
Chapter 3
Text Representation

3.1 Vector Space Model

3.1.1 Basic Concepts

The vector space model (VSM) was proposed by G. Salton et al. in the field of
information retrieval in the late 1960s and is the simplest text representation method
(Salton et al. 1975). It was first used in the SMART information retrieval system and
gradually became the most commonly used text representation model in text mining.
Before introducing VSM in detail, we first provide some basic concepts.

• Text: Text is a sequence of characters with certain granularities, such as phrases,
sentences, paragraphs, or a whole document. For the convenience of description,
we use the document to represent a piece of text in the following. Note that the
vector space model is applicable to not only documents but also text at other
granularities, such as a sentence, a phrase, or even a word.

• Term: This is the smallest inseparable language unit in VSM, and it can denote
characters, words, phrases, etc. In VSM, a piece of text is regarded as a collection
of terms, expressed as (t1, t2, . . . , tn), where ti denotes the i-th term.

• Term weight: For text containing n terms, each term t is assigned a weight u

according to certain principles, indicating that term’s importance and relevance
in the text. In this way, a text can be represented by a collection of terms with
their corresponding weights: (t1 : w1, t2 : w2, . . . , tn : wn), abbreviated to
(w1, w2, . . . , wn).

The vector space model assumes that a document conforms to the following
two requirements: (1) each term ti is unique (i.e., there is no duplication); (2) the
terms have no order. We can regard t1, t2, . . . , tn as an n-dimensional orthogonal
coordinate system, and a text can be represented as an n-dimensional vector:
(w1, w2, . . . , wn). Normally, we denote d = (w1, w2, . . . , wn) as the representation

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_3&domain=pdf
https://doi.org/10.1007/978-981-16-0100-2_3

34 3 Text Representation

Fig. 3.1 Vector space model

1

2

of text in the vector space model. As shown in Fig. 3.1, texts d1 and d2 are,
respectively, represented by two n-dimensional vectors in the vector space.

There are two problems that need to be solved in VSM construction: how to
design the set of terms and how to calculate the term weights.

3.1.2 Vector Space Construction

Before text representation based on VSM, it is usually first necessary to preprocess
the text according to the techniques described in Chap. 2, such as tokenization, the
removal of stop words and lexical normalization. Then, we need to convert the text
into a sequence of tokens.

The vector space model needs a collection of terms (t1, t2, . . . , tn). If words are
used as terms, the collection can be regarded as a vocabulary. The vocabulary can
be generated from the corpus or imported from an external lexicon. The terms can
be viewed as a bag of words; thus, the vector space model is also called the bag-of-
words (BOW) model.

After construction of terms, the vector space is fixed. Last, a piece of text is
represented as a vector in the vector space through term weight calculation. Some
common term weighting methods are listed as follows:

• Boolean (BOOL) weight: This method indicates whether a feature term appears
in the current document. If it is in the document, the weight is 1; otherwise, it is
0. The Boolean weight ti in document d is denoted as

BOOLi =
{
1 if ti appears in document d

0 otherwise
(3.1)

3.1 Vector Space Model 35

• Term frequency (TF): This weight represents the frequency of a term in the
current document. TF assumes that frequent terms contain more information than
infrequent ones, and thus the more frequently terms appear in a document, the
more important they are. TF can be expressed as follows:

tfi = N(ti, d) (3.2)

For a few high-frequency words, e.g., some stop words, the absolute frequency
will be much higher than the average, and this will affect text representation. To
lower such impact, we can use the logarithmic term frequency instead:

fi = log(tfi + 1) (3.3)

• Inverse Document Frequency (IDF): IDF is a global statistical feature that reflects
the importance of terms throughout the corpus. Document frequency (DF)
denotes the number of documents that contain the specific term in the corpus.
The higher the DF of a term is, the lower the amount of effective information it
contains. On the basis of DF, IDF is defined as follows:

idfi = log
N

dfi
(3.4)

where dfi denotes the DF of feature ti and N is the total number of documents in
the corpus. The IDF of a rare term is high, whereas the IDF of a frequent term is
low.

• Term Frequency-Inverted Document Frequency (TF-IDF): This method is
defined as the product of TF and IDF:

tf_idfi = tfi · idfi (3.5)

TF-IDF assumes that the most discriminative features are those that appear
frequently in the current document and rarely in other documents.

In Fig. 3.2, we use words as terms and TF as term weights to build a vector space
model to represent the following text: “Artificial intelligence is a branch of computer
science, which attempts to produce an intelligent machine that can respond in a
similar way to human intelligence.”

The vocabulary includes the following words: “education,” “intelligence,”
“human,” “sports,” “football,” “games,” “AI,” “science,” “text,” “artificial,”
“computer,” etc. The weight of each word is its frequency in the text.

36 3 Text Representation

Fig. 3.2 The feature weight
based on feature frequency

Artificial intelligence is a

branch of computer science,

which attempts to produce an

intelligent machine that can

respond in a similar way to

human intelligence.

education

intelligence

human

sports

football

games

mining

science

text

artificial

computer

0

3

1

0

0

0

0

…

1

0

1

1

3.1.3 Text Length Normalization

Documents have different lengths, and the length has an effect on the text represen-
tation. For an extreme example, if we duplicate the content of a document twice and
use the TF weights to represent the document, each weight in the new vector will be
doubled, although the expanded text does not increase the amount of information.

Therefore, to reduce the influence of length on text representation, it is necessary
to normalize the feature vectors; this is also called text length normalization or
length normalization for short. The common length normalization methods for text
d = (w1, w2, . . . , wn) include:

a. L1 Norm normalization

d1 = d

||d||1 = d∑
i wi

(3.6)

The normalized vectors are on the hyperplane w1 + w2 + · · · + wn = 1 in the
vector space.

b. L2 Norm normalization

d2 = d

||d||2 = d√∑
i w2

i

(3.7)

3.1 Vector Space Model 37

The normalized vectors are on the spherical surface w2
1 + w2

2 + · · · + w2
n = 1 in

the vector space. Note that the L1 norm and L2 norm can be generalized to the
Lp norm.

c. Maximum word frequency normalization

dmax = d

||d||∞ = d

max
i

{wi} (3.8)

It should be noted that, unlike nondimensional scale normalization, which is
commonly used in machine learning and data mining tasks, text representation
normalization is a process to remove the effect of text length.

3.1.4 Feature Engineering

The vector space model assumes that the coordinates in space are orthogonal, e.g.,
the terms constituting the document are independent of each other, regardless of
their positions. Such a hypothesis de facto neglects word order, syntax, and the
semantic information of the original document. For example, it is obviously unrea-
sonable that the two texts “John is quicker than Mary” and “Mary is quicker than
John,” which express exactly opposite semantics, have the same text representation
in VSM.

Therefore, according to task requirements, terms can be defined as keywords,
chunks, and phrases, along with their positions, part-of-speech tags, syntactic
structures, and semantic information. In text mining tasks, the process of manually
defining such features is called “feature engineering.”

We list some commonly used linguistic features as follows:

(1) n-gram features

The basic VSM usually takes words as terms, which neglects word order
information. n-gram features take the contiguous sequence of n items as the basic
unit and thereby capture part of the word order information. Take the sentence “I
strongly recommend this movie” as an example. Its unigram, bigram, and trigram
features are shown in Table 3.1.

Of these, the unigram is simply the word feature. n-gram features have been
widely used in text classification, text clustering, and other tasks. However, as n

Table 3.1 An example of n-gram features

I strongly recommend this movie

Unigram I, strongly, recommend, this, movie

Bigram I strongly, strongly recommend, recommend this, this movie

Trigram I strongly recommend, strongly recommend this, recommend this movie

38 3 Text Representation

increases, the dimension of the feature space will grow dramatically, the feature
vector will become sparser, and the statistical quality will be diminished, while the
computational cost is increased. Furthermore, it is difficult to capture a long-distance
relationship between words; for this kind of relational information, we must resort
to more in-depth language processing techniques.

(2) Syntactic features

Syntactic analysis is the process of analyzing a sentence into its constituents
based on grammar rules; it results in a parse tree showing their syntactic relation to
each other and that may also contain semantic and other information. Dependency
parsing is an important branch of syntactic analysis that describes language structure
through the dependency relationship between words (Zong 2013). As a structured
text representation, the dependency tree takes words as nodes and expresses the
dominant and dominated relationship of words by the directional relationship
between nodes. The dependency tree of the sentence “I strongly recommend this
movie” is shown in Fig. 3.3.

A simple method of extracting dependency relations is to extract interdependent
word pairs as terms, such as “recommend-movie” in the above example. In this way,
the long-distance dependency of “recommend” and “movie” can be captured.

(3) Lexicon features

Polysemy and synonymy are common phenomena in natural language. It is
important for natural language processing to identify whether two words express
the same meaning and to identify the specific meaning of polysemous words
in documents. External lexicons (e.g., WordNet in English, HowNet in Chinese)
can help here, as we can use the semantic concepts defined in these lexicons as
substitutes or supplements to words. This approach can alleviate the issues of
ambiguity and diversity in natural language and improve our ability to represent
the text.

I definitely recommend this film

PRP RB VBP DT NN

.

.

OBJ

P

NMODVMOD

SUB

Fig. 3.3 An example of a dependency tree

3.1 Vector Space Model 39

3.1.5 Other Text Representation Methods

In addition to the traditional vector space model representing texts with high-
dimensional sparse vectors, there is also a class of distributed text representation
methods. Unlike the vector space model, distributed representation achieves a
low-dimensional dense text representation using topic modeling or representation
learning. Typical methods include concept representation and deep representa-
tion.

(1) Concept Representation

The traditional vector space model is an explicit text representation method that
cannot capture the implicit semantic relationships in the text. Topic models, such
as latent semantic analysis (LSA), probabilistic latent semantic analysis (PLSA),
and latent Dirichlet allocation (LDA), can better capture polysemy and synonymy
and mine implicit topics (also called concepts) in texts. Topic models also provide a
concept representation method that transforms the high-dimensional sparse vectors
in the traditional vector space model into low-dimensional dense vectors to alleviate
the curse of dimensionality. We will introduce the topic model in Chap. 7.

(2) Representation Learning

The goal of deep learning for text representation is to learn low-dimensional
dense vectors of text at different granularities through machine learning. In recent
years, with the improvement of computing power, distributed text representation
methods based on artificial neural networks have achieved great success in natural
language processing, and a series of these methods have emerged. Compared with
the traditional vector space model, the vector dimension of distributed represen-
tations is much lower, which can effectively alleviate the data sparsity problem
and improve computational efficiency. The learning method can fully capture the
semantic information and other deep information of the text in the process of
constructing the text representation, and thereby both avoid the complex feature
engineering required by the traditional vector space model and achieve efficient
performance in many text mining tasks. In later chapters, we will introduce deep
text representation and its applications in different text mining tasks.

It is also worth noting that the goal of text representation is to construct a good
representation suitable for specific natural language processing tasks. For different
tasks, the text representation will have a different emphasis. For example, for
the sentiment analysis task, it is necessary to embody more emotional attributes
in the vector space construction and representation learning process. For topic
detection and tracking tasks, more event description information must be embedded.
Therefore, text representation is often related to tasks, and there is essentially
no general and ideal text representation for all types of tasks. When evaluating
text representation methods, it is also necessary to combine the characteristics of
different tasks.

40 3 Text Representation

The bag-of-words model is the most popular text representation method in text
data mining tasks such as text classification and sentiment analysis. As mentioned
earlier, the bag-of-words model regards each text as a collection of words, the size of
which is determined by the vocabulary that appears in all documents. Each element
in the collection indicates whether a particular word appears in the current text,
or it represents the statistical weight of that particular word in the current text. It
can be seen that Boolean and statistical weights are based on the string matching
of the words. Therefore, discrete symbol representation is the basis of the bag-of-
words model. The discrete symbol representation of a word is equivalent to a one-
hot representation. That is, each word is represented by a Boolean vector whose
dimension is the size of the vocabulary, where the corresponding position of the
current word is 1, and all the rest are 0s. For example, if there are 50,000 different
words in the training samples of the text classification task, then the size of the
vocabulary is 50,000. We can number all words according to the order in which
they appear in the training samples. For example, if the word “text” appears first
and the word “mining” occurs last, the indices of “text” and “mining” are 1 and
50,000, respectively. Each word has a unique number that corresponds to a 50,000-
dimension vector. For example, “text” corresponds to [1, 0, 0, . . . , 0], namely, all
the other 49,999 positions are 0 except that the first position is 1.

There are two potential problems in this kind of representation: first, the discrete
symbol matching method is prone to generate sparse data. Second, any two words in
the one-hot representation method are independent of each other; that is, this method
cannot capture the semantic similarity between words. In recent years, research
on learning distributed text representation in low-dimensional continuous semantic
vector space has generated much interest. This approach surpasses the traditional
bag-of-words model and achieves state-of-the-art performance in many text mining
tasks, such as text classification, sentiment analysis, and information extraction. In
the remainder of this chapter, we will introduce the learning methods of distributed
representations for words, phrases, sentences, and documents.

3.2 Distributed Representation of Words

The word is the smallest linguistic unit with independent meaning, and it is also the
basic unit of phrases, sentences, and documents. Traditional one-hot representation
methods cannot describe the grammatical and semantic information of words. Thus,
research began to focus on how to encode grammatical and semantic information
in word representations. Harris and Firth proposed and clarified the distributed
hypothesis of words in 1954 and 1957: the semantics of a word are determined
by its context. That is, words with similar contexts have similar meanings (Harris
1954; Firth 1957). If we capture all the context information of a word, we obtain
the semantics of this word, and therefore, the richer the context is, the better the
distributed representation describing the semantic information of the words will be.
Since the 1990s, with the development of statistical learning methods and the rapid

3.2 Distributed Representation of Words 41

growth of text data, approaches to learning the distributed representations of words
have attracted increasing attention. Generally, the core concept behind distributed
representation is the use of a low-dimensional real-valued vector to represent a word
so that words with similar semantics are close in the vector space. This section
introduces several methods that learn distributed representations of words.

The distributed hypothesis indicates that the quality of word representation
largely depends on the modeling of context information. In vector space models,
the most commonly used context is a collection of words in a fixed window, but
richer contexts such as n-grams are difficult to use. For example, if an n-gram is
used as the context, the number of n-gram will increase exponentially as n grows,
inevitably resulting in a data sparsity problem and the curse of dimensionality.
Popular neural network models are composed of a series of simple operations,
such as linear transformation and nonlinear activation, which in theory can simulate
arbitrary functions. Therefore, complex contexts can be modeled through simple
neural networks, enabling the distributed representations of words to capture more
syntactic and semantic information.

The training data in the neural network model are formalized as a collection
of sentences D = {wmi

i1
}Mi=1, where mi represents the number of words con-

tained in the ith sentence and w
mi

i1
represents the word sequence in the sentence

wi1 , wi2 , . . . , wmi
. The vocabulary can be obtained by enumerating the words

appearing in the training data D after text preprocessing. Assuming that each
word is mapped into a d-dimensional distributed vector (commonly referred to as
word embedding), then vocabulary V corresponds to a word embedding matrix,
i.e., L ∈ R

|V |×d . The goal of the neural network model is to optimize the word
embedding matrix L and learn accurate representations for each word. Next, we
introduce several commonly used neural network models for word representation
learning.

3.2.1 Neural Network Language Model

Word embedding was initially employed in learning neural network language
model, which is used to calculate the occurrence probability of a piece of text and
measure its fluency. Given a sentence w1, w2, . . . , wm consisting of m words, its
occurrence possibility can be calculated by the chain rule:

p(w1w2 · · · wm) = p(w1)p(w2|w1) · · · p(wi |w1, · · · , wi−1)

· · · p(wm|w1, · · · , wm−1) (3.9)

Traditional language models commonly use the maximum likelihood estimation
method to calculate the conditional probability p(wi |w1, · · · , wi−1):

p(wi |w1, · · · , wi−1) = count(w1, · · · , wi)

count(w1, · · · , wi−1)
(3.10)

42 3 Text Representation

The larger i is, the less likely the phrase w1, . . . , wi is to appear, and the less
accurate the maximum likelihood estimation will be. Therefore, the typical solution
is to apply the (n − 1)-order Markov chain (the n-gram language model). Suppose
that the probability of the current word only depends on the preceding (n−1)words:

p(wi |w1, · · · , wi−1) ≈ p(wi |wi−n+1, · · · , wi−1) (3.11)

When n = 1, the model is a unigram model where the words are independent of
each other. n = 2 denotes a bigram model where the probability of the current word
relies on the previous word. n = 3, n = 4, and n = 5 are the most widely used
n-gram language models (see Sect. 2.4.3 for more details about n-gram language
model). This approximation method makes it possible to calculate the language
model probability of any word sequence. However, probability estimation methods
based on matching discrete symbols, such as words and phrases, still face serious
data sparsity problems and cannot capture semantic similarity between words. For
example, the semantics of two bigrams “very boring” and “very uninteresting” are
similar, and the probabilities of p(boring|very) and p(uninteresting|very) should be
very close. However, in practice, the frequency of the two bigrams in the corpus
may vary greatly, resulting in a large difference between these two probabilities.

Bengio et al. proposed a language model based on a feed-forward neural network
(FNN) (Bengio et al. 2003). The basic approach maps each word into a low-
dimensional real-valued vector (word embedding) and calculates the probability
p(wi |wi−n+1, · · · , wi−1) of the n-gram language model in the continuous vector
space. Figure 3.4a shows a three-layer feed-forward neural network language model.
The (n−1)words from the historical information are mapped into word embeddings
and then concatenated to obtain h0.

h0 = [e(wi−n+1); · · · ; e(wi−1)] (3.12)

where e(wi−1) ∈ R
d denotes the d-dimensional word embedding corresponding

to the word wi−1, which can be obtained by retrieving the word embedding matrix
L ∈ R

|V |×d .1 h0 is then fed into the linear and nonlinear hidden layers to learn an
abstract representation of the (n − 1) words.

h1 = f (U1 × h0 + b1) (3.13)

h2 = f (U2 × h1 + b2) (3.14)

where the nonlinear activation function can be f (·) = tanh(·). Finally, the
probability distribution of each word in V can be calculated by the softmax function:

p(wi |wi−n+1, · · · , wi−1) = exp{h2 · e(wi)}∑|V |
k=1 exp{h2 · e(wk)}

(3.15)

1The word embeddings are usually randomly initialized and updated during training.

3.2 Distributed Representation of Words 43

ℎ1

ℎ2

ℎ0

1 × ℎ0 +
1

2 × ℎ1 +
2

| − +1,⋯ , −2, −1

ℎ2

−2 −1− +1 ℎ0

0 = 1

⋯

ℎ1 ℎ2 ℎ −1

2 −1

ℎ

1| 0 2| 0
1 | 0

−1

⋯
⋯

Fig. 3.4 Illustration of neural network language models: (a) feed-forward neural network lan-
guage model, (b) recurrent neural network language model

In the above formulas, the weighting matrices U1,U2, b1, b2 and word embed-
ding matrix L are all trainable neural network parameters θ . The training process
optimizes the parameter θ to maximize the log-likelihood of the complete set of
training data

θ∗ = argmax
θ

M∑
m=1

logp(w
mi

i1
) (3.16)

where M is the size of the training data. After training the language model, the
optimized word embedding matrix L∗ is obtained, which contains the distributed
vector representations of all words in the vocabulary V . Note that the logarithms in
this book are based on 2 if not denoted otherwise.

Since an FNN can only model the context of a fixed window and cannot capture
long-distance context dependency, Mikolov et al. proposed using a recurrent neural
network (RNN) to directly model probability p(wi |w1, · · · , wi−1) (Mikolov et al.
2010), aiming at utilizing all historical information w1, · · · , wi−1 to predict the
probability of the current word wi . The key point of recurrent neural networks is
that they calculate the hidden layer representation hi at each time step:

hi = f (W × e(wi−1) + U × hi−1 + b) (3.17)

The hidden layer representation hi−1of time i − 1 contains historical information
from time step 0 to (i − 1). (The historical information of time 0 is usually set to
empty, i.e., h0 = 0.) f (·) is a nonlinear activation function, which can be f (·) =
tanh(·). Based on the i-th hidden layer representation hi , the probability of the
next word p(wi |w1, . . . , wi−1) can be calculated directly by the softmax function,

44 3 Text Representation

Fig. 3.5 Illustration of neural units in LSTM and GRU networks: (a) LSTM unit, (b) GRU unit

as shown in Fig. 3.4b. The optimization method for neural network parameters
and word embedding matrices is similar to a feed-forward neural network, which
maximizes the log-likelihood of training data.

To further investigate the information passing between hidden layers (hi−1) and
(hi) and effectively encode long-distance historical information, f (·) can be imple-
mented by long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997)
(Fig. 3.5a) or gated recurrent unit (GRU) (Cho et al. 2014) (Fig. 3.5b) networks.
For both LSTM and GRU, the input includes the hidden layer representation at the
previous step hi−1 and the output of the previous step wi−1, and the output is the
hidden layer representation of the current step hi .

As shown in Fig. 3.5a, the LSTM is controlled by three gates and one memory
cell. The calculation process is as follows:

ii = σ(W i × e(wi−1) + U i × hi−1 + bi) (3.18)

f i = σ(W f × e(wi−1) + Uf × hi−1 + bf) (3.19)

oi = σ(W o × e(wi−1) + Uo × hi−1 + bo) (3.20)

c̃i = tanh(W c × e(wi−1) + U c × hi−1 + bc) (3.21)

ci = f i � ci−1 + ii � c̃i (3.22)

hi = oi � tanh(ci) (3.23)

where σ(x) = 1
1+e(−x) , ii , f i , and oi denote the input gate, forget gate and output

gate, respectively, and ci denotes the memory cell. The LSTM is expected to
selectively encode historical and current information through the three gates.

3.2 Distributed Representation of Words 45

As shown in Fig. 3.5b, a GRU is a simplified version of an LSTM that omits the
memory cell.

r i = σ(W r × e(wi−1) + U r × hi−1 + br) (3.24)

zi = σ(W z × e(wi−1) + U z × hi−1 + bz) (3.25)

h̃i = tanh(W × e(wi−1) + U × (r i � hi−1) + b) (3.26)

hi = zi � h̃i + (1 − zi) � hi−1 (3.27)

where r i and zi are the reset gate and the update gate, respectively. LSTMs and
GRUs can effectively capture long-distance semantic dependencies, and thus they
have better performance in many text mining tasks, such as text summarization and
information extraction (Nallapati et al. 2016; See et al. 2017).

3.2.2 C&W Model

In a neural network language model, word embedding is not the goal but only the
by-product. Collobert and Weston (2008) proposed a model that directly aims at
learning and optimizing word embeddings. The model is named after the first letter
of these two researchers’ names and thus called the C&W model.

The goal of a neural network language model is to accurately estimate the
conditional probability p(wi |w1, . . . , wi−1). Therefore, it is necessary to calculate
the probability distribution of the whole vocabulary by using the matrix operation
from the hidden layer to the output layer using the softmax function at every time
step. The computational complexity is O(|h| × |V |), where |h| is the number of
neurons in the highest hidden layer (usually hundreds or one thousand) and |V |
is the size of the vocabulary (usually tens of thousands to hundreds of thousands).
This matrix operation greatly reduces the efficiency of model training. Collobert and
Weston argued that it is not necessary to learn a language model if the goal is only to
learn word embeddings. Instead, the model and objective function can be designed
directly from the perspective of the distributed hypothesis: given an n-gram (n =
2C+1) (wi, C) = wi−C · · · wi−1wiwi+1 · · ·wi+C in the training corpus (here, C is
the window size), randomly replace the central word wi with other words w′

i in the
vocabulary and obtain a new n-gram (wi, C) = wi−C · · · wi−1w

′
iwi+1 · · ·wi+C ,

where (wi, C) is no doubt more reasonable than (w′
i , C). When scoring each n-

gram, then the score of (wi, C) must be higher than (w′
i , C):

s(wi, C) > s(w′
i , C) (3.28)

As shown in Fig. 3.6, a simple feed-forward neural network model only needs to
calculate the score of the n-gram, which distinguishes the real n-gram input from

46 3 Text Representation

ℎ1

ℎ0

right or random

⋯ ⋯

Fig. 3.6 Illustration of the C&W model

randomly generated text. We call n-gram (wi, C) in the training data a positive
sample and randomly generated n-gram (w′

i , C) a negative sample.
To calculate s(wi, C), we first acquire the corresponding word embeddings from

the word embedding matrix L; these are then concatenated, and we obtain the
representation of the first layer h0:

h0 = [e(wi−C); · · · ; e(wi−1); e(wi); e(wi+1); · · · ; e(wi+C)] (3.29)

h0 is passed through the hidden layer, resulting in h1:

h1 = f (W 0 × h0 + b0) (3.30)

where f (·) is a nonlinear activation function. After linear transformation, the score
of n-gram (wi, C) becomes

s(wi, C) = W 1 × h1 + b1 (3.31)

whereW 1 ∈ R
(1×|h1|), b1 ∈ R. It can be seen that the matrix operation of the C&W

model between the hidden layer and the output layer is very simple, reducing the
computational complexity fromO(|h|×|V |) toO(|h|) and improving the efficiency
of learning word vector representations.

In the optimization process, the C&W model expects that the score of each
positive sample will be larger than that of the corresponding negative sample by
a constant margin:

s(wi, C) > s(w′
i , C) + 1 (3.32)

3.2 Distributed Representation of Words 47

For the entire training corpus, the C&Wmodel needs to traverse every n-gram in
the corpus and minimize the following functions:

∑
(wi ,C)∈D

∑
(w′

i ,C)∈Nwi

max(0, 1 + s(w′
i , C) − s(wi, C)) (3.33)

in which Nwi
is the negative sample set for the positive sample (wi, C). In practice,

we can choose one or several negative samples for each positive sample.

3.2.3 CBOW and Skip-Gram Model

The hidden layer is an indispensable component of both the neural network language
model and the C&W model, and the matrix operation from the input layer to the
hidden layer is also a key time-consuming step. To further simplify the neural
network and learn word embeddings more efficiently, Mikolov et al. proposed two
kinds of neural network models without hidden layers: the continuous bag-of-words
(CBOW) model and the skip-gram model (Mikolov et al. 2013b).

(1) CBOW Model

As shown in Fig. 3.7, the concept behind the CBOW model is similar to that
of the C&W model: input contextual words and predict the central word. However,
unlike the C&W model, CBOW still takes the probability of target words as the
optimization goal, and it simplifies the network structure by focusing on two aspects.
First, the input layer is no longer a concatenation of the corresponding contextual
word embeddings, but the average of these word embeddings, ignoring the word
order information; second, it omits the hidden layer, instead connecting the input
layer and the output layer directly and calculating the probability of the central word
by logistic regression.

Fig. 3.7 Illustration of the
CBOW model

48 3 Text Representation

Formally, given any n-gram (n = 2C + 1) (wi, C) = wi−C · · · wi−1wiwi+1 · · ·
wi+C in the training corpus as input, the average word embedding of contextual
words can be calculated as follows:

h = 1

2C

∑
i−C≤k≤i+C,k 	=i

e(wk) (3.34)

h is directly taken as the semantic representation of the context to predict the
probability of the middle word wi

p(wi |Cwi
) = exp{h · e(wi)}∑|V |

k=1 exp{h · e(wk)}
(3.35)

where Cwi
denotes word contexts for the word wi in a C-sized window.

In the CBOW model, word embedding matrix L is the only parameter in the
neural network. For the whole training corpus, the CBOW model optimizes L to
maximize the log-likelihood of all words:

L∗ = argmax
L

∑
wi∈V

logp(wi |Cwi
) (3.36)

(2) Skip-Gram Model

Unlike the CBOW model, the skip-gram model has the opposite process, that is,
it aims to predict all the contextual words given only the central word. Figure 3.8
shows the basic idea of the skip-gram model.

Given any n-gram in the training corpus (wi, C) = wi−C · · · wi−1wiwi+1 · · ·
wi+C , the skip-gram model predicts the probability of every word wc in the context
Cwi

= wi−C · · · wi−1wi+1 · · · wi+C by using the word embedding e(wi) of the
central word wi :

p(wc|wi) = exp{e(wi) · e(wc)}∑|V |
k=1 exp{e(wi) · e(wk)}

(3.37)

⋯ ⋯

− | −1| +1| + |

Fig. 3.8 Illustration of the skip-gram model

3.2 Distributed Representation of Words 49

The objective function of the skip-gram model is similar to that of the CBOW
model. It optimizes the word embedding matrix L to maximize the log-likelihood
of all contextual words for each n-gram in the training data:

L∗ = argmax
L

∑
wi∈V

∑
wc∈Cwi

logp(wc|wi) (3.38)

3.2.4 Noise Contrastive Estimation and Negative Sampling

Although CBOW and skip-gram greatly simplify the structure of the neural network,
it is still necessary to calculate the probability distribution of all the words in
vocabulary V by using the softmax function. To speed up the training efficiency,
inspired by the C&W model and noise contrastive estimation (NCE) method,
Mikolov et al. (2013a) proposed negative sampling (NEG) technology.

Taking the skip-gram model as an example, each word wc in the context
Cwi

= wi−C · · ·wi−1wi+1 · · ·wi+C is predicted by the central word wi . Negative
sampling and noise contrastive estimation methods select K negative samples
w′
1, w

′
2, · · · , w′

K from a probability distribution pn(w) for each positive sample to
maximize the likelihood of positive samples while minimizing the likelihood of
negative samples.

For a positive sample wc and K negative samples w′
1, w

′
2, · · · , w′

K , the noise
contrastive estimation method first normalizes the probability of K + 1 samples:

p(l = 1, w|wi) = p(l = 1) × p(w|l = 1, wi)

= 1

K + 1
pθ(w|wi) (3.39)

p(l = 0, w|wi) = p(l = 0) × p(w|l = 0, wi)

= K

K + 1
pn(w) (3.40)

p(l = 1|w,wi) = p(l = 1, w|wi)

p(l = 0, w|wi) + p(l = 1, w|wi)

= pθ(w|wi)

pθ (w|wi) + Kpn(w)
(3.41)

p(l = 0|w,wi) = p(l = 0, w|wi)

p(l = 0, w|wi) + p(l = 1, w|wi)

= Kpn(w)

pθ (w|wi) + Kpn(w)
(3.42)

50 3 Text Representation

where w denotes a sample. l = 1 indicates that it is from the positive samples and
follows the output probability distribution of the neural network model pθ(w|wi).2

l = 0 indicates that the sample is from the negative samples and obeys the
probability distribution of noisy samples pn(w). The objective function of noise
contrastive estimation is

J (θ) = logp(l = 1|wc,wi) +
K∑

k=1

logp(l = 0|wk,wi) (3.43)

The objective function of negative sampling is the same as that of noise contrastive
estimation. The difference is that the negative sampling method does not normalize
the probability of the samples but directly uses the output of the neural network
language model:

p(l = 1|wc,wi) = 1

1 + e−e(wi)·e(wc)
(3.44)

Then, the objective function can be simplified as follows:

J (θ) = logp(l = 1|wc,wi) +
K∑

k=1

logp(l = 0|wk,wi)

= logp(l = 1|wc,wi) +
K∑

k=1

log(1 − p(l = 1|wk,wi))

= log
1

1 + e−e(wi)·e(wc)
+

K∑
k=1

log

(
1 − 1

1 + e−e(wk)·e(wc)

)

= log
1

1 + e−e(wi)·e(wc)
+

K∑
k=1

log

(
1

1 + ee(wk)·e(wc)

)

= log σ(e(wi) · e(wc)) +
K∑

k=1

log σ(−e(wk) · e(wc)) (3.45)

Mikolov et al. found that the model can obtain decent performance when the number
of negative samples is K = 5. In other words, the negative sampling method can
greatly lower the complexity of probability estimation, remarkably improving the
learning efficiency of word embeddings.

2pθ (w|wi) = exp{h·e(w)}∑|V |
k=1 exp{h·e(wk)}

= exp{h·e(w)}
z(w)

, and z(w) is usually set as a constant 1.0 in NCE.

3.2 Distributed Representation of Words 51

ℎ1

ℎ0

score

AVE

CON

Gating

Pooling

ℎ1

ℎ0

score

Fig. 3.9 Distributed representation based on the hybrid character-word method

3.2.5 Distributed Representation Based on the Hybrid
Character-Word Method

Learning word representations based on distributed hypotheses requires sufficient
context information to capture word semantics. That is, a word should have
sufficiently high occurrence frequency. However, according to Zipf′s Law, most
words appear rarely in the corpus. For these words, it is impossible to obtain a
high-quality word embedding.

Although words are the smallest semantic unit that can be used independently,
they are not the smallest linguistic unit; for example, English words are composed
of letters, and Chinese words are composed of characters. Taking Chinese words
as an example, researchers found that 93% of Chinese words satisfy or partially
satisfy the characteristics of semantic composition,3 which means that these words
are semantically transparent. If a word is semantically transparent, it indicates that
the semantics of this word can be composed from its internal Chinese characters.
As shown in Fig. 3.9, the semantics of the word 出租车 (chuzuche, taxi) can
be obtained by the composition of the semantics of the three Chinese characters
出 (chu, out), 租 (zu, rent), and 车 (che, car). Compared to the size of the word
vocabulary, the Chinese character set is limited: according to national standard
GB2312, there are fewer than 7000 commonly used Chinese characters. In addition,
the frequency of Chinese characters in the corpus is relatively high, leading to high-
quality character embeddings under the distributed hypothesis. Therefore, if we can
exploit the semantic representation of Chinese characters and design a reasonable
semantic composition function, then we can greatly enhance the representation
ability of Chinese words (especially low-frequency words). Based on this idea,
increasing attention is being given to learning the distributed representation based

330% satisfy and 70% partially satisfy the semantic composition property.

52 3 Text Representation

on the hybrid character-word method (Chen et al. 2015a; Xu et al. 2016; Wang et al.
2017a).

There are many kinds of methods that can be applied to learn the distributed
representation based on hybrid character words, with two main differences between
them: how to design a reasonable semantic composition function and how to inte-
grate the compositional semantics of Chinese characters with the atomic semantics
of Chinese words. We will next take the C&W model as an example to introduce
two methods based on hybrid character-word mechanisms.

The goal of these methods is still to distinguish real n-grams from noisy
random n-grams, and thus the core task is still to calculate the score of an n-
gram. Figure 3.9a is a simple and direct hybrid character-word method. Suppose
a Chinese word wi = c1c2 · · · cl consists of l characters (e.g., 出租车 (chuzuche,
taxi) consists of three characters). This method first learns the semantic vector
composition representation x(c1c2 · · · cl) of the Chinese character string c1c2 · · · cl

and the atomic vector representation e(wi) of the Chinese word wi . Assuming
that each Chinese character makes an equal contribution, then x(c1c2 · · · cl) can
be obtained by averaging the character embeddings

x(c1c2 · · · cl) = 1

l

l∑
k=1

e(ck) (3.46)

where e(ck) denotes the vector representation of the character ck . To obtain the
final word embedding, the method concatenates the compositional representation of
characters and the embedding of atomic Chinese words directly:

Xi = [x(c1c2 · · · cl); e(wi)] (3.47)

h0, h1, and the final score is calculated in the same manner as that of the C&W
model.

It is obvious that the above method does not consider the different contri-
butions of the internal Chinese characters on the compositional semantics, nor
does it consider the different contributions of compositional semantics and atomic
semantics on the final word embedding. For example, in the Chinese word 出
租车 (taxi), the character 车 (car) is the most important, while 租 (rent) and
出 (out) only play a modifying role with a relatively small contribution. Clearly,
different Chinese characters should not be equally treated. Furthermore, some
words are semantically transparent, so greater consideration should be given to
compositional semantics, while others are nontransparent (such as苗条 (miaotiao,
slim)), requiring greater reliance on the atomic semantics of the word. Figure 3.9b
shows a hybrid character-word method that takes into account both of the above

3.3 Distributed Representation of Phrases 53

factors. First, the compositional semantics of the characters are obtained through a
gate mechanism

x(c1c2 · · · cl) =
l∑

k=1

vk � e(ck) (3.48)

where vk ∈ R
d (d is the embedding size of e(ck)) denotes the controlling gate that

controls the contribution of character ck to the word vector x(c1c2 · · · cl). The gate
can be calculated in the following way:

vk = tanh(W × [x(ck); e(wi)]) (3.49)

in which W ∈ R
d×2d . The compositional semantics and atomic semantics are

integrated through the max-pooling method:

x∗
j = max(x(c1c2 · · · cl)j , e(wi)j) (3.50)

This means that the j -th element of the final vector is the larger one of the
compositional representation and the atomic representation at the index j . Through
the pooling mechanism, the final semantics of a word depend more on the properties
of the word (transparent or nontransparent). Extensive experiments demonstrate that
word embeddings considering inner characters are much better.

3.3 Distributed Representation of Phrases

In statistical natural language processing, the phrase generally refers to a continuous
word sequence and not only to noun phrases, verb phrases, or prepositional phrases
in the syntactic view. There are two main types of methods for learning distributed
representations of phrases. The first treats the phrase as an indivisible semantic unit
and learns the phrase representation based on the distributed hypothesis. The second
considers phrasal semantics as being composed of internal words and aims to learn
the composition mechanism among words.

Compared to words, phrases are much more infrequent, and the quality of
phrasal vector representation based on distributed hypotheses cannot be guaranteed.
Mikolov et al. consider only some common English phrases (such as “New York
Times” and “United Nations”) as inseparable semantic units and treat them as words
(such as “New_York_Times” and “United_Nations”), then using CBOW or skip-
gram to learn the corresponding distributed representations. It is easy to see that this
method cannot be applied to the majority of phrases.

54 3 Text Representation

3.3.1 Distributed Representation Based on the Bag-of-Words
Model

For phrases, representation learning based on compositional semantics is a more
natural and reasonable method. The central problem is how to compose the
semantics of words into the semantics of phrases. Given a phrase ph = w1w2 · · · wi

consisting of i words, the simplest method of semantic composition is to use the
bag-of-words model (Collobert et al. 2011), which averages the word embeddings
or draws the maximum of each dimension in the word embeddings:

e(ph) = 1

i

i∑
k=1

e(wk) (3.51)

e(ph) = d
max
k=1

(e(w1)k, e(w2)k, · · · , e(wi)k) (3.52)

Obviously, this method does not consider the contributions of different words in
the phrase, nor does it model the order of words. The former problem can be solved
by adding weights to each word embedding

e(ph) = 1

i

i∑
k=1

vk × e(wk) (3.53)

where vk can be the word frequency or TF-IDF of wk . We can apply a gate
mechanism to control the contribution of different words, as done in the hybrid
character-word method.

3.3.2 Distributed Representation Based on Autoencoder

As mentioned earlier, there is another problem in the phrase representation learning
method based on the bag-of-words model: it cannot capture the word order informa-
tion of the phrase. In many cases, different word orders mean completely different
semantics. For example, two phrases, “cat eats fish” and “fish eats cat,” share the
same words but have opposite meanings. Therefore, the distributed representations
of phrases require effectively modeling the word order. In this section, we will
introduce a typical method, namely, the recursive autoencoder (RAE) (Socher et al.
2011b).

As the name implies, the recursive autoencoder merges the vector representations
of two subnodes from bottom to top in a recursive way until the phrase vector
representation is obtained. Figure 3.10 shows an example where a recursive

3.3 Distributed Representation of Phrases 55

Fig. 3.10 Illustration of the
recursive autoencoder

1 2 3

1
2

1
3

1
4

′1 ′2

′3′1
2

′1
3

4

′4

autoencoder is applied to a binary tree. Each node in the tree uses the same standard
autoencoder.

The goal of a standard autoencoder is to learn a compact and abstract vector
representation for a given input. For example, given the representations of the first
two input words x1 and x2 in Fig. 3.10, the standard autoencoder learns an abstract
representation x2

1 in the following way:

x2
1 = f (W (1) × [x1; x2] + b(1)) (3.54)

where W (1) ∈ R
d×2d , b(1) ∈ R

d , f (·) = tanh(·). The input includes two d-
dimensional vectors x1 and x2, and the output is a d-dimensional vector x2

1, which
is expected to be a compressed abstract representation of x1 and x2. To guarantee
the quality of x2

1, the input should be reconstructed from the output x2
1

[x′
1; x′

2] = f (W (2) × x2
1 + b(2)) (3.55)

56 3 Text Representation

where W (2) ∈ R
2d×d , b(1) ∈ R

2d , f (·) = tanh(·). The standard autoencoder
requires the error between the input [x1; x2] and the reconstructed input [x′

1; x′
2]

to be as small as possible:

Erec([x1; x2]) = 1

2
||[x1; x2] − [x′

1; x′
2]||2 (3.56)

With x2
1 and x3 as input, the same autoencoder can obtain the representation x3

1
of the phrase w3

1. Then, with x3
1 and x4 as input, we can obtain the representation

x4
1 of the whole phrase.
As an unsupervised method, the recursive autoencoder takes the sum of the

phrase reconstruction errors as the objective function.

Eθ(phi) = argmin
bt∈A(phi)

∑
nd∈bt

Erec(nd) (3.57)

where A(phi) denotes all possible binary trees corresponding to the phrase phi ,
nd is any arbitrary node on the particular binary tree bt , and Erec(nd) denotes the
reconstruction error of the node nd.

To test the quality of the vector representation of the complete phrase, we can
evaluate whether phrases with similar semantics will be clustered in the semantic
vector space. Suppose the phrase training set is S(ph); for an unknown phrase
ph∗, we use the cosine distance between the phrase vectors to measure the semantic
similarity between any two phrases. Then, we search a phrase list List (ph∗) that
is similar to ph∗ from S(ph) and verify whether List (ph∗) and ph∗ are truly
semantically similar. The first column in Table 3.2 gives four test phrases with
different lengths in English. The second column shows a list of similar candidate
phrases found by an unsupervised recursive autoencoder RAE in the vector space.

Table 3.2 A comparison between RAE and BRAE in the semantic representation of a phrase

Input phrase RAE BRAE

Military force Core force Military power

Main force Military strength

Labor force Armed forces

At a meeting To a meeting At the meeting

At a rate During the meeting

A meeting At the conference

Do not agree One can accept Do not favor

I can understand Will not compromise

Do not want Not to approve

Each people in this nation Each country regards Every citizen in this country

Each country has its At the people in the country

Each other, and People all over the country

3.3 Distributed Representation of Phrases 57

RAE can capture the structural information of the phrase to some extent, such as
“military force” and “labor force”, “do not agree” and “do not want”. However, it
still lacks the ability to encode the semantics of the phrase.

Ideally, if some phrases exist with correct semantic representation as supervised
information, then the recursive autoencoder can learn phrase representation in a
supervised way. However, the correct semantic representation does not exist in
reality. To make the vector representation describe enough semantic information,
Zhang et al. proposed a novel framework, the bilingually constrained recursive
autoencoder (BRAE) (Zhang et al. 2014). The assumption is that two phrases for
which one would be translated as the other have the same semantics, so they should
share the same vector representation. Based on this premise, the phrase vector
representation of both languages can be trained simultaneously with a co-training
method. To this end, two recursive autoencoders are first used to learn the initial
representations of language X and language Y in an unsupervised manner. Then,
these two recursive autoencoders are optimized by minimizing the semantic distance
between the translation pair (phx, phy) in languages X and Y . Figure 3.11 shows
the basic architecture of this method.

The objective function of this method consists of two parts: the reconstruction
error of the recursive autoencoder and the semantic error between the translation
pair

E(phx, phy; θ) = αErec(phx, phy; θ) + (1 − α)Esem(phx, phy; θ) (3.58)

where Erec(phx, phy; θ) denotes the reconstruction error of these two phrases
phx, phy , Esem(phx, phy; θ) denotes the semantic error between the two phrases,

11 2 3

1
2

1
3

2 3 4

1
2

3
4

1
4

argmin 1
3, 1

4 ;

Fig. 3.11 Illustration of the bilingual constrained recursive autoencoder

58 3 Text Representation

and α is a weight that balances the reconstruction error and the semantic error.
Specifically, the reconstruction error Erec(phx, phy; θ) includes two parts:

Erec(phx, phy; θ) = Erec(phx; θ) + Erec(phy; θ) (3.59)

The method for calculating the phrase reconstruction error is the same as that used
by the unsupervised recursive autoencoder. Esem(phx, phy; θ) contains semantic
errors of two directions:

Esem(phx, phy; θ) = Esem(phx |phy; θ) + Esem(phy |phx; θ) (3.60)

Esem(phx |phy; θ) = 1

2
||x(phx) − f (W l

xy(phy) + bl
x)||2 (3.61)

Esem(phy |phx; θ) = 1

2
||y(phy) − f (W l

yy(phx) + bl
y)||2 (3.62)

For a phrase set PHxy = (ph
(i)
x , ph

(i)
y)Ni=1 with N translation pairs, the method

attempts to minimize the error on the whole set:

JBRAE(PHxy; θ) = 1

N

∑
(phx,phy)∈PHxy

E(phx, phy; θ) + λ

2
||θ ||2 (3.63)

The second item indicates the parameter regularization term. In addition to mini-
mizing the semantic distance between translation phrases, it can also maximize the
semantic distance between nontranslation phrases

E∗
sem(phx, phy; θ) = max{0, Esem(phx, phy; θ) − Esem(phx, ph′

y; θ) + 1}
(3.64)

where (phx, phy) is a translation pair and (phx, ph′
y) is a nontranslation pair that is

randomly sampled. Through the co-training mechanism, we will ultimately obtain a
phrase representation model for two languages.

The performance of the BRAE model is shown in the third column in Table 3.2.
Compared with the unsupervised RAE, BRAE can encode the semantic information
of phrases. For example, for the input phrase “do not agree,” BRAE can find phrases
having similar semantics but quite different words: “will not compromise” and “not
to approve.” This demonstrates that bilingually constrained recursive autoencoder
BRAE can learn more accurate phrase embeddings.

3.4 Distributed Representation of Sentences

Since words and phrases are often not the direct processing objects in text
mining tasks, learning the representation of words and phrases mainly adopts gen-
eral (or task-independent) distributed representation methods. Relatively speaking,
sentences are the direct processing object in many text mining tasks, such as

3.4 Distributed Representation of Sentences 59

−1 +1− +

⋯ ⋯

| − ,⋯ , −1, +1,⋯ , + ,

⋯ ⋯

| |⋯

a b

Fig. 3.12 Illustration of the PV-DM and PV-DBOW models. (a) PV-DM model. (b) PV-DBOW
model

sentence-oriented text classification, sentiment analysis, and entailment inference.
Therefore, it is crucial to learn the distributed representation of sentences. There are
two main types of methods: general and task-dependent.

3.4.1 General Sentence Representation

The basis of the general sentence representation is very close to the unsupervised
method. It designs a simple sentence representation model based on neural networks
and optimizes the network parameters on large-scale monolingual training dataD =
{wmi

i1
}Mi=1. We will introduce three classical general sentence representation methods

in this section.

(1) PV-DM and PV-DBOW

Le and Mikolov extended the CBOW and skip-gram models used in word
representation learning to learn both word and sentence embeddings (Le and
Mikolov 2014). For M sentences in dataset D, each sentence Di corresponds to an
index i, which can uniquely represent the sentence. Assuming that the dimension of
the sentence vector is P , then the vectors for sentences in the training set correspond
to a matrix PV ∈ R

M×P . The i-th sentence vector corresponds to the i-th row in
PV .

Extending the CBOW model, we can build a sentence representation model
PV-DM.4 As shown in Fig. 3.12a, PV-DM regards the sentence as the memory
unit to capture the global information for any internal word. For an n-gram
(wi, C) = wi−C · · · wi−1wiwi+1 · · · wi+C and its sentence index SenId, taking

4Paragraph Vector with sentence as Distributed Memory.

60 3 Text Representation

Cwi
= wi−C · · · wi−1wi+1 · · · wi+C as input, we calculate the average of the

sentence vector and the word vectors in their contexts (or use vector concatenation)

h = 1

2C + 1

(
e(SenID) +

∑
i−C≤k≤i+C,k 	=i

e(wk)
)

(3.65)

where e(SenId) denotes the sentence vector corresponding to the SenId-th row
in PV . The calculation method, objective function, and training process for the
probability of the central word p(wi |wi−C, · · · , wi−1, wi+1, · · · , wi+C, SenId)

are all consistent with those of the CBOW model.
Extending the skip-gram model, we can build a sentence representation model

PV-DBOW.5 As shown in Fig. 3.12b, the model takes sentences as input and the
randomly sampled words in the sentence as output, requiring that the model be able
to predict any word in the sentence. Its objective function and training process are
the same as those of the skip-gram model.

The PV-DM and PV-DBOW models are simple and effective, but they can only
learn vector representations for the sentences appearing in the training set. If we
want to obtain a vector representation for a sentence that has never been seen, we
need to put it into the training set and retrain the model. Therefore, the generalization
ability of this model is highly limited.

(2) Distributed Representation Based on Bag-of-Words Model

General sentence representation methods based on semantic composition has
become increasingly popular in recent research. One of these methods represents
sentences based on the bag-of-words model, treating the semantics of a sentence as
a simple composition of internal word semantics. The simplest method is to use the
average of the word embeddings

e(s) = 1

n

n∑
k=1

e(wk) (3.66)

where e(wk) denotes the word embedding corresponding to the k-th wordwk , which
can be obtained by word embedding learning methods, such as CBOW or skip-gram.
n denotes the length of the sentence, and e(s) is the sentence vector representation.
It is worth noting that different words should make different contributions to the
semantics of the sentence. For example, in the sentence “the Belt and Road forum
will be held in Beijing tomorrow,” “the Belt and Road” are obviously the most
important words. Therefore, when composing the semantics of words, one key
problem is how to assign appropriate weights to each word

e(s) = 1

n

n∑
k=1

vk × e(wk) (3.67)

5Distributed Bag-of-Words version of the Paragraph Vector.

3.4 Distributed Representation of Sentences 61

where vk denotes the weight of the word wk . vk can be approximately estimated by
TF-DF or self-information in information theory. Wang et al. (2017b) proposed a
weight calculation method based on self-information (SI for short). They calculate
vk as follows:

vk = exp(SIk)∑n
i=1 exp(SIi)

(3.68)

where SIk = − log(p(wk|w1w2 · · · wk−1)) denotes the self-information of the word
wk and can be estimated by a language model. The larger the self-information of the
word wk is, the more information it carries, so it should be given greater weight in
sentence representation. Although this kind of sentence representation method based
on the bag-of-words model is very simple, it demonstrates high competitiveness in
natural language processing tasks such as similar sentence discrimination and text
entailment.

(3) Skip-Thought Model

The skip-thought method is also based on semantic composition (Kiros et al.
2015). It is similar to the PV-DBOW model, and the basic idea is also derived
from the skip-gram model. However, unlike PV-DBOW, which uses the sentence
to predict its internal words, the skip-thought model uses the current sentence Dk to
predict the previous sentence Dk−1 and the next sentence Dk+1. The model assumes
that the meanings of the sentences Dk−1DkDk+1, which appear continuously in the
text, are close to each other. Therefore, the previous sentence and the next sentence
can be generated based on the semantics of the current sentence Dk .

Figure 3.13 gives an overview of the skip-thought model. The model has two
key modules: one is responsible for encoding the current sentence Dk , and the other
decodes Dk−1 and Dk+1 from the semantic representation of Dk . The encoder uses
a recurrent neural network in which each hidden state employs a gated recurrent
unit (GRU). The encoding process is consistent with the recurrent neural network
language model. As shown on the left side in Fig. 3.13, after obtaining the hidden
representation hk

i of each position in the current sentence, the hidden representation
hk

n of the last position will be employed as the semantic representation of the whole
sentence.

The decoder is similar to the GRU-based neural network language model,
the only difference being that the input at each time step includes the hidden
representation of the previous time step hj−1 and the output word wj−1 as well
as the hidden representation hk

n of the sentence Dk . The computation process of
the GRU unit is as follows (taking the prediction of the previous sentence as an
example):

rj = σ
(
W k−1

r × e
(
wk−1

j−1

)
+ U k−1

r × hk−1
j−1 + Ck−1

r × hk
n + bk−1

r

)
(3.69)

zj = σ
(
W k−1

z × e
(
wk−1

j−1

)
+ U k−1

z × hk−1
j−1 + Ck−1

z × hk
n + bk−1

z

)
(3.70)

62 3 Text Representation

ℎ1

1

ℎ −1 ℎ

−1

⋯

ℎ

⋯

ℎ1
−1

1
−1

ℎ −1
−1 ℎ −1

−1
−1 −1 −1

⋯

ℎ −1

⋯

ℎ1
+1

1
+1

ℎ −1
+1 ℎ +1

−1
+1 +1 +1

⋯

ℎ +1

⋯

-th sentence

-th sentence

− 1 -th sentence

Fig. 3.13 The skip-thought model

h̃j = tanh
(
W × e

(
wk−1

j−1

)
+ U ×

(
rj � hk−1

j−1

)
+ Ck−1 × hk

n + b
)

(3.71)

hk−1
j = zj � h̃j +

(
1 − zj

)
� hk−1

j−1 (3.72)

Given hk−1
j , the generated word sequence wk−1

1 wk−1
2 · · · wk−1

j−1 and the hidden

representation hk
n of the sentence Dk , the probability of the next word wk−1

j can
be calculated as follows:

p
(
wk−1

j |wk−1
<j ,hk

n

)
∝ exp

(
e
(
wk−1

j

)
,hk−1

j

)
(3.73)

The generation process for the next sentence Dk+1 is similar.
The objective function of the skip-thought model is the summation of the

likelihood of the previous and next sentences

M∑
k=1

⎧⎨
⎩

l∑
j=1

p
(
wk−1

j |wk−1
<j ,hk

n

)
+

m∑
i=1

p
(
wk+1

i |wk+1
<i ,hk

n

)⎫⎬
⎭ (3.74)

where M is the number of sentences in the training set and l and m are the lengths
of the previous and next sentences, respectively.

3.4 Distributed Representation of Sentences 63

The skip-thought model combines the concepts of semantic composition and
distributed hypotheses. If the training set is from continuous text, the skip-thought
model can obtain high-quality sentence vector representations.

3.4.2 Task-Oriented Sentence Representation

Task-oriented sentence representations are optimized to maximize the performance
of specific text processing tasks. For example, in the sentence-level sentiment
analysis task, the vector representation of sentences ultimately predicts their
sentiment polarity. That is, the final sentence representations will be sensitive to
specific tasks. In this section, we introduce two task-oriented methods for sentence
representation learning: a recursive neural network (RecurNN) (Socher et al. 2013)
and a convolutional neural network (CNN) (Kim 2014).

(1) Sentence Representation Based on a Recursive Neural Network

A recursive neural network is a deep learning model suitable for tree structures.
Given the vector representations of the child nodes, the recursive neural network
recursively learns the vector representation of the parent node in a bottom-up
manner until it covers the whole sentence. Given a sentence, its tree structure
(usually a binary tree) can be obtained by using a syntactic parser. Figure 3.14 shows
a sentence with its binary tree, and each leaf node corresponds to a d-dimensional
vector for an input word. The recursive neural network merges the word embeddings

1
1

2
1

3
1

1
2

1
3

1
2

3
4

5
6

3
6

1
6

+ −0

Fig. 3.14 Sentence representation model based on a recursive neural network

64 3 Text Representation

of the leaf nodes along the tree structure to obtain the vector representations x2
1, x

4
3,

x6
5 of phrases w2

1, w
4
3, w

6
5, respectively.

x2
1 = f

(
W

(1)
1 × [x1; x2] + b

(1)
1

)
(3.75)

x4
3 = f

(
W

(1)
2 × [x3; x4] + b

(1)
2

)
(3.76)

x6
5 = f

(
W

(1)
3 × [x5; x6] + b

(1)
3

)
(3.77)

Then, taking child nodes x4
3 and x6

5 as input, we can obtain the vector represen-
tation x6

3 corresponding to phrase w6
3:

x6
3 = f

(
W

(2)
1 × [x4

3; x6
5] + b

(2)
1

)
(3.78)

Finally, taking child nodes x2
1 and x

6
3 as input, the vector representation x

6
1 of the

whole sentence can be obtained

x6
1 = f

(
W

(3)
1 × [x2

1; x6
3] + b

(3)
1

)
(3.79)

with the parameter matrices W (1)
1 ,W

(1)
2 ,W

(1)
3 ,W

(2)
1 ,W

(3)
1 ∈ R

d×2d and the biases

b
(1)
1 , b

(1)
2 , b

(1)
3 , b

(2)
1 , b

(3)
1 ∈ R

d . If the task is to predict the sentiment polarity
(positive, negative, or neutral), the probability distribution of sentiment polarities
can be calculated by taking x6

1 as the sentence representation through the softmax
function

t = softmax(W × x6
1 + b) (3.80)

in which W ∈ R
3×d , b ∈ R

3, and 3 correspond to the number of polarities (1 for
positive, −1 for negative, and 0 for neutral). Given training data D = (Di, Li)

n
i=1

consisting of n pairs of “sentence, sentiment polarity,” the recursive neural network
minimizes the cross-entropy to optimize the network parameters θ (including
parameter matrices, biases, and word embeddings)

θ∗ = argmin
θ

{
−

n∑
i=1

∑
l

δLi
(l) logp (Di, l)

}
(3.81)

where Li ∈ {−1, 0, 1} is the true target label. If l = Li , then δLi
(l) = 1; otherwise,

δLi
(l) = 0; p(Di, l) denotes the probability of sentiment polarity l in t .
From Fig. 3.14, it can be found that the recursive neural network is very similar

to the recursive autoencoder. There are three main differences. First, the recursive
neural network takes a specific binary tree as input, while the recursive autoencoder
needs to search for an optimal binary tree. Second, the recursive neural network

3.4 Distributed Representation of Sentences 65

does not need to calculate the reconstruction error at each node. Third, the recursive
neural network can use either the same parameters at different nodes or different
parameters according to the type of child nodes. For example, the parameter matri-
ces W (1)

1 ,W
(1)
2 ,W

(1)
3 ,W

(2)
1 ,W

(3)
1 and biases b(1)

1 , b
(1)
2 , b

(1)
3 , b

(2)
1 , b

(3)
1 can either be

the same or different.

(2) Sentence Representation Based on a Convolutional Neural Network

Recurrent neural networks are based on tree structures, which are suitable for
tasks that depend on word order and hierarchical structures, such as sentiment
analysis and syntactic parsing. For the task of sentence topic classification, some key
information in the sentence plays a conclusive role in topic prediction. Therefore,
a convolutional neural network becomes a classical model for performing this task.
As shown in Fig. 3.15, for a sentence, a convolutional neural network takes the
embeddings of each word as input, sequentially summarizes the local information of
the window-sized context by convolution, extracts the important global information
by pooling, and then passes through other network layers (dropout layer, linear and
nonlinear layer, etc.) to obtain a fixed-sized vector representation that is utilized to
describe the semantic information of the whole sentence.

3-word Convolution

Max-pooling

1

2

⋯

…

2

⋯

1

5-word Convolution

Fig. 3.15 Sentence representation model based on a convolutional neural network

66 3 Text Representation

Formally, given a sentence consisting of n words w1w2 · · · wn, the words are first
mapped into a list of word embeddings X = [x1, x2, . . . , xn] by using a pretrained
or randomly initialized word embedding matrixL ∈ R

|V |×d . For a window xi:i+h−1
with a length h, the convolution layer applies the convolution operator6 Ft (1 ≤ t ≤
T , where T denotes the number of convolution operators) to obtain a local feature
yt
i

yt
i = Ft(W × xi:i+h−1 + b) (3.82)

where Ft(·) denotes the nonlinear activation function, W ∈ R
1×hd, b ∈ R, yt

i ∈ R.
The convolution operator Ft traverses the whole sentence from x1:h−1 to xn−h+1:n
and obtains a list of features yt = [yt

1, y
t
2, . . . , y

t
n−h+1]. We can see that yt ∈

R
n−h+1 is a variable-length vector whose dimension depends on the sentence length

n. The sentences vary in length (from several words to hundreds), and accordingly,
the dimension of yt differs for different sentences.

To convert the variable-length yt into a fixed-length output, pooling is an
indispensable operation, and maximum pooling is the most popular mechanism
(Collobert et al. 2011; Kim 2014). It is believed that ŷt = max(yt) represents the
most important feature obtained by the convolution operator in the whole sentence.
T convolution operators result in a T -dimensional vector y = [ŷ1, ŷ2, . . . , ŷT].

The window size h is an empirical value. To make the model robust, the
convolutional neural network generally utilizes windows with different sizes of
h. For example, h = 3 and h = 5 are used in Fig. 3.15, where each window
corresponds to a T -dimensional vector y = [ŷ1, ŷ2, . . . , ŷT]. These vectors
obtained by different windows can be concatenated into a fixed-sized vector, which
is then fed into other network layers, such as for feed-forward neural networks. For
the task of sentence topic classification, cross-entropy minimization is the objective
and can be adopted to optimize the network parameters, similar to the sentiment
analysis task.

3.5 Distributed Representation of Documents

The document is usually the direct processing object in many natural language
processing tasks, such as text classification, sentiment analysis, text summarization,
and discourse parsing. The key for these tasks is to deeply understand the document,
and the premise of document understanding is to represent the document. The
distributed representation of documents can capture global semantic information
efficiently, so it has become an important research direction. The central issue is
how to learn document representation from the representations of its internal words,

6This is also called filter, and it performs information filtering for a window-sized context.

3.5 Distributed Representation of Documents 67

phrases, and sentences. This section will introduce two kinds of methods: general
purpose and task-oriented purpose.

3.5.1 General Distributed Representation of Documents

(1) Document Representation Based on the Bag-of-Words Model

In the general distributed representation of documents, a document can be
regarded as a special form of sentence, that is, the concatenation of all sentences.
Therefore, we can learn distributed document representation using the methods
employed by sentence representation learning. For instance, the bag-of-words model
based on compositional semantics can easily obtain the distributed representation of
document D = (Di)

M
i=1 (Di = si denotes the i-th sentence) from words

e(D) = 1

|D|
|D|∑
k=1

vk × e(wk) (3.83)

in which vk is the weight of word wk and |D| is the number of different words
in document D. The average of word vector vk = 1

|D| or the weighted average of
word vector vk = tf_idf(wk) can be used. This method is simple and efficient, but
it considers neither the order of words in a sentence nor the relationship between
sentences in a document.

(2) Document Representation Based on the Hierarchical Autoencoder

To solve the problem in the bag-of-words model, Li et al. (2015) proposed
a hierarchical autoencoder model. Its underlying concept is that a document
representation e(D) for M-sentence document D = (Di)

M
i=1 is good enough as

long as we can reconstruct the original document D from the representation e(D).
The hierarchical autoencoder model is divided into two modules: one is an

encoder model to learn the document representation e(D) from D, and the other
is a reconstruction model that reconstructs the original document D from the
representation e(D). In the encoder model, long short-term memory (LSTM) is
first used to obtain the representation e(si) of each sentence. These sentence
representations are then used as input to the second LSTM to model the sentence
sequences in the document, ultimately resulting in the document representation
e(D) (where e(si) and e(D) are the LSTM hidden representations corresponding
to the end mark of the sentence and of the document, respectively)

e(si) = hs
ends(enc) (3.84)

hs
t (enc) = LSTM

(
e(wt),h

s
t−1(enc)

)
(3.85)

68 3 Text Representation

e(D) = hD
endD(enc) (3.86)

hD
t (enc) = LSTM

(
e(st),h

D
t−1(enc)

)
(3.87)

where enc denotes the encoder LSTM.
The reconstruction (decoder) model aims to reconstruct document D from its

distributed representation e(D), and it also employs the hierarchical LSTM: it
first reconstructs the sentence hidden representation hs

t (dec) (dec denotes decoder
LSTM) and then reconstructs all the words in the sentence st

hD
t (dec) = LSTM

(
e′(st−1),h

D
t−1(dec), c

D
t

)
(3.88)

hs
t (dec) = LSTM

(
e(wt−1),h

s
t−1(dec)

)
(3.89)

where hD
0 (dec) = e(D), e′(st−1) is the hidden representation corresponding to the

end mark of the previous sentence st−1 and cD
t is the context representation of the

encoder model, which can be calculated by an attention mechanism

cD
t =

M∑
k=1

akh
D
k (enc) (3.90)

ak = exp (vk)∑
k′ exp (vk′)

(3.91)

vk = vT × f
(
W 1 × hD

t−1(dec) + W 2h
D
k (enc)

)
(3.92)

in which ak is the weight of each sentence in the encoder model, W 1,W 2 ∈ R
d×d .

hs
0(dec) = e′(s0) is the hidden representation of the reconstructed sentence. Based

on hs
t (dec), the probability of the reconstruction word wt can be computed as

follows:

p (wt |·) = softmax
(
e(wt),h

s
t (dec)

)
(3.93)

The objective function of this neural network is to maximize the likelihood of the
original document, that is, the reconstructed word at each time should be the same
as that in the corresponding position of the original document.

In Fig. 3.16, the document contains two sentences. The first LSTM layer is
used to encode two sentences and obtain the representations e(s1) and e(s2) (the
hidden representation corresponding to the sentence end mark). Then, the second
LSTM layer is used to encode sentence sequences e(s1) and e(s2) and obtain the
document representation e(D). Taking document representation e(D) as input, we
can calculate the context of the encoder representations e(s1) and e(s2) by the
attention mechanism. Then, the hidden representation hD

t (dec) of each sentence is
reconstructed, and each word is generated to reconstruct sentences. After training,

3.5 Distributed Representation of Documents 69

The film finished . He will watch it again .

ℎ ℎ

The film finished . He will watch it again .

Fig. 3.16 Sentence representation model based on an autoencoder

the hierarchical autoencoder model can obtain the distributed representation e(D)

for any document.

3.5.2 Task-Oriented Distributed Representation of Documents

The task-oriented distributed representation of documents, which has the final goal
of optimizing the performance of downstream tasks, has been widely applied in
tasks such as text classification and sentiment analysis. This section will introduce
a task-oriented document representation method proposed by Tang et al. (2015b).

In this method, documents are regarded as composed of sentences, and sentences
are regarded as composed of words. Therefore, semantic composition from words
to sentences and from sentences to documents is the key concept in document
representation. Assume that document D = (Di)

M
i=1 is composed of M sentences

and the ith sentence Di = si = wi,1 · · · wi,n is composed of n words. Then,
a learning model based on document representation can be divided into three

70 3 Text Representation

Fig. 3.17 Document
representation model based
on hierarchical autoencoder

ℎ0

1

ℎ −1 ℎ

−1

⋯

⋯

ℎ

⋯

⋯

ℎ0 ℎ −1 ℎ ℎ

⋯ ⋯

LSTM/CNN⋯ ⋯

softmax

layers: the bottom layer of sentence representation and the middle and top layers
of document representation, as shown in Fig. 3.17.

The layer of sentence representation learns the semantic composition from the
words in sequence wi,1 · · · wi,n to sentence si . The former sections in this chapter
have introduced several sentence representation models, such as recurrent neural
networks, recursive neural networks, and convolutional neural networks. Among
them, recurrent neural networks and convolutional neural networks are widely
used. Both of these networks can be applied to obtain the distributed sentence
representation:

esi = LSTM(wi,1 · · · wi,n) (3.94)

esi = CNN(wi,1 · · · wi,n) (3.95)

In practice, we can compare these two network architectures and choose the one
with better performance.

3.5 Distributed Representation of Documents 71

The layer of document representation is used to learn the semantic composition
from sentences in sequence s1 . . . sM to document D. One popular model for this
process is bidirectional LSTM networks. Taking distributed sentence representation

es1 · · · esM as input, bidirectional LSTM learns the forward hidden states
−→
hi and

backward states
←−
hi of each sentence si :

−→
hi = LSTM

(
esi ,

−→
h i−1

)
(3.96)

←−
hi = LSTM

(
esi ,

←−
h i+1

)
(3.97)

The bidirectional hidden representations are concatenated into a single represen-

tation hi = [−→hi ,
←−
hi] for the sentence si . Based on the hidden representation of each

sentence, the document representation can be obtained by the average or attention
mechanism

eD =
M∑
i=1

vihi (3.98)

where vi = 1
M

or vi is the weight learned by an attention mechanism.
Given the distributed document representation eD , the classification layer first

applies a feed-forward network to convert eD into vector x = [x1, . . . , xC] whose
dimension is the category number C. Then, the softmax function is used to convert
vector x into probability distribution p = [p1, . . . , pC]:

x = f (W × eD + b) (3.99)

pk = exp(xk)∑C
k′=1 exp(xk′)

(3.100)

In the text classification or sentiment analysis task, large-scale labeled training
data T = {(D,L)} exist, where D is the document and L is the correct category
corresponding to the document. The objective function aims to minimize the cross-
entropy over the training data:

Loss = −
∑
D∈T

C∑
k=1

Lk(D) log(pk(D)) (3.101)

If document D belongs to category k, then Lk(D) = 1; otherwise, Lk(D) = 0.
After training, the sentence layer and the document layer can learn the distributed
representation for any document.

72 3 Text Representation

3.6 Further Reading

Since words are the basic language unit that composes phrases, sentences, and
documents, word representation learning is the basis and the most critical research
direction. The research frontier of representation learning for words mainly focuses
on the following four directions: (1) how to fully exploit information on the internal
structure of words (Xu et al. 2016; Bojanowski et al. 2017; Pinter et al. 2017);
(2) how to more effectively use contextual information (Ling et al. 2015; Hu et al.
2016; Li et al. 2017a) and other sources of external knowledge such as dictionaries
and knowledge graphs (Wang et al. 2014; Tissier et al. 2017); (3) how to better
interpret word representations (Arora et al. 2016; Wang et al. 2018); and (4) how
to effectively evaluate the quality of word representations (Yaghoobzadeh and
Schütze 2016). Lai et al. (2016) summarized the mainstream methods for word
representation and offered proposals on how to learn better word representations.

The learning representations of phrases, sentences, and documents mostly
focuses on the mechanism of semantic composition. For example, Yu and Dredze
(2015) proposed a semantic composition function model for feature fusion to
learn the distributed representation of phrases. Wang and Zong (2017) investigated
the advantages and disadvantages of different composition mechanisms in the
representation learning of phrases. Hashimoto and Tsuruoka (2016) studied whether
the semantics of a phrase can be obtained from the semantics of its internal words.
Learning sentence representations pays more attention to semantic composition
(Gan et al. 2017; Wieting and Gimpel 2017) and the utilization of linguistic
knowledge (Wang et al. 2016b). There are usually two methods for document
representation: one based on compositional semantics and the other based on
topic models. Making full use of their advantages and delivering better document
representations have become hot research topics (Li et al. 2016b).

Exercises

3.1 Please compare the vector space model and the distributed representation model
and summarize the advantages and disadvantages of each.

3.2 Please analyze noisy contrastive estimation and negative sampling and com-
ment on the advantages and disadvantages of the two methods.

3.3 Please design an algorithm to detect whether a Chinese word is semantically
transparent or not.

3.4 Please analyze the unsupervised recursive autoencoder to determine why it
cannot learn the semantic representations of phrases.

3.5 For learning distributed sentence representations, a recurrent neural network
can capture the word order information, and a convolutional neural network can

Exercises 73

summarize the key information for a window-sized context. Please design a model
that could combine the merits of both models.

3.6 Please comment on whether it is reasonable to represent a whole document
with a single distributed vector. If it is not reasonable, please design a new method
to represent the documents.

	3 Text Representation
	3.1 Vector Space Model
	3.1.1 Basic Concepts
	3.1.2 Vector Space Construction
	3.1.3 Text Length Normalization
	3.1.4 Feature Engineering
	3.1.5 Other Text Representation Methods

	3.2 Distributed Representation of Words
	3.2.1 Neural Network Language Model
	3.2.2 C&W Model
	3.2.3 CBOW and Skip-Gram Model
	3.2.4 Noise Contrastive Estimation and Negative Sampling
	3.2.5 Distributed Representation Based on the Hybrid Character-Word Method

	3.3 Distributed Representation of Phrases
	3.3.1 Distributed Representation Based on the Bag-of-Words Model
	3.3.2 Distributed Representation Based on Autoencoder

	3.4 Distributed Representation of Sentences
	3.4.1 General Sentence Representation
	3.4.2 Task-Oriented Sentence Representation

	3.5 Distributed Representation of Documents
	3.5.1 General Distributed Representation of Documents
	3.5.2 Task-Oriented Distributed Representation of Documents

	3.6 Further Reading
	Exercises

