
Chapter 9
Topic Detection and Tracking

9.1 History of Topic Detection and Tracking

Traditional TDT technology was established and developed in an evaluation-driven
manner. The original motivation for TDT research was proposed by the Defense
Advanced Research Projects Agency (DARPA) in 1996. Their aim was to explore
a new technology to automatically detect and track topics in news data streams
without human intervention.

In 1997, researchers from DARPA, Carnegie Mellon University (CMU), and
University of Massachusetts (UMass) initiated preliminary studies of TDT, later
called TDT1997 or TDT Pilot. They focused on how to find topic-related informa-
tion from data streams (text or voice) and included two parts: enabling the system
to automatically locate the boundaries of two events by searching for fragments
consistent with the intrinsic theme and detecting the emergence of new events and
the reproduction of old events. They carried out basic research (Allan et al. 1998a)
and established a TDT pilot corpus.1 This corpus includes nearly 16,000 stories,
from July 1, 1994, to June 30, 1995, taken half from Reuters newswire and half
from CNN broadcast news transcripts. For the evaluation of TDT performance, they
proposed the metrics of miss and false alarm rates and used a detection error tradeoff
(DET) plot to visually display the errors in the TDT system.

Starting in 1998, the National Institute of Standards and Technology (NIST),
sponsored by DARPA, hosted the annual TDT evaluation conference, which was
one of two conferences in the Translingual Information Detection, Extraction
and Summarization (TIDES) project (the other is the Text REtrieval Conference,
TREC). Many famous universities, companies, and research institutes, such as IBM
Watson Research Center, BBN Technologies Company, CMU, UMass, University
of Pennsylvania, University of Maryland, and Dragon Systems Company, actively
participated in the conference. TDT1998 held the first public TDT evaluation, with

1https://catalog.ldc.upenn.edu/LDC98T25.

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_9

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_9&domain=pdf
https://catalog.ldc.upenn.edu/LDC98T25
https://doi.org/10.1007/978-981-16-0100-2_9

202 9 Topic Detection and Tracking

the evaluation tasks including news story segmentation, topic detection, and topic
tracking, and for the first time, it introduced the Chinese corpus. TDT1999 added
two new tasks: first story detection (FSD) and link detection (LD).

TDT2002, the 5th TDT conference, held in autumn 2002, further enriched the
corpus by incorporating the Arabic corpus. At the same time, new technologies such
as text filtering, speech recognition, machine translation, and text segmentation were
added to the research content of TDT.

TDT2004 canceled the task of news story segmentation because most instances
of practical application were easily separable. Meanwhile, two new tasks, super-
vised adaptive topic tracking and hierarchical topic detection, were added. The TDT
conference was held for 7 consecutive years, with the last one being TDT2004. The
TDT corpus is still open to the public, and researchers can obtain the TDT tasks and
corpus through the website of the Linguistic Data Consortium2 (LDC).

In recent years, social media platforms, such as Twitter, Facebook, Weibo,
and WeChat, have developed into important channels for discussions on current
affairs, information exchanges, and the expression of opinions. A large number of
users participate in discussions of events, persons, products, and other content on
these platforms and generate a large amount of text data, which becomes a mirror
reflecting society. The research on TDT in social media has even more important
practical significance. However, at the same time, texts on social media platforms
raise new problems and challenges to TDT research because of their properties, such
as short contexts, rich forms, dynamic topics, massive volumes, and a large number
of nonstandard language phenomena.

Allan (2012) and Yu et al. (2007) summarized the studies of traditional TDT.
In the following sections, we first introduce the terminologies and tasks in TDT
and then review the traditional technologies considering four aspects: text repre-
sentation, text similarity, topic detection, and topic tracking. Finally, following the
extension from traditional media to social media, we introduce the research of TDT
in social media.

9.2 Terminology and Task Definition

9.2.1 Terminology

The goal of TDT is to automatically discover topics from text data streams and link
topic-related content together. It involves concepts such as event, topic, story, and
subject.

Event: In a TDT study, an event refers to an activity or a phenomenon that
occurs at a specific time and place and is associated with certain

2https://www.ldc.upenn.edu/.

https://www.ldc.upenn.edu/

9.2 Terminology and Task Definition 203

actions or conditions. Usually, an event is a story or a series of stories,
which consist of detailed descriptions of the cause, time, place, process,
and result of the event. For instance, “Trump defeated Hillary in the
November 8, 2016, presidential election and became the 45th President
of the United States” is an event in TDT. It has specific attributes such
as a time, place, and person.

Topic: Topic was defined as an event in the original TDT Pilot study, but
since TDT1998, it has been given a broader meaning that includes
not only the initial event but also the subsequent events and other
events directly related to it. In other words, a topic can be viewed
as a core event together with its direct-relevant events, making it a
collection of related stories about one event. Assume that the “512
Wenchuan earthquake” is a topic and “a strong earthquake of magnitude
8.2 occurred in Wenchuan, China, on May 12, 2008” is the core event
of this topic. Subsequent events, such as earthquake rescue and post-
earthquake reconstruction, are also part of the topic because they are
directly related to the core event. The research on TDT originated from
early event detection and tracking (EDT). However, compared with
EDT, the object of TDT extends from events occurring at specific times
and places to topics with more relevant extensions.

Subject: The subject in TDT is a summary of one kind of event or topic; it
covers a group of similar events but does not involve any specific events.
It therefore has a wider meaning than a topic in TDT. For instance,
“earthquake disaster” is a subject, and the “512 Wenchuan earthquake”
is a specific topic under that subject. Note that the concept of a “topic” in
the topic model is different from that in TDT. Specifically, “topic” and
“subject” in TDT are concepts describing events, representing a series
for a specific event and a group of similar events, respectively, while
“topic” in a topic model represents the underlying semantics of words
in the text.

Story: A story in TDT denotes an article in a newswire or a piece of broadcast
news that is composed of two or more statements of independent events.

9.2.2 Task

NIST divides TDT into the following five basic tasks.

(1) Story Segmentation

The purpose of story segmentation (SS) is to discover all topics and their
boundaries in a news story and divide the story into multiple substories with a
complete structure and independent topics, as shown in Fig. 9.1. For example, given
a piece of broadcast news that includes multiple topics such as politics, sports
events, finance, and economics, an SS system needs to divide the broadcast into

204 9 Topic Detection and Tracking

audio signial or text data stream

story Non-story

Fig. 9.1 Story segmentation task in TDT

Following stories

First stories

=Topic1

= Topic2

Fig. 9.2 First story detection task in TDT

segments of different topics. SS is designed mainly for news broadcasting, which
contains two kinds of data streams: the audio signal and the text data stream
transcribed from the audio signal. TDT2004 removed this task because most of the
instances can be easily segmented in practice.

(2) First Story Detection

The FSD task aims to automatically detect the first discussion of a given topic
from a chronological stream of news, as shown in Fig. 9.2. This task requires judging
whether a new topic is discussed in each story. It is therefore considered to be
the basis for topic detection, and it is called transparent testing of topic detection.
TDT2004 renamed FSD to new event detection (NED).

(3) Topic Detection

The goal of the TD task is to detect topics in the news data streams without
providing prior knowledge about any topics, as shown in Fig. 9.3. The output of
FSD is one story, while the output of TD is a collection of stories that discuss the
same topic. The difficulty of TD is the absence of prior knowledge of the topic; it
means that the TD system must be independent of a certain topic but apply to any
topic.

Although most of the stories refer to only one topic, there are also some stories
that involve multiple topics organized in a hierarchical structure. In response to
this problem, TDT2004 defined a hierarchical topic detection (HTD) task that

9.2 Terminology and Task Definition 205

Topic2

Topic1

Fig. 9.3 Topic detection task in TDT

Training set

Test set

known topics

unknown

Fig. 9.4 Topic tracking task in TDT

transformed the organization of topics from a parallel relationship in FSD and TD
to a hierarchical structure.

(4) Topic Tracking

The goal of topic tracking (TT) is to track subsequent stories of known topics,
that is, to detect the related follow-up stories in the data streams given one or more
stories associated with a topic, as shown in Fig. 9.4. The topic is denoted by several
related stories rather than by a query (the NIST evaluation usually provided one to
four stories for each topic).

(5) Link Detection

The goal of link detection (LD) is to judge whether two stories belong to the same
topic, as shown in Fig. 9.5. Similar to TD, no prior knowledge is provided; the LD
system establishes a topic relevance detection model that does not depend on stories
from one topic as the reference. LD is often considered a core module in other TDT
tasks (e.g., topic detection and topic tracking) rather than an independent task. A
good link detection system can improve the performance of other TDT tasks.

206 9 Topic Detection and Tracking

?

Fig. 9.5 Link detection in TDT

Table 9.1 Basic text mining
techniques involved in TDT

Main task Basic technique

Representation of topic/story Text representation

Link detection Text similarity computation

Topic detection Text clustering

Topic tracking Text classification

In general, TDT studies the relationship between stories and topics. It mainly
solves the following technical problems: (a) representation of topics and stories;
(b) similarity between topics and stories; (c) clustering of topics and stories; and
(d) classification of topics and stories. Table 9.1 shows the text mining techniques
involved in different TDT tasks.

9.3 Story/Topic Representation and Similarity Computation

In Chaps. 3, 5, and 6, we introduced the standard text representation and text
similarity computation methods in detail. This section will briefly introduce the
methods of text representation and similarity computation in TDT. Text prepro-
cessing techniques, including stemming, lemmatization, and stop word filtering, are
usually employed first. Then, a vector space model (VSM) or language model (LM)
is often applied for text representation.

VSM is one of the most commonly used text representation models in TDT.
It regards a story as a document, ignores the order of terms, and uses a vector
to represent this document. TF-IDF and its variants are usually used as the term-
weighting scheme. Allan et al. (2000) pointed out the limit of text similarity
computation in VSM.Many researchers have proposed improving the representation
ability of VSMs based on information extraction and feature engineering. For
example, the information of the name entity (Yang and Liu 1999; Kumaran and
Allan 2004, 2005), the 4Ws (who, what, when, where) (Kumaran and Allan 2004),
and semantic concepts (Kumaran and Allan 2004) have been added to vector space
to improve the performance.

9.3 Story/Topic Representation and Similarity Computation 207

There are three kinds of similarity measures between stories or topics: the
similarity between two stories, the similarity between a story and a topic, and the
similarity between two topics; these correspond to the content in Sect. 6.2.

Identifying the similarity between two stories is also called link detection in TDT.
The goal of link detection is to determine whether two randomly selected stories
discuss the same topic. A basic approach is as follows: first, each story is represented
as a vector based on VSM, and then the similarity is calculated by the cosine
distance of the two vectors. Finally, a preset threshold is used to determine whether
the corresponding stories are relevant to each other. If the cosine similarity is greater
than the threshold, the two stories are relevant; otherwise, they are irrelevant. The
similarities between stories can also be measured by traditional Euclidean distance,
the Pierson correlation coefficient, and other similarity measures.

The correlation between a story and a topic can be transformed into the problem
of computing the similarities between the story and all the stories that constitute the
topic, in which the key problem is link detection for a pair of stories. In some work,
a topic is represented as a single model (e.g., using the centroid vector of all stories
under the topic to represent the topic), thereby converting the similarity between a
story and a topic into that between the story and the centroid vector, where the key
technique is still link detection.

Researchers at the University of Massachusetts (UMass) studied a variety of
similarity computation methods, including cosine distance, weighted sum, language
models, and Kullback-Leibler divergence. Experiments on the TDT3 corpus showed
that cosine distance performs best in link detection (Allan et al. 2000).

Another line of methods applies language models to story representation and
link detection. The language model has been widely used in text mining as a
generative probability model for representing natural language. Let the random
variables C and S represent a topic and a story, respectively. According to Bayes’
theorem, the posterior probability p(C|S) of the topic C conditioned on the story
S is proportional to the product of the prior probability p(C) and the conditional
probability p(S|C), that is

p (C|S) = p(C)p(S|C)

p(S)
∝ p (C) p (S|C) (9.1)

Assuming that the terms in story S are independent of each other given the topic,
we obtain

p (C|S) ∝ p (C)
∏

i

p (ti |C) (9.2)

where p(ti |C) is the probability that term ti appears in topic C.
Language modeling furthermore provides a method for computing the similarity

between a story and a topic (or two stories). In the unigram language model, a subset

208 9 Topic Detection and Tracking

Cj with respect to the j -th topic can be represented as a multinomial distribution as
follows:

p
(
S|Cj

) =
∏

i

p(ti |Cj) (9.3)

where ti denotes the ith term in the vocabulary. Based on maximum likelihood
estimation, we can estimate p(ti |Cj) as the term frequency of ti in Cj divided by
the total number of terms in Cj .

In practice, the data sparsity problem may cause p(ti |Cj) to equal zero. To avoid
this problem, we can use the smoothing technique to estimate p(ti |Cj)

psmooth
(
ti |Cj

) = λp
(
ti |Cj

) + (1 − λ) p (ti |G) (9.4)

where p(ti |G) is an estimated probability of word ti in a general corpus G. Since
the texts in TDT appear in a time series, and new texts may have words that did not
appear in previous documents, as a kind of prior knowledge, estimation based on a
general corpus is reasonable.

The problem determining which topic is most likely to generate the given story
S can be described as

argmax
j

p(S|Cj)

p(S)
= argmax

j

∏

i

p(ti |Cj)

p(ti)
= argmax

j
log

∏

i

p(ti |Cj)

p(ti)
(9.5)

Therefore, D
(
S,Cj

) = ∑
i log

p(ti |Cj)

p(ti)
can be defined as the similarity between

story S and topic Cj .
If a story is regarded as a distribution of words, then the similarity between a

story S and a topic C can be measured by the similarity between two distributions,
e.g., Kullback-Leibler divergence:

DKL (C‖S) = −
∑

i

p (ti |C) log
p (ti |S)

p (ti |C)
(9.6)

Moreover, if two stories Sa and Sb to be compared are regarded as two multinomial
distributions of terms, the Kullback-Leibler (KL) divergence can also be used for
LD. Similarly, KL divergence can also measure the similarity between two topics.
These techniques have been applied in Lavrenko and Croft (2001) and Leek et al.
(2002).

On the basis of story/topic representation and similarity computation, most TDT
tasks, such as topic detection and topic tracking, can be formulized as clustering or
classification problems.

9.4 Topic Detection 209

9.4 Topic Detection

The purpose of topic detection is to capture new (i.e., previously undefined) topics
from a continuous stream of stories. The topic information, such as time, content,
and number of stories, is unknown in advance, and there are also no annotated data
for supervised learning. Therefore, topic detection is an unsupervised learning task
and usually considered to be a clustering problem. Therefore, most topic detection
algorithms can be regarded as a kind of modification or extension to standard text
clustering algorithms. The standard clustering algorithms take the whole dataset as
the input, while the input of topic detection is a continuous data stream of stories
with a clear temporal relationship. The topics in the data stream also tend to change
dynamically. These issues need to be addressed when using traditional clustering
methods for topic detection.

Topic detection can be divided into two main types: online topic detection and
retrospective topic detection. The input of online topic detection is a real-time story
data stream, and thus subsequent stories do not yet exist. When a new story appears,
the system is required to make a real-time decision on whether the story is a new
topic. The input of retrospective topic detection is the whole corpus, containing all
stories over time. Retrospective topic detection requires the system to decide for
each story which topic it belongs to in an offline manner and to divide the whole
corpus into several topic clusters accordingly. In comparison, the focus of online
topic detection is to detect new topics from real-time data streams, while the purpose
of retrospective topic detection is to discover previously unmarked news topics from
existing stories.

In the following, we will describe the two topic detection tasks separately.

9.4.1 Online Topic Detection

Online topic detection aims to detect new topics from real-time stories. Since the
information for new topics is unknown beforehand, it cannot be retrieved by a
certain query. In addition, the task requires that the system make real-time decisions
as soon as each story appears. For these reasons, incremental clustering algorithms
are usually employed for online topic detection.

One simple method is based on single-pass clustering. The algorithm processes
the input stories sequentially and represents each story based on a VSM. The model
uses words (or phrases) as terms and TF-IDF (or its variants) as the term-weighting
scheme to represent each story. Then, the similarities between the new story and all
existing topics are computed. The similarity between a story and a topic is usually
transformed into the similarity between the story and the centroid vector of the
topic. If the similarity is higher than a preset merge-split threshold, the story will be
classified into the most similar cluster (a cluster represents a topic); otherwise, the
story will establish a new cluster. The above process is repeated until all the stories

210 9 Topic Detection and Tracking

in the data stream have been processed. This algorithm ultimately forms a set of flat
clusters, where the number of clusters depends on the merge-split threshold. More
details of the single-pass clustering algorithm can be found in Sect. 6.3.2.

In the early research into TDT, researchers at UMass and CMU adopted the
single-pass clustering method (Allan et al. 1998b; Yang et al. 1998). To make the
algorithm better suited to real-time data streams, they made some modifications to
the text representation and similarity computations.

Specifically, Allan et al. (1998b) represented the content of a story as a query
and compared it to all previous queries. If a new story triggers an existing query, it
is assumed that the story discusses the topic corresponding to the triggered query.
Otherwise, the story is considered to contain a new topic.

Assume that q is a query and denoted as a vector over a set of terms. Based on
the term set, a document is represented as a representation vector d . The correlation
between a query q and a story d is defined as

eval (q, d) =
∑N

i=1 wi · di

N∑
i=1

wi

(9.7)

where wi represents the relative weight of a query term qi and di is the appearance
of term qi in the story.

Because the future documents (i.e., stories) are unknown, the inverse document
frequency (IDF) is estimated based on an auxiliary corpus c (which should belong
to the same domain):

idfi = log |c|+0.5
dfi

|c| + 1
(9.8)

where dfi represents the document frequency of qi in corpus c and |c| is the number
of documents contained in corpus c. Meanwhile, the average term frequency is
calculated as

tfi = ti

ti + 0.5 + 1.5 · dl
avg_dl

(9.9)

where ti denotes the frequency of qi in d, dl is the length of d, and avg_dl is the
average length of all documents in c. On this basis, they set the weight of qi as

twi = 0.4 + 0.6 · tfi · idfi (9.10)

In addition, the features in query q are dynamic. Each time a new story appears,
the top n high-frequency words of all existing documents in the data stream are
selected to construct the new term set. Thus, all query representations in the past

9.4 Topic Detection 211

need to be updated. The corresponding weight of qi is the average value of tfi in all
existing stories.

Many studies have observed that documents that appear more closely in time in
the data stream are more likely to discuss the same topic; therefore, using the timing
of news stories may improve NED performance. Based on this idea, a time penalty
was added to the threshold model. When the j th document in the data stream is
compared with the ith query (i < j), j − i is introduced to the threshold as a time
penalty:

θ
(
q(i), d(j)

)
= 0.4 + p ·

(
eval

(
q(i), d(j)

)
− 0.4

)
+ tp · (j − i) (9.11)

where eval(q(i), d(i)) is the initial threshold of query q(i), p is the weight of the
initial threshold, and tp is the weight of the time penalty.

As mentioned in Sect. 6.3.2, the single-pass clustering algorithm is very sensitive
to the order of the input sequence. Once the order changes, the clustering results may
vary greatly. However, in TDT, the order of the input stories is fixed, which makes
single-pass clustering highly suitable for TDT. Meanwhile, single-pass clustering
has its advantage for real-time large-scale topic detection because it is simple and
fast and supports online operations. The aforementioned work mainly involves three
aspects of improvement upon standard single-pass clustering: (1) establish a better
story representation, (2) find a more reasonable similarity computation method, and
(3) make full use of the time information in the data stream.

9.4.2 Retrospective Topic Detection

The main goal of retrospective topic detection (GTD) is to review all news stories
that have happened in the past and detect topics from them.

To address this task, the researchers at CMU proposed a hierarchical clustering
algorithm based on group average clustering (Allan et al. 1998a; Yang et al. 1998),
which has since been widely used in retrospective detection. This method adopts a
divide-and-conquer strategy to hierarchical clustering: it divides the ordered story
stream into several averaged buckets, adopts a bottom-up hierarchical clustering in
each bucket, and then aggregates the more proximate clusters into a new cluster.
Through repeated iterations, a topic cluster structure with a hierarchical relationship
can ultimately be obtained.

Subsection 6.2.3 has already introduced bottom-up hierarchical clustering in
detail. The basic idea is to initially treat each example as a separate cluster and
then repeatedly merge the two most similar clusters until all examples have been
merged into one cluster.

Finally, the algorithm constructs a hierarchical clustering dendrogram. The top
level of the dendrogram represents a coarse-grained topic partition, and the lower
level represents a more fine-grained topic partition. The time complexity of the

212 9 Topic Detection and Tracking

algorithm is O(mn), where n is the number of stories in the corpus and m is the
size of the bucket. The disadvantage of the algorithm is that it is only suitable for
retrospective topic detection and cannot be applied to online topic detection.

9.5 Topic Tracking

The goal of topic tracking is to detect follow-up related stories from the news data
stream given a small number of stories related to the topic as a priori knowledge.

On the one hand, topic tracking is related to information filtering in the informa-
tion retrieval field. We can thereby perform topic tracking based on the information
filtering techniques. The basic approach in topic tracking is to establish a query filter
that takes a small number of stories to be tracked as positive examples, where the
other stories are the negative examples. We then compute the similarity between the
query and each subsequent story and finally determine whether the story matches
the tracking topic by comparing the similarity score to a preset threshold. There
are normally two ways to build a query filter in practice. The first focuses on how
to better represent the topics to be tracked based on VSM, including establishing
queries based on relevance feedback, extracting features based on shallow parsing,
and attempting different feature weighting methods. The other is based on language
modeling, which usually requires a large-scale background corpus.

On the other hand, topic tracking can also be viewed as two kinds of text
classification tasks. Stories are categorized into two classes: the positive class
denotes the relevance to the topic, and the negative class denotes irrelevance to the
topic. A training set is constructed based on a small number of positive stories and
a large number of negative stories, and a linear classifier is trained to predict the
category of new stories.

CMU is the representative for research institutes using the k-NN classifier
for topic tracking. Their algorithm incrementally builds a training set comprising
positive and negative stories. When a new story appears, the similarities between it
and each example in the training set are calculated. After comparing the similarity
with a preset threshold, the new story is first classified as positive or negative. Then,
the nearest k training examples are assessed to determine which topic the story
belongs to. Although the k-NN method is simple and straightforward, the class
imbalance problem (i.e., the number of negative samples is much higher than that of
positive samples) makes it difficult to find a reasonable threshold for the algorithm.
One improvement is a k-NN model based on positive and negative examples: the
former k-NN is used to compute the similarity between a new story and positive
examples S+, while the latter is used to compute the similarity between a new story
and the negative examples S−. Last, a linear weighted combination of the two K-
NN predictions is used for the final prediction.

Researchers from UMass used the Rocchio algorithm for topic tracking. They
used three different term-weighting schemes for story representation and similarity

9.6 Evaluation 213

calculation. They also tried to dynamically adjust the topic vector during the
tracking process.

Some researchers have employed decision trees for topic tracking. The major
drawback of this method is that it can only give prediction results such as “yes” or
“no” and cannot output a continuous prediction score, which is needed to produce
a valid DET curve. Subsequent research includes introducing more information
on news stories (such as “when,” “where,” and “who”) into story and topic
representation and constructing a strong topic tracker with an ensemble of multiple
weak trackers.

Since the initial training data used to construct a topic model is normally very
sparse, and there is also insufficient prior knowledge about the tracking topics,
a topic tracking model that is trained based only on initial training data is often
insufficient and inaccurate. Furthermore, because the topics are dynamic in topic
tracking, the model cannot always track effectively after a period of time. To
address this problem, some researchers proposed a new subtask called adaptive topic
tracking (ATT), with the goal of adjusting the topic tracking model dynamically
during the tracking process.

The work on ATT mainly focused on modifying the topic tracking model based
on the system’s pseudolabels. Most approaches established a dynamic term vector,
adjusted the weight of terms dynamically, and trained the model in an incremental
learning manner. The systems developed by the Dragon company (Yamron et al.
2000) and UMass (Connell et al. 2004) were the first to attempt unsupervised
learning for ATT. The former added relevant stories into the training corpus and
learned a new language model for topic tracking. The latter took the centroid of all
prior stories as the representation of a topic and used the average correlation between
prior stories and the centroid topic as the threshold. Each time a relevant story is
detected during the follow-up process, it is added into the corpus, and the centroid
and threshold are re-estimated correspondingly. By self-learning, ATT gradually
adds pseudolabeled examples for model learning and modification, which reduces
the limitation created by training only on the initial training corpus. However, the
self-learning module in ATT is totally based on pseudolabeled examples. When the
pseudolabels are not correct, this method can easily lead to the incorporation of
irrelevant information, subsequently cause concept drift, and ultimately affect the
performance of follow-up topic tracking.

9.6 Evaluation

TDT is an evaluation-driven technology. The TDT conferences have released five
TDT corpora, including the TDT pilot corpus, TDT2, TDT3, TDT4, and TDT5.
These corpora are provided by the Linguistic Data Consortium (LDC).

The corpora contain both broadcasting and text data except TDT5. The initial
TDT corpus contained only English languages and subsequently added the Chinese
and Arabic languages. Three annotations (“yes,” “brief,” and “no”) were employed

214 9 Topic Detection and Tracking

in TDT2 and TDT3, and two annotations (“yes” and “no”) were employed in TDT4
and TDT5, where “yes” means that the story and the topic are highly correlated,
“brief” means that the correlation score is less than 10%, and “no” means that
the two evaluate as uncorrelated. The broadcasting corpus includes not only news
stories but also non-news stories such as commercial trade and financial stories, for
which LDC provided three additional annotations: “news,” “miscellaneous,” and
“untranscribed.”

The TDT task can be essentially considered as a binary classification problem.
Similar to the method of evaluating text classification described in Sect. 5.6, we
can categorize the prediction results for TDT into four different cases, as shown in
Table 9.2. By using the missed detection rate (MDR) and false alarm rate (FAR)
as the basis, a DET curve can be plotted to observe the mistakes of a TDT system.
Figure 9.6 is an example of the DET curve, where the x-axis is FAR and the y-axis
is MDR. The closer the DET curve is to the lower-left corner of the coordinate, the
better the TDT system performance is.

The performance of a TDT system can be quantified by a CDet indicator defined
as

CDet = CMD · pMD · ptarget + CFA · pFA · pnon_target (9.12)

where pMD and pFA are the conditional probabilities of missed detections (MD) and
false alarms (FA), respectively, CMD and CFA are preset coefficients of MD and FA,
ptarget represents the prior probability of a target topic, and pnon_target = 1 − ptarget.
CMD, CFA, and ptarget are all preset parameters. The formulations of pMD and pFA
are as follows:

pMD = #missed_detections

#targets
× 100% (9.13)

pFA = #false_alarms

#non_targets
× 100% (9.14)

Generally, the normalized CDet is used as the final performance of a TDT system:

CDet−Norm = CDet

min
{
CMD · ptarget, CFA · pnon_target

} (9.15)

Table 9.2 Four kinds of
prediction results from the
TDT tasks

Reference

Target Non-target

Prediction Yes Correct False alarm

No Missed detections Correct

9.7 Social Media Topic Detection and Tracking 215

DET

Probabilities of false alarm (%)

P
ro

ba
bi

lit
ie

s
of

 m
is

se
d

de
te

ct
io

ns
 (

%
)

80

60

40

20

10

5

2

1

0.5

0.2
0.1

80604020105210.50.20.1

Fig. 9.6 TDT detection error tradeoff (DET) diagram

9.7 Social Media Topic Detection and Tracking

In recent years, the ways in which information is shared and disseminated on the
Internet have gradually moved from the Web 1.0 era, which is represented by
mainstream media websites, to the Web 2.0 era, which is represented by social
media websites and applications. Traditional TDT mainly focuses on the content
of traditional media, while social media TDT confront the following challenges:
(1) the characteristics of user-generated context (UGC) in social media (e.g., short
text, dynamic topic, irregular gramma, and diversified modals) increase the difficulty
of text representation and TDT modeling; (2) the huge amount of data shared and
propagated through social media brings great difficulty to real-time TDT; and (3)
due to wide participation and openness, social media platforms are often the first site
people use to report many emergencies. Therefore, bursty/breaking topic detection
has attracted much attention in social media TDT.

In the following, we first introduce the differences between TDT in social media
and traditional TDT and then introduce the main tasks and approaches of social
media TDT. Lastly, we emphasize bursty topic detection in social media.

216 9 Topic Detection and Tracking

9.7.1 Social Media Topic Detection

The main goal of social media topic detection is to detect hot topics in the social
media data stream. Similar to traditional topic detection, the social media topic
detection task can also be divided into online topic detection and retrospective topic
detection. However, due to the real-time nature of social media, more attention is
being paid to online topic detection.

From the perspective of event types, social media topic detection can be
categorized into specific and nonspecific topic detection. Specific topic detection
aims at discovering historical topics that have already happened or detecting planned
topics such as upcoming meetings or festival celebrations. Related information, such
as the time, place, and main content of the known events, can be used to construct a
topic detection model. Nonspecific topic detection focuses on detecting new topics
from real-time data streams without any knowledge of the topic in advance (e.g.,
earthquakes) and collecting relevant follow-up stories. Nonspecific topic detection
is the emphasis of social media topic detection.

(1) Specific Topic Detection

Specific topic detection methods can be divided into unsupervised and supervised
machine learning methods. Similar to traditional topic detection, unsupervised topic
detection methods in social media are mainly based on clustering or dynamic query
expansion. The difference between traditional and unsupervised topic detection is
that in addition to text content, the latter normally incorporates more social media-
related information for topic representation and similarity calculation. For example,
Lee and Sumiya (2010) proposed a local festival detection task from Twitter data
streams. They found that the number of users and tweets will significantly increase
when there are local festivals. They first collected Twitter data with geographical
tags and then used the k-means algorithm to cluster these data and find topics
in specific areas to detect local festivals. Massoudi et al. (2011) proposed a topic
detection model for microblogs based on dynamic query expansion, in which they
integrated text content and social media attributes such as emoji, hyperlink, number
of fans, and number of retweets and replies for topic representation.

When the topic information is known in advance, such information can be used
to compare with a labeled dataset. Then, supervised machine learning algorithms
can be applied for topic detection. For example, Popescu and Pennacchiotti (2010)
first collected a Twitter corpus and labeled it manually according to known
topics. A supervised gradient boosted decision tree was then trained to detect
controversial topics. They emphasized the importance of a rich and diverse feature
set including hashtags, linguistic structure, and emotion features. Popescu et al.
(2011) subsequently tried more features such as location and the number of replies.
Supervised topic detection performs more effectively than unsupervised methods.

9.8 Bursty Topic Detection 217

(2) Nonspecific Topic Detection

Information on nonspecific topics is unknown in advance. Traditional methods
mainly use clustering to detect nonspecific topics, but the character of social media
content makes these methods less effective.

On the one hand, some studies added social media-related features as new
features for topic representation. For example, based on the classical incremental
clustering algorithm (Allan et al. 1998a; Becker et al. 2011) explored the usage of
retweets, replies, and mentions as features to detect social media topics. Feng et al.
(2015) aggregated Twitter data in two dimensions (time and space) and designed
a hashtag-based single-pass clustering method. Phuvipadawat and Murata (2010)
concluded that accurate recognition of the proper name of an entity could help in
the accurate calculation of text similarity and ultimately improve topic detection
performance. The topics were then sorted by the number of fans and retweets to
identify breaking news in the Twitter data stream.

On the other hand, some research tried to modify existing clustering algorithms
or design new clustering algorithms to meet the requirements of social media
applications. For example, Petrović et al. (2010) attempted to improve performance
when applying traditional topic detection approaches to large-scale real-time data
streams from social media. They further proposed an online NED method with
constant time and space based on locality sensitive hashing. This method can
effectively reduce the search space and significantly improve the efficiency of the
system without decreasing the topic detection performance.

9.7.2 Social Media Topic Tracking

The main task of social media topic tracking is detecting microblogs related to
existing topics from the social media data stream.

Similar to social media topic detection, existing studies mainly focus on how to
use the special attributes of social media for topic representation and how to improve
the sparseness of that representation. Phuvipadawat and Murata (2010) used rich
social attributes such as URLs, hashtags, number of retweets, and user portraits
to calculate the popularity of tweets and successfully tracked unexpected topics in
social media. Lin et al. (2011) viewed the hashtag as a kind of topic indicator and
used them to train a pretopic language model. Perplexity-based classifiers were then
applied to filter the tweet stream to detect topics of interest.

9.8 Bursty Topic Detection

Bursty topic detection, also known as bursty/breaking event detection, refers to the
detection of unexpected topics that develop rapidly in microblog data streams.

218 9 Topic Detection and Tracking

Bursty topic detection is different from traditional topic detection. Traditional
topic detection emphasizes the detection of new topics without judging whether
the detected topic is bursty or not. However, bursty topic detection focuses on
the detection of topics’ bursty features and bursty periods. Fung et al. (2005)
divided bursty topic detection methods into document-pivot methods and feature-
pivot methods. The former first detects topics through document clustering and then
evaluates the burst of topics; the latter first extracts bursty features and then clusters
these features to generate bursty topics.

The traditional topic detection approaches are mainly document-pivot methods.
However, because the number of topics and stories is huge and hot topics change
rapidly in social media, traditional document-pivot detection methods are often
inefficient for social media bursty topic detection, and feature-pivot methods have
attracted more attention.

Both document-pivot and feature-pivot methods need to identify the bursty
status. The former usually recognizes burst states based on clustered topics, while
the latter usually recognizes burst states based on feature discovery. In the following,
we first introduce the classical burst status recognition algorithms and then review
the representative document-pivot and feature-pivot bursty topic detection methods.

9.8.1 Burst State Detection

Kleinberg (2003) proposed a burst state detection algorithm for text data streams.
It was later called the Kleinberg algorithm, and it has been widely used in bursty
topic detection. The core idea of the algorithm is to simulate the time intervals
between adjacent texts or sets of features in a data stream with an automation
model to discover the optimal hidden state of the text at different time points. The
states consist of a normal state and a burst state, which are denoted by different
distributions of features, and the transition between states indicates the emergence
or disappearance of a “burst.”

In the Kleinberg algorithm, a text stream is organized into a sequence of
messages, where each message has a corresponding arrival time. For a given term
w, the algorithm records the arrival time of w and accordingly obtains a sequence
of arrival times tw = (t0, t1, . . . , tn). This determines a sequence of time intervals
(called interarrival gaps) xw = (x1, . . . , xn) where xi = ti − ti−1. If xw is assumed
to be generated by a binary state automaton, the problem will be transformed into a
hidden Markov problem with the goal of solving the hidden state sequence with a
known observation sequence. Finally, the bursty period is determined based on the
obtained dynamic hidden state of the feature from the bursty and normal periods.

9.8 Bursty Topic Detection 219

In detail, an exponential distribution is used to simulate the interarrival gaps.
Suppose the interval x is distributed according to the density function as follows:

f (x) = αe−αx, α > 0, x > 0 (9.16)

and the corresponding cumulative distribution function is

F (x) = 1 − e−αx, α > 0, x > 0 (9.17)

The expectation of x is α−1, where α represents the arrival rate of the documents.
For a two-state model, a normal state q0 (low state) and a burst state q1 (high

state) are defined. At each arrival time for w, the automaton must be in one of the
states, which potentially affects the next arrival time of the w. The state will switch
to another state or remain unchanged with a certain probability. Bursty topics are
recognized as transitioning from a low state to a high state in a period of time.

As shown in Fig. 9.7, when a term is in a low state q0, the interval x has a density
function f0 (x) = α0e−α0x . When a term is in a high state q1, the interval x has a
different density function f1 (x) = α1e−α1x . Obviously, the arrival rate α1 > α0.

Suppose that the corresponding state sequence of x is q = (qi1 , qi2 , . . . , qin),
where in ∈ {0, 1}, the probability of state transition is p, and the number of state
transitions in the sequence is b. Then, the density function for interval sequence x
is

fq (x) =
n∏

t=1

fit (xt) (9.18)

and the prior probability of q is

p (q) = pb(1 − p)n−b (9.19)

=

−

=

−

high statelow state

distributed parameter

for the interval x is

distributed parameter

for the interval x is

the probability of state transition is

(a) (b)

Fig. 9.7 (a) The distribution of the interval time for a normal and a burst state. (b) State transition
model

220 9 Topic Detection and Tracking

According to Bayes’ theorem, the posterior probability of q under x can be written
as

p (q|x) = p(q)fq(x)∑
q ′

p(q ′)fq ′(x)

= 1

Z

(
p

1 − p

)b

(1 − p)n
n∏

t=1

fit (xt) (9.20)

where Z = p(q)fq (x)∑
q′ p(q ′)fq′ (x)

.

The negative log-likelihood of the posterior distribution is

− lnp (q|x) = b ln

(
1 − p

p

)
+

(
n∑

t=1

− ln fit (xt)

)
−n ln (1 − p)+ lnZ (9.21)

where the third and fourth terms in the above formula are independent of q.
According to the maximum likelihood estimation, the following loss function can
be defined:

c (q|x) = b ln

(
1 − p

p

)
+

(
n∑

t=1

− ln fit (xt)

)
(9.22)

Determining the optimal hidden state sequence is equivalent to finding a state
sequence that minimizes c (q|x). The first term in c (q|x) favors a sequence with
a small number of state transitions, while the second term favors state sequences
that conform well to the sequence x (i.e., making the value of the density function
corresponding to each xt as large as possible).

If each state in the state sequence q belongs to several continuous state levels
(q0, q1, . . . , qi, . . .), the Kleinberg algorithm can be further extended from two
states to an infinite number. The function τ (i, j) is defined to capture the loss of
the transition from state si to state sj . The transition loss from the low state to the
high state is proportional to the number of intervening states, and the transition loss
from the high state to the low state is 0:

τ (i, j) =
{

(j − i) γ ln n, j > i

0, j ≤ i
(9.23)

where γ is the state transition control parameter (usually set to 1). Given the
parameters s and γ , this automaton can be represented by A∗

s,γ (asterisk denotes the
infinite states). For a given interval sequence x = (x1, x2, . . . , xn), the algorithm’s
goal is to solve a state sequence q = (qi1 , qi2 , . . . , qin) to minimize the cost
function. Let δ (x) = min

i=1,...,n
{xi}, and the maximum state level can be obtained

9.8 Bursty Topic Detection 221

by k = �1 + logs T + logs δ (x)−1	, where �·	 is the ceiling function. It can be
proven that if q∗ is the optimal state sequence of automaton Ak

s,γ , it is also the
optimal sequence of A∗

s,γ . Thus, the infinite state sequence optimization problem is
transformed into the finite state optimization problem.

In the last step, a standard forward dynamic programming algorithm (such as
the Viterbi algorithm) can be used to solve the above problem. Given an interval
sequence x = (x1, x2, . . . , xt), the minimum loss sequence Cj (t) can be expressed
as follows:

Cj (t) = − ln fj (xt) + min
l

(Cl (t − 1) + τ(l, j)) (9.24)

Cj (t) can be solved iteratively according to time t , where the initial state value is
C0 (0) = 0, Cj (0) = +∞. Finally, the optimal state sequence corresponding to x

is obtained.
It is worth mentioning that the Kleinberg algorithm can detect bursts at the

feature level (detecting the burst state of features/terms), as well as at the topic level
(detecting the burst state of clustered topics). Therefore, it can be applied not only
to feature-pivot bursty topic detection but also to document-pivot topic detection.

9.8.2 Document-Pivot Methods

Document-pivot methods first detect new topics from text data streams and then
determine their burstiness. A traditional method is to first divide the text data
stream into different windows according to the time of their appearance and perform
clustering on the text in each window. Each cluster represents one topic, and
features are extracted from the cluster to represent that topic. Finally, a bursty state
recognition algorithm is applied to determine whether the topic is bursty or not.

Chen et al. (2013) first designed a strategy to obtain a real-time microblog data
stream related to a given entity (such as a person or company name). For each time
step t , a single-pass clustering algorithm is applied to the messages within the time
window [t − T , t] (T is the length of a unit window). The similarity between each
message and the clustering centers is calculated. If the similarity is larger than the
preset threshold, the message will be merged into the existing cluster; otherwise,
the message constitutes a new cluster. Finally, each cluster is treated as a topic. The
algorithm runs continuously to detect new topics in real-time data streams. They
further established a semi-supervised classifier based on cotraining to detect whether
the topics are burst or not. Figure 9.8 denotes a bursty topic evolution curve, where
ts denotes the time of one topic’s occurrence, thot denotes the time the topic becomes
hot, and the period [ts, thot] was defined as the bursty period. They labeled ts and thot
for each bursty topic in an offline training dataset. An SVM classifier was trained
based on six features, including user growth rate, message growth rate, and response

222 9 Topic Detection and Tracking

Fig. 9.8 The bursty period of
one bursty topic

timeline

message

growth rate, and then it offered predictions for new topics detected from an online
data stream as to whether they were bursty topics.

Diao et al. (2012) proposed a topic model called TimeUserLDA to detect bursty
topics in social media data streams. The model was motivated by the finding that
messages published at the same time are more likely to have the same topic and
that messages published by the same author are also more likely to describe the
same topic. Based on this, they incorporated the time and author information into
a traditional LDA to model the messages. They mined a set of potential concepts
C from a large-scale Twitter dataset, with each concept representing a topic in
social media. For each topic c ∈ C, they calculated its occurrence frequency
(mc

1,m
c
2, . . . , m

c
T) along the time axis. Finally, they used an automaton similar to

Kleinberg (2003) to identify the bursty topics.
Document-pivot methods are more suitable for topic detection in traditional

media. As we have mentioned, the characteristics of social media, such as the short
length, high volume, and broad topics, make document-pivot methods less efficient.
Therefore, most of the applications for the bursty topic detection of social media are
based on feature-pivot detection methods.

9.8.3 Feature-Pivot Methods

As shown in Fig. 9.9, the feature-pivot methods first discover a set of bursty features
and then generate bursty topics. Here, “features” usually denote words or terms in
texts. Text data streams are generally divided into equal-length and nonoverlapping
time windows (such as “hours” or “days”) in advance. Then, different kinds
of methods, including feature selection methods, probabilistic methods, and the
Kleinberg algorithm, are used to identify the bursty features.

One type of simple method uses the absolute or relative number of features and
their changing speed as indicators for bursty feature selection. For example, for each

9.8 Bursty Topic Detection 223

1 2 3

Text stream

Identify the burst features Group the burst

features into events

Determine the hot

periods of the events

Fig. 9.9 Feature-pivot bursty topic detection methods

feature (e.g., words) in each time window, the relative word frequency Aij = Fij

Fmax

and the word frequency growth rate Bij = Fij −Fi(j−1)
1+Fi(j−1)

are calculated. The features
are ordered according to these indices, and a set of burst features is finally selected.

Fung et al. (2005) proposed a feature-pivot emergency detection method based
on a probabilistic model. They first divided the text stream into D = {d1, d2, . . . },
where di represents the text published on day i. Based on a binomial distribution,
they identified a set of bursty features by comparing a feature’s daily occurrence
probability with its global occurrence probability. Subsequently, these bursty fea-
tures were grouped into several bursty events, each of which comprised a subset of
bursty features. Finally, the probability of the hot bursty event was calculated by
computing the expected probability of the bursty event based on the subset of bursty
features and comparing it with the expected value to determine the hot periods of
each bursty event.

Other studies used spectrum analysis to detect bursty features and topics. For
example, He et al. (2007a) employed discrete Fourier transform (DFT) to transform
the time-series text data stream from the time domain to the frequency domain.
The bursty topics in the time domain were supposed to correspond to the peaks in
the frequency domain. The frequency domain attributes were then used to identify
bursty features and their related periods.

He et al. (2007b) employed the Kleinberg algorithm to first recognize bursty
features. For each bursty feature fj (t) in time window t , they calculated a bursty
weight, which they combined with the static weight (e.g., TF-IDF weight) as a
dynamic term-weighting scheme for bursty feature representation tf-idfij + δwj (t)

, where i is the index of documents and δ > 0 is the bursty coefficient. Based on
such a dynamic weight, topic clustering and classification experiments carried out
on the TDT3 corpus achieved better performance than the traditional methods.

Cataldi et al. (2010) proposed a bursty feature extraction and bursty topic
detection method based on content aging theory. First, nutrition is defined for each
feature k under each time window TWt taking into account the factors of word

224 9 Topic Detection and Tracking

frequency and user authority. The energy of feature k in time window TWt is then
defined as the mean square difference between the nutrient value of feature k in
current time window TWt and that in the previous s time windows. Energy is also
used as an indicator to measure the burstiness of feature k in time window TWt : the
feature with a larger energy value has higher burstiness. By using all the features
in window TWt as candidates, the bursty feature set EKt is obtained by sorting the
candidates according to their energy value. Finally, a feature relation graph TGt is
constructed with features in a window as nodes and correlation coefficients between
features as edge weights. The burst topics are then sorted and annotated based on
strongly connected subgraphs containing bursty features.

9.9 Further Reading

At the beginning of this century, TDT was an active research direction in text
mining. Recent development in this direction, on the one hand, is reflected in the
change in its application (i.e., from traditional media to social media), which we
have described in Sects. 9.7 and 9.8. In addition, several studies have attempted to
apply the latest machine learning theory to this development. For example, Fang
et al. (2016) improved the traditional feature space via word embedding to improve
the performance of story and topic representation and similarity computation.
However, there are few works of this type. Moreover, since clustering is the most
frequent task in TDT and there are few deep learning-based clustering algorithms,
research on TDT based on deep learning is also scarce.

Meanwhile, TDT is closely related to several hot areas of text mining, such as
information retrieval, sentiment analysis, and event extraction. In comparison with
information retrieval, extraction, and summarization, TDT emphasizes the abilities
to detect, track, and integrate information. In addition, TDT usually addresses text
data streams with temporal relationships rather than static texts. TDT can be used
to monitor several kinds of information sources to capture new topics in time and to
carry out historical research on the origin and development of topics. It has broad
application prospects in many fields, such as information security, public opinion
mining, and social media analysis. The joint technique of TDT and sentiment
analysis can effectively detect not only hot topics but also people’s views and
opinions about that topic.

TDT also has a strong correlation with event extraction. The former emphasizes
the automatic organization of macrolevel events in text data, while the latter
emphasizes fine-grained event recognition and element extraction in a piece of text.
The studies of TDT were driven by the TDT conferences, while research into event
extraction focused on the evaluations of ACE (automatic content extraction) and
KBP (knowledge base population).

9.9 Further Reading 225

Exercises

9.1 Please point out the similarities and differences between topic detection and
topic tracking.

9.2 Compared with traditional news texts, what are the characteristics of text
representation under social media?

9.3 What are the disadvantages of applying the standard single-pass clustering
algorithm to the online topic detection of news stories? Do you have any solutions
to these issues?

9.4 What is the difference between feature-pivot methods and document-pivot
methods for bursty event detection?

9.5 Please derive the Kleinberg algorithm if there are five states (representing five-
level burstiness).

9.6 How can the Kleinberg algorithm be used in the case of feature-pivot methods
and document-pivot methods for bursty event detection, respectively?

	9 Topic Detection and Tracking
	9.1 History of Topic Detection and Tracking
	9.2 Terminology and Task Definition
	9.2.1 Terminology
	9.2.2 Task

	9.3 Story/Topic Representation and Similarity Computation
	9.4 Topic Detection
	9.4.1 Online Topic Detection
	9.4.2 Retrospective Topic Detection

	9.5 Topic Tracking
	9.6 Evaluation
	9.7 Social Media Topic Detection and Tracking
	9.7.1 Social Media Topic Detection
	9.7.2 Social Media Topic Tracking

	9.8 Bursty Topic Detection
	9.8.1 Burst State Detection
	9.8.2 Document-Pivot Methods
	9.8.3 Feature-Pivot Methods

	9.9 Further Reading
	Exercises

