
Chapter 4
Text Representation with Pretraining
and Fine-Tuning

4.1 ELMo: Embeddings from Language Models

As introduced in the previous section, a word can be well represented by its context.
Thus, the quality of word representations (embeddings) depends at least on two
factors. The first is whether the contexts are sufficiently rich: do we have abundant
text data containing diverse contexts for each word? The second is whether the
context is well captured and exploited. In other words, the word representations
will remain unsatisfactory if the model cannot effectively utilize and represent all
the contexts of a word. When word embeddings are applied to downstream tasks,
another important issue arises that must also be addressed: are word embeddings
context dependent? For example, a large language model based on a recurrent
neural network (RNN) produces word embeddings as a byproduct. The usage will
be context independent if we directly apply the pretrained word embeddings into the
downstream tasks, but it will be context dependent if we first employ the pretrained
RNN to obtain the dynamic representations according to the test sentence and then
apply them to downstream tasks.

Generally, ELMo,1 proposed by Peters et al. (2018), is the first successful model
to attempt to solve all the above problems, and it achieves remarkable performance
improvements in several downstream text-processing tasks. ELMo employs the
pretraining framework. In the pretraining stage, a bidirectional LSTM-based lan-
guage model is trained on the 1B Word Benchmark set (including approximately
30 million sentences).2 In the specific applications, the pretrained bidirectional
LSMT first performs on the test sentences, and then task- and context-dependent
word embeddings are calculated according to dynamic hidden representations in
the neural model. Last, the context-dependent word embeddings are fine-tuned in
task-dependent models to perform specific text-processing tasks.

1Codes and models can be found at https://allennlp.org/elmo.
2https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark.
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4.1.1 Pretraining Bidirectional LSTM Language Models

ELMo employs the bidirectional LSTM-based language model for pretraining.
Given a sentence (SOSx1 · · · xj−1xj · · · xnEOS) (SOS and EOS are special
symbols indicating the start and end of the sentence), a forward language
model computes the probability of xj conditioned on its left contexts
p(xj |SOS, x1, · · · , xj−1), while a backward language model calculates the
probability of xj conditioned on its right contexts p(xj |xj+1, · · · , xn, EOS).
Intuitively, both of the bidirectional contexts can be captured.

As illustrated in Fig. 4.1, the bottom layer first projects each symbolic token into
a distributed representation using CNN over characters. Then, both forward and
backward LSTMs are employed to learn two language models utilizing L layers. To
calculate p(xj |SOS, x1, · · · , xj−1), the forward language model passes the token
embedding xj−1 throughL forward LSTM layers, resulting in the top representation−→
h L

j−1. Then, a softmax function is adopted to compute the probability of xj :

p(xj |SOS, x1, · · · , xj−1) = softmax(
−→
h L

j−1, xj ) =
−→
h L

j−1 · xj

∑
x′

−→
h L

j−1 · x′
(4.1)

Similarly, the backward language model employs L backward LSTM layers to

obtain
←−
h L

j+1 and compute p(xj |xj+1, · · · , xn, EOS). The network parameters of
bidirectional LSMTs are optimized to maximize the following log likelihood of
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Fig. 4.1 The architecture of ELMo
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forward and backward language models over T training sentences (30 million used
in the original ELMo work):

T∑

t=1

n+1∑

j=0

(
logp(x

(t)
j |SOS, x

(t)
1 , · · · , x

(t)
j−1; θ) + logp(x

(t)
j |x(t)

j+1, · · · , x(t)
n , EOS; θ)

)

(4.2)

4.1.2 Contextualized ELMo Embeddings for Downstream
Tasks

After pretraining, bidirectional LSTMs are available. Instead of directly applying
the learned fixed word embeddings xj (static embedding) into downstream tasks,
ELMo embeddings are dynamic depending on specific contexts in the test sentences.
Specifically, each test sentence in a downstream task is input into the pretrained
bidirectional LSTMs, resulting in (2L+1)-layer representations, including one input
layer and L hidden layers of forward and backward LSTMs (L = 2 in the original
ELMo work). All the representations of xj can be rewritten as follows:

Rj = {xj , (
−→
h l

j ,
←−
h l

j )|l = 1, · · · , L} = {hl
j |l = 1, · · · , L} (4.3)

where h0
j = xj denotes the input layer representation and hl

j = [−→h l
j ;

←−
h l

j ] if
l ∈ {1, · · · , L}. Given a test sentence, bidirectional LSTMs first obtain the L

forward and backward hidden layer representations; then, ELMo embeddings are
linear combinations of each layer:

ELMotask
j = γ task

L∑

l=0

wtask
l hl

j (4.4)

in which wtask
l determines the contribution of representations in each layer. γ task

specifies the importance of ELMo embeddings in the specific task.
In downstream applications, ELMo embeddings are typically employed as

additional features in a supervised model for a specific text-processing task.
Suppose the baseline supervised model (e.g., CNN, RNN, or feed-forward
neural networks) adopted in the specific task learns the final hidden states
(htask

1 , · · · ,htask
j , · · · ,htask

n ) for a test sentence (x1, · · · , xj , · · · , xn). ELMo
embeddings can be leveraged in two ways to augment the baseline supervised
model. On the one hand, they can be combined with the input embedding xj of
the baseline model, leading to [xj ;ELMotask

j ] as new inputs for the supervised
model. On the other hand, ELMo embeddings can be concatenated with the final
representations htask

j of the baseline model, resulting in [htask
j ;ELMotask

j ], which
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can be directly employed to perform prediction without changing the baseline
supervised architecture.

Enhanced with ELMo embeddings, remarkable performance improvements can
be achieved in several text-processing tasks, such as question answering, textual
entailment, semantic role labeling, coreference resolution, named entity recognition,
and sentiment analysis.

4.2 GPT: Generative Pretraining

Despite the great success of ELMo, it still has some weaknesses to be addressed.
First, ELMo adopted a two-layer shallow bidirectional LSTM, which makes it
difficult to learn all the language regularities of the text data, and thus its potential
is limited. Second, bidirectional LSTMs are not the best for capturing long-distance
dependency, since they need n − 1 passes for the dependence modeling of the
first word and the n-th word in a sequence, and their results would be further
worsened by the gradient vanishing problem. Third, pretrained models are not fully
exploited, since they are only being used to obtain representations that will be
further employed as additional features for downstream tasks. That is, the fine-
tuning model in the downstream supervised task learns from scratch and does
not share the parameters of the pretraining model. Accordingly, Radford et al.
(2018) propose a deep pure attention-based model GPT inspired by Transformer
(Vawani et al. 2017) for both pretraining and fine-tuning. Specifically, GPT employs
Transformer’s decoder, which contains 12 self-attention layers, to pretrain a feed-
forward language model and fine-tune the same 12-layer self-attention model for
downstream tasks. This section first briefly introduces the Transformer and then
gives an overview of GPT.

4.2.1 Transformer

The Transformer3 was originally proposed to perform machine translation
that automatically converts a source language sentence (token sequence
(x0, · · · , xj , · · · , xn)) into a target-language sentence (y0, · · · , yi, · · · , ym). It
follows the encoder-decoder architecture, in which the encoder obtains the semantic
representation of the source sentence and the decoder generates the target sentence
token by token from left to right based on the source-side semantic representations.

3Model and codes can be found at https://github.com/tensorflow/tensor2tensor.

https://github.com/tensorflow/tensor2tensor
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Fig. 4.2 The architecture of
Transformer

Input

Input

Embedding

Positional

Encoding

Outputs

(shifted right)

Output

Embedding

Mask Multi-head 

Intra-Attention

Multi-Head

Inter-Attention

Feed

Forward

Add&Norm

Add&Norm

Positional

Encoding

Add&Norm

×

×

Multi-head

Intra-Attention

Feed

Forward

Add&Norm

Add&Norm

Output 

Probabilities

Linear

Softmax

The encoder includes L layers, and each layer is composed of two sublayers: the
self-attention4 sublayer followed by the feed-forward sublayer, as shown in the left
part of Fig. 4.2. The decoder, as shown in the right part of Fig. 4.2, also consists
of L layers. Each layer has three sublayers. The first mechanism is the masked
self-attention mechanism. The second sublayer is the decoder-encoder attention
sublayer, and the third sublayer is the feed-forward sublayer. Residual connection
and layer normalization are performed for each sublayer in both the encoder and
decoder.

Obviously, the attention mechanism is the key component. The three kinds of
attention mechanisms (encoder self-attention, decoder masked self-attention, and
encoder-decoder attention) can be formalized into the same formula:

Attention(q,K,V ) = softmax

(
qKT

√
dk

)

V (4.5)

4The self-attention sublayer calculates the i-th representation in the upper layers by using the i-th
hidden state in the current layer to attend to all the neighbors including itself, resulting in attention
weights which are then employed to linearly combine all the representations in the current layer. It
will be formally defined later.
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where q, K , and V represent the query, the key list, and the value list, respectively.
dk is the dimension of the key.

For the encoder self-attention mechanism, the queries, keys, and values are from
the same layer. For example, we calculate the output of the first layer in the encoder
at the j -th position. Let xj be the sum vector of the input token embedding and the
positional embedding. The query is vector xj . The keys and values are the same,
and both are the embedding matrix x = [x0 · · · xn]. Then, multihead attention with
h heads is proposed to calculate attention in different subspaces:

MultiHead(q,K,V ) = Concat(head1, · · · , headi, · · · , headh)WO

headi = Attention(qW i
Q,KW i

K,VW i
V )

(4.6)

in which Concat means that it concatenates all the head representations. W i
Q, W i

K ,

W i
V , and WO denote the projection parameter matrices.
Using Eq. (4.6) followed by residential connection, layer normalization, and a

feed-forward network, we can obtain the representation of the second layer. After L

layers, we obtain the input contexts C = [h0, · · · ,hn].
The decoder masked self-attention mechanism is similar to that of the encoder

except that the query at the i-th position can only attend to positions before i, since
the predictions after the i-th position are not available in the autoregressive left-to-
right unidirectional inference:

zi = Attention(qi ,K≤i ,V ≤i ) = softmax

(
q iK

T≤i√
dk

)

V ≤i (4.7)

The decoder-encoder attention mechanism calculates the source-side dynamic
context that is responsible for predicting the current target-language word. The
query is the output of the masked self-attention sublayer zi , and the keys and values
are the same encoder contexts C. The residential connection, layer normalization,
and feed-forward sublayer are then applied to yield the output of a whole layer.
After L such layers, we obtain the final hidden state zi . The softmax function is
then employed to predict the output yi , as shown in the upper right part of Fig. 4.2.

4.2.2 Pretraining the Transformer Decoder

As shown in Fig. 4.3, GPT utilizes the unidirectional Transformer decoder intro-
duced above to pretrain the feed-forward language model on large-scale text data
(e.g., the English text BookCorpus) It applies masked self-attention to attend to all
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Fig. 4.3 The architecture of GPT

the preceding contexts while keeping the future contexts inaccessible. As Fig. 4.3
illustrates, when learning the representation of h1j , xj only attends to previous tokens
SOS, x1, · · · , xj . Each layer performs the same operations, leading to the hidden
representation of the top layer hj .

GPT predicts the next token xj+1 with probability p(xj+1|x0, · · · , xj ) and
optimizes the network parameters by maximizing the conditional log likelihood over
the complete set of T training sentences:

L1 =
T∑

t=1

n+1∑

j=0

logp(x
(t)
j |SOS, x

(t)
1 , · · · , x

(t)
j−1; θ) (4.8)

4.2.3 Fine-Tuning the Transformer Decoder

When performing downstream tasks, the pretrained Transformer decoder is
employed as the starting point and can be slightly adapted and further fine-tuned
according to the target text-processing tasks. We know that GPT is only pretrained
with the language model as the objective function and the network cannot perform
specific tasks such as named entity recognition. Thus, it is necessary to fine-tune
the GPT model to fit the specific tasks using task-dependent training data.

Suppose a supervised classification task contains training instances of input
sequences and output labels, such as (x, y) where x = (SOSx1 · · · xj · · · xnEOS).
The pretrained Transformer decoder will generate for x a sequence of final
representations (hSOS,h1, · · · ,hj , · · · ,hn,hEOS) after L stacked masked self-
attention layers. A linear output layer and softmax function are newly introduced
to predict label probability with hEOS :

p(y|x) = p(y|SOS, x1, · · · , xj , · · · , xn, EOS) = softmax(hEOSW y) (4.9)
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The network parameters of the pretrained Transformer decoder and the newly
added linear projection parameter matrix W y are then fine-tuned to maximize the
following objective:

L2 =
∑

(x,y)

logp(y|x) (4.10)

To improve the generalization ability and accelerate convergence, GPT further
combines the pretrained language model objective during fine-tuning:

L = L2 + λ × L1 (4.11)

For downstream tasks in which the input is not a single but multiple sequences,
GPT simply concatenates the sequences with delimiter tokens to form a long
sequence to match the pretrained Transformer decoder. For example, in the entail-
ment task, which determines whether a premise x1 entails hypothesis x2, GPT uses
(x1;Delim; x2) as the final input sequence, where Delim is a delimiter token.

Radford et al. (2019) present an enhanced version of GPT-2,5 which achieves
promising performance in language generation tasks. Note that the model architec-
ture is the same as that of GPT. The difference lies in that GPT-2 utilizes many
more English texts and a much deeper Transformer decoder. The English texts
contain over 8 million documents with a total of 40 GB of words. The deepest
model contains 48 layers and 1542 M network parameters. Radford et al. (2019)
demonstrate that only with pretraining can the model perform downstream natural
language understanding and generation tasks without fine-tuning. For example, they
show that the pretrained model can generate abstractive summarization quite well,
achieving comparable performance with some supervised summarization models
on the CNN Daily Mail dataset. Brown et al. (2020) further invent GPT-36, and the
largest model contains up to 175 billion parameters. Surprisingly, GPT-3 shows that
it can perform most of the natural language understanding and generations tasks
even in few-shot or zero-shot scenarios as long as the training data is adequate and
the neural network model is large enough.

4.3 BERT: Bidirectional Encoder Representations
from Transformer

Although the GPT model achieves substantial progress in several natural language
understanding and generation tasks, the left-to-right decoder architecture of GPT
learns the semantic representation of each input xj by relying only on the left-side

5The codes and models are available at https://github.com/openai/gpt-2.
6The models and examples are available at https://github.com/openai/gpt-3.

https://github.com/openai/gpt-2
https://github.com/openai/gpt-3
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Fig. 4.4 The architecture of BERT

context x0, x1, · · · , xj−1 and cannot access the right-side context xj+1, · · · , xn.
It is well known that bidirectional contexts are crucial in many text-processing
tasks, such as sequential labeling and question answering. Accordingly, Devlin
et al. (2019) proposed a new pretraining and fine-tuning model called BERT,7

which employs the bidirectional encoder of Transformer, as shown in Fig. 4.4, to
fully exploit the contexts for semantic representation. As this figure shows, the
representation of each input token hj is learned by attending to both the left-side
context SOS, x1, · · · , xj−1 and the right-side context xj+1, · · · , xn.

The contributions of BERT are threefold. First, BERT employs a much deeper
model than GPT, and the bidirectional encoder consists of up to 24 layers with
340 million network parameters (BERTLARGE). Second, BERT designs two novel
unsupervised objective functions, including the masked language model and next
sentence prediction, considering that the conventional conditional language model
cannot be used for BERT. Third, BERT is pretrained on even larger text datasets
(both BookCorpus with 800 million words and English Wikipedia with 2.5 billion
words) than GPT. BERT is the first work to achieve breakthroughs and establish
new state-of-the-art performance on 11 natural language understanding tasks, even
outperforming humans on question answering tasks. Next, we briefly introduce the
pretraining and fine-tuning procedure for BERT.

4.3.1 BERT: Pretraining

Both ELMo and GPT employ the conditional language model as the unsuper-
vised pretraining objective. In contrast, the conventional language model, which
conditions only in the one-sided history context, is not appropriate for BERT
since BERT needs to simultaneously access the bidirectional contexts, and the

7Codes and pretrained models can be available at https://github.com/google-research/bert.

https://github.com/google-research/bert
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Fig. 4.5 Illustration of the problem wherein conditional language models are inappropriate for
BERT

representation learning process of the multilayer encoder for a specific input token
would see itself when predicting this input token. We use Fig. 4.5 to explain
this problem. Suppose that we plan to use the left context (SOS, x1) and the
right context (x3, · · · , xn, EOS) to predict x2, namely, calculating the probability
p(x2|SOS, x1, x3, · · · , xn, EOS). At the first layer, the Transformer encoder learns
the representation h1

2 by attending to all the contexts except x2, as shown by gray
dotted lines in Fig. 4.5. At the second layer, the Transformer encoder learns h2

2 in
the same manner by attending to all the contexts (h1

SOS,h1
1,h

1
3, · · · ,h1

n,h
1
EOS).

However, since h1
SOS,h1

1,h
1
3, · · · ,h1

n, and h1
EOS have already considered x2, as

shown by the dotted black lines, h2
2 will contain the information of x2 (see the

word itself) through the information passing along the solid black lines in Fig. 4.5.
Consequently, it is problematic if hL

2 is employed to predict x2.
To solve this problem, two unsupervised prediction tasks are introduced to

pretrain BERT. One is the masked language model, and the other is next sentence
prediction.

Masked Language Model The main approach underlying the masked language
model is that some percentage of the tokens in the input sequence are randomly
masked, and the model is then optimized to predict only the masked tokens. For
example, given an input sequence (SOSx1x2 · · · xnEOS), x2 may be randomly
masked, meaning it is substituted by a special symbol MASK, as illustrated in
Fig. 4.6. Then, BERT will learn semantic representations of the new sequence
(SOSx1MASK · · · xnEOS), obtaining the final representations in the L-th layer
(hSOS,h1,hMASK, · · · ,hn,hEOS). By comparing Fig. 4.6 with Fig. 4.5, it is easy
to see that hMASK does not contain any information of x2 because it is absent in the
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Fig. 4.6 Illustration of the masked language model for BERT

input. Finally, hMASK can be utilized to predict x2. Through the example illustration,
it can be intuitively understood that the masked language model is a reasonable
approach to optimizing the parameters of BERT using bidirectional contexts.

The question remains of how many and what kind of input tokens should be
replaced. In practice, BERT randomly masks 15% of all the tokens in each input
sequence and predicts them at the top layer. However, since the sequences are always
unmasked in the test environment, a mismatch will arise between the training and
testing phases. To address this issue, BERT does not always replace a token with
MASK. For each of the selected 15% of tokens, 80% are replaced with MASK, 10%
are replaced by another random token, and the remaining 10% remain unchanged.

Next Sentence Prediction Some text-processing tasks, such as text entailment and
question answering, must deal with two sequences rather than a single sequence. For
example, in the text entailment task, it must be determined whether the first sentence
(premise) entails the second sentence (hypothesis). This is equivalent to predicting
a label of Yes/No for the concatenation of the sentences representing a premise
and a hypothesis. If BERT is only pretrained on single sentences, it will not best fit
these downstream tasks. Accordingly, BERT’s design includes another unsupervised
training objective function that determines whether the second sequence B naturally
follows the first one A. For example, A is a sentence I am from Beijing and B is
Beijing is the capital of China. B is a natural sentence following A. If B is The
presidential election will be held in 2020, B does not follow A in natural text.

The training data can be constructed easily. Each pretraining instance (A,B)

is chosen according to the following strategy: in 50% of the instances, the second
sequenceB indeed followsA in the monolingual corpus (e.g., BookCorpus), serving
as positive examples, while for the other 50%, B is a random sentence selected from
the corpus and serving as negative examples.
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During pretraining, A and B are concatenated into a single sequence (A[SEP]B),
where [SEP] is a separator symbol between two sentences. BERT learns the L

layers’ semantic representations for the sequence with the bidirectional Transformer
encoder. The final hidden representation of the first token (SOS is used in this
manuscript, and [CLS] is employed in the original paper of BERT) hL

SOS is fed
into a linear projection layer and a softmax layer to predict whether B follows A.

4.3.2 BERT: Fine-Tuning

Similar to GPT, the pretrained BERT is employed as the starting point for
downstream tasks and can be slightly adapted and further fine-tuned according to the
target text-processing tasks. BERT is only pretrained with a masked language model
and next sentence prediction as the objective function, and the network cannot
directly perform specific tasks such as text entailment and question answering.
Therefore, it is necessary to fine-tune BERT to fit the specific tasks with task-
dependent training data.

BERT can be applied to two kinds of downstream tasks: sequence-level clas-
sification tasks and sequence labeling tasks. For the classification tasks, the input
sequence is first fed into the pretrained BERT, and the final hidden representation
of the first token hL

SOS is utilized for classification. hL
SOS is linearly projected by

a parameter matrix WO and is then fed into the softmax layer to calculate the
probability distribution of the categories. The network parameters of the pretrained
BERT and the newly introduced projection matrix WO are fine-tuned to maximize
the probability p(y|x) of label y on the supervised classification training set.

For the sequence labeling task, each token xj yields a final hidden representation
hL

j through the pretrained BERT. A linear projection layer and a softmax function

further operate on hL
j to predict the label yj . All the network parameters are fine-

tuned to maximize the probability p(y|x) of the label sequence y in the supervised
sequential labeling training data.

4.3.3 XLNet: Generalized Autoregressive Pretraining

Although BERT has achieved great success in many text-processing tasks,
there are still some shortcomings for this model. The most critical issue is
that a serious discrepancy between pretraining and fine-tuning persists for
BERT, since the massively used special symbol MASK during pretraining
never appears in the downstream tasks during fine-tuning. Furthermore, BERT
assumes that the masked tokens in the input sequence are independent of
each other. According to the design of BERT, 15% the input tokens are
randomly masked. For instance, after random masking, the original input
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sequence (SOS, x1, x2, · · · , xj−1, xj , xj+1, · · · , xn−1, xn, EOS) may become
(SOS, x1,MASK, · · · , xj−1,MASK, xj+1, · · · ,MASK, xn, EOS). It is obvious
that x2 and xn−1 will not be used in the prediction of xj when pretraining BERT
(similarly, (x2, xj ) not for xn−1 and (xj , xn−1) not for x2). In practice, however, x2,
xj , and xn−1 may depend on each other.

To overcome the above shortcomings, Yang et al. (2019) proposed a generalized
autoregressive pretraining model named XLNet8 This model aims to maintain
BERT’s merits in capturing the bidirectional context well without using the masking
strategy. XLNet mainly includes two ideas that are novel compared to BERT:
permutation language modeling and two-stream self-attention.

Permutation Language Modeling Intuitively, all the left and right contexts would
have an opportunity to appear before the focal token xj if we enumerate all the
permutations of the input sequence. Take the sequence (x1, x2, x3, x4) as an example
and suppose that x3 is our focus. As shown in Fig. 4.7, different permutations will
provide different contexts for x3. The bottom right is the permutation that moves all
the bidirectional contexts before x3. Accordingly, any feed-forward (autoregressive)
language model can be applied to pretrain XLNet while conditioning on bidirec-
tional contexts.

8The codes and pretrained models are available at https://github.com/zihangdai/xlnet.

https://github.com/zihangdai/xlnet
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Let Zn be the set of all the possible permutations of an n-token sequence, and
let zj , z<j be the j -th element and the preceding j − 1 elements in a specific
permutation z ∈ Zn. Then, XLNet is pretrained to maximize the expectation of
the autoregressive language model probabilities of the permutation set:

T∑

t=1

⎧
⎨

⎩
Ez∈Zn

⎡

⎣
n∑

j=1

logp(x(t)
zj

|x(t)
z<j

; θ)

⎤

⎦

⎫
⎬

⎭
(4.12)

Note that XLNet only permutes the factorization order (the decomposition
approach to calculating the probability of p(x)) rather than reordering the original
sequence, as Fig. 4.7 shows.

Two-Stream Self-Attention When calculating p(xzj
|xz<j

; θ) in the permutation
language model, the hidden representation h(xz<j

) is learned with the Transformer
self-attention mechanism, and a softmax algorithm is further employed to calculate
the probability distribution of the next token. It is easy to see that h(xz<j

) is not
aware of the target position j when predicting xj . Thus, p(xzj

|xz<j
; θ) is computed

regardless of the target position, and p(xzk
|xz<j

; θ) (k ≥ j ) shares the same
probability distribution. That is, the conditional language model probability of a
token will always be the same regardless of location when it is given the same
history context. Obviously, this position insensitive property is undesirable because
language is sensitive to word order and position. Accordingly, XLNet designs a new
two-stream self-attention mechanism to address this issue.

Two types of hidden representations can be learned at time step j : content
representation h(xz≤j

) and query representation g(xz<j
):

hl (xzj
) = Attention(qj = hl−1(xzj

),K≤jV ≤j = hl−1(xz≤j
)) (4.13)

gl (xzj
) = Attention(qj = gl−1(xzj

),K<jV <j = gl−1(xz<j
)) (4.14)

Note that the content representation h(xz≤j
) is the same as those hidden states in

the conventional Transformer. The query representation g(xz<j
) is position aware,

but it is learned without using the content information of the zj -th token. The query
representation at the top layer gL(xz<j

) will be used to predict xzj
. Initially, h0(xzj

)

is the token embedding of xzj
, and g0(xzj

) is a trainable vector w. Figure 4.8
illustrates the main idea behind the two-stream self-attention model. Suppose the
factorization order is 2 → 4 → 3 → 1 and we need to predict x3 given
(x2, x4). Gray solid lines denote the content representation flow (the same as in the
conventional Transformer), while the black solid lines show the query representation
process. The black dotted line indicates that the input serves only as the query, and
its values are not used during the attention computation procedure. For example, g1

3
is a function of the weighted summation of word embeddings x2 and x4, excluding
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Fig. 4.8 Two-stream attention model for the perturbation 2 → 4 → 3 → 1

x3. The weights are estimated using g0
3 = w as the query to attend to x2 and x4. If

XLNet includes two layers, g2
3 will be adopted to predict x3.

To speed up the convergence of the training process, XLNet only predicts the
last few tokens of each sampled factorization order instead of the whole sequence.
In addition, XLNet also incorporates some sophisticated techniques, such as relative
position embedding and the segment recurrence mechanism from Transformer-XL
(Dai et al. 2019). Finally, XLNet can outperform BERT on 20 text-processing tasks.

Interestingly, researchers at Facebook (Liu et al. 2019) find that BERT is
significantly undertrained. They report that with the careful design of the key
hyperparameters and training data size, BERT9 can match or even exceed XLNet
and other variants.

4.3.4 UniLM

ELMo, BERT, and XLNet aim to fully explore the bidirectional contexts of the input
sequence and are mainly designed for natural language understanding tasks. GPT is
appropriate for natural language generation tasks such as abstractive summarization.
Nevertheless, GPT can only utilize left-side context. An interesting question is how
to combine the merits of both BERT and GPT to design a pretraining model for text
generation tasks.

9They have named the reimplementation RoBERTa; details are available at https://github.com/
pytorch/fairseq.

https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
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Fig. 4.9 The architecture of UniLM

Dong et al. (2019) proposed a unified pretraining language model UniLM,10

which can adapt the Transformer model for monolingual sequence-to-sequence
text generation tasks. Given a pair of two consecutive sequences (x, y) in the
monolingual corpus, UniLM considers x as the input sequence and y as the output
sequence. As illustrated in Fig. 4.9, UniLM applies a bidirectional Transformer
encoder to the input sequence and a unidirectional Transformer decoder to the
output sequence. The same masking mechanism as used for BERT is employed
to pretrain the UniLM model. By pretraining the model on large-scale monolingual
data, UniLM can be further fine-tuned to perform text generation tasks, such as
abstractive summarization and question generation. Dong et al. (2019) report that
UniLM can achieve the new state-of-the-art performance for abstractive summa-
rization tasks on the CNN Daily Mail dataset.

To obtain a comprehensive understanding of various pretraining models, we list
them in Table 4.1 and outline the key architecture and features of each model.

4.4 Further Reading

This chapter briefly introduces several popular pretraining models, including ELMo,
GPT, BERT, XLNet, and UniLM. We can see that the pretraining and fine-tuning
paradigms have led to major breakthroughs in many natural language understanding
and generation tasks. Recently, the pretraining methodology has been developing
quickly, and many improved models have been proposed, most of which focus on
improving the BERT framework. These new models can be roughly divided into
the following three categories. (More information about pretraining models can be
found in the survey paper (Qiu et al. 2020)).

10Codes and models can be found at https://github.com/microsoft/unilm.

https://github.com/microsoft/unilm
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Table 4.1 Comparison of different pretraining models

Model Architecture Key features Most fitted tasks

ELMo Bidirectional LSTMs First large-scale pretrained model that
provides dynamic embedding based on
test sequences for fine-tuning

Understanding

GPT Transformer decoder First architecture to accommodate
pretraining and fine-tuning on the same
model

Understanding

GPT-2 Transformer decoder Enhanced GPT with deeper layers using
more text data

Generation

GPT-3 Transformer decoder Upgraded GPT with very deeper layers
using huge scale of text data

Generation

BERT Transformer encoder Denoising autoencoder paradigm that
employs masked language model and
next sentence prediction as objectives

Understanding

XLNet Transformer encoder Generalized autoregressive language
model using input permutations

Understanding

UniLM Transformer Generalized pretraining model for both
natural language understanding and
generation

Generation

One research direction aims at designing more sophisticated objective functions
or incorporating knowledge into the BERT architecture. Sun et al. (2019) propose a
model, ERNIE, that improves the masked language model by masking the entities
rather than characters (subwords or words) as in the original BERT. They prove that
the entity masked model works very well on many Chinese language processing
tasks. They further upgrade the model to ERNIE-2.0, which incrementally learns
pretraining tasks using a multitask learning framework (Sun et al. 2020). Zhang et al.
(2019) present another improved model, also called ERNIE, that incorporates the
representation learning of entities in knowledge graphs into the BERT pretraining
process.

Another direction aims to make the pretrained model as compact as possible.
Since BERT is very heavy and contains a huge number of parameters, it is
computationally expensive and memory intensive, especially for the inference step.
Sanh et al. (2019), Tang et al. (2019), and Jiao et al. (2019) propose using the
knowledge distillation strategy to compress the big model into a small one with
negligible performance drop. Lan et al. (2019) propose reducing the memory
usage and speeding up the training procedure of BERT with two parameter
reduction approaches, namely, factorized embedding parameterization and cross-
layer sharing.

The third direction explores pretraining models for generation and cross-lingual
tasks. While most of the studies tackle natural language understanding tasks by
enhancing BERT, an increasing number of researchers are turning their attention
to pretraining for generation tasks and cross-lingual tasks. Both UniLM and the
MASS model proposed by Song et al. (2019) facilitate generation problems, but the
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latter uses a smart design. The MASS model masks a consecutive subsequence seq

in a sentence and uses the masked sequence as input to predict the consecutive
subsequence seq with a sequence-to-sequence model. Cross-lingual pretraining
is also attracting increasing attention. Conneau and Lample (2019) present a
model XLM for cross-lingual language model pretraining using pairs of bilingual
translation sentences as input.

There is another issue, in that the inference procedure in the generation tasks
always follows a left-to-right manner and cannot access future information. One
promising direction is to perform synchronous bidirectional inference for generation
tasks, such as the work of Zhou et al. (2019) employed in machine translation.

Exercises

4.1 Please analyze the complexity of different pretraining models including ELMo,
GPT, BERT, and XLNet.

4.2 It is said that the masked language model is one type of denoising autoencoder.
Please provide a detailed analysis of this claim.

4.3 Both GPT and UniLM can be employed in language generation tasks. Please
comment on the difference between the two models when they are used for
generation.

4.4 The task of next sentence prediction is shown to be helpful in BERT; please
analyze the scenarios in which the next sentence prediction task is not necessary
and give the reasons.

4.5 XLM is a cross-lingual pretraining model. Please see the details of the model
and identify the kinds of downstream tasks for which it could be employed.
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