
Chapter 6
Text Clustering

6.1 Text Similarity Measures

Different clustering algorithms can produce different results by adopting different
perspectives, but almost all of them are performed based on similarity measures.
Therefore, the key problem of text clustering is how to effectively measure the
similarity of texts.

In text clustering, a cluster is represented by a collection of similar documents,
and there are three main types of text similarities:

• Similarity between two documents;1

• Similarity between two document collections;
• Similarity between a document and a document collection.

We will introduce the three kinds of similarity measures below.

6.1.1 The Similarity Between Documents

(1) Distance-Based Similarity

In a vector space model, a document is represented as a vector in the vector space.
The simplest way to measure document similarity is to use the distance between two
vectors in vector space. The smaller the distance between two vectors, the higher
the similarity of the two documents. The commonly used distance metrics include
Euclidean distance, Manhattan distance, Chebyshev distance, Minkowski distance,
Mahalanobis distance, and Jaccard distance.

1For the simplicity of description, we use “document” to refer to a piece of text at different levels
(e.g., sentence, document, etc.).
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Let a and b be the vector representations of two documents, and the following
distances are defined as follows.

a. Euclidean distance

d (a, b) =
(

M∑
k=1

(ak − bk)
2

)1/2

(6.1)

b. Manhattan distance

d(a, b) =
M∑

k=1

|ak − bk| (6.2)

c. Chebyshev distance

d(a, b) = max
k

|ak − bk| (6.3)

d. Minkowski distance

d(a, b) =
(

M∑
k=1

(ak − bk)
p

)1/p

(6.4)

(2) Cosine Similarity

Cosine similarity computes the similarity between two vectors by calculating the
cosine of the angle between the two vectors:

cos(a, b) = aTb

‖a‖‖b‖ (6.5)

The range of cosine similarity is [−1, 1]. The smaller the angle between the two
vectors is, the higher the cosine similarity. When the angle between two vectors is
0◦ (i.e., the same direction), the cosine similarity is 1; when the angle between two
vectors is 90◦ (i.e., orthogonal direction), the cosine similarity is 0; when the angle
between two vectors is 180◦ (i.e., opposite direction), the cosine similarity is −1.

The inner product of two vectors is proportional to the cosine similarity. The
inner product of two vectors after L-2 normalization (see Chap. 3) is equivalent to
the cosine similarity: a · b = aTb (Fig. 6.1).

Distance-based similarity measures the absolute distance between two vectors in
the vector space. Cosine similarity measures the angle of vectors in the vector space
and is the most widely used method for measuring the similarity of texts.



6.1 Text Similarity Measures 127

Fig. 6.1 Distance
measurement samples in the
vector space model
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(3) Distribution-Based Similarity

The previous two kinds of similarity measures are performed based on the vector
space. However, a document is sometimes represented by a distribution rather than
a vector space model, especially in generative models. In this case, the statistical
distance can be used to measure the similarity between two documents.

Statistical distance measures the difference between two distributions. A com-
monly used metric is the Kullback–Leibler (K-L) distance (also called K-L diver-
gence). Based on the BOW assumption, a document can be represented by a
categorical distribution over terms. Suppose P and Q are two categorical distri-
butions, and the K-L distance of P and Q is defined as

DKL(P ‖Q) =
∑

i

P (i) log
P(i)

Q(i)
(6.6)

The K-L distance is not symmetrical, that is, DKL(P ‖Q) �= DKL(Q‖P). A
symmetrical K-L distance can therefore be used instead:

DSKL(P,Q) = DKL(P ‖Q) + DKL(Q‖P) (6.7)

It is worth noting that when a document is of short length, it is meaningless to
use a categorical distribution to represent it and use the K-L distance to measure
the similarity of two documents. In fact, such distribution-based metrics are more
suitable for measuring the similarity between two collections of texts than that
between two short pieces of texts.
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(4) Other Measures

There are other methods for similarity measures. For example, the Jaccard similarity
coefficient is another widely used metric that measures the similarity between two
sets; it is defined as the size of the intersection divided by the size of the union of
the two sets:

J
(
xi , xj

) = |xi ∩ xj |
|xi ∪ xj | (6.8)

where a document is represented by a set of words.
Note that the aforementioned similarity measures can be used not only in text

clustering but also in other text data mining tasks.

6.1.2 The Similarity Between Clusters

A cluster is a collection of similar documents. The similarity between two clusters
can be computed based on the similarities of the documents contained in them.
Suppose d(Cm,Cn) denotes the distance between clusters Cm and Cn, d(xiandxj )

denotes the distance between documents xi and xj . There are several ways to
measure the similarity between the two clusters as follows.

(1) A single linkage denotes the shortest distance between two documents extracted
from two clusters respectively:

d(Cm,Cn) = min
xi∈Cm,xj ∈Cn

d(xi , xj ) (6.9)

(2) A complete linkage denotes the longest distance between two documents
extracted from two clusters respectively:

d(Cm,Cn) = max
xi∈Cm,xj ∈Cn

d(xi , xj ) (6.10)

(3) The average linkage denotes the average distance between two documents
extracted from two clusters respectively:

d(Cm,Cn) = 1

|Cm| · |Cn|
∑

xi∈Cm

∑
xj ∈Cn

d(xi , xj ) (6.11)
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(4) The centroid method is the distance between the centroid of two clusters:

d(Cm,Cn) = d(x̄(Cm), x̄(Cn)) (6.12)

where x̄(Cm) and x̄(Cn) denote the centroids of the clusters Cm and Cn,
respectively.

(5) Ward’s method. For each cluster, we first define the within-cluster variance
as the sum of squares of the distance between each document and the cluster
centroid. The increase in total within-cluster variance after merging the two
clusters can therefore be used as a cluster distance metric:

d(Cm,Cn) =
∑

xk∈Cm ∪ Cn

d(xk, x̄(Cm ∪ Cn))

−
∑

xi∈Cm

d(xi , x̄(Cm)) −
∑

xj ∈Cn

d(xj , x̄(Cn))
(6.13)

where d(a, b) = ‖a − b‖2.

Ward’s method is a criterion applied in hierarchical clustering. It minimizes the
total within-cluster variance by finding the pair of clusters at each step that leads to
a minimum increase in total within-cluster variance after they are merged.

In addition to the five abovementioned methods, the K-L divergence can also be
used for calculating the distance between two clusters. The equation for the K-L
divergence is shown as Eq. (6.6). The difference is that the categorical distributions
P and Q are estimated by a cluster rather than a document.

6.2 Text Clustering Algorithms

There are extensive types of text clustering methods, including partition-based
methods, hierarchy-based methods, density-based methods, grid-based methods,
and graph-based methods, each of which contains some typical algorithms. In the
following, we introduce several representative text clustering algorithms.

6.2.1 K-Means Clustering

The K-means algorithm, proposed by MacQueen in 1967, is a widely used partition-
based clustering algorithm.

For a given dataset {x1, x2, . . . , xN }, the goal of K-means clustering is to
divide the N samples into K (K ≤ N ) clusters to minimize the sum of the
squared distances within each cluster, which is called the within-cluster sum of
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squares (WCSS):

arg min
C

K∑
k=1

∑
x∈Ck

‖x − mk‖2 (6.14)

To achieve this objective, the standard K-means clustering algorithm (also called
the Lloyd–Forgy method) uses the iterative optimization method. In each iteration
step, the distances between each sample and the K centroids (i.e., the means) of the
cluster are first calculated. The samples are then assigned to the clusters with the
nearest centroid, and the centroids of existing clusters are updated. This process is
repeated until the minimum WCSS is reached.

Formally, given the initial centroids of the K clusters m
(0)
1 ,m

(0)
2 , . . . ,m

(0)
K , the

algorithm iterates in the following two steps:

(1) Assignment: Assign each sample into the cluster that minimizes the sum of
squares within clusters:

C(t)(xi ) = arg min
k=1,...,K

||xi − m
(t−1)
k ||2 (6.15)

where t denotes the steps of the iterations and C(x) denotes the index of the
cluster to which x is assigned.

(2) Updating: Update the centroids for each of the K clusters:

m
(t+1)
k = 1

|C(t)
k |

∑
xi∈C

(t)
k

xi (6.16)

The two steps are iteratively performed until the algorithm converges to a local
minimum. But such an alternated iterative optimization cannot guarantee the global
minimum of the WCSS.

In practice, we can also choose different distance metrics. For example, in text
clustering, the cosine similarity is more often used:

d
(
x,m

(t)
k

)
= x · m(t)

k

‖x‖
∥∥∥m(t)

k

∥∥∥ (6.17)

However, it should be noted that the above iterative optimization can ensure the
decrease in WCSS only under the Euclidean distance metric. If different distance
metrics are used, there is a risk that the algorithm may not converge.

In summary, the K-means clustering algorithm is described as follows.
Table 6.1 displays a small text clustering dataset that contains ten short docu-

ments extracted from the domains of education, sports, technology, and literature.
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Algorithm 1: K-means clustering algorithm
Input : dataset D = {x1, x2, . . . , xN }, number of clusters K;
Output: clusters {C1, C2, . . . , CK }.

1 Randomly select K samples in D as the initial mean vectors {m1,m2, . . . ,mK };
2 while not converged do
3 for i = 1, . . . , N do
4 for k = 1, . . . , K do
5 calculate the distance d(xi ,mk) = ‖xi − mk‖2 between xi and mk ;
6 end
7 divide sample xi into the cluster of nearest mean vector arg mink{d(xi ,mk)}
8 end
9 for i = 1, . . . , K do

10 update the mean vector of each cluster: mnew
k = 1

|Ck |
∑

xi∈Ck

xi .

11 end
12 end

Table 6.1 Text clustering dataset

ID Sentence

x1 Beijing Institute of Technology was established in 1958 as one of the earliest
universities that established a computer science major in China.

x2 Students from Beijing Institute of Technology won the 4th China Computer Go
Championship.

x3 The Gymnasium of Beijing Institute of Technology is the venue for the preliminary
volleyball competition of the 2008 Beijing Olympic Games in China.

x4 In the 5th East Asian Games, the total number of medals of China reached a new
high. Both the men’s and women’s volleyball teams won championships.

x5 Artificial intelligence, also known as machine intelligence, refers to the intelligence
represented by an artificially produced system.

x6 Artificial intelligence is a branch of computer science that attempts to produce an
intelligent machine that can react in a manner similar to human intelligence.

x7 The three Go competitions between artificial intelligence AlphaGo and human
champion Jie Ke end with the human’s thorough defeat.

x8 The first sparrow of spring! The year beginning with youngest hope than ever!

x9 The brooks sing carols and glees to the spring. The symbol of youth, the grass blade,
like a long green ribbon, streams from the sod into the summer.

x10 The grass flames up on the hillsides like a spring fire, not yellow but green is the
color of its flame.

Let D = {x1, x2, . . . , x10} denote this clustering dataset, in which xi cor-
responds to the i-th document. Before text clustering, we first perform feature
selection. The dataset includes 118 words. Due to the small scale of the corpus,
we have not chosen supervised feature selection methods (such as MI and IG)
for feature selection. Instead, we use an unsupervised feature selection method,
term frequency, to select those features with a frequency of no less than two in
this corpus. This method results in a simplified vocabulary that contains 22 words:
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Table 6.2 Dimension-reduced text clustering dataset

ID Sentence

x1 Beijing institute technology university computer science China

x2 Beijing institute technology China computer champion

x3 Beijing institute technology volleyball competition game China

x4 game China volleyball win champion

x5 artificial intelligence machine intelligence intelligence

x6 artificial intelligence computer science intelligent machine human intelligence

x7 artificial intelligence go competition human champion

x8 spring young

x9 spring young grass green

x10 grass spring green

“volleyball,” “Beijing,” “China,” “institute,” “win,” “go,” “champion,” “computer,”
“science,” “technology,” “human,” “race,” “university,” “artificial,” “intelligence,”
“machine,” “game,” “competition,” “spring,” “young,” “green,” “grass.”

The dimension-reduced dataset is shown in Table 6.2.
We perform K-means clustering on the corpus dimension-reduced dataset by

setting K = 3 and use the Euclidean distance as the similarity measure. We use
principal component analysis (PCA) to reduce the dimension of the feature space
and take the top two components as the x-axis and y-axis to visualize the clustering
process:

(i) Initialization: The initial clusters are {C1 : {x4}, C2 : {x5}, C3 : {x8}};
(ii) The first iteration: Calculate the distance of each document to the centroid

of each cluster. Taking x3 as an example, its distances to the three centroids
x4, x5, andx8 are 2.45, 3.16, and 3, respectively. Thus, x3 is assigned to
its nearest cluster C1. After assignment for each document, the updated
clusters become {C1 : {x2, x3, x4} , C2 : {x5, x6, x7} , C3 : {x1, x8, x9, x10}},
as shown in Fig. 6.2a.

(a) after 1st iteration (b) after 2nd iteration

Fig. 6.2 Clustering text with K-means algorithm (K = 3)
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(iii) The second iteration: Calculate the distance of each document to the centroid
of each cluster after the first iteration. Taking x1 as an example, its distances
to the three centroids are 2.08, 3.02, and 2.29. Thus, x6 is assigned to
its nearest cluster C1. After assignment for each document, the updated
clusters become {C1 : {x1, x2, x3, x4} , C2 : {x5, x6, x7} , C3 : {x8, x9, x10}},
as shown in Fig. 6.2b.

(iv) The third iteration: According to the distance between each document and the
centroid of each cluster after the third iteration, the cluster assignments no
longer need to be changed, and the algorithm converges. The final clusters
are {C1 : {x1, x2, x3, x4} , C2 : {x5, x6, x7} , C3 : {x8, x9, x10}}, as shown in
Fig. 6.2b.

Although the K-means algorithm is widely used because of its simplicity and
efficiency, it still has several shortcomings: 1© it remains difficult to determine the
value of clustering number K , and 2© the result depends on the selected initial
centroids or metric selection. For example, if documents x2, x5, and x8 are selected
as initial centroids of three clusters, the algorithm will terminate within one iteration,
and the final clustering results will be {C1 : {x1, x2, x3, x4}, C2 : {x5, x6, x7}, C3 :
{x8, x9, x10}}.

6.2.2 Single-Pass Clustering

In comparison with K-means, single-pass clustering is an even simpler and more
efficient clustering algorithm, as it only needs to traverse a collection of documents
once to perform the clustering. In the initial stage, the algorithm takes a document
from the corpus and constructs a cluster with this document. It then iteratively
processes a new document and computes the similarity between this document
and each existing cluster. If the similarity is lower than a predefined threshold, a
new cluster will be generated; otherwise, it will be assigned to the cluster with the
highest similarity. This process repeats until all the documents in the dataset have
been processed.

Single-pass clustering involves a similarity computation between a document and
a cluster, the methods for which are summarized in Sect. 6.2. In standard single-pass
clustering, the similarity between the document and the mean vector of the cluster
is employed.

The detailed algorithm is described as follows.
We perform single clustering on the dimension-reduced dataset shown in

Table 6.2. The opposite value of the Euclidean distance is used as the similarity
metric, and the threshold T is set to be −2.3. All documents are processed in
sequence. The clustering process is as follows:

(i) Read the first document x1, establish an initial cluster C1, and assign x1 to
C1. The initial cluster is {C1 : {x1}};
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Algorithm 2: Single-pass clustering algorithm
Input : dataset D = {x1, x2, . . . , xN }, similarity threshold T ;
Output: clusters {C1, C2, . . . , CM }.

1 M = 1; C1 = {x1}; m1 = x1
2 for i = 2, . . . , N do
3 for k = 1, . . . , M do
4 calculate the similarity d(xi ,mk) between xi and mk

5 end
6 select the cluster of highest similarity k∗ = arg max

k
{d(xi ,mk)}

7 end
8 if d(xi ,mk∗ ) > T then
9 add xi into cluster Ck∗ : Ck∗ ← (Ck∗ ∪ xi )

10 update the mean vector of Ck∗ : mk∗ = 1
|Ck∗ |

∑
xj ∈Ck∗

xj

11 end
12 else
13 M+ = 1; CM = {xi}
14 end

(ii) Process document x2. Because the similarity between x2 and the centroid of
C1 is −2.18, which is higher than T , we assign x1 to C1. The updated clusters
are {C1 : {x1, x2}};

(iii) Process document x3. The similarity between x3 and the centroid of the
existing clusters C1 is −2.18, which is higher than T ; therefore, we assign
x3 to C1. The updated clustering result is {C1 : {x1, x2, x3}};

(iv) Process document x4. The similarity between x4 and the centroid of
the existing cluster C1 is −2.47. The highest similarity is lower than
T ; therefore, we assign x4 to C2. The updated clustering result is
{C1 : {x1, x2, x3} , C2 : {x4}};

(v) Process document x5. The similarities between x5 and the centroids
of existing clusters C1 and C2 are −2.85 and −2.83, respectively.
The highest similarity is lower than T ; therefore, we establish a
new cluster C3 and assign x5 to it. The updated clustering result is
{C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5}};

(vi) Process document x6. The similarities between x6 and the centroids of exist-
ing clusters C1, C2 and C3 are −3.02, −3.32, and −1.73 respectively. The
highest similarity is higher than T (with C3); therefore, we assign x6 to C3.
The updated clustering result is {C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5, x6}};

(vii) Process document x7. The similarities between x7 and the centroids of exist-
ing clusters C1, C2 and C3 are −3.13, −3.0, −2.18 respectively. The highest
similarity is higher than T (with C3); therefore, we assign x7 to C3. The
updated clustering result is {C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5, x6, x7}};

(viii) Process document x8. The similarities between x8 and the centroids of
existing clusters C1, C2 and C3 are −2.67, −2.65, −2.33 respectively.
The highest similarity is lower than T ; therefore, we establish a
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new cluster C4 and assign x8 to it. The updated clustering result is
{C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5, x6, x7} , , C4 : {x8}};

(ix) Process document x9. The similarities between x9 and the centroids
of existing clusters C1, C2, C3, C4, and C5 are −3.02, −3.0, −2.73
and −1.41 respectively. The highest similarity is higher than T (with
C4); therefore, we assign x9 to C4. The updated clustering result is
{C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5, x6, x7} , , C4 : {x8, x9}};

(x) Process document x10. The similarities between x10 and the centroids
of existing clusters C1, C2, C3 and C4 are −2.85, −2.83, −2.53
and −1.22 respectively. The highest similarity is higher than T (with
C4); therefore, we assign x10 to C4. The updated clustering result is
{C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5, x6, x7} , C4 : {x8, x9, x10}};

Thus, all documents in the corpus are processed. The final clustering result is
shown in Fig. 6.3.

Because of its simplicity and efficiency, the single-pass clustering algorithm is
suitable for scenarios including large-scale and real-time streaming data, such as
topic detection and tracking, which we will introduce in Chap. 9. However, it also
contains some inherent flaws. For example, its performance greatly depends on the
order of processed documents, and the threshold is sometimes hard to determine in
advance.

Fig. 6.3 Clustering result with single-pass clustering algorithm
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6.2.3 Hierarchical Clustering

Hierarchical clustering is a class of cluster analysis methods that seek to build a
hierarchy of clusters. It can be divided into two main types:

(1) Agglomerative hierarchical clustering: This is a bottom-up approach where
each element starts in its own cluster and similar pairs of clusters are merged as
we move up the hierarchy.

(2) Divisive hierarchical clustering: This is a top-down approach where all elements
start in one cluster and splits are performed recursively as we move down the
hierarchy.

In agglomerative hierarchical clustering, each document is initially considered as
an individual cluster, and the most similar two clusters are merged together in each
iteration until one cluster or K clusters are formed.

In the clustering process, the similarity between two clusters needs to be calcu-
lated. The commonly used measures, including single linkage, complete linkage,
average linkage, and Ward’s method, are described in detail in Sect. 6.2.

Algorithm 3: Agglomerative hierarchical clustering algorithm
Input : dataset D = {x1, x2, . . . , xN }, number of clusters K;
Output: clusters {C1, C2, . . . , CK }.

1 for i = 1, . . . , N do
2 Ci = {xi}
3 end
4 for i = 1, . . . , N do
5 for j = 1, . . . , N do
6 calculate the similarity between two clusters d(Ci, Cj )

7 end
8 end
9 while size(C ) > K do

10 find the nearest two clusters Ci∗ and Cj∗ .
11 for h = 1, . . . , size({Ck}) do
12 if h �= i∗ and h �= j∗ then
13 update the similarity d(Ch, Ci∗ ∪ Cj∗ )
14 end
15 delete Ci∗ and Cj∗ from C
16 add Ci∗ ∪ Cj∗ to C
17 update the index of each cluster and record samples in each cluster.
18 end
19 end

The results of hierarchical clustering can be represented by a dendrogram, which
is a tree-like diagram that records the sequences of merges or splits, as shown in
Fig. 6.4. Each leaf node represents a document, and each intermediate node has two
subnodes, indicating that the two component clusters merged into one cluster. The
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Fig. 6.4 The agglomerative hierarchical clustering results (dendrogram)

height of the leaf nodes is 0, and the height of each intermediate node represents
the distance of its two subnodes and is inversely proportional to their similarity.
Cutting the tree horizontally at a given height yields partitioning clustering results
at a selected level.

We perform agglomerative hierarchical clustering on the dimension-reduced
clustering dataset shown in Table 6.2 by using cosine to measure the similarity
between documents and average linkage to measure the similarity between clusters
and setting the expected number of clusters K as 3. The clustering process is as
follows:

(i) Initialize a cluster for each document. This results in ten clusters in our task.
The initial clusters are {C1 : {x1}, C2 : {x2}, C3 : {x3}, C4 : {x4}, C5 :
{x5}, C6 : {x6}, C7 : {x7}, C8 : {x8}, C9 : {x9}, C10 : {x10}}.

(ii) Compute the similarities between each cluster pair. Because the similarity
between clusters C9 and C10 is the highest (0.87), the two clusters are merged.
The updated clusters are {C1 : {x1} , C2 : {x2} , C3 : {x3} , C4 : {x4} ,

C5 : {x5} , C6 : {x6} , C7 : {x7} , C8 : {x8} , C9 : {x9, x10}}.
(iii) Compute the similarities between each cluster pair and merge the two clusters

C1 and C2, which have the highest similarity. The updated clustering result
is {C1 : {x1, x2} , C3 : {x3} , C4 : {x4} , C5 : {x5} , C6 : {x6} , C7 : {x7} ,

C8 : {x8} , C9 : {x9, x10}}.
(iv) Compute the similarities between each cluster pair and merge the two clusters

C5 and C6, which have the highest similarity. The updated clustering result
is {C1 : {x1, x2} , C3 : {x3} , C4 : {x4} , C5 : {x5, x6} , C7 : {x7} , C8 : {x8} ,

C9 : {x9, x10}}.
(v) Compute the similarities between each cluster pair and merge the two

clusters C1 and C3, which have the highest similarity. The updated clustering



138 6 Text Clustering

result is {C1 : {x1, x2, x3} , C4 : {x4} , C5 : {x5, x6} , C7 : {x7} , C8 : {x8} ,

C9 : {x9, x10}}.
(vi) Compute the similarities between each cluster pair and merge the two clusters

C8 and C9, which have the highest similarity. The updated clustering result is
{C1 : {x1, x2, x3} , C4 : {x4} , C5 : {x5, x6} , C7 : {x7} , C8 : {x8, x9, x10}}.

(vii) Compute the similarities between each cluster pair and merge the two clusters
C5 and C7, which have the highest similarity. The updated clustering result is
{C1 : {x1, x2, x3} , C4 : {x4} , C5 : {x5, x6, x7} , C8 : {x8, x9, x10}}.

(viii) Compute the similarities between each cluster pair and merge the two clusters
C1 and C4, which have the highest similarity. The updated clustering result is
{C1 : {x1, x2, x3, x4}, C5 : {x5, x6, x7}, C8 : {x8, x9, x10}}.

At this point, the number of clusters reaches the preset value (K = 3), and the
hierarchical clustering ends. The clustering results in terms of the dendrogram are
shown in Fig. 6.4.

The top-down divisive hierarchical clustering process follows the opposite pro-
cess as the bottom-up clustering process. Initially, all the documents are contained
in one cluster, and the documents that are not similar are separated iteratively from
the cluster until all documents are divided into different clusters.

6.2.4 Density-Based Clustering

In density-based clustering, clusters are defined as areas of higher density than the
remainder of the data. The basic concept is that the densely distributed data points
in the data space are separated by the sparsely distributed data points; the connected
high-density regions are the target clusters we are looking for.

Density-based spatial clustering of applications with noise (DBSCAN) is a
representative algorithm of density-based clustering. Given a set of data points in
the data space, the points that are closely connected (points with many nearby
neighbors) will be grouped together and marked as high-density regions, and the
points that lie alone in low-density regions (whose nearest neighbors are too far
away) will be marked as outliers.

Let r denote the radius of the neighborhood and n denote the minimum number of
data points required to construct a high-density region. On this basis, the following
basic concepts are defined.

• r-neighborhood: The r-neighborhood of a sample P refers to the circular domain
with P at the center and r as the radius.

• Core point: Point P is a core point if P ’s r-neighborhood contains at least n

points.
• Directly reachable: Point Q is directly reachable from P if Q is in the r-

neighborhood of P .
• Reachable: If there exists a sequence of data points P1, P2, . . . , PT and Pt+1

is directly reachable from Pt for any t = 1, . . . , T − 1, we say that point
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Fig. 6.5 An illustration of
the DBSCAN algorithm

PT is reachable from P1. According to the definition of direct reachability,
P1, P 2, . . . , PT −1 in the sequence are all core points.

• Density-connected: Two points Q1 and Q2 are density-connected if both Q1 and
Q2 can be reachable from a core point P .

The DBSCAN algorithm supposes that for any core point P , the points in the
dataset that are reachable from P belong to the same cluster. Figure 6.5 gives an
example of the DBSCAN algorithm where n = 4. Point A and other hollow points
are core samples, and boundary points B and C are non-core points. Points B and
C are reachable from point A, that is, B and C are density-connected; therefore,
together with the core points, they construct a cluster. Point N is a noise point that
is not density-connected to A, B, or C.

Starting from a core point, the DBSCAN algorithm expands continuously to
reachable regions to obtain a maximum region containing core points and boundary
points. In this region, any two points are connected with each other and aggregated
into a cluster. The process is repeated for each unlabeled core point until all core
points in the dataset are processed. The points that are not included in any clusters
are called noise points and grouped in a noise cluster.

We perform DBSCAN clustering on the dimension-reduced clustering dataset
shown in Table 6.2, using cosine distance with r = 0.6 and n = 3. The clustering
process is as follows.

(i) Initially, mark all data points as unvisited. Select x1 first and mark it as visited.
The r-neighborhood of x1 includes points x1, x2 and x3. Because its size is
not smaller than n, make the connected high-density region {x1, x2, x3}. The
clustering result is {C1 : {x1, x2, x3}};

(ii) Select an unvisited point x4 and mark it as visited. The r-neighborhood of x4
includes x1, x2, and x3. The updated clustering result is {C1 : {x1, x2, x3, x4}};

(iii) Select an unvisited point x5 and mark it as visited. The r-neighborhood
of x5 includes x5, x6, and x7, the size of which is not smaller than n.
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Algorithm 4: DBSCAN algorithm
Input : dataset D , radius r , the number of samples n required to construct a high-density

region;
Output: set of clusters C .

1 C = ∅

2 for P in D do
3 if P has been visited then
4 continue
5 end
6 find a set RP of all samples in the r-neighborhood of P

7 if |RP | < n then
8 mark P as a noise sample
9 end

10 else
11 add sample P to a new cluster C

12 find a set SP of directly reachable samples from P

13 for Q in SP do
14 if Q is a noise sample then
15 add Q to cluster C

16 end
17 if Q has not been visited then
18 add Q to cluster C

19 end
20 find a set RQ of samples within the r-neighborhood of Q

21 if |RP | ≥ n then
22 SP = SP ∪ RQ

23 end
24 add C to C

25 end
26 end
27 end

Therefore, make the connected high-density region {x5, x6, x7} a new cluster.
The updated clustering result is {C1 : {x1, x2, x3, x4} , C2 : {x5, x6, x7}};

(iv) Select an unvisited point x8 and mark it as visited. The r-neighborhood of
x8 includes x8, x9, and x10, the size of which is smaller than n. There-
fore, make the connected high-density region {x8, x9, x10} a new cluster.
The updated clustering result is {C1 : {x1, x2, x3, x4} , C2 : {x5, x6, x7} ,

C3 : {x8, x9, x10}};
(v) At this point, all points in the dataset are marked as visited, and clustering is

finished. The final clustering result is {C1 : {x1, x2, x3, x4} , C2 : {x5, x6, x7} ,

C3 : {x8, x9, x10}}, as shown in Fig. 6.6.
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Fig. 6.6 The clustering result with the DBSCAN clustering algorithm

6.3 Evaluation of Clustering

The evaluation of clustering is also called cluster validity analysis. There are two
main categories of methods for evaluating clustering: external criteria and internal
criteria. The main difference between them is whether external information is used
for clustering validation.

6.3.1 External Criteria

In external criteria, the quality of clustering is measured by the consistency between
the clustering result and a clustering reference, which is considered the ground truth.
The clustering reference is usually manually labeled.

For a dataset D = {d1, d2, . . . , dn}, assume that the clustering reference is
denoted by P = {P1, P2, . . . , Pm}, where Pi represents the i-th cluster in the
clustering reference, and the clustering result is C = {C1, C2, . . . , Ck}, where
Ci is a model-obtained cluster. For any two different samples d i and dj in D ,
define the following four relationships based on their co-occurrences in C and P ,
respectively:

(1) SS: d i and dj belong to the same cluster in C and the same cluster in P;
(2) SD: d i and dj belong to the same cluster in C but different clusters in P;
(3) DS: d i and dj belong to different clusters in C but the same cluster in P;
(4) DD: d i and dj belong to different clusters in C and different clusters in P;
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Let a, b, c, d denote the number of SS, SD, DS, and DD, respectively. The
following evaluation measures can be defined:

(a) Rand index

RS = a + d

a + b + c + d
(6.18)

(b) Jaccard index

JC = a

a + b + c
(6.19)

(c) Fowlkes and Mallows index

FMI =
√

a

a + b
· a

a + c
(6.20)

The range of the above three indices is [0, 1]. The larger the value of the index is,
the higher the similarity of C and P and the better the performance of the clustering
result C .

6.3.2 Internal Criteria

The internal criteria are based on internal information (such as distribution and
structure) and evaluate a cluster without reference to external information. Cohesion
and separation are two key factors for evaluating the clustering performance in inter-
nal criteria. Generally, internal criteria prefer clusters with high similarity within a
cluster (high cohesion) and low similarity between clusters (high separation).

The typical internal criteria include the silhouette coefficient, I index, Davies–
Bouldin index, Dunn index, Calinski–Harabasz index, Hubert’s Γ statistic, and the
cophenetic correlation coefficient. Most of these metrics include factors of both
cohesion and separation. In the following, we will introduce the representative
measure: the silhouette coefficient. Readers can refer to (Liu et al. 2010) for the
details of other methods.

The silhouette coefficient was first proposed by Peter J. Rousseeuw in 1986 and
has become a commonly used internal criterion for clustering evaluation. Assuming
d is a sample belonging to cluster Cm, we first calculate the average distance
between d and the other samples in Cm as:

a(d) =

∑
d ′∈Cm,d �=d ′

dist(d, d ′)

|Cm| − 1
(6.21)
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We then calculate the minimum average distance between d and the samples in
the other clusters:

b(d) = min
Cj :1≤j≤k,j �=m

⎧⎪⎪⎨
⎪⎪⎩

∑
d ′∈Cj

dist(d, d ′)

|Cj |

⎫⎪⎪⎬
⎪⎪⎭ (6.22)

Among them, a(d) reflects the degree of cohesion in the cluster to which d

belongs; b(d) reflects the degree of separation between d and the other clusters.
On this basis, the silhouette coefficient with respect to d is defined as follows:

SC(d) = b(d) − a(d)

max{a(d), b(d)} (6.23)

The overall silhouette coefficient is then defined as the average silhouette
coefficient across all samples in the dataset:

SC = 1

N

N∑
i=1

SC(d i ) (6.24)

The range of the silhouette coefficient is [−1, 1]. The higher the silhouette
coefficient is, the better the clustering performance.

6.4 Further Reading

The performance of text clustering depends on the quality of the text representation.
Traditional text clustering methods mainly use the vector space model for text
representation. This type of representation has some inherent shortcomings, includ-
ing high-dimensional and sparsity problems, which are inefficient for similarity
calculation and text clustering.

In text classification, supervised feature selection methods (e.g., MI and IG) are
widely used to improve the quality of text representation. However, because the
labels of documents are unknown in text clustering, we can only use unsupervised
feature selection methods (e.g., document frequency and term frequency). The
unsupervised feature extraction algorithms (e.g., PCA, ICA) are also options for
dimension reduction in text clustering. In addition, topic models such as latent
semantic analysis (LSA), probabilistic latent semantic analysis (PLSA), and latent
Dirichlet distribution (LDA) also provide a way to represent a document by
transforming the high-dimensional sparse vectors of words into low-dimensional
dense vectors of topics. In addition, some studies also attempt to use the concepts
in a knowledge base (such as WordNet, HowNet, Wikipedia, etc.) to guide text
representation, similarity calculation, and clustering.
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In recent years, with the rise of deep learning, distributed representations such
as word embedding have been widely used in text data mining. For example, as
introduced in Chap. 3, a piece of text at different levels (e.g., word, phrase, sentence,
and document) can be represented by a densely distributed low-dimensional vector.
Another advantage of representation learning is that it can learn a task-related
representation. Both advantages bring new perspectives to text clustering.

In addition to the clustering methods we described above, there are some special
clustering algorithms, such as suffix tree clustering (STC), that are specific to
text processing. As a type of data structure, a suffix tree was first proposed to
support effective matches and queries for strings. By using the suffix tree structure
to represent and process text, the suffix tree clustering algorithm regards text as
a sequence of words rather than a set of words and captures more word order
information.

Clustering text streams is a special problem of text clustering, which has been
widely used in the fields of topic detection and tracking and social media mining.
Unlike traditional text clustering, the text data in these fields often appear in the form
of online text streams, which creates challenges for text clustering. The single-pass
clustering algorithm is a widely used method for real-time large-scale text stream
clustering. We will also see in Chap. 9 that some online variants of the traditional
clustering algorithms, such as group-average agglomerative clustering (Allan et al.
1998a; Yang et al. 1998), have also been proposed to address these challenges.

Exercises

6.1 Please point out the similarities and differences between the classification and
clustering problems.

6.2 What is the relationship between Euclidean distance and cosine similarity when
measuring the similarity of two documents?

6.3 Is KL divergence suitable for the similarity calculation of short documents?
In addition to KL divergence, can you think of other distribution-based similarity
calculation methods?

6.4 Please give the detailed K-means clustering process for the clustering dataset
in Table 6.2 when document x1, x5, and x8 are selected as the initial centroids.

6.5 What is the single-pass clustering results if the document order for processing
is reversed in Table 6.2?

6.6 Please try to perform divisive hierarchical clustering on the clustering dataset
in Table 6.2.
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