + 4)!(2r + 3)! max
t0�t�T

∥∥f (2r+2)
t

(
u(·, t))∥∥. (10.57)

It can be confirmed from (10.55) and (10.56) that the constants C̃1 and C̃2 are only
dependent on the bounds for derivatives of the exact solution U(t) over a finite
time interval t ∈ [t0, T ]. Then, the consistency of the fully discrete scheme (10.62)
or (10.63) directly follows from the fact that

‖T n‖ → 0 and ‖Γ n‖ → 0 as t,x → 0.

The proof of this theorem is complete. ��

10.4.2 Convergence

Our next objective is to analyse convergence for the fully discrete schemes. It is
well known that convergence of classical methods for linear partial differential
equations is governed by the Lax equivalence theorem: convergence is equivalent
to consistency plus stability [36]. The HB time integrators are consistent (see
Theorem 10.6), and the stability of the fully discrete scheme for linear problems
has been proved in Sect. 10.3.1. Consequently, the convergence of the HB time
integrators for linear problems can be obtained by applying the Lax equivalence
theorem. Unfortunately, however, the Lax equivalence theorem might be less useful
for nonlinear problems.

In what follows, we analyse the convergence of the fully discrete scheme for
nonlinear problems. Based on some suitable assumptions on smoothness and spatial
discretisation strategies, the original continuous system (10.1) or (10.8) can be
discretised as:{

U ′′(t)+ AU(t) = f
(
U(t)

) + δ(x), t ∈ [t0, T ],
U(t0) = ϕ1, U ′(t0) = ϕ2,

(10.58)
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where U(t) = (
u(x0, t), u(x1, t), · · · , u(xM−1, t)

)ᵀ, A is a positive semi-definite
differentiation matrix and ϕl =

(
ϕl(x0), ϕl(x1), · · · , ϕl(xM−1)

)ᵀ for l = 1, 2.
Let δ(x) = (

δ0(x), δ1(x), · · · , δM−1(x),
)ᵀ be the truncation error brought

by approximating the spatial differential operator A with a positive semi-definite
matrix A, and the truncation error δ(x) satisfies δj (x) → 0 as x → 0 for
j = 0, 1, · · · ,M − 1. For instance, if we replace the spatial derivative by the
classical forth-order finite difference method (see, e.g. [37, 38]), the truncation error
δ(x) is ‖δ(x)‖ = O(x4).

Applying the time integration formula (10.22) to (10.58) leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(tn+1) =φ0(V )U(tn)+tφ1(V )U
′(tn)+

r∑
j=0

tj+2
{
I1[βr,j (z)]f (j)t

(
U(tn)

)

+ (−1)j I1[βr,j (1− z)]f (j)t

(
U(tn+1)

)}+ Rn,

U ′(tn+1) =−tAφ1(V )U(tn)+ φ0(V )U
′(tn)+

r∑
j=0

tj+1
{
I2[βr,j (z)]f (j)t

(
U(tn)

)

+ (−1)j I2[βr,j (1− z)]f (j)t

(
U(tn+1)

)}+ rn,

(10.59)

where Rn = (
Rn

0 , · · · , Rn
M−1

)ᵀ and rn = (
rn0 , · · · , rnM−1

)ᵀ are truncation errors,
and

Rn
j =(−1)r+1t2r+4 f

(2r+2)
t

(
u(xj , tn + ξnt)

)
(2r + 2)!

∫ 1

0
(1− z)r+2φ1

(
(1− z)2V

)
zr+1dz

+t2
∫ 1

0
(1 − z)φ1

(
(1 − z)2V

)
δj (x)dz,

and

rnj =(−1)r+1t2r+3 f
(2r+2)
t

(
u(xj , tn + ξnt)

)
(2r + 2)!

∫ 1

0
(1− z)r+1φ0

(
(1 − z)2V

)
zr+1dz

+t

∫ 1

0
φ0

(
(1− z)2V

)
δj (x)dz

respectively. Under suitable assumptions of smoothness, the errorsRn
j and rnj satisfy

|Rn
j | �

(r + 2)!(r + 1)!
(2r + 2)!(2r + 4)! max

t0�t�T
max
x∈Ω̄

|f (2r+2)
t

(
u(x, t)

)|t2r+4 + t2

2
|δj (x)|,

(10.60)
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and

|rnj | �
[
(r + 1)!]2

(2r + 4)!(2r + 3)! max
t0�t�T

max
x∈Ω̄

|f (2r+2)
t

(
u(x, t)

)|t2r+3 +t|δj (x)|.
(10.61)

Disregarding the small terms Rn and rn in (10.59) and letting unj ≈ u(xj , tn), μn
j ≈

ut (xj , tn), the following fully discrete scheme follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 =φ0(V )u
n +tφ1(V )μ

n

+
r∑

j=0

tj+2
{
I1[βr,j (z)]f (j)

t (un)+ (−1)j I1[βr,j (1− z)]f (j)
t (un+1)

}
,

μn+1 =−tAφ1(V )u
n + φ0(V )μ

n

+
r∑

j=0

tj+1
{
I2[βr,j (z)]f (j)

t (un)+ (−1)j I2[βr,j (1− z)]f (j)
t (un+1)

}
.

(10.62)

In terms of the notation in (10.46), we rewrite the fully discrete scheme (10.62) in
the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 =φ0
(
V
)
un +tφ1

(
V
)
μn +

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)tj+2

×
[
I1[βr,j (z)]F (t̃ )(un, μn)+ (−1)j I1[βr,j (1− z)]F (t̃ )(un+1, μn+1)

]
,

μn+1 =−tAφ1
(
V
)
un + φ0

(
V
)
μn +

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)tj+1

×
[
I2[βr,j (z)]F (t̃ )(un, μn)+ (−1)j I2[βr,j (1− z)]F (t̃ )(un+1, μn+1)

]
,

(10.63)

where I1[βr,j (z)], I2[βr,j (z)], I1[βr,j (1− z)] and I2[βr,j (1− z)] have been defined
by (10.18)–(10.21).

We next consider from first principles the convergence of the fully discrete
scheme (10.63) for nonlinear problems. We let enj = u(xj , tn) − unj and ωn

j =
ut (xj , tn)−μn

j for j = 0, 1, · · · ,M−1, i.e., en = U(tn)−un and ωn = U ′(tn)−μn.
Subtracting (10.63) from (10.59), and inserting exact initial conditions, we get a
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recurrence relation for the errors,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

en+1 = φ0(V )e
n +tφ1(V )ω

n

+
r∑

j=0

∑
t̃∈SENTf

j+2

α(t̃ )tj+2
{
I1[βr,j (z)]

[
F (t̃ )

(
U(tn), U

′(tn)
)−F (t̃)

(
un,μn

)]

+(−1)j I1[βr,j (1− z)]
[
F (t̃ )

(
U(tn+1), U

′(tn+1)
)−F (t̃)

(
un+1, μn+1)]}+ Rn,

ωn+1 = −tAφ1(V )e
n + φ0(V )ω

n

+
r∑

j=0

∑
t̃∈SENTf

j+2

α(t̃ )tj+1
{
I2[βr,j (z)]

[
F (t̃ )

(
U(tn), U

′(tn)
)−F (t̃)

(
un,μn

)]

+(−1)j I2[βr,j (1− z)]
[
F (t̃ )

(
U(tn+1), U

′(tn+1)
)−F (t̃)

(
un+1, μn+1)]}+ rn,

(10.64)

with the initial conditions e0 = 0, ω0 = 0.
For the convergence analysis, we quote the Gronwall’s inequality (see, e.g. [39]),

which plays an important role in the analysis.

Lemma 10.7 Let λ be positive, ak, bk, k ∈ N, be nonnegative and assume further
that

ak � (1+ λt)ak−1 +tbk, k ∈ N.

Then

ak � exp(λkt)

(
a0 +t

k∑
m=1

bm

)
, k ∈ N.

Theorem 10.7 With Assumptions 10.1 and 10.2, suppose that u(x, t) satisfies
suitable smoothness assumptions. If the time stepsize t satisfies

t2L
(
R, ρ(A)

)
� 1 and t

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃ ) � 1

4
,
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then there exists a constant C such that

‖en‖ � CT exp

⎛
⎜⎝2T

⎛
⎜⎝1+ 2

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃ )

⎞
⎟⎠
⎞
⎟⎠(

t2r+2 + ‖δ(x)‖),

‖ωn‖ � CT exp

⎛
⎜⎝2T

⎛
⎜⎝1+ 2

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)

⎞
⎟⎠
⎞
⎟⎠(

t2r+2 + ‖δ(x)‖).

Proof The error system (10.64) can be rewritten in a compact form

F (t̃ )n ≡ F (t̃ )
(
U(tn), U

′(tn)
)−F (t̃ )

(
un,μn

)
and

F (t̃ )n+1 ≡ F (t̃ )
(
U(tn+1), U

′(tn+1)
)−F (t̃ )

(
un+1, μn+1),

[
Den+1

ωn+1

]
= Ω(V )

[
Den

ωn

]
+

r∑
j=0

∑
t̃∈SENTfj+2

tj+1
∫ 1

0
Ωj

(
β(z), V

)
dz

[
0

F (t̃ )n

]

+
r∑

j=0

∑
t̃∈SENTfj+2

(−1)jtj+1
∫ 1

0
Ωj

(
β(1− z), V

)
dz

[
0

F (t̃ )n+1

]
+

[
DRn

rn

]
,

(10.65)

where Ω(V ) and Ω
(
β(z), V

)
were defined in (10.40) and (10.41), respectively.

On the one hand, taking the l2-norm on both sides of the first formula in (10.64)
and (10.65) and summing up the outcomes, we have

‖en+1‖ +
√
(en+1)ᵀAen+1 + ‖ωn+1‖2 � ‖en‖ +

√
(en)ᵀAen + ‖ωn‖2 +t‖ωn‖

+t(1+t)

r∑
j=0

∑
t̃∈SENTf

j+2

tj
[∥∥∥F (t̃ )

(
U(tn), U

′(tn)
)−F (t̃ )

(
un,μn

)∥∥∥

+
∥∥∥F (t̃ )

(
U(tn+1), U

′(tn+1)
)−F (t̃ )

(
un+1, μn+1)∥∥∥]

+ ‖Rn‖ +
√
‖DRn‖2 + ‖rn‖2.

(10.66)
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On the other hand, applying Assumption 10.2 to the right-hand side of (10.66)
results in

‖en+1‖ +
√
(en+1)ᵀAen+1 + ‖ωn+1‖2 � ‖en‖ +

√
(en)ᵀAen + ‖ωn‖2 +t‖ωn‖

+t(1+t)

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃ )tjL
(
R, ρ(A)#

j
2 $)(‖en‖ + ‖ωn‖ + ‖en+1‖

+ ‖ωn+1‖
)
+ ‖Rn‖ +

√
‖DRn‖2 + ‖rn‖2.

(10.67)
As t2L

(
R, ρ(A)

)
� 1, the inequality (10.67) leads to

‖en+1‖ +
√
(en+1)ᵀAen+1 + ‖ωn+1‖2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+

t

⎡
⎢⎣1+ 2

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)

⎤
⎥⎦

1− 2t
r∑

j=0

∑
t̃∈SENTfj+2

α(t̃)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(
‖en‖ +

√
(en)ᵀAen + ‖ωn‖2

)

+ 1

1− 2t
r∑

j=0

∑
t̃∈SENTf

j+2

α(t̃ )

(
‖Rn‖ +

√
‖DRn‖2 + ‖rn‖2

)
. (10.68)

If the time stepsize t also satisfies t
∑r

j=0
∑

t̃∈SENTfj+2
α(t̃) � 1

4
, then the

inequality (10.68) results in

‖en+1‖ +
√
(en+1)ᵀAen+1 + ‖ωn+1‖2

�

⎧⎪⎨
⎪⎩1+ 2t

[
1+ 2

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)
]⎫⎪⎬
⎪⎭

(
‖en‖ +

√
(en)ᵀAen + ‖ωn‖2

)

+ 2
(
‖Rn‖ +

√
‖DRn‖2 + ‖rn‖2

)
.

(10.69)
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Note that Rn
j and rnj satisfy (10.60) and (10.61), respectively. Hence, there exists a

constant C such that

‖Rn‖ +
√
‖DRn‖2 + ‖rn‖2 � Ct

(
t2r+2 + ‖δ(x)‖

)
.

Applying the Gronwall’s inequality (Lemma 10.7) to (10.69) yields

‖en‖ +
√
(en)ᵀAen + ‖ωn‖2 � exp

⎛
⎜⎝2nt

⎛
⎜⎝1+ 2

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃ )

⎞
⎟⎠
⎞
⎟⎠

×
[
‖e0‖ +

√
(e0)ᵀAe0 + ‖ω0‖2 + Cnt

(
t2r+2 + ‖δ(x)‖)].

Therefore, we obtain

‖en‖ � CT exp

⎛
⎜⎝2T

⎛
⎜⎝1+ 2

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃ )

⎞
⎟⎠
⎞
⎟⎠(

t2r+2 + ‖δ(x)‖),

‖ωn‖ � CT exp

⎛
⎜⎝2T

⎛
⎜⎝1+ 2

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)

⎞
⎟⎠
⎞
⎟⎠(

t2r+2 + ‖δ(x)‖).
(10.70)

Then the proof of this theorem is complete. ��
Obviously, it follows from the analysis of Theorem 10.7 that the precision of

the derived HB time integrators can be of order (2r + 2) in time, provided the
exact solution u(x, t) of the semilinear KG equations (10.1) satisfies u(·, t) ∈
C2r+2

([t0, T ]). Unfortunately, however, existing numerical schemes, such as the
finite difference method and the finite element method, have only limited accuracy
for solving the semilinear KG equations (10.1). Here, in order to design high-order
numerical methods, higher smoothness assumptions of the underlying problem are
required. For instance, assume that u(x, t) has appropriately continuous derivatives
with respect to the temporal variable, and we use the following fourth-order finite
difference approximation

∂2u(xj , tn)

∂t2
=−u(xj , tn+2)+ 16u(xj , tn+1)− 30u(xj , tn)+ 16u(xj , tn−1)− u(xj , tn−2)

t4

− t4

90

∂6u(xj , ξ̂
n)

∂t6 .
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This implies that the approximation needs the solution to satisfy u(·, t) ∈
C6

([t0, T ]) at last. However, under the same smoothness assumption of u(·, t) ∈
C6

([t0, T ]), we can obtain a sixth-order HB time integrator by Theorem 10.7.
In particular, as an important example, if the exact solution satisfies u(·, t) ∈
C4

([t0, T ]), the well-known leap-frog scheme or the Störmer–Verlet formula is of
order two in time. Fortunately, the derived HB time integrator with r = 1 can
achieve fourth-order convergence. This is definitely a major improvement.

Moreover, under the smoothness assumption of u(·, t) ∈ C2
([t0, T ]), and taking

r = 0 in the time integration formula (10.22), we obtain an interesting scheme as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

un+1 = φ0
(
V
)
un +tφ1

(
V
)
μn

+t2
{
I1[β0,0(z)]f (un)+ (−1)j I1[β0,0(1− z)]f (un+1)

}
,

μn+1 = −tA φ1
(
V
)
un + φ0

(
V
)
μn

+t
{
I2[β0,0(z)]f (un)+ (−1)j I2[β0,0(1− z)]f (un+1)

}
.

(10.71)

The scheme (10.71) is of order two.

Remark 10.2 Compared with the well-known Störmer–Verlet method, the second-
order HB time integrator needs a much weaker smoothness assumption, whereas
the interesting second-order scheme (10.71) exhibits excellent numerical behaviour.
This remarkable superiority will be shown in the numerical experiments.

10.5 Spatial Discretisation

As stated above, the symmetric and arbitrarily high-order time integration for-
mula (10.22) has been presented in operatorial terms in an infinite-dimensional
function space X . In order to render them into proper numerical algorithms, we
need to replace the differential operator A with an suitable differentiation matrix
A. Keeping the stability and convergence analysis in mind, we approximate the
differential operator A by a positive semi-definite matrix A. Fortunately, there
exists a great body of research investigating the replacement of spatial derivatives
of nonlinear system (10.1) with periodic boundary conditions (10.2), and it is not
difficult to find positive semi-definite differentiation matrices in this setting. Here,
we mainly consider two types of spatial discretisations: Symmetric finite difference
and Fourier spectral collocation discretisations.
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1. Symmetric Finite Difference (SFD) (see, e.g. [37])
As is known, finite difference methods are achieved when approximating a
function by local polynomial interpolation. Its derivatives are then approximated
by differentiating this local polynomial, where ‘local’ refers to the use of nearby
grid points to approximate the function or its derivative at a given point. In
general, a finite difference approximation is of moderate order. For instance, we
approximate the operator A by the following differentiation matrix

Asfd = a2

12x2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

30 −16 1 1 −16
−16 30 −16 1 1

1 −16 30 −16 1
. . .

. . .
. . .

. . .
. . .

1 −16 30 −16 1
1 1 −16 30 −16
−16 1 1 −16 30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
M×M

.

The approximation is of order four and the differentiation matrix Asfd is clearly
positive semi-definite.

2. Fourier Spectral Collocation (FSC) (see, e.g. [40, 41])
A distinctive feature of Spectral methods is their global nature, and the compu-
tation at any given point depends not only on the information at neighbouring
points, but on the entire domain. The topic of spectral methods is very wide,
and various methods and sub-methods have been proposed and are actively used.
The Fourier spectral collocation method is our method of choice, which can be
presented as a limit of local finite difference approximations of increasing order
of accuracy (see [40]). We concentrate on differentiation being performed in the
physical space. The key point here is to interpolate the solution at the nodal values
using a trigonometric polynomial. The entries of the second-derivative Fourier
differentiation matrix Afsc = (akj )M×M are given by

akj =

⎧⎪⎪⎨
⎪⎪⎩
(−1)k+j

2
a2 sin−2

(
(k − j)π

M

)
, k 
= j,

a2
(
M2

12
+ 1

6

)
, k = j.

(10.72)

It is known that the main appeal of spectral methods is that they exhibit spectral
convergence to A : the error decays forC∞ functions faster than O(M−α) ∀ α >

0 for sufficiently large M . Another advantage is that the differentiation matrix
Afsc is positive semi-definite.
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Fig. 10.1 Plots of ρ(A) and t2ρ(A) for the differentiation matrices Asfd and Afsc for M = 10i
and i = 1, 2, · · · , 40

Figure 10.1 illustrates the size of the spectral radius for the differentiation
matrices Asfd and Afsc. In Fig. 10.1a, we show the spectral radius of Asfd and

Afsc as a function of M . If we take the time stepsize t = 2π

M
,M = 10i

for i = 1, 2, · · · , 40, Fig. 10.1b shows that t2ρ(A) is a constant. i.e. that

ρ(A) = O(t−2). Therefore, a small t

(
t � 2π

M

)
can be chosen to guarantee

stability and convergence and obtain effective numerical methods.
We have already noted that energy conservation (10.3) is a crucial property of

semilinear KG equations (10.1)–(10.2). As we approximate the operator A by a
positive semi-definite differentiation matrix A, there is a corresponding discrete
energy conservation law, which can be characterized by the following form:

Ẽ(t) = x

2
‖u′(t)‖2 + x

2
‖Du(t)‖2 +x

M−1∑
j=0

V
(
uj (t)

) ≡ Ẽ(t0), (10.73)

where the norm ‖ · ‖ is the standard vector 2-norm and x = 2π/M is the spatial
grid size. Actually, this energy can be thought of as an approximate energy (a
semidiscrete energy) of the original continuous system. Consequently, discussing
numerical experiments, we will also test the effectiveness of HB time integrators in
preserving (10.73).

We are now concerned with how accurately the discrete energy conservation
law (10.73) is preserved by the HB time integrators. We first rewrite the semidiscrete
system of the nonlinear KG equation (10.1)–(10.2) in the form

[
u(t)

u′(t)

]′
=

[
u′(t)

−Au(t)+ f
(
u(t)

) ] . (10.74)
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On the one hand, we note that if we define

H
(
u(t), u′(t)

) = 1

2
u′(t)ᵀu′(t)+ 1

2
u(t)ᵀAu(t)+ Ṽ

(
u(t)

)
, (10.75)

where Ṽ
(
u(t)

) =∑M−1
j=0 V

(
uj (t)

)
, the discrete energy conservation law (10.73) is

identical to

xH
(
u(t), u′(t)

) ≡ xH
(
u(t0), u

′(t0)
)
. (10.76)

By letting y(t) =
[
u(t)ᵀ, u′(t)ᵀ

]ᵀ
, where u(t) and u′(t) are the exact solution

of (10.74) and its derivative, respectively, the system (10.74) can be further
expressed as:

y ′(t) = J−1∇H (
y(t)

)
with J =

[
0 −IM×M

IM×M 0

]
. (10.77)

On the other hand, if the numerical solutions un+1 and μn+1 are regarded as
functions of t , and by denoting z(tn+ ξt) = [

un(ξt)ᵀ, μn(ξt)ᵀ
]ᵀ, it can be

observed that the solutions of the HB time integration formula (10.22) satisfy

z′(tn + ξt) =
[

μn(ξt)

ϒn(ξt, u)

]
, (10.78)

where

ϒn(ξt, u) ≡ −Aun(ξt)

+
r∑

j=0

∑
t̃∈SENTfj+2

α(t̃ )tj
[
βr,j (ξ)F

(
un,μn

)+ (−1)jβr,j (1− ξ)F
(
un+1, μn+1)] ,

ξ ∈ [0, 1], and z(tn + ξt) satisfies:

z(tn + ξt)
∣∣
ξ=0 =

[
un

μn

]
and z(tn + ξt)

∣∣
ξ=1 =

[
un+1

μn+1

]
, 0 � n � N.

Theorem 10.8 Let un and μn be the solutions of the HB time integration for-
mula (10.22). Then the discrete energy defined in (10.75) satisfies

max
0�n�N

∣∣H(un, u′n)−H(u0, u′0)
∣∣ = O(t2r+2), (10.79)

and this implies the order of preservation of the discrete energy is 2r + 2.
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Proof Using (10.75) and (10.78), we obtain

H
(
z(tn+1)

)−H
(
z(tn)

) = t

∫ 1

0
∇H (

z(tn + ξt)
)ᵀ
z′(tn + ξt)dξ

=t
∫ 1

0

[(
Aun(ξt)− f

(
un(ξt)

))ᵀ
, μn(ξt)ᵀ

] [
μn(ξt)

ϒn(ξt, u)

]
dξ

=(−1)r+1t2r+3
(∫ 1

0
μn(ξt)ξr+1(1− ξ)r+1dξ

)ᵀ
f
(2r+2)
t

(
un(θnt)

)
(2r + 2)! ,

θn ∈ [0, 1].

This leads to

∣∣H (
z(tn+1)

)−H
(
z(tn)

)∣∣ = O(t2r+3).

It then follows from

∣∣H (
z(tn)

)−H
(
z(t0)

)∣∣ � n−1∑
j=0

∣∣H (
z(tj+1)

)−H
(
z(tj )

)∣∣ = nO(t2r+3),

that

max
0�n�N

∣∣H (
z(tn)

)−H
(
z(t0)

)∣∣ = O(t2r+2).

The proof of this is complete. ��

10.6 Waveform Relaxation and Its Convergence

The previous sections derived and analysed the fully discrete scheme for (10.1)–
(10.2) and presented its properties. However, the scheme (10.63) is implicit in
general and iteration cannot be avoided in practical computation. In this section
we introduce a waveform relaxation method as a suitable iterative procedure. The
waveform relaxation method has been investigated by many authors (see, e.g. [42–
46]).
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For simplicity, in terms of the notation in (10.46), we first rewrite the fully
discrete scheme (10.63),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1 =φ0
(
V
)
un +tφ1

(
V
)
μn +

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)tj+2

×
[
I1[βj(z)]F (t̃ )(un, μn)+ (−1)j I1[βj (1− z)]F (t̃ )(un+1, μn+1)

]
,

μn+1 =−tAφ1
(
V
)
un + φ0

(
V
)
μn +

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃ )tj+1

×
[
I2[βj(z)]F (t̃ )(un, μn)+ (−1)j I2[βj (1− z)]F (t̃ )(un+1, μn+1)

]
,

where I1[βj (z)], I2[βj (z)], I1[βj(1 − z)] and I2[βj (1 − z)] have been defined
in (10.19)–(10.18). We then define the waveform relaxation method as follows:

⎧⎨
⎩

un+1
[0] = φ0

(
V
)
un +tφ1

(
V
)
μn,

μn+1
[0] = −tAφ1

(
V
)
un + φ0

(
V
)
μn,

(10.80)

and subsequently iterate

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
[m+1] =un+1

[0] +
r∑

j=0

∑
t̃∈SENTfj+2

α(t̃)tj+2
{
I1[βr,j (z)]F (t̃)(un, μn)

+ (−1)j I1[βr,j (1− z)]F (t̃ )(un+1
[m] , μ

n+1
[m] )

}
,

μn+1
[m+1] =μn+1

[0] +
r∑

j=0

∑
t̃∈SENTfj+2

α(t̃)tj+1
{
I2[βr,j (z)]F (t̃ )(un, μn)

+ (−1)j I2[βr,j (1− z)]F (t̃ )(un+1
[m] , μ

n+1
[m] )

}
(10.81)

for m = 0, 1, · · · .
In what follows, we analyse the convergence of the algorithm (10.80)–(10.81).



334 10 High-Order Symmetric Hermite–Birkhoff Time Integrators for Semilinear KG. . .

Theorem 10.9 Suppose that f satisfies Assumptions 10.1 and 10.2. Under the
conditions

t2L(R, ρ(A)) � 1 and t(1+t)

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃) < 1,

the iterative procedure determined by (10.80)–(10.81) is convergent.

Proof According to Assumption 10.2 and (10.81), the following inequalities are
true:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖un+1
[m+1] − un+1

[m] ‖

�t2
r∑

j=0

∑
t̃∈SENTfj+2

α(t̃)tjL(R, ρ(A)#
j
2 $)

(
‖un+1
[m] − un+1

[m−1]‖ + ‖μn+1
[m] − μn+1

[m−1]‖
)
,

‖μn+1
[m+1] − μn+1

[m] ‖

�t

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)tjL(R, ρ(A)#
j
2 $)

(
‖un+1
[m] − un+1

[m−1]‖ + ‖μn+1
[m] − μn+1

[m−1]‖
)
.

(10.82)

Summing up (10.82) and noting that t2L(R, ρ(A)) � 1, we obtain

‖un+1
[m+1] − un+1

[m] ‖ + ‖μn+1
[m+1] − μn+1

[m] ‖

� t(1+t)

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃ )
(
‖un+1
[m] − un+1

[m−1]‖ + ‖μn+1
[m] − μn+1

[m−1]‖
)
.

An argument by induction then gives

‖un+1
[m+1] − un+1

[m] ‖ + ‖μn+1
[m+1] − μn+1

[m] ‖

�

⎡
⎢⎣t(1+t)

r∑
j=0

∑
t̃∈SENTfj+2

α(t̃)

⎤
⎥⎦
m(
‖un+1
[1] − un+1

[0] ‖ + ‖μn+1
[1] − μn+1

[0] ‖
)
.

The condition t(1+t)
∑r

j=0
∑

t̃∈SENTfj+2
α(t̃) < 1 results in

lim
m→+∞

(‖un+1
[m+1] − un+1

[m] ‖ + ‖μn+1
[m+1] − μn+1

[m] ‖
) = 0. (10.83)

Therefore, the iterative procedure (10.80)–(10.81) is convergent. ��
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10.7 Numerical Experiments

For the demonstration of the properties and performance of the HB time integrator,
in this section, we derive three practical time integration formulae and use them to
illustrate the solution of two semilinear wave equations.

The choice of r = 0 in (10.15) yields the first example of a symmetric time-
stepping integrator for (10.1)–(10.2):

β0,0(z) = (1− z), (10.84)

and the corresponding time integration formula, determined by (10.84) and (10.18)–
(10.21), is defined by HB0.

As the second example, we take r = 1 in (10.15)

β1,0(z) = (1− z)2(1+ 2z), β1,1(z) = z(1− z)2. (10.85)

The time integration formula determined by (10.85) and (10.18)–(10.21) is denoted
by HB1.

Letting r = 2 in (10.15) gives the third example:

β2,0(z) = (1− z)3(1+ 3z+ 6z2), β2,1(z) = z(1− z)3(1+ 3z),

β2,2(z) = 1

2
z2(1− z)3. (10.86)

The corresponding time integration formula determined by (10.86) and (10.18)–
(10.21) as HB2.

In order to compare different algorithms, we briefly describe a number of
standard finite difference schemes and method-of-lines schemes for the semilinear
KG equation (see, e.g. [9, 10, 39]).

1. Standard Finite Difference Schemes
Let unj be the approximation of u(xj , tn) for j = 0, 1, · · · ,M − 1 and n =
0, 1, · · · , N . We also introduce the standard central difference operators

δ2
t u

n
j =

un+1
j − 2unj + un−1

j

t2
and δ2

xu
n
j =

unj+1 − 2unj + unj−1

x2 .

We here consider three frequently used finite difference schemes to discretise the
semilinear KG equation:

• An explicit finite difference scheme Expt-FD

δ2
t u

n
j − a2δ2

xu
n
j = f (unj );
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• Semi-implicit finite difference scheme Simpt-FD

δ2
t u

n
j −

a2

2

(
δ2
xu

n+1
j + δ2

xu
n−1
j

) = f (unj );

• Compact finite difference scheme Compt-FD

(
I + x2

12
δ2
x

)
δ2
t u

n
j −

a2

2

(
δ2
xu

n+1
j + δ2

xu
n−1
j

) = (
I + x2

12
δ2
x

)
f (unj ).

2. Method-of-lines Schemes
The method-of-lines approach to the approximation of (10.1)–(10.2) is composed
of two stages: space and time discretisations. We first approximate the spatial
differential operator A to obtain a semidiscrete scheme of the form

u′′(t)+ Au(t) = f
(
u(t)

)
,

whereA is a symmetric positive semi-definite matrix. We then use an ODE solver
to deal with the semidiscrete scheme. Here, the time integrators we select for
comparison are

• Gauss2s4: the two-stage Gauss method of order four from [31];
• Gauss3s6: the three-stage fourth-order Gauss method in [31];
• RKN3s4: the three-stage Runge–Kutta–Nyström (RKN) method of order four

from [31];
• IRKN2s4: the two-stage implicit symplectic RKN method of order four

derived in [47];
• IRKN3s6: the three-stage implicit symplectic RKN method of order six

derived in [47];
• SV: classical Störmer–Verlet formula [31].

For the time integrators HB0, HB1 and HB2 derived in this chapter, we use the
tolerance 10−15 and choose m = 2 in the waveform relaxation algorithm (10.80)–
(10.81), which implies that just one iteration is needed at each step. Consequently,
these two integrators can be implemented at lower cost. Here, it should be noted that
when the error of a method under consideration is very large for some t , we do not
plot the corresponding points in efficiency curves. Moreover, in order to compute the
convergence order, we denote

EU(x,t) = max
0�n�N

√√√√x

M−1∑
i=0

(Un
i − uni )

2
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and

EH(x,t) = max
0�n�N

∣∣H(un, u′n)−H(u0, u′0)
∣∣.

The computational order of the method is calculated with the following formulae:

log2

(
EU(x,t)

EU(x,t/2)

)
and log2

(
EH(x,t)

EH(x,t/2)

)
.

Problem 10.1 We consider the semilinear KG equation

∂2u(x, t)

∂t2
− a2 ∂

2u(x, t)

∂x2
+ au(x, t)− bu3(x, t) = 0,

in the region (x, t) ∈ [−20, 20] × [0, T ] with the initial conditions

u(x, 0) =
√

2a

b
sech(λx), ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx),

where λ = √
a/(a2 − c2) and a, b, a2−c2 > 0. The exact solution of Problem 10.1

is

u(x, t) =
√

2a

b
sech(λ(x − ct)).

The real parameter
√

2a/b represents the amplitude of a soliton which travels with
velocity c. The potential function is V (u) = au2/2 − bu4/4. The problem can be
found in [23]. We consider the parameters a = 0.3, b = 1 and c = 0.25 which are
similar to those in [23].

In Figs. 10.2 and 10.3, we integrate the Problem 10.1 on the region (x, t) ∈
[−20, 20]× [0, 10] by using the time integrator HB2, coupled with the fourth-order
symmetric finite difference (SFD) and Fourier spectral collocation (FSC). The
graphs of errors are shown in Figs. 10.2 and 10.3 with the time stepsize t = 0.01
and different values of M . The numerical results demonstrate that the accuracy of
the spatial discretisation is consistent with the theory presented in this chapter. It is
evident that the Fourier spectral collocation method is the best choice to discretise
the spatial variable.

Table 10.1 provides the computational results with M = 800. The data
demonstrate that the temporal convergence orders of HB0, HB1 and HB2 are
second, fourth and sixth, respectively. The results show that the temporal accuracy
is completely consistent with the theory presented in Theorem 10.7.

To compare the integrators presented in this chapter with classical finite differ-
ence and method-of-lines schemes, we integrate the problem in the region (x, t) ∈
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Fig. 10.2 The errors for Problem 10.1 obtained by combining the time integrator HB2 with the
fourth-order finite difference spatial discretisation for t = 0.01 with M = 200, 400 and 800

Fig. 10.3 The errors for Problem 10.1 obtained by combining the time integrator HB2 with
Fourier spectral collocation method for t = 0.01 with M = 200, 400 and 800

Table 10.1 Numerical convergence in time with different t , fixed M = 800 and up to T = 10

t
HB0 HB1 HB2
EU(x,t) Order EU(x,t) Order EU(x,t) Order

0.8 1.7941 × 10−1 ∗ 2.0990 × 10−3 ∗ 1.2742 × 10−4 ∗
0.4 4.3627 × 10−2 2.0400 2.6159 × 10−4 3.0043 3.1967 × 10−6 5.3168

0.2 1.0065 × 10−2 2.1158 1.8650 × 10−5 3.8101 5.3224 × 10−8 5.9084

0.1 2.4614 × 10−3 2.0318 1.2006 × 10−6 3.9573 8.5113 × 10−10 5.9666

0.05 6.1189 × 10−4 2.0081 7.5579 × 10−8 3.9896 1.2662 × 10−11 6.0708

[−20, 20] × [0, 10] with different time stepsizes t , and the number of spatial
nodal values is M . The numerical results are shown in Fig. 10.4. We compare the
integrators presented in this chapter with the standard finite difference schemes with
stepsizes t = 0.01×23−j for j = 0, 1, 2, 3 andM = 1000 for the finite difference
schemes Expt-FD, Simpt-FD and Compt-FD and M = 800 for HB0-FSC, HB1-
FSC and HB2-FSC. The logarithms of the global errors GE = ‖u(tn)− un‖∞ are
plotted in Fig. 10.4a.
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Fig. 10.4 The efficiency curves for Problem 10.1: (a) Comparison with standard finite difference
schemes, (b) Comparison with method-of-lines schemes

Compared with the method-of-lines schemes, we discretise the spatial derivative
using Fourier spectral collocation method with fixed M = 800 and integrate the KG
equation with t = 0.2/2j for j = 0, 1, 2, 3. The efficiency curves (accuracy
versus the computational cost measured by the number of function evaluations
required by each method) are shown in Fig. 10.4b.

In conclusion, the numerical results in Fig. 10.4 demonstrate that the time
integrators HB0, HB1 and HB2 derived in this chapter, combined with Fourier
spectral collocation, have much better accuracy and are more efficient than those
occurring in the literature.

The numerical results in Fig. 10.5 present the error of the semidiscrete energy
conservation law as a function of the time-step calculated by Ẽ(t), where EH =
|Ẽ(t)−Ẽ(t0)|. It can be observed form Fig. 10.5 that the error of HB0 is≈ 10−4, for
HB1 it is≈ 10−11, while that of HB2 is≈ 10−13. Moreover, the convergence orders
of the preservation of the discrete energy by the HB time integrators are computed
which are listed in Table 10.2. The numerical results show that the accuracy of
discrete energy preservation by HB0 is of order two, by HB1 of order four and by
HB2 of order six.

Problem 10.2 We consider the sine-Gordon equation

∂2u

∂t2
(x, t)− ∂2u

∂x2 (x, t)+ sin(u(x, t)) = 0
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Fig. 10.5 Discrete energy conservation by HB0, HB1 and HB2 with the spatial discretisation by
Fourier spectral collocation with M = 800 up to T = 40, using t = 0.02

Table 10.2 Numerical precision of the preservation of the semidiscrete energy up to T = 40 with
various t and fixed M = 200

t
HB0 HB1 HB2
EH(x,t) Order EH(x,t) Order EH(x,t) Order

0.16 1.8989 × 10−3 ∗ 5.2428 × 10−6 ∗ 1.1049 × 10−8 ∗
0.08 4.7939 × 10−4 1.9859 3.2875 × 10−7 3.9952 1.7178 × 10−10 6.0072

0.04 1.2005 × 10−4 1.9976 2.0564 × 10−8 3.9988 2.6613 × 10−12 6.0123

0.02 3.0026 × 10−5 1.9994 1.2860 × 10−9 3.9992 5.0293 × 10−14 5.7256

0.01 7.5071 × 10−6 1.9999 8.0451 × 10−11 3.9986 — —

in the region −20 � x � 20, 0 � t � T , subject to the initial conditions

u(x, 0) = 0, ut (x, 0) = 4 sech(x/
√

1+ c2)/
√

1+ c2.

The exact solution of Problem 10.2 is

u(x, t) = 4 arctan
(
c−1 sin(ct/

√
1+ c2) sech(x/

√
1+ c2)

)
.

This problem is known as breather solution of the sine-Gordon equation and
represents a pulse-type structure of a soliton. The parameter c is the velocity and
we choose c = 0.5. The potential function is V (u) = 1 − cos(u). Problem 10.2 is
integrated by HB2, coupled either with the fourth-order symmetric finite difference
SFD or Fourier spectral collocation FSC. The error graphs are shown in Figs. 10.6
and 10.7 with t = 0.01 and several values of M . They demonstrate how the
accuracy of the spatial discretisation varies withM , and also indicate that the Fourier
spectral collocation FSC is decisively superior to the fourth-order symmetric finite
difference SFD.
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Fig. 10.6 The error for the sine-Gordon equation, blending the time integrator HB2 with fourth-
order finite difference spatial discretisation for t = 0.01 and M = 100, 200, 400

Fig. 10.7 The errors blending the time integrator HB2 with Fourier spectral method for t = 0.01
and M = 50, 100, 200

Table 10.3 Numerical convergence in time with different t , fixed M = 200 and up to T = 40

t
HB0 HB1 HB2
EU(x,t) Order EU(x,t) Order EU(x,t) Order

0.8 21.85583982 ∗ 2.762406385 ∗ 2.2240 × 10−1 ∗
0.4 5.486416853 1.9941 1.2514 × 10−1 4.4643 3.6983 × 10−3 5.9101

0.2 1.176387217 2.2215 7.3631 × 10−3 4.0871 4.8228 × 10−5 6.2609

0.1 2.8235 × 10−1 2.0588 4.5373 × 10−4 4.0204 7.3285 × 10−7 6.0402

0.05 6.9931 × 10−2 2.0135 2.8264 × 10−5 4.0048 – –

The computational results in Table 10.3 demonstrate that the temporal conver-
gence orders of HB0, HB1 and HB2 are of two, four and six, respectively. The
results again verify the convergence accuracy in time is consistent with the theory
in Theorem 10.7.

The efficiency curves are shown in Fig. 10.8. In order to compare the integrators
with a standard finite difference scheme, in Fig. 10.8a we integrate the problem for
t = 0.04, 0.03, 0.02, 0.01. We use M = 1000 for the finite difference scheme
Expt-FD, Simpt-FD and Compt-FD, and M = 200 for the HB0-FSC, HB1-FSC
and HB2-FSC.
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Fig. 10.8 Efficiency curves for Problem 10.2: (a) Comparison with standard finite difference
schemes, (b) Comparison with method-of-lines schemes

Fig. 10.9 Energy conservation by HB0, HB1 and HB2, both blended with FSC, using M = 200,
t = 0.02 and T = 100

In Fig. 10.8b we compare the integrators presented in this chapter with method-
of-lines schemes. The problem is integrated over the time interval [0, 40]with fixed
M = 200 and time stepsizes t = 0.4/2j for j = 0, 1, 2, 3. It can be observed that
the time integrators HB0, HB1 and HB2, coupled with Fourier spectral collocation,
are more efficient than other chosen methods.

The numerical results in Fig. 10.9 represent the error of the semidiscrete energy
conservation law. It can be seen that the error does not grow with time. The errors
obtained by HB0, HB1 and HB2 reach magnitudes of ≈10−3, ≈10−7 and ≈10−11,
respectively. The precisions of the preservation of the discrete energy by the HB
time integrators are listed in Table 10.4. It is shown that the accuracy of the discrete
energy preservation by HB0 is of order two, by HB1 is of order four and by HB2 is
of order six.
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Table 10.4 Numerical precision of the preservation of the semidiscrete energy up to T = 100
with different t and fixed M = 200

t
HB0 HB1 HB2
EH(x,t) Order EH(x,t) Order EH(x,t) Order

0.16 3.6368 × 10−1 ∗ 1.7078 × 10−3 ∗ 8.0039 × 10−6 ∗
0.08 9.0444 × 10−2 2.0076 1.0578 × 10−4 4.0130 1.2237 × 10−7 6.0314

0.04 2.2580 × 10−2 2.0020 6.5969 × 10−6 4.0031 1.9184 × 10−9 5.9952

0.02 5.6432 × 10−3 2.0005 4.1208 × 10−7 4.0008 3.0326 × 10−11 5.9832

0.01 1.4107 × 10−3 2.0001 2.5774 × 10−8 3.9989 – –

Below is an example of a high-dimensional problem.

Problem 10.3 We consider the 2D sine-Gordon equation (see, e.g. [23, 48–50]):

utt − (uxx + uyy) = − sin(u), t > 0, (10.87)

in the spatial region Ω = [−14, 14] × [−14, 14], with the initial conditions

u(x, y, 0) = 4 arctan
(

exp
(
3−

√
x2 + y2

))
, ut (x, y, 0) = 0, (10.88)

and the homogeneous Neumann boundary conditions

ux(±14, y, t) = uy(x,±14, t) = 0. (10.89)

The exact solution of this problem is a phenomenon called a circular ring soliton
(see, e.g. [48, 50]), and different initial conditions will result in different numerical
phenomena. We here use the time integrators HB0, HB1 and HB2 coupled with the
discrete Fast Cosine Transformation (see, e.g. [51, 52]) to simulate the particular
circular ring solitons. In Figs. 10.10 and 10.11, we show the simulation results and
the corresponding contour plots at the time points t = 0, 2, 4, 6, 8 and 10 with
spatial stepsizes x = y = 0.07 and the time stepsize t = 0.01. The CPU time
required to reach t = 10 is 1191.445350s.

Likewise, to verify the theoretical results in Theorem 10.7, we fixed the spatial
stepsizes as x = y = 0.07 and integrate the Problem 10.3 by the time integrators
HB0, HB1 and HB2 with various time stepsizes. The data listed in Tables 10.5
and 10.6 demonstrate that the convergence order of the time integrators HB0, HB1
and HB2 are of order two, four and six, respectively. The results again verify the
correctness of the theory presented in Theorem 10.7.
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Fig. 10.10 Circular ring solitons: numerical solutions obtained by coupling the time integrator
HB2 with the discrete Fast Cosine Transformation at the time points t = 0, 2, 4, 6, 8 and 10

Fig. 10.11 Circular ring solitons: contours of the numerical solutions at the time points t =
0, 2, 4, 6, 8 and 10
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Table 10.5 Numerical convergence “u(x, y, t)” in time with various t at time T = 10

t0 = 0.5
HB0 HB1 HB2
EU(x,y,t) Order EU(x,y,t) Order EU(x,y,t) Order

t0

2
7.9911 × 10−3 ∗ 7.9016 × 10−7 ∗ 4.4097 × 10−7 ∗

t0

4
1.9992 × 10−3 1.9989 5.2878 × 10−7 3.9014 9.4394 × 10−9 5.5458

t0

8
4.9990 × 10−4 1.9997 3.3850 × 10−8 3.9655 1.5975 × 10−10 5.8848

t0

16
1.2498 × 10−4 1.9999 2.1293 × 10−9 3.9907 2.5899 × 10−12 5.9468

Table 10.6 Numerical convergence “ut (x, y, t)” in time with different t at time T = 10

t0 = 0.5
HB0 HB1 HB2
EU(x,y,t) Order EU(x,y,t) Order EU(x,y,t) Order

t0

2
1.9101 × 10−2 ∗ 1.2757 × 10−4 ∗ 1.6356 × 10−5 ∗

t0

4
4.7841 × 10−3 1.9973 1.1049 × 10−5 3.5294 3.4931 × 10−7 5.5491

t0

8
1.1966 × 10−2 1.9993 7.5552 × 10−7 3.8703 5.9125 × 10−9 5.8846

t0

16
2.9919 × 10−4 1.9998 4.8296 × 10−8 3.9675 9.4309 × 10−11 5.9702

10.8 Conclusions and Discussions

It is known that the KG equation and the Schrödinger equation are two important
equations of Quantum Physics. We have derived and analysed a class of time
integrators for the semilinear KG equation (10.1)–(10.2) in this chapter. As distinct
from traditional approaches, these schemes are based on the operator-variation-of-
constants formula (10.10) which is introduced on the Hilbert space L2(Ω) using
operator spectral theory, and it is in fact an implicit expression of the solution of
the semilinear KG equation. Keeping the eventual discretisation in mind, a class
of time integration formulae (10.22) has been designed by applying a two-point
Hermite interpolation to the nonlinear integrals that appear in the operator-variation-
of-constants formula. It has been shown that these formulae can have arbitrary
order and are also symmetric. A significant advantage of this approach is that
the requirement of temporal smoothness is reduced compared with the traditional
schemes for PDEs in the literature. In order to approximate the unbounded positive
semi-definite spatial differential operator A , we have also discussed the importance
of the choice of a positive semi-definite differentiation matrix. Moreover, stability
and convergence for the fully discrete scheme have been proved in both linear
and nonlinear settings. In particular, the long-time preservation of the discrete
energy conservation law has been analysed. Since the fully discrete scheme is
implicit, iteration is required, and we have applied the waveform relaxation algo-
rithm (10.80)–(10.81) in practical computations and analysed the convergence of the
iteration. Numerical experiments implemented in this chapter demonstrate that the
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time integrators so constructed have excellent numerical behaviour in comparison
with existing standard finite difference and method-of-lines schemes in the science
literature.

Note that the methodology presented in this chapter can be extended to a range
of other nonlinear wave equations. Some of the more immediate possible extensions
are as follows:

1. High Dimensional Problems. Although Eq. (10.1) is one-dimensional, the
method can be extended to KG equations in a moderate number, d , of space
dimensions,

utt − a2u = f (u), t0 � t � T , x ∈ [−π, π]d, (10.90)

where u = u(x, t) and ‘ = ∑d
i=1

∂2

∂x2
i

, with periodic boundary conditions. A

large dimension d requires combining the time integration formula (10.22) with
other spatial approximate techniques, such as sparse grids [53] or discrete FFT
[51, 54].

2. Neumann and Dirichlet Boundary Problems. In this chapter we only consider
problems (10.1) subject to periodic boundary conditions (10.2). However, the
approach presented in this chapter can be extended to problems with Neumann
and Dirichlet boundary conditions with domain Ω = [0, π]d . The corresponding
spatial discretisation could be the discrete Fast Sine Transformation for Dirichlet
boundary conditions or discrete Fast Cosine Transformation for the Neumann
boundary case. Fortunately, much related work on the discrete Fast Cosine/Sine
Transformation has been widely published in the science literature (see, e.g.
[55]). Therefore, we are hopeful of obtaining related new results.

3. Furthermore, the approach presented in this chapter also can be directly applied
to the computation of the following problems:

(a) The damped semilinear KG equation

⎧⎨
⎩

utt + α(x)ut − βu+ u+ f ′(u) = 0, (x, t) ∈ Ω × [t0,+∞),

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ Ω̄,

(10.91)
where Ω is a C1 domain in R

d , β represents the amplitude of the diffusion
and the damping coefficient α : Ω → [0,∞) is effective uniform in the
neighborhood of the spatial infinity,

α(x) � 0, α ∈ L∞(Ω), lim inf|x|→∞ α(x) > 0.
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The damper α(x) satisfies appropriate conditions which guarantee that the
total energy defined by

E(t) = 1

2

∫
Ω

[
|ut |2 + |∇u|2 + |u|2 + 2f (u)

]
dx

decays uniformly.
(b) The hyperbolic telegraph equation

{
utt + 2αut + β2u = u+ f (x, t), (x, t) ∈ Ω × [0,+∞),

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ {Ω̄,

(10.92)
where α > 0 and β > 0 are known constants. This equation has been widely
used in many different fields of science and mathematical engineering such
as the vibration of structures, the transmission and propagation of electrical
signals and random walk theory.

The material in this chapter is based on the work by Liu et al. [56].
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Chapter 11
Symplectic Approximations
for Efficiently Solving Semilinear
KG Equations

Among typical geometric integrators are multi-symplectic approximations to non-
linear Hamiltonian PDEs. However, it is also an important aspect to analyse the
nonlinear stability and convergence when a fully discrete symplectic scheme is
designed for nonlinear Hamiltonian PDEs. This chapter presents a symplectic
approximation for efficiently solving semilinear Klein–Gordon equations, which
can be formulated as an abstract Hamiltonian ordinary differential equation. We
first analyse an extended Runge–Kutta–Nyström-type approximation based on the
operator-variation-of-constants formula for the abstract Hamiltonian system. We
then present the symplectic conditions for the approximation. The most important
issue is that we initiate the nonlinear stability and convergence analysis for the
symplectic approximation of semilinear Klein–Gordon equations.

11.1 Introduction

On the one hand, symplectic approximation is an important consideration in the
design of numerical schemes for solving nonlinear Hamiltonian PDEs. On the other
hand, it is also crucial to perform the nonlinear stability and convergence analysis
for a fully discrete symplectic scheme when applied to nonlinear Hamiltonian
PDEs. Unfortunately, current analysis of nonlinear stability and convergence is
inadequate although multi-symplectic methods for PDEs have been proposed for
multi-symplectic Hamiltonian PDEs (see, e.g. [1–3]). This is the primary concern
of this chapter.

The main aim of this chapter is to present an efficient symplectic approximation,
accompanying its fundamental theoretical properties for the semilinear Klein–
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Gordon (KG) equation in a single space variable:

{
utt − a2u = f (u), t0 < t � T , x ∈ Ω,

u(x, t0) = ϕ1(x), ut (x, t0) = ϕ2(x), x ∈ Ω̄.
(11.1)

where u(x, t) represents the wave displacement at position x and time t , and f (u)

is a nonlinear function of u chosen as the negative derivative of a potential energy
G(u) � 0. The KG equation (11.1) is supplemented with the periodic boundary
condition on the domain Ω = (−π, π):

u(x, t) = u(x + 2π, t). (11.2)

In this chapter, we restrict ourselves to the one dimensional case, since all issues
presented and analysed in this chapter can be easily extended to two-dimensional
and high-dimensional KG equations as shown in [4].

It is well known that a key feature is that the KG equation is a Hamiltonian PDE,
which can be formulated as {

ut = v,

vt = a2u+ f (u)
(11.3)

with the Hamiltonian

H = 1

2

∫ (
u2
t + a2|∇u|2 + 2G(u)

)
dx.

The semilinear KG equation (11.1), as a relativistic counterpart of the Schröinger
equation, is an important model which can be used to simulate a variety of nonlinear
phenomena, including the propagation of dislocations in crystals and the behaviour
of elementary particles and of Josephson junctions. Its computation, analysis and
related topics represent a major challenge. Much effort has been made to derive
effective approximations for solving the semilinear KG equation, and we refer the
reader to [2, 3, 5–10] and references therein. The finite differences approximation of
the KG equation has been researched for a long time. The authors in [11] studied the
Perring–Skyrme (PS) approximation of the one-dimensional sine-Gordon equation.
As a simple modification of the PS scheme, the Ablowitz–Kruskal–Ladik (AKL)
scheme was discussed in [12]. One popular scheme for solving the two-dimensional
problem can be found in [13]. Some energy-conserving or symplectic-preserving
standard finite difference schemes were analysed in [5, 14]. Other approaches, such
as the finite element method and the spectral method, were also studied in [4, 15–
19]. Recently, similar physical systems such as the “Good” Boussinesq equations
have been developed, and we refer the reader to [20–25] as well as the references
contained therein.
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There has been much work in recent years on the research of numerical
approximations of Hamiltonian ODEs (see, e.g. [26–34]). It is known, that due to the
symplectic geometric structure, Hamiltonian systems have important applications
in mechanics, celestial and molecular dynamics, and optics. It is of great interest
for numerical simulations to preserve the structure and intrinsic properties (see e.g.
[35]) of the original continuous system. Hence, in this chapter, we are concerned
with the preservation of the symplectic geometric structure of nonlinear Hamilto-
nian PDEs. In the literature, various symplectic algorithms have been proposed,
and we refer the reader to [36–42] and references therein. It is common practice
that once suitable space derivative approximations are used, the KG equation
is reduced to a Hamiltonian system of ODEs. Here, differently from the multi-
symplectic approximation to multi-symplectic Hamiltonian PDEs, this chapter
also pays attention to the analysis of nonlinear stability and convergence for the
symplectic approximation to the semilinear KG equation (11.1).

It is noted that for Hamiltonian PDEs, Poisson mapping properties generalize
the symplectic mapping properties of the exact solution operator and determine the
dynamics of the solution (see [38, 43]). Some researchers make good use of these
properties and design numerical schemes for Hamiltonian PDEs (see, e.g. [38]).
Furthermore, it follows from the work in [14] that numerical methods ultimately
reduce to discrete mappings from time level to time level, and symplectic methods
reproduce Hamiltonian dynamics. Thus, this chapter only requires knowledge of the
symplectic property of discrete maps to study the symplectic approximation to the
semilinear KG equation (11.1).

The method of lines is a standard approach to obtaining a symplectic approxima-
tion of (11.1). The discretisation process is carried out in two distinct steps. First,
approximating the space derivatives in a suitable manner gives a Hamiltonian system
of ODEs in time. Second, the Hamiltonian ODEs are solved by an appropriate
symplectic method. However, differently from the conventional route, we consider
another approach in this chapter.1 We first formulate the semilinear KG equation
(11.1)–(11.2) as an abstract Hamiltonian system of ODEs on an infinite-dimensional
Hilbert spaceL2(Ω). We then introduce the operator-variation-of-constants formula
(also termed the Duhamel Principle) and symplectic approximation for the abstract
Hamiltonian system. The choice of spatial discretisation is flexible at this stage.
Moreover, the nonlinear stability and convergence of the symplectic approximation
can be analysed in detail after the implementation of a full discretisation, and
this represents an important step toward symplectic approximations for solving
semilinear KG equations. As is known, the problem of nonlinear stability and
convergence is a very essential and crucial issue in numerical solution of PDEs.
Unfortunately, this point has not received enough attention in the study of the
geometric numerical integration for PDEs in the literature.

1Since this chapter is devoted to the symplectic approximation in time and different choices of
spatial discretisation can be used, we use another approach which is more suitable for presenting
this chapter succinctly.
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11.2 Abstract Hamiltonian System of ODEs

The main purpose of this section is to formulate the semilinear KG equation (11.1)–
(11.2) as an abstract Hamiltonian system of ODEs. We then introduce the operator-
variation-of-constants formula for the abstract Hamiltonian system.

We first define the linear differential operator A by (see, e.g. [19])

(A v)(x) = −a2vxx(x), (11.4)

where A is a linear, unbounded positive semi-definite operator, whose domain is

D(A ) :=
{
v ∈ H 1(Ω) : v(x) = v(x + 2π)

}
.

Clearly, the operator A has a complete system of orthogonal eigenfunctions
{
eikx :

k ∈ Z
}
, and the linear span of all these eigenfunctions

X := lin
{
eikx : k ∈ Z

}
(11.5)

is dense in the Hilbert space L2(Ω). This means that we obtain an orthonormal
basis of eigenvectors of the operator A with the corresponding eigenvalues a2k2

for k ∈ Z.
In what follows, we introduce the operator-argument functions φj as follows:

φj (A ) :=
∞∑
k=0

(−1)kA k

(2k + j)! : L
2(Ω)→ L2(Ω), j = 0, 1, 2, · · · . (11.6)

According to the results described in [4, 8], we have the following proposition for
these operator-argument functions.

Proposition 11.1 All the operator-argument functions defined by (11.6) are
bounded.

A proof of this proposition can be found in a very recent paper [8].
We next define q(t) as the function that maps x to u(x, t):

q(t) = [x �→ u(x, t)].

In such a way, we formulate the semilinear KG equation (11.1)–(11.2) as the
following abstract Hamiltonian system of ODEs on the Hilbert space L2(Ω):

{
q ′(t) = p(t), q(t0) = ϕ1(x),

p′(t) = −A q(t)−G′(q(t)), p(t0) = ϕ2(x).
(11.7)
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We are now in a position to present an integral formula for the semilinear KG
equation (11.1)–(11.2) on the basis of this background. The solution of the abstract
Hamiltonian system (11.7) and its derivative can be represented by the operator-
variation-of-constants formula as follows.

Theorem 11.1 The solution of (11.7) and its derivative satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) =φ0
(
(t − t0)

2A
)
q(t0)+ (t − t0)φ1

(
(t − t0)

2A
)
p(t0)

−
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
G′

(
q(ζ )

)
dζ,

p(t) =− (t − t0)A φ1
(
(t − t0)

2A
)
q(t0)+ φ0

(
(t − t0)

2A
)
p(t0)

−
∫ t

t0

φ0
(
(t − ζ )2A

)
G′

(
q(ζ )

)
dζ,

(11.8)

for t ∈ [t0, T ], where both φ0
(
(t − t0)

2A
)
and φ1

(
(t − t0)

2A
)
are bounded

operators, although A is an unbounded symmetric positive semi-definite operator
(see [8]).

Proof The outline of the proof can be found in [4], and we skip the details for
brevity. ��
Remark 11.1 It is noted that the operator-variation-of-constants formula (11.8) is
an implicit expression of the solution of the semilinear KG equation (11.7), which
assists in the analysis of the underlying geometry integration. Even more important
is that (11.8) is adapted to different boundary conditions under suitable assumptions
(see [44]). Obviously, the formula (11.8) discloses some useful information about
the solution which allows us to design and analyse structure-preserving integrators
for the abstract Hamiltonian system of ODEs (11.7). This formula also makes it
possible to forego the standard steps of first semidiscretising and then deal with the
semidiscretisation in a totally different approach. Actually, the semidiscretisation
is deferred to the very last moment here. Moreover, this approach provides the
possibility to analyse the nonlinear stability and convergence of the symplectic
approximation to the semilinear KG equation (11.1)–(11.2).

11.3 Formulation of the Symplectic Approximation

11.3.1 The Time Approximation

It follows from Theorem 11.1 that the solution and its derivative of (11.7) at time
tn+1 = tn +t for n = 0, 1, 2, · · · , are
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(tn+1) =φ0
(
V
)
q(tn)+tφ1

(
V
)
p(tn)

−t2
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
G′

(
u(tn + zt)

)
dz,

p(tn+1) =−tA φ1
(
V
)
q(tn)+ φ0

(
V
)
p(tn)

−t

∫ 1

0
φ0

(
(1− z)2V

)
G′

(
u(tn + zt)

)
dz,

(11.9)

where t is the time stepsize, and V = t2A .
To design an effective and practical numerical scheme, it is necessary to

approximate the integrals appearing in (11.9) with a quadrature formula by choosing
suitable nodes ci for i = 1, 2, · · · , s. This motivates the following definition.

Definition 11.1 An s-stage extended RKN-type time-stepping approximation with
time stepsize t for solving the nonlinear Hamiltonian system (11.7) is defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qni = φ0
(
c2
i V

)
qn + citφ1

(
c2
i V

)
pn −t2

s∑
j=1

āij (V )G′(Qnj ), i = 1, 2, · · · , s,

qn+1 = φ0
(
V
)
qn +tφ1

(
V
)
pn −t2

s∑
i=1

b̄i (V )G′(Qni),

pn+1 = −tA φ1
(
V
)
qn + φ0

(
V
)
pn −t

s∑
i=1

bi (V )G′(Qni),

(11.10)

where bi(V ), b̄i(V ) and āij (V ) are operator-argument functions of V .

Remark 11.2 We remark that, altogether differently from the traditional and stan-
dard time-stepping integrator, the extended RKN-type time-stepping approximation
to the nonlinear Hamiltonian system of ODEs (11.7) is a time-stepping scheme
without spatial discretisation. In fact, the traditional and standard approach always
requires that the spatial discretisation is implemented before the time discretisation.

Remark 11.3 The above pattern of extended RKN-type approximations for solving
the system of second-order ordinary differential equations with highly oscillatory
solutions {

y ′′ +My = f (y), x ∈ [x0, xend],
y(x0) = y0, y ′(x0) = y ′0.

(11.11)

was initially proposed in [45], and further researched in [32, 34, 41, 46, 47].
However, the approximation (11.10) presented in this chapter is based on the
operator-variation-of-constants formula (11.9). This approach makes the approxi-
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mation (11.10) more suitable for the underlying original continuous semilinear KG
equations in the spirit of Geometric Integration.

Remark 11.4 Clearly, the semidiscrete time-stepping scheme (11.10) could be
employed using symbolic computation such as Mathematica for some PDEs. How-
ever, in this chapter we focus on scientific computing with floating point numbers.
The operator A appearing in (11.10) will be approximated in an appropriate way
such that the fully discrete scheme is a symplectic algorithm for Hamiltonian PDEs.

11.3.2 Symplectic Conditions for the Fully Discrete Scheme

In practice, the operator A will be approximated by a symmetric and positive
semi-definite differentiation matrix, and this assists in structure preservation for
numerical simulations. In what follows, we derive the symplectic conditions for the
time-stepping approximation (11.10) after the differential operator A is replaced
by a symmetric and positive semi-definite differentiation matrix. It is noted that a
similar result to the extended RKN methods for solving the system of second-order
oscillatory ODEs was derived in [34]. We here present a simplified result for the
approximation (11.10) to the nonlinear Hamiltonian system (11.7) with a simpler
proof.

As mentioned in Introduction, a standard approach to the approximation of
(11.1) is the method-of-lines, where the discretisation is carried out in two distinct
procedures: the first is to approximate the space derivatives leaving a Hamiltonian
system of ODEs in time, and the second is to solve the ODEs by an appropriate
numerical method. Of course, there exist many different ways to approximate A .
We will consider two types of spatial discretisations.

Theorem 11.2 According to the method-of-lines, the semilinear KG equation
(11.1) can be rewritten as utt + Au = f (u), where A is a symmetric and
positive semi-definite differentiation matrix which approximates the operator A .
Accordingly, the approximation to (11.10) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qni =φ0
(
c2
i V

)
qn + citφ1

(
c2
i V

)
pn +t2

s∑
j=1

āij (V )f (Qnj ),

i = 1, 2, · · · , s,

qn+1 =φ0
(
V
)
qn +tφ1

(
V
)
pn +t2

s∑
i=1

b̄i(V )f (Qni),

pn+1 = −tAφ1
(
V
)
qn + φ0

(
V
)
pn +t

s∑
i=1

bi(V )f (Qni ),

(11.12)
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where t is the time stepsize and V = t2A. The fully discrete scheme (11.12) is
symplectic for the Hamiltonian system (11.7) if its coefficients satisfy

⎧⎪⎪⎨
⎪⎪⎩
φ0(V )bi(V )+ V φ1(V )b̄i(V ) = diφ0(c

2
i V ), di ∈ R, i = 1, 2, · · · , s,

φ1(V )bi(V )− φ0(V )b̄i(V ) = cidiφ1(c
2
i V ), i = 1, 2, · · · , s,

b̄i(V )bj (V )+ diāij (V ) = b̄j (V )bi(V )+ dj āji(V ), i, j = 1, 2, · · · , s.
(11.13)

Here, it is important to remember that V contains the information about the spatial
mesh structure with the boundary conditions, and the time step as V = t2A,
where A denotes the approximation to the operator A in (11.10), and t is the
time stepsize.

Proof We begin with the special case whereA is a diagonal matrix with nonnegative
entries: A = diag(m11,m22, · · · ,mdd). In this case, φ0(V ), φ1(V ), bi(V ), b̄i(V ),
and āij (V ) are all diagonal matrices. We denote fi = −G′(Qni) and vii = t2mii ,
and then the scheme (11.10) is identical to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QJ
ni = φ0(c

2
i vJJ )q

J
n + ciφ1(c

2
i vJJ )tp

J
n +t2

s∑
j=1

aij (vJJ )f
J
j , i = 1, · · · , s,

qJ
n+1 = φ0(vJJ )q

J
n + φ1(vJJ )tp

J
n +t2

s∑
i=1

b̄i (vJJ )f
J
i ,

pJ
n+1 = −tmJJ φ1(vJJ )q

J
n + φ0(vJJ )p

J
n +t

s∑
i=1

bi (vJJ )f
J
i ,

(11.14)

where the superscript indices J = 1, 2, · · · , d denote the J -th entry of a vector.
The symplecticity of the scheme (11.14) is given by

d∑
J=1

dqJn+1 ∧ dpJn+1 =
d∑

J=1

dqJn ∧ dpJn .

Differentiating qJn+1 and pJn+1 and taking external products, we obtain

dqJn+1 ∧ dpJn+1 = [φ2
0(vJJ )+ vJJ φ

2
1(vJJ )]dqJn ∧ dpJn

+t

s∑
i=1

[bi(vJJ )φ0(vJJ )+ b̄i(vJJ )vJJ φ1(vJJ )]dqJn ∧ df J
i
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+t2
s∑

i=1

[bi(vJJ )φ1(vJJ )− b̄i(vJJ )φ0(vJJ )]dpJn ∧ df J
i

+t3
s∑

i,j=1

b̄i(vJJ )bj (vJJ )df
J
i ∧ df J

j .

As φ2
0(vJJ )+ vJJφ

2
1(vJJ ) = 1, this gives

dqJn+1 ∧ dpJn+1 = dqJn ∧ dpJn +t

s∑
i=1

(
diφ0(c

2
i vJJ )

)
dqJn ∧ df J

i

+t2
s∑

i=1

(
cidiφ1(c

2
i vJJ )

)
dpJn ∧ df J

i +t3
s∑

i,j=1

b̄i(vJJ )bj (vJJ )df J
i ∧ df J

j .

It then follows from

φ0(c
2
i vJJ )dq

J
n ∧ df J

i = dQJ
ni ∧ df J

i − ciφ1(c
2
i vJJ )tdp

J
n ∧ df J

i

−t2
s∑

j=1

āij (vJJ )df J
j ∧ df J

i ,

that

dqJn+1 ∧ dpJn+1 = dqJn ∧ dpJn +t

s∑
i=1

didQJ
ni ∧ df J

i

+t2
s∑

i=1

(
di ·

(− ciφ1(c
2
i vJJ )

)+ cidiφ1(c
2
i vJJ )

)
dpJn ∧ df J

i

+t3
s∑

i,j=1

(
diāij (vJJ )+ b̄i(vJJ )bj (vJJ )

)
df J

i ∧ df J
j .

Summing over all J leads to

d∑
J=1

dqJn+1 ∧ dpJn+1 =
d∑

J=1

dqJn ∧ dpJn +t

s∑
i=1

d∑
J=1

didQJ
ni ∧ df J

i

+t3
s∑

i,j=1

d∑
J=1

(
diāij (vJJ )+ b̄i(vJJ )bj (vJJ )

)
df J

i ∧ df J
j . (11.15)
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Keeping f (z) = −G′(z) in mind, we obtain

d∑
J=1

didQJ
ni ∧ df J

i = −di
d∑

J,I=1

(
∂f J

∂qI
(Qni )dQI

ni

)
∧ dQJ

ni

= −di
d∑

J,I=1

(
− ∂2G

∂qJ∂qI

)
dQI

ni ∧ dQJ
ni = 0.

Using the third condition of (11.13), we conclude that the last term of (11.15)
vanishes. Thus, we obtain

d∑
J=1

dqJn+1 ∧ dpJn+1 =
d∑

J=1

dqJn ∧ dpJn .

We next consider the general case where A is symmetric and positive semi-
definite. This implies that there exist an orthogonal matrix P and a positive
semi-definite diagonal matrix Ω so that A can be decomposed into

A = PᵀΩ2P.

Then the semidiscrete system of (11.7) is of the form

⎧⎨
⎩
q′(t) = p(t), q(t0) =

(
ϕ1(x1), ϕ1(x2), · · · , ϕ1(xM)

)ᵀ
,

p′(t) = −PᵀΩ2Pq(t)−G′(q(t)), p(t0) =
(
ϕ2(x1), ϕ2(x2), · · · , ϕ2(xM)

)ᵀ
,

(11.16)

where x1, · · · , xM are referred to the interior discretised points. With the variable
substitution z(t) = Pq(t), the system (11.16) is identical to the following
transformed system

{
z′(t) = Pp(t) := l(t), z(t0) = Pq(t0),

l′(t) = −Ω2z(t)− PG′(Pᵀz(t)), l(t0) = Pp(t0).
(11.17)

It is clear now that the symplectic extended RKN-type approximation for diagonal
matrix A with nonnegative entries can be applied to the transformed system.
Moreover, the approximation is invariant under linear transformation. This means
that the extended RKN-type approximation with symplectic conditions (11.13) can
be applied to systems with a symmetric and positive semi-definite matrix A.

To summarise, an extended RKN-type approximation satisfying the conditions
(11.13) is a symplectic approximation to the Hamiltonian system (11.7) whose
differential operator A is approximated by a symmetric and positive semi-definite
differentiation matrix A. ��
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The result of Theorem 11.2 can be further simplified as follows.

Corollary 11.1 The fully discrete extended RKN-type approximation (11.12) is
symplectic for (11.7) if its coefficients satisfy:

⎧⎪⎪⎨
⎪⎪⎩
bi(V ) = diφ0((1− ci )

2V ), di 
= 0, i = 1, 2, · · · , s,
b̄i (V ) = di (1− ci)φ1((1− ci )

2V ), i = 1, 2, · · · , s,
āij (V ) = 1

di
(b̄j (V )bi (V )− b̄i (V )bj (V )), i > j, i, j = 1, 2, · · · , s,

(11.18)

where V = t2A contains information about the spatial mesh structure A and the
time stepsize t .

Proof This result follows immediately from solving the symplectic conditions
(11.14) of an s-stage scheme. ��
Remark 11.5 From (11.18) and Proposition 11.1, it can be verified that the func-
tions bi(V ), b̄i(V ), āij (V ), and

√
V b̄i(V ) are uniformly bounded and the bounds

are independent of ‖V ‖.

11.3.3 Error Analysis of the Extended RKN-Type
Approximation

An important issue for numerical approximations is error analysis. We next analyse
the local error bounds of the extended RKN-type approximation under the following
hypothesis on the nonlinearity f .

Assumption 11.1 Suppose that (11.7) possesses sufficiently smooth solutions, and
that f : D(A ) → R is sufficiently often Fréchet differentiable in a strip along
the exact solution. Moreover, let f be locally Lipschitz-continuous along the exact
solution u(t), which implies that there exists a real number L such that

‖f (v(t)) − f
(
w(t)

)‖ � L‖v(t) −w(t)‖

for all t ∈ [t0, T ].
Remark 11.6 Here, the local Lipschitz-continuous condition of the nonlinear func-
tion is needed in this chapter. It allows the nonlinear analysis and convergence to go
through without any difficulty. For the case where the nonlinear function f does not
satisfy the local Lipschitz-continuous condition, the analysis of nonlinear stability
and convergence presented in this chapter does not work any more. In this situation,
the corresponding results may be dealt with in other suitable ways such as using the
linearized stability analysis and the a-priori recovery technique (see [21, 24]).



362 11 Symplectic Approximations for Efficiently Solving Semilinear KG Equations

Theorem 11.3 It is assumed that f (s)
t ∈ L∞(0, T ;L2(Ω)). Under the local

assumptions of qn = q(tn), pn = p(tn), if the approximation (11.10) to the solution
of (11.7) satisfies the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s∑
i=1

bi (V )
c
j
i

j ! =φj+1(V )+ O(tr−j ), j = 0, 1, · · · , r − 1,

s∑
i=1

b̄i (V )
c
j
i

j ! =φj+2(V )+ O(tr−1−j ), j = 0, 1, · · · , r − 2,

s∑
k=1

āik(V )
c
j
k

j ! =c
j+2
i

φj+2(c
2
i V )+ O(tr−2−j ), j = 0, 1, · · · , r − 3,

i = 1, 2, · · · , s,

(11.19)

then the local error bounds of (11.10) admit the following inequalities

‖q(tn+1)− qn+1‖ � C̃1t
r+1 and ‖p(tn+1)− pn+1‖ � C̃1t

r+1, (11.20)

where r is a positive integer.

Proof We will divide the proof into two steps. The first step shows the discrepancies
(or residuals) of the approximation (11.10), and the second one presents the local
error bounds.

(I) First, inserting the exact solution of (11.7) into the approximation (11.10) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(tn + cit) = φ0
(
c2
i
V
)
q(tn)+ citφ1

(
c2
i
V
)
p(tn)

+t2
s∑

j=1

āij (V )f̂ (tn + cjt)+Δni, i = 1, 2, · · · , s,

q(tn+1) = φ0
(
V
)
q(tn)+tφ1

(
V
)
p(tn)+t2

s∑
i=1

b̄i (V )f̂ (tn + cit)+ δn+1,

p(tn+1) = −tA φ1
(
V
)
q(tn)+ φ0

(
V
)
p(tn)+t

s∑
i=1

bi(V )f̂ (tn + cit)+ δ′n+1,

(11.21)

where Δni, δn+1 and δ′n+1 express the discrepancies of the approximation (11.10),

and f̂ (t) ≡ f (q(t)). Then using the operator-variation-of-constants formula (11.8)
we have

q(tn + cit) =φ0
(
c2
i V

)
q(tn)+ citφ1

(
c2
i V

)
p(tn)

+t2
∫ ci

0
(ci − z)φ1((ci − z)2V )f̂ (tn +tz)dz. (11.22)
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Comparing (11.22) with the first formula in (11.21) gives

Δni = t2
∫ ci

0
(ci − z)φ1((ci − z)2V )f̂ (tn +tz)dz−t2

s∑
j=1

āij (V )f̂ (tn + cjt).

We express f̂ of the above formula by the Taylor series expansion as follows

Δni =t2
∫ ci

0
(ci − z)φ1((ci−z)2V )

∞∑
j=0

tjzj

j ! f̂ (j)(tn)dz

−t2
s∑

k=1

āik(V )

∞∑
j=0

c
j

kt
j

j ! f̂ (j)(tn)

=
∞∑
j=0

tj+2c
j+2
i

∫ 1

0

(1−ξ)φ1(c
2
i (1−ξ)2V )ξj

j ! dξf̂ (j)(tn)

−t2
s∑

k=1

āik(V )

∞∑
j=0

c
j
kt

j

j ! f̂ (j)(tn)

=
∞∑
j=0

tj+2c
j+2
i φj+2(c

2
i V )f̂ (j)(tn)−t2

s∑
k=1

āik(V )

∞∑
j=0

c
j

kt
j

j ! f̂ (j)(tn)

=
∞∑
j=0

tj+2

[
c
j+2
i φj+2(c

2
i V )−

s∑
k=1

āik(V )
c
j
k

j !

]
f̂ (j)(tn),

where f̂ (j)(t) denotes the j -th order derivative of f (q(t)) with respect to t .
In a similar way, we can obtain

δn+1 =
∞∑
j=0

tj+2

[
φj+2(V )−

s∑
k=1

b̄k(V )
c
j
k

j !

]
f̂ (j)(tn),

δ′n+1 =
∞∑
j=0

tj+1

[
φj+1(V )−

s∑
k=1

bk(V )
c
j
k

j !

]
f̂ (j)(tn).

It follows from the conditions (11.19) that

‖Δni‖ � C1t
r , i = 1, 2, · · · , s,

‖δn+1‖ � C2t
r+1,

∥∥δ′n+1

∥∥ � C3t
r+1.

(11.23)
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(II) We denote

e
q
n = q(tn)− qn, e

p
n = p(tn)− pn, Eni = q(tn + cih)−Qni.

Then subtracting (11.10) from (11.21) yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eni = t2
s∑

j=1

āij (V )
(
f̂ (tn + cjt)− f (Qnj )

)+ni, i = 1, 2, · · · , s,

e
q
n+1 = t2

s∑
i=1

b̄i(V )
(
f̂ (tn + cit)− f (Qni)

)
+ δn+1,

e
p
n+1 = t

s∑
i=1

bi(V )
(
f̂ (tn + cit)− f (Qni)

)
+ δ′n+1.

This results in

‖Eni‖ �t2
s∑

j=1

‖āij (V )‖L2(Ω)←L2(Ω)‖f̂ (tn + cjt)− f (Qnj )‖ + ‖ni‖

�t2αL
s∑

j=1

‖Enj‖ + ‖ni‖, i = 1, · · · , s,

‖eqn+1‖ �t2
s∑

i=1

‖b̄i (V )‖L2(Ω)←L2(Ω)‖f̂ (tn + cit)− f (Qni)‖ + ‖δn+1‖

�t2βL
s∑

i=1

‖Eni‖ + ‖δn+1‖,

‖ep
n+1‖ �t

s∑
i=1

‖bi (V )‖L2(Ω)←L2(Ω)‖f̂ (tn + cit)− f (Qni)‖ + ‖δ′n+1‖

�tγL
s∑

i=1

‖Eni‖ + ‖δ′n+1‖,

(11.24)

where α, β, γ are respectively the uniform bounds of āij (V ), b̄i(V ), bi(V ) under
the norm ‖ · ‖L2(Ω)←L2(Ω). It follows from the first s inequalities of (11.24) that

s∑
i=1

‖Eni‖ � t2αLs

s∑
j=1

‖Enj‖ +
s∑

i=1

‖ni‖, i = 1, · · · , s.
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Under that assumption that the time stepsize t satisfies t2αLs � 1

2
, i.e., t �√

1

2αLs
, we obtain

s∑
i=1

‖Eni‖ � 2
s∑

i=1

‖ni‖, i = 1, · · · , s.

This leads to

‖eqn+1‖ �2t2βL
s∑

i=1

‖ni‖ + ‖δn+1‖,

‖epn+1‖ �2tγL
s∑

i=1

‖ni‖ + ‖δ′n+1‖.

According to the bounds (11.23) of ni, δn+1, δ
′
n+1, the statement of the theorem

is evident. ��

11.4 Analysis of the Nonlinear Stability

In this section, we will present a nonlinear stability analysis for the approximation
(11.10). To this end, we consider the following perturbed problem associated with
(11.7)

{
q̃ ′(t) = p̃(t), q̃(t0) = ϕ1(x)+ ϕ̃1(x),

p̃′(t) = −A q̃(t)+ f (q̃(t)), p̃(t0) = ϕ2(x)+ ϕ̃2(x),
(11.25)

where ϕ̃1(x), ϕ̃2(x) are perturbation functions. Let

q̂(t) = q̃(t)− q(t), p̂(t) = p̃(t)− p(t).

Subtracting (11.7) from (11.25) gives

{
q̂ ′(t) = p̂(t), q̂(t0) = ϕ̃1(x),

p̂′(t) = −A q̂(t)+ f (q̃(t))− f (q(t)), p̂(t0) = ϕ̃2(x).
(11.26)
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Applying the approximation (11.10)–(11.7), and (11.25), respectively, and subtract-
ing the first result from the second, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̃ni −Qni = φ0
(
c2
i V

)
(q̃n − qn)+ citφ1

(
c2
i V

)
(p̃n − pn)

+t2
s∑

j=1

āij (V )
(
f (Q̃nj )− f (Qnj )

)
, i = 1, 2, · · · , s,

q̃n+1 − qn+1 = φ0
(
V
)
(q̃n − qn)+tφ1

(
V
)
(p̃n − pn)

+t2
s∑

i=1

b̄i(V )
(
f (Q̃ni)− f (Qni)

)
,

p̃n+1 − pn+1 = −tA φ1
(
V
)
(q̃n − qn)+ φ0

(
V
)
(p̃n − pn)

+t

s∑
i=1

bi(V )
(
f (Q̃ni)− f (Qni)

)
.

(11.27)

This provides the following approximation of (11.26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̃ni −Qni = φ0
(
c2
i V

)
q̂n + citφ1

(
c2
i V

)
p̂n +t2

s∑
j=1

āij (V )
(
f (Q̃nj )− f (Qnj )

)
,

i = 1, 2, · · · , s,

q̂n+1 = φ0
(
V
)
q̂n +tφ1

(
V
)
p̂n +t2

s∑
i=1

b̄i (V )
(
f (Q̃ni )− f (Qni)

)
,

p̂n+1 = −tA φ1
(
V
)
q̂n + φ0

(
V
)
p̂n +t

s∑
i=1

bi(V )
(
f (Q̃ni )− f (Qni)

)
.

(11.28)

Because the operator A is approximated by a symmetric and positive semi-definite
differentiation matrix A, there exist an orthogonal matrix P and a positive semi-
definite diagonal matrix Ω such that

A = PᵀΩ2P = √A2
,

where
√
A = PᵀΩP . Then similarly to the boundedness of the operator-argument

functions, we also have

‖φj (t2A)‖ =
√
λmax

(
φ2
j (t

2A)
)
� γj , j = 0, 1, 2, · · · . (11.29)

We next present the nonlinear stability of our approximation (11.10).
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Theorem 11.4 It is assumed that the nonlinear function f satisfies Assump-
tion 11.1 and the operator A is approximated by a symmetric and positive
semi-definite differentiation matrix A. If the time stepsize t satisfies 0 < t �√

1

2αLs
, then we have the following nonlinear stability results

‖q̂n‖ � exp
(
(1+ 4sγ̃ L)T

)(‖ϕ̃1‖ +
√
‖√Aϕ̃1‖2 + ‖ϕ̃2‖2

)
,

‖p̂n‖ � exp
(
(1+ 4sγ̃L)T

)(‖ϕ̃1‖ +
√
‖√Aϕ̃1‖2 + ‖ϕ̃2‖2

)
,

(11.30)

where γ̃ = max(α̃, β) which is independent of ‖V ‖, and α̃ is the uniform bound of
diag (t

√
Ab̄i(V ), bi(V )).

Proof First, it follows from the penultimate equality of (11.28) that

∥∥q̂n+1
∥∥ �

∥∥q̂n∥∥+t
∥∥p̂n∥∥+t2β

s∑
i=1

∥∥∥f (Q̃ni )− f (Qni)

∥∥∥ .
We then rewrite the last two equalities of (11.28) in the following compact form:

(√
Aq̂n+1

p̂n+1

)
=

(
φ0(V ) t

√
Aφ1(V )

−t√Aφ1(V ) φ0(V )

)(√
Aq̂n

p̂n

)

+t
s∑

i=1

(
t
√
Ab̄i(V )

bi(V )

)(
f (Q̃ni)− f (Qni)

f (Q̃ni)− f (Qni)

)
.

This leads to

√
‖√Aq̂n+1‖2 + ‖p̂n+1‖2 �

√
‖√Aq̂n‖2 + ‖p̂n‖2 +tα̃

s∑
i=1

∥∥∥f (Q̃ni)− f (Qni)

∥∥∥ ,
where α̃ is the uniform bound of diag (t

√
Ab̄i(V ), bi(V )). Then summing up the

above results gives

‖q̂n+1‖ +
√
‖√Aq̂n+1‖2 + ‖p̂n+1‖2

�‖q̂n‖ +
√
‖√Aq̂n‖2 + ‖p̂n‖2 +t‖p̂n‖ +t(1 +t)γ̃

s∑
i=1

∥∥∥f (Q̃ni)− f (Qni)

∥∥∥

�‖q̂n‖ +
√
‖√Aq̂n‖2 + ‖p̂n‖2 +t‖p̂n‖ +t(1 +t)γ̃ L

s∑
i=1

∥∥∥Q̃ni −Qni

∥∥∥ ,
(11.31)
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with γ̃ = max(α̃, β). Likewise, it follows from the first s equalities in (11.28) that

∥∥∥Q̃ni −Qni

∥∥∥ �‖q̂n‖ + cit‖p̂n‖ +t2
s∑

j=1

‖āij (V )‖
∥∥∥f (Q̃nj )− f (Qnj )

∥∥∥

�‖q̂n‖ + cit‖p̂n‖ +t2αL

s∑
j=1

∥∥∥Q̃nj −Qnj

∥∥∥ , i = 1, · · · , s.

(11.32)

Then, summing up the results of (11.32) for i from 1 to s, we have the following
result

s∑
i=1

∥∥∥Q̃ni −Qni

∥∥∥ �
s∑

i=1

(‖q̂n‖ + cit‖p̂n‖
)+t2αLs

s∑
j=1

∥∥∥Q̃nj −Qnj

∥∥∥ .

Since the time stepsize t satisfies t �
√

1

2αLs
, we obtain

s∑
i=1

∥∥∥Q̃ni −Qni

∥∥∥ � 2
s∑

i=1

(‖q̂n‖ + cit‖p̂n‖
)
. (11.33)

Inserting (11.33) into (11.31) leads to

‖q̂n+1‖ +
√
‖√Aq̂n+1‖2 + ‖p̂n+1‖2

�‖q̂n‖ +
√
‖√Aq̂n‖2 + ‖p̂n‖2 +t‖p̂n‖ + 2t(1+t)γ̃L

s∑
i=1

(‖q̂n‖ + cit‖p̂n‖
)

�‖q̂n‖ +
√
‖√Aq̂n‖2 + ‖p̂n‖2 + (t + 4tγ̃Ls)

(
‖q̂n‖ +

√
‖√Aq̂n‖2 + ‖p̂n‖2

)
.

An argument by induction arrives at the following result

‖q̂n+1‖ +
√
‖√Aq̂n+1‖2 + ‖p̂n+1‖2

�
(
1+t(1+ 4sγ̃ L)

)n(‖q̂0‖ +
√
‖√Aq̂0‖2 + ‖p̂0‖2

)

� exp
(
T (1+ 4sγ̃ L)

)(‖ϕ̃1‖ +
√
‖√Aϕ̃1‖2 + ‖ϕ̃2‖2

)
,

which shows the conclusions of the theorem. ��
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Remark 11.7 Here, it is very important to note that, for classical symplectic RKN
methods, the bound of the nonlinear analysis will depend on ‖A‖, whereas the
result of the time integrators presented in this chapter is independent of ‖A‖. The
same situation also happens in the analysis of convergence presented in the next
section. This point is crucial, in particular, when ‖A‖ is very large, since as the
mesh partition in the space discretisation increases, ‖A‖ will increase. The reason
for this difference is that the time integrators are derived based on the operator-
variation-of-constants-formula (11.8). Moreover, it should be pointed out that the
formula (11.8) solves the linear system utt − a2u = 0 exactly. The corresponding
semidiscrete system inherits an analogous property.

11.5 Convergence

The convergence analysis of fully discrete schemes is a very important issue. This
section pays attention to the convergence analysis of the fully discrete symplectic
approximation. Under suitable assumptions of smoothness and spatial discretisation
strategies, the abstract Hamiltonian system (11.7) can be discretised as follows:

{
Q′(t) = P(t), Q(t0) = ϕ1(x),

P ′(t) = −AQ(t)+ f (Q(t)) + δ̂(x), P (t0) = ϕ2(x),
(11.34)

where A is a symmetric positive semi-definite differentiation matrix,

Q(t) = (
u(x1, t), u(x2, t), · · · , u(xM, t)

)ᵀ
, ϕl(x) =

(
ϕl(x1), ϕl(x2), · · · , ϕl(xM)

)ᵀ
for l = 1, 2, and δ̂(x) is the truncation error introduced by approximating the
spatial differential operator A by a symmetric positive semi-definite matrix A.

We insert the exact solution of (11.34) into the numerical approximation (11.10)
and obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(tn + cit) = φ0
(
c2
i V

)
Q(tn)+ citφ1

(
c2
i V

)
P(tn)

+t2
s∑

j=1

āij (V )f (U(tn + cjt))+ ̂ni, i = 1, 2, · · · , s,

Q(tn+1) = φ0
(
V
)
Q(tn)+tφ1

(
V
)
P(tn)+t2

s∑
i=1

b̄i (V )f (U(tn + cit))+ δ̂n+1,

P (tn+1) = −tAφ1
(
V
)
Q(tn)+ φ0

(
V
)
P(tn)+t

s∑
i=1

bi(V )f (U(tn + cit))+ δ̂′n+1,

(11.35)
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where Δ̂ni , δ̂n+1 and δ̂′n+1 are the discrepancies. With the conditions of Theo-
rem 11.3, a similar analysis to that described in Sect. 11.3.3 leads to the following
bounds for these discrepancies

∥∥∥Δ̂ni

∥∥∥ � C1t
r +t2

∥∥∥∥
∫ 1

0
(1− z)φ1

(
(1− z)2c2

i V
)
δ̂(x)dz

∥∥∥∥ ,
∥∥∥δ̂n+1

∥∥∥ � C2t
r+1 +t2

∥∥∥∥
∫ 1

0
(1− z)φ1

(
(1− z)2V

)
δ̂(x)dz

∥∥∥∥ ,
∥∥∥δ̂′n+1

∥∥∥ � C3t
r+1 +t

∥∥∥∥
∫ 1

0
φ0

(
(1− z)2V

)
δ̂(x)dz

∥∥∥∥ .
This further implies that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖Δ̂ni‖ �C1t
r + 1

2
t2‖δ̂(x)‖,

‖δ̂n+1‖ �C2t
r+1 + 1

2
t2‖δ̂(x)‖,

‖δ̂′n+1‖ �C3t
r+1 +t‖δ̂(x)‖.

(11.36)

We apply the numerical approximation (11.10)–(11.34) and ignore δ̂(x), and then
obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qni = φ0
(
c2
i V

)
Qn + citφ1

(
c2
i V

)
Pn +t2

s∑
j=1

āij (V )f (Qnj ), i = 1, 2, · · · , s,

Qn+1 = φ0
(
V
)
Qn +tφ1

(
V
)
Pn +t2

s∑
i=1

b̄i (V )f (Qni),

Pn+1 = −tAφ1
(
V
)
Qn + φ0

(
V
)
Pn +t

s∑
i=1

bi(V )f (Qni).

(11.37)

We are now in a position to present the convergence result for the fully discrete
scheme (11.37).

Theorem 11.5 Under Assumption 11.1 and the conditions of Theorem 11.3, it is
assumed that u(x, t) satisfies some suitable assumptions on smoothness. If the time
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stepsize t satisfies t �
√

1

2αLs
, then there exists a constant C such that

{ ‖Q(tn)−Qn‖ � CT exp
(
(1+ 4sγ̃ L)T

)(
tr + ‖δ̂(x)‖),

‖P(tn)− Pn‖ � CT exp
(
(1+ 4sγ̃ L)T

)(
tr + ‖δ̂(x)‖), (11.38)

where γ̃ is given in Theorem 11.4 and C is a constant independent of n,t andx.

Proof Let eQn = Q(tn) −Qn, e
P
n = P(tn) − Pn and E

Q
ni = Q(tn + cit) − Qni .

Subtracting (11.37) from (11.35) yields the system of error equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
Q
ni =φ0(c

2
i V )e

Q
n + citφ1(c

2
i V )e

P
n

+t2
s∑

j=1

āij (V )
(
f
(
Q(tn + cit)

)− f (Qni)
)
+ ̂ni,

e
Q
n+1 =φ0(V )e

Q
n +tφ1(V )e

P
n

+t2
s∑

i=1

b̄i(V )
(
f
(
Q(tn + cit)

)− f (Qni)
)
+ δ̂n+1,

ePn+1 =−tAφ1(V )e
Q
n + φ0(V )e

P
n

+t

s∑
i=1

bi(V )
(
f
(
Q(tn + cit)

)− f (Qni)
)
+ δ̂′n+1,

(11.39)

with the initial conditions eQ0 = 0, eP0 = 0. We rewrite the last two equalities of
(11.39) as follows

(√
Ae

Q
n+1

ePn+1

)
=

(
φ0(V ) t

√
Aφ1(V )

−t√Aφ1(V ) φ0(V )

)(√
Ae

Q
n

ePn

)

+t
s∑

i=1

(
t
√
Ab̄i(V )

bi(V )

)(
f
(
Q(tn + cit)

)− f (Qni)

f
(
Q(tn + cit)

)− f (Qni)

)
+

(√
Aδ̂n+1

δ̂′n+1

)
.

This results in√
‖√AeQn+1‖2 + ‖ePn+1‖2 �

√
‖√AeQn ‖2 + ‖ePn ‖2

+tα̃

s∑
i=1

∥∥f (Q(tn + cit)
)− f (Qni)

∥∥+√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2.
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It follows from the second equality of (11.39) that

∥∥∥eQn+1

∥∥∥ �
∥∥∥eQn ∥∥∥+t

∥∥∥ePn ∥∥∥+t2β

s∑
i=1

∥∥f (Q(tn + cit)
)− f (Qni)

∥∥+ ∥∥∥δ̂n+1

∥∥∥ .
We then have

∥∥∥eQn+1

∥∥∥+√
‖√AeQn+1‖2 + ‖ePn+1‖2 �

∥∥∥eQn ∥∥∥+t

∥∥∥ePn ∥∥∥+
√
‖√AeQn ‖2 + ‖ePn ‖2

+t(1+t)γ̃ L

s∑
i=1

‖EQ
ni‖ + ‖δ̂n+1‖ +

√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2.

(11.40)

On the other hand, it follows from the first s equalities of (11.39) that

‖EQ
ni‖ � ‖eQn ‖ + cit‖ePn ‖ +t2αL

s∑
i=1

‖EQ
ni‖ + ‖̂ni‖, i = 1, 2, · · · , s.

(11.41)

Summing up the results of (11.41) for i from 1 to s, we thus obtain

s∑
i=1

‖EQ
ni‖ �

s∑
i=1

(‖eQn ‖ + cit‖ePn ‖ + ‖̂ni‖)+t2αLs

s∑
j=1

‖EQ
nj‖.

As t �
√

1

2αLs
, we have

s∑
i=1

‖EQ
ni‖ � 2

s∑
i=1

(‖eQn ‖ + cit‖ePn ‖)+ 2
s∑

i=1

‖̂ni‖. (11.42)

Inserting (11.42) into (11.40) yields

∥∥∥eQn+1

∥∥∥+√
‖√AeQ

n+1‖2 + ‖eP
n+1‖2

�
∥∥∥eQn ∥∥∥+t

∥∥∥ePn ∥∥∥+√
‖√AeQn ‖2 + ‖ePn ‖2 + 2t(1+t)γ̃L

s∑
i=1

(‖eQn ‖ + cit‖ePn ‖)

+ ‖δ̂n+1‖ +
√
‖√Aδ̂n+1‖2 + ‖δ̂′

n+1‖2 + 2t(1+t)γ̃L

s∑
i=1

‖̂ni‖,
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and this gives

∥∥∥eQn+1

∥∥∥+√
‖√AeQn+1‖2 + ‖ePn+1‖2 �

(
1+t(1+ 4sγ̃ L)

)( ∥∥∥eQn ∥∥∥+√
‖√AeQn ‖2 + ‖ePn ‖2

)

+ ‖δ̂n+1‖ +
√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2 + 2t(1+t)γ̃L

s∑
i=1

‖̂ni‖.
(11.43)

On noting the truncation errors (11.36), there exists a constant C satisfying

‖δ̂n+1‖+
√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2+2t(1+t)γ̃L

s∑
i=1

‖̂ni‖ � Ct
(
tr+‖δ̂(x)‖).

We then apply the Gronwall’s inequality (see, e.g. [48]) to (11.43) and obtain

∥∥∥eQn+1

∥∥∥+√
‖√AeQn+1‖2 + ‖ePn+1‖2 � exp

(
nt (1+ 4sγ̃ L)

)(‖eQ0 ‖ +
√
‖√AeQ0 ‖2 + ‖eP0 ‖2

+ Cnt
(
tr + ‖δ̂(x)‖)).

This confirms (11.38) and the proof of this theorem is complete. ��

11.6 Symplectic Extended RKN-Type Approximation
Schemes

In what follows, we will construct practical one-stage and two-stage symplectic
approximation schemes. The multi-stage symplectic approximation schemes can be
obtained in a similar way.

11.6.1 One-Stage Symplectic Approximation Schemes

It follows from Theorem 11.3 that a one-stage symplectic approximation scheme is
of order two if the following conditions:

⎧⎪⎪⎨
⎪⎪⎩
b1(V ) = φ1(V )+O(t2),

b1(V )c1 = φ2(V )+ O(t),

b̄1(V ) = φ2(V )+O(t),

(11.44)
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are satisfied. These equations determine the parameters c1, d1. Substituting the
coefficients (11.18) of one-stage approximation into (11.44) yields

d1 = 1, c1 = 1

2
.

This gives a family of one-stage symplectic approximation schemes of order two
with arbitrary ā11(V ) and the following additional coefficients

c1 = 1

2
, b1(V ) = φ0(V /4), b̄1(V ) = φ1(V /4)/2.

Case One Let ā11(V ) = 0. We then obtain a one-stage explicit symplectic
approximation scheme of order two, which is termed ESA1s2.

Case Two We consider a third-order order condition

ā11(V ) = c2
1φ2(c

2
1V )+ O(t),

and then choose ā11(V ) = c2
1φ2(c

2
1V ). This results in a one-stage implicit

symplectic approximation scheme of order two. This scheme is termed ISA1s2.

11.6.2 Two-Stage Symplectic Approximation Schemes

We next turn to two-stage symplectic approximation schemes.

Case One We first consider two-stage symplectic approximation schemes of order
three. It follows from Theorem 11.3 that a two-stage symplectic approximation
scheme is of order three if the following conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1(V )+ b2(V ) = φ1(V )+O(t3),

b1(V )c1 + b2(V )c2 = φ2(V )+O(t2),

b1(V )c
2
1 + b2(V )c

2
2 = 2φ3(V )+O(t),

b̄1(V )+ b̄2(V ) = φ2(V )+O(t2),

b̄1(V )c1 + b̄2(V )c2 = φ3(V )+O(t),

ā11(V )+ ā12(V ) = c2
1φ2(c

2
1V )+O(t),

ā21(V )+ ā22(V ) = c2
2φ2(c

2
2V )+O(t),

(11.45)
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are satisfied. We substitute the coefficients b1(V ), b2(V ), b̄1(V ), b̄2(V ) of (11.18)
into the first four equations of (11.45). This leads to

c2 = 2− 3c1

3− 6c1
, d1 = 1− 2c2

2(c1 − c2)
, d2 = −1+ 2c1

2(c1 − c2)
.

We here consider diagonally implicit schemes. This gives

ā12(V ) = 0.

We solve the last equation of (11.18) as well as the last two equations of (11.45) and
obtain

ā21(V ) = 1

d2

(
b2(V )b̄1(V )− b̄2(V )b1(V )

)
,

ā11(V ) = c2
1φ2(c

2
1V ),

ā22(V ) = c2
2φ2(c

2
2V )− ā21(V ).

The choice of c1 = 3−√3

6
provides a two-stage diagonally implicit symplectic

approximation scheme of order three. This scheme is termed DISA2s3.

Case Two We then consider two-stage symplectic approximation schemes of order
four. It follows from Theorem 11.3 that the fourth-order conditions for a two-stage
approximation scheme are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1(V )+ b2(V ) = φ1(V )+O(t4),

b1(V )c1 + b2(V )c2 = φ2(V )+O(t3),

b1(V )c
2
1 + b2(V )c

2
2 = 2φ3(V )+ O(t2),

b1(V )c
3
1 + b2(V )c

2
3 = 6φ4(V )+ O(t),

b̄1(V )+ b̄2(V ) = φ2(V )+O(t3),

b̄1(V )c1 + b̄2(V )c2 = φ3(V )+O(t2),

b̄1(V )c
2
1 + b̄2(V )c

2
2 = 2φ4(V )+ O(t),

ā11(V )+ ā12(V ) = c2
1φ2(c

2
1V )+O(t2),

ā21(V )+ ā22(V ) = c2
2φ2(c

2
2V )+O(t2),

ā11(V )c1 + ā12(V )c2 = c3
1φ3(c

2
1V )+O(t),

ā21(V )c1 + ā22(V )c2 = c3
2φ3(c

2
2V )+O(t).

(11.46)
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Using the last equation of (11.18) as well as the following equations deduced from
(11.46)

ā11(V )+ ā12(V ) = c2
1φ2(c

2
1V ),

ā21(V )+ ā22(V ) = c2
2φ2(c

2
2V ),

ā11(V )c1 + ā12(V )c2 = c3
1φ3(c

2
1V ),

we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ā11(V ) =
c2

1

(
c1φ3(c

2
1V )− c2φ2(c

2
1V )

)
c1 − c2

,

ā12(V ) =
c3

1

(
φ2(c

2
1V )− φ3(c

2
1V )

)
c1 − c2

,

ā21(V ) =
(c1 − c2)(b2(V )b̄1(V )− b1(V )b̄2(V ))+ c3

1d1φ2(c
2
1V )− c3

1d1φ3(c
2
1V )

d2(c1 − c2)
,

ā22(V ) = c2
2φ2(c

2
2V )− ā21(V ).

(11.47)

We substitute the coefficients b1(V ), b2(V ), b̄1(V ), b̄2(V ) of (11.18) into the first
four equations of (11.45), and obtain

c1 = 3−√3

6
, c2 = 3+√3

6
, d1 = 1− 2c2

2(c1 − c2)
, d2 = −1+ 2c1

2(c1 − c2)
.

This yields a two-stage symplectic approximation scheme. It can be verified that this
scheme satisfies all the fourth-order conditions, and this scheme is termed ISA2s4.

Remark 11.8 Consider explicit two-stage extended RKN-type methods. If we
choose

c1 = 0, c2 = 1, b1(V ) = 1

2
φ0(V ), b2(V ) = 1

2
I,

b̄1(V ) = 1

2
φ1(V ), b̄2(V ) = 0, ā21(V ) = 1

2
φ1(V ),

it can be verified that these coefficients satisfy the symplectic conditions (11.18)

with d1 = d2 = 1

2
. We here point out that this explicit symplectic extended RKN-

type method reduces to the Deuflhard method which was first given in [49].
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11.7 Numerical Experiments

Our sole goal in this section is to demonstrate the efficiency of the symplectic
approximation schemes for the semilinear KG equation (11.1)–(11.2). We will use a
collection of classical finite difference and the method-of-lines approximations for
comparison. These schemes are described as follows.

1. The Standard Finite Difference Schemes (see, e.g. [5])

We first consider the following three frequently used finite difference schemes to
discretise the equation (11.1)–(11.2):

• Explicit finite difference (EFD) scheme

δ2
t u

n
j − a2δ2

xu
n
j = f (unj );

• Semi-implicit finite difference (SIFD) scheme

δ2
t u

n
j −

a2

2

(
δ2
xu

n+1
j + δ2

xu
n−1
j

)
= f (unj );

• Compact finite difference (CFD) scheme

(
I + x2

12
δ2
x

)
δ2
t u

n
j −

a2

2

(
δ2
xu

n+1
j + δ2

xu
n−1
j

)
=

(
I + x2

12
δ2
x

)
f (unj ).

Here unj is the approximation of u(xj , tn) for j = 0, 1, · · · ,M and n =
0, 1, · · · , N , and

δ2
t u

n
j =

un+1
j − 2unj + un−1

j

t2
and δ2

xu
n
j =

unj+1 − 2unj + unj−1

x2 .

2. The Method-of-lines Schemes

As is known, a very popular approach to the approximation of (11.1) is the
method-of-lines, where the discretisation is carried out in two distinct steps: the
first is to approximate the space derivatives leaving a Hamiltonian ODEs in time;
the second is to solve the Hamiltonian ODEs by an appropriate numerical method.
There exist many different ways to approximate A in the literature. We here
consider the following two types of spatial discretisation.
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(I) Symmetric finite difference (SFD) (see, e.g. [50])

The operator A is approximated by the following 9-diagonal differentiation matrix:

Asfd= −a
2

x2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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8

5
8

5

−1

5

8

315

−1

560

−1

560

8

315

−1

5

8

5

−205

72

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
M×M

.

The accuracy of this approximation for the space derivative is of order eight
with an accuracy of O(x8), and the differentiation matrix Asfd is a positive semi-
definite matrix.

(II) Fourier spectral collocation (FSC) (see, e.g. [51, 52])

The operator A is approximated by the second-order Fourier-spectral-
collocation differentiation matrix Afsc, and the entries of the Afsc = (akj )M×M
are

akj =

⎧⎪⎪⎨
⎪⎪⎩
(−1)k+j

2
sin−2

(
(k − j)π

M

)
, k 
= j,

M2

12
+ 1

6
, k = j.

(11.48)

According to classical concepts, the spatial discretisation is of infinite order, and
Afsc is also a positive semi-definite matrix.

The time solvers chosen for comparisons are listed below:

• SVF: the classical Störmer-Verlet formula;
• GM1s2: the Gautschi’s method of order two given in [53];
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• ESA1s2: the one-stage explicit symplectic approximation scheme of order two
derived in this chapter;

• ISA1s2: the one-stage implicit symplectic approximation scheme of order two
proposed in this chapter;

• DISRK2s3: the two-stage diagonally implicit symplectic Runge–Kutta method
of order three discussed in [37];

• ISRKN2s4: the two-stage implicit symplectic Runge–Kutta–Nyström method of
order four considered in [54];

• DISA2s3: the two-stage diagonally implicit symplectic approximation scheme of
order three presented in this chapter;

• ISA2s4: the two-stage implicit symplectic approximation scheme of order four
derived in this chapter.

Since some of the above methods are implicit, iterative solutions are needed, and
we use a fixed-point iteration in the practical computations. For the implementations
of numerical experiments, we set 10−15 as the error tolerance and 10 as the
maximum number of iterations.

It is noted that throughout the numerical experiments, the efficiency curves are
plotted showing the global error versus the computational cost measured by the
number of function evaluations required by each scheme, both in logarithmic scale.

Problem 11.1 Consider the semilinear KG equation (see, e.g. [7, 19])

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂t2
− a2 ∂

2u

∂x2
= bu3 − au, −20 � x � 20, 0 � t � T, u(−20, t) = u(20, t),

u(x, 0) =
√

2a

b
sech(λx), ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx)

with λ =
√

a

a2 − c2 and a, b, a2 − c2 > 0. The exact solution is given by

u(x, t) =
√

2a

b
sech(λ(x − ct)).

Following [19], we consider the parameters a = 0.3, b = 1 and c = 0.25.

We first solve this equation by using the symplectic approximation schemes
ESA1s2, ISA1s2, DISA2s3, ISA2s4 coupled with the eighth-order symmetric finite
difference method and the Fourier spectral collocation method. We choose M =
500, T = 10, t = 0.01 and show the results in Figs. 11.1 and 11.2. It can be
observed from the numerical results that the Fourier spectral collocation method to
discretise the spatial variable is much better than the eighth-order finite difference
method. Hence, we employ the Fourier spectral collocation method for all the spatial
approximations.

We then compare our symplectic approximation schemes with the classical finite
difference schemes. The problem is integrated with T = 10, t = 0.1/2j for
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Fig. 11.1 Results for Problem 11.1: The errors produced by blending methods with the eighth-
order SFD and FSC spatial discretisations

j = 0, 1, 2, 3. We set M = 1000 for the finite difference schemes EFD, SIFD,
CFD and M = 500 for the symplectic approximation schemes ESA1s2, ISA1s2,
DISA2s3, ISA2s4 coupled with the Fourier spectral collocation method. The global
errors with N = T/t are presented in Fig. 11.3a.

Finally, in comparison with the method-of-lines schemes, we discretise the
spatial derivative by the Fourier spectral collocation method with M = 500, and
then integrate the semidiscrete system with t = 0.2/2j for j = 0, 1, 2, 3 by
different time-stepping methods. The efficiency curves are shown in Fig. 11.3b. It
is remarked that after approximating the operator A by a positive semi-definite
differentiation matrix A, there also exists a corresponding energy conservation law.
Hence, we will test the effectiveness of our symplectic approximation schemes to
preserve the semidiscrete energy. The energy conservation errors of Problem 11.1
are shown in Fig.11.3c with M = 200, t = 0.01 and T = 20 × 2j for
j = 0, 1, 2, 3. These results indicate that our symplectic approximation schemes
are most accurate in preserving discrete energy among these underlying numerical
methods.
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Fig. 11.2 Results for Problem 11.1: the errors produced by blending methods with the eighth-
order SFD and FSC spatial discretisations

Fig. 11.3 Results for Problem 11.1: efficiency curves and energy errors
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Problem 11.2 Consider the following sine-Gordon equation with periodic bound-
ary conditions

⎧⎪⎨
⎪⎩
∂2u

∂t2
= ∂2u

∂x2 − sin u, −20 � x � 20, 0 � t � T , u(−20, t) = u(20, t),

u(x, 0) = 0, ut (x, 0) = 4sech
(
x/
√

1+ c2
)
/
√

1+ c2,

where κ = 1/
√

1+ c2. The exact solution of this problem reads

u(x, t) = 4 arctan
(
c−1 sin(ct/

√
1+ c2)sech(x/

√
1+ c2)

)
and we choose c = 0.5.

We first solve this equation by using the symplectic approximation schemes
coupled with the eighth-order symmetric finite difference method and the Fourier
spectral collocation method. We set M = 200, T = 100, t = 0.01, and Figs. 11.4
and 11.5 show the results for the errors. It follows from the results that the Fourier
spectral collocation method to discretise the spatial variable is much better than the

Fig. 11.4 Results for Problem 11.2: The errors produced by blending methods with the eighth-
order SFD and FSC spatial discretisations
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Fig. 11.5 Results for Problem 11.2: The errors produced by blending methods with the eighth-
order SFD and FSC spatial discretisations

eighth-order finite difference method. Consequently, we choose the Fourier spectral
collocation method for this problem.

We then integrate the problem with T = 100, t = 0.1/2j for j = 1, 2, 3, 4
in order to compare the symplectic approximation schemes with the classical finite
difference schemes. We choose M = 1000 for the finite difference schemes EFD,
SIFD, CFD and M = 500 for the symplectic approximation schemes coupled
with the Fourier spectral collocation method. The global errors are presented in
Fig. 11.6a.

We finally compare the symplectic approximation schemes with the method-
of-lines schemes. In order to show the long-time performance of symplectic
approximation methods, we discretise the spatial derivative by the Fourier spectral
collocation method with M = 200, and then integrate the semidiscrete system on
[0, 1000] with different t = 0.1/2j for j = 0, 1, 2, 3. The efficiency curves
are shown in Fig. 11.6b. The errors of the semidiscrete energy conservation with
M = 200, t = 0.1 and T = 10j for j = 1, 2, 3, 4 are presented in Fig. 11.6c.
With regard to the long-time analysis of symplectic extended RKN-type methods
for PDEs via modulated Fourier expansions, we refer the readers to [55].

Again these results indicate that the symplectic approximation schemes are most
efficient among these underlying numerical methods.



384 11 Symplectic Approximations for Efficiently Solving Semilinear KG Equations

Fig. 11.6 Results for Problem 11.2: Efficiency curves and energy errors

Problem 11.3 Consider the dimensionless relativistic KG equation with a dimen-
sionless parameter ε > 0 (see, e.g. [5, 56])

⎧⎪⎪⎨
⎪⎪⎩
ε2 ∂

2u

∂t2
− ∂2u

∂x2
+ 1

ε2
u+ f (u) = 0, −L � x � L, 0 � t � T, u(−L, t) = u(L, t),

u(x, 0) = φ(x), ut (x, 0) = 1

ε2
γ (x).

Following [5], we here choose

f (u) = λup+1, φ(x) = 2

exp(x2)+ exp(−x2)
, γ (x) = 0.

The solution of Problem 11.3 is highly oscillating in time. The symplectic approx-
imation schemes will be compared with the method-of-lines schemes. We first
discretise the spatial derivative by the Fourier spectral collocation method with
M = 200, and then solve the semidiscrete system with L = 8 and T = 10.
We choose t = 0.04/2j for j = 0, 1, 2, 3 when the parameter ε = 0.2,
and for j = 3, 4, 5, 6 when the parameter ε = 0.1. Fig. 11.7a,b presents the
coresponding efficiency curves. The errors of the semidiscrete energy conservation
with t = 0.001 and T = 10j for j = 0, 1, 2, 3 are displayed in Fig. 11.7c,d.
Clearly, it can be observed from Fig. 11.7 that the numerical behaviour of our
symplectic approximation schemes is much better than that of the others.

It is noted that the symplectic approximation schemes can be extended to solving
high-dimensional KG equations (see, e.g. [4]). As an illustrative example, we
next consider a two-dimensional sine-Gordon equation to demonstrate that the
symplectic approximation schemes also exhibit very good performance for two-
dimensional KG equations.
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Fig. 11.7 Results for Problem 11.3: Efficiency curves and energy errors

Problem 11.4 Consider the following two-dimensional sine-Gordon equation (see,
e.g. [57, 58]):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − (uxx + uyy) = − sinu, −10 � x � 10, −10 � y � 10, 0 � t � T,

u(±10, y, t) = u(x,±10, t) = 0,

u(x, y, 0) = 4 arctan

(
exp

(
4−

√
(x + 3)2 + (y + 3)2

0.436

))
, −10 � x, y � 10,

ut (x, y, 0) = 4.13

cosh
(

exp
((

4−
√
(x + 3)2 + (y + 3)2

)
/0.436

)) , −10 � x, y � 10.

We first integrate this problem over the region (x, y) ∈ [−30, 10] × [−30, 10]
by the symplectic approximation schemes ESA1s2, ISA2s4 and the RKN method
ISRKN2s4. The size of mesh region is 800 × 800 in space with the time stepsize
t = 0.1. The numerical results are shown in Figs. 11.8 and 11.9 in terms of
sin(u/2) at the time points t = 3, 6, 9. We then solve the problem over [0, 2] with
the stepsizes t = 0.2/2j for j = 0, 1, 2, 3. The log-log plots of global errors
against N and the CPU time are shown in Fig. 11.10.

The numerical results clearly indicate that our symplectic approximation
schemes are really very promising as compared with the well-known numerical
schemes in the literature.
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Fig. 11.8 Results for Problem 11.4: Collision of four ring solitons

11.8 Concluding Remarks

It is known that the first significant area where the idea of geometric integration
was introduced was in the symplectic integration of Hamiltonian ODEs. However,
the study of symplectic methods for Hamiltonian PDEs is far less developed than
that for ODEs in the geometric integration literature, although multi-symplectic
schemes for a class of PDEs with multi-symplectic structure have been considered
(see, e.g. [1–3]). In particular, the important analysis issues, such as nonlinear
stability and convergence, are still far from being satisfactory for multi-symplectic
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Fig. 11.9 Results for Problem 11.4: Collision of four ring solitons

methods. It is very important to note that the nonlinear stability and convergence
for a fully discrete symplectic scheme are essential for the numerical simulation
of nonlinear Hamiltonian PDEs. In Chap. 9, we presented the energy-preserving
schemes for high-dimensional semilinear KG equations (see also [59]). As is known,
the KG equation with nonlinear potential occurs in a wide range of application areas
in science and engineering, and its computation and analysis represent a major
challenge. In this chapter, we analysed an efficient symplectic approximation for
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Fig. 11.10 Results for Problem 11.4: The log-log plots of global errors against N and the CPU
time

the numerical simulation of the semilinear KG equations. The approximation is
based on the operator-variation-of-constants formula of the abstract Hamiltonian
(11.7) in the spirit of geometric integration. We showed the symplectic conditions
for the fully discrete scheme, and the error bounds of the extended RKN-type time-
stepping approximation for solving the nonlinear Hamiltonian system (11.7). The
nonlinear stability and the convergence for the fully discrete scheme were analysed
in detail. Numerical experiments, including KG equations in the nonrelativistic
limit regime, where the solution is highly oscillatory in time, were compared with
existing numerical schemes in the literature. Both the analytical and numerical
results show that the symplectic approximation respects qualitative features, can
capture singularity efficiently and preserve the discrete energy conservation law
satisfactorily.

Last but not least, it is important to note that this chapter presented a nonlinear
stability and convergence analysis for the symplectic approximation to the semi-
linear KG equations, and all essential features of the symplectic approximation
were considered and analysed in the one-dimensional case, although the proposed
approximation lends itself equally well to high-dimensional semilinear KG equa-
tions, as shown by the last numerical experiment in this chapter. It is believed that the
methodology presented in this chapter can be extended to a range of other nonlinear
Hamiltonian wave equations.

The material in this chapter is based on the recent work by Wang and Wu [60].
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Chapter 12
Continuous-Stage Leap-Frog Schemes for
Semilinear Hamiltonian Wave Equations

The standard leap-frog scheme is a well-known time integration scheme for
some nonlinear partial differential equations due to its simplicity and its ease
of implementation. The main aim of this chapter is to present continuous-stage
modified leap-frog schemes for high-dimensional semilinear Hamiltonian wave
equations. We begin with the formulation of the wave equation as an abstract
second-order ordinary differential equation (ODE) and its operator-variation-of-
constants formula. Then a continuous-stage modified leap-frog scheme is formu-
lated, and its convergence, energy preservation, symplectic conservation, and long-
time behaviour are rigorously analysed. The theory is accompanied by numerical
results to demonstrate the remarkable advantage and efficiency of the modified leap-
frog schemes in comparison with popular numerical schemes in the literature.

12.1 Introduction

Hamiltonian wave equations have many important applications in mathematical
physics. Such problems occur frequently in acoustics, solid state physics, fluid
dynamics, plasma physics, electromagnetics, nonlinear optics and quantum field
theory (see, e.g. [1]). Hamiltonian wave equations have been identified in a variety
of nonlinear partial differential equations (PDEs) such as the sine-Gordon (SG)
equation, the Klein–Gordon (KG) equation, and the Korteweg de Vries equation.
The efficient and accurate numerical solution of nonlinear wave equations is of
fundamental importance and has received much attention in recent decades. Finite
element methods (see, e.g. [2–7]), trigonometric methods (see, e.g. [8, 9]), energy-
preserving methods (see, e.g. [10–14]), waveform relaxations (see, e.g. [15]),
symplectic methods (see, e.g. [16]), spectrally accurate space-time solutions (see,
e.g. [17]) and other methods (see, e.g. [18–22]) have been proposed and analysed.
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X. Wu, B. Wang, Geometric Integrators for Differential Equations with Highly
Oscillatory Solutions, https://doi.org/10.1007/978-981-16-0147-7_12

393

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0147-7_12&domain=pdf
https://doi.org/10.1007/978-981-16-0147-7_12


394 12 Continuous-Stage Leap-Frog Schemes for Semilinear Hamiltonian Wave. . .

Among typical time discretisation techniques for PDEs is the standard leap-frog
(LF) scheme, and it has been investigated in many publications (see, e.g. [23–27]).
As is known, LF discretisations of PDEs may result in unbounded solutions for
any choice of mesh-sizes even for choices satisfying conditions for linear stability
[26]. This algorithm, however, does not behave well for wave equations with some
space discretisations with a high degree of precision. In this chapter, we present
an improved version, which is termed the modified LF scheme. The modified LF
scheme makes it possible to preserve different structures of the underlying system.
As it is known that the energy conservation and symplecticity are two key features
of Hamiltonian systems, a numerical algorithm should respect them as much as
possible in the sprit of Geometric Numerical Integration. In this chapter, after
showing the convergence of the modified LF scheme, different modified LF versions
will be derived to preserve different geometric or physical properties such as energy
preservation, symplecticity and long-time numerical energy conservation of explicit
methods.

We next will present and analyse a modified LF scheme for the high-dimensional
semilinear Hamiltonian wave equation of the form

{
utt − a2u = f (u), 0 < t � T , x ∈ Ω,

u(x, 0) = ϕ1(x), ut (x, 0) = ϕ2(x), x ∈ Ω̄,
(12.1)

where u(x, t) denotes the wave displacement at time t and position x ∈ Ω with
Ω := (0,X1)× · · · × (0,Xd) ⊂ R

d, a is a real parameter,

 =
d∑

j=1

∂2

∂x2
j

,

and f (u) is the negative derivative of a smooth potential energy G(u) � 0 which
can be expressed as

f (u) = −G′(u).

It is assumed that Eq. (12.1) is supplemented with the following periodic boundary
conditions

u(x, t)|∂Ω∩{xj=0} = u(x, t)|∂Ω∩{xj=Xj }, j = 1, 2, · · · , d. (12.2)

Clearly, problem (12.1) is a Hamiltonian PDE of the form

{
ut = v,

vt = a2u+ f (u)
(12.3)
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with the Hamiltonian

H [u, v] = 1

2

∫
Ω

(
v2 + a2|∇u|2 + 2G(u)

)
dx, (12.4)

where dx = dx1dx2 · · · dxd.
In order to improve the standard LF scheme, numerical integrators having

continuous stages will be considered in this chapter. In the literature, continuous-
stage numerical methods have been proposed and studied for a long time, such
as continuous Runge–Kutta (RK) methods (see, e.g. [28–33]), continuous Runge–
Kutta–Nystörm (RKN) methods (see, e.g. [34–36]) and continuous-stage energy-
preserving methods (see, e.g. [37–45]). The idea of continuous-stage numerical
methods suggests an improved framework of classical Runge–Kutta-type methods.
In this chapter, we will make full use of the idea of continuous-stage methods and
exponential integrators (see, e.g. [46–48]) for the modification. We here remark
that compared with classical discontinuous-stage methods, the main advantage
of continuous-stage methods is that they can generate numerical methods having
different kinds of structure-preserving properties. For instance, it will be shown that
the continuous-stage method presented in this chapter can generate not only energy-
preserving methods but also symplectic methods. This is a significant advantage of
continuous-stage methods over discontinuous stage methods.

12.2 A Continuous-Stage Modified Leap-Frog Scheme

In this section, we commence by expressing the semilinear wave equation (12.1) as
the following abstract Hamiltonian system of ODEs on the Hilbert space L2(Ω):

{
q ′(t) = p(t), q(t0) = ϕ1(x),

p′(t) = −A q(t)+ f (q(t)), p(t0) = ϕ2(x),
(12.5)

where q(t) maps x to u(x, t): q(t) = [x �→ u(x, t)], A is a linear, unbounded
positive semi-definite operator defined by (see, e.g. [9])

(A v)(x) = −a2v(x), (12.6)

with domain

D(A ) = {u ∈ H 1(Ω) : u(x, t)|∂Ω∩{xj=0} = u(x, t)|∂Ω∩{xj=Xj },
∇u(x, t)|∂Ω∩{xj=0} = ∇u(x, t)|∂Ω∩{xj=Xj }, j = 1, 2, · · · , d}.

(12.7)
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It is obvious that the operator A defined by (12.6) is a positive semi-definite
operator, i.e.,

(
A u(x, t), u(x, t)

)
=

∫
Ω

A u(x, t) · u(x, t)dx = a2
∫
Ω

|∇u(x, t)|2dx � 0,

(12.8)

for all u(x, t) ∈ D(A ). Hence, the energy (12.4) can be expressed in the following
form:

H [u, v](t) ≡ 1

2

(
v(x, t), v(x, t)

)
+ 1

2

(
A u(x, t), u(x, t)

)
+

∫
Ω

G
(
u(x, t)

)
dx

=H [u, v](0).
(12.9)

It then follows from the operator-variation-of-constants formula (also termed the
Duhamel Principle) of (12.5) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(tn + τh) =φ0
(
τ 2V

)
q(tn)+ τhφ1

(
τ 2V

)
p(tn)

+ τ 2h2
∫ 1

0
(1− z)φ1

(
(1− z)2τ 2V

)
f
(
q(tn + τhz)

)
dz,

p(tn + τh) =− τhA φ1
(
τ 2V

)
q(tn)+ φ0

(
τ 2V

)
p(tn)

+ τh

∫ 1

0
φ0

(
(1− z)2τ 2V

)
f
(
q(tn + τhz)

)
dz,

(12.10)

for τ ∈ [0, 1], where h is a time stepsize, V = h2A and the operator-argument
functions φj are defined by

φj (A ) :=
∞∑
k=0

(−1)kA k

(2k + j)! : L
2(Ω)→ L2(Ω), j = 0, 1, 2, · · · . (12.11)

Using this definition, it can be easily verified that φ0(x) = cos(
√
x) and

φ1(x) = x−1/2 sin(
√
x). We remark that these operator-argument functions

have been researched for different boundary conditions in [9] and the following
propositions are needed in this chapter.

Proposition 12.1 (See [9]) As far as the inner product of the space L2(Ω): (p, q) =∫
Ω
p(x)q(x)dx, is concerned, all the operator-argument functions φj for j ∈ N are

symmetric operators and the norm of the function in L2(Ω) can be characterized by

‖q‖2 = (q, q) =
∫
Ω

|q(x)|2dx. (12.12)
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In particular, all the functions φj are bounded by ‖φj (tA )‖∗ � γj , j ∈ N, t � 0,
where ‖ · ‖∗ is the Sobolev norm and γj for j = 0, 1, · · · are the bounds of the
functions φj (x) with x � 0. Clearly, we have

‖φj (tA )‖∗ � 1, j = 0, 1, ‖φ2(tA )‖∗ � 1

2
.

Here, it is noted that the norm ‖ · ‖ used in this chapter is referred to the norm which
is defined by (12.12), and the Sobolev norm is given by

‖φj
(
tA

)‖∗ = sup
‖u‖
=0

‖φj
(
tA

)
u‖

‖u‖ .

As is known, the standard LF scheme for (12.5) can be written as the following
two-step formulation with time stepsize h

qn+1 − 2qn + qn−1

h2
= g(qn), (12.13)

where the function g(q) = −A q + f (q) and the approximation pn is given by

pn = qn+1 − qn−1

2h
.

In what follows, we present a modification for the standard LF scheme, which
is termed a continuous-stage modified LF scheme. It follows from the operator-
variation-of-constants formula (12.10) that the term qn+1 − 2qn + qn−1 can be

modified to qn+1 − 2φ0(V )qn + qn−1 and pn = qn+1 − qn−1

2h
can be changed

to φ1(V )pn = qn+1 − qn−1

2h
as well as one additional term. Moreover, we work

with f (qn) by the idea of continuous-stage methods. In such a way, we obtain the
modified version of the standard LF scheme as follows.

Algorithm 12.1 (A Continuous-Stage Modified LF Scheme) A continuous-stage
modified LF (CSMLF) scheme is defined by

qn+1 − 2φ0(V )qn + qn−1

h2
=

∫ 1

0
b̄τ (V )(f (Q+n,τ )+ f (Q−n,τ ))dτ, (12.14)

where b̄τ (V ) is the bounded operator-argument function of τ and V , and

Q±n,τ = Cτ (V )qn ± hDτ (V )pn + h2
∫ 1

0
Āτ,σ (V )f (Q±n,σ )dσ, 0 � τ � 1,

(12.15)
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with a bounded operator-argument function Āτ,σ (V ) depending on τ, σ and V . The
bounded operator-argument functions Cτ (V ) and Dτ (V ) are required to satisfy

Cci (V ) = φ0(c
2
i V ), Dci (V ) = ciφ1(c

2
i V ) for i = 0, · · · , s, (12.16)

where ci for i = 0, · · · , s are the fitting nodes, and it is assumed that 0 = c0 �
c1 < · · · � cs = 1. Accordingly, the approximation pn now becomes

φ1(V )pn = qn+1 − qn−1

2h
− h

2

∫ 1

0
b̄τ (V )(f (Q+n,τ )− f (Q−n,τ ))dτ. (12.17)

Starting Values In the light of the operator-variation-of-constants formula (12.10),
the starting values q1 and p1 are chosen as

q1 = φ0(V )q0 + hφ1(V )p0 + h2
∫ 1

0
b̄τ (V )f (Q+0,τ )dτ,

p1 = −hA φ1(V )q0 + φ0(V )p0 + h

∫ 1

0
bτ (V )f (Q+0,τ )dτ,

(12.18)

where bτ (V ) is a bounded operator-argument function of τ and V which will be
determined by symmetry conditions of a one-step map.

One-step Map (pn, qn) �→ (pn+1, qn+1) The continuous-stage modified LF
scheme with the starting values (12.18) can be written as symmetric one-step
map of a form that is motivated by the operator-variation-of-constants formula
(12.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q+n,τ = Cτ (V )qn + hDτ (V )pn + h2
∫ 1

0
Āτ,σ (V )f (Q+n,σ )dσ, 0 � τ � 1,

qn+1 = φ0(V )qn + hφ1(V )pn + h2
∫ 1

0
b̄τ (V )f (Q+n,τ )dτ,

pn+1 = −hA φ1(V )qn + φ0(V )pn + h

∫ 1

0
bτ (V )f (Q+n,τ )dτ.

(12.19)

Moreover, this one-step map is symmetric if and only if the following conditions are
satisfied

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1(V )bτ (V )− φ0(V )b̄τ (V ) = b̄1−τ (V ),

φ0(V )bτ (V )+ V φ1(V )b̄τ (V ) = b1−τ (V ),

Cτ (V )φ0(V )+ V Dτ (V )φ1(V ) = C1−τ (V ),

Cτ (V )φ1(V )−Dτ (V )φ0(V ) = D1−τ (V ),

Cτ (V )b̄1−σ (V )−Dτ (V )b1−σ (V )+ Āτ,σ (V ) = Ā1−τ,1−σ (V ),

(12.20)
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which are straightforwardly obtained by exchanging n+ 1 ↔ n and replacing h

by −h in (12.19). It is important to note that under these conditions, we obtain
Q−n+1,τ = Q−n,1−τ , which is used in the equivalence of two-step form and one-step
form.

Remark 12.2.1 The functions Āτ,σ (V ), b̄τ (V ), bτ (V ) are assumed to be uni-
formly bounded. In this chapter, we use α, β, γ respectively to express the
uniformly bounds of Āτ,σ (V ), b̄τ (V ), bτ (V ) under the norm ‖ · ‖L2(Ω)←L2(Ω).

Remark 12.2.2 It is important to note that the above continuous-stage modified LF
scheme solves the homogeneous linear wave equation utt − a2u = 0 exactly.
Moreover, if a = 0, this integrator reduces to the continuous-stage Runge–Kutta–
Nyström method which has been researched for ODEs in [35]. Very recently,
continuous-stage trigonometric integrators have also been studied in [49] for solving
second-order ODEs. However, that paper only discussed continuous-stage extended
Runge–Kutta–Nyström methods for ODEs and no explicit scheme was derived.
Moreover, convergence analysis, symplecticity-preservation and long term energy
conservation of explicit methods were not shown there. In this chapter, we not only
present the convergence, but also derive different kinds of modified LF schemes to
achieve different structure-preserving properties.

Generally, the operator A will be approximated by a differentiation matrix A on
an M-dimensional space. This process converts the underlying PDE into a set of
coupled ODEs in time, which may then be integrated.

Fully Discrete Scheme Using suitable spatial discretisation strategies such as the
Fourier spectral collocation, and under some suitable assumptions of smoothness,
the original continuous system (12.5) can be discretised as

{
Q′(t) = P(t), Q(t0) = ϕ1(x),

P ′(t) = −AQ(t)+ f (Q(t)) +'(x), P (t0) = ϕ2(x),
(12.21)

where A is a differentiation matrix, '(x) denotes the spatial discretisation error
('(x) satisfies '(xj )→ 0 as x → 0) introduced by approximating the spatial
differential operator A through the differentiation matrix A, and

Q(t) = (
u(x̃1, t)

ᵀ, u(x̃2, t)
ᵀ, · · · , u(x̃d, t)ᵀ

)ᵀ
,

ϕl(x) =
(
ϕl(x̃1)

ᵀ, ϕl(x̃2)
ᵀ, · · · , ϕl(x̃d)ᵀ

)ᵀ for l = 1, 2,

in which

u(x̃j , t) =
(
u(x̃j,0, t), u(x̃j,1, t), · · · , u(x̃j,M−1, t)

)ᵀ for j = 1, 2, · · · , d,
ϕl(x̃j ) =

(
ϕl(x̃j,0), ϕl(x̃j,1), · · · , ϕl(x̃j,M−1)

)ᵀ for l = 1, 2, j = 1, 2, · · · , d,
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andM is a positive integer which represents the number of interior discretised points
for each spatial variable. In one-dimensional case, i.e., d = 1, A is a positive semi-
definite differentiation matrix, and

Q(t) = (
u(x̃0, t), u(x̃1, t), · · · , u(x̃M−1, t)

)ᵀ
,

ϕl(x) =
(
ϕl(x̃0), ϕl(x̃1), · · · , ϕl(x̃M−1)

)ᵀ for l = 1, 2.

This approach leads to the following fully discrete continuous-stage modified LF
scheme corresponding to (12.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q+n,τ = Cτ (V )Qn + hDτ (V )Pn + h2
∫ 1

0
Āτ,σ (V )f (Q

+
n,σ )dσ,

Qn+1 = φ0(V )Qn + hφ1(V )Pn + h2
∫ 1

0
b̄τ (V )f (Q

+
n,τ )dτ,

Pn+1 = −hAφ1(V )Qn + φ0(V )Pn + h

∫ 1

0
bτ (V )f (Q

+
n,τ )dτ,

(12.22)

where V = h2A.

In what follows, the fully discrete continuous-stage modified LF scheme (12.22)
is termed fully discrete CSMLF scheme.

Remark 12.2.3 For the actual computation in applications, the operator A is
usually approximated by a symmetric positive semi-definite differentiation matrix
A because this is essential for structure preservation, and then the continuous-stage
modified LF scheme needs the computation of some matrix-valued functions. At
first sight it seems that this brings additional cost in comparison with the standard
LF scheme. However, it is important to note that all the matrix-valued functions
only need to be computed once, and when the matrix A is symmetric positive
semi-definite, they can be implemented by the functions sine and cosine acting on
diagonal matrices. Moreover, the nonlinearity for the modified LF scheme becomes
f (q) but for the standard LF scheme is g(q) = −A q + f (q). This difference
can reduce some of the cost of the modified LF scheme in the computation of the
nonlinearity. It can be observed from the numerical results shown in Sect. 12.7
that compared with the standard LF scheme, the modified LF scheme can be
implemented inexpensively and has competitive advantages such as accuracy and
long-time energy-preserving property.

12.3 Convergence

This section concerns the convergence of the fully discrete CSMLF scheme (12.22)
for the wave equation (12.5). We begin with the following hypothesis on the
nonlinearity f , which has been considered in many publications (see, e.g. [13, 46]).
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Assumption 12.1 It is assumed that the function f (u) = −G′(u) : D(A ) → R

is sufficiently often Fréchet differentiable in a strip along the exact solution and is
sufficiently smooth with respect to time. Moreover, let f (u) be locally Lipschitz-
continuous in a strip along the exact solution for the L2-norm, and we denote the
Lipschitz constant by K .

With the Assumption 12.1, we have following convergence theorem for the fully
discrete CSMLF integrator (12.22).

Theorem 12.1 (Convergence) Under the conditions of Assumption 12.1, if the

stepsize h satisfies h �
√

1

2αK
and the following order conditions are satisfied:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

0
bτ (V )

τ j

j ! dτ − φj+1(V ) = O(hr−j ), j = 0, 1, · · · , r − 1,

∫ 1

0
b̄τ (V )

τ j

j ! dτ − φj+2(V ) = O(hr−1−j ), j = 0, 1, · · · , r − 2,

∫ 1

0

∫ 1

0
āτ,σ (V )

σ j

j ! dτdσ −
∫ 1

0
τ j+2φj+2(τ

2V )dτ = O(hr−2−j ), j = 0, 1, · · · , r − 3,

(12.23)

where V = h2A, then we have the convergence of the fully discrete CSMLF scheme
(12.22):

{ ‖Q(tn)−Qn‖ � CT exp
(
(1+ 4γ̃ K)T

)(
hm + ‖'(x)‖),

‖P(tn)− Pn‖ � CT exp
(
(1+ 4γ̃K)T

)(
hm + ‖'(x)‖), (12.24)

where ‖ · ‖ denotes the L2-norm, '(x) is the spatial discretisation error defined
in (12.21), C is a constant independent of n, h and x, γ̃ = max(α̃, β) which is
independent of ‖V ‖, and α̃ is the uniform bound of diag (h

√
Ab̄τ (V ), bτ (V )). Here

m = min(r, s+1)with the positive integer s given in (12.16) and the positive integer
r determined by (12.23). In particular, if Cτ (V ) andDτ (V ) are chosen as

Cτ (V ) = φ0(τ
2V ), Dτ (V ) = τφ1(τ

2V ),

then m = r in the result.

Proof The proof is divided into two parts. The first part is concerned with local
errors and the second part presents global error bounds.
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(I) Bounds of Local Errors
Inserting the exact solution of (12.21) into the scheme (12.22), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(tn + τh) = Cτ (V )Q(tn)+ hDτ (V )P (tn)

+ h2
∫ 1

0
Āτ,σ (V )f (Q(tn + σh))dσ + ̂τ ,

Q(tn+1) = φ0
(
V
)
Q(tn)+ hφ1

(
V
)
P(tn)

+ h2
∫ 1

0
b̄τ (V )f (Q(tn + τh))dτ + δ̂n+1,

P (tn+1) = −hAφ1
(
V
)
Q(tn)+ φ0

(
V
)
P(tn)

+ h

∫ 1

0
bτ (V )f (Q(tn + τh))dτ + δ̂′n+1,

(12.25)

with the local errors Δ̂τ , δ̂n+1 and δ̂′n+1. These errors are bounded by

∥∥∥Δ̂τ

∥∥∥ � C1h
m + 1

2
h2‖'(x)‖,

∥∥∥δ̂n+1

∥∥∥ � C2h
r+1 + 1

2
h2‖'(x)‖,∥∥∥δ̂′n+1

∥∥∥ � C3h
r+1 + h‖'(x)‖,

(12.26)

where C1, C2, C3 are constants depending on the constants symbolised by O in
(12.23) and the bound of the remainder of Lagrange interpolation.

It follows from the matrix-variation-of-constants-formula of (12.21) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(tn + τh) =φ0
(
τ 2V

)
Q(tn)+ τhφ1

(
τ 2V

)
P(tn)

+ τ 2h2
∫ 1

0
(1− z)φ1

(
(1− z)2τ 2V

)
f
(
Q(tn + τhz)

)
dz

+ τ 2h2
∫ 1

0
(1− z)φ1

(
(1− z)2τ 2V

)
'(x)dz,

P (tn + τh) =− τhAφ1
(
τ 2V

)
Q(tn)+ φ0

(
τ 2V

)
P(tn)

+ τh

∫ 1

0
φ0

(
(1− z)2τ 2V

)
f
(
Q(tn + τhz)

)
dz

+ τh

∫ 1

0
φ0

(
(1− z)2τ 2V

)
'(x)dz.

(12.27)
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Comparing the first equality of (12.27) with the first one of (12.25) gives

Δ̂τ =
(
φ0

(
τ 2V

)− Cτ (V )
)
Q(tn)+

(
hτφ1

(
τ 2V

)− hDτ (V )
)
P(tn)

+ τ 2h2
∫ 1

0
(1− z)φ1

(
(1− z)2τ 2V

)
'(x)dz

+ τ 2h2
∫ 1

0
(1− σ)φ1

(
(1− σ)2τ 2V

)
f̂ (tn + στh)dσ

− h2
∫ 1

0
Āτ,σ (V )f̂ (tn + σh)dσ,

where f̂ (t) = f (Q(t)). It follows from the condition (12.16) and the results of
Lagrange interpolation that

φ0
(
τ 2V

)− Cτ (V ) = O(hs+1), hτφ1
(
τ 2V

)− hDτ (V ) = O(hs+1). (12.28)

Using the Taylor series expansion of f̂ at tn and the above results, we rewrite Δτ as

Δ̂τ =O(hs+1)+ τ 2h2
∫ 1

0
(1− z)φ1

(
(1− z)2τ 2V

)
'(x)dz

+ τ 2h2
∫ 1

0
(1− σ)φ1

(
(1− σ)2τ 2V

) r∑
j=0

(στh)j

j ! f̂ (j)(tn)dσ

− h2
∫ 1

0
Āτ,σ (V )

r∑
j=0

σjhj

j ! f̂ (j)(tn)dσ+O(hr+2)

=O(hs+1)+ τ 2h2
∫ 1

0
(1− z)φ1

(
(1− z)2τ 2V

)
'(x)dz

+
r∑

j=0

hj+2
[
τ j+2φj+2(τ

2V )−
∫ 1

0
Āτ,σ (V )

σ j

j ! dσ
]
f̂ (j)(tn)dσ+O(hr+2),

where f̂ (j)(t) denotes the j -th order derivative of f (Q(t)) with respect to t , and the
following result has been used here

∫ 1

0
(1− σ)φ1

(
(1− σ)2τ 2V

)σj

j ! dσ = φj+2(τ
2V )dσ.

In a similar way, we can obtain the results for δn+1 and δ′n+1. Under the
conditions (12.23), it is clear that the bounds given in (12.26) are true.
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(II) Global Error Bounds
We define that

eQn = Q(tn)−Qn, e
P
n = P(tn)− Pn, E

Q
τ = Q(tn + τh)−Q+n,τ .

Subtracting (12.22) from (12.25) leads to the error equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EQ
τ =φ0(τ

2V )eQn + τhφ1(τ
2V )ePn

+ h2
∫ 1

0
Āτ,σ (V )

(
f
(
Q(tn + σh)

) − f (Q+n,σ )
)

dσ + ̂τ +O(hs+1),

e
Q
n+1 =φ0(V )e

Q
n + hφ1(V )e

P
n

+ h2
∫ 1

0
b̄τ (V )

(
f
(
Q(tn + τh)

)− f (Q+n,τ )
)

dτ + δ̂n+1,

ePn+1 =− hAφ1(V )e
Q
n + φ0(V )e

P
n

+ h

∫ 1

0
bτ (V )

(
f
(
Q(tn + τh)

)− f (Q+n,τ )
)

dτ + δ̂′n+1,

(12.29)

where the initial conditions are eQ0 = 0, eP0 = 0. We here replace Cτ (V ) and Dτ (V )

by φ0
(
τ 2V

)
and τφ1

(
τ 2V

)
, respectively, and this generates the O(hs+1) term1 in

(12.29).

Because A is a symmetric positive semi-definite differentiation matrix, we
reformulate the last two equations of (12.29) as

(√
Ae

Q
n+1

ePn+1

)
=

(
φ0(V ) h

√
Aφ1(V )

−h√Aφ1(V ) φ0(V )

)(√
Ae

Q
n

ePn

)

+ h

∫ 1

0

(
h
√
Ab̄τ (V )

bτ (V )

)(
f
(
Q(tn + τh)

)− f (Q+n,τ )
f
(
Q(tn + τh)

)− f (Q+n,τ )

)
dτ

+
(√

Aδ̂n+1

δ̂′n+1

)
.

Using the result in [50], we have

∥∥∥∥
(

φ0(V ) h
√
Aφ1(V )

−h√Aφ1(V ) φ0(V )

)∥∥∥∥ = 1.

1This result is clear from (12.28).



12.3 Convergence 405

Furthermore, it follows from Assumption 12.1 that
∥∥f (Q(tn + τh)

)− f (Q+n,τ )
∥∥ �

K
∥∥EQ

∥∥ . We then obtain

√
‖√AeQn+1‖2 + ‖ePn+1‖2 �

√
‖√AeQn ‖2 + ‖ePn ‖2 + hα̃K‖EQ‖c

+
√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2, (12.30)

where || · ||c denotes the maximum norm for continuous functions which is defined
as

||E||c = max
τ∈[0,1] ||Eτ || (12.31)

for a continuous R
M -valued function Eτ on [0, 1]. Using the second formula of

(12.29), we obtain∥∥∥eQn+1

∥∥∥ �
∥∥∥eQn ∥∥∥+ h

∥∥∥ePn ∥∥∥+ h2βK‖EQ‖c +
∥∥∥δ̂n+1

∥∥∥ . (12.32)

It then follows from (12.30) and (12.32) that

∥∥∥eQn+1

∥∥∥+√
‖√AeQn+1‖2 + ‖ePn+1‖2

�
∥∥∥eQn ∥∥∥+ h

∥∥∥ePn ∥∥∥+
√
‖√AeQn ‖2 + ‖ePn ‖2 + h(1+ h)γ̃ K‖EQ‖c

+ ‖δ̂n+1‖ +
√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2. (12.33)

Taking advantage of the first equation of (12.29) and (12.31), we have

‖EQ
τ ‖ � ‖eQn ‖ + τh‖ePn ‖ + h2αK‖EQ‖c + ‖̂τ‖ + C4h

s+1. (12.34)

This results in

‖EQ‖c � ‖eQn ‖ + h‖ePn ‖ + h2αK‖EQ‖c + ‖̂τ‖c + C4h
s+1,

where the constant C4 depends on the constant symbolised by O in the first formula

of (12.29). Under the condition that h �
√

1

2αK
, we deduce that

‖EQ‖c � 2(‖eQn ‖ + h‖ePn ‖)+ 2‖̂τ‖c + 2C4h
s+1. (12.35)
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Then inserting (12.35) into (12.33) yields

∥∥∥eQn+1

∥∥∥+√
‖√AeQn+1‖2 + ‖ePn+1‖2

�
∥∥∥eQn ∥∥∥+ h

∥∥∥ePn ∥∥∥+
√
‖√AeQn ‖2 + ‖ePn ‖2 + 2h(1+ h)γ̃K(‖eQn ‖ + h‖ePn ‖)

+ ‖δ̂n+1‖ +
√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2 + 2h(1+ h)γ̃K‖̂τ‖c + 2C4h

s+1

�
(
1+ h(1+ 4γ̃ K)

)( ∥∥∥eQn ∥∥∥+√
‖√AeQn ‖2 + ‖ePn ‖2

)
+ ‖δ̂n+1‖ +

√
‖√Aδ̂n+1‖2 + ‖δ̂′n+1‖2 + 2h(1+ hγ̃K)‖̂τ‖c + 2C4h

s+1.

Finally, using the Gronwall’s inequality, we obtain

∥∥∥eQn+1

∥∥∥+√
‖√AeQn+1‖2 + ‖ePn+1‖2

� exp
(
nh(1+ 4γ̃K)

)(‖eQ0 ‖ +
√
‖√AeQ0 ‖2 + ‖eP0 ‖2 + Cnh

(
hm + ‖'(x)‖)),

which confirms (12.24).
The conclusion of this theorem follows. ��

12.4 Energy-Preserving Continuous-Stage Modified LF
Schemes

This section concerns energy preservation of continuous-stage modified LF
schemes. We first present the energy-preserving conditions for these schemes.

Theorem 12.2 (Energy-Preserving Conditions) Let

Ā0,σ (V ) = 0, Ā1,σ (V ) = b̄σ (V ). (12.36)

If the following conditions

⎧⎪⎪⎨
⎪⎪⎩
V φ0(V )b̄τ (V )− V φ1(V )bτ (V ) = C′τ (V ),

φ0(V )bτ (V )+ V φ1(V )b̄τ (V ) = D′τ (V ),

bτ (V )bσ (V )+ V b̄τ (V )b̄σ (V ) = Ā′τ,σ (V )+ Ā′σ,τ (V ),

(12.37)
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are satisfied, where C
′
τ (V ) = d

dτ
Cτ (V ), D

′
τ (V ) = d

dτ
Dτ (V ) and Ā′τ,σ (V ) =

∂

∂τ
Āτ,σ (V ), then the CSMLF scheme (12.19) preserves the energy (12.9) exactly,

i.e., it is true that

H [pn+1, qn+1] =H [pn, qn], n = 0, 1, · · · .
Moreover, under these conditions with V , instead of V , the fully discrete CSMLF
scheme (12.22) exactly preserves the semidiscrete energy

H(P,Q) = 1

2
PᵀP + 1

2
QᵀAQ+G(Q).

Proof We let

I1 =
∫ 1

0
b̄τ (V )f (Q+n,τ )dτ, I2 =

∫ 1

0
bτ (V )f (Q+n,τ )dτ.

Inserting the continuous-stage modified LF scheme (12.19) into H [pn+1, qn+1]
determined in (12.9) gives

H [pn+1, qn+1]

=1

2

((
φ2

0(V )+ V φ2
1(V )

)
pn, pn

)
+ 1

2

(
A

(
φ2

0(V )+ V φ2
1(V )

)
qn, qn

)
+ (

V φ0(V )qn, I1
)− (

V φ1(V )qn, I2
)+ h

(
φ0(V )pn, I2

)+ h
(
V φ1(V )pn, I1

)
+ 1

2
h2(I2, I2

)+ 1

2
h2(V I1, I1

)+ ∫
Ω

G
(
qn+1

)
dx

=1

2

(
pn, pn

)+ 1

2

(
A qn, qn

)+ ∫
Ω

G
(
qn+1

)
dx + (

qn,V φ0(V )I1 − V φ1(V )I2
)

+ h
(
pn, φ0(V )I2 + V φ1(V )I1

)+ 1

2
h2(I2, I2

)+ 1

2
h2(V I1, I1

)
.

(12.38)

On noticing the requirements (12.16) and (12.36) and the conditions c0 = 0 and
cs = 1, we have

Q+n,0 = qn, Q+n,1 = qn+1. (12.39)

We then obtain

H [pn+1, qn+1] −H [pn, qn]

=
∫
Ω

(
G(qn+1)−G(qn)

)
dx + (

qn,V φ0(V )I1 − V φ1(V )I2
)
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+ h
(
pn, φ0(V )I2 + V φ1(V )I1

)+ 1

2
h2(I2, I2

)+ 1

2
h2(V I1, I1

)

=(qn,V φ0(V )I1 − V φ1(V )I2 −
∫ 1

0
C′τ (V )f (Q+n,τ )dτ

)

+ h
(
pn, φ0(V )I2 + V φ1(V )I1 −

∫ 1

0
D′τ (V )f (Q+n,τ )dτ

)+ 1

2
h2(I2, I2

)

+ 1

2
h2(V I1, I1

)− ∫
Ω

(∫ 1

0

∫ 1

0
f ᵀ(Q+n,τ )Ā

′
τσ (V )f (Q+n,σ )dσdτ

)
dx.

(12.40)

Using the first two equations of (12.37) and exchanging τ ↔ σ , we rewrite (12.40)
as

2H [pn+1, qn+1] − 2H [pn, qn] = h2
∫
Ω

∫ 1

0

∫ 1

0
f ᵀ(Q+n,τ )

(
bτ (V )bσ (V )

+ V b̄τ (V )b̄σ (V )− Ā
′
τσ (V )− Ā

′
στ (V )

)
f (Q+n,σ )dσdτdx.

It then follows from the third equation of (12.37), that H [pn+1, qn+1] −
H [pn, qn] = 0. The conclusion of this theorem is confirmed. ��

Using the energy-preserving conditions (12.37) and the order conditions (12.23),
we next derive a practical energy-preserving CSMLF scheme (12.19) for solving
Hamiltonian wave equations. We here only consider a scheme of order two for
brevity. Higher-order energy-preserving CSMLF schemes can be constructed in a
similar way.

Algorithm 12.2 (Energy-Preserving Scheme) Consider the special case where s =
1. We define a practical continuous-stage modified LF scheme (12.19) with the
coefficients

Cτ (V ) = (1− τ )I + τφ0(V ), Dτ (V ) = τφ1(V ),

b̄τ (V ) = φ2(V ), bτ (V ) = φ1(V ), Āτ,σ (V ) = τφ2(V ).
(12.41)

It can be shown that this integrator is energy-preserving, symmetric and of order
two. The one-step pattern of this scheme is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q+n,τ = ((1− τ)I+τφ0(V ))qn + hτφ1(V )pn+h2
∫ 1

0
τφ2(V )f (Q+n,σ )dσ, 0 � τ � 1,

qn+1 = φ0(V )qn + hφ1(V )pn + h2
∫ 1

0
φ2(V )f (Q+n,τ )dτ,

pn+1 = −hA φ1(V )qn + φ0(V )pn + h

∫ 1

0
φ1(V )f (Q+n,τ )dτ.
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Remark 12.4.1 We remark that this method was firstly proposed in [51] for
solving second-order ODEs and was further studied in [49, 52, 53]. However, no
convergence analysis of this scheme was made in these publications.

Using the above energy-preserving conditions with a careful calculation, another
energy-preserving continuous-stage modified LF scheme can be obtained as fol-
lows:

c0 = 0, c1 = 1/2, c2 = 1,

b̄τ (V ) = b̄1(V )+ b̄2(V )τ, bτ (V ) = b1(V )+ b2(V )τ,

Āτ,σ (V ) = a11(V )τ + a12(V )τσ + a21(V )τ 2 + a22(V )τ 2σ,

(12.42)

where

a11(V ) = 4φ2(V /4)− 3φ2(V ), a12(V ) = −φ2
1(V /16)(I + V φ2(V /4)/4),

a21(V ) = 1/2φ2
1(V /16)(I − 3V φ2(V /4)/4), a22(V ) = V φ4

1(V /16)/4,

b̄1(V ) = 3φ2(V )−φ2(V /4), b̄2(V ) = 2φ2(V /4)− 4φ2(V ),

b1(V ) = −2φ1(V /4)+ 3φ1(V ), b2(V ) = 4φ1(V /4)− 4φ1(V ).

12.5 Symplectic Continuous-Stage Modified LF Scheme

In this section, we design a symplectic fully discrete CSMLF scheme, which
preserves the symplecticity of Hamiltonian systems. To this end, we first study
the symplectic conditions of fully discrete CSMLF schemes and then derive some
practical symplectic methods.

Theorem 12.3 (Symplecticity) Let

Cτ (V ) = φ0(τ
2V ), Dτ (V ) = τφ1(τ

2V ), (12.43)

where V = h2A and A a symmetric and positive semi-definite matrix. If the
following conditions

⎧⎪⎪⎨
⎪⎪⎩
φ0(V )bτ (V )+ V φ1(V )b̄τ (V ) = dτφ0(τ

2V ),

φ1(V )bτ (V )− φ0(V )b̄τ (V ) = τdτφ1(τ
2V ),

b̄τ (V )bσ (V )+ dτ āτ,σ (V ) = b̄σ (V )bτ (V )+ dσ āσ,τ (V ),

(12.44)
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are fulfilled, where dτ ∈ R is a function of τ , then the fully discrete CSMLF scheme
(12.22) is symplectic, i.e., it is true that (see, e.g. [54])

dQn+1 ∧ dPn+1 = dQn ∧ dPn.

Proof We divide the proof into two parts.

(I) The result is firstly proved for the special case where A = diag(a11,

a22, · · · , aMM). Let fτ = −G′(Q+n,τ ) and vii = h2aii for i = 1, · · · ,M .
Denoting the J -th component of a vector by the superscript (·)J , we obtain

dQJ
n+1 ∧ dP J

n+1 = dQJ
n ∧ dP J

n

+ h

∫ 1

0

((
φ0(vJJ )bτ (vJJ )+ vJJ φ1(vJJ )b̄τ (vJJ )

)
φ−1

0 (τ 2vJJ )
)(

d(Q+n,τ )J ∧ df J
τ

)
dτ

+ h2
∫ 1

0

(
φ1(vJJ )bτ (vJJ )− φ0(vJJ )b̄τ (vJJ )−

(
φ0(vJJ )bτ (vJJ )+ vJJ φ1(vJJ )b̄τ (vJJ )

)
· φ−1

0 (τ 2vJJ )τφ1(τ
2vJJ )

)(
dpJn ∧ df J

τ

)
dτ

+ h3
∫ 1

0

∫ 1

0

((
φ0(vJJ )bτ (vJJ )+ vJJ φ1(vJJ )b̄τ (vJJ )

)
φ−1

0 (τ 2vJJ )Āτ,σ (vJJ )

+ b̄τ (vJJ )bσ (vJJ )
)(

df J
τ ∧ df J

σ

)
dτdσ.

According to the first two conditions of (12.44), the above result can be reduced
to

dQJ
n+1 ∧ dPJ

n+1 = dQJ
n ∧ dPJ

n + h

∫ 1

0
dτ

(
d(Q+n,τ )J ∧ df J

τ

)
dτ

+ h3
∫ 1

0

∫ 1

0

(
dτ Āτ,σ (vJJ )+ b̄τ (vJJ )bσ (vJJ )

)(
df J

τ ∧ df J
σ

)
dτdσ.

Then the fact that f (z) = −G′(z) vanishes the term
∑M

J=1

(
d(Q+n,τ )J ∧ df J

τ

)
and the third condition of (12.44) implies that

M∑
J=1

(
dτ Āτ,σ (vJJ )+ b̄τ (vJJ )bσ (vJJ )

)(
df J

τ ∧ df J
σ

) = 0.

Consequently, we have

M∑
J=1

dQJ
n+1 ∧ dPJ

n+1 =
M∑
J=1

dQJ
n ∧ dPJ

n , (12.45)

which proves the result.
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(II) If A is symmetric and positive semi-definite, the results can be proved by
considering the fact that the approximation is invariant under linear transfor-
mations.

The proof is complete. ��
Remark 12.5.1 We here remark that dτ is an artificial function created to facilitate
the proof. The only requirement of this function is that dτ ∈ R. It can be determined
by the construction of a symplectic algorithm.

Algorithm 12.3 (Symplectic Scheme) Define a class of CSMLF schemes by
(12.22) with the coefficients (12.43) and

b̄τ (V ) =(1− τ )φ1((1− τ )2V ), bτ (V ) = φ0((1− τ )2V ),

Āσ,τ (V ) =
(
k(0, 0)+

N∑
i=1

(
k(i, 0)Pi(τ )+ k(0, i)Pi(σ )+ k(i, i)Pi(τ )Pi(σ )

))

· φ1((τ − σ)2V ), (12.46)

where N � 1 and Pi is the normalized shifted Legendre polynomial of degree i.
This class of methods is symmetric and symplectic if k(0, 0) is arbitrary,

k(1, 0) = −k(0, 1) =
√

3

12
, (12.47)

and other parameters are symmetric, i.e. k(i, j) = k(j, i) for i+ j > 1. In this case,
the corresponding schemes are of order two at least.

12.6 Explicit Continuous-Stage Modified LF Scheme

All the modified LF schemes derived in the previous two sections are implicit and
iteration is needed in a practical implementation. It is known that explicit schemes
can avoid the complicated iterative process. Therefore, in this section, we present
an explicit fully discrete CSMLF scheme.

Algorithm 12.4 (Explicit Scheme) Let

Cτ (V ) = φ0(τ
2V ), Dτ (V ) = τφ1(τ

2V ), Āσ,τ (V ) = 0,

b̄τ (V ) = (1− τ )φ1((1− τ )2V ), bτ (V ) = φ0((1− τ )2V ), (12.48)

and then we obtain a second-order explicit fully discrete CSMLF scheme (12.22).
Before presenting the time integration scheme, we remark that some quadrature rule
is needed in actual computations. Here, we consider the midpoint rule and this leads
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to ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q+
n, 1

2
= C 1

2
(V )qn + hD 1

2
(V )pn,

Qn+1 = φ0(V )Qn + hφ1(V )Pn + 1

2
h2φ1

(
1

4
V

)
f

(
Q+

n, 1
2

)
,

Pn+1 = −hAφ1(V )Qn + φ0(V )Pn + hφ0

(
1

4
V

)
f

(
Q+

n, 1
2

)
.

(12.49)

We next analyse the numerical energy conservation of this method when the
corresponding fully discrete scheme (12.21), ignoring ', is used, where the matrix
A = Ω2 is assumed to be diagonal2 with Ω = diag(ωj ) for |j | � M and d = 1.
Then, the system (12.21) is a finite-dimensional complex Hamiltonian system with
the energy

HM(P,Q) = 1

2

∑
|j |�M

(|Pj |2 + ω2
j |Qj |2

)+G(q).

In this section, we use the notation

|k| = (|kl|)∞l=0, ‖k‖ =
∞∑
l=0

|kl|, k · λ =
∞∑
l=0

klλl, λσ |k| = Π∞
l=0λ

σ |kl |
l

(12.50)

for real σ , k = (kl)
∞
l=0 and λ = (λl)

∞
l=0. Denote by 〈j 〉 = (0, · · · , 0, 1, 0, · · · , 0)ᵀ

the vector, where the only entry 1 at the |j |-th position for j ∈ Z and all other entries
are zero. For s ∈ R

+, Hs is referred to the Sobolev space of 2M-periodic sequences

Q = (Qj ) endowed with the weighted norm ‖Q‖s =
(∑

|j |�M ω2s
j |Qj |2

)1/2
.

The numerical energy conservation of the explicit modified LF scheme (12.49)
is given by the following theorem.

Theorem 12.4 (Numerical Energy Conservation) Let the initial values of
(12.21) satisfy

( ‖Q(t0)‖2
s+1 + ‖P(t0)‖2

s

)1/2 � ε (12.51)

with a small parameter ε. Assume that all the assumptions given in [8] are
true. These conditions essentially imply that the continuous problem (12.21) has
a “small” nonlinear term with “small” initial conditions. Then the explicit fully

2Since A is a symmetric positive semi-definite differentiation matrix, it can be diagonalized and
the approximation is invariant under linear transformation.
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discrete CSMLF scheme (12.49) has the near-conservation estimate of the energy

|HM(Pn,Qn)−HM(P0,Q0)|
ε2 � Cε, (12.52)

where 0 � t = nh � ε−N+1 and the constant C is independent of ε,M, h and
the time t = nh. Here N is a positive integer appearing in the modulated Fourier
expansion given in the proof.

Proof

(I) Modulated Fourier Expansion
Using the technique of modulated Fourier expansions (see [54–58]), we can
show that the numerical solution (Pn,Qn) admits the following multi-frequency
modulated Fourier expansion

Q̃(t) =
∑

‖k‖�2N

ei(k·ω)tζ k(εt), P̃ (t) =
∑

‖k‖�2N

ei(k·ω)tηk(εt)

such that∥∥∥Qn − Q̃(t)

∥∥∥
s+1

+
∥∥∥Pn − P̃ (t)

∥∥∥
s
� CεN for 0 � t = nh � ε−1, (12.53)

where we have used the notation introduced in (12.50) with kl = 0 for l > M . The
expansion is bounded by

∥∥∥Q̃(t)

∥∥∥
s+1

+
∥∥∥P̃ (t)∥∥∥

s
� Cε for 0 � t � ε−1. (12.54)

For |j | � M , we have

Q̃j (t) = ζ
〈j〉
j (εt)eiωj t + ζ

−〈j〉
j (εt)e−iωj t + rj with ‖r‖s+1 � Cε2.

(12.55)

The bound of the modulation functions ζ k is

∑
‖k‖�2N

(ω|k|
ε‖k‖

∥∥∥ζ k(εt)∥∥∥
s

)2
� C. (12.56)

For any fixed number of derivatives of ζ k with respect to the slow time τ = εt , they

have the same bounds. Moreover, it is deduced that ζ−k−j = ζ̄ kj and the constant C is

independent of ε,M, h and t � ε−1.

These results follow from the techniques and tools developed in [55, 56, 59] and
the recent analysis given in [14]. We skip the proof for brevity.
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(II) An Almost-Invariant
It follows from the construction of the modulated Fourier expansion that

1

h2 L̃
kζ kj +∇−k−jU (ζ ) = dkj ,

where

dkj =
1

h2 L̃
kζ kj +

N∑
m=2

f (m)(0)

m!
∑

k1+···+km=k

∑
j1+···+jm≡j mod 2M

(
ζ k

1

j1
· · · · · ζ kmjm

)
,

∇−k−jU (y) is the partial derivative with respect to y−k−j of the extended potential
[8, 59],

U (ζ ) =
N∑

l=−N
Ul (ζ ),

Ul (ζ ) =
N∑

m=2

G(m+1)(0)

(m+ 1)!
∑

k1+···+km+1=0

∑
j1+···+jm+1=2Ml

(
ζ k

1

j1
· · · · · ζ km+1

jm+1

)
,

and L̃k denotes the truncation of the operator Lk after the εN term.

An almost-invariant is obtained on noticing that

ε
d

dτ
U (ζ ) =

∑
‖k‖�K

∑
|j |�M

ζ̇−k−j ∇−k−jU (ζ )

=
∑
‖k‖�K

∑
|j |�M

(
i(k · ω)ζ−k−j + εζ̇−k−j

)(− 1

h2
L̃kζ kj + dkj

)
.

Similarly to the analysis in Sect. 7.3 of [8], it can be deduced that there is a function
εH [ζ ](τ ) such that

−ε d

dτ
H [ζ ](τ ) =

∑
‖k‖�K

∑
|j |�M

(
i(k · ω)ζ−k−j + εζ̇−k−j

)
dkj . (12.57)

It follows from the smallness of the right-hand side in (12.57) that

∣∣∣∣ d

dτ
H [ζ ](τ )

∣∣∣∣ �
CεN+1 for τ � 1.
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(III) Relationship with the Energy
Under the conditions of Theorem 12.4, along the numerical solution and the
associated modulation sequence ζ(εt), we obtain

H [ζ ](εtn) = HM(Pn,Qn)+O(ε3),

where the constant is independent of ε,M, h, and n.

On the basis of the results stated above, the statement of Theorem 12.4 is proved
by patching together many intervals of length ε−1 (see [55, 56, 59] for details). ��

12.7 Numerical Experiments

It is known that a study of numerical schemes remains incomplete without compu-
tational experiments. Our prime purpose in this section is to show the efficiency of
continuous-stage modified LF schemes by implementing them in comparison with
some efficient methods found in the literature. The following methods are chosen
for comparison:

• LFS: the well-known standard leap-frog scheme;
• GAM: the Gautschi method given in [58];
• MLFS1: the energy-preserving CSMLF scheme presented in (12.41);
• MLFS2: the symplectic CSMLF scheme presented in (12.46) with N = 1,

k(0, 0) = 1

2
and k(1, 1) = − 1

15
;3

• MLFS3: the explicit CSMLF scheme presented in (12.48).

In the development and design of numerical schemes, established methods are
constantly being improved, and the numerical comparison of schemes is a never-
ending activity. In what follows, we describe the comparisons in detail. Since
MLFS1 and MLFS2 are implicit schemes, iterative solutions are considered for
them. In order to show that these methods can perform well even for the simplest
iteration method, we choose standard fixed-point iteration in this section and set
10−16 as the error tolerance of each iteration. The maximum number of iterations
is 10. In the actual implementation of these schemes, Gaussian quadrature formulas
are applied to the definite integrals appearing in the continuous-stage modified LF
schemes.

3These choices are made such that the method can satisfy more order conditions (12.23).
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Problem 12.1 We first consider the semilinear Klein–Gordon equation

⎧⎪⎪⎨
⎪⎪⎩
∂2u

∂t2
− a2 ∂

2u

∂x2 = bu3 − au, −L � x � L, 0 � t � T , u(−L, t) = u(L, t),

u(x, 0) =
√

2a

b
sech(λx), ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx),

where λ =
√

a

a2 − c2 and a, b, a2 − c2 > 0, and the exact solution is

u(x, t) =
√

2a

b
sech(λ(x − ct)).

For solving this problem, we approximate the operator A by Fourier spectral
collocation (FSC) (see, e.g. [60, 61])

Afsc = (akj )M×M with akj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)k+j

2
sin−2

( (k − j)π

M

)
, k 
= j,

M2

12
+ 1

6
, k = j.

(12.58)

In this experiment, we choose a = 0.3, b = 1, c = 0.25, and M = 200. This system
is integrated on [0, 10] with h = 0.2/2j for j = 0, 1, · · · , 4. The global errors
plotted against the logarithm of CPU time and h are shown in Fig. 12.1. We here

Fig. 12.1 The logarithm of the global errors against the logarithm of CPU time and h
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Fig. 12.2 The logarithm of the energy errors against the time t

remark that the global errors are measured by the l∞-norm of the error between the
numerical solution uN(xj ) and the exact (or reference) solution u(xj , T ): GE(T ) =
maxj

∣∣uN(xj )− u(xj , T )
∣∣, where N = T/h.

We then solve the problem with h = 0.01 and T = 10, 1000, and the errors of the
semidiscrete energy conservation are presented in Fig. 12.2. It can be observed from
these results that MLFS3 behaves similarly to LFS and GAM, MLFS1 has similar
accuracy to them but has better energy-preserving property, MLFS2 performs
better than LFS and GAM not only in accuracy but also in energy conservation.
Similar numerical behaviour of these continuous-stage modified LF schemes can be
observed in the following three numerical experiments.

Problem 12.2 Consider the well-known sine-Gordon equation (see, e.g. [62])

∂2u

∂t2
= ∂2u

∂x2
− sin u, x ∈ [−20, 20], t ∈ [0, T ]

with the initial conditions:

u(x, 0) ≡ 0, ut (x, 0) = 4/γ sech
(
x/γ

)
, γ � 0.

The exact solution is given by

u(x, t) = 4 arctan
(
ψ(t, γ )sech(x/γ )

)
,
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where

ψ(t, γ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sinh

(√
1− γ 2t

γ

)/√
1− γ 2, 0 < γ < 1,

t, γ = 1,

sin

(√
γ 2 − 1t

γ

)/√
γ 2 − 1, γ > 1.

In this experiment, we discretise the spatial derivative by the Fourier spectral
collocation method (12.58) with M = 200. The problem is solved on [0, 50] with
h = 0.2/2j for j = 0, 1, 2, 3. The efficiency curves are shown in Fig. 12.3 for
different γ . We then integrate the equation with h = 0.01. The detailed results for
the errors of the semidiscrete energy conservation are presented in Fig. 12.4.

Problem 12.3 We consider the two-dimensional semilinear wave equation (see,
e.g. [63])

∂2u(x, y, t)

∂t2
= u(x, y, t)− u3(x, y, t), (x, y) ∈ [−1, 1] × [−1, 1], t > 0

with periodic boundary conditions. The initial conditions are given by

u(x, y, 0) = sech(10x) sech(10y), ut (x, y, 0) = 0.

Similarly to [63], in this experiment, we use the spectral element method to semi-
discretise the wave equation, where we discretise the space with a tensor product
Lagrange quadrature formula based on p + 1 Gauss–Lobatto–Legendre (GLL)
quadrature nodes in each space direction. This problem is integrated on the interval

[0, 10] with p = 5, h = 0.1

2i
for i = 0, · · · , 3. See Fig. 12.5 for the global errors.

We then solve the system with h = 0.1 and T = 10, 1000, and the results of energy
conservation are indicated in Fig. 12.6.

Problem 12.4 Finally, we consider the following two-dimensional sine-Gordon
equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

utt − (uxx + uyy) = − sin u, (x, y) ∈ [−1, 1] × [−1, 1], t > 0,

u(x, y, 0) = 4 arctan

(
exp

(
4−√

(x + 3)2 + (y + 3)2

0.436

))
,

ut (x, y, 0) = 4.13

cosh
(

exp
((

4−√
(x + 3)2 + (y + 3)2

)
/0.436

)) ,
with periodic boundary conditions. We use the same spectral element method to
semidiscretise the wave equation as in Problem 12.3. The problem is solved on the
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Fig. 12.3 The logarithm of the global errors against the logarithm of CPU time and h. (a), (b):
γ = 0.99. (c), (d): γ = 1.01. (e), (f): γ = 1
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Fig. 12.4 The logarithm of the energy errors against the time t . (a), (b): γ = 0.99. (c), (d):
γ = 1.01. (e), (f): γ = 1
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Fig. 12.5 The logarithm of the global errors against the logarithm of CPU time and h

Fig. 12.6 The logarithm of the energy errors against the time t

interval [0, 10] with h = 0.1

2i
for i = 0, 1, 2, 3. Figure 12.7 presents the global

errors. We then integrate the system with h = 0.01 and T = 10, 1000. The results
of energy conservation are presented in Fig. 12.8.
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Fig. 12.7 The logarithm of the global errors against the logarithm of CPU time and h

Fig. 12.8 The logarithm of the energy errors against the time t
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12.8 Conclusions and Discussions

As is known, a most welcome feature of the standard LF scheme is that it is easy
to use for the time integration of PDEs. However, the standard LF scheme needs
to be improved in the sense of structure-preserving algorithms. Therefore, in this
chapter, we formulated and analysed improved LF schemes for efficiently solving
high-dimensional semilinear Hamiltonian wave equations. These improved schemes
take full advantage of the operator-variation-of-constants formula (also termed the
Duhamel Principle) of the underlying problem and their formulations incorporate
the idea of continuous-stage methods and exponential integrators. The properties of
the improved scheme were analysed including its convergence, energy preservation,
symplecticity conservation, and the long-time behaviour of the explicit method. The
results of numerical experiments are very promising and demonstrate that these
continuous-stage modified LF schemes are significantly more efficient compared
with the standard leap-frog scheme and a Gautschi-type method in the literature. It
is believed that this approach to the improvement of the standard LF scheme could
be extended to other classes of PDEs as well.

The material in this chapter is based on the work by Wang et al. [64].
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Chapter 13
Semi-Analytical ERKN Integrators for
Solving High-Dimensional Nonlinear
Wave Equations

Incorporating the operator-variation-of-constants formula for high-dimensional
nonlinear wave equations with Fast Fourier Transform techniques in this chapter,
we present a class of semi-analytical ERKN integrators, which can nearly preserve
the spatial continuity as well as the oscillations of the underlying nonlinear waves
equations. Standard ERKN methods require, in every time step, the computation
of the matrix-vector product whose computational complexity, in terms of basic
multiplication is O(N2), once a direct calculation procedure is implemented,
where N is the dimension of the underlying differentiation matrix. We design and
analyse efficient algorithms which are incorporated with the Fast Fourier Transform
in the implementation of ERKN integrators, so that these algorithms reduce the
computational cost from O(N2) to O(N logN) in terms of basic multiplication.

13.1 Introduction

This chapter concerns the numerical simulation of high-dimensional nonlinear
wave equations. Although all of the ideas, algorithms and analysis in this chapter
can be straightforwardly extended to the solution of nonlinear wave equations
in a moderate number of space dimensions, we begin with the nonlinear one-
dimensional Hamiltonian wave equation

utt − a2uxx = f (u), (13.1)

with 2π-periodic boundary condition (x ∈ Ω = R/(2πZ)) and initial values

u(x, t0) = ϕ(x) ∈ Hs+1(Ω), ut (x, t0) = ψ(x) ∈ Hs(Ω), (13.2)
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where s � 0, and Hs(Ω) is the Sobolev space on Ω . We consider the domain
Ω = [0, 2π] for simplicity. (13.1) is a conservative system due to the conservation
of the Hamiltonian energy

H = H(t) = 1

2

∫
Ω

(
(ut )

2 + a2(ux)
2 + 2V (u(x, t))

)
dx, (13.3)

where f (u) = −dV (u)

du
.

We first define the formal series

φj (x) :=
∞∑
k=0

(−1)kxk

(2k + j)! , j = 0, 1, · · · , (13.4)

for any x � 0, and the differential operator A

(A v)(x) = −a2vxx(x).

This leads to the following operator-variation-of-constants formula for the initial-
boundary-value problem of (13.1) (see, e.g. [1])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) = φ0
(
(t − t0)

2A
)
ϕ(x)+ (t − t0)φ1

(
(t − t0)

2A
)
ψ(x)

+
∫ t

t0

(t − ζ )φ1
(
(t − ζ )2A

)
f (u(x, ζ ))dζ,

ut (x, t) = −(t − t0)A φ1
(
(t − t0)

2A
)
ϕ(x)+ φ0

(
(t − t0)

2A
)
ψ(x)

+
∫ t

t0

φ0
(
(t − ζ )2A

)
f (u(x, ζ ))dζ,

(13.5)

where both φ0
(
(t − t0)

2A
)

and φ1
(
(t − t0)

2A
)

are bounded operators as stated
in Chap. 1 (see also [2]), although A is a linear, unbounded positive semi-definite
operator.

We remark that the formula (13.5) exactly provides an implicit expression for the
solution to (13.1). In particular, for the special case where f (u) = 0, (13.5) yields
the closed-form solution to (13.1). Moreover, with the help of (13.5), we are hopeful
of obtaining semi-analytical integrators for (13.1), which preserve the continuity of
the spatial variable x, and only discretise the time variable t . An interesting example
is the energy-preserving and symmetric scheme presented in Chap. 9 (see also [3]),
which can exactly preserve the true continuous energy (13.3), not a discrete energy
after spatial discretisations as is typically the case for other methods. It is noted that
the extended Runge–Kutta–Nyström (ERKN) methods have been well developed
for highly oscillatory systems of ordinary differential equations (see, e.g. [4–8])
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{
y ′′ +My = f (y), t ∈ [t0, T ],
y(t0) = y0, y

′(t0) = y ′0,
(13.6)

where M is a (symmetric) positive semi-definite matrix and ‖M‖ �
max

{
1,

∥∥∥∥∂f∂y
∥∥∥∥
}

. This line of research for (13.6) will assist in the design and

development of numerical schemes for (13.1).
For the formulation of semi-analytical ERKN integrators for (13.1), we first

rewrite (13.5) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, tn + τh) = φ0
(
τ 2V

)
u(x, tn)+ τhφ1

(
τ 2V

)
ut (x, tn)

+ h2
∫ τ

0
(τ − ζ )φ1

(
(τ − ζ )2V

)
f (u(x, tn + ζh))dζ,

ut (x, tn + τh) = −τhMφ1
(
τ 2V

)
u(x, tn)+ φ0

(
τ 2V

)
ut (x, tn)

+ h

∫ τ

0
φ0

(
(τ − ζ )2V

)
f (u(x, tn + ζh))dζ,

(13.7)

where V = h2A and h > 0 is the time stepsize. We assume that Ui ≈ u(x, tn +
Cih), un+1 ≈ u(x, tn + h) and u′n+1 ≈ ut (x, tn + h). We set τ = Ci satisfying
0 < Ci < 1 for i = 1, · · · , s, and approximate the first integral appearing in (13.7)
by a suitable quadrature formula with the weights Aij (V ). This leads to the internal
stages of ERKN integrators for (13.1). Likewise, by setting τ = 1, the updates of
ERKN integrators for (13.1) follow from the approximations to the two integrals
appearing in (13.7) by suitable quadrature formulae with the weights Bi(V ) and
Bi(V ), respectively. Then we are in a position to define a semi-analytical ERKN
integrator for (13.1).

An s-stage semi-analytical ERKN integrator for (13.1) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui = φ0(C
2
i V )un + Cihφ1(C

2
i V )u

′
n + h2

s∑
j=1

Aij (V )f (Uj ), i = 1, · · · , s,

un+1 = φ0(V )un + hφ1(V )u
′
n + h2

s∑
i=1

B̄i (V )f (Ui),

u′n+1 = −hA φ1(V )un + φ0(V )u
′
n + h

s∑
i=1

Bi(V )f (Ui),

(13.8)

where the constants C1, · · · , Cs , and the operator-argument coefficients Aij (V ),
Bi(V ) and Bi(V ) for i, j = 1, · · · , s are determined to ensure that the numerical
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scheme (13.8) is convergent and stable. It can be observed from (13.8) that the
ERKN integrator defines a time-stepping procedure, and the initial conditions are
exactly (13.2), i.e., u0 = u(x, t0) and u′0 = ut (x, t0). This class of integrators
possesses the superior property of preserving spatial continuity. Therefore, we
call them semi-analytical integrators (see, e.g. [9]). It should be noted that the
ERKN method for (13.6) can also be expressed in the form of (13.8) by replacing
the operator A in V with a suitable differentiation matrix M , and remember
that the ERKN method for (13.6) is oscillation preserving as stated in Chap. 1.
For convenience, we denote this ERKN integrator corresponding to (13.8) by a
partitioned Butcher tableau

C A(V )

B̄(V )
ᵀ

B(V )ᵀ

=

C1 A11(V ) · · · A1s(V )
...

...
...

Cs As1(V ) · · · Ass(V )

B̄1(V ) · · · B̄s(V )

B1(V ) · · · Bs(V )

. (13.9)

Despite the superior properties we have mentioned, the semi-analytical ERKN
integrators (13.8) as well as the energy-preserving and symmetric scheme in [3]
could not be easily applied to (13.1) for general nonlinear cases, since it is difficult
to calculate and implement the operator-argument functions involved in these
integrators. This fact greatly confines the potential and further application of these
semi-analytical integrators, although they have been successfully applied to some
linear or homogeneous wave equations (see, e.g. [10]). A feasible approach to
implementing (13.8) in practice is approximating the operator A by a suitable
differentiation matrix M , once the spatial discretisation is carried out. When
sufficient spatial mesh grids are appropriately chosen, the spatial discretisation error
will be smaller than the roundoff error in theory (see, e.g. [11, 12]). Hence, in
the sense of numerical computation, we can expect and consider that the spatial
precision and continuity are nearly preserved by the ERKN integrators (13.8),
because it turns out that the global error of ERKN integrators is independent of
the spatial refinement (see, e.g. [13]). Moreover, it has been emphasised that the
global error bounds of the ERKN integrators are completely independent of the
differentiation matrix M in Chap. 3.

However, for the sake of the near preservation of spatial continuity, the dimension
of the differentiation matrix M will be selected so large that the error of spatial
discretisations can be almost ignored. This results in the following three difficulties
in the practical implementation of (13.8). First, the computation of matrix-valued
functions Aij (V ), Bi(V ), and B̄i(V ) will be of high complexity for such a high-
dimensional matrix M , since they are in fact expressed in the series of M . Second,
the multiplication at each time step between these matrices and vectors is also
highly costly. For instance, if we denote N as the dimension of the matrix M , the
multiplication betweenAi(V ) and f (Yi) containsN2 basic scalar multiplication and
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N(N − 1) basic scalar addition, which are an order of magnitude O(N2). Hence,
the computational cost of basic operation in each time step will be rapidly increased
in the magnitude of O(N2) as N increases. Third, the necessary computer memory
to store Aij (V ), Bi(V ) and B̄i (V ) will also sharply increase, which may result in
the computer running out of memory, in particular for high-dimensional problems.
In order to obtain the near preservation of the spatial continuity in the application
of semi-analytical ERKN integrators (13.8), and overcome the above mentioned
obstacles in the practical implementation after a possibly highly refined spatial
discretisation, it is wise to avoid the calculation and storage of such matrix-valued
functions, as well as the direct multiplication between matrix-valued functions and
the corresponding vectors. Consequently, in this chapter, we consider solving the
nonlinear wave equations in Fourier space. Then the system of ordinary differential
equations with respect to the Fourier coefficients will have a natural harmony with
the ERKN method, i.e., the matrix-vector multiplication will disappear when the
ERKN method is used to solve this system. Since the Fourier coefficients can be
obtained by the Fast Fourier Transform (FFT) with O(N logN) operations (see,
e.g. [14]), we are hopeful of obtaining a fast implementation approach to ERKN
integrators when applied to the nonlinear wave equations, even if N is very large.
This motivates the presentation of Algorithm 1 in this chapter. Furthermore, making
use of the equivalence between the splitting method and an important class of
symplectic ERKN methods, we present Algorithm 2, which is shown to be more
efficient than Algorithm 1.

The finite difference method could also yield the near preservation of spatial
continuity, in theory, for the nonlinear wave equation (13.1), once the spatial stepsize
x → 0 and the convergence of the numerical solution to the exact solution
is satisfied. Unfortunately, however, it follows from the Courant–Friedrichs–Lewy
(CFL) condition in the literature (see, e.g. [15–17]) that the mesh ratio should satisfy
h/x � γ for the sake of numerical stability, where γ is a positive constant
depending only on the selected difference scheme. This implies that the time
stepsize h would be restricted to a very tiny magnitude, once thex is selected as so
small that it can ensure near preservation of the spatial continuity. This fact greatly
confines the application of the finite difference method. Fortunately, the stability
analysis of the ERKN integrator (13.8) in [18] shows that the time stepsize is
independent of the spatial stepsize, but dependent only on the coefficients of ERKN
integrator (13.8) and the Lipschitz constant of the function f (u). This advantage
admits the use of a large time stepsize even though x is very small after the
requirement of spatial-mesh refinement, once the semi-analytical ERKN integrator
(13.8) is applied to solve the nonlinear wave equations.

Another noteworthy aspect of scientific research related to the theme of this
chapter is the application of the Fourier spectral method and the FFT techniques. In
the literature (see, e.g. [19–22]), the authors respectively discussed the applications
of Fourier spectral discretisation for different types of partial differential equations.
In particular, in [19, 20, 22] and Chap. 2 in [23], the authors also incorporated
the FFT into the implementation to try to achieve smaller computational cost and
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lower memory storage. However, all such methods used a difference scheme or a
Runge–Kutta-type discretisation for the time derivative. It is very clear that these
procedures are not suitable for oscillatory nonlinear wave equations due to the high
oscillation of the semidiscrete system. Moreover, the CFL condition is also required
and crucial for these methods (see, e.g. [22]), which results in the same fatal defect
of a tiny time stepsize for the finite difference method. On noticing that ERKN
methods can efficiently solve a highly oscillatory system of ordinary differential
equations, the two proposed algorithms combined with the FFT technique are really
useful and promising in the implementation of semi-analytical ERKN integrator
(13.8) for efficiently solving a nonlinear wave equations. Apart from the exponential
integrators studied in this chapter we also note that there exist alternative approaches
for effectively providing numerical solutions for (13.1) in the literature (see, e.g.
[24–29]).

13.2 Preliminaries

We begin by considering initial value problems of second-order differential equa-
tions {

y ′′ = f (y), t ∈ [t0, T ],
y(t0) = y0, y

′(t0) = y ′0.
(13.10)

The standard Runge–Kutta–Nyström (RKN) method (see, e.g. [30, 31]) for
(13.10) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn + cihy
′
n + h2

s∑
j=1

aij f (Yj ), i = 1, · · · , s,

yn+1 = yn + hy ′n + h2
s∑

i=1

b̄if (Yi),

y ′n+1 = y ′n + h

s∑
i=1

bif (Yi),

(13.11)

where aij , b̄i , bi, ci for i, j = 1, · · · , s are real constants. An intrinsic relation
between ERKN methods and RKN methods has been explored in [4], in which
the authors revealed the underlying extension from the RKN method to the ERKN
method. We summarise the following three theorems, which are useful for our
subsequent analysis and the details can be found in [4].

Theorem 13.1 (See [4]) Let a RKN method be of order r for (13.10) with coeffi-
cients ci , bi , b̄i and aij for i, j = 1, · · · , s. Then the ERKN method determined by
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the mapping:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ci = ci,

Aij (V ) = aijφ1((ci − cj )
2V ),

B̄i (V ) = b̄iφ1((1− ci)
2V ),

Bi(V ) = biφ0((1− ci)
2V ),

(13.12)

is also of order r for (13.6).

Theorem 13.2 (See [4]) Let a RKN method be symplectic for (13.10) with coeffi-
cients ci , bi , b̄i and aij for i, j = 1, · · · , s. Then the ERKN method determined by
(13.12) is also symplectic for (13.6).

Theorem 13.3 (See [4]) Let a RKN method be symmetric for (13.10), whose
coefficients ci , bi , b̄i and aij satisfy the simplifying assumption b̄i = bi(1 − ci) for
i, j = 1, · · · , s. Then the ERKN method determined by (13.12) is also symmetric
for (13.6).

During the implementation of ERKN integrators, the matrix-valued coefficients
Aij (V ), B̄i (V ) andBi(V ) should be calculated in advance. Due to their complicated
computation, we note that the coefficients of the ERKN integrators in this chapter
share the form in (13.12), since the special cases where φ0(x) = cos

√
x and

φ1(x) = sin
√
x/
√
x can highly simplify the calculation of Aij (V ), B̄i (V ) and

Bi(V ). Another advantage of the formula (13.12) is that the ERKN integrator
obtained from (13.12) and the corresponding RKN method nearly has the best
structure-preserving properties among its congruence class, which will reduce to
the same RKN method (see [4]).

A preliminary step to simplifying the calculation of the computational cost of
ERKN integrators will be made, provided we carry out the following transformation.
If we set Fi = f (Ui), then the first formula of (13.8) can be rewritten as

Ui = φ0(C
2
i V )un + Cihφ1(C

2
i V )u

′
n + h2

s∑
j=1

Aij (V )Fj , i = 1, · · · , s,

by replacing f (Ui) with Fi . Using Fi = f (Ui) once again with the above equation,
we obtain

Fi = f
(
φ0(C

2
i V )un + Cihφ1(C

2
i V )u

′
n + h2

s∑
j=1

Aij (V )Fj
)
, i = 1, · · · , s.

(13.13)
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Finally, replacing f (Ui) with Fi in the last two equations of (13.8) and combining
with (13.13) we can deduce the equivalent formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fi = f
(
φ0(C

2
i V )un + Cihφ1(C

2
i V )u

′
n + h2

s∑
j=1

Aij (V )Fj
)
, i = 1, · · · , s,

un+1 = φ0(V )un + hφ1(V )u
′
n + h2

s∑
i=1

B̄i (V )Fi,

u′n+1 = −hA φ1(V )un + φ0(V )u
′
n + h

s∑
i=1

Bi(V )Fi.

(13.14)

It is clear that, in comparison with (13.8), the ERKN integrator rewritten in the
form of (13.14) reduces the number of function evaluations of f (u) from s2 + 2s
to s for each time step, while it maintains the same number (s + 2)2, of matrix-
vector multiplications. Therefore, the practical formulation of ERKN integrators in
applications should be (13.14), rather than (13.8) for the nonlinear wave equation
(13.1).

Since the error analysis of ERKN integrators as well as of Gauschi-type methods
for nonlinear wave equations has been made in [13, 18, 32, 33], we will not consider
this issue further, but pay attention to the practical implementation of these semi-
analytical ERKN integrators for nonlinear wave equations.

13.3 Fast Implementation of ERKN Integrators

For s � 0, we have Hs+1(Ω) ⊂ L2(Ω), where L2(Ω) is the complex Hilbert space
equipped with the inner product and the norm

(u, v) = 1

2π

∫
Ω

u(x)v̄(x)dx, ‖u‖ = (u, u). (13.15)

Consider the Fourier series of u(x, t) as follows

u∗(x, t) =
+∞∑

k=−∞
ûk(t)eikx, (13.16)

where the Fourier coefficients ûk(t) are determined by

ûk(t) = (u, eikx) = 1

2π

∫
Ω

u(x, t)e−ikxdx, k ∈ Z. (13.17)
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Taking account of the completeness of the Fourier/trigonometric system
{
eikx :

k ∈ Z
}

in L2(Ω) (see, e.g. [34]), we obtain that ||u(x, t) − u∗(x, t)||L2(Ω) = 0.
In the sense of L2(Ω)-norm, it is sufficient to find u∗(x, t) instead of the exact
u(x, t). Note that the complete orthonormal set

{
eikx : k ∈ Z

}
constitutes the set of

orthogonal eigenfunctions of the operator A in the Hilbert space L2(Ω), i.e.,

A (eikx) = a2k2eikx, k ∈ Z. (13.18)

With the formulae (13.4) and (13.18), we consequently have that

φj (h
2A )eikx = φj (a

2k2h2)eikx. (13.19)

Two special cases of (13.19) are j = 0 and j = 1:

φ0(h
2A )eikx = cos(akh)eikx, φ1(h

2A )eikx = sin(akh)

akh
eikx. (13.20)

Let N denote the number of spatial mesh grids after spatial discretisation, and
we only consider the even integer case for N . Since u is a real function, the Fourier
coefficients ûk satisfy û−k = ûk . Let XN = span

{
eikx : −N/2 � k � N/2

}
, and

PN : L2(Ω)→ XN be the L2-orthogonal projection. It is obvious that PNu will be
the truncated Fourier series

(
PNu

)
(x) =

N/2∑
k=−N/2

ûkeikx, (13.21)

which is also the best approximation to u(x) in L2-norm. The truncated Fourier
series (13.21) provides us an efficient way to approximate u(x). However, it is clear
that the Fourier coefficients f̂k(u(x)) of f (u) are hard to obtain, on noticing the
integral in (13.17), since the expression of f (u(x)) with respect to x is always
unknown. Therefore, we will not use the truncated Fourier series (13.21) in practice,
but consider the following Fourier/trigonometric interpolation instead.

Let

xj = jh = j
2π

N
, 1 � j � N, (13.22)

be N equispaced points in [0, 2π]. Since N is even, we set

YN =
{
u(x) =

N/2∑
k=−N/2

ũkeikx : ũ−N/2 = ũN/2

}
. (13.23)
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Then the Fourier/trigonometric interpolation polynomial on the equispaced points
xj (1 � j � N) can be obtained by the interpolation operator IN : L2(Ω)→ YN
as follows:

(
INu

)
(x) =

N/2∑
k=−N/2

ũkeikx. (13.24)

This satisfies

(
INu

)
(xj ) = u(xj ), 1 � j � N. (13.25)

Differently from the Fourier coefficients ûk in (13.16), the interpolation coeffi-
cients ũk can be effectively obtained from uj = u(xj ) (1 � j � N) by the Discrete
Fourier Transform (DFT)

ũk = 1

ωkN

N∑
j=1

uje−ikxj , k = −N/2, · · · , N/2, (13.26)

where ωk = 1 for |k| < N/2, and ωk = 2 for k = ±N/2. Meanwhile, it follows
from (13.24) and (13.25) that uj can also be obtained by the inverse DFT

uj =
N/2∑

k=−N/2

ũkeikxj , j = 1, · · · , N. (13.27)

The DFT (13.26) and inverse DFT (13.27) can be carried out by the Fast Fourier
Transform (FFT) and inverse Fast Fourier Transform (IFFT) with only O(N logN)

operations (see, e.g. [14]), rather than by the direct matrix-vector multiplication
with O(N2) operations. This computational process for FFT and IFFT can be easily
accomplished by using MATLAB (see, e.g. [12]).

Although the Fourier interpolation approximation INu in (13.24) to u(x) is
usually not better than the truncation PNu in (13.21), the rigorous error analysis
in [11] shows that ‘the penalty for using interpolation instead of truncation is at
worst a factor of two’. Hence, we can still have the spectral accuracy of exponential
convergence of the Fourier/trigonometric interpolation approximation (see, e.g.
[12]). With regard to more details on the truncation error of the Fourier truncation
and the interpolation error of the Fourier/trigonometric interpolation, readers are
referred to [23, 35, 36].

Now replacing u(x, t) with the trigonometric interpolation polynomial INu in
(13.1) leads to the nonlinear system

ũ′′k + a2k2ũk = f̃k(t), k = −N/2, · · · , N/2. (13.28)
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Algorithm 1 Fast implementation of explicit ERKN integrator (13.14) with large N

1: set Uj

0 = ϕ(xj ), V
j

0 = ψ(xj )

2: for n = 1 to NT do
3: FFT: Un−1 −→ Ûn−1, Vn−1 −→ V̂n−1
4: set Û = cos(c1hK)Ûn−1 +K−1 sin(c1hK)V̂n−1
5: inverse FFT: Û −→ U

6: set F1 = f (U)

7: FFT: F1 −→ F̂1
8: set Ûn = cos(hK)Ûn−1+K−1 sin(hK)V̂n−1+h2b̄1 ·((1−c1)hK)−1 sin((1−c1)hK)·F̂1

V̂n = −K sin(hK)Ûn−1 + cos(hK)V̂n−1 + hb1 cos((1 − c1)hK) · F̂1
9: for i = 2 to s do

10: set Û = cos(cihK)Ûn−1 +K−1 sin(cihK)V̂n−1
11: for k = 1 to i − 1 do
12: Û = Û + h2aik · ((ci − ck)hK)−1 sin((ci − ck)hK) · F̂k
13: end for
14: inverse FFT: Û −→ U

15: set Fi = f (U)

16: FFT: Fi −→ F̂i
17: Ûn = Ûn + h2b̄i · ((1 − ci)hK)−1 sin((1− ci)hK) · F̂i

V̂n = V̂n + hbi cos((1− ci)hK) · F̂i
18: end for
19: inverse FFT: Ûn −→ Un, V̂n −→ Vn
20: end for

where the f̃k(t) for k = −N/2, · · · , N/2 are the trigonometric interpolation
coefficients of f (u(x)) at time t . Since ũk and f̃k are easily obtained by the FFT,
by means of the variation-of-constants formula for (13.28) and the FFT, we propose
an algorithm to implement the explicit ERKN integrator determined by (13.12).
With the notation xj = jx, tn = t0 + nh, Uj

n ≈ u(xj , tn), V
j
n ≈ ut (xj , tn),

NT = (T − t0)/h and K = |a · (−N/2, · · · , N/2)|ᵀ, this algorithm is stated in
Algorithm 1.

Note that in Algorithm 1, we do not directly apply the ERKN formula to
thenonlinear system (13.28). That is, the wave equation (13.1) cannot be solved
merely in Fourier space, since f̃k(t) cannot be directly expressed by ũk for general
nonlinear functions f (u). This differs from [32], where the author considered the
particular nonlinear case of f (u) = up for p � 2. In that case, the wave equation
(13.1) can be converted into a nonlinear system for ũk with respect to t , where all
the f̃k are obtained by the discrete convolution

f̃ (u) = u ∗ u ∗ · · · ∗ u︸ ︷︷ ︸
p times

, (y ∗ z)j =
∑

k+l≡j mod 2N

ykzl, j = −N/2, · · · , N/2.

(13.29)

That is why we carry out the FFT for each internal stage Fi in Algorithm 1. Here,
it is important to note that we consider the general nonlinear function f (u), which
is the negative derivative of a potential energy V (u). It is also worth mentioning
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that for the special case of c1 = 0, we can simplify Step 4, 5, 6 in Algorithm 1 as
F1 = f (Un−1), since U = Un−1 under this situation.

13.4 The Case of Symplectic ERKN Integrators

As is known, the symplectic structure has many important physical and mathemati-
cal consequences, and it is therefore usually important to preserve it if possible.

We have presented Algorithm 1 in the previous section, which is used for the
fast implementation of explicit ERKN integrators (13.8) whose coefficients are
determined by (13.12). However, taking into account an important class of explicit
symplectic ERKN integrators, we can design another fast implementation algorithm
apart from Algorithm 1 on the basis of the equivalence between this important class
of explicit symplectic ERKN methods and the corresponding splitting methods. The
equivalence is stated below, and a similar result can be found in [37], where the
author conducted the presentation and the proof in a different manner.

Theorem 13.4 Let Ψ be an explicit symplectic ERKN method whose coefficients
Ci , Bi , B̄i and Aij are determined by (13.12), and ci , bi , b̄i and aij satisfy

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b̄i = bi(1− ci),

aij = bj (ci − cj ),

ci =
i∑

k=1

bk − 1

2
bi,

(13.30)

for all i, j = 1, · · · , s. Then the ERKN method is equivalent to a splitting method
(see, e.g. [30])

�h = ϕ
[1]
αs+1h

◦ ϕ[2]βsh
◦ ϕ[1]αsh

◦ · · · ◦ ϕ[2]β2h
◦ ϕ[1]α2h

◦ ϕ[2]β1h
◦ ϕ[1]α1h

, (13.31)

where

⎧⎨
⎩
βi = bi, i = 1, · · · , s,

α1 = 1

2
b1, αs+1 = 1

2
bs, αj = 1

2
(bj + bj−1), j = 2, · · · , s,

(13.32)

ϕ
[1]
t and ϕ[2]t respectively denote the exact phase flows of the following first-order

systems

{
q ′ = p,

p′ = −Mq,
(13.33)
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and {
q ′ = 0,

p′ = f (q),
(13.34)

by denoting q = y and p = y ′.

Proof We will complete the proof by showing that such a splitting method of the
type (13.31) can be equivalently expressed by an ERKN method as stated in the
theorem. Since ϕ

[1]
t denotes the exact phase flow of (13.33), we then derive from

the group property of the exact phase flow that

ϕ
[1]
α1h
= ϕ

[1]
β1h/2, ϕ

[1]
αs+1h

= ϕ
[1]
βsh/2, ϕ

[1]
αih
= ϕ

[1]
βi+1h/2 ◦ ϕ[1]βih/2, i = 2, · · · , s,

(13.35)

due to the equalities in (13.32). Using the associativity of the combination operation
◦, we can write the splitting method �h (13.31) as

�h = Ψβsh ◦ Ψβs−1h ◦ · · · ◦ Ψβ2h ◦ Ψβ1h, (13.36)

where Ψβih = ϕ
[1]
bih/2 ◦ ϕ[2]bih

◦ ϕ[1]bih/2 for all i = 1, · · · , s.
We now show that Ψβih is equivalent to an ERKN method with the stepsize bih.

Let (p0, q0) and (p1, q1) be initial values and the corresponding numerical solutions
after applyingΨβih to the initial values, respectively. We can derive the scheme from
the formulation of Ψβih as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = φ0

(
1

4
b2
i V

)
q0 + 1

2
bihφ1

(
1

4
b2
i V

)
p0,

P1 = −1

2
bihMφ1

(
1

4
b2
i V

)
q0 + φ0

(
1

4
b2
i V

)
p0,

Q2 = Q1,

P2 = P1 + bihf (Q2),

q1 = φ0

(
1

4
b2
i V

)
Q2 + 1

2
bihφ1

(
1

4
b2
i V

)
P2,

p1 = −1

2
bihMφ1

(
1

4
b2
i V

)
Q2 + φ0

(
1

4
b2
i V

)
P2,

(13.37)

where V ≡ h2M . It follows from the identities{
λφ0(κ

2V )φ1(λ
2V )+ κφ0(λ

2V )φ1(κ
2V ) = (λ+ κ)φ1((λ+ κ)2V ),

φ0(λ
2V )φ0(κ

2V )+ λκV φ1(κ
2V )φ1(λ

2V ) = φ0((λ− κ)2V ),

(13.38)
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that the direct calculation by eliminating P1, P2, and Q1 from (13.37) leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = φ0

(
1

4
b2
i V

)
q0 + 1

2
bihφ1

(
1

4
b2
i V

)
p0,

q1 = φ0(b
2
i V )q0 + bihφ1(b

2
i V )p0 + 1

2
(bih)

2φ1

(
1

4
b2
i V

)
f (Q1),

p1 = −bihMφ1(b
2
i V )q0 + φ0(b

2
i V )p0 + bihφ0

(
1

4
b2
i V

)
f (Q1).

(13.39)

It can be easily verified that (13.39) is just a particular ERKN method with the
stepsize bih, whose Butcher tableau reads

1/2 0

φ1(V /4)/2

φ0(V /4)

. (13.40)

Let (p(1)n+1, q
(1)
n+1) = Ψβ1h(pn, qn), (p

(i+1)
n+1 , q

(i+1)
n+1 ) = Ψβi+1h(p

(i)
n+1, q

(i)
n+1) for

i = 1, · · · , s − 1, and (pn+1, qn+1) = (p
(s)
n+1, q

(s)
n+1). In consequence, we

have (pn+1, qn+1) = �h(pn, qn). In what follows, we aim at showing that the
transformation �h : (pn, qn) �→ (pn+1, qn+1) can be explicitly expressed by an
ERKN method, which has exactly the property required in the theorem. To complete
the proof, we just need to prove the following proposition by induction on the
superscript i.

The mapping Ψβih ◦ Ψβi−1h ◦ · · · ◦ Ψβ2h ◦ Ψβ1h : (pn, qn) �→ (p
(i)
n+1, q

(i)
n+1) can

be expressed by an ERKN scheme as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qk = φ0(c
2
kV )qn + ckhφ1(c

2
kV )pn + h2

k−1∑
j=1

A
(i)
kj f (Qj ), k = 1, · · · , i,

q
(i)
n+1 = φ0(μ

2
i V )qn + μihφ1(μ

2
i V )pn + h2

i∑
k=1

B̄
(i)
k f (Qk),

p
(i)
n+1 = −μihMφ1(μ

2
i V )qn + φ0(μ

2
i V )pn + h

i∑
k=1

B
(i)
k f (Qk),

(13.41)

where μi = ∑i
j=1 bi , ci = μi − bi

2
, A(i)

kj = bj (ck − cj )φ1((ck − cj )
2V ), B̄(i)

k =
bk(μi − ck)φ1((μi − ck)

2V ) and B(i)
k = bkφ0((μi − ck)

2V ).
For i = 1, (13.41) naturally holds on account of (13.39). Suppose that (13.41)

holds for any i < s. Then we turn to showing that it also holds for the case of i + 1.



13.4 The Case of Symplectic ERKN Integrators 441

On noticing the fact that (p(i+1)
n+1 , q

(i+1)
n+1 ) = Ψβi+1h(p

(i)
n+1, q

(i)
n+1) and Ψβi+1h is also

an ERKN method, it follows from the composition law for ERKN method in [4] that
the mapping Ψβi+1h ◦ Ψβih ◦ · · · ◦ Ψβ2h ◦ Ψβ1h : (pn, qn) �→ (p

(i+1)
n+1 , q

(i+1)
n+1 ) really

can be expressed in an ERKN method, whose coefficients read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(i+1)
kj = A

(i)
kj , k = 1, · · · , i, j = 1, · · · , k − 1,

A
(i+1)
i+1,j = φ0

(
b2
i+1

4
V

)
B̄
(i)
j + bi+1

2
φ1

(
b2
i+1

4
V

)
B
(i)
j , j = 1, · · · , i,

B̄
(i+1)
j = φ0(b

2
i+1V )B̄

(i)
j + bi+1φ1(b

2
i+1V )B

(i)
j , j = 1, · · · , i,

B̄
(i+1)
i+1 = b2

i+1

2
φ1

(
b2
i+1

4
V

)
,

B
(i+1)
j = φ0(b

2
i+1V )B

(i)
j − bi+1V φ1(b

2
i+1V )B̄

(i)
j , j = 1, · · · , i,

B
(i+1)
i+1 = bi+1φ1

(
b2
i+1

4
V

)
.

(13.42)

Then with the help of the induction hypothesis and the identities in (13.38), it
follows from (13.42) that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A
(i+1)
kj = bj (ck − cj )φ1((ck − cj )

2V ), k = 1, · · · , i + 1, j = 1, · · · , k − 1,

B̄
(i+1)
j = bj (μi+1 − cj )φ1((μi+1 − cj )

2V ), j = 1, · · · , i + 1,

B
(i+1)
j = bjφ0((μi+1 − cj )

2V ), j = 1, · · · , i + 1,

(13.43)

which confirms that the result also holds for the case of i + 1. Moreover, the
consistency of the splitting method means that μs = ∑s

j=1 bj = 1. By setting
i = s in (13.41) we finally conclude that the splitting method in (13.31) can be
written as an ERKN method, whose coefficients satisfy (13.12) and (13.30). This
completes the proof. ��

We set q = y, p = y ′, and then the phase flow ϕ
[1]
h and ϕ

[2]
h can be respectively

expressed as

ϕ
[1]
h : (y0, y

′
0) �→ (φ0(V )y0+hφ1(V )y

′
0, −hMφ1(V )y0+φ0(V )y

′
0), (13.44)

and

ϕ
[2]
h : . (y0, y

′
0) �→ (y0, y

′
0 + hf (y0)). (13.45)
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Algorithm 2 Fast implementation of special symplectic ERKN integrator

1: set Uj

0 = ϕ(xj ), V
j

0 = ψ(xj )

2: for n = 1 to NT do
3: set U = Un−1, V = Vn−1
4: for k = 1 to s do
5: FFT: U −→ Û , V −→ V̂

6: Û(0) = cos(αkhK)Û +K−1 sin(αkhK)V̂ ,
V̂(0) = −K sin(αkhK)Û + cos(αkhK)V̂

7: inverse FFT: Û(0) −→ U , V̂(0) −→ V

8: V = V + βkhf (U)

9: end for
10: FFT: U −→ Û , U −→ V̂

11: Û(0) = cos(αs+1hK)Û +K−1 sin(αs+1hK)V̂ ,
V̂(0) = −K sin(αs+1hK)Û + cos(αs+1hK)V̂

12: inverse FFT: Û(0) −→ U , V̂(0) −→ V

13: set Un = U , Vn = V

14: end for

With the help of Theorem 13.4, if we solve (13.44) and (13.45) in the Fourier space
with the FFT and IFFT, we can obtain Algorithm 2, which is specially designed
for the implementation of the symplectic ERKN integrators stated in Theorem 13.4.
Note that the multiplication of the two vectors occurring in both Algorithms 1 and
2 is in the componentwise sense.

13.5 Analysis of Computational Cost and Memory Usage

13.5.1 Computational Cost at Each Time Step

In this section, we focus on the analysis of computational cost at each time step for
the three implementation approaches, i.e., the direct calculation approach of (13.14)
with matrix-vector multiplication, Algorithm 1 for general ERKN integrators
determined by (13.12) and Algorithm 2 for symplectic ERKN integrators that are
equivalent to splitting methods. We estimate the computational cost for an explicit
ERKN integrator denoted by Nd and Nf , which respectively denote the basic
scalar operations (multiplication or addition) and function evaluations of f (u). Note
that the multiplication between an N-dimensional matrix-valued function and a
corresponding vector contains N2 basic scalar multiplications and N(N − 1) basic
scalar additions. Since the FFT (or IFFT) can be accomplished with O(N logN)

operations for an N-dimensional vector, we assume that O(N logN) = C̃ ·N logN ,
where C̃ is a positive constant independent of N .

We assume that the underlying ERKN integrator is of s-stages. The computa-
tional cost for each approach is shown in Table 13.1. This shows that the number of
function evaluations in one time step is the same for the three different approaches,
i.e., s. However, they differ greatly in the number of basic scalar operations. The



13.5 Analysis of Computational Cost and Memory Usage 443

Table 13.1 The number of floating point of calculation for the three implementation approaches

Number

Approach Nd Nf

Direct calculation (s2 + 7s + 6)N2 − (s + 2)N s

Algorithm 1 (2s + 3)C̃ ·N logN +
(

3s2

2
+ 15s

2
+ 4

)
N s

Algorithm 2 4(s + 1)C̃ ·N logN + (9s + 8)N s

primary difference is that the cost of the direct calculation approach is O(N2),
whereas the other two algorithms proposed in this chapter are O(N logN), which
will sharply decrease the calculation cost once the spatial grid number N isso large
that the spatial continuity can be nearly preserved by ERKN integrators, in the
sense of numerical computation. A careful observation shows that this advantage
essentially derives from the faster calculation of spectral derivatives by the FFT.

We now turn to the comparison between Algorithms 1 and 2. A rough estimate
may give that Algorithm 2 takes more basic operations than Algorithm 1, since
the coefficient of the dominant part N logN of the former is 4(s + 1), which
is more than that of the latter, i.e., 2s + 3. However, our numerical simulations
in Sect. 13.6 show that for a symplectic ERKN integrator of the type stated in
Theorem 13.4, Algorithm 2 consumes less CPU time than Algorithm 1. In order
to explain this phenomenon, we make a detailed comparison between the two
algorithms as follows.

For a fixed integer N , let ' = C̃ logN > 0. Then a comparison between
the computational cost of the two algorithms reduces to the comparison between

(2s + 3)' +
(

3s2

2
+ 15s

2
+ 4

)
= 3s2

2
+

(
15

2
+ 2'

)
s + (4 + 3') and

4(s + 1)' + (9s + 8) = (9 + 4')s + (8 + 4'). Since s is positive, the only

zero point of

(
3s2

2
+

(
15

2
+ 2'

)
s + (4+ 3')

)
−

(
(9 + 4')s + (8 + 4')

)
=

3s2

2
−
(

3

2
+ 2'

)
s−(4+') is s0 =

(
1

2
+ 2

3
'

)
+ 1

3

√(
3

2
+ 2'

)2

+ (24+ 6').

Therefore, the computational cost for Algorithm 2 will be less than that for
Algorithm 1 provided s � s0. On the contrary, Algorithm 2 costs more once s < s0.
Here, we list some possible values of s0 for different ' in Table 13.2. On noticing
that s denotes the stage of ERKN integrator and larger s always implies higher order,
we can roughly conclude that Algorithm 2 will be more efficient than Algorithm 1
for high-order symplectic ERKN integrators. Though the constant C̃ of O(N logN)

cannot be precisely determined, the numerical experiments in the following section
confirm that Algorithm 2 consumes less CPU time than Algorithm 1, even for the
symplectic ERKN integrator of 3 stages, which clearly supports the higher efficiency
of Algorithm 2.
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Table 13.2 Values of s0 for
different �

' 1 2 3 4

s0 3.3333 4.5465 5.8040 7.0860

Here it is remarked that we are concerned only with explicit ERKN integrators
in Algorithm 1. For implicit integrators, a similar analysis can be made, in which
iterative solutions are needed in the implementation. Likewise, the computational
cost for implicit ERKN integrators will have an order of magnitude O(N logN),
which is also much smaller than that of direct calculation, i.e., an order of magnitude
O(N2).

13.5.2 Occupied Memory and Maximum Number of Spatial
Mesh Grids

For the numerical experiments in Sect. 13.6, the program runs in MATLAB 2012a
on a computer Lenovo Yangtian A6860f (CPU: Intel (R) Core (TM) i5-6500 CPU @
3.20 GHz (4CPUs), Memory: 8 GB, Os: Microsoft Windows 7 with 64bit). Hence,
the maximum possible occupied memory is set as 8 GB to avoid memory overflow.
Besides, each real number is stored in the double-precision floating-point format,
which occupies 8 Bytes of memory.

Concerning the direct calculation procedure, all the coefficients Aij (V ), Bi(V ),
B̄i (V ), φ0(C

2
i V ), φ1(C

2
i V ), φ0(V ) and φ1(V ) should be calculated and stored

in advance. Since N denotes the number of spatial mesh grids, the numerical
solutions un+1 and u′n+1 are all N-dimensional vectors. This implies that each
coefficient of the ERKN integrators will be an N × N matrix, which needs N

times more memory storage than that of un+1 or u′n+1. Thus, we count up the
occupied memory by mainly considering the coefficients of the ERKN integrator
due to the large magnitude of N . We now estimate the maximum value of N under
the environment of 8 GB memory storage for an s-stage explicit ERKN integrator
determined by (13.12). It should be noted that both φ0(C

2
1V ) and φ1(C

2
1V ) do not

need be calculated once C1 = 0 for some explicit ERKN integrators.
For the one-dimensional case of the nonlinear wave equation (13.1), the least

required Bytes of memory storage is 8

(
s(s − 1)

2
+ 4s

)
N2 = 4s(s + 7)N2. This

implies that N should satisfy

4s(s + 7)N2 � 8× 10243, (13.46)

which yields

N � Nmax = 32768

√
2

s(s + 7)
. (13.47)
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For the two-dimensional case, we admit the assumption that the number Nx of grids
in the x-direction equals to the number Ny of grids in the y-direction, i.e., Nx =
Ny . In this case, un+1 and u′n+1 will be NxNy-dimensional vectors, and V is an
NxNy × NxNy matrix. Then we can obtain that Nx(= Ny) �

√
Nmax. Likewise,

the result Nx(= Ny = Nz) � 3
√
Nmax can be obtained in a similar manner under the

assumption Nx = Ny = Nz.
However, it follows from the description of Algorithms 1 and 2 that the only

stored values are un+1, u′n+1 and some other intermediate variables. Thus, we can
obtain the estimations as follows:

N � Ñmax = 10243

2+$
,

Nx(= Ny) �
√
Ñmax ,

Nx(= Ny = Nz) � 3
√
Ñmax ,

(13.48)

respectively for the one-dimensional, two-dimensional and three-dimensional cases.
Here the positive integer $ denotes the number of intermediate variables during the
implementation of the two algorithms, and $ = s + 2 for Algorithm 1 while $ = 4
for Algorithm 2.

In Table 13.3, we list some values of Nmax (or Ñmax) for different approaches
in all the three-dimensional cases with s = 4, 10, and 16. Some points can be
concluded from this table. First, the value of Ñmax is much larger than that of Nmax,
which indicates that the two algorithms presented in this chapter can admit more
dense spatial grids than the direct calculation procedure in order to nearly preserve
the spatial continuity. Second, for the one-dimensional case, all the values of Nmax
and Ñmax are larger than 1024, which means that all the three approaches can
nearly preserve the spatial continuity with sufficient spatial mesh grids. Third, for
the two-dimensional and three-dimensional cases, the direct calculation procedure
onlyallows a mesh grid number of which is no more than 100. In particular, for
the three-dimensional case, the admissible value of Nmax is less than 20. This
implies that ERKN integrators can hardly preserve the spatial continuity once the
direct calculation procedure is applied. However, for the algorithms presented in
this chapter, Ñmax is at least of magnitude of 512, which is nearly sufficient for the
most nonlinear wave equations to nearly preserve the spatial continuity. Finally, a
comparison between Algorithms 1 and 2 shows that the former will occupy a little
more memory than the latter.

13.6 Numerical Experiments

In this section, we conduct the numerical experiments with different ERKN
integrators in order to show the remarkable efficiency of the algorithms presented
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Table 13.3 The value of Nmax (or ˜Nmax) for different approaches in all the three-dimensional
cases with s = 4, 10, 16

Dimension

Approach One Two Three

s = 4
Direct calculation 6986 83 19

Algorithm 1 128 × 10242 11.31 × 1024 512

Algorithm 2 170.67 × 10242 13.06 × 1024 1.10 × 512

s = 10
Direct calculation 3554 59 15

Algorithm 1 73.14 × 10242 8.55 × 1024 0.83 × 512

Algorithm 2 170.67 × 10242 13.06 × 1024 1.10 × 512

s = 16
Direct calculation 2415 49 13

Algorithm 1 51.20 × 10242 7.16 × 1024 0.74 × 512

Algorithm 2 170.67 × 10242 13.06 × 1024 1.10 × 512

in this chapter when applied to nonlinear wave equations. The selected ERKN
integrators are as follows:

• ERKN3s4: the 3-stage fourth-order symmetric and symplectic ERKN integrator
[4, 38] that can be written as a splitting method ;

• ERKN3s4b: the 3-stage fourth-order ERKN integrator obtained by the RKN
method in [31];

• ERKN4s5: the 4-stage fifth-order ERKN integrator obtained by the RKN method
in [31];

• ERKN7s6: the 7-stage sixth-order symmetric and symplectic ERKN integrator
[38] that can be written as a splitting method;

• ERKN7s6b: the 7-stage sixth-order symplectic ERKN integrator proposed in [4];
• ERKN17s8: the 17-stage eighth-order symmetric and symplectic ERKN integra-

tor derived in [4, 38] that can be written as a splitting method.

We remark that, except for ERKN3s4, ERKN7s6 and ERKN17s8, the other three
methods cannot be written as splitting methods. For the three implementation
approaches, we respectively use the symbols D, A, and F to denote the direct
calculation procedure, Algorithms 1 and 2. For instance, the three implementations
of ERKN3s4 are respectively denoted by D3s4, A3s4 and F3s4. During the
numerical experiments, the numerical solution computed by ERKN16s10 (16-stage
ERKN method of order 10 derived in [4]) with sufficiently small stepsize is thought
of as the reference solution, when the analytical solution is not available. Note that
the Fourier spectral discretisation is used for all the problems considered in this
section. Hence, the discrete Hamiltonian energy corresponding to (13.3) has the
following form

Hn = 1

2
u′ᵀnu′n +

1

2
uᵀnMun + V (un),
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where M is the spectral differentiation matrix. In this sense, the global Hamiltonian
energy error is measured by GHEn = |Hn −H0|.
Problem 13.1 (Breather Soliton) We first consider the well-known sine-Gordon
equation (see, e.g. [13, 18])

∂2u

∂t2
= ∂2u

∂x2 − sin u,

on the region (x, t) ∈ [−L,L] × [0, T ], with the initial conditions

u(x, 0) = 0, ut (x, 0) = 4κ sech(κx),

and the boundary conditions

u(−L, t) = u(L, t) = 4 arctan
(
c−1 sech(κL) sin(cκt)

)
,

where κ = 1/
√

1+ c2. The exact solution is given by

u(x, t) = 4 arctan
(
c−1 sech(κx) sin(cκt)

)
, (13.49)

which is known as the breather solution of the sine-Gordon equation.

We set L = 40, T = 40 and c = 0.5 for this problem in the numerical
experiment. We use this problem having the exact solution (13.49) to verify and
show that the algorithms presented in this chapter work very well. The global error
(GE) results for each ERKN integrator with N = 512 and the time stepsize h = 0.2
are shown in Fig. 13.1, which are implemented by Algorithm 1. It confirms that these
algorithms perform perfectly for this problem. Meanwhile, the CPU times taken by
A3s4, A3s4b, A4s5, A7s6, A7s6b, and A17s8 are respectively 0.112, 0.114, 0.126,
0.178, 0.184, 0.429 s. These small values really support the theoretical prediction of
the high efficiency of Algorithm 1. Furthermore, for the three ERKN integrators that
are equivalent to splitting methods, we also implement them by Algorithm 2. The
difference between a numerical solution obtained by Algorithm 2 and its counterpart
Algorithm 1 is in the magnitude of O(10−11) for all the three ERKN integrators.
This fact confirms the consistency between the two algorithms. The CPU times of
F3s4, F7s6, and F17s8 are respectively 0.105, 0.147, and 0.242 s, which are less
than that of Algorithm 1. This fact strongly supports the earlier claim of the higher
efficiency of Algorithm 2 than Algorithm 1. In addition, the global Hamiltonian
energy errors (GHE) corresponding to Fig. 13.1 are shown in Fig. 13.2. It can be
observed from Fig. 13.2 that these ERKN integrators preserve the energy very well.

Note that since the mesh ratio h/x = 1.28 > 1, the finite difference
scheme may be numerical unstable for such a large mesh ratio. To illustrate this
point, we conduct further numerical experiments with the compact fourth-order
centraldifference scheme [39] for the spatial derivative. Meanwhile, we use the
3-stage fourth-order RKN method in [31] to discretise the temporal derivative.
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Fig. 13.1 Global errors (GE) of different methods on the region (x, t) ∈ [−40, 40] × [0, 40]. (a)
GE of ERKN3s4. (b) GE of ERKN3s4b. (c) GE of ERKN4s5. (d) GE of ERKN7s6. (e) GE of
ERKN7s6b. (f) GE of ERKN17s8

Exactly as we predicted, this method is unstable for these fixed h and x due to the
numerical overflow of solutions. This fact clearly shows the broader applicability
of the algorithms presented in this chapter than the finite difference method in
solving nonlinear wave equations, since the former admit large time stepsizes. To
numerically check the convergence of the integrators presented in this chapter, we
list their global errors at the final time T = 40 with different spatial stepsize x and
time stepsize h in Table 13.4, from which it can be observed that more dense mesh
grids indicate smaller global errors. This clearly supports the numerical convergence
of the semi-analytical integrators.
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Fig. 13.2 Global Hamiltonian energy errors (GHE) of different methods

Table 13.4 Global errors at the final time T = 40 with different mesh grids

(x, h) (5/4,1/5) (5/8,1/10) (5/16,1/20) (5/32,1/40)

ERKN3s4 4.2905 5.0385 × 10−3 1.0681 × 10−4 1.4253 × 10−4

ERKN3s4b 4.2633 5.0056 × 10−3 2.1863 × 10−4 1.6716 × 10−4

ERKN4s5 4.3140 6.0142 × 10−3 9.4580 × 10−6 4.1583 × 10−7

ERKN7s6 4.3101 5.8759 × 10−3 8.7842 × 10−7 2.8212 × 10−9

ERKN7s6b 4.3104 5.8812 × 10−3 9.5823 × 10−7 6.6574 × 10−9

ERKN17s8 4.3098 5.8720 × 10−3 8.6836 × 10−7 1.2319 × 10−11

Problem 13.2 Consider the nonlinear Klein–Gordon equation (see, e.g. [40, 41])

{
utt − uxx + u+ u3 = 0, 0 < x < L, t ∈ (0, T ),

u(0, t) = u(L, t),

with the periodic boundary condition. The initial conditions are given by

u(x, 0) = A

[
1+ cos

(
2π

L
x

)]
, ut (x, 0) = 0,

where L = 1.28 and A is the amplitude.

We set A = 20 for this problem in the numerical experiment. Such a large
amplitude makes this problem challenging for its numerical solution (see, e.g.
[40, 41]), since the solution will have an abrupt change in both time and space
directions. This phenomenon can be observed from Fig. 13.3, where we plot the
reference numerical solution in the region (x, t) ∈ [0, 1.28] × [0, 10]. To show the
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Fig. 13.3 Reference solution with ERKN10

effectiveness of the ERKN integrators, we plot the global errors of these methods
in Fig. 13.4 with the time stepsize h = 0.001. It can be observed from Fig. 13.4
that ERKN integrators really can solve this problem with some accuracy. It is
noted that, the difference between numerical solutions obtained from the three
implementation approaches for each ERKN integrator are of magnitude O(10−12),
which confirms that the two algorithms presented in this chapter are promising.
The global Hamiltonian energy errors corresponding to Fig. 13.4 are presented in
Fig. 13.5, which show the good preservation of the ERKN integrator presented in
this chapter.

To compare the efficiency of the three implementation approaches, we carry
out these methods with different numbers N of spatial grid points and the fixed
time stepsize h = 0.001. The numerical results for the consumed CPU time are
shown in Tables 13.5, and 13.6 indicates the detailed ratio of CPU time of the
direct calculation procedure to that of Algorithm 1 (or Algorithm 2). It is clear
from the two tables that the two algorithms cost much less time than the direct
calculation procedure for all the six ERKN integrators. This fact supports the
theoretical analysis that the algorithms described in this chapter really can nearly
preserve the spatial continuity with a large number N of spatial grid points and
reasonable computational cost. In Table 13.6, for the underlying ERKN methods
larger N always implies a larger ratio, which confirms that the superiority of these
algorithms over the direct calculation procedure will be more marked for a larger
grid number N . Moreover, the comparison between Algorithms 1 and 2 in the two
tables shows that Algorithm 2 always consumes less CPU time than Algorithm 1.
In particular, for a fixed N , Algorithm 2 becomes more efficient (larger ratio in
Table 13.6) than Algorithm 1 for ERKN methods of higher order (hence with more
stages, i.e., a bigger s).
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Fig. 13.4 Global errors (GE) of different methods on the region (x, t) ∈ [0, 1.28] × [9, 10]. (a)
GE of ERKN3s4 with N = 27. (b) GE of ERKN3s4b with N = 28. (c) GE of ERKN3s5 with
N = 28. (d) GE of ERKN7s6 with N = 28. (e) GE of ERKN7s6b with N = 28. (f) GE of
ERKN17s8 with N = 29

Problem 13.3 We then consider the two-dimensional sine-Gordon equation

utt − (uxx + uyy) = − sin(u), t > 0

with the homogeneous Neumann boundary condition

ux(±14, y, t) = 0, uy(x,±14, t) = 0
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Fig. 13.5 Global energy errors (GHE) of different methods corresponding to Fig. 13.4

Table 13.5 CPU time
(seconds) consumed by each
method for different N with
the time stepsize h = 0.001

N = 64 N = 128 N = 256 N = 512

D3s4 3.180 8.807 39.573 241.768

A3s4 1.266 2.144 3.626 6.286

F3s4 0.935 1.706 3.106 5.569

D3s4b 2.534 10.096 38.341 242.901

A3s4b 1.241 2.147 3.569 6.337

D4s5 2.796 12.767 46.291 310.244

A4s5 1.487 2.792 4.344 7.432

D7s6 7.228 25.079 83.279 568.355

A7s6 2.374 4.347 6.665 11.645

F7s6 1.714 3.222 5.571 10.422

D7s6b 7.236 24.720 70.033 574.093

A7s6b 2.366 4.319 6.685 11.857

D17s8 30.047 102.216 319.589 2093.492

A17s8 6.663 10.357 16.204 29.152

F17s8 3.616 6.665 11.654 21.877

in the region (x, y) ∈ [−14, 14] × [−14, 14]. The initial conditions are given by

u(x, y, 0)=4 arctan
(

exp
(
3−√

x2 + y2
))
, ut (x, y, 0)=0,

(x, y) ∈ [−14, 14] × [−14, 14].

The solutions of this problem are circular ring solitons (see, e.g. [18, 42, 43]).

For solving this problem, the eighth-order integrator ERKN17s8 implemented
by F17s8 is used to make a comparison with the method GLC4 in [18]. Note that
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Table 13.6 Ratio of CPU
time of direct calculation
approach to that of the two
algorithms

N = 64 N = 128 N = 256 N = 512

D3s4/A3s4 2.5118 4.1077 10.9137 38.4613

D3s4/F3s4 3.4011 5.1624 12.7408 43.4132

D3s4b/A3s4b 2.0419 4.7024 10.7428 38.3306

D4s5/A4s5 1.8803 4.5727 10.6563 41.7443

D7s6/A7s6 3.0447 5.7693 12.4950 48.8068

D7s6/F7s6 4.2170 7.7837 14.9487 54.5342

D7s6b/F7s6b 3.0583 5.7235 10.761 48.4181

D17s8/A17s8 4.5085 9.8693 19.7228 71.8130

D17s8/F17s8 8.3095 15.3362 27.4231 95.6937

GLC4 is also of order eight. Here, we select the same time stepsize h = 0.1 and
mesh region size 400× 400 as those in [18]. Numerical results of sin(u/2) and the
corresponding contour plots at the time points t = 0, 4, 8, 11.5, 13, and 15 are
shown in Figs. 13.6 and 13.7, which are nearly the same as the corresponding figures
in [18]. This shows the effectiveness of F17s8 in solving this problem. In particular,
for t = 15 the CPU time of F17s8 is only 38.67 s, which is much less than that of
GLC4, i.e. 668.05 s (see [18]). This fact again gives a further support for the high
efficiency of the algorithms presented in this chapter. Finally, we display the good
energy conservation of ERKN17s8 in Fig. 13.8.

With regard to the formulation and analysis of energy-preserving schemes for
Klein–Gordon equations, see Chap. 9 (see also [44]). The framework of semi-
analytical integrators for solving partial differential equations was initially proposed
in [10], and this chapter focuses on the efficient implementation issue of the semi-
analytical integrators.

13.7 Conclusions and Discussions

Although there has been far less numerical treatment of PDEs in the structure-
preserving literature than that of ODEs, the recent growth of geometric integration
for nonlinear Hamiltonian PDEs has led to the development of numerical schemes
which systematically incorporate qualitative features of the underlying problem
into their structure. In general, the qualitative characteristics of structure-preserving
integrators are mainly concerned with the symmetry, the symplecticity, the multi-
symplecticity, the conservation of energy or first integrals, the high oscillation or
stiffness, and so on (see, e.g. [30, 45–47]). In this chapter, by presenting a class of
semi-analytical ERKN integrators and their implementation approaches for solving
nonlinear wave equations, we incorporated the spatial continuity into the structure-
preserving property as well. These ERKN integrators can nearly preserve both
the spatial continuity and the high oscillation of the original problem, in theory.
In order to effectively realize the ERKN integrators on a computer, we presented
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Fig. 13.6 Circular ring solitons: the function of sin(u/2) at the time t = 0, 4, 8, 11.5, 13 and 15

two algorithms accompanied with FFT technique, besides the direct calculation
procedure. It follows from the detailed analysis of the computational cost and the
memory storage that the algorithms presented in this chapter possess the superiority
of smaller computational cost and lower memory storage over the direct calculation
procedure. In particular, for nonlinear wave equations of high dimension, the direct
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Fig. 13.7 Circular ring solitons: contours of sin(u/2) at the time t = 0, 4, 8, 11.5, 13 and 15

calculation procedure could hardly be used to preserve the spatial continuity, due
to the crucial restriction on the dimension of the spatial grid points, while the
two algorithms, Algorithms 1 and 2, do not suffer from this trouble, due to the
larger maximum number of admissible spatial grid point. Moreover, Algorithm 2,
which is suitable for important symplectic ERKN integrators for Hamiltonian
systems, is a bit more efficient than Algorithm 1. Finally, we conducted numerical
experiments including one-dimensional and two-dimensional wave equations in
Sect. 13.6, and the numerical results show strong support for the theoretical analysis
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Fig. 13.8 Global energy errors (GHE) of ERKN17s8

presented in this chapter. The numerical results also demonstrate an important fact
that, in comparison with the finite difference method, the algorithms presented in
this chapter, which can nearly preserve both the spatial continuity and the high
oscillation, are robust and efficient when applied to nonlinear wave equations.

It is noted that for nonlinear wave equations equipped with other boundary
conditions, such as the homogeneous Dirichlet or Neumann boundary conditions,
we can also design such kind of efficient algorithms by just replacing the FFT with
the Discrete Fast Cosine/Sine Transform, once the Fourier spectral discretisation
is replaced by the cosine/sine scheme [18, 42, 43]. Furthermore, for general
boundary conditions, the Chebyshev spectral discretisation accompanied with the
FFT technique is also possible, and a further research in this area is needed.

The material in this chapter is based on the work by Mei et al. [48].
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Chapter 14
Long-Time Momentum and Actions
Behaviour of Energy-Preserving Methods
for Wave Equations

Wave equations have physically very important properties which should be
respected by numerical schemes in order to predict correctly the solution over
a long-time period. In this chapter, the long-time behaviour of momentum and
actions for energy-preserving methods are analysed in detail for semilinear wave
equations.

14.1 Introduction

The main theme of this chapter is the long-time behaviour of energy-preserving (EP)
methods when applied to the following one-dimensional semilinear wave equation
(see [1–3])

∂2
t u− ∂2

xu+ ρu+ g(u) = 0, −π � x � π, t > 0, (14.1)

where g is a nonlinear and smooth real function with g(0) = g′(0) = 0 and ρ

is a positive number. Following the Refs. [1–3], we assume that the initial values
u(·, 0) and ∂tu(·, 0) for this equation are bounded by a small parameter ε, which
provides small initial data in appropriate Sobolev norms. Here, we consider 2π-
periodic boundary condition u(x, t) = u(x + 2π, t) for (14.1).

As is known, several important quantities are conserved by the solution of (14.1).
Firstly, the total energy

H(u, v) = 1

2π

∫ π

−π

(1

2

(
v2 + (∂xu)

2 + ρu2)+ U(u)
)

dx
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is exactly preserved along the solution, where v = ∂tu andU(u) is the potential such
that U ′(u) = g(u). Secondly, the solution of (14.1) also conserves the momentum

K(u, v) = 1

2π

∫ π

−π
∂xu(x)v(x)dx.

Thirdly, the harmonic actions

Ij (u, v) = ωj

2
|uj |2 + 1

2ωj
|vj |2, j ∈ Z

are conserved for the linear wave equation, i.e., g(u) ≡ 0, where ωj =
√
ρ + j2 for

j ∈ Z. In the nonlinear case, it has been proved in [2, 4] that, for smooth and small
initial data and for almost all values of ρ > 0, the actions Ij (u, v) remain constant
up to small deviations over a long-time period.

In the past decades it has become increasingly important to design numerical
integrators for wave equations aiming at respecting qualitative properties of the
solution (see, e.g. [5–14]). Among others, long-time conservation properties of
numerical methods when applied to wave equations have been well studied [1–
3, 15, 16]. All these analyses are achieved by the technique of modulated Fourier
expansions, which was developed by Hairer and Lubich in [17] and has been
frequently used in the long-term analysis (see, e.g. [18–22]). On the other hand,
as an important kind of method, energy-preserving (EP) methods have also been the
subject of many investigations for wave equations. EP methods can exactly preserve
the energy of the system under consideration. Concerning some examples of this
topic, we refer the readers to [23–31]. Unfortunately, it seems that the study of the
long-time behaviour of EP methods in other structure-preserving aspects is quite
inadequate for wave equations in the literature, e.g. the numerical conservation of
momentum and actions. This chapter focuses on this point.

14.2 Full Discretisation

This section presents a full discretisation for solving the semilinear wave equation
(14.1). We begin with a spectral semidiscretisation in space introduced in [1, 3], and
then use EP methods in time.

14.2.1 Spectral Semidiscretisation in Space

We here choose equidistant collocation points xk = kπ/M , k = −M,−M +
1, · · · ,M − 1, for the pseudospectral semidiscretisation in space and consider a
pair of real-valued trigonometric polynomials as an approximation for the solution
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of (14.1)

uM(x, t) =
′∑

|j |�M

qj (t)eijx, vM(x, t) =
′∑

|j |�M

pj (t)eijx, i = √−1,

(14.2)

where pj (t) = d

dt
qj (t) and the prime indicates that the first and last terms in the

summation are taken with the factor 1/2. We collect all the qj in a 2M-periodic
coefficient vector q(t) = (qj (t)), which is a solution of the 2M-dimensional system
of oscillatory ODEs

d2q

dt2
+Ω2q = f (q), (14.3)

where f (q) = −F2Mg(F−1
2Mq),Ω is diagonal with entries ωj , and F2M denotes

the discrete Fourier transform (F2Mw)j = 1

2M

M−1∑
k=−M

wke−ijxk for |j | � M. It is

noted that the system (14.3) is a finite-dimensional complex Hamiltonian system
with the energy

HM(p, q) = 1

2

′∑
|j |�M

(|pj |2 + ω2
j |qj |2

)+ V (q), (14.4)

where V (q) = 1

2M

M−1∑
k=−M

U((F−1
2Mq)k). Accordingly, the actions (for |j | � M)

and the momentum of (14.3) are respectively given by

Ij (p, q) = ωj

2
|qj |2 + 1

2ωj
|pj |2, K(p, q) = −

′′∑
|j |�M

ijq−jpj , i = √−1,

where the double prime indicates that the first and last terms in the summation
are taken with the factor 1/4. We are interested only in real approximation (14.2)
throughout this chapter, and hence it holds that q−j = q̄j , p−j = p̄j and I−j = Ij .

It is important to note that the energy (14.4) is exactly preserved along the
solution of (14.3). For the momentum and actions in the semidiscretisation, the
following results have been proved in [3].
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Theorem 14.1 (See [3]) Under the non-resonance condition (14.10) and the
Assumption (14.7) which are stated in Sect. 14.3.1, it holds that

M∑
l=0

ω2s+1
l

|Il(p(t), q(t))− Il(p(0), q(0))|
ε2 � Cε,

|K(p(t), q(t))−K(p(0), q(0))|
ε2 � CtεM−s+1,

where 0 � t � ε−N+1 and the constant C is independent of ε,M, h and t .

14.2.2 EP Methods in Time

It is known that among typical EP integrators is the average vector field (AVF)
method (see [32]). Unfortunately, however, it has been pointed out in Chap. 1 that
the AVF method cannot efficiently solve the highly oscillatory system (14.3) (see
also [33, 34]) since the AVF method is not oscillation preserving. Moreover, the
integral appearing in the AVF formula is dependent on the frequency matrix Ω .
This fact leads to the following definition.

Definition 14.1 (See [33, 34]) For efficiently solving the oscillatory system (14.3),
the adapted average vector field (AAVF) method has the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qn+1 = φ0(V )qn + hφ1(V )pn + h2φ2(V )

∫ 1

0
f ((1− σ)qn + σqn+1)dσ,

pn+1 = −hΩ2φ1(V )qn + φ0(V )pn + hφ1(V )

∫ 1

0
f ((1− σ)qn + σqn+1)dσ,

(14.5)

where h is the stepsize, and

φl(V ) :=
∞∑
k=0

(−1)kV k

(2k + l)! , l = 0, 1, 2 (14.6)

are matrix-valued functions of V = h2Ω2.

According to (14.6), it is clear that

φ0(V ) = cos(hΩ), φ1(V ) = sin(hΩ)(hΩ)−1, φ2(V ) = (I − cos(hΩ))(hΩ)−2 .

It is interesting to note that as V → 0 the method (14.5) reduces to the well-known
AVF method. The following properties of the AAVF method have been shown in
[33, 34].
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Theorem 14.2 (See [33, 34]) The AAVFmethod is symmetric and exactly preserves
the energy (14.4), which means that

HM(pn+1, qn+1) = HM(pn, qn) for n = 0, 1, · · · .

Theorem 14.2 ensures that the energy-preserving AAVF method does not exclude
symmetry structure, and, as is known, preserving the energy and symmetry of the
system simultaneously at the discrete level is important for geometric integrators.

14.3 Main Result and Numerical Experiment

In what follows, we shall use the following notations (see [1]). We denote

|k| = (|kl|)Ml=0, ‖k‖ =
M∑
l=0

|kl|, k · ω =
M∑
l=0

klωl, ωσ |k| =
M∏
l=0

ω
σ |kl |
l .

for sequences of integers k = (kl)
M
l=0, ω = (ωl)

M
l=0 and a real number σ . We also

denote by 〈j 〉 the unit coordinate vector (0, · · · , 0, 1, 0, · · · , 0)ᵀ with 1 in the j -th
entry 1 and 0 elsewhere. For s ∈ R

+, the space of 2M-periodic sequences q = (qj )

endowed with the weighted norm ‖q‖s =
( ′′∑
|j |�M

ω2s
j |qj |2

)1/2
is denoted by Hs .

Furthermore, we set

[[k]] =
{
(‖k‖ + 1)/2, k 
= 0,

3/2, k = 0.

14.3.1 Main Result

In this subsection we first present the main result of this chapter, which will
be illustrated by numerical experiments. The following assumptions (see [1]) are
needed for the main result.

Assumption 14.1 It is assumed that the initial values of (14.3) are bounded by

( ‖q(0)‖2
s+1 + ‖p(0)‖2

s

)1/2 � ε (14.7)

with a small parameter ε > 0.
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Assumption 14.2 The following non-resonance condition holds for a given step-
size h:∣∣∣∣sin

(
h

2
(ωj − k · ω)

)
· sin

(
h

2
(ωj + k · ω)

)∣∣∣∣ � ε1/2h2(ωj + |k · ω|). (14.8)

If this condition is not true, we define a set of near-resonant indices

Rε,h = {(j, k) : |j | � M, ‖k‖ � 2N, k 
= ±〈j 〉, not satisfying (14.8)},
(14.9)

where N � 1 is the truncation number of the expansion (14.15) which will be
presented in the next section. Moreover, we assume that there exist σ > 0 and a
constant C0 such that

sup
(j,k)∈Rε,h

ωσ
j

ωσ |k| ε
‖k‖/2 � C0ε

N , (14.10)

for the set Rε,h.

Assumption 14.3 Assume that the following numerical non-resonance condition

| sin(hωj )| � hε1/2 for |j | � M, (14.11)

is satisfied.

Assumption 14.4 Suppose that, for a positive constant c > 0, another non-
resonance condition∣∣∣∣sin

(
h

2
(ωj − k · ω)

)
· sin

(
h

2
(ωj + k · ω)

)∣∣∣∣ � ch2|2φ2(h
2ω2

j )|

for (j, k) of the form j = j1 + j2 and k = ±〈j1〉 ± 〈j2〉,
(14.12)

is also fulfilled, which leads to improved conservation estimates.

The following theorem represents the main result of this chapter.

Theorem 14.3 We define the following modified momentum and actions, respec-
tively

Îj (p, q) =
cos

(
1

2
hωj

)

sinc
(

1

2
hωj

) Ij (p, q), K̂(p, q) = −
′′∑

|j |�M

ij
cos

(
1

2
hωj

)

sinc
(

1

2
hωj

)q−jpj ,
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and choose the stepsize h such that

∣∣∣∣∣∣∣∣
cos

(
1

2
hωj

)

sinc

(
1

2
hωj

)
∣∣∣∣∣∣∣∣
� C1 for |j | � M. (14.13)

Then under the conditions of Assumptions 14.1–14.4 with s � σ + 1, for the AAVF
method (14.5) and 0 � t = nh � ε−N+1, the following near-conservation estimates
of the modified momentum and actions

M∑
l=0

ω2s+1
l

|Îl (pn, qn)− Îl (p0, q0)|
ε2 � Cε,

|K̂(pn, qn)− K̂(p0, q0)|
ε2

� C(ε +M−s + εtM−s+1)

hold with a constant C, depending on s,N,C0 and C1, but not on ε,M, h and time
t . If (14.12) is not satisfied, then the bound Cε is weakened to Cε1/2.

The proof of this theorem will be shown in detail in Sect. 14.4 based on the
technique of multi-frequency modulated Fourier expansions. It is remarked that
the above result for the AAVF method with the integral is also true for the AAVF
method with a suitable quadrature rule instead of the integral, and this point will be
explained briefly in Sect. 14.5.

An interesting study of the long-time behaviour of a symmetric and symplectic
trigonometric integrator for solving wave equations was made by Cohen et al.
in [1], and it was shown that this integrator has a near-conservation of energy,
momentum and actions in numerical discretisations. However, it is noted that the
method studied in [1] cannot preserve the energy (14.4) exactly. Fortunately, it
follows from Theorems 14.2 and 14.3 that the AAVF method not only preserves
the energy (14.4) exactly but also has a near-conservation of modified momentum
and actions over long terms.

Remark 14.1 Theorem 14.3 claims that the AAVF method has a near-conservation
of a modified momentum and modified actions over long terms. We here remark that
we have tried to prove long-time conservation for natural discretisations. However,
after the whole procedure of the proof using modulated Fourier expansion, it turns
out that artificial coefficients cos(hωj )/ sin(hωj/2) form part of each term of the
summation of the natural discretisation. Therefore, we only obtain the conservation
of the modified momentum and modified actions. Similar results have also been
shown in some other publications. For example, the authors in [19] proved long-
time conservation of modified energy and modified action for the Störmer-Verlet
method and in [35], conservation of the modified energy and modified magnetic
moment were shown for a variational integrator. In both publications, long-time
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conservation of natural invariants was not given. We also note that although the
result cannot be obtained for the momentum K and actions Ij , K and Ij are no
longer exactly conserved quantities in the semidiscretisation, which can be seen
from Theorem 14.1. Moreover, it will be shown in the next subsection that, in
comparison with the near-conservation of K and Ij , the modified momentum and
modified actions are preserved rather well by the AAVF method. This supports the
result of Theorem 14.3.

14.3.2 Numerical Experiments

In what follows, we implement two numerical experiments to show the behaviour
of the AAVF method. Since the AAVF method is implicit, iteration solutions are
needed. Here, we use fixed-point iteration in practical computation. We set 10−16 as
the error tolerance and 100 as the maximum number of iterates.

Problem 14.1 Consider the semilinear wave equation (14.1), where ρ = 0.5 and
g(u) = −u2. The initial conditions are given by (see [1])

u(x, 0) = 0.1

(
x

π
− 1

)3( x

π
+ 1

)2
, ∂t u(x, 0) = 0.01

x

π

(
x

π
− 1

)(
x

π
+ 1

)2
,

for−π � x � π. We carry out the spatial discretisation1 with the dimension 2M =
27 and apply the midpoint rule to the integral2 appearing in the AAVF formula
(14.5), which yields

{
qn+1 = φ0(V )qn + hφ1(V )pn + h2φ2(V )f ((qn + qn+1)/2),

pn+1 = −hΩ2φ1(V )qn + φ0(V )pn + hφ1(V )f ((qn + qn+1)/2).
(14.14)

It is easily verified that the assumption (14.7) holds for s = 2 with ε ≈ 0.1. We solve
this problem with the stepsize h = 0.05 on [0, 10000], and the relative errors of
momentum/modified momentum and actions/modified actions against t are shown

1It is noted that for wave equations, the spatial discretisation with the dimension 2M = 27 has
been considered in [1, 8, 36] and it worked well in those publications. That is the reason why we
use the spatial discretisation with 2M = 27 here.
2From the analysis of Sect. 14.5, it follows that the main result is still true for the AAVF method
with some quadrature rule.
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Fig. 14.1 The logarithm of the errors against t

in Fig. 14.1. We here adopt the following notations:

errK = |K(pn, qn)−K(p0, q0)|
|K(p0, q0)| , errMK = |K̂(pn, qn)− K̂(p0, q0)|

|K̂(p0, q0)|
,

errI =

M∑
l=0

ω5
l |Il(pn, qn)− Il(p0, q0)|
M∑
l=0

ω5
l |Il(p0, q0)|

, errMI =

M∑
l=0

ω5
l |Îl(pn, qn)− Îl (p0, q0)|
M∑
l=0

ω5
l |Îl(p0, q0)|

.

It follows from Fig. 14.1 that the modified momentum and modified actions are
better conserved than the momentum and actions, which supports the results given
in Theorem 14.3.

We next show the efficiency of the AAVF method in comparison with some other
methods. To this end, we consider the classical Störmer-Verlet formula (denoted by
SV), Gautschi’s method of order two (denoted by GM1s2) given in [17] and the two-
stage diagonally implicit symplectic Runge–Kutta method of order three (denoted
by RK2s3) presented in [37]. With regard to Gautschi’s method, its coefficient
functions are chosen as φ(ξ) = 1 andψ(ξ) = (sin(ξ)/ξ)2. The long-time behaviour
of this method has been shown in [17], and the non-resonance conditions given in
[1] are satisfied for this method. We first solve the system on [0, 10]with h = 0.2/2j

for j = 2, 3, 4, 5, and the errors GE = ( ‖qn − q‖2
3 + ‖pn − p‖2

2

)1/2 measured at
the final time against the CPU time are presented in Fig. 14.2a. We then integrate the
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Fig. 14.2 (a) The logarithm of the errors against the logarithm of CPU time. (b) The logarithm
of the energy errors against the logarithm of time

problem on [0, tend] with h = 0.01 and tend = 10j for j = 0, 1, 2, 3. The errors of
the semidiscrete energy conservation are presented in Fig. 14.2b. It can be observed
from Fig. 14.2 that the AAVF method shows good overall efficiency.

Problem 14.2 Consider the semilinear Klein–Gordon equation

⎧⎪⎨
⎪⎩
∂2
t u− a2∂2

xu = bu3 − au, −π � x � π, u(−π, t) = u(π, t), 0 � t � T ,

u(x, 0) =
√

2a

b
sech(λx), ut (x, 0) = cλ

√
2a

b
sech(λx) tanh(λx)

where λ =
√

a

a2 − c2 and a, b, a2 − c2 > 0. The exact solution is

u(x, t) =
√

2a

b
sech(λ(x − ct)).

The choice of parameters a = 1, b = 0.01, c = 0.25 makes this problem fit into the
form (14.1).

Likewise, the spatial variable is discretised with the dimension 2M = 27, and
it can be verified that the assumption (14.7) is true for s = 1 with ε ≈ 0.015.
This problem is solved on [0, 10000] with h = 0.05, and the relative errors of
momentum/modified momentum and actions/modified actions against t are shown
in Fig. 14.3.
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Fig. 14.3 The logarithm of the errors against t

We then apply the AAVF method as well as the methods SV, GM1s2, and RK2s3
to the problem on [0, 100] with h = 0.2/2j for j = 0, 1, 2, 3. The errors measured
at the final time against the CPU time are given in Fig. 14.4a. Finally we solve
the problem on [0, tend] with h = 0.01 and tend = 10j for j = 0, 1, 2, 3, and
present the errors of the semidiscrete energy conservation in Fig. 14.4b. Here, it
is remarked that for this problem, the conservation of modified momentum and
modified actions seems to be similar to those for the natural discretisations of
momentum and actions. The reason is that, for some problems, it can be checked
that the modified momentum and modified actions are very close to the natural ones
of the considered system. Apart from this, according to Fig. 14.4, it is clear that
Gautschi’s method behaves at least as well as AAVF since both methods behave
similarly with respect to the conservation of invariants, but Gautschi’s method is
explicit while AAVF is implicit although both methods are of order two.

14.4 The Proof of the Main Result

This section concerns the proof of Theorem 14.3. We first present the outline of the
proof and then show the key points one by one since the proof is a bit long.
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Fig. 14.4 (a) The logarithm of the errors against the logarithm of CPU time. (b) The logarithm of
the energy errors against the logarithm of time

14.4.1 The Outline of the Proof

The proof relies on a careful study of a modulated Fourier expansion of the AAVF
method (14.5). It is assumed that the conditions of Theorem 14.3 are true. For the
numerical solution (pn, qn), determined by (14.5), we will consider the following
truncated multi-frequency modulated Fourier expansion (with N from (14.9))

q̃(t) =
∑

‖k‖�2N

ei(k·ω)t ζ k(εt), p̃(t) =
∑

‖k‖�2N

ei(k·ω)tηk(εt), (14.15)

where t = nh and ζ−k−j = ζ kj , η−k−j = ηkj . For this modulated Fourier expansion, the
following key points will be addressed one by one in the rest of this section.

• Formal modulation equations for the modulation functions are derived in
Sect. 14.4.2.

• We consider an iterative construction of the functions using reverse Picard
iteration in Sect. 14.4.3.

• We then work with a more convenient rescaling and study the estimation of non-
linear terms in Sect. 14.4.4.

• Abstract reformulation of the iteration is presented in Sect. 14.4.5.
• We control the size of the numerical solution by studying the bounds of

modulation functions in Sect. 14.4.6.
• The bound of the defect is estimated in Sect. 14.4.7.
• We study the difference between the numerical solution and its modulated

Fourier expansion in Sect. 14.4.8.
• We show two invariants of the modulation system and establish their relationship

with the modified momentum and modified actions in Sect. 14.4.9.
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• Finally, the previous results that are valid only on a short time interval are
extended to a long-time interval in Sect. 14.4.10.

It is noted that the above procedure is a standard approach to the study of
the long-time behaviour of numerical methods of Hamiltonian partial differential
equations by using modulated Fourier expansions (see, e.g. [1–3, 15, 16]). Although
the proof presented here closely follows these previous publications, there are novel
modifications adapted to the AAVF method in each part. The differences in the
analysis arise due to the implicitness of the AAVF method and the integral appearing
in the method.

Throughout the proof, denote by C a generic constant which is independent of
ε,M, h and t = nh. The following lemma, presented in [2], will be needed in the
analysis of this chapter.

Lemma 14.1 (See [2]) For s > 1/2, one has
∑

‖k‖�K

ω−2s|k| � CK,s � ∞. For

s > 1/2 and m � 2, it is true that

sup
‖k‖�K

∑
k1+···+km=k

ω−2s(|k1|+···+|km|)

ω−2s|k| � Cm,K,s <∞,

where the sum is taken over (k1, · · · , km) satisfying ∥∥ki∥∥ � K . For s � 1, it is

further true that sup‖k‖�K

∑
l�0
|kl|ω2s+1

l

ω2s|k|(1+ |k · ω|) � CK,s <∞.

14.4.2 Modulation Equations

We commence from the formulation of the modulation equations for the modulated
functions. To this end, we first define five operators by

Lk
1 : = ei(k·ω)heεhD − 2 cos(hΩ)+ e−i(k·ω)he−εhD,

Lk
2 : = e

1
2 i(k·ω)he

1
2 εhD + e−

1
2 i(k·ω)he−

1
2 εhD,

Lk
3 : = (ei(k·ω)heεhD − 1)(ei(k·ω)heεhD + 1)−1,

Lk
4(σ ) : = (1− σ)e−

1
2 i(k·ω)he−

h
2 εD + σe

1
2 i(k·ω)he

h
2 εD,

Lk : = (Lk
2)
−1Lk

1,

where D is the differential operator (see [20]). Then the following results for these
operators are essential in the analysis.
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Proposition 14.1 The operator Lk can be expressed in Taylor expansions as
follows:

L±〈j〉(hD)α
±〈j〉
j (εt) = ±2iεhs〈j〉α̇±〈j〉j (εt)+ 1

2
ε2h2 sec

(
1

2
hωj

)
α̈
±〈j〉
j (εt)+ · · · ,

Lk(hD)αkj (εt) = 2
s〈j〉+ks〈j〉−k

ck
αkj (εt)+ iεh

sk(1+ c〈j〉+kc〈j〉−k)
c2
k

α̇kj (εt)+ · · · ,
(14.16)

for |j | > 0 and k 
= ±〈j 〉, where sk = sin

(
h

2
(k · ω)

)
and ck = cos

(
h

2
(k · ω)

)
.

The Taylor expansions of Lk
3 are of the forms

Lk
3α

k
j (εt) = i tan

(
1

2
h(k · ω)

)
αkj (εt)+

hε

1+ c2k
α̇kj (εt)+ · · · ,

for |j | > 0 and ‖k‖ � 2N . Moreover, for the operator Lk
4(σ ) with ‖k‖ � 2N , we

have

Lk
4

(
1

2

)
= cos

(
h(k · ω)

2

)
+ 1

2
sin

(
h(k · ω)

2

)
(ihεD) + · · · .

Theorem 14.4 (Modulation Equations) The formal modulation equations of the
modulated functions ζ k are given by

L±〈j〉ζ±〈j〉j =− h2φ2(h
2ω2

j )
∑
m�2

g(m)(0)

m!
∑

k1+···+km=±〈j〉

′∑
j1+···+jm≡j mod 2M

·
∫ 1

0

[(
ξk

1

j1
· · · · · ξkmjm

)
(tε, σ )

]
dσ,

Lkζ kj =− h2φ2(h
2ω2

j )
∑
m�2

g(m)(0)

m!
∑

k1+···+km=k

′∑
j1+···+jm≡j mod 2M

·
∫ 1

0

[(
ξk

1

j1
· · · · · ξkmjm

)
(tε, σ )

]
dσ, for k 
= ±〈j 〉,

(14.17)
where Lk is defined by (14.16) and

ξk(εt, σ ) = Lk
4(σ )ζ

k(εt).
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The modulation equations for ηk are determined by

η
±〈j〉
j = ±iωjζ

±〈j〉
j +O(hε), ηkj =

tan

(
1

2
h(k · ω)

)

tan

(
1

2
hωj

) iωj ζ
k
j +O(hε)

(14.18)
for k 
= ±〈j 〉.
Proof The proof will be divided into two parts.

The first part is the proof of (14.17).
Using the symmetry of the AAVF method and the following property

∫ 1

0
f ((1− σ)qn + σqn−1)dσ =

∫ 1

0
f ((1− σ)qn−1 + σqn)dσ,

leads to

qn+1 − 2 cos(hΩ)qn + qn−1

= h2φ2(V )

[ ∫ 1

0
f ((1− σ)qn + σqn+1)dσ +

∫ 1

0
f ((1− σ)qn−1 + σqn)dσ

]
.

(14.19)

We then seek for a modulated Fourier expansion of the form

q̃h(t + h

2
, σ ) =

∑
‖k‖�2N

e
i(k·ω)

(
t+ h

2

)
ξk

(
ε

(
t + h

2

)
, σ

)

for the term (1− σ)qn + σqn+1 appearing in (14.19). This implies that

ξ k
(
ε

(
t + h

2

)
, σ

)
=
(
(1− σ)e−

1
2 i(k·ω)he−

h
2 εD + σe

1
2 i(k·ω)he

h
2 εD

)
ζ k

(
ε

(
t + h

2

))

=Lk
4(σ )ζ

k

(
ε

(
t + h

2

))
. (14.20)

Likewise, for (1 − σ)qn−1 + σqn, we can obtain the following modulated Fourier
expansion

q̃h(t − h

2
, σ ) =

∑
‖k‖�2N

ei(k·ω)(t− h
2 )ξk

(
ε

(
t − h

2

)
, σ

)
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where

ξk
(
ε

(
t − h

2

)
, σ

)
= Lk

4(σ )ζ
k

(
ε

(
t − h

2

))
. (14.21)

Inserting the modulated Fourier expansions (14.15), (14.20), and (14.21) into
(14.19) yields

q̃(t + h)− 2 cos(hΩ)q̃(t)+ q̃(t − h)

=h2φ2(V )

[ ∫ 1

0
f

(
q̃h

(
t + h

2
, σ

))
dσ +

∫ 1

0
f

(
q̃h

(
t − h

2
, σ

))
dσ

]
,

which can be formulated as

(e
1
2hD + e−

1
2hD)−1(ehD − 2 cos(hΩ)+ e−hD)q̃(t) = h2φ2(V )

∫ 1

0
f (q̃h(t, σ ))dσ.

(14.22)

We next rewrite this equation by using the approach introduced in [3]. We begin
with the following notation. For a 2π-periodic function w(x), denote by (Qw)(x)

the trigonometric interpolation polynomial to w(x) at the points xk. If w(x) is of the

form w(x) =
∞∑

j=−∞
wjeijx, then we have that

(Qw)(x) =
′′∑

|j |�M

( ∞∑
l=−∞

wj+2Ml

)
eijx,

where xk = kπ

M
. For a 2M-periodic coefficient sequence q = (qj ), (Pq)(x) is

referred to the trigonometric polynomial with coefficients qj , i.e.,

(Pq)(x) =
′∑

|j |�M

qjeijx.

With these new denotations, (14.22) is identical to

(e
1
2 hD + e−

1
2 hD)−1(ehD − 2 cos(hΩ)+ e−hD)P q̃(t ) = h2φ2(V )

∫ 1

0
Qg(P q̃h(t, σ ))dσ.

(14.23)
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The Taylor expansion of the non-linearity Qg at 0 is given by3

Qg(P q̃h(t, σ )) =
∑
m�2

g(m)(0)

m! Q(P q̃h(t, σ ))
m

=
∑
m�2

g(m)(0)

m!
( ′′∑
|j1|�M

∞∑
l=−∞

′∑
‖k1‖�2N

ei(k1·ω)t ξ k1

j1+2Ml(τ, σ )e
ij1x

)

· · ·
( ′′∑
|jm|�M

∞∑
l=−∞

′∑
‖km‖�2N

ei(km·ω)t ξ kmjm+2Ml(τ, σ )e
ijmx

)

=
∑
m�2

g(m)(0)

m!
′′∑

|j |�M

′∑
j1+···+jm≡j mod 2M

∑
‖k1‖�2N,··· ,‖km‖�2N

(ξk
1

j1
· · · ξkmjm )(τ, σ )

ei((k1+···+km)·ω)teijx,

where τ = hε and the prime on the sum indicates that a factor 1/2 is included in the
appearance of ξk

i

ji
with ji = ±M . Inserting this into (14.23), considering the j -th

Fourier coefficient and comparing the coefficients of ei(k·ω)t , we obtain (14.17).
On the other hand, we need to derive the initial values for ζ̇±〈j〉j appearing in

(14.17). On noticing the fact that q̃(0) = q(0), we obtain

ζ
〈j〉
j (0)+ ζ

−〈j〉
j (0) = qj (0)−

∑
k 
=±〈j〉

ζ kj (0). (14.24)

Furthermore, it follows from p̃(0) = p(0) that

η
〈j〉
j (0)+ η

−〈j〉
j (0) = pj (0)−

∑
k 
=±〈j〉

ηkj (0),

which results in

iωj (ζ
〈j〉
j (0)− ζ

−〈j〉
j (0)) = pj (0)−

∑
k 
=±〈j〉

ηkj (0)

=pj (0)−
∑

k 
=±〈j〉

tan

(
1

2
h(k · ω)

)

tan

(
1

2
hωj

) iωj ζ kj (0)+O(hε). (14.25)

The formulae (14.24) and (14.25) determine the initial values for ζ±〈j〉j .

3It is noted that g(0) = 0 and g′(0) = 0 are used here.
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We now turn to the second part, the proof of (14.18).
For the modulation equations of ηk , it follows from (14.5) that

qn+1 − qn = Ω−1 tan

(
1

2
hΩ

)
(pn+1 + pn). (14.26)

According to the definition of L3, this relation can be expressed as

Lk
3ζ

k = Ω−1 tan

(
1

2
hΩ

)
ηk.

It then follows from the Taylor series of Lk
3 that the relationship between ηk and ζ k

can be established by (14.18). The proof then is complete. ��

14.4.3 Reverse Picard Iteration

In what follows, we consider the reverse Picard iteration (see [1, 3]) of the functions
ζ k such that after 4N iteration steps, the defects in (14.17), (14.24), and (14.25) are
of magnitude O(εN+1) in the Hs norm.

We here denote by [·](n) the nth iterate. For k = ±〈j 〉 and under the condition
(14.17), we design the iteration procedure as follows:

± 2is〈j〉hε
[
ζ̇
±〈j〉
j

](n+1) =
[
− h2φ2(h

2ω2
j )

∑
m�2

g(m)(0)

m!
∑

k1+···+km=k

′∑
j1+···+jm≡j mod 2M

·
∫ 1

0

[(
ξk

1

j1
· · · · · ξkmjm

)
(tε, σ )

]
dσ −

(
1

2
ε2h2 sec(

1

2
hωj )ζ̈

±〈j〉
j + · · ·

)](n)
.

(14.27)

For k 
= ±〈j 〉 and j subject to the non-resonant condition (14.8), the iteration
procedure is of the form

2
s〈j〉+ks〈j〉−k

ck

[
ζ kj

](n+1) =
[
− h2φ2(h

2ω2
j )

∑
m�2

g(m)(0)

m!
∑

k1+···+km=k

′∑
j1+···+jm≡j mod 2M

·
∫ 1

0

[(
ξk

1

j1
· · · · · ξkmjm

)
(tε, σ )

]
dσ −

(
iεh

sk(1+ c〈j〉+kc〈j〉−k)
c2
k

ζ̇ kj + · · ·
)](n)

,

(14.28)
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where ζ kj = 0 for k 
= ±〈j 〉 in the near-resonant set Rε,h. For the initial values
(14.24) and (14.25), the iteration procedure is given by

[
ζ
〈j〉
j (0)+ ζ

−〈j〉
j (0)

](n+1) =
[
qj (0)−

∑
k 
=±〈j〉

ζ kj (0)
](n)

,

iωj
[
ζ
〈j〉
j (0)− ζ

−〈j〉
j (0)

](n+1) =

⎡
⎢⎢⎣pj (0)− ∑

k 
=±〈j〉

tan

(
1

2
h(k · ω)

)

tan

(
1

2
hωj

) iωjζ kj (0)+O(hε)

⎤
⎥⎥⎦
(n)

.

(14.29)

It is assumed that ‖k‖ � K := 2N and
∥∥ki∥∥ � K for i = 1, · · · ,m, in these

iterations. We here remark that the procedure includes an initial value problem of
first-order ODEs for ζ±〈j〉j (for |j | � M) and algebraic equations for ζ kj with k 
=
±〈j 〉 at each iteration step. The starting iterates (n = 0) are chosen as ζ kj (τ ) = 0

for k 
= ±〈j 〉, and ζ
±〈j〉
j (τ ) = ζ

±〈j〉
j (0), where ζ±〈j〉j (0) are determined by (14.29).

Obviously, the iteration procedure is well defined.

14.4.4 Rescaling and Estimation of the Nonlinear Terms

In a similar way to Sect. 3.5 of [2] and Sect. 6.3 of [1], we next consider a more
convenient rescaling

cζ kj =
ω|k|

ε[[k]]
ζ kj , cζ k = (

cζ kj
)
|j |�M

= ω|k|

ε[[k]]
ζ k

in the space Hs = (H s)K = {cζ = (cζ k)k∈K : cζ k ∈ Hs}. The norm of this

space is defined by |||cζ |||2s =
∑
k∈K

∥∥cζ k∥∥2
s
, where the set K is given by K =

{k = (kl)
M
l=0 with integers kl : ‖k‖ � K} with K = 2N . Likewise, we use the

notation cξk ∈ Hs having the same meaning.
With regard to the expression of the non-linearity for (14.17) in these rescaled

variables, we define the nonlinear function f = (f k
j ) by

f k
j

(
cξ(τ )

) = ω|k|

ε[[k]]
N∑

m=2

g(m)(0)

m!
∑

k1+···+km=k

ε[[k1]]+···+[[km]]

ω|k1|+···+|km|

·
′∑

j1+···+jm≡j mod 2M

∫ 1

0

(
cξk

1

j1
· · · · · cξkmjm

)
(τ, σ )dσ.



478 14 Long-Time Momentum and Actions Behaviour of Energy-Preserving Methods. . .

Concerning this nonlinear function, we have the following bounds, which can be
proved by using the similar arguments presented in [1, 2].

Proposition 14.2 (Estimation of the Nonlinear Terms) It is true that

∑
k∈K

∥∥∥f k(cξ)

∥∥∥2

s
� CεP(|||cξ̃ |||2s ),

∑
|j |�M

∥∥∥f±〈j〉(cξ)∥∥∥2

s
� Cε3P1(|||cξ̃ |||2s ),

(14.30)

where cξ̃(τ ) := sup0�σ�1{cξ(τ, σ )} and P and P1 are polynomials with coeffi-
cients bounded independently of ε, h, andM .

Similarly, we can consider different rescaling

ĉζ kj =
ωs|k|

ε[[k]] ζ
k
j , ĉζ k = (

ĉζ kj
)
|j |�M

= ωs|k|

ε[[k]] ζ
k (14.31)

in H 1 = (H 1)K with norm |||ĉζ |||21 =
∑

‖k‖�K

∥∥ĉζ k∥∥2
1, where f̂ k

j is exactly the same

as f k
j , but with ω|k| replaced by ωs|k|. We use similar notations ĉξ k ∈ H1 and also

obtain similar bounds

∑
k∈K

∥∥∥f̂ k(ĉξ)

∥∥∥2

1
� CεP̂ (|||ĉξ̃ |||21),

∑
|j |�M

∥∥∥f̂±〈j〉(ĉξ)∥∥∥2

1
� Cε3P̂1(|||ĉξ̃ |||21),

with other functions P̂ and P̂1.

14.4.5 Reformulation of the Reverse Picard Iteration

This subsection concerns the reverse Picard iteration. On the basis of the two cases:
k = ±〈j 〉 and k 
= ±〈j 〉, we split cζ into two parts as follows:

⎧⎨
⎩
aζ kj = cζ kj if k = ±〈j 〉, and 0 else,

bζ kj = cζ kj if (14.8) is satisfied, and 0 else.
(14.32)

It is noted that for aζ = (aζ kj ) ∈ Hs and bζ = (bζ kj ) ∈ Hs , we have aζ + bζ = cζ

and |||aζ |||2s + |||bζ |||2s = |||cζ |||2s . Here, the same notation and property are used
for cξ .
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We now rewrite the iterations (14.27) and (14.28) in an abstract form

{
aζ̇ (n+1) = Ω−1F(aζ (n), bζ (n))− Aaζ (n),

bζ (n+1) = Ω−1ΨG(aζ (n), bζ (n))− Bbζ (n),
(14.33)

where

(Ωx)kj = (ωj + |k · ω|)xkj , (Ψ x)kj = 2φ2(h
2ω2

j ) cos

(
1

2
h(k · ω)

)
xkj ,

and the operators A,B are respectively given by

(Aaζ )
±〈j〉
j (τ ) = 1

±2is〈j〉hε

(
1

2
ε2h2 sec

(
1

2
hωj

)
aζ̈
±〈j〉
j + · · ·

)
,

(Bbζ )kj (τ ) =
ck

2s〈j〉+ks〈j〉−k

(
iεh

sk(1+ c〈j〉+kc〈j〉−k)
c2
k

bζ̇ kj + · · ·
)

for (j, k) subject to (14.8).

The functions F = (F k
j ) and G = (Gk

j ) are defined respectively by

F
±〈j〉
j (aζ, bζ ) = 1

∓iε

2φ2(h
2ω2

j )

sinc

(
1

2
hωj

)f
±〈j〉
j (cξ), Gk

j (aζ, bζ ) = −
h2(ωj + |k · ω|)

4s〈j〉+ks〈j〉−k
f k
j (cξ)

for (j, k) subject to (14.8).

Theorem 14.5 The operators A and B are bounded by

|||(Aaζ )(τ )|||s � C

N∑
l=2

hl−2εl−3/2
∣∣∣∣
∣∣∣∣
∣∣∣∣ dl

dτ l
(aζ )(τ )

∣∣∣∣
∣∣∣∣
∣∣∣∣
s

,

|||(Bbζ )(τ )|||s � Cε1/2|||(bζ̇ )(τ )|||s + C

N∑
l=2

hl−2εl−1/2
∣∣∣∣
∣∣∣∣
∣∣∣∣ dl

dτ l
(bζ )(τ )

∣∣∣∣
∣∣∣∣
∣∣∣∣
s

.

Moreover, we have

|||F |||s � Cε1/2, ||G|||s � C, |||Ψ−1Ω−1F |||s � C.
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Proof The bound of A follows from

∣∣∣∣ 1

±2is〈j〉hε
1

2
ε2h2 sec

(
1

2
hωj

)∣∣∣∣ =
∣∣∣∣∣∣∣

1

2
hε

sin(hωj )

∣∣∣∣∣∣∣ �
1

2
ε1/2.

We compute∣∣∣∣∣ ck

2s〈j〉+ks〈j〉−k
iεh

sk(1+ c〈j〉+kc〈j〉−k)
c2
k

∣∣∣∣∣ �
∣∣∣∣∣ εh

ε1/2h2(ωj + |k · ω|)
sk(1+ c〈j〉+kc〈j〉−k)

ck

∣∣∣∣∣
� ε1/2

h

h
2 |k · ω|

ωj + |k · ω|
∣∣∣∣1+ c〈j〉+kc〈j〉−k

ck

∣∣∣∣ � Cε1/2,

where |sk| � h

2
|k · ω| is used. Hence, we obtain the bound of B.

It follows from ∣∣∣∣∣∣∣∣
2φ2(h

2ω2
j )

sinc

(
1

2
hωj

)
∣∣∣∣∣∣∣∣
=

∣∣∣∣sinc

(
1

2
hωj

)∣∣∣∣ � 1

and (14.30) that |||F |||s � Cε1/2. Then using (14.8) and (14.30) yields |||G|||s � C.
Furthermore, according to (14.11), we obtain

|||Ψ −1Ω−1F |||2s =
∑
k∈K

′′∑
|j |�M

ω2s
j

∣∣∣(Ψ−1Ω−1F)kj

∣∣∣2 = ∑
k∈K

′′∑
|j |�M

ω2s
j

∣∣∣∣ h/2

ε sin(hε)

∣∣∣∣
2 ∣∣∣f ±〈j〉j

∣∣∣2

�C
∑
k∈K

′′∑
|j |�M

ω2s
j

∣∣∣∣ 1

ε3/2

∣∣∣∣
2 ∣∣∣f ±〈j〉j

∣∣∣2 = C
1

ε3
|||f ±〈j〉|||2s � C.

This shows |||Ψ−1Ω−1F |||s � C. The proof is complete. ��
With regard to the initial value condition (14.29), it can be rewritten as

aζ (n+1)(0) = v + Pbζ (n)(0)+Qbζ (n)(0), (14.34)

where v±〈j〉j = ωj

ε

(
1

2
qj (0)∓ i

2ωj
pj (0)

)
and the operators P and Q are given by

(Pbζ )
±〈j〉
j (0) =− 1

2

ωj

ε

∑
k 
=±〈j〉

ε[[k]]

ω|k|
bζ kj (0),

(Qbζ )
±〈j〉
j (0) =∓ 1

2ωj

ωj

ε

∑
k 
=±〈j〉

ε[[k]]

ω|k|
bηkj (0).
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It can be verified from (14.7) that v is bounded in Hs . For the bounds of the
operators P and Q, we have

|||Pbζ(0)|||2s =
∑
k∈K

′′∑
|j |�M

ω2s
j

∣∣∣∣∣∣
1

2

ωj

ε

∑
k 
=±〈j〉

ε[[k]]

ω|k|
bζ kj (0)

∣∣∣∣∣∣
2

� 1

4ε2

∑
k∈K

′′∑
|j |�M

ω2s+2
j

( ∑
k 
=±〈j〉

ε2[[k]]

ω2|k|

)( ∑
k 
=±〈j〉

bζ kj (0)
2
)

�1

4

∑
k∈K

′′∑
|j |�M

ω2s+2
j

( ∑
k 
=±〈j〉

ω−2|k|
)( ∑

k 
=±〈j〉
bζ kj (0)

2
)

�C|||Ωbζ(0)|||2s � C|||bζ(0)|||2s+1.

Likewise, we can obtain

|||(Qbζ )(0)|||2s � C|||bη(0)|||2s .

Therefore, the bounds |||(Pbζ )(0)|||s � C and |||(Qbζ )(0)|||s � C are confirmed.
Finally, we remark that the starting iterates of (14.34) are chosen as aζ (0)(τ ) = v

and bζ (0)(τ ) = 0, respectively.

14.4.6 Bounds of the Coefficient Functions

Theorem 14.6 (Bounds of the Modulation Functions) The modulation functions
ζ k of (14.15) are bounded by

∑
‖k‖�2N

( ω|k|

ε[[k]]
∥∥∥ζ k(εt)∥∥∥

s

)2
� C (14.35)

and the same bound holds for any fixed number of derivatives of ζ k with respect to
the slow time τ = εt .

Proof According to the analysis stated above and by induction, we can prove that
the iterates aζ (n), bζ (n) and their derivatives with respect to τ are bounded in Hs

for 0 � τ � 1 and n � 4N . These bounds show that cζ (n) = aζ (n) + bζ (n) is
bounded in Hs , and then the bound (14.35) follows. ��
Theorem 14.7 (Bounds of the Expansion) The expansion (14.15) is bounded
by

‖q̃(t)‖s+1 + ‖p̃(t)‖s � Cε f or 0 � t � ε−1. (14.36)
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For |j | � M , it further holds that

q̃j (t) = ζ
〈j〉
j (εt)eiωj t + ζ

−〈j〉
j (εt)e−iωj t + rj , where ‖r‖s+1 � Cε2.

(14.37)

If the condition (14.12) is not satisfied, then the bound becomes ‖r‖s+1 � Cε3/2.

Proof The following bounds for the (4N)-th iterates can be obtained

|||aζ(0)|||s � C, |||Ωaζ̇(τ )|||s � Cε1/2,

|||Ψ−1aζ̇ (τ )|||s � C, |||Ψ−1Ωbζ(τ)|||s � C, (14.38)

where C depends on N , but not on ε, h,M . It then follows from (14.38) that

|||aζ̇ |||s+1 = |||Ωaζ̇ |||s � Cε1/2,

|||bζ |||2s+1 =
∑
k∈K

′′∑
|j |�M

ω2s+2
j

∣∣bζj ∣∣2 = ∑
k∈K

′′∑
|j |�M

ω2s
j

ω2
j

(ωj + |k · ω|)2

∣∣(ωj + |k · ω|)bζj ∣∣2

� |||Ωbζ(τ)|||2s � C.

We thus obtain

|||cζ(τ) − aζ(0)|||s+1 = |||aζ(τ) + bζ(τ)− aζ(0)|||s+1 � |||aζ̇ |||s+1 + |||bζ |||s+1 � C.

On noticing the fact that ζ kj =
ε[[k]]

ω|k|
(cζ kj − aζ kj (0)+ aζ kj (0)), we have

|||q̃|||2s+1 =
∑
k∈K

′′∑
|j |�M

ω2s+2
j

∣∣∣∣∣∣
∑

‖k‖�2N

ei(k·ω)t ζ kj

∣∣∣∣∣∣
2

�
∑
k∈K

′′∑
|j |�M

ω2s+2
j

[
ε

ωj

( ∣∣∣aζ 〈j〉j
(0)

∣∣∣+ ∣∣∣aζ−〈j〉j
(0)

∣∣∣ )+ ∑
‖k‖�2N

ε[[k]]
ω|k|

∣∣∣cζ kj − aζ kj (0)
∣∣∣ ]2

�2ε2
∑
k∈K

′′∑
|j |�M

ω2s
j

( ∣∣∣aζ 〈j〉j
(0)

∣∣∣+ ∣∣∣aζ−〈j〉j
(0)

∣∣∣ )2

+ 2
∑
k∈K

′′∑
|j |�M

ω2s+2
j

( ∑
‖k‖�2N

ε[[k]]
ω|k|

∣∣∣cζ kj − aζ kj (0)
∣∣∣ )2

�4ε2|||aζ(0)|||2s + 2
∑
k∈K

′′∑
|j |�M

ω2s+2
j

( ∑
‖k‖�2N

ε2[[k]]
ω2|k|

)( ∑
‖k‖�2N

∣∣∣cζ kj − aζ kj (0)
∣∣∣2 )

�4ε2|||aζ(0)|||2s + 2CK,1ε
2|||cζ − aζ(0)|||2s+1 � Cε2.
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According to (14.26), with a similar analysis, it can be proved that |||p̃|||s � Cε.
Hence, the bound (14.36) holds.

It then follows from (14.30) and (14.33) that
( ∑
‖k‖=1

∥∥(Ψ−1Ωbζ)k
∥∥2
s

)1/2
� Cε

for bζ = (bζ )(4N). Furthermore, using (14.12), we obtain that

∑
|j |�M

∑
j1+j2=j

∑
k=±〈j1〉±〈j2〉

ω
2(s+1)
j |bζ kj |2 � Cε.

These bounds as well as (14.38) lead to (14.37). The proof is complete. ��
Concerning the alternative scaling (14.31), we can obtain the same bounds

|||âζ(0)|||1 � C, |||Ωâζ̇ (τ )|||1 � Cε1/2, |||Ψ−1Ωb̂ζ(τ )|||1 � C.

(14.39)

Moreover, the following bound is also true for this scaling:

( ∑
‖k‖=1

∥∥∥(Ψ−1Ωb̂ζ )k
∥∥∥2

1

)1/2

� Cε. (14.40)

14.4.7 Defects

In this subsection, we pay attention to the so-called defect. It follows from (14.5)
that the defect can be put in another form

δj (t) =
q̃j (t + h)− 2 cos(hωj )q̃j (t)+ q̃j (t − h)

h2φ2(h
2ω2

j )

−
[ ∫ 1

0
fj ((1− σ)q̃h(t)+ σ q̃h(t + h))dσ +

∫ 1

0
fj ((1− σ)q̃h(t − h)+ σ q̃h(t))dσ

]
,

(14.41)

where q̃j is determined in (14.15) with ζ kj = (ζ kj )
(4N) obtained after 4N iterations

of the procedure in Sect. 14.4.3. Here, δj (t) can also be rewritten as

δj (t) =
∑

‖k‖�NK

dk(εt)ei(k·ω)t + R(t),
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where

dkj =
1

h2φ2(h2ω2
j )
L̃k
j ζ

k
j +

N∑
m=2

g(m)(0)

m!
∑

k1+···+km=k

′∑
j1+···+jm≡j mod 2M

·
∫ 1

0

[(
ξk

1

j1
· · · · · ξkmjm

)
(tε, σ )

]
dσ. (14.42)

It is remarked that we consider ‖k‖ � NK for dkj , and assume that ζ kj = ηkj = 0 for

‖k‖ > K := 2N . We denote by L̃k
j the truncation of the operator Lk

j after the εN

term. The remainder terms of the Taylor expansion of f after N terms are absorbed
in R(t). Then it can be confirmed by the bound (14.36) and the estimates (14.38)
that

‖R(t)‖s+1 � CεN+1.

Furthermore, using the Cauchy–Schwarz inequality and Lemma 14.1 results in

∥∥∥∥∥∥
∑

‖k‖�NK

dk(εt)ei(k·ω)t
∥∥∥∥∥∥

2

s

=
′′∑

|j |�M

ω2s
j

∣∣∣∣∣∣
∑

‖k‖�NK

dkj ei(k·ω)t
∣∣∣∣∣∣
2

=
′′∑

|j |�M

ω2s
j

∣∣∣∣∣∣
∑

‖k‖�NK

ω−|k|(ω|k|dkj ei(k·ω)t )

∣∣∣∣∣∣
2

�
′′∑

|j |�M

ω2s
j

( ∑
‖k‖�NK

ω−2|k|
)( ∑

‖k‖�NK

(ω|k|dkj )2
)

�CNK,1

∑
‖k‖�NK

∥∥∥ω|k|dk(εt)∥∥∥2

s
.

This result leads to bounds on the defects. In fact, the right-hand side of this
inequality can be estimated as follows.

Theorem 14.8 (Bounds of the Defects) It can be deduced that
∑

‖k‖�NK

∥∥ω|k|

dk(εt)
∥∥2
s
� Cε2(N+1), and then the defect (14.41) implies the bound ‖δ(t)‖s �

CεN+1.

Proof To prove this result we will consider three different cases: truncated, near-
resonant and non-resonant modes.

• Truncated and near-resonant modes. The result for these two cases can be
obtained by using the similar analysis given in Sect. 6.8 of [1].
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• Non-resonant mode. For the non-resonant mode (‖k‖ > K and (j, k) satisfies
(14.8)), we first reformulate the defect in the scaled variables of Sect. 14.4.4 as

ω|k|dkj =ε[[k]]
(

1

h2φ2(h2ω2
j )
L̃k
j cζ

k
j + f k

j (cξ)

)
.

Then splitting them into k = ±〈j 〉 and k 
= ±〈j 〉 yields

ωjd
±〈j〉
j = ε

(
± iεωj

sinc(hωj /2)

φ2(h2ω2
j )

(
aζ̇
±〈j〉
j + (Aaζ )

±〈j〉
j

)+ f
±〈j〉
j (cξ)

)
,

ω|k|dkj = ε[[k]]
(

2s〈j〉+ks〈j〉−k
h2ckφ2(h2ω2

j )

(
bζ kj + (Bbζ )kj

)+ f k
j (cξ)

)
.

We remark that the functions here are actually the 4N-th iterates of the iteration
in Sect. 14.4.3. Expressing f

±〈j〉
j and f k

j in terms of F,G and inserting them from
(14.33) into this defect, we obtain

ωj d
±〈j〉
j = 2ωjα

±〈j〉
j

([
aζ̇
±〈j〉
j

](4N) − [
aζ̇
±〈j〉
j

](4N+1))
, α

±〈j〉
j = ±iε2 sinc(hωj /2)

2φ2(h
2ω2

j
)
,

ω|k|dk
j
= βk

j

([bζ k
j
](4N) − [bζ k

j
](4N+1)), βkj = ε[[k]] 2s〈j〉+ks〈j〉−k

h2ckφ2(h
2ω2

j )
.

Looking closer at these expressions, we introduce new variables as follows:

ãζ
±〈j〉
j = α

±〈j〉
j aζ

±〈j〉
j , b̃ζ kj = βkj bζ

k
j

and then rewrite the iteration (14.33) in these variables as

ãζ̇ (n+1) = Ω−1F̃ (ãζ (n), b̃ζ (n))− Aãζ (n),

b̃ζ (n+1) = G̃(ãζ (n), b̃ζ (n))− Bb̃ζ (n).

In such a way, the transformed functions are determined by

F̃
±〈j〉
j (ãζ, b̃ζ ) = α

±〈j〉
j F

±〈j〉
j (α−1ãζ, β−1b̃ζ ) = −εf±〈j〉j (α−1ãζ + β−1b̃ζ ),

G̃k
j (ãζ, b̃ζ ) = βkj (ΨΩ−1G)kj (α

−1ãζ, β−1b̃ζ ) = −ε[[k]]f k
j (α

−1ãζ + β−1b̃ζ ).

As for the initial values of the iteration, we have

ãζ (n+1)(0) = αv + P̃ b̃ζ (n)(0)+ Q̃b̃ζ (n)(0),



486 14 Long-Time Momentum and Actions Behaviour of Energy-Preserving Methods. . .

where P̃ = αPβ−1, Q̃ = αQβ−1. For the bound of P̃ , we obtain

|||P̃ b̃ζ(0)|||2s

=
∑
k∈K

′′∑
|j |�M

ω2s
j

∣∣∣∣∣∣iε2 sinc(hωj /2)

2φ2(h2ω2
j )

1

2

ωj

ε

∑
k 
=±〈j〉

h2ckφ2(h
2ω2

j )

ε[[k]]2s〈j〉+ks〈j〉−k
ε[[k]]

ω|k|
b̃ζ kj (0)

∣∣∣∣∣∣
2

�ε2h4

64

∑
k∈K

′′∑
|j |�M

ω2s
j

( ∑
k 
=±〈j〉

ωj∣∣s〈j〉+ks〈j〉−k∣∣ω−|k|b̃ζ kj (0)
)2

�ε2h4

64

∑
k∈K

′′∑
|j |�M

ω2s
j

( ∑
k 
=±〈j〉

1

ε1/2h2 ω−|k|b̃ζ kj (0)
)2

� ε

64

∑
k∈K

′′∑
|j |�M

ω2s
j

( ∑
k 
=±〈j〉

ω−2|k| ∑
k 
=±〈j〉

(b̃ζ kj (0))
2
)
� Cε|||b̃ζ(0)|||2s .

In a similar way, the following result can be achieved:

|||Q̃b̃ζ(0)|||2s � Cε|||b̃ζ(0)|||2s .

Clearly, it can be verified that in an Hs-neighbourhood of 0 where the bounds
(14.38) hold, the partial derivatives of F̃ with respect to ãζ and b̃ζ are bounded
by O(ε1/2). Moreover, the partial derivative of G̃ with respect to b̃ζ is bounded by
O(ε1/2) but that of G̃ with respect to ãζ is only O(1). In fact, these results are the
same as those described in Sect. 6.9 of [1]. Similarly, we can obtain

|||Ω(ãζ̇ (4N+1) − ãζ̇ (4N))|||s � CεN+2,

|||b̃ζ (4N+1) − b̃ζ (4N))|||s � CεN+2,

|||ãζ(0)(4N+1) − ãζ(0)(4N))|||s � CεN+2.

Hence, for τ � 1 and (j, k) ∈ Rε,h, these results yield the bound

( ∑
‖k‖�K

∥∥∥ω|k|dk(τ )∥∥∥2

s

)1/2
� CεN+1. (14.43)

It then follows from (14.43) that the defect (14.41) has the bound ‖δ(t)‖s �
CεN+1 for t � ε−1. Concerning the defect in the initial conditions (14.24) and
(14.25), it is true that

‖q(0)− q̃(0)‖s+1 + ‖p(0)− p̃(0)‖s � CεN+1.
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Finally, we turn to the alternative scaling (14.31). For this case, we can obtain

( ∑
‖k‖�K

∥∥∥ωs|k|dk(τ )
∥∥∥2

1

)1/2
� CεN+1. (14.44)

The proof is complete. ��

14.4.8 Remainders

In this subsection, we are concerned with the difference between the numerical
solution and its modulated Fourier expansion.

Theorem 14.9 (Remainders) The bound on the difference between the numerical
solution and its modulated Fourier expansion satisfies

‖qn − q̃(t)‖s+1 + ‖pn − p̃(t)‖s � CεN f or 0 � t = nh � ε−1. (14.45)

Proof Let qn = q̃(tn)− qn, pn = p̃(tn)− pn. We have

(
qn+1

Ω−1pn+1

)
=
(

cos(hΩ) sin(hΩ)

− sin(hΩ) cos(hΩ)

)(
qn

Ω−1pn

)
+h

(
hΩφ2(V )Ω

−1(f + δ)

φ1(V )Ω
−1(f + δ)

)
,

where

f =
∫ 1

0

(
f ((1− σ)qn + σqn+1)− f ((1− σ)q̃(tn)+ σ q̃(tn + h))

)
dσ.

According to the Lipschitz bound given in Sect. 4.2 of [3] and Sect. 6.10 of [1], it is
clear that ∥∥∥Ω−1f

∥∥∥
s+1

= ‖f ‖s � ε(‖qn‖s + ‖qn+1‖s ).

Moreover, we have
∥∥Ω−1δ(t)

∥∥
s+1 = ‖δ(t)‖s � CεN+1. We then obtain

∥∥∥∥∥
(

qn+1

Ω−1pn+1

)∥∥∥∥∥
s+1

�
∥∥∥∥∥
(

qn

Ω−1pn

)∥∥∥∥∥
s+1

+ h
(
Cε ‖qn‖s + Cε ‖qn+1‖s + CεN+1

)
.

This leads to ‖qn‖s+1 +
∥∥Ω−1pn

∥∥
s+1 � C(1 + tn)ε

N+1 for tn � ε−1. This
proves (14.45). ��
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14.4.9 Almost Invariants

This subsection concerns almost-invariants of the modulated Fourier expansions.
According to the analysis presented in Sect. 14.4.7, we can rewrite the defect

formula (14.42) as

1

h2φ2(h2ω2
j )
L̃k
j ζ

k
j +∇−k−jU (ξ(t)) = dkj , (14.46)

where ∇−k−jU (y) is the partial derivative with respect to y−k−j of the extended
potential (see, e.g. [1, 3])

U (ξ(t, σ )) =
N∑

l=−N
Ul (ξ(t, σ )),

Ul (ξ(t, σ )) =
N∑

m=2

U(m+1)(0)

(m+ 1)!
∑

k1+···+km+1=0

′∑
j1+···+jm+1=2Ml

∫ 1

0

(
ξk

1

j1
· · · · · ξkm+1

jm+1

)
(t, σ )dσ.

We define (see [1])

Sμ(θ)y =
(
ei(k·μ)θ ykj

)
|j |�M,‖k‖�K

and

T (θ)y = (
eijθykj

)
|j |�M,‖k‖�K

,

where μ = (μl)l�0 is an arbitrary real sequence for θ ∈ R. Using the results given
in [1], we obtain U (Sμ(θ)y) = U (y) and U0(T (θ)y) = U0(y) for θ ∈ R. Hence,

0 = d

dθ
|θ=0 U (Sμ(θ)ξ(t, σ )), 0 = d

dθ
|θ=0 U0(T (θ)ξ(t, σ )). (14.47)

Theorem 14.10 (Two Almost-Invariants) There exist two functions Jl[ζ , η](τ )
andK [ζ , η](τ ) such that

M∑
l=1

ω2s+1
l

∣∣∣∣ d

dτ
Jl[ζ , η](τ )

∣∣∣∣ � CεN+1,

∣∣∣∣ d

dτ
K [ζ , η](τ )

∣∣∣∣ � C(εN+1 + ε2M−s+1) (14.48)
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for τ � 1.Moreover, it is true that

Jl[ζ , η](εtn) = Ĵl(pn, qn)+ γl(tn)ε
3,

K [ζ , η](εtn) = K̂(pn, qn)+O(ε3)+O(ε2M−s ), (14.49)

where

Ĵl = Îl + Î−l = 2Îl for 0 < l < M, Ĵ0 = Î0, ĴM = ÎM .

Here, all the constants in (14.48) and (14.49) are independent of ε,M, h, and n,

and
M∑
l=0

ω2s+1
l γl(tn) � C for tn � ε−1.

Proof

• Proof of (14.48).

It follows from the first equality of (14.47) that

0 = d

dθ
|θ=0 U (Sμ(θ)ξ(t, σ )) =

∑
‖k‖�K

′∑
|j |�M

i(k · μ)ξ−k−j (t, σ )∇−k−jU (ξ(t, σ ))

=
∑
‖k‖�K

′∑
|j |�M

i(k · μ)L−k4 (σ )ζ−k−j

×
(

1

h2φ2(h2ω2
j )
L̃k
j ζ

k
j − dkj

)
.

(14.50)

It is noted that the right-hand side is independent of σ . We thus choose σ = 1/2 in
the following analysis. In this case, (14.50) gives

∑
‖k‖�K

′∑
|j |�M

i(k · μ)L−k4

(
1

2

)
ζ−k−j

1

h2φ2(h2ω2
j )
L̃k
j ζ

k
j

=
∑
‖k‖�K

′∑
|j |�M

i(k · μ)L−k4

(1

2

)
ζ−k−j d

k
j . (14.51)

It then follows from the expansions of L−k4

(
1

2

)
and L̃k

j and the “magic formulas”

on p. 508 of [20] that the left-hand side of (14.51) is a total derivative of function
εJμ[ζ , η](τ ) which depends on ζ (τ ), η(τ ) and their up to (N − 1)th order
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derivatives. This implies that (14.51) is identical to the following equation

− ε
d

dτ
Jμ[ζ , η](τ ) =

∑
‖k‖�K

′∑
|j |�M

i(k · μ)L−k4

(
1

2

)
ζ−k−j d

k
j .

In what follows, we consider the special case where μ = 〈l〉. Let zkj = Lk
4(1/2)ζ kj .

It follows from the property of Lk
4(1/2) that the bounds on zkj and ζ kj are of the

same magnitude. Splitting d = ad+bd into two parts: the diagonal (k = ±〈j 〉) and
nondiagonal (k 
= ±〈j 〉), gives

|||ad|||2s +
∑
‖k‖�K

|||ωs|k|bd|||20 =
∑
‖k‖�K

∥∥∥ωs|k|dk
∥∥∥2

0
� Cε2N+2,

where (14.44) is used. Using Lemma 3 of [2] and the facts that

• zkj =
ε

ωs
j

âzkj +
ε[[k]]

ωs|k| âz
k
j ,

• |||âzk|||1 � C,
• |||Ωb̂zk|||1 � from (14.39),

we obtain

M∑
l=1

ω2s+1
l

∣∣∣∣ d

dτ
Jl[ζ , η](τ )

∣∣∣∣ = 1

ε

M∑
l=1

ω2s+1
l

∣∣∣∣∣∣
∑
‖k‖�K

kl

∞∑
j=−∞

ζ kj d
k
j

∣∣∣∣∣∣
�1

ε

[
||| ε
ωs
j

âζ kj |||s+1|||ad|||s +
( ∑
‖k‖�K

∥∥∥∥ωs|k|(1+ |k · ω|)ε
[[k]]

ωs|k| âζ
k
j

∥∥∥∥
2

0

)1/2

·

( ∑
‖k‖�K

∥∥∥ωs|k|bdk
∥∥∥2

0

)1/2]

�CεN+1.

The first statement of (14.48) is proved.
In a similar way, using the second equality of (14.47), we obtain

∑
‖k‖�K

′∑
|j |�M

ijL−k4

(
1

2

)
ζ−k−j

1

h2φ2(h2ω2
j )
L̃k
j ζ

k
j

=
∑
‖k‖�K

′∑
|j |�M

ijL−k4

(
1

2

)
ζ−k−j

(
dkj −

∑
l 
=0

∇−k−j
(
Ul (ξ(t, σ ))

))
. (14.52)
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A careful analysis shows that the left-hand side of (14.52) can be written as a total
derivative of function εK [ζ , η](τ ), which yields

− ε
d

dτ
K [ζ , η](τ) =

∑
‖k‖�K

′∑
|j |�M

ijL−k4

(1

2

)
ζ−k−j

(
dkj −

∑
l 
=0

∇−k−j
(
Ul (ξ(t, σ ))

))
.

(14.53)

It follows from the Cauchy–Schwarz inequality and the bound |j | � ωj that

∣∣∣∣∣∣
∑
‖k‖�K

′∑
|j |�K

ijz−k−j d
k
j

∣∣∣∣∣∣ �
( ∑
‖k‖�K

′∑
|j |�K

ω2
j

∣∣∣zkj ∣∣∣2
)1/2( ∑

‖k‖�K

′∑
|j |�K

∣∣∣dkj ∣∣∣2
)1/2

�Cε

( ∑
‖k‖�K

′∑
|j |�K

ω2
j

ω|k|
ε[[k]]

ε2

ω|k|

ε[[k]]
∣∣∣zkj ∣∣∣2

)1/2( ∑
‖k‖�K

′∑
|j |�K

∣∣∣dkj ∣∣∣2
)1/2

� CεN+2.

Furthermore, we note that

∑
‖k‖�K

′∑
|j |�M

ijz−k−j∇−k−jUl (ξ(t, σ ))

=
N∑

m=2

U(m+1)(0)

m!
∑

k1+···+km+1=k

′∑
j1+···+jm+1=2Ml

zk
1

j1
· · · zkmjm · ijm+1z

km+1

jm+1
,

is the 2Ml-th Fourier coefficient of the function (see [3])

w(x) :=
N∑

m=2

U(m+1)(0)

m!
∑

k1+···+km+1=k
Pzk

1
(x) · · ·Pzk

m

(x) · d

dx
Pzk

m+1
(x).

We then can deduce that ‖w‖s−1 � Cε3, and the 2Ml-th Fourier coefficient of w is
bounded by Cε3ω−s+1

2Ml � Cε3(2Ml)−s+1, as shown in the proof of Theorem 5.2 of
[3]. In such a way, the second statement of (14.48) is confirmed by (14.53).

• Proof of (14.49).

We will prove only the second statement of (14.49) since the first one can be
dealt with in a similar way.

It follows from the AAVF formula that

2hsinc(hΩ)p̃(t) = q̃(t + h)− q̃(t − h)+O(h2).
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This shows that

p̃j (t) = iωj
(
η
〈j〉
j (εt)eiωj t − η

−〈j〉
j (εt)e−iωj t

)+O(hε2)+O(h3ε2).

We then have

ζ
〈j〉
j = 1

2

(
q̃j + 1

iωj
p̃j

)
+ O(ε2)

and

ζ
−〈j〉
j = 1

2

(
q̃j − 1

iωj
p̃j

)
+O(ε2).

On the basis of these results, an analysis of K is presented below:

K [ζ , η](τ) =
′∑

|j |�M

j
1

2

4εh sin

(
1

2
hωj

)
cos

(
1

2
hωj

)
2h2φ2(h

2ω2
j
)

(
|ζ 〈j〉j |2 − |ζ−〈j〉j |2

)
+ O(ε3)

=
′∑

|j |�M

jωj

cos

(
1

2
hωj

)

sinc

(
1

2
hωj

)(
|ζ 〈j〉j |2 − |ζ−〈j〉j |2

)
+ O(ε3)

=
′∑

|j |�M

jωj

4

cos

(
1

2
hωj

)

sinc

(
1

2
hωj

)(
|q̃j + 1

iωj
p̃j |2 − |q̃j − 1

iωj
p̃j |2

)
+ O(ε3)

=
′∑

|j |�M

cos

(
1

2
hωj

)

sinc

(
1

2
hωj

) jωj

4
4

1

iωj
q̃−j p̃j + O(ε3)

=K̂(p̃, q̃)+ O(ε3)+ O(ε2M−s) = K̂(pn, qn)+O(ε3)+ O(ε2M−s ),

where the results (14.37) and (14.45) are used. ��

14.4.10 From Short to Long-Time Intervals

According to the analysis stated above in this chapter, the statement of Theorem 14.3
can be confirmed by patching together many intervals of length ε−1 in the same way
as that used in [1, 2].
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14.5 Analysis for the AAVF Method with a Quadrature Rule

The previous analysis was made for the AAVF method with the integral appearing
in (14.5), which usually cannot be solved exactly. Normally a quadrature rule is
required. For this reason, we will show that the main result for the AAVF method
with the integral is still true for the AAVF method with a quadrature approximation
instead of the integral.

As an example, we consider the following AAVF method with the midpoint rule

{
qn+1 = φ0(V )qn + hφ1(V )pn + h2φ2(V )f ((qn + qn+1)/2),

pn+1 = −hΩ2φ1(V )qn + φ0(V )pn + hφ1(V )f ((qn + qn+1)/2).
(14.54)

The main result presented in Theorem 14.3 can be adapted for this method with the
following modifications for the operator and the nonlinearity. We next present only
the main differences and omit the details for brevity.

• Modifications for Sect. 14.4.2.

Since the term
∫ 1

0
f ((1−σ)qn+σqn+1)dσ is replaced by f ((qn+qn+1)/2),

the function ξk
(
ε

(
t + h

2

)
, σ

)
should be changed to ξk

(
ε

(
t + h

2

)
, 1/2

)
and

the operator Lk
4(σ ) is replaced by Lk

4(1/2). Then all the analyses and results in
Sect. 14.4.2 still hold for (14.54).

• Modifications for Sect. 14.4.3.
For this part, we only need to change

∫ 1
0

[(
ξk

1

j1
· · · · · ξkmjm

)
(tε, σ )

]
dσ to

(
ξk

1

j1
·

· · · · ξkmjm
)
(tε, 1/2).

• Modifications for Sect. 14.4.4.
One part of the function f k

j

(
cξ(τ )

)
here is

(
cξk

1

j1
· · · · · cξkmjm

)
(τ, 1/2) instead

of
∫ 1

0

(
cξk

1

j1
· · · · · cξkmjm

)
(τ, σ )dσ and then the property of f k

j

(
cξ(τ )

)
stated in

Proposition 14.2 is still true.
• Modifications for Sect. 14.4.7.

Since the defect expressed by (14.41) needs to be modified according to the

scheme (14.54), the term
∫ 1

0

[(
ξk

1

j1
· · · · · ξkmjm

)
(tε, σ )

]
dσ appearing in (14.42)

should be replaced by
(
ξk

1

j1
· · · · · ξkmjm

)
(tε, 1/2). In this situation, we still obtain

the same bounds of the defects as those stated previously.
• Modifications for Sect. 14.4.8.

Here only the expression of f should be modified in the light of (14.54).
• Modifications for Sect. 14.4.9.
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A new function

Ul (ξ) =
N∑

m=2

U(m+1)(0)

(m+ 1)!
∑

k1+···+km+1=0

′∑
j1+···+jm+1=2Ml

(
ξk

1

j1
· · · · · ξkm+1

jm+1

)
(t, 1/2)

will be used here instead of the previous one.

At the end of this section, we remark that since the AAVF method with the
integral is of only order two, the long-time momentum and actions behaviour does
not change for (14.54). For the AAVF method with other higher-order quadrature
rules, the main result can also be obtained by following the same approach.

14.6 Conclusions and Discussions

It is known that the preservation of geometric or physical properties of the numerical
flow can assist in long-time integration and produce improved qualitative behaviour
in comparison with a general-purpose numerical method. In this chapter, we have
investigated in detail the long-time behaviour of the AAVF method when applied
to semilinear wave equations via spatial spectral semidiscretisations. With the
semidiscretisation, the AAVF method exactly preserves the energy and nearly
conserves modified actions and modified momentum over long times. The main
result has been presented by developing a modulated Fourier expansion of the AAVF
method and showing two almost-invariants of the modulated system.

The main result of this chapter explains rigorously the good long-time behaviour
of EP methods for the numerical solution of semilinear wave equations. The analysis
for multi-dimensional wave equations deserves further investigation. It is also noted
that the long-term analysis of many different methods other than EP methods has
been given recently for Schrödinger equations and the reader is referred to [18,
38–40]. The Schrödinger equation has become one of the most studied PDEs. It
is hoped to obtain near-conservation of actions, momentum and density as well as
exact-conservation of energy for some EP schemes when applied to the Schrödinger
equation.

The material in this chapter is based on the work by Wang and Wu [41].
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