
Text Data
 Mining

Chengqing Zong · Rui Xia · Jiajun Zhang

Text Data Mining

Chengqing Zong • Rui Xia • Jiajun Zhang

Text Data Mining

Chengqing Zong
Institute of Automation
Chinese Academy of Sciences
Beijing, Beijing, China

Rui Xia
School of Computer Science & Engineering
Nanjing University of Science
and Technology
Nanjing, Jiangsu, China

Jiajun Zhang
Institute of Automation
Chinese Academy of Sciences
Beijing, Beijing, China

ISBN 978-981-16-0099-9 ISBN 978-981-16-0100-2 (eBook)
https://doi.org/10.1007/978-981-16-0100-2

Jointly published with Tsinghua University Press
The print edition is not for sale in China (Mainland). Customers from China (Mainland) please order the
print book from: Tsinghua University Press.

© Tsinghua University Press 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-16-0100-2

Foreword

We are living in the Big Data era. Over 80% of real-world data are unstructured
in the form of natural language text, such as books, news reports, research
articles, social media messages, and webpages. Although data mining and machine
learning have been popular in data analysis, most data mining methods handle
only structured or semistructured data. In comparison with mining structured data,
mining unstructured text data is more challenging but will also play a more essential
role in turning massive data into structured knowledge. It is no wonder we have
witnessed such a dramatic upsurge in the research on text mining and natural
language processing and their applications in recent years.

Text mining is a confluence of natural language processing, data mining, machine
learning, and statistics used to mine knowledge from unstructured text. There
have already been multiple textbooks dedicated to data mining, machine learning,
statistics, and natural language processing. However, we seriously lack textbooks on
text mining that systematically introduce important topics and up-to-date methods
for text mining. This book, “Text Data Mining,” bridges this gap nicely. It is the
first textbook, and a brilliant one, on text data mining that not only introduces
foundational issues but also offers comprehensive and state-of-the-art coverage of
the important and ongoing research themes on text mining. The in-depth treatment
of a wide spectrum of text mining themes and clear introduction to the state-of-
the-art deep learning methods for text mining make the book unique, timely, and
authoritative. It is a great textbook for graduate students as well as a valuable
handbook for practitioners working on text mining, natural language processing,
data mining, and machine learning and their applications. This book is written
by three pioneering researchers and highly reputed experts in the fields of natural
language processing and text mining. The first author has written an authoritative
and popular textbook on natural language processing that has been adopted as a
standard textbook for university undergraduate and first-year graduate students in
China. However, this new text mining book has completely different coverage from
his NLP textbook and offers new and complementary text mining themes. Both
books can be studied independently, although I would strongly encourage students
working on NLP and text mining to study both.

v

vi Foreword

This text mining book starts with text preprocessing, including both English
and Chinese text preprocessing, and proceeds to text representation, covering the
vector space model and distributed representation of words, phrases, sentences, and
documents, in both statistical modeling and deep learning models. It then introduces
feature selection methods, statistical learning methods, and deep neural network
methods, including multilayer feed-forward neural networks, convolutional neural
networks, and recurrent neural networks, for document classification. It next pro-
ceeds to text clustering, covering sample and cluster similarities, various clustering
methods, and clustering evaluation. After introducing the fundamental theories and
methods of text mining, the book uses five chapters to cover a wide spectrum
of text mining applications, including topic modeling (which is also treated as a
fundamental issue from some viewpoints but can be used independently), sentiment
analysis and opinion mining, topic detection and tracking, information extraction,
and automated document summarization. These themes are active research frontiers
in text mining and are covered comprehensively and thoroughly, with a good bal-
ance between classical methods and recent developments, including deep learning
methods.

As a data mining researcher, I have recently been deeply involved in text mining
due to the need to handle the large scale of real-world data. I could not find a good
text mining textbook written in English or Chinese to learn and teach. It is exciting
to see that this book provides such a comprehensive and cutting-edge introduction. I
believe this book will benefit data science researchers, graduate students, and those
who want to include text mining in practical applications. I loved reading this book
and recommend it highly to everyone who wants to learn text mining!

ACM Fellow and IEEE Fellow
Michael Aiken Chair Professor
Department of Computer Science
University of Illinois at Urbana-Champaign
Champaign, IL, USA

Jiawei Han

Preface

With the rapid development and popularization of Internet and mobile communi-
cation technologies, text data mining has attracted much attention. In particular,
with the wide use of new technologies such as cloud computing, big data, and deep
learning, text mining has begun playing an increasingly important role in many
application fields, such as opinion mining and medical and financial data analysis,
showing broad application prospects.

Although I was supervising graduate students studying text classification and
automatic summarization more than ten years ago, I did not have a clear understand-
ing of the overall concept of text data mining and only regarded the research topics
as specific applications of natural language processing. Professor Jiawei Han’s book
DataMining: Concepts and Technology, published by Elsevier, Professor Bing Liu’s
Web Data Mining, published by Springer, and other books have greatly benefited
me. Every time I listen to their talks and discuss these topics with them face to face,
I have benefited immensely. I was inspired to write this book for the course Text
Data Mining, which I was invited to teach to graduates of the University of Chinese
Academy of Sciences. At the end of 2015, I accepted the invitation and began to
prepare the content design and selection of materials for the course. I had to study
a large number of related papers, books, and other materials and began to seriously
think of the rich connotation and extension of the term Text Data Mining. After more
than a year’s study, I started to compile the courseware. With teaching practice, the
outline of the concept has gradually formed.

Rui Xia and Jiajun Zhang, two talented young people, helped me materialize
my original writing plan. Rui Xia received his master’s degree in 2007 and was
admitted to the Institute of Automation, Chinese Academy of Sciences, and studied
for Ph.D. degree under my supervision. He was engaged in sentiment classification
and took it as the research topic of his Ph.D. dissertation. After he received his
Ph.D. degree in 2011, his interests extended to opinion mining, text clustering and
classification, topic modeling, event detection and tracking, and other related topics.
He has published a series of influential papers in the field of sentiment analysis
and opinion mining. He received the ACL 2019 outstanding paper award, and his
paper on ensemble learning for sentiment classification has been cited more than

vii

viii Preface

600 times. Jiajun Zhang joined our institute after he graduated from university in
2006 and studied in my group in pursuit of his Ph.D. degree. He mainly engaged in
machine translation research, but he performed well in many research topics, such
as multilanguage automatic summarization, information extraction, and human–
computer dialogue systems. Since 2016, he has been teaching some parts of the
course on Natural Language Processing in cooperation with me, such as machine
translation, automatic summarization, and text classification, at the University of
Chinese Academy of Sciences; this course is very popular with students. With the
solid theoretical foundation of these two talents and their keen scientific insights, I
am gratified that many cutting-edge technical methods and research results could be
verified and practiced and included in this book.

From early 2016 to June 2019, when the Chinese version of this book was
published, it took more than three years. In these three years, most holidays,
weekends, and other spare times of ours were devoted to the writing of this book.
It was really suffering to endure the numerous modifications or even rewriting, but
we were also very happy. We started to translate the Chinese version into English
in the second half of 2019. Some more recent topics, including BERT (bidirectional
encoder representations from transformers), have been added to the English version.

As a cross domain of natural language processing and machine learning, text data
mining faces the double challenges of the two domains and has broad application to
the Internet and equipment for mobile communication. The topics and techniques
presented in this book are all the technical foundations needed to develop such
practical systems and have attracted much attention in recent years. It is hoped that
this book will provide a comprehensive understanding for students, professors, and
researchers in related areas. However, I must admit that due to the limitation of the
authors’ ability and breadth of knowledge, as well as the lack of time and energy,
there must be some omissions or mistakes in the book. We will be very grateful if
readers provide criticism, corrections, and any suggestions.

Beijing, China Chengqing Zong
20 May 2020

Acknowledgments

During the writing process and after the completion of the first draft of the Chinese
version of this book, many experts from related fields reviewed selected chapters
and gave us valuable comments and suggestions. They are (in alphabetical order)
Xianpei Han, Yu Hong, Shoushan Li, Kang Liu, Xiaojun Wan, Kang Xu, Chengzhi
Zhang, and Xin Zhao. In addition, we also received help from several graduate
students and Ph.D. candidates (also in alphabetical order): Hongjie Cai, Zixiang
Ding, Huihui He, Xiao Jin, Junjie Li, Mei Li, Yuchen Liu, Cong Ma, Liqun Ma,
Xiangqing Shen, Jingyuan Sun, Fanfan Wang, Leyi Wang, Qain Wang, Weikang
Wang, Yining Wang, Kaizhou Xuan, Shiliang Zheng, and Long Zhou. They helped
us to double check and confirm English expressions, references, and web addresses
and to redraw several charts in the book, which saved us much time. We would like
to express our heartfelt thanks to all of them!

We also want to sincerely thank Professor Jiawei Han for his guidance and
suggestions on this book. We are honored that he was willing to write the foreword
to this book despite his busy schedule. Finally, we would like to recognize Ms. Hui
Xue and Qian Wang, Tsinghua University Press, and Ms. Celine Chang, and Ms.
Suraj Kumar, Springer, for their great help!

Beijing, China Chengqing Zong
Nanjing, China Rui Xia
Beijing, China Jiajun Zhang
20 May 2020

ix

Contents

1 Introduction . 1
1.1 The Basic Concepts . 1
1.2 Main Tasks of Text Data Mining . 3
1.3 Existing Challenges in Text Data Mining . 6
1.4 Overview and Organization of This Book . 9
1.5 Further Reading . 12

2 Data Annotation and Preprocessing . 15
2.1 Data Acquisition.. 15
2.2 Data Preprocessing .. 20
2.3 Data Annotation . 22
2.4 Basic Tools of NLP . 25

2.4.1 Tokenization and POS Tagging . 25
2.4.2 Syntactic Parser . 27
2.4.3 N-gram Language Model . 29

2.5 Further Reading . 30

3 Text Representation . 33
3.1 Vector Space Model . 33

3.1.1 Basic Concepts. 33
3.1.2 Vector Space Construction . 34
3.1.3 Text Length Normalization.. 36
3.1.4 Feature Engineering . 37
3.1.5 Other Text Representation Methods . 39

3.2 Distributed Representation of Words . 40
3.2.1 Neural Network Language Model . 41
3.2.2 C&W Model . 45
3.2.3 CBOW and Skip-Gram Model . 47
3.2.4 Noise Contrastive Estimation and Negative Sampling 49
3.2.5 Distributed Representation Based on the Hybrid

Character-Word Method.. 51

xi

xii Contents

3.3 Distributed Representation of Phrases . 53
3.3.1 Distributed Representation Based on the

Bag-of-Words Model . 54
3.3.2 Distributed Representation Based on Autoencoder 54

3.4 Distributed Representation of Sentences . 58
3.4.1 General Sentence Representation .. 59
3.4.2 Task-Oriented Sentence Representation 63

3.5 Distributed Representation of Documents . 66
3.5.1 General Distributed Representation of Documents 67
3.5.2 Task-Oriented Distributed Representation

of Documents . 69
3.6 Further Reading . 72

4 Text Representation with Pretraining and Fine-Tuning 75
4.1 ELMo: Embeddings from Language Models . 75

4.1.1 Pretraining Bidirectional LSTM Language Models. 76
4.1.2 Contextualized ELMo Embeddings for

Downstream Tasks . 77
4.2 GPT: Generative Pretraining .. 78

4.2.1 Transformer .. 78
4.2.2 Pretraining the Transformer Decoder . 80
4.2.3 Fine-Tuning the Transformer Decoder . 81

4.3 BERT: Bidirectional Encoder Representations
from Transformer.. 82
4.3.1 BERT: Pretraining . 83
4.3.2 BERT: Fine-Tuning .. 86
4.3.3 XLNet: Generalized Autoregressive Pretraining 86
4.3.4 UniLM . 89

4.4 Further Reading . 90

5 Text Classification . 93
5.1 The Traditional Framework of Text Classification 93
5.2 Feature Selection . 95

5.2.1 Mutual Information .. 96
5.2.2 Information Gain . 99
5.2.3 The Chi-Squared Test Method . 100
5.2.4 Other Methods . 101

5.3 Traditional Machine Learning Algorithms for Text
Classification . 102
5.3.1 Naïve Bayes . 103
5.3.2 Logistic/Softmax and Maximum Entropy 105
5.3.3 Support Vector Machine. 107
5.3.4 Ensemble Methods . 110

Contents xiii

5.4 Deep Learning Methods . 111
5.4.1 Multilayer Feed-Forward Neural Network 111
5.4.2 Convolutional Neural Network . 113
5.4.3 Recurrent Neural Network . 115

5.5 Evaluation of Text Classification . 120
5.6 Further Reading . 123

6 Text Clustering . 125
6.1 Text Similarity Measures . 125

6.1.1 The Similarity Between Documents . 125
6.1.2 The Similarity Between Clusters . 128

6.2 Text Clustering Algorithms . 129
6.2.1 K-Means Clustering . 129
6.2.2 Single-Pass Clustering. 133
6.2.3 Hierarchical Clustering . 136
6.2.4 Density-Based Clustering . 138

6.3 Evaluation of Clustering . 141
6.3.1 External Criteria . 141
6.3.2 Internal Criteria . 142

6.4 Further Reading . 143

7 Topic Model . 145
7.1 The History of Topic Modeling .. 145
7.2 Latent Semantic Analysis . 146

7.2.1 Singular Value Decomposition of the
Term-by-Document Matrix . 147

7.2.2 Conceptual Representation and Similarity
Computation . 148

7.3 Probabilistic Latent Semantic Analysis . 150
7.3.1 Model Hypothesis . 150
7.3.2 Parameter Learning .. 151

7.4 Latent Dirichlet Allocation . 153
7.4.1 Model Hypothesis . 153
7.4.2 Joint Probability . 155
7.4.3 Inference in LDA . 158
7.4.4 Inference for New Documents . 160

7.5 Further Reading . 161

8 Sentiment Analysis and Opinion Mining . 163
8.1 History of Sentiment Analysis and Opinion Mining 163
8.2 Categorization of Sentiment Analysis Tasks . 164

8.2.1 Categorization According to Task Output 164
8.2.2 According to Analysis Granularity . 165

xiv Contents

8.3 Methods for Document/Sentence-Level Sentiment Analysis 168
8.3.1 Lexicon- and Rule-Based Methods . 169
8.3.2 Traditional Machine Learning Methods 170
8.3.3 Deep Learning Methods . 174

8.4 Word-Level Sentiment Analysis and Sentiment Lexicon
Construction . 178
8.4.1 Knowledgebase-Based Methods . 178
8.4.2 Corpus-Based Methods. 179
8.4.3 Evaluation of Sentiment Lexicons . 182

8.5 Aspect-Level Sentiment Analysis . 183
8.5.1 Aspect Term Extraction . 183
8.5.2 Aspect-Level Sentiment Classification . 186
8.5.3 Generative Modeling of Topics and Sentiments 191

8.6 Special Issues in Sentiment Analysis. 193
8.6.1 Sentiment Polarity Shift . 193
8.6.2 Domain Adaptation .. 195

8.7 Further Reading . 198

9 Topic Detection and Tracking . 201
9.1 History of Topic Detection and Tracking . 201
9.2 Terminology and Task Definition. 202

9.2.1 Terminology . 202
9.2.2 Task . 203

9.3 Story/Topic Representation and Similarity Computation 206
9.4 Topic Detection . 209

9.4.1 Online Topic Detection . 209
9.4.2 Retrospective Topic Detection . 211

9.5 Topic Tracking.. 212
9.6 Evaluation . 213
9.7 Social Media Topic Detection and Tracking . 215

9.7.1 Social Media Topic Detection. 216
9.7.2 Social Media Topic Tracking . 217

9.8 Bursty Topic Detection. 217
9.8.1 Burst State Detection . 218
9.8.2 Document-Pivot Methods . 221
9.8.3 Feature-Pivot Methods . 222

9.9 Further Reading . 224

10 Information Extraction . 227
10.1 Concepts and History . 227
10.2 Named Entity Recognition .. 229

10.2.1 Rule-based Named Entity Recognition 230
10.2.2 Supervised Named Entity Recognition Method 231
10.2.3 Semisupervised Named Entity Recognition Method 239
10.2.4 Evaluation of Named Entity Recognition Methods 241

Contents xv

10.3 Entity Disambiguation . 242
10.3.1 Clustering-Based Entity Disambiguation Method 243
10.3.2 Linking-Based Entity Disambiguation . 248
10.3.3 Evaluation of Entity Disambiguation .. 254

10.4 Relation Extraction .. 256
10.4.1 Relation Classification Using Discrete Features 258
10.4.2 Relation Classification Using Distributed Features 265
10.4.3 Relation Classification Based on Distant Supervision 268
10.4.4 Evaluation of Relation Classification . 269

10.5 Event Extraction .. 270
10.5.1 Event Description Template . 270
10.5.2 Event Extraction Method .. 272
10.5.3 Evaluation of Event Extraction . 281

10.6 Further Reading . 281

11 Automatic Text Summarization . 285
11.1 Main Tasks in Text Summarization.. 285
11.2 Extraction-Based Summarization.. 287

11.2.1 Sentence Importance Estimation . 287
11.2.2 Constraint-Based Summarization Algorithms 298

11.3 Compression-Based Automatic Summarization . 299
11.3.1 Sentence Compression Method . 300
11.3.2 Automatic Summarization Based on Sentence

Compression . 305
11.4 Abstractive Automatic Summarization .. 307

11.4.1 Abstractive Summarization Based on
Information Fusion . 307

11.4.2 Abstractive Summarization Based on the
Encoder-Decoder Framework .. 313

11.5 Query-Based Automatic Summarization .. 316
11.5.1 Relevance Calculation Based on the Language Model . . . 317
11.5.2 Relevance Calculation Based on Keyword

Co-occurrence . 317
11.5.3 Graph-Based Relevance Calculation Method 318

11.6 Crosslingual and Multilingual Automatic Summarization 319
11.6.1 Crosslingual Automatic Summarization 319
11.6.2 Multilingual Automatic Summarization 323

11.7 Summary Quality Evaluation and Evaluation Workshops.. 325
11.7.1 Summary Quality Evaluation Methods 325
11.7.2 Evaluation Workshops. 330

11.8 Further Reading . 332

References . 335

About the Authors

Chengqing Zong is a Professor at the National Laboratory of Pattern Recognition
(NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA) and an
adjunct professor in the School of Artificial Intelligence at University of Chinese
Academy of Sciences (UCAS). He authored the book “Statistical Natural Language
Processing” (which is in Chinese and sold more than 32K copies) and has published
more than 200 papers on machine translation, natural language processing, and
cognitive linguistics. He served as the chair for numerous prestigious conferences,
such as ACL, COLING, AAAI, and IJCAI, and has served as an associate editor
for journals, such as ACM TALLIP and ACTA Automatic Sinica, and as an
editorial board member for journals, including IEEE Intelligent Systems, Journal
of Computer Science and Technology, and Machine Translation. He is currently the
President of the Asian Federation of Natural Language Processing (AFNLP) and a
member of the International Committee on Computational Linguistics (ICCL).

Rui Xia is a Professor at the School of Computer Science and Engineering, Nanjing
University of Science and Technology, China. He has published more than 50
papers in high-quality journals and top-tiered conferences in the field of natural
language processing and text data mining. He serves as area chair and senior
program committee member for several top conferences, such as EMNLP, COLING,
IJCAI, and AAAI. He received the outstanding paper award of ACL 2019, and the
Distinguished Young Scholar award from the Natural Science Foundation of Jiangsu
Province, China in 2020.

Jiajun Zhang is a Professor at the NLPR, CASIA and an adjunct professor in the
SAIU of UCAS. He has published more than 80 conference papers and journal
articles on natural language processing and text mining and received 5 best paper
awards. He served as the area chair or on the senior program committees for several
top conferences, such as ACL, EMNLP, COLING, AAAI, and IJCAI. He is the

xvii

xviii About the Authors

deputy director of China’s Machine Translation Technical Committee of the Chinese
Information Processing Society of China. He received the Qian Wei-Chang Science
and Technology Award of Chinese Information Processing and the CIPS Hanvon
Youth Innovation Award. He was supported by the Elite Scientists Sponsorship
Program of China Association for Science and Technology (CAST).

Acronyms

ACE Automatic content extraction
AMR Abstract meaning representation
ATT Adaptive topic tracking
AUC Area under the ROC curve
Bagging Bootstrap aggregating
BERT Bidirectional encoder representations from transformer
BFGS Broyden–Fletcher–Goldfarb–Shanno
Bi-LSTM Bidirectional long short-term memory
BIO Begin–inside–outside
BLEU Bilingual evaluation understudy
BOW Bag of words
BP Back-propagation
BPTS Back-propagation through structure
BPTT Back-propagation through time
BRAE Bilingually constrained recursive autoencoder
CBOW Continuous bag-of-words
CFG Context-free grammar
CNN Convolutional neural network
CRF Conditional random field
C&W Collobert and Weston
CWS Chinese word segmentation
DBSCAN Density-based spatial clustering of applications with noise
DF Document frequency
DL Deep learning
DMN Deep memory network
ELMo Embeddings from language models
EM Expectation maximization
EP Expectation propagation
FAR False alarm rate
FNN Feed-forward neural network
GPT Generative pretraining

xix

xx Acronyms

GRU Gated recurrent unit
HAC Hierarchical agglomerative clustering
HMM Hidden Markov model
HTD Hierarchical topic detection
ICA Independent component analysis
IDF Inverse document frequency
IE Information extraction
IG Information gain
KBP Knowledge base population
KDD Knowledge discovery in databases
KKT Karush–Kuhn–Tucker
K-L Kullback–Leibler
L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno
LDA Latent Dirichlet allocation
LM Language model
LSA Latent semantic analysis
LSI Latent semantic indexing
LSTM Long short-term memory
MCMC Markov chain Monte Carlo
MDR Missed detection rate
ME Maximum entropy
MI Mutual information
ML Machine learning
MLE Maximum likelihood estimation
MMR Maximum marginal relevance
MUC Message understanding conference
NB Naïve Bayes
NCE Noise contrastive estimation
NED New event detection
NER Named entity recognition
NLP Natural language processing
NNLM Neural network language model
PCA Principal component analysis
PLSA Probabilistic latent semantic analysis
PLSI Probabilistic latent semantic indexing
PMI Pointwise mutual information
P-R Precision–recall
PU Positive-unlabeled
PCFG Probabilistic context-free grammar
PMI-IR Pointwise mutual information—information retrieval
POS Part of speech
PV-DBOW Distributed bag-of-words version of the paragraph vector
PV-DM Paragraph vector with sentence as distributed memory
Q&A Question and answering
RAE Recursive autoencoder

Acronyms xxi

RecurNN Recursive neural network
RG Referent graph
RNN Recurrent neural network
ROC Receiver operating characteristic
ROUGE Recall-oriented understudy for gisting evaluation
RTD Retrospective topic detection
SCL Structure correspondence learning
SCU Summary content unit
SMO Sequential minimal optimization
SO Semantic orientation
SRL Semantic role labeling
SS Story segmentation
SST Stanford sentiment treebank
STC Suffix tree clustering
SVD Singular value decomposition
SVM Support vector machine
TAC Text analysis conference
TD Topic detection
TDT Topic detection and tracking
TF Term frequency
TF-IDF Term frequency—inverted document frequency
UGC User-generated context
UniLM Unified pretraining language model
VBEM Variational Bayes expectation maximization
VSM Vector space model
WCSS Within-cluster sum of squares
WSD Word sense disambiguation

Chapter 1
Introduction

1.1 The Basic Concepts

Compared with generalized data mining technology, beyond analyzing various
document formats (such as doc/docx files, PDF files, and HTML files), the greatest
challenge in text data mining lies in the analysis and modeling of unstructured
natural language text content. Two aspects need to be emphasized here: first, text
content is almost always unstructured, unlike databases and data warehouses, which
are structured; second, text content is described by natural language, not purely by
data, and other non-text formats such as graphics and images are not considered.
Of course, it is normal for a document to contain tables and figures, but the
main body in such documents is text. Therefore, text data mining is de facto an
integrated technology of natural language processing (NLP), pattern classification,
and machine learning (ML).

The so-called mining usually has the meanings of “discovery, search, induction
and refinement.” Since discovery and refinement are necessary, the target results
being sought are often not obvious but hidden and concealed in the text or cannot be
found and summarized in a large range. The adjectives “hidden” and “concealed”
noted here refer not only to computer systems but also human users. However, in
either case, from the user’s point of view, the hope is that the system can directly
provide answers and conclusions to the questions of interest, instead of delivering
numerous possible search results for the input keywords and leaving users to analyze
and find the required answers themselves as in the traditional retrieval system.
Roughly speaking, text mining can be classified into two types. In the first, the
user’s questions are very clear and specific, but they do not know the answer to the
questions. For example, users want to determine what kind of relationship someone
has with some organizations from many text sources. The other situation is when the
user only knows the general aim but does not have specific and definite questions.
For example, medical personnel may hope to determine the regularity of some
diseases and the related factors from many case records. In this case, they may not
be referring to a specific disease or specific factors, and the relevant data in their

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_1&domain=pdf
https://doi.org/10.1007/978-981-16-0100-2_1

2 1 Introduction

entirety need to be mined automatically by system. Certainly, there is sometimes no
obvious boundary between the two types.

Text mining technology has very important applications in many fields, such
as the national economy, social management, information services, and national
security. The market demand is huge. For example, government departments and
management can timely and accurately investigate the people’s will and understand
public opinions by analyzing and mining microblogs, WeChat, SMSs (short mes-
sage services), and other network information for ordinary people. In the field of
finance or commerce, through the in-depth excavation and analysis of extensive
written material, such as news reports, financial reports, and online reviews, text
mining can predict the economic situation and stock market trends for a certain
period. Electronic product enterprises can acquire and evaluate their product users
or market reactions at any time and capture data support for further improving
product quality and providing personalized services. For national security and
public security departments, text data mining technology is a useful tool for the
timely discovery of social instability factors and effectively controlling the current
situation. In the field of medicine and public health, many phenomena, regularities,
and conclusions can be found by analyzing medical reports, cases, records, and
relevant documents and materials.

Text mining, as a research field crossing multiple technologies, originated from
single techniques such as text classification, text clustering, and automatic text
summarization. In the 1950s, text classification and clustering emerged as an
application of pattern recognition. At that time, research was mainly focused on the
needs of books and on information classification, and classification and clustering
are, of course, based on the topics and contents of texts. In 1958, H.P. Luhn proposed
the concept of automatic summarization (Luhn 1958), which added new content to
the field of text mining. In the late 1980s and early 1990s, with the rapid develop-
ment and popularization of Internet technology, demand for new applications has
promoted the continuous development and growth of this field. The US government
has funded a series of research projects on information extraction, and in 1987, the
US Defense Advanced Research Projects Agency (DARPA) initiated and organized
the first Message Understanding Conference (MUC1) to evaluate the performance
of this technology. In the subsequent 10 years, seven consecutive evaluations have
made information extraction technology a research hot spot in this field. Next, a
series of social media-oriented text processing technologies, such as text sentiment
analysis, opinion mining, and topic detection and tracking, emerged and developed
rapidly. Today, this technical field is growing rapidly not only in theory and method
but also in the form of system integration and applications.

1https://www-nlpir.nist.gov/related_projects/muc/.

https://www-nlpir.nist.gov/related_projects/muc/

1.2 Main Tasks of Text Data Mining 3

1.2 Main Tasks of Text Data Mining

As mentioned above, text mining is a domain that crosses multiple technologies
involving a wide range of content. In practical applications, it is usually necessary
to combine several related technologies to complete an application task, and the
execution of mining technology is usually hidden behind the application system.
For example, a question and answering (Q&A) system often requires several
links, such as question parsing, knowledge base search, inference and filtering
of candidate answers, and answer generation. In the process of constructing a
knowledge base, key technologies such as text clustering, classification, named
entity recognition, relationship extraction, and disambiguation are indispensable.
Therefore, text mining is not a single technology system but is usually an integrated
application of several technologies. The following is a brief introduction to several
typical text mining technologies.

(1) Text Classification

Text classification is a specific application of pattern classification technology.
Its task is to divide a given text into predefined text types. For example, according
to the Chinese Library Classification (5-th Edition),2 all books are divided into 5
categories and 22 subcategories. On the first page of www.Sina.com,3 the content
is divided into the following categories: news, finance, sports, entertainment, cars,
blog, video, house and property, etc. Automatically classifying a book or an article
into a certain category according to its content is a challenging task.

Chapter 5 of this book introduces text classification techniques in detail.

(2) Text Clustering

The purpose of text clustering is to divide a given text set into different categories.
Generally, different results can be clustered based on different perspectives. For
example, based on the text content, the text set can be clustered into news, culture
and entertainment, sports or finance, and so on, while based on the author’s
tendency, it can be grouped into positive categories (positive views with positive
and supportive attitudes) and negative categories (negative views with negative and
passive attitudes).

The basic difference between text clustering and text classification is that
classification predefines the number of categories and the classification process
automatically classifies each given text into a certain category and labels it with
a category tag. Clustering, by contrast, does not predefine the number of categories,
and a given document set is divided into categories that can be distinguished from
each other based on certain standards and evaluation indices. Many similarities
exist between text clustering and text classification, and the adopted algorithms and

2https://baike.baidu.com/item/中国图书馆图书分类法/1919634?fr=aladdin.
3https://www.sina.com.cn/.

www.Sina.com
https://baike.baidu.com/item/%E4%B8%AD%E5%9B%BD%E5%9B%BE%E4%B9%A6%E9%A6%86%E5%9B%BE%E4%B9%A6%E5%88%86%E7%B1%BB%E6%B3%95/1919634?fr=aladdin
https://www.sina.com.cn/

4 1 Introduction

models have intersections, such as models of text representation, distance functions,
and K-means algorithms.

Chapter 6 of this book introduces text clustering techniques in detail.

(3) Topic Model

In general, every article has a topic and several subtopics, and the topic can be
expressed by a group of words that have strong correlation and that basically share
the same concepts and semantics. We can consider each word as being associated
with a certain topic with a certain probability, and in turn, each topic selects a certain
vocabulary with a certain probability. Therefore, we can give the following simple
formula:

p(wordi |documentj) =
∑

k

p(wordi |topick) × p(topick |documentj) (1.1)

Thus, the probability of each word appearing in the document can be calculated.
To mine the topics and concepts hidden behind words in text, people have

proposed a series of statistical models called topic models.
Chapter 7 of this book introduces the topic model in detail.

(4) Text Sentiment Analysis and Opinion Mining

Text sentiment refers to the subjective information expressed by a text’s author,
that is, the author’s viewpoint and attitude. Therefore, the main tasks of text senti-
ment analysis, which is also called text orientation analysis or text opinion mining,
include sentiment classification and attribute extraction. Sentiment classification can
be regarded as a special type of text classification in which text is classified based on
subjective information such as views and attitudes expressed in the text or judgments
of its positive or negative polarity. For example, after a special event (such as the loss
of communication with Malaysia Airlines MH370, UN President Ban Ki-moon’s
participation in China’s military parade commemorating the 70th anniversary of the
victory of the Anti-Fascist War or talks between Korean and North Korean leaders),
there is a high number of news reports and user comments on the Internet. How can
we automatically capture and understand the various views (opinions) expressed
in these news reports and comments? After a company releases a new product, it
needs a timely understanding of users’ evaluations and opinions (tendentiousness)
and data on users’ age range, sex ratio, and geographical distribution from their
online comments to help inform the next decisions. These are all tasks that can be
completed by text sentiment analysis.

Chapter 8 of this book introduces text sentiment analysis and opinion mining
techniques.

(5) Topic Detection and Tracking

Topic detection usually refers to the mining and screening of text topics from
numerous news reports and comments. Those topics that most people care about,
pay attention to, and track are called hot topics. Hot topic discovery, detection,

1.2 Main Tasks of Text Data Mining 5

and tracking are important technological abilities in public opinion analysis,
social media computing, and personalized information services. The form of their
application varies, for example, Hot Topics Today is a report on what is most
attracting readers’ attention from all the news events on that day, while Hot Topics
2018 lists the top news items that attracted the most attention from all the news
events throughout 2018 (this could also be from January 1, 2018, to a different
specified date).

Chapter 9 of this book introduces techniques for topic detection and tracking.

(6) Information Extraction

Information extraction refers to the extraction of factual information such as
entities, entity attributes, relationships between entities, and events from unstruc-
tured and semistructured natural language text (such as web news, academic
documents, and social media), which it forms into structured data output (Sarawagi
2008). Typical information extraction tasks include named entity recognition, entity
disambiguation, relationship extraction, and event extraction.

In recent years, biomedical/medical text mining has attracted extensive attention.
Biomedical/medical text mining refers to the analysis, discovery, and extraction of
text in the fields of biology and medicine, for example, research from the biomedical
literature to identify the factors or causes related to a certain disease, analysis of
a range of cases recorded by doctors to find the cause of certain diseases or the
relationship between a certain disease and other diseases, and other similar uses.
Compared with text mining in other fields, text mining in the biomedical/medical
field faces many special problems, such as a multitude of technical terms and
medical terminology in the text, including idioms and jargon used clinically, or
proteins named by laboratories. In addition, text formats vary greatly based on their
different source, such as medical records, laboratory tests, research papers, public
health guidelines, or manuals. Unique problems faced in this field are how to express
and utilize common knowledge and how to obtain a large-scale annotation corpus.

Text mining technology has also been a hot topic in the financial field in recent
years. For example, from the perspective of ordinary users or regulatory authorities,
the operational status and social reputation of a financial enterprise are analyzed
through available materials such as financial reports, public reports, and user
comments on social networks; from the perspective of an enterprise, forewarnings
of possible risks may be found through the analysis of various internal reports, and
credit risks can be controlled through analysis of customer data.

It should be noted that the relation in information extraction usually refers to
some semantic relation between two or more concepts, and relation extraction
automatically discovers and mines the semantic relation between concepts. Event
extraction is commonly used to extract the elements that make up the pairs of events
in a specific domain. The “event” mentioned here has a different meaning from
that used in daily life. In daily life, how people describe events is consistent with
their understanding of events: they refer to when, where, and what happened. The
thing that happened is often a complete story, including detailed descriptions of
causes, processes, and results. By contrast, in even extraction, the “event” usually

6 1 Introduction

refers to a specific behavior or state expressed by a certain predicate framework.
For example, “John meets Mary” is an event triggered by the predicate “meet.” The
event understood by ordinary people is a story, while the “event” in event extraction
is just an action or state.

Chapter 10 of this book introduces information extraction techniques.

(7) Automatic Text Summarization

Automatic text summarization or automatic summarization, in brief, refers
to a technology that automatically generates summaries using natural language
processing methods. Today, when information is excessively saturated, automatic
summarization technology has very broad applications. For example, an informa-
tion service department needs to automatically classify many news reports, form
summaries of some (individual) event reports (report), and recommend these reports
to users who may be interested. Some companies or supervisory departments want
to know roughly the main content of statements (SMS, microblog, WeChat, etc.)
published by some user groups. Automatic summarization technology is used in
these situations.

Chapter 11 of this book introduces automatic text summarization techniques.

1.3 Existing Challenges in Text Data Mining

Study of the techniques of text mining is a challenging task. First, the theoretical
system of natural language processing has not yet been fully established. At present,
text analysis is to a large extent only in the “processing” stage and is far from
reaching the level of deep semantic understanding achieved by human beings. In
addition, natural language is the most important tool used by human beings to
express emotions, feelings, and thoughts, and thus they often use euphemism, dis-
guise, or even metaphor, irony, and other rhetoric means in text. This phenomenon
is obvious, especially in Chinese texts, which presents many special difficulties for
text mining. Many machine learning methods that can achieve better results in other
fields, such as image segmentation and speech recognition, are often difficult to
use in natural language processing. The main difficulties confronted in text mining
include the following aspects.

(1) Noise or ill-formed expressions present great challenges to NLP

Natural language processing is usually the first step in text mining. The main
data source for text mining processing is the Internet, but when compared with
formal publications (such as all kinds of newspapers, literary works, political and
academic publications, and formal news articles broadcast by national and local
government television and radio stations), online text content includes large ill-
formed expressions. According to a random sampling survey of Internet news texts
conducted by Zong (2013), the average length of Chinese words on the Internet
is approximately 1.68 Chinese characters, and the average length of sentences is

1.3 Existing Challenges in Text Data Mining 7

47.3 Chinese characters, which are both shorter than the word length and sentence
length in the normal written text. Relatively speaking, colloquial and even ill-formed
expressions are widely used in online texts. This phenomenon is common, especially
in online chatting, where phrases such as “up the wall,” “raining cats and dog,” and
so on can be found. The following example is a typical microblog message:

//@XXXX://@YYYYY: Congratulations to the first prospective members of the Class of 2023
offered admission today under Stanford’s restrictive early action program.
https://stanford.io/2E7cfGF#Stanford2023

The above microblog message contains some special expressions. Existing noise
and ill-formed language phenomena greatly reduce the performance of natural
language processing systems. For example, a Chinese word segmentation (CWS)
system trained on a corpora of normal texts such as the People’s Daily and the
Xinhua Daily can usually achieve an accuracy rate of more than 95%, even as
high as 98%, but its performance on online text immediately drops below 90%.
According to the experimental results of (Zhang 2014), using the character-based
Chinese word segmentation method based on the maximum entropy (ME)classifier,
when the dictionary size is increased to more than 1.75 million (including common
words and online terms), the performance of word segmentation on microblog text
as measured by the F1-measure metric can only reach approximately 90%. Usually,
a Chinese parser can reach approximately 87% or more on normal text, but on online
text, its performance decreases by an average of 13% points (Petrov and McDonald
2012). The online texts addressed by these data are texts on the Internet and do not
include the texts of dialogues and chats in microblogs, Twitter, or WeChat.

(2) Ambiguous expression and concealment of text semantics

Ambiguous expressions are common phenomena in natural language texts, for
example, the word “bank” may refer to a financial bank or a river bank. The word
“Apple” may refer to the fruit or to a product such as an Apple iPhone or an Apple
Computer, a Mac, or Macintosh. There also exist many phenomena of syntactic
ambiguity. For example, the Chinese sentence “关于(guanyu, about)鲁迅(Lu Xun,
a famous Chinese writer)的(de, auxiliary word)文章(wenzhang, articles)” can be
understood as “关于【鲁迅的文章】 (about articles of Lu Xun)” or “【关于
鲁迅】的文章 (articles about Lu Xun).” Similarly, the English sentence “I saw
a boy with a telescope” may be understood as “I saw [a boy with a telescope],”
meaning I saw a boy who had a telescope, or “[I saw a boy] with a telescope”
meaning I saw a boy by using a telescope. The correct parsing of these ambiguous
expressions has become a very challenging task in NLP. However, regrettably,
there are no effective methods to address these problems, and a large number of
intentionally created “special expressions/tokens” such as Chinese “words” “木有
(no),” “坑爹 (cheating),” and ‘奥特 (out/out-of-date)” and English words “L8er
(later),” “Adorbs (adorable),” and “TL;DR (Too long, didn’t read)” appear routinely
in online dialogue texts.

Sometimes, to avoid directly identifying certain events or personages, the speaker
will turn a sentence around deliberately, for example, asking “May I know the age
of the ex-wife of X’s father’s son?”.

https://stanford.io/2E7cfGF#Stanford2023

8 1 Introduction

Please look at the following news report:

Mr. Smith, who had been a policeman for more than 20 years, had experienced a multitude
of hardships, had numerous achievements and been praised as a hero of solitary courage.
However, no one ever thought that such an steely hero, who had made addicted users
frightened and filled them with trepidation, had gone on a perilous journey for a small
profit and shot himself at home last night in hatred.

For most readers, it is easy to understand the incident reported by this news item
without much consideration. However, if someone asks the following question to a
text mining system based on this news What kind of policeman is Mr. Smith? and
Is he dead? it will be difficult for any current system to give a correct answer. The
news story never directly expresses what kind of policeman Mr. Smith is but uses
addicted users to hint to readers that he is an antidrug policeman and uses “shot
himself” to show that he has committed suicide. This kind of information hidden in
the text can only be mined by technology with deep understanding and reasoning,
which is very difficult to achieve.

(3) Difficult collection and annotation of samples

At present, the mainstream text mining methods are machine learning methods
based on large-scale datasets, including the traditional statistical machine learning
method and the deep learning (DL) method. These require a large-scale collection
of labeled training samples, but it is generally very difficult to collect and annotate
such large-scale samples. On the one hand, it is difficult to obtain much online
content because of copyright or privacy issues, which prohibit publication opening
and sharing. On the other hand, even when data are easy to obtain, processing these
data is time-consuming and laborious because they often contain considerable noise
and garbled messages, they lack a uniform format, and there is no standard criterion
for data annotation. In addition, the data usually belong to a specific field, and
help from experts in that specific domain is necessary for annotation. Without help
from experts, it is impossible to provide high-quality annotation of the data. If the
field changes, the work of data collection, processing, and annotation will have to
start again, and many ill-formed language phenomena (including new online words,
terms and ungrammatical expressions) vary with changing domains and over time,
which greatly limits expansion of the data scale and affects the development of text
mining technology.

(4) Hard to express the purpose and requirements of text mining

Text mining is unlike other theoretical problems, wherein objective functions
are clearly established and then ideal answers obtained by optimizing functions and
solving the extremum. In many cases, we do not know what the results of text mining
will be or how to use mathematical models to describe the expected results and
conditions clearly. For example, we can extract frequently used “hot” words from
some text that can represent the themes and stories of these texts, but how to organize
them into story outlines (summaries) expressed in fluent natural languages is not
an easy task. As another example, we know that there are some regular patterns

1.4 Overview and Organization of This Book 9

and correlations hidden in many medical cases, but we do not know what regular
patterns and correlations exist and how to describe them.

(5) Unintelligent methods of semantic representation and computation model

Effectively constructing semantic computing models is a fundamental challenge
that has puzzled the fields adopting NLP for a long time. Since the emergence of
deep learning methods, word vector representation and various computing methods
based on word vectors have played an important role in NLP. However, semantics
in natural language are different from pixels in images, which can be accurately
represented by coordinates and grayscales. Linguists, computational linguists, and
scholars engaged in artificial intelligence research have been paying close attention
to the core issues of how to define and represent the semantic meanings of words and
how to achieve combination computing from lexical semantics to phrase, sentence,
and, ultimately, paragraph and discourse semantics. To date, there are no convincing,
widely accepted and effective models or methods for semantic computing. At
present, most semantic computing methods, including many methods for word
sense disambiguation, word sense induction based on topic models, and word vector
combinations, are statistical probability-based computational methods. In a sense,
statistical methods are “gambling methods” that choose high probability events. In
many cases, the events with the highest probability will become the final selected
answer. In fact, this is somewhat arbitrary, subjective, or even wrong. Since the
model for computing probability is based on samples taken by hand, the actual
situation (test set) may not be completely consistent with the labeled samples, which
inevitably means that some small probability events become “fishes escaping from
the net.” Therefore, the gambling method, which is always measured by probability,
can solve most of the problems that are easy to count but cannot address events that
occur with small probability, are hard to find, and occur with low frequency. Those
small probability events are always difficult problems to solve, that is, they are the
greatest “enemy” faced in text mining and NLP.

In summary, text mining is a comprehensive application technology that inte-
grates the challenges in various fields, such as NLP, ML, and pattern classification,
and is sometimes combined with technologies to process graphics, images, videos,
and so on. The theoretical system in this field has not yet been established, its
prospect for application is extremely broad, and time is passing: text mining will
surely become a hot spot for research and will grow rapidly with the development
of related technologies.

1.4 Overview and Organization of This Book

As mentioned in Sect. 1.1, text mining belongs to the research field combining NLP,
pattern classification, ML, and other related technologies. Therefore, the use and
development of technical methods in this field also change with the development
and transition of related technologies.

10 1 Introduction

Reviewing the history of development, which covers more than half a century,
text mining methods can be roughly divided into two types: knowledge engineering-
based methods and statistical learning methods. Before the 1980s, text mining
was mainly based on knowledge engineering, which was consistent with the
historical track of rule-based NLP and the mainstream application of expert systems
dominated by syntactic pattern recognition and logical reasoning. The basic idea of
this method is that experts in a domain collect and design logical rules manually
for the given texts based on their empirical knowledge and common sense and
then the given texts are analyzed and mined through inference algorithms using
the designed rules. The advantage of this method is that it makes use of experts’
experience and common sense, there is a clear basis for each inference step,
and there is a good explanation for the result. However, the problem is that it
requires extensive human resources to deduce and summarize knowledge based
on experience, and the performance of the system is constrained by the expert
knowledge base (rules, dictionaries, etc.). When the system needs to be transplanted
to the new fields and tasks, much of the experience-based knowledge cannot be
reused, so that usually, much time is needed to rebuild a system. Since the later
1980s, and particularly after 1990, with the rapid development and broad application
of statistical machine learning methods, text mining methods based on statistical
machine learning obtained obvious advantages in terms of accuracy and stability
and do not need to consume the same level of human resources. Especially in the
era of big data on the Internet, given massive texts, manual methods are obviously
not comparable to statistical learning methods in terms of speed, scale, or coverage
when processing data. Therefore, statistical machine learning methods are gradually
becoming the mainstream in this field. Deep learning methods, or neural network-
based ML methods, which have emerged in recent years, belong to the same class of
methods, which can also be referred to as data-driven methods. However, statistical
learning methods also have their own defects; for example, supervised machine
learning methods require many manually annotated samples, while unsupervised
models usually perform poorly, and the results from the system for both supervised
and unsupervised learning methods lack adequate interpretability.

In general, knowledge engineering-based methods and statistical learning meth-
ods have their own advantages and disadvantages. Therefore, in practical appli-
cation, system developers often combine the two methods, using the feature
engineering method in some technical modules and the statistical learning method
in the others to help the system achieve the strongest performance possible through
the fusion of the two methods. Considering the maturity of technology, knowledge
engineering-based methods are relatively mature, and their performance ceiling is
predictable. For statistical learning methods, with the continuous improvement of
existing models and the continuous introduction of new models, the performance
of models and algorithms is gradually improving, but there is still great room
for improvement, especially in large-scale data processing. Therefore, statistical
learning methods are in the ascendant. These are the reasons this book focuses on
statistical learning methods.

1.4 Overview and Organization of This Book 11

Fig. 1.1 An overview of this book

This book mainly introduces the basic methods and concepts behind text mining
but does not get involved in the implementation details of specific systems, nor
does it overly elaborate the task requirements and special problems of specific
applications. For example, text mining technology in the biomedical and financial
fields has attracted much attention in recent years, and many related technologies
and resources need to be developed for these fields, such as domain knowledge
bases, annotation tools, and annotation samples for domain-related data. The authors
hope that the basic methods and ideas introduced in this book have a certain
universality and commonality. Once readers know these fundamental methods,
they can expand them and implement the system oriented to their specific task
requirements.

The remaining nine chapters are organized along the following lines, as shown
in Fig. 1.1.

Chapter 2 introduces the methods for data preprocessing. Data preprocessing is
the preparation stage before all subsequent models and algorithms are implemented;
for example, word segmentation for the Chinese, Japanese, Vietnamese, and other
possible languages requires word segmentation. In most online texts, there is much
noise and many ill-formed expressions. If these data are not preprocessed well, the
subsequent modules will be badly affected, and it will be difficult to achieve the
expected final results; indeed, it may be that the model cannot even run. The text
representation described in Chaps. 3 and 4 is the basis of the models used in the
subsequent chapters. If the text cannot be accurately represented, it is impossible
to obtain better results using any of the mathematical models and algorithms
introduced in these chapters. The text classification methods introduced in Chap. 5,
the text clustering algorithms introduced in Chap. 6, and the topic models introduced
in Chap. 7 are the theoretical foundations of other text mining technologies, in a
sense, because classification and clustering are the two most fundamental and core
problems of pattern recognition and are the two most commonly used methods in
machine learning and statistical natural language processing. Most of the models
and methods introduced in the following chapters can be treated as classification
and clustering problems or can be solved by adopting the concepts of classification
or clustering. Therefore, Chaps. 5–7 can be regarded as the theoretical foundations

12 1 Introduction

or basic models of the book. In addition, it should be noted that text classification,
clustering, and topic models are sometimes used as the sole specific application in
some tasks.

Chapters 8–11 can be regarded as an application technology for text mining.
A specific task can be performed by one model of can be jointly carried out by
several models and algorithms. In most practical applications, the latter method is
adopted. For example, text mining tasks in the field of medicine usually involve
the techniques of text automatic classification and clustering, topic modeling,
information extraction, and automatic summarization, while public opinion analysis
tasks for social networks may involve text classification, clustering, topic modeling,
topic detection and tracking, sentiment analysis, and even automatic summarization.

With the rapid development and popularization of Internet and mobile com-
munication technologies, requirements may emerge for new applications and new
technologies to be applied to text mining. However, we believe that regardless
of the application requirements and regardless of the technology behind the new
name, new methods of text representation and category distance measurement,
and new implementation methods and models (such as end-to-end neural network
models), the basic ideas behind clustering and classification and their penetration
and application in various tasks will not undergo fundamental changes. This belief
is the so-called all things remain essentially the same.

1.5 Further Reading

The following chapters of this book will introduce text mining methods for different
tasks and explain the objectives, solutions, and implementation methods. As the
beginning of the book, this chapter mainly introduces the basic concepts and
challenges of text mining. For a detailed explanation of the concept of data
mining, readers can refer to the following literature: (Han et al. 2012; Cheng and
Zhu 2010; Li et al. 2010b; Mao et al. 2007). Wu et al. (2008) introduced ten
classical algorithms in the field of data mining. Aggarwal (2018) is a relatively
comprehensive book introducing text mining technologies. By contrast, readers
will find that text mining is regarded as a specific application of machine learning
technology in Aggarwal’s book, which focuses on discussing text information
processing from the perspective of machine learning methods (especially statistical
machine learning methods) without the involvement of deep learning and neural
network-based methods. Moreover, only traditional statistical methods are used
in various text mining tasks, such as text classification, sentiment analysis, and
opinion mining, and few related works based on deep learning methods have been
introduced in recent years. However, in this book, we regard text mining as the
practical application of NLP technology because text is the most important mode
of presentation for natural language. Since it is necessary to mine the information
needed by users from text, NLP technology remains indispensable. Therefore, this
book is driven by task requirements and illustrates the basic principles of text

Exercises 13

mining models and algorithms through examples and descriptions of processes
from the perspective of NLP. For example, in the text representation chapter, text
representation and modeling methods based on deep learning are summarized based
on the granularity of words, sentences, and documents. In the text mining tasks
that follow, in addition to introducing traditional classical methods, deep learning
methods, which are highly recommended in recent years, are given special attention.

If Zong (2013) is treated as a foundation or teaching material for the introduction
of NLP technologies, then this book is an introduction to the application of NLP
technologies. The former mainly introduces the basic concepts, theories, tools,
and methods of NLP, while this book focuses on the implementation methods and
classical models of NLP application systems.

Other books elaborate on specific technologies of text mining and have good
reference value. For example, Liu (2011, 2012, 2015) introduce the concepts and
technologies related to web data mining, sentiment analysis, and opinion mining in
detail; Marcu (2000) and Inderjeet (2001) provide detailed descriptions of automatic
summarization technology, especially the introduction of early summarization
technology. Relevant recommendations will be introduced in the “Further Reading”
section in each following chapter.

In addition, it should be noted that the authors of this book consider the readers
as already having a foundation in pattern recognition and machine learning by
default. Therefore, many basic theories and methods are not introduced in detail,
their detailed derivation is omitted, and they are only cited as tools. If readers want
to know the detailed derivation process, we recommend that they read the following
books: (Li 2019; Yu 2017; Zhang 2016; Zhou 2016), etc.

Exercises

1.1 Please summarize the difference between KDD and text data mining.

1.2 Please read an article on natural language processing and learn how to compute
the metrics of precision, recall, and the F1-measure to evaluate the performance of
a natural language processing tool.

1.3 Please make a comparison table to show the strengths and weaknesses of rule-
based methods and statistical methods.

1.4 Please give some examples for the use of text data mining techniques in real
life. Specifically, explain the inputs (source text) and the outputs (what results
should we expect to see?).

Chapter 2
Data Annotation and Preprocessing

2.1 Data Acquisition

Data acquisition sources and methods are different for different text mining tasks.
Considering the sources of data, there are usually two situations. The first is open
domain data. For example, when building a system for mining public opinion from
social media, the data naturally come from all available public social networks,
including mobile terminals. Although the subject of the mined text may be limited
to one or a few specific topics, the data source is open. The situation is closed
domain data. For example, the data processed by text mining tasks oriented toward
the financial field are proprietary data from banks and other financial industries;
similarly, the texts processed by tasks oriented toward hospitals exist in a private
network from the internal institutions of the hospital, and they cannot be obtained
by public users. Of course, the so-called open domain and closed domain are not
absolute, and when implementing a system in practice, it is often not sufficient
to solely rely on the data in a specific domain because they will mainly contain
professional domain knowledge, while much of the data associated with common
sense exists in public texts. Therefore, closed data need to be supplemented with
data obtained from public websites (including Wikipedia, Baidu Encyclopedia,
etc.), textbooks, and professional literature. Relatively speaking, the data from
public networks (especially social networks) contain more noise and ill-formed
expressions, so it takes more time to clean and preprocess them.

The following is an example of how movie reviews are obtained to illustrate the
general method of data acquisition.

Before acquiring data, one must first know which websites generally contain the
required data. The website IMDb1 provides users with comments on movies, and
there are many links to movies on the web page, as shown in Fig. 2.1.

1https://www.imdb.com/.

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_2&domain=pdf
https://www.imdb.com/
https://doi.org/10.1007/978-981-16-0100-2_2

16 2 Data Annotation and Preprocessing

Fig. 2.1 The IMDb homepage

Taking “Mission: Impossible - Fallout” as an example, it can be seen that there
are many comments on this film. As shown in Fig. 2.2, a total of 269,543 people gave
comments, and the average score given is 7.7 (see the right top corner of Fig. 2.2).

A comment with its score is provided at the bottom of the main page belonging
to the “Mission: Impossible - Fallout” film, as shown in Fig. 2.3, but this is not
comprehensive. Click “See all 1,597 user reviews” in the bottom row of Fig. 2.3
to view the link to all comments in a comments page. At the end of the comments
page, there is a “Load More” button. The user can click the button to obtain extra
comments and download the data connected with a link by using Python’s urllib2
library.

When using the Python programming language to crawl data from a website, the
user must first check and then abide by the robot protocol of the website, which
defines what website data can be crawled and what cannot be crawled. Figure 2.4
shows the robot protocol content of IMDb. The “Disallow” in the protocol limits
the content that cannot be crawled (much of the search-related content cannot be

2.1 Data Acquisition 17

Fig. 2.2 The main page for “Mission: Impossible - Fallout”2

crawled). There is no restriction on the crawling of movie reviews, so it is legal and
valid to crawl these contents, but the process must conform to the crawling time
interval. This means that in the process of crawling, the speed should be reduced
as much as possible. In fact, crawling process reflects access to the web server. If
crawling makes too frequent requests, it will affect the operation of the web server.
In addition, it is better to crawl a website when network traffic is low (e.g., at night)
to avoid interfering with the normal operations of the website.

The data downloaded from the web page usually have a good structure. The
beautiful Soup toolkit for Python can be employed to extract the content and
obtain the links for the next page. When parsing a web page, the row delimiter
(‘\r’, ‘\n’) of the web page should be deleted, and there may be special symbols in
the downloaded data such as “ ” and “<”, which represent a space and the

2https://www.imdb.com/title/tt4912910/.

https://www.imdb.com/title/tt4912910/

18 2 Data Annotation and Preprocessing

Fig. 2.3 The review page for “Mission: Impossible - Fallout”

less-than sign, respectively; these can be replaced if they are not necessary. Table 2.1
shows the corresponding meaning of some special symbols used in web pages.

After obtaining the comment content, it is necessary to clean the data and remove
any noise words or text that is too short (which is usually meaningless). The
processing procedure is specifically given as follows:

(1) Noise processing: There are likely to be English words or letters in downloaded
Chinese text or symbols from other languages. This requires identification of the
language type. The Langdect toolkit in Python can be used to help identify
and delete those data that are not needed. In addition, the crawled microblog
data may contain advertisement links, “@,” and so on, which requires special
handling. These links can be deleted directly, and the symbol “@” is usually
followed by a user name, which can be determined by using simple methods
such as rule-based or template-based approaches and then deleted.

(2) Conversion of traditional Chinese characters: There may be some traditional
Chinese characters in the downloaded simplified Chinese text, which need to be
converted into simplified characters. The conversion process can be performed
with the help of the open source toolkit OpenCC3 or other tools.

(3) Remove comments that are too short: For English comments, the number
of words in the text can be directly counted by numerating spaces. However,
for Chinese, Japanese, or other language text, it is necessary to segment the
characters into words first before counting the number of words. If the length of
a piece of text is shorter than a certain threshold (e.g., 5), it is usually removed.

3https://opencc.byvoid.com/.

https://opencc.byvoid.com/

2.1 Data Acquisition 19

Fig. 2.4 The robot protocol of IMDb4

(4) The mappings of labels: Websites usually provide the labels for their cate-
gories, and the number of categories is potentially different from that of the
predefined classifier employed, so it is necessary to map the labels or categories
from one type to another. For example, the evaluation score in downloaded data
uses a 5-point system, while the sentiment classifier can only distinguish the
sentiment into two categories, positive and negative, so the samples with scores
of 4 and 5 can be taken as positive samples, those with scores of 1 and 2 can be
treated as negative samples, and the “neutral” samples with scores of 3 can be
deleted. Certainly, if a classifier is trained with three categories, i.e., positive,
neural, and negative, you would annotate those samples with a score of 3 as
neutral and preserve the middle category.

4https://www.imdb.com/robots.txt.

https://www.imdb.com/robots.txt

20 2 Data Annotation and Preprocessing

Table 2.1 Corresponding table of special symbols used in web data5

Displayed result Description Entity name Entity number

Space

< Less than < <

> Greater than > >

& Ampersand & &

" Quotation mark " "

' Apostrophe ' (do not support IE) '

¢ Cent ¢ ¢

£ Pound £ £

� Yen ¥ ¥

Euro € ⃀

§ Section § §

© Copyright © ©

® Registered trademark ® ®

™ Trademark ™ ™

× Times sign × ×

÷ Division sign ÷ ÷

The methods for acquiring open domain data for other tasks are very similar, but
the annotation methods are different; for example, for automatic text summarization
or information extraction, the annotation work is much more complicated than
simply annotating categories.

2.2 Data Preprocessing

After data acquisition, it is usually necessary to further process the data. The main
tasks include:

(1) Tokenization: This refers to a process of segmenting a given text into lexical
units. Latin and all inflectional languages (e.g., English) naturally use spaces
as word separators, so only a space or punctuation is required to realize
lexicalization, but there are no word separation marks in written Chinese and
some other agglutinative languages (e.g., Japanese, Korean, Vietnamese), so
word segmentation is required first. This issue is mentioned above.

(2) Removing stop words: Stop words mainly refer to functional words, including
auxiliary words, prepositions, conjunctions, modal words, and other high-
frequency words that appear in various documents with little text information,
such as the, is, at, which, on, and so on in English or的(de),了(le) and是(shi)

5https://www.w3school.com.cn/html/html_entities.asp.

https://www.w3school.com.cn/html/html_entities.asp

2.2 Data Preprocessing 21

in Chinese. Although “是(be)” is not a functional word, it has no substantive
meaning for the distinction of text because of its high frequency of occurrence,
so it is usually treated as a stop word and removed. To reduce the storage space
needed by the text mining system and improve its operating efficiency, stop
words are automatically filtered out during the phase of representing text. In the
process of implementation, a list of stop words is usually established, and all
words in the list are directly deleted before features are extracted.

(3) Word form normalization: In the text mining task for Western languages, the
different forms of a word need to be merged, i.e., word form normalization,
to improve the efficiency of text processing and alleviate the problem of
data sparsity caused by discrete feature representation. The process of word
form normalization includes two concepts. One is lemmatization, which is
the restoration of arbitrarily deformed words into original forms (capable of
expressing complete semantics), such as the restoration of cats into cat or did
into do. Another is stemming, which is the process of removing affixes to obtain
roots (not necessarily capable of expressing complete semantics), such as fisher
to fish and effective to effect.

The process of word form normalization is usually realized by rules or regular
expressions. The Porter stemming algorithm is a widely used stemming algorithm
for English that adopts a rule-based implementation method (Porter 1980). The
algorithm mainly includes the following four steps: (a) dividing letters into vowels
and consonants; (b) utilizing rules to process words with suffixes of -s, -ing, and
-ed; (c) designing special rules to address complicated suffixes (e.g.,-ational,
etc.); and (d) fine-tuning the processing results by rules. The basic process of the
algorithm is presented in Fig. 2.5.

In the Porter stemming algorithm, only a portion of the main rewriting rules are
given from Step 2 to Step 4, and the rest are not introduced individually, as this is
simply an example to illustrate the basic ideas behind it.

The implementation code for the algorithm can be obtained from the following
web page:

https://tartarus.org/martin/PorterStemmer/

In addition, the NLTK toolkit in Python also provides calling functions for the
algorithm.

It should be noted that there is no uniform standard for stemming results, and
different stemming algorithms for words in the same language may have different
results. In addition to the Porter algorithm, the Lovins stemmer (Lovins 1968)
and the Paice stemmer (Paice 1990) are also commonly used for English word
stemming.

https://tartarus.org/martin/PorterStemmer/

22 2 Data Annotation and Preprocessing

Fig. 2.5 The Porter stemming algorithm

2.3 Data Annotation

Data annotation is the foundation of supervised machine learning methods. In
general, if the scale of annotated data is larger, the quality is higher, and if the
coverage is broader, the performance of the trained model will be better. For
different text mining tasks, the standards and specifications for data annotation
are different, as is the complexity. For example, only category labels need to be
annotated on each document for text classification tasks, while for some complex
tasks, much more information needs to be marked, e.g., the boundary and type
of each “entity” in the records should be marked for the analysis of electronic
medical records. The “entity” mentioned here is not just the named entity (person

2.3 Data Annotation 23

name, place name, organization name, time, number, etc.), as there are also many
specialized terms in the medical field, such as disease names, the presence of
certain symptoms, the absence certain symptoms, the frequency with which some
symptoms occur, the factors of deterioration, irrelevant factors, and the degree. See
the following two examples:6

(1) Mr. Shinaberry is a 73-year-old gentleman who returned to [Surgluthe
Leon Calcner Healthcare]Hosp to the emergency room on [9/9/02]T ime with
[crescendo spontaneous angina]Sym and [shortness of breath]Sym. He is [three-
and-one-half months]Dur after a presentation with [subacute left circumflex
thrombosis]Dis ,[ischemic mitral regurgitation]Dis, [pulmonary edema]Dis

and a small [nontransmural myocardial infarction]Dis . [Dilatation of the left
circumflex]T reat resulted in extensive dissection but with eventual achievement
of a very good [angiographic and clinical result]T R after [placement of
multiple stents]T reat , and his course was that of gradual recovery and
uneventful return home.

(2) Mr. Brunckhorst is a 70-year-old man who recently had been experiencing an
increase in frequency of [chest pain]Sym with exertion. He was administered an
[exercise tolerance test]T est that was predictive of [ischemia]T R and revealed
an [ejection fraction of approximately 50%]T R . As a result of his [positive
exercise tolerance test]T R , he was referred for [cardiac catheterization]T reat

on March 1998, which revealed three [vessel coronary artery disease]Dis . At
this time, he was referred to the [cardiac surgery service]T reat for revascular-
ization.

In the examples, the label T ime indicates time, Sym indicates the presence of
such symptoms, Hosp indicates the name of the hospital, T est indicates laboratory
tests, T R indicates the results of the laboratory tests, Dis indicates the name of the
disease, T reat indicates the method of treatment, and Dur indicates the duration.

In the task of analyzing electronic medical records, usually, more than 20
different labels are defined. When annotating, it is often necessary to develop an
annotation tool that can not only annotate the boundaries and types of all “entities”
but also the relationships between them. In example (1) above, an annotation tool
gives the relation graph shown in Fig. 2.6.

Of course, this type of relation graph is convenient and intuitive for annotators
and domain experts to check and annotate. In fact, all specific marks are stored in
the system. It is difficult to complete this kind of annotation task, which requires
guidance based on professional knowledge, without the involvement of experts in
the field.

For research on multimodal automatic summarization methods, we annotated
a dataset including text, images, audio, and video. Different from synchronous
multimodal data (e.g., movies), the dataset consists of asynchronous multimodal
data, i.e., the pictures and sentences in the text or video and the sentences do not have

6https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/.

https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

24 2 Data Annotation and Preprocessing

Fig. 2.6 An example of medical record annotation

a one-to-one correspondence. The dataset is centered on topics from Chinese and
English news. There are multiple news documents with pictures for the same topic.
For each topic, word-limited Chinese and English text summaries are presented.

During the data collection process, we chose 25 news topics in Chinese and
English over the past 5 years, such as the Ebola virus in Africa, protesting against
the deployment of the “Sade” antimissile system, or Li Na winning the Australian
Open Tennis Championship. For each topic, we collected 20 news documents and
5 to 10 videos for the same period, making sure that the collected news texts were
not significantly different in length. Generally, the length of each news item did
not exceed 1,000 Chinese characters (or English words), and each video was within
2 min in length. The main reason for these restrictions is that overly long text or
video will seriously increase the difficulty of manual annotation, which may lead to
a too great divergence in the results annotated by different people.

During the annotation, the annotation policies given by the Document Under-
standing Conference and Text Analysis Conference were used for reference, and
ten graduate students were invited to annotate the corpus. They were asked to read
the news documents first, watch the videos on the same topic, and then write a
summary independently. The policies for writing the summary are as follows: (1)
the summary should retain the most important information from the news documents
and videos; (2) there should be little to no redundant information in the summary; (3)
the summary should have good readability; and (4) the summary should be within
the length limitation (the Chinese summary does not exceed 500 Chinese characters,
and the English abstract does not exceed 300 English words).

In the end, for each topic, three summaries independently written by different
annotators were selected as reference answers.

At present, most of summaries generated by the existing automatic summa-
rization systems are text without any other modal information, such as images.

2.4 Basic Tools of NLP 25

Considering that a multimodal summary can enhance the user experience, we have
also presented the summary data by text and picture. The annotation of this dataset
involves two tasks: the writing of text summaries and the selection of pictures. The
requirements for text summaries are the same as the methods described previously.
To select the picture, two graduate students were invited to independently pick
out the three most important pictures for each topic, and then we asked the third
annotator to select three pictures as the final reference based on the results from the
first two annotators. The basic policies for selecting pictures are that the pictures
should be closely related to the news topic and they should be closely related to the
content of the text summary.

The abovementioned corpora for summarization studies have been released on
the following website: http://www.nlpr.ia.ac.cn/cip/dataset.htm/. Readers who are
interested in multimodal summarization can download it from this website.

In summary, data annotation is a time-consuming and laborious task that
often requires considerable manpower and financial support, so data sharing is
particularly important. The methods introduced in this section are just examples,
and more detailed specifications, standards, and instructions are required in data
annotation. For many complex annotation tasks, developing convenient and easy-
to-use annotation tools is a basic requirement for annotating large-scale data.

2.4 Basic Tools of NLP

As mentioned earlier, text mining involves many techniques from NLP, pattern clas-
sification, and machine learning and is one of technology with a clear application
goal in across domains. Regardless of technologies applied for data preprocessing
and annotation as described earlier or for the realization of data mining methods
as will be described later, many basic techniques and tools are required, such as
word segmenters, syntactic parsers, part-of-speech taggers, and chunkers. Some
NLP methods are briefly introduced in the following.

2.4.1 Tokenization and POS Tagging

The purpose of tokenization is to separate text into a sequence of “words,” which
are usually called “tokens.” The tokens include a string of successive alphanumeric
characters, numbers, hyphens, and apostrophes. For example, “that’s” will be
separated into two tokens, that, ’s; “rule-based” will be divided into three tokens,
rule, -, based; and “TL-WR700N” will be divided into three tokens, TL, -, WR700N.
The NLTK toolkit provides a tokenization package.7

7https://www.nltk.org/api/nltk.tokenize.html.

http://www.nlpr.ia.ac.cn/cip/dataset.htm/
https://www.nltk.org/api/nltk.tokenize.html

26 2 Data Annotation and Preprocessing

As we know, a word is usually expressed in different forms in the documents
because of grammatical reasons, such as take, takes, taken, took, and taking. And
also, many words can derive different expressions with the same meaning, such
as token, tokenize, and tokenization. In practice, especially when using statistical
methods, it is often necessary to detect the words sharing the same stem and meaning
but in different forms and consider them the same when performing semantic
understanding tasks. So, stemming and lemmatization are usually necessitated to
reduce inflectional forms and sometimes derivationally related forms of a word to a
common base form.8

For many Asian languages, such as Chinese, Japanese, Korean, and Vietnamese,
the tokenization is usually expressed as word segmentation because their words are
not separated by white spaces. The following takes the Chinese as example to briefly
introduce the methods to segment Chinese words.

The Chinese word segmentation (CWS) is usually the first step in Chinese text
processing, as noted above. There has been much research on CWS methods. From
the early dictionary-based segmentation methods (such as the maximum matching
method and shortest path segmentation method), to the statistical segmentation
method based on n-gram, to the character-based CWS method later, dozens of
segmentation methods have been proposed. Among them, the character-based CWS
method is a landmark and an innovative method. The basic idea is that there are
only four possible positions for any unit in a sentence, including Chinese characters,
punctuation, digits, and any letters (collectively referred to as a “character”): the first
position of the word (marked as B), the last position of the word (marked as E), the
middle position of the word (marked as M), or a single character word (marked as
S). B, E, M, and S are thus called the word position symbols. B and E always appear
in pairs. Please see the following examples:

Chinese sentence:约翰在北京见到了玛丽。(John met Mary in Beijing)
Segmentation result: 约 翰(John)/ 在(in)/ 北 京(Beijing)/ 见 到了(met)/ 玛
丽(Mary)。

The segmentation results can be represented by position symbols:约/B 翰/E 在/S
北/B京/E见/B到/M了/E玛/B丽/E。/S

In this way, the task of CWS becomes the task of sequence labeling, and the
classifier can be trained with large-scale labeled samples to carry out the task of
labeling every unit in the text as a unique word position symbol. In practice, people
also try to fuse or integrate several methods, such as the combination of the n-gram-
based generative method and the character-based discriminative method (Wang et al.
2012) or the combination of the character-based method and the deep learning
method, to establish a word segmenter with better performance.

Part-of-speech tagging refers to automatically tagging each word in a sentence
with a part-of-speech category. For example, the sentence “天空是蔚蓝的(the sky
is blue.)” is annotated as “天空/NN 是/NV 蔚蓝/AA 的/Au x 。/PU” after word

8https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html.

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

2.4 Basic Tools of NLP 27

segmentation and part-of-speech tagging. The symbol NN represents noun, VV
represents verb, AA represents adjective, Aux represents structural auxiliary, and
PU represents punctuation. Part-of-speech tagging is the premise and foundation of
syntactic parsing; it is also an important feature of text representation and is of great
help to named entity recognition, relation extraction, and text sentiment analysis.

Part-of-speech tagging is a typical problem of sequence tagging. For Chinese
text, this task is closely related to automatic word segmentation. Therefore, these
two tasks are integrated in many CWS toolkits and are even achieved by a single
model, such as the early CWS method based on the hidden Markov model (HMM).

At present, some CWS and part-of-speech tagging tools can be found in the
following websites:

https://github.com/FudanNLP/fnlp
http://www.nlpr.ia.ac.cn/cip/software.htm
https://nlp.stanford.edu/software/tagger.shtml

In recent years, in deep learning methods or neural network-based methods, the text
can be dealt with in character level or in sub-word level, but not in word level. So
the tokenization and POS tagging can also be skipped.

2.4.2 Syntactic Parser

Syntactic parsing includes the tasks of constituent, or phrase structure, parsing, and
dependency parsing. The purpose of phrase structure parsing is to automatically
analyze the phrase structure relation in a sentence and to output the syntactic
structure tree of the parsing sentence. The purpose of dependency parsing is to
automatically analyze the relation of semantic dependency between words in a
sentence. For example, Fig. 2.7 is a phrase structure tree of the sentence “The
policemen have arrived at the scene and are carefully investigating the cause of
the accident.” The node symbols VV, NN, ADVP, NP, VP, and PU in Fig. 2.7 are
part-of-speech symbols and phrase markers, respectively. IP is the root node symbol
of the sentence. Figure 2.8 is the dependency tree corresponding to this sentence.

The arrow in Fig. 2.8 indicates the dependency (or domination) relation. The
starting end of the arrow is the dominant word, and the pointing end of the arrow
is the dominant word. The symbols on the directed arcs indicate the type of
dependency relation. SBJ indicates a subject relation, i.e., the word at the end of
the arrow is the subject of the word at the start of the arrow. OBJ indicates the
object relation, that is, the word at the end of the arrow is the object of the word at
the start of the arrow. VMOD indicates the verb modification relation, that is, the
word at the end of the arrow modifies the verb at the beginning of the arrow. NMOD
is a noun modification relation, that is, the word at the end of the arrow modifies the
noun at the beginning of the arrow. ROOT denotes the root node of the clause. PU
denotes the punctuation mark of the clause.

https://github.com/FudanNLP/fnlp
http://www.nlpr.ia.ac.cn/cip/software.htm
https://nlp.stanford.edu/software/tagger.shtml

28 2 Data Annotation and Preprocessing

Fig. 2.7 An example of a phrase structure parsing tree

Fig. 2.8 An example of a dependency parsing tree

The phrase structure tree of a sentence can be converted into a dependency tree
one by one. The basic idea of the conversion can be described as follows: first,
determine the core predicate of the sentence as the only root node of the sentence,
and then define the extraction rule of the central word. Next, the central word of
each phrase is extracted, and the noncenter word is dominated by the central word.

In NLP, the phrase structure analyzer is usually called the syntactic parser, and
the dependency analyzer is called the dependency parser.

The following web pages provide some parsers:

Berkeley Parser: https://github.com/nikitakit/self-attentive-parser
Charniak Parser: https://www.cs.brown.edu/people/ec/#software
http://www.nlpr.ia.ac.cn/cip/software.htm

The syntactic parser is usually employed to parse a complete sentence, and
ultimately, we hope to obtain a full parsing tree for the sentence, so it is also
called full parsing. In practice, sometimes it is not necessary to obtain a complete
syntactic parsing tree but only to identify the basic noun phrase (base NP) or basic
verb phrase (base VP) included in the sentence. For example, the sentence Foreign-
funded enterprises also play an important role in China’s economy contains the base

https://github.com/nikitakit/self-attentive-parser
https://www.cs.brown.edu/people/ec/#software
http://www.nlpr.ia.ac.cn/cip/software.htm

2.4 Basic Tools of NLP 29

NPs foreign-funded enterprises, China’s economy, and important role and contains
the base VP play. The parsing technique for identifying a specific type of phrase in a
sentence is usually called shallow parsing. At present, the shallow parsing method in
use is more similar to the character-based word segmentation method. The tagging
unit can be either the word or the character. The word or character position tag can
adopt four tagging systems using B, E, M, and S and can also adopt three tagging
systems using B, I, and O. For example, NP-B denotes the first word (character) of
a base NP, NP-I denotes that the word (character) is inside the base NP, and NP-O
denotes that the word (character) does not belong to the NP. The classifier model
is similar to the methods used in CWS and named entity recognition. Readers can
refer to Chap. 9 for a detailed introduction of named entity recognition methods.

2.4.3 N-gram Language Model

N-gram is a traditional language model (LM) that plays a very important role
in NLP. The basic idea is as follows: for a character string (phrase, sentence, or
fragment) s = w1w2 · · · wl composed of l (l is a natural number, l ≥ 2) basic
statistical units, its probability can be calculated by the following formula:

p(s) = p(w1)p(w2|w1)p(w3|w1w2) · · · p(wl |w1 · · · wl−1)

=
l∏

i=1

p(wi |w1 · · · wi−1) (2.1)

The basic statistical units mentioned here may be characters, words, punctuation,
digits, or any other symbols constituting a sentence, or even phrases, part-of-
speech tags, etc., which are collectively referred to “words” for convenience of
expression. In Eq. (2.1), it means that the probability of generating the i-th (1 ≤
i ≤ l) word is determined by the previously (the “previously” usually refers to
the left in the written order of the words) generated i − 1 words w1w2 · · · wi−1.
With increasing sentence length, the historical number of conditional probabilities
increases exponentially. To simplify the complexity of the calculation, it is assumed
that the probability of the current word is only related to the previous n − 1 (n is an
integer, 1 ≤ n ≤ l) words. Thus, Eq. (2.1) becomes

p(s) =
l∏

i−1

p(wi |w1 · · · wi−1) ≈
l∏

i=1

p(wi |wi−1) (2.2)

When n = 1, the probability of word wi appearing at the i-th position is
independent of the previous words, and the sentence is a sequence of independent
words. This calculation model is usually called a one-gram model, which is recorded
as a unigram, unigram, or monogram. Each word is a unigram. When n = 2, the
probability of word wi appearing at the i-th position is only related to the previous

30 2 Data Annotation and Preprocessing

word wi−1. This calculation model is called the two-gram model. Two adjacent
co-occurrence words are called two-grams, usually signed as bigrams or bi-grams.
For example, for the sentence We helped her yesterday, the following sequence of
words, We helped, helped her, and her yesterday, are all bigrams. In this case, the
sentence is regarded as a chain composed of bigrams, called a first-order Markov
chain. By that analogy, when n = 3, the probability of the word wi appearing at
the i-th position is only related to the previous word wi−1 and word wi−2 (i ≥ 2).
This calculation model is called a three-gram model. The sequence of three adjacent
co-occurrence words is called three grams, usually signed as trigrams or tri-grams.
Sequences composed of trigrams can be regarded as second-order Markov chains.

When calculating the n-gram model, a key problem is smoothing the data to
avoid the problems caused by zero probability events (n-gram). For this reason,
researchers have proposed several data smoothing methods, such as additive
smoothing, discounting methods, and deleted interpolation methods. At the same
time, to eliminate the negative influence of training samples from different fields,
topics, and types on the model’s performance, researchers have also proposed
methods for language model adaptation, which will not be described in detail here.
Readers can refer to (Chen and Goodman 1999) and (Zong 2013) if interested.

The neural network language model (NNLM) has played an important role in
NLP in recent years. For details about this model, please refer to Chap. 3 in this
book.

2.5 Further Reading

In addition to the NLP technologies introduced above, word sense disambiguation
(WSD), semantic role labeling (SRL), and text entailment are also helpful for text
data mining, but their performance has not reached a high level (e.g., the accuracy
of semantic role labeling for normal text is only 80%). Relevant technical methods
have been described in many NLP publications. The readers can refer to (Manning
and Schütze 1999; Jurafsky and Martin 2008; Zong 2013) if necessary.

Exercises

2.1 Please collect some articles from newspapers and some text from social
network sites, such as Twitter, QQ, or other microblog sites. Compare the different
language expressions and summarize your observations.

2.2 Collect some sentences, parse them using a constituent parser and a dependency
parser, and then compare the different results, i.e., the syntactic parsing tree and the
dependency of words in the sentences.

Exercises 31

2.3 Collect some text from social network sites in which there are some noise and
stop words. Please make a list of the stop words and create a standard or policy to
determine what words are noise. Then, implement a program to remove the stop
words and noise words from the given text. Aim to deliver higher generalization for
the algorithm of the program.

2.4 Collect some corpora, tokenize it by implementing an existing tool or a
program, and extract all n-grams in the corpora (n ∈ N and 1 < n ≤ 4).

2.5 Collect some medical instructions or some chapters from text books for medical
students and annotate all named entities, other terms, and their relations in the
collected instructions or text corpora.

2.6 Use a Chinese word segmenter to perform Chinese word segmentation for
different styles of Chinese corpora, such as from public newspapers, specific
technical domains, and social network sites. Analyze the segmentation results, and
evaluate the correct rate of the Chinese word segmenter. How do the results compare
to the segmentation results for the same corpora when using a different segmenter?

Chapter 3
Text Representation

3.1 Vector Space Model

3.1.1 Basic Concepts

The vector space model (VSM) was proposed by G. Salton et al. in the field of
information retrieval in the late 1960s and is the simplest text representation method
(Salton et al. 1975). It was first used in the SMART information retrieval system and
gradually became the most commonly used text representation model in text mining.
Before introducing VSM in detail, we first provide some basic concepts.

• Text: Text is a sequence of characters with certain granularities, such as phrases,
sentences, paragraphs, or a whole document. For the convenience of description,
we use the document to represent a piece of text in the following. Note that the
vector space model is applicable to not only documents but also text at other
granularities, such as a sentence, a phrase, or even a word.

• Term: This is the smallest inseparable language unit in VSM, and it can denote
characters, words, phrases, etc. In VSM, a piece of text is regarded as a collection
of terms, expressed as (t1, t2, . . . , tn), where ti denotes the i-th term.

• Term weight: For text containing n terms, each term t is assigned a weight u

according to certain principles, indicating that term’s importance and relevance
in the text. In this way, a text can be represented by a collection of terms with
their corresponding weights: (t1 : w1, t2 : w2, . . . , tn : wn), abbreviated to
(w1, w2, . . . , wn).

The vector space model assumes that a document conforms to the following
two requirements: (1) each term ti is unique (i.e., there is no duplication); (2) the
terms have no order. We can regard t1, t2, . . . , tn as an n-dimensional orthogonal
coordinate system, and a text can be represented as an n-dimensional vector:
(w1, w2, . . . , wn). Normally, we denote d = (w1, w2, . . . , wn) as the representation

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_3&domain=pdf
https://doi.org/10.1007/978-981-16-0100-2_3

34 3 Text Representation

Fig. 3.1 Vector space model

1

2

of text in the vector space model. As shown in Fig. 3.1, texts d1 and d2 are,
respectively, represented by two n-dimensional vectors in the vector space.

There are two problems that need to be solved in VSM construction: how to
design the set of terms and how to calculate the term weights.

3.1.2 Vector Space Construction

Before text representation based on VSM, it is usually first necessary to preprocess
the text according to the techniques described in Chap. 2, such as tokenization, the
removal of stop words and lexical normalization. Then, we need to convert the text
into a sequence of tokens.

The vector space model needs a collection of terms (t1, t2, . . . , tn). If words are
used as terms, the collection can be regarded as a vocabulary. The vocabulary can
be generated from the corpus or imported from an external lexicon. The terms can
be viewed as a bag of words; thus, the vector space model is also called the bag-of-
words (BOW) model.

After construction of terms, the vector space is fixed. Last, a piece of text is
represented as a vector in the vector space through term weight calculation. Some
common term weighting methods are listed as follows:

• Boolean (BOOL) weight: This method indicates whether a feature term appears
in the current document. If it is in the document, the weight is 1; otherwise, it is
0. The Boolean weight ti in document d is denoted as

BOOLi =
{

1 if ti appears in document d

0 otherwise
(3.1)

3.1 Vector Space Model 35

• Term frequency (TF): This weight represents the frequency of a term in the
current document. TF assumes that frequent terms contain more information than
infrequent ones, and thus the more frequently terms appear in a document, the
more important they are. TF can be expressed as follows:

tfi = N(ti , d) (3.2)

For a few high-frequency words, e.g., some stop words, the absolute frequency
will be much higher than the average, and this will affect text representation. To
lower such impact, we can use the logarithmic term frequency instead:

fi = log(tfi + 1) (3.3)

• Inverse Document Frequency (IDF): IDF is a global statistical feature that reflects
the importance of terms throughout the corpus. Document frequency (DF)
denotes the number of documents that contain the specific term in the corpus.
The higher the DF of a term is, the lower the amount of effective information it
contains. On the basis of DF, IDF is defined as follows:

idfi = log
N

dfi
(3.4)

where dfi denotes the DF of feature ti and N is the total number of documents in
the corpus. The IDF of a rare term is high, whereas the IDF of a frequent term is
low.

• Term Frequency-Inverted Document Frequency (TF-IDF): This method is
defined as the product of TF and IDF:

tf_idfi = tfi · idfi (3.5)

TF-IDF assumes that the most discriminative features are those that appear
frequently in the current document and rarely in other documents.

In Fig. 3.2, we use words as terms and TF as term weights to build a vector space
model to represent the following text: “Artificial intelligence is a branch of computer
science, which attempts to produce an intelligent machine that can respond in a
similar way to human intelligence.”

The vocabulary includes the following words: “education,” “intelligence,”
“human,” “sports,” “football,” “games,” “AI,” “science,” “text,” “artificial,”
“computer,” etc. The weight of each word is its frequency in the text.

36 3 Text Representation

Fig. 3.2 The feature weight
based on feature frequency

Artificial intelligence is a

branch of computer science,

which attempts to produce an

intelligent machine that can

respond in a similar way to

human intelligence.

education

intelligence

human

sports

football

games

mining

science

text

artificial

computer

0

3

1

0

0

0

0

…

1

0

1

1

3.1.3 Text Length Normalization

Documents have different lengths, and the length has an effect on the text represen-
tation. For an extreme example, if we duplicate the content of a document twice and
use the TF weights to represent the document, each weight in the new vector will be
doubled, although the expanded text does not increase the amount of information.

Therefore, to reduce the influence of length on text representation, it is necessary
to normalize the feature vectors; this is also called text length normalization or
length normalization for short. The common length normalization methods for text
d = (w1, w2, . . . , wn) include:

a. L1 Norm normalization

d1 = d

||d||1 = d∑
i wi

(3.6)

The normalized vectors are on the hyperplane w1 + w2 + · · · + wn = 1 in the
vector space.

b. L2 Norm normalization

d2 = d

||d||2 = d√∑
i w2

i

(3.7)

3.1 Vector Space Model 37

The normalized vectors are on the spherical surface w2
1 + w2

2 + · · · + w2
n = 1 in

the vector space. Note that the L1 norm and L2 norm can be generalized to the
Lp norm.

c. Maximum word frequency normalization

dmax = d

||d||∞ = d

max
i

{wi} (3.8)

It should be noted that, unlike nondimensional scale normalization, which is
commonly used in machine learning and data mining tasks, text representation
normalization is a process to remove the effect of text length.

3.1.4 Feature Engineering

The vector space model assumes that the coordinates in space are orthogonal, e.g.,
the terms constituting the document are independent of each other, regardless of
their positions. Such a hypothesis de facto neglects word order, syntax, and the
semantic information of the original document. For example, it is obviously unrea-
sonable that the two texts “John is quicker than Mary” and “Mary is quicker than
John,” which express exactly opposite semantics, have the same text representation
in VSM.

Therefore, according to task requirements, terms can be defined as keywords,
chunks, and phrases, along with their positions, part-of-speech tags, syntactic
structures, and semantic information. In text mining tasks, the process of manually
defining such features is called “feature engineering.”

We list some commonly used linguistic features as follows:

(1) n-gram features

The basic VSM usually takes words as terms, which neglects word order
information. n-gram features take the contiguous sequence of n items as the basic
unit and thereby capture part of the word order information. Take the sentence “I
strongly recommend this movie” as an example. Its unigram, bigram, and trigram
features are shown in Table 3.1.

Of these, the unigram is simply the word feature. n-gram features have been
widely used in text classification, text clustering, and other tasks. However, as n

Table 3.1 An example of n-gram features

I strongly recommend this movie

Unigram I, strongly, recommend, this, movie

Bigram I strongly, strongly recommend, recommend this, this movie

Trigram I strongly recommend, strongly recommend this, recommend this movie

38 3 Text Representation

increases, the dimension of the feature space will grow dramatically, the feature
vector will become sparser, and the statistical quality will be diminished, while the
computational cost is increased. Furthermore, it is difficult to capture a long-distance
relationship between words; for this kind of relational information, we must resort
to more in-depth language processing techniques.

(2) Syntactic features

Syntactic analysis is the process of analyzing a sentence into its constituents
based on grammar rules; it results in a parse tree showing their syntactic relation to
each other and that may also contain semantic and other information. Dependency
parsing is an important branch of syntactic analysis that describes language structure
through the dependency relationship between words (Zong 2013). As a structured
text representation, the dependency tree takes words as nodes and expresses the
dominant and dominated relationship of words by the directional relationship
between nodes. The dependency tree of the sentence “I strongly recommend this
movie” is shown in Fig. 3.3.

A simple method of extracting dependency relations is to extract interdependent
word pairs as terms, such as “recommend-movie” in the above example. In this way,
the long-distance dependency of “recommend” and “movie” can be captured.

(3) Lexicon features

Polysemy and synonymy are common phenomena in natural language. It is
important for natural language processing to identify whether two words express
the same meaning and to identify the specific meaning of polysemous words
in documents. External lexicons (e.g., WordNet in English, HowNet in Chinese)
can help here, as we can use the semantic concepts defined in these lexicons as
substitutes or supplements to words. This approach can alleviate the issues of
ambiguity and diversity in natural language and improve our ability to represent
the text.

I definitely recommend this film

PRP RB VBP DT NN

.

.

OBJ

P

NMODVMOD

SUB

Fig. 3.3 An example of a dependency tree

3.1 Vector Space Model 39

3.1.5 Other Text Representation Methods

In addition to the traditional vector space model representing texts with high-
dimensional sparse vectors, there is also a class of distributed text representation
methods. Unlike the vector space model, distributed representation achieves a
low-dimensional dense text representation using topic modeling or representation
learning. Typical methods include concept representation and deep representa-
tion.

(1) Concept Representation

The traditional vector space model is an explicit text representation method that
cannot capture the implicit semantic relationships in the text. Topic models, such
as latent semantic analysis (LSA), probabilistic latent semantic analysis (PLSA),
and latent Dirichlet allocation (LDA), can better capture polysemy and synonymy
and mine implicit topics (also called concepts) in texts. Topic models also provide a
concept representation method that transforms the high-dimensional sparse vectors
in the traditional vector space model into low-dimensional dense vectors to alleviate
the curse of dimensionality. We will introduce the topic model in Chap. 7.

(2) Representation Learning

The goal of deep learning for text representation is to learn low-dimensional
dense vectors of text at different granularities through machine learning. In recent
years, with the improvement of computing power, distributed text representation
methods based on artificial neural networks have achieved great success in natural
language processing, and a series of these methods have emerged. Compared with
the traditional vector space model, the vector dimension of distributed represen-
tations is much lower, which can effectively alleviate the data sparsity problem
and improve computational efficiency. The learning method can fully capture the
semantic information and other deep information of the text in the process of
constructing the text representation, and thereby both avoid the complex feature
engineering required by the traditional vector space model and achieve efficient
performance in many text mining tasks. In later chapters, we will introduce deep
text representation and its applications in different text mining tasks.

It is also worth noting that the goal of text representation is to construct a good
representation suitable for specific natural language processing tasks. For different
tasks, the text representation will have a different emphasis. For example, for
the sentiment analysis task, it is necessary to embody more emotional attributes
in the vector space construction and representation learning process. For topic
detection and tracking tasks, more event description information must be embedded.
Therefore, text representation is often related to tasks, and there is essentially
no general and ideal text representation for all types of tasks. When evaluating
text representation methods, it is also necessary to combine the characteristics of
different tasks.

40 3 Text Representation

The bag-of-words model is the most popular text representation method in text
data mining tasks such as text classification and sentiment analysis. As mentioned
earlier, the bag-of-words model regards each text as a collection of words, the size of
which is determined by the vocabulary that appears in all documents. Each element
in the collection indicates whether a particular word appears in the current text,
or it represents the statistical weight of that particular word in the current text. It
can be seen that Boolean and statistical weights are based on the string matching
of the words. Therefore, discrete symbol representation is the basis of the bag-of-
words model. The discrete symbol representation of a word is equivalent to a one-
hot representation. That is, each word is represented by a Boolean vector whose
dimension is the size of the vocabulary, where the corresponding position of the
current word is 1, and all the rest are 0s. For example, if there are 50,000 different
words in the training samples of the text classification task, then the size of the
vocabulary is 50,000. We can number all words according to the order in which
they appear in the training samples. For example, if the word “text” appears first
and the word “mining” occurs last, the indices of “text” and “mining” are 1 and
50,000, respectively. Each word has a unique number that corresponds to a 50,000-
dimension vector. For example, “text” corresponds to [1, 0, 0, . . . , 0], namely, all
the other 49,999 positions are 0 except that the first position is 1.

There are two potential problems in this kind of representation: first, the discrete
symbol matching method is prone to generate sparse data. Second, any two words in
the one-hot representation method are independent of each other; that is, this method
cannot capture the semantic similarity between words. In recent years, research
on learning distributed text representation in low-dimensional continuous semantic
vector space has generated much interest. This approach surpasses the traditional
bag-of-words model and achieves state-of-the-art performance in many text mining
tasks, such as text classification, sentiment analysis, and information extraction. In
the remainder of this chapter, we will introduce the learning methods of distributed
representations for words, phrases, sentences, and documents.

3.2 Distributed Representation of Words

The word is the smallest linguistic unit with independent meaning, and it is also the
basic unit of phrases, sentences, and documents. Traditional one-hot representation
methods cannot describe the grammatical and semantic information of words. Thus,
research began to focus on how to encode grammatical and semantic information
in word representations. Harris and Firth proposed and clarified the distributed
hypothesis of words in 1954 and 1957: the semantics of a word are determined
by its context. That is, words with similar contexts have similar meanings (Harris
1954; Firth 1957). If we capture all the context information of a word, we obtain
the semantics of this word, and therefore, the richer the context is, the better the
distributed representation describing the semantic information of the words will be.
Since the 1990s, with the development of statistical learning methods and the rapid

3.2 Distributed Representation of Words 41

growth of text data, approaches to learning the distributed representations of words
have attracted increasing attention. Generally, the core concept behind distributed
representation is the use of a low-dimensional real-valued vector to represent a word
so that words with similar semantics are close in the vector space. This section
introduces several methods that learn distributed representations of words.

The distributed hypothesis indicates that the quality of word representation
largely depends on the modeling of context information. In vector space models,
the most commonly used context is a collection of words in a fixed window, but
richer contexts such as n-grams are difficult to use. For example, if an n-gram is
used as the context, the number of n-gram will increase exponentially as n grows,
inevitably resulting in a data sparsity problem and the curse of dimensionality.
Popular neural network models are composed of a series of simple operations,
such as linear transformation and nonlinear activation, which in theory can simulate
arbitrary functions. Therefore, complex contexts can be modeled through simple
neural networks, enabling the distributed representations of words to capture more
syntactic and semantic information.

The training data in the neural network model are formalized as a collection
of sentences D = {wmi

i1
}Mi=1, where mi represents the number of words con-

tained in the ith sentence and w
mi

i1
represents the word sequence in the sentence

wi1, wi2 , . . . , wmi . The vocabulary can be obtained by enumerating the words
appearing in the training data D after text preprocessing. Assuming that each
word is mapped into a d-dimensional distributed vector (commonly referred to as
word embedding), then vocabulary V corresponds to a word embedding matrix,
i.e., L ∈ R

|V |×d . The goal of the neural network model is to optimize the word
embedding matrix L and learn accurate representations for each word. Next, we
introduce several commonly used neural network models for word representation
learning.

3.2.1 Neural Network Language Model

Word embedding was initially employed in learning neural network language
model, which is used to calculate the occurrence probability of a piece of text and
measure its fluency. Given a sentence w1, w2, . . . , wm consisting of m words, its
occurrence possibility can be calculated by the chain rule:

p(w1w2 · · · wm) = p(w1)p(w2|w1) · · · p(wi |w1, · · · , wi−1)

· · · p(wm|w1, · · · , wm−1) (3.9)

Traditional language models commonly use the maximum likelihood estimation
method to calculate the conditional probability p(wi |w1, · · · , wi−1):

p(wi |w1, · · · , wi−1) = count(w1, · · · , wi)

count(w1, · · · , wi−1)
(3.10)

42 3 Text Representation

The larger i is, the less likely the phrase w1, . . . , wi is to appear, and the less
accurate the maximum likelihood estimation will be. Therefore, the typical solution
is to apply the (n − 1)-order Markov chain (the n-gram language model). Suppose
that the probability of the current word only depends on the preceding (n−1) words:

p(wi |w1, · · · , wi−1) ≈ p(wi |wi−n+1, · · · , wi−1) (3.11)

When n = 1, the model is a unigram model where the words are independent of
each other. n = 2 denotes a bigram model where the probability of the current word
relies on the previous word. n = 3, n = 4, and n = 5 are the most widely used
n-gram language models (see Sect. 2.4.3 for more details about n-gram language
model). This approximation method makes it possible to calculate the language
model probability of any word sequence. However, probability estimation methods
based on matching discrete symbols, such as words and phrases, still face serious
data sparsity problems and cannot capture semantic similarity between words. For
example, the semantics of two bigrams “very boring” and “very uninteresting” are
similar, and the probabilities of p(boring|very) and p(uninteresting|very) should be
very close. However, in practice, the frequency of the two bigrams in the corpus
may vary greatly, resulting in a large difference between these two probabilities.

Bengio et al. proposed a language model based on a feed-forward neural network
(FNN) (Bengio et al. 2003). The basic approach maps each word into a low-
dimensional real-valued vector (word embedding) and calculates the probability
p(wi |wi−n+1, · · · , wi−1) of the n-gram language model in the continuous vector
space. Figure 3.4a shows a three-layer feed-forward neural network language model.
The (n−1) words from the historical information are mapped into word embeddings
and then concatenated to obtain h0.

h0 = [e(wi−n+1); · · · ; e(wi−1)] (3.12)

where e(wi−1) ∈ R
d denotes the d-dimensional word embedding corresponding

to the word wi−1, which can be obtained by retrieving the word embedding matrix
L ∈ R

|V |×d .1 h0 is then fed into the linear and nonlinear hidden layers to learn an
abstract representation of the (n − 1) words.

h1 = f (U1 × h0 + b1) (3.13)

h2 = f (U2 × h1 + b2) (3.14)

where the nonlinear activation function can be f (·) = tanh(·). Finally, the
probability distribution of each word in V can be calculated by the softmax function:

p(wi |wi−n+1, · · · , wi−1) = exp{h2 · e(wi)}
∑|V |

k=1 exp{h2 · e(wk)}
(3.15)

1The word embeddings are usually randomly initialized and updated during training.

3.2 Distributed Representation of Words 43

ℎ1

ℎ2

ℎ0

1 × ℎ0 + 1

2 × ℎ1 + 2

| − +1, ⋯ , −2, −1

ℎ2

−2 −1− +1 ℎ0

0 = 1

⋯

ℎ1 ℎ2 ℎ −1

2 −1

ℎ

1| 0 2| 0
1 | 0

−1

⋯
⋯

Fig. 3.4 Illustration of neural network language models: (a) feed-forward neural network lan-
guage model, (b) recurrent neural network language model

In the above formulas, the weighting matrices U 1,U2, b1, b2 and word embed-
ding matrix L are all trainable neural network parameters θ . The training process
optimizes the parameter θ to maximize the log-likelihood of the complete set of
training data

θ∗ = argmax
θ

M∑

m=1

logp(w
mi

i1
) (3.16)

where M is the size of the training data. After training the language model, the
optimized word embedding matrix L∗ is obtained, which contains the distributed
vector representations of all words in the vocabulary V . Note that the logarithms in
this book are based on 2 if not denoted otherwise.

Since an FNN can only model the context of a fixed window and cannot capture
long-distance context dependency, Mikolov et al. proposed using a recurrent neural
network (RNN) to directly model probability p(wi |w1, · · · , wi−1) (Mikolov et al.
2010), aiming at utilizing all historical information w1, · · · , wi−1 to predict the
probability of the current word wi . The key point of recurrent neural networks is
that they calculate the hidden layer representation hi at each time step:

hi = f (W × e(wi−1) + U × hi−1 + b) (3.17)

The hidden layer representation hi−1of time i − 1 contains historical information
from time step 0 to (i − 1). (The historical information of time 0 is usually set to
empty, i.e., h0 = 0.) f (·) is a nonlinear activation function, which can be f (·) =
tanh(·). Based on the i-th hidden layer representation hi , the probability of the
next word p(wi |w1, . . . , wi−1) can be calculated directly by the softmax function,

44 3 Text Representation

Fig. 3.5 Illustration of neural units in LSTM and GRU networks: (a) LSTM unit, (b) GRU unit

as shown in Fig. 3.4b. The optimization method for neural network parameters
and word embedding matrices is similar to a feed-forward neural network, which
maximizes the log-likelihood of training data.

To further investigate the information passing between hidden layers (hi−1) and
(hi) and effectively encode long-distance historical information, f (·) can be imple-
mented by long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997)
(Fig. 3.5a) or gated recurrent unit (GRU) (Cho et al. 2014) (Fig. 3.5b) networks.
For both LSTM and GRU, the input includes the hidden layer representation at the
previous step hi−1 and the output of the previous step wi−1, and the output is the
hidden layer representation of the current step hi .

As shown in Fig. 3.5a, the LSTM is controlled by three gates and one memory
cell. The calculation process is as follows:

ii = σ(W i × e(wi−1) + U i × hi−1 + bi) (3.18)

f i = σ(W f × e(wi−1) + Uf × hi−1 + bf) (3.19)

oi = σ(W o × e(wi−1) + U o × hi−1 + bo) (3.20)

c̃i = tanh(W c × e(wi−1) + U c × hi−1 + bc) (3.21)

ci = f i � ci−1 + ii � c̃i (3.22)

hi = oi � tanh(ci) (3.23)

where σ(x) = 1
1+e(−x) , ii , f i , and oi denote the input gate, forget gate and output

gate, respectively, and ci denotes the memory cell. The LSTM is expected to
selectively encode historical and current information through the three gates.

3.2 Distributed Representation of Words 45

As shown in Fig. 3.5b, a GRU is a simplified version of an LSTM that omits the
memory cell.

r i = σ(W r × e(wi−1) + U r × hi−1 + br) (3.24)

zi = σ(W z × e(wi−1) + U z × hi−1 + bz) (3.25)

h̃i = tanh(W × e(wi−1) + U × (r i � hi−1) + b) (3.26)

hi = zi � h̃i + (1 − zi) � hi−1 (3.27)

where r i and zi are the reset gate and the update gate, respectively. LSTMs and
GRUs can effectively capture long-distance semantic dependencies, and thus they
have better performance in many text mining tasks, such as text summarization and
information extraction (Nallapati et al. 2016; See et al. 2017).

3.2.2 C&W Model

In a neural network language model, word embedding is not the goal but only the
by-product. Collobert and Weston (2008) proposed a model that directly aims at
learning and optimizing word embeddings. The model is named after the first letter
of these two researchers’ names and thus called the C&W model.

The goal of a neural network language model is to accurately estimate the
conditional probability p(wi |w1, . . . , wi−1). Therefore, it is necessary to calculate
the probability distribution of the whole vocabulary by using the matrix operation
from the hidden layer to the output layer using the softmax function at every time
step. The computational complexity is O(|h| × |V |), where |h| is the number of
neurons in the highest hidden layer (usually hundreds or one thousand) and |V |
is the size of the vocabulary (usually tens of thousands to hundreds of thousands).
This matrix operation greatly reduces the efficiency of model training. Collobert and
Weston argued that it is not necessary to learn a language model if the goal is only to
learn word embeddings. Instead, the model and objective function can be designed
directly from the perspective of the distributed hypothesis: given an n-gram (n =
2C+1) (wi, C) = wi−C · · · wi−1wiwi+1 · · ·wi+C in the training corpus (here, C is
the window size), randomly replace the central word wi with other words w′

i in the
vocabulary and obtain a new n-gram (wi, C) = wi−C · · · wi−1w

′
iwi+1 · · · wi+C ,

where (wi, C) is no doubt more reasonable than (w′
i , C). When scoring each n-

gram, then the score of (wi, C) must be higher than (w′
i , C):

s(wi, C) > s(w′
i , C) (3.28)

As shown in Fig. 3.6, a simple feed-forward neural network model only needs to
calculate the score of the n-gram, which distinguishes the real n-gram input from

46 3 Text Representation

ℎ1

ℎ0

right or random

⋯ ⋯

Fig. 3.6 Illustration of the C&W model

randomly generated text. We call n-gram (wi, C) in the training data a positive
sample and randomly generated n-gram (w′

i , C) a negative sample.
To calculate s(wi, C), we first acquire the corresponding word embeddings from

the word embedding matrix L; these are then concatenated, and we obtain the
representation of the first layer h0:

h0 = [e(wi−C); · · · ; e(wi−1); e(wi); e(wi+1); · · · ; e(wi+C)] (3.29)

h0 is passed through the hidden layer, resulting in h1:

h1 = f (W 0 × h0 + b0) (3.30)

where f (·) is a nonlinear activation function. After linear transformation, the score
of n-gram (wi, C) becomes

s(wi, C) = W 1 × h1 + b1 (3.31)

where W 1 ∈ R
(1×|h1|), b1 ∈ R. It can be seen that the matrix operation of the C&W

model between the hidden layer and the output layer is very simple, reducing the
computational complexity from O(|h|×|V |) to O(|h|) and improving the efficiency
of learning word vector representations.

In the optimization process, the C&W model expects that the score of each
positive sample will be larger than that of the corresponding negative sample by
a constant margin:

s(wi, C) > s(w′
i , C) + 1 (3.32)

3.2 Distributed Representation of Words 47

For the entire training corpus, the C&W model needs to traverse every n-gram in
the corpus and minimize the following functions:

∑

(wi,C)∈D

∑

(w′
i ,C)∈Nwi

max(0, 1 + s(w′
i , C) − s(wi, C)) (3.33)

in which Nwi is the negative sample set for the positive sample (wi, C). In practice,
we can choose one or several negative samples for each positive sample.

3.2.3 CBOW and Skip-Gram Model

The hidden layer is an indispensable component of both the neural network language
model and the C&W model, and the matrix operation from the input layer to the
hidden layer is also a key time-consuming step. To further simplify the neural
network and learn word embeddings more efficiently, Mikolov et al. proposed two
kinds of neural network models without hidden layers: the continuous bag-of-words
(CBOW) model and the skip-gram model (Mikolov et al. 2013b).

(1) CBOW Model

As shown in Fig. 3.7, the concept behind the CBOW model is similar to that
of the C&W model: input contextual words and predict the central word. However,
unlike the C&W model, CBOW still takes the probability of target words as the
optimization goal, and it simplifies the network structure by focusing on two aspects.
First, the input layer is no longer a concatenation of the corresponding contextual
word embeddings, but the average of these word embeddings, ignoring the word
order information; second, it omits the hidden layer, instead connecting the input
layer and the output layer directly and calculating the probability of the central word
by logistic regression.

Fig. 3.7 Illustration of the
CBOW model

48 3 Text Representation

Formally, given any n-gram (n = 2C + 1) (wi, C) = wi−C · · · wi−1wiwi+1 · · ·
wi+C in the training corpus as input, the average word embedding of contextual
words can be calculated as follows:

h = 1

2C

∑

i−C≤k≤i+C,k
=i

e(wk) (3.34)

h is directly taken as the semantic representation of the context to predict the
probability of the middle word wi

p(wi |Cwi) = exp{h · e(wi)}
∑|V |

k=1 exp{h · e(wk)}
(3.35)

where Cwi denotes word contexts for the word wi in a C-sized window.
In the CBOW model, word embedding matrix L is the only parameter in the

neural network. For the whole training corpus, the CBOW model optimizes L to
maximize the log-likelihood of all words:

L∗ = argmax
L

∑

wi∈V

log p(wi |Cwi) (3.36)

(2) Skip-GramModel

Unlike the CBOW model, the skip-gram model has the opposite process, that is,
it aims to predict all the contextual words given only the central word. Figure 3.8
shows the basic idea of the skip-gram model.

Given any n-gram in the training corpus (wi, C) = wi−C · · · wi−1wiwi+1 · · ·
wi+C , the skip-gram model predicts the probability of every word wc in the context
Cwi = wi−C · · ·wi−1wi+1 · · ·wi+C by using the word embedding e(wi) of the
central word wi :

p(wc|wi) = exp{e(wi) · e(wc)}
∑|V |

k=1 exp{e(wi) · e(wk)}
(3.37)

⋯ ⋯

− | −1| +1| + |

Fig. 3.8 Illustration of the skip-gram model

3.2 Distributed Representation of Words 49

The objective function of the skip-gram model is similar to that of the CBOW
model. It optimizes the word embedding matrix L to maximize the log-likelihood
of all contextual words for each n-gram in the training data:

L∗ = argmax
L

∑

wi∈V

∑

wc∈Cwi

log p(wc|wi) (3.38)

3.2.4 Noise Contrastive Estimation and Negative Sampling

Although CBOW and skip-gram greatly simplify the structure of the neural network,
it is still necessary to calculate the probability distribution of all the words in
vocabulary V by using the softmax function. To speed up the training efficiency,
inspired by the C&W model and noise contrastive estimation (NCE) method,
Mikolov et al. (2013a) proposed negative sampling (NEG) technology.

Taking the skip-gram model as an example, each word wc in the context
Cwi = wi−C · · · wi−1wi+1 · · · wi+C is predicted by the central word wi . Negative
sampling and noise contrastive estimation methods select K negative samples
w′

1, w
′
2, · · · , w′

K from a probability distribution pn(w) for each positive sample to
maximize the likelihood of positive samples while minimizing the likelihood of
negative samples.

For a positive sample wc and K negative samples w′
1, w

′
2, · · · , w′

K , the noise
contrastive estimation method first normalizes the probability of K + 1 samples:

p(l = 1, w|wi) = p(l = 1) × p(w|l = 1, wi)

= 1

K + 1
pθ (w|wi) (3.39)

p(l = 0, w|wi) = p(l = 0) × p(w|l = 0, wi)

= K

K + 1
pn(w) (3.40)

p(l = 1|w,wi) = p(l = 1, w|wi)

p(l = 0, w|wi) + p(l = 1, w|wi)

= pθ(w|wi)

pθ (w|wi) + Kpn(w)
(3.41)

p(l = 0|w,wi) = p(l = 0, w|wi)

p(l = 0, w|wi) + p(l = 1, w|wi)

= Kpn(w)

pθ (w|wi) + Kpn(w)
(3.42)

50 3 Text Representation

where w denotes a sample. l = 1 indicates that it is from the positive samples and
follows the output probability distribution of the neural network model pθ (w|wi).2

l = 0 indicates that the sample is from the negative samples and obeys the
probability distribution of noisy samples pn(w). The objective function of noise
contrastive estimation is

J (θ) = log p(l = 1|wc,wi) +
K∑

k=1

log p(l = 0|wk,wi) (3.43)

The objective function of negative sampling is the same as that of noise contrastive
estimation. The difference is that the negative sampling method does not normalize
the probability of the samples but directly uses the output of the neural network
language model:

p(l = 1|wc,wi) = 1

1 + e−e(wi)·e(wc)
(3.44)

Then, the objective function can be simplified as follows:

J (θ) = log p(l = 1|wc,wi) +
K∑

k=1

log p(l = 0|wk,wi)

= log p(l = 1|wc,wi) +
K∑

k=1

log(1 − p(l = 1|wk,wi))

= log
1

1 + e−e(wi)·e(wc)
+

K∑

k=1

log

(
1 − 1

1 + e−e(wk)·e(wc)

)

= log
1

1 + e−e(wi)·e(wc)
+

K∑

k=1

log

(
1

1 + ee(wk)·e(wc)

)

= log σ(e(wi) · e(wc)) +
K∑

k=1

log σ(−e(wk) · e(wc)) (3.45)

Mikolov et al. found that the model can obtain decent performance when the number
of negative samples is K = 5. In other words, the negative sampling method can
greatly lower the complexity of probability estimation, remarkably improving the
learning efficiency of word embeddings.

2pθ (w|wi) = exp{h·e(w)}
∑|V |

k=1 exp{h·e(wk)} = exp{h·e(w)}
z(w)

, and z(w) is usually set as a constant 1.0 in NCE.

3.2 Distributed Representation of Words 51

ℎ1

ℎ0

score

AVE

CON

Gating

Pooling

ℎ1

ℎ0

score

Fig. 3.9 Distributed representation based on the hybrid character-word method

3.2.5 Distributed Representation Based on the Hybrid
Character-Word Method

Learning word representations based on distributed hypotheses requires sufficient
context information to capture word semantics. That is, a word should have
sufficiently high occurrence frequency. However, according to Zipf′s Law, most
words appear rarely in the corpus. For these words, it is impossible to obtain a
high-quality word embedding.

Although words are the smallest semantic unit that can be used independently,
they are not the smallest linguistic unit; for example, English words are composed
of letters, and Chinese words are composed of characters. Taking Chinese words
as an example, researchers found that 93% of Chinese words satisfy or partially
satisfy the characteristics of semantic composition,3 which means that these words
are semantically transparent. If a word is semantically transparent, it indicates that
the semantics of this word can be composed from its internal Chinese characters.
As shown in Fig. 3.9, the semantics of the word 出租车 (chuzuche, taxi) can
be obtained by the composition of the semantics of the three Chinese characters
出 (chu, out), 租 (zu, rent), and 车 (che, car). Compared to the size of the word
vocabulary, the Chinese character set is limited: according to national standard
GB2312, there are fewer than 7000 commonly used Chinese characters. In addition,
the frequency of Chinese characters in the corpus is relatively high, leading to high-
quality character embeddings under the distributed hypothesis. Therefore, if we can
exploit the semantic representation of Chinese characters and design a reasonable
semantic composition function, then we can greatly enhance the representation
ability of Chinese words (especially low-frequency words). Based on this idea,
increasing attention is being given to learning the distributed representation based

330% satisfy and 70% partially satisfy the semantic composition property.

52 3 Text Representation

on the hybrid character-word method (Chen et al. 2015a; Xu et al. 2016; Wang et al.
2017a).

There are many kinds of methods that can be applied to learn the distributed
representation based on hybrid character words, with two main differences between
them: how to design a reasonable semantic composition function and how to inte-
grate the compositional semantics of Chinese characters with the atomic semantics
of Chinese words. We will next take the C&W model as an example to introduce
two methods based on hybrid character-word mechanisms.

The goal of these methods is still to distinguish real n-grams from noisy
random n-grams, and thus the core task is still to calculate the score of an n-
gram. Figure 3.9a is a simple and direct hybrid character-word method. Suppose
a Chinese word wi = c1c2 · · · cl consists of l characters (e.g.,出租车 (chuzuche,
taxi) consists of three characters). This method first learns the semantic vector
composition representation x(c1c2 · · · cl) of the Chinese character string c1c2 · · · cl

and the atomic vector representation e(wi) of the Chinese word wi . Assuming
that each Chinese character makes an equal contribution, then x(c1c2 · · · cl) can
be obtained by averaging the character embeddings

x(c1c2 · · · cl) = 1

l

l∑

k=1

e(ck) (3.46)

where e(ck) denotes the vector representation of the character ck . To obtain the
final word embedding, the method concatenates the compositional representation of
characters and the embedding of atomic Chinese words directly:

Xi = [x(c1c2 · · · cl); e(wi)] (3.47)

h0, h1, and the final score is calculated in the same manner as that of the C&W
model.

It is obvious that the above method does not consider the different contri-
butions of the internal Chinese characters on the compositional semantics, nor
does it consider the different contributions of compositional semantics and atomic
semantics on the final word embedding. For example, in the Chinese word 出
租车 (taxi), the character 车 (car) is the most important, while 租 (rent) and
出 (out) only play a modifying role with a relatively small contribution. Clearly,
different Chinese characters should not be equally treated. Furthermore, some
words are semantically transparent, so greater consideration should be given to
compositional semantics, while others are nontransparent (such as苗条 (miaotiao,
slim)), requiring greater reliance on the atomic semantics of the word. Figure 3.9b
shows a hybrid character-word method that takes into account both of the above

3.3 Distributed Representation of Phrases 53

factors. First, the compositional semantics of the characters are obtained through a
gate mechanism

x(c1c2 · · · cl) =
l∑

k=1

vk � e(ck) (3.48)

where vk ∈ R
d (d is the embedding size of e(ck)) denotes the controlling gate that

controls the contribution of character ck to the word vector x(c1c2 · · · cl). The gate
can be calculated in the following way:

vk = tanh(W × [x(ck); e(wi)]) (3.49)

in which W ∈ R
d×2d . The compositional semantics and atomic semantics are

integrated through the max-pooling method:

x∗
j = max(x(c1c2 · · · cl)j , e(wi)j) (3.50)

This means that the j -th element of the final vector is the larger one of the
compositional representation and the atomic representation at the index j . Through
the pooling mechanism, the final semantics of a word depend more on the properties
of the word (transparent or nontransparent). Extensive experiments demonstrate that
word embeddings considering inner characters are much better.

3.3 Distributed Representation of Phrases

In statistical natural language processing, the phrase generally refers to a continuous
word sequence and not only to noun phrases, verb phrases, or prepositional phrases
in the syntactic view. There are two main types of methods for learning distributed
representations of phrases. The first treats the phrase as an indivisible semantic unit
and learns the phrase representation based on the distributed hypothesis. The second
considers phrasal semantics as being composed of internal words and aims to learn
the composition mechanism among words.

Compared to words, phrases are much more infrequent, and the quality of
phrasal vector representation based on distributed hypotheses cannot be guaranteed.
Mikolov et al. consider only some common English phrases (such as “New York
Times” and “United Nations”) as inseparable semantic units and treat them as words
(such as “New_York_Times” and “United_Nations”), then using CBOW or skip-
gram to learn the corresponding distributed representations. It is easy to see that this
method cannot be applied to the majority of phrases.

54 3 Text Representation

3.3.1 Distributed Representation Based on the Bag-of-Words
Model

For phrases, representation learning based on compositional semantics is a more
natural and reasonable method. The central problem is how to compose the
semantics of words into the semantics of phrases. Given a phrase ph = w1w2 · · · wi

consisting of i words, the simplest method of semantic composition is to use the
bag-of-words model (Collobert et al. 2011), which averages the word embeddings
or draws the maximum of each dimension in the word embeddings:

e(ph) = 1

i

i∑

k=1

e(wk) (3.51)

e(ph) = d
max
k=1

(e(w1)k, e(w2)k, · · · , e(wi)k) (3.52)

Obviously, this method does not consider the contributions of different words in
the phrase, nor does it model the order of words. The former problem can be solved
by adding weights to each word embedding

e(ph) = 1

i

i∑

k=1

vk × e(wk) (3.53)

where vk can be the word frequency or TF-IDF of wk . We can apply a gate
mechanism to control the contribution of different words, as done in the hybrid
character-word method.

3.3.2 Distributed Representation Based on Autoencoder

As mentioned earlier, there is another problem in the phrase representation learning
method based on the bag-of-words model: it cannot capture the word order informa-
tion of the phrase. In many cases, different word orders mean completely different
semantics. For example, two phrases, “cat eats fish” and “fish eats cat,” share the
same words but have opposite meanings. Therefore, the distributed representations
of phrases require effectively modeling the word order. In this section, we will
introduce a typical method, namely, the recursive autoencoder (RAE) (Socher et al.
2011b).

As the name implies, the recursive autoencoder merges the vector representations
of two subnodes from bottom to top in a recursive way until the phrase vector
representation is obtained. Figure 3.10 shows an example where a recursive

3.3 Distributed Representation of Phrases 55

Fig. 3.10 Illustration of the
recursive autoencoder

1 2 3

1
2

1
3

1
4

′1 ′2

′3′1
2

′1
3

4

′4

autoencoder is applied to a binary tree. Each node in the tree uses the same standard
autoencoder.

The goal of a standard autoencoder is to learn a compact and abstract vector
representation for a given input. For example, given the representations of the first
two input words x1 and x2 in Fig. 3.10, the standard autoencoder learns an abstract
representation x2

1 in the following way:

x2
1 = f (W (1) × [x1; x2] + b(1)) (3.54)

where W (1) ∈ R
d×2d , b(1) ∈ R

d , f (·) = tanh(·). The input includes two d-
dimensional vectors x1 and x2, and the output is a d-dimensional vector x2

1, which
is expected to be a compressed abstract representation of x1 and x2. To guarantee
the quality of x2

1, the input should be reconstructed from the output x2
1

[x′
1; x′

2] = f (W (2) × x2
1 + b(2)) (3.55)

56 3 Text Representation

where W (2) ∈ R
2d×d , b(1) ∈ R

2d , f (·) = tanh(·). The standard autoencoder
requires the error between the input [x1; x2] and the reconstructed input [x′

1; x′
2]

to be as small as possible:

Erec([x1; x2]) = 1

2
||[x1; x2] − [x′

1; x′
2]||2 (3.56)

With x2
1 and x3 as input, the same autoencoder can obtain the representation x3

1
of the phrase w3

1. Then, with x3
1 and x4 as input, we can obtain the representation

x4
1 of the whole phrase.

As an unsupervised method, the recursive autoencoder takes the sum of the
phrase reconstruction errors as the objective function.

Eθ(phi) = argmin
bt∈A(phi)

∑

nd∈bt

Erec(nd) (3.57)

where A(phi) denotes all possible binary trees corresponding to the phrase phi ,
nd is any arbitrary node on the particular binary tree bt , and Erec(nd) denotes the
reconstruction error of the node nd .

To test the quality of the vector representation of the complete phrase, we can
evaluate whether phrases with similar semantics will be clustered in the semantic
vector space. Suppose the phrase training set is S(ph); for an unknown phrase
ph∗, we use the cosine distance between the phrase vectors to measure the semantic
similarity between any two phrases. Then, we search a phrase list List (ph∗) that
is similar to ph∗ from S(ph) and verify whether List (ph∗) and ph∗ are truly
semantically similar. The first column in Table 3.2 gives four test phrases with
different lengths in English. The second column shows a list of similar candidate
phrases found by an unsupervised recursive autoencoder RAE in the vector space.

Table 3.2 A comparison between RAE and BRAE in the semantic representation of a phrase

Input phrase RAE BRAE

Military force Core force Military power

Main force Military strength

Labor force Armed forces

At a meeting To a meeting At the meeting

At a rate During the meeting

A meeting At the conference

Do not agree One can accept Do not favor

I can understand Will not compromise

Do not want Not to approve

Each people in this nation Each country regards Every citizen in this country

Each country has its At the people in the country

Each other, and People all over the country

3.3 Distributed Representation of Phrases 57

RAE can capture the structural information of the phrase to some extent, such as
“military force” and “labor force”, “do not agree” and “do not want”. However, it
still lacks the ability to encode the semantics of the phrase.

Ideally, if some phrases exist with correct semantic representation as supervised
information, then the recursive autoencoder can learn phrase representation in a
supervised way. However, the correct semantic representation does not exist in
reality. To make the vector representation describe enough semantic information,
Zhang et al. proposed a novel framework, the bilingually constrained recursive
autoencoder (BRAE) (Zhang et al. 2014). The assumption is that two phrases for
which one would be translated as the other have the same semantics, so they should
share the same vector representation. Based on this premise, the phrase vector
representation of both languages can be trained simultaneously with a co-training
method. To this end, two recursive autoencoders are first used to learn the initial
representations of language X and language Y in an unsupervised manner. Then,
these two recursive autoencoders are optimized by minimizing the semantic distance
between the translation pair (phx, phy) in languages X and Y . Figure 3.11 shows
the basic architecture of this method.

The objective function of this method consists of two parts: the reconstruction
error of the recursive autoencoder and the semantic error between the translation
pair

E(phx, phy; θ) = αErec(phx, phy; θ) + (1 − α)Esem(phx, phy ; θ) (3.58)

where Erec(phx, phy ; θ) denotes the reconstruction error of these two phrases
phx, phy , Esem(phx, phy ; θ) denotes the semantic error between the two phrases,

11 2 3

1
2

1
3

2 3 4

1
2

3
4

1
4

argmin 1
3, 1

4 ;

Fig. 3.11 Illustration of the bilingual constrained recursive autoencoder

58 3 Text Representation

and α is a weight that balances the reconstruction error and the semantic error.
Specifically, the reconstruction error Erec(phx, phy ; θ) includes two parts:

Erec(phx, phy ; θ) = Erec(phx; θ) + Erec(phy ; θ) (3.59)

The method for calculating the phrase reconstruction error is the same as that used
by the unsupervised recursive autoencoder. Esem(phx, phy ; θ) contains semantic
errors of two directions:

Esem(phx, phy; θ) = Esem(phx |phy; θ) + Esem(phy |phx; θ) (3.60)

Esem(phx |phy; θ) = 1

2
||x(phx) − f (W l

xy(phy) + bl
x)||2 (3.61)

Esem(phy |phx; θ) = 1

2
||y(phy) − f (W l

yy(phx) + bl
y)||2 (3.62)

For a phrase set PHxy = (ph
(i)
x , ph

(i)
y)Ni=1 with N translation pairs, the method

attempts to minimize the error on the whole set:

JBRAE(PHxy; θ) = 1

N

∑

(phx,phy)∈PHxy

E(phx, phy ; θ) + λ

2
||θ ||2 (3.63)

The second item indicates the parameter regularization term. In addition to mini-
mizing the semantic distance between translation phrases, it can also maximize the
semantic distance between nontranslation phrases

E∗
sem(phx, phy; θ) = max{0, Esem(phx, phy ; θ) − Esem(phx, ph′

y ; θ) + 1}
(3.64)

where (phx, phy) is a translation pair and (phx, ph′
y) is a nontranslation pair that is

randomly sampled. Through the co-training mechanism, we will ultimately obtain a
phrase representation model for two languages.

The performance of the BRAE model is shown in the third column in Table 3.2.
Compared with the unsupervised RAE, BRAE can encode the semantic information
of phrases. For example, for the input phrase “do not agree,” BRAE can find phrases
having similar semantics but quite different words: “will not compromise” and “not
to approve.” This demonstrates that bilingually constrained recursive autoencoder
BRAE can learn more accurate phrase embeddings.

3.4 Distributed Representation of Sentences

Since words and phrases are often not the direct processing objects in text
mining tasks, learning the representation of words and phrases mainly adopts gen-
eral (or task-independent) distributed representation methods. Relatively speaking,
sentences are the direct processing object in many text mining tasks, such as

3.4 Distributed Representation of Sentences 59

−1 +1− +

⋯ ⋯

| − , ⋯ , −1, +1, ⋯ , + ,

⋯ ⋯

| |⋯

a b

Fig. 3.12 Illustration of the PV-DM and PV-DBOW models. (a) PV-DM model. (b) PV-DBOW
model

sentence-oriented text classification, sentiment analysis, and entailment inference.
Therefore, it is crucial to learn the distributed representation of sentences. There are
two main types of methods: general and task-dependent.

3.4.1 General Sentence Representation

The basis of the general sentence representation is very close to the unsupervised
method. It designs a simple sentence representation model based on neural networks
and optimizes the network parameters on large-scale monolingual training data D =
{wmi

i1
}Mi=1. We will introduce three classical general sentence representation methods

in this section.

(1) PV-DM and PV-DBOW

Le and Mikolov extended the CBOW and skip-gram models used in word
representation learning to learn both word and sentence embeddings (Le and
Mikolov 2014). For M sentences in dataset D, each sentence Di corresponds to an
index i, which can uniquely represent the sentence. Assuming that the dimension of
the sentence vector is P , then the vectors for sentences in the training set correspond
to a matrix PV ∈ R

M×P . The i-th sentence vector corresponds to the i-th row in
PV .

Extending the CBOW model, we can build a sentence representation model
PV-DM.4 As shown in Fig. 3.12a, PV-DM regards the sentence as the memory
unit to capture the global information for any internal word. For an n-gram
(wi, C) = wi−C · · · wi−1wiwi+1 · · ·wi+C and its sentence index SenId , taking

4Paragraph Vector with sentence as Distributed Memory.

60 3 Text Representation

Cwi = wi−C · · · wi−1wi+1 · · · wi+C as input, we calculate the average of the
sentence vector and the word vectors in their contexts (or use vector concatenation)

h = 1

2C + 1

(
e(SenID) +

∑

i−C≤k≤i+C,k
=i

e(wk)
)

(3.65)

where e(SenId) denotes the sentence vector corresponding to the SenId-th row
in PV . The calculation method, objective function, and training process for the
probability of the central word p(wi |wi−C, · · · , wi−1, wi+1, · · · , wi+C, SenId)

are all consistent with those of the CBOW model.
Extending the skip-gram model, we can build a sentence representation model

PV-DBOW.5 As shown in Fig. 3.12b, the model takes sentences as input and the
randomly sampled words in the sentence as output, requiring that the model be able
to predict any word in the sentence. Its objective function and training process are
the same as those of the skip-gram model.

The PV-DM and PV-DBOW models are simple and effective, but they can only
learn vector representations for the sentences appearing in the training set. If we
want to obtain a vector representation for a sentence that has never been seen, we
need to put it into the training set and retrain the model. Therefore, the generalization
ability of this model is highly limited.

(2) Distributed Representation Based on Bag-of-Words Model

General sentence representation methods based on semantic composition has
become increasingly popular in recent research. One of these methods represents
sentences based on the bag-of-words model, treating the semantics of a sentence as
a simple composition of internal word semantics. The simplest method is to use the
average of the word embeddings

e(s) = 1

n

n∑

k=1

e(wk) (3.66)

where e(wk) denotes the word embedding corresponding to the k-th word wk , which
can be obtained by word embedding learning methods, such as CBOW or skip-gram.
n denotes the length of the sentence, and e(s) is the sentence vector representation.
It is worth noting that different words should make different contributions to the
semantics of the sentence. For example, in the sentence “the Belt and Road forum
will be held in Beijing tomorrow,” “the Belt and Road” are obviously the most
important words. Therefore, when composing the semantics of words, one key
problem is how to assign appropriate weights to each word

e(s) = 1

n

n∑

k=1

vk × e(wk) (3.67)

5Distributed Bag-of-Words version of the Paragraph Vector.

3.4 Distributed Representation of Sentences 61

where vk denotes the weight of the word wk . vk can be approximately estimated by
TF-DF or self-information in information theory. Wang et al. (2017b) proposed a
weight calculation method based on self-information (SI for short). They calculate
vk as follows:

vk = exp(SIk)∑n
i=1 exp(SIi)

(3.68)

where SIk = − log(p(wk |w1w2 · · ·wk−1)) denotes the self-information of the word
wk and can be estimated by a language model. The larger the self-information of the
word wk is, the more information it carries, so it should be given greater weight in
sentence representation. Although this kind of sentence representation method based
on the bag-of-words model is very simple, it demonstrates high competitiveness in
natural language processing tasks such as similar sentence discrimination and text
entailment.

(3) Skip-Thought Model

The skip-thought method is also based on semantic composition (Kiros et al.
2015). It is similar to the PV-DBOW model, and the basic idea is also derived
from the skip-gram model. However, unlike PV-DBOW, which uses the sentence
to predict its internal words, the skip-thought model uses the current sentence Dk to
predict the previous sentence Dk−1 and the next sentence Dk+1. The model assumes
that the meanings of the sentences Dk−1DkDk+1, which appear continuously in the
text, are close to each other. Therefore, the previous sentence and the next sentence
can be generated based on the semantics of the current sentence Dk .

Figure 3.13 gives an overview of the skip-thought model. The model has two
key modules: one is responsible for encoding the current sentence Dk , and the other
decodes Dk−1 and Dk+1 from the semantic representation of Dk . The encoder uses
a recurrent neural network in which each hidden state employs a gated recurrent
unit (GRU). The encoding process is consistent with the recurrent neural network
language model. As shown on the left side in Fig. 3.13, after obtaining the hidden
representation hk

i of each position in the current sentence, the hidden representation
hk

n of the last position will be employed as the semantic representation of the whole
sentence.

The decoder is similar to the GRU-based neural network language model,
the only difference being that the input at each time step includes the hidden
representation of the previous time step hj−1 and the output word wj−1 as well
as the hidden representation hk

n of the sentence Dk . The computation process of
the GRU unit is as follows (taking the prediction of the previous sentence as an
example):

rj = σ
(
W k−1

r × e
(
wk−1

j−1

)
+ Uk−1

r × hk−1
j−1 + Ck−1

r × hk
n + bk−1

r

)
(3.69)

zj = σ
(
W k−1

z × e
(
wk−1

j−1

)
+ U k−1

z × hk−1
j−1 + Ck−1

z × hk
n + bk−1

z

)
(3.70)

62 3 Text Representation

ℎ1

1

ℎ −1 ℎ

−1

⋯

ℎ

⋯

ℎ1
−1

1
−1

ℎ −1
−1 ℎ −1

−1
−1 −1 −1

⋯

ℎ −1

⋯

ℎ1
+1

1
+1

ℎ −1
+1 ℎ +1

−1
+1 +1 +1

⋯

ℎ +1

⋯

-th sentence

-th sentence

− 1 -th sentence

Fig. 3.13 The skip-thought model

h̃j = tanh
(
W × e

(
wk−1

j−1

)
+ U ×

(
rj � hk−1

j−1

)
+ Ck−1 × hk

n + b
)

(3.71)

hk−1
j = zj � h̃j +

(
1 − zj

)
� hk−1

j−1 (3.72)

Given hk−1
j , the generated word sequence wk−1

1 wk−1
2 · · ·wk−1

j−1 and the hidden

representation hk
n of the sentence Dk , the probability of the next word wk−1

j can
be calculated as follows:

p
(
wk−1

j |wk−1
<j ,hk

n

)
∝ exp

(
e
(
wk−1

j

)
,hk−1

j

)
(3.73)

The generation process for the next sentence Dk+1 is similar.
The objective function of the skip-thought model is the summation of the

likelihood of the previous and next sentences

M∑

k=1

⎧
⎨

⎩

l∑

j=1

p
(
wk−1

j |wk−1
<j ,hk

n

)
+

m∑

i=1

p
(
wk+1

i |wk+1
<i ,hk

n

)
⎫
⎬

⎭ (3.74)

where M is the number of sentences in the training set and l and m are the lengths
of the previous and next sentences, respectively.

3.4 Distributed Representation of Sentences 63

The skip-thought model combines the concepts of semantic composition and
distributed hypotheses. If the training set is from continuous text, the skip-thought
model can obtain high-quality sentence vector representations.

3.4.2 Task-Oriented Sentence Representation

Task-oriented sentence representations are optimized to maximize the performance
of specific text processing tasks. For example, in the sentence-level sentiment
analysis task, the vector representation of sentences ultimately predicts their
sentiment polarity. That is, the final sentence representations will be sensitive to
specific tasks. In this section, we introduce two task-oriented methods for sentence
representation learning: a recursive neural network (RecurNN) (Socher et al. 2013)
and a convolutional neural network (CNN) (Kim 2014).

(1) Sentence Representation Based on a Recursive Neural Network

A recursive neural network is a deep learning model suitable for tree structures.
Given the vector representations of the child nodes, the recursive neural network
recursively learns the vector representation of the parent node in a bottom-up
manner until it covers the whole sentence. Given a sentence, its tree structure
(usually a binary tree) can be obtained by using a syntactic parser. Figure 3.14 shows
a sentence with its binary tree, and each leaf node corresponds to a d-dimensional
vector for an input word. The recursive neural network merges the word embeddings

1
1

2
1

3
1

1
2

1
3

1
2

3
4

5
6

3
6

1
6

+ −0

Fig. 3.14 Sentence representation model based on a recursive neural network

64 3 Text Representation

of the leaf nodes along the tree structure to obtain the vector representations x2
1, x4

3,
x6

5 of phrases w2
1, w4

3, w6
5, respectively.

x2
1 = f

(
W

(1)
1 × [x1; x2] + b

(1)
1

)
(3.75)

x4
3 = f

(
W

(1)
2 × [x3; x4] + b

(1)
2

)
(3.76)

x6
5 = f

(
W

(1)
3 × [x5; x6] + b

(1)
3

)
(3.77)

Then, taking child nodes x4
3 and x6

5 as input, we can obtain the vector represen-
tation x6

3 corresponding to phrase w6
3:

x6
3 = f

(
W

(2)
1 × [x4

3; x6
5] + b

(2)
1

)
(3.78)

Finally, taking child nodes x2
1 and x6

3 as input, the vector representation x6
1 of the

whole sentence can be obtained

x6
1 = f

(
W

(3)
1 × [x2

1; x6
3] + b

(3)
1

)
(3.79)

with the parameter matrices W
(1)
1 ,W

(1)
2 ,W

(1)
3 ,W

(2)
1 ,W

(3)
1 ∈ R

d×2d and the biases

b
(1)
1 , b

(1)
2 , b

(1)
3 , b

(2)
1 , b

(3)
1 ∈ R

d . If the task is to predict the sentiment polarity
(positive, negative, or neutral), the probability distribution of sentiment polarities
can be calculated by taking x6

1 as the sentence representation through the softmax
function

t = softmax(W × x6
1 + b) (3.80)

in which W ∈ R
3×d , b ∈ R

3, and 3 correspond to the number of polarities (1 for
positive, −1 for negative, and 0 for neutral). Given training data D = (Di, Li)

n
i=1

consisting of n pairs of “sentence, sentiment polarity,” the recursive neural network
minimizes the cross-entropy to optimize the network parameters θ (including
parameter matrices, biases, and word embeddings)

θ∗ = argmin
θ

{
−

n∑

i=1

∑

l

δLi (l) log p (Di, l)

}
(3.81)

where Li ∈ {−1, 0, 1} is the true target label. If l = Li , then δLi (l) = 1; otherwise,
δLi (l) = 0; p(Di, l) denotes the probability of sentiment polarity l in t .

From Fig. 3.14, it can be found that the recursive neural network is very similar
to the recursive autoencoder. There are three main differences. First, the recursive
neural network takes a specific binary tree as input, while the recursive autoencoder
needs to search for an optimal binary tree. Second, the recursive neural network

3.4 Distributed Representation of Sentences 65

does not need to calculate the reconstruction error at each node. Third, the recursive
neural network can use either the same parameters at different nodes or different
parameters according to the type of child nodes. For example, the parameter matri-
ces W

(1)
1 ,W

(1)
2 ,W

(1)
3 ,W

(2)
1 ,W

(3)
1 and biases b

(1)
1 , b

(1)
2 , b

(1)
3 , b

(2)
1 , b

(3)
1 can either be

the same or different.

(2) Sentence Representation Based on a Convolutional Neural Network

Recurrent neural networks are based on tree structures, which are suitable for
tasks that depend on word order and hierarchical structures, such as sentiment
analysis and syntactic parsing. For the task of sentence topic classification, some key
information in the sentence plays a conclusive role in topic prediction. Therefore,
a convolutional neural network becomes a classical model for performing this task.
As shown in Fig. 3.15, for a sentence, a convolutional neural network takes the
embeddings of each word as input, sequentially summarizes the local information of
the window-sized context by convolution, extracts the important global information
by pooling, and then passes through other network layers (dropout layer, linear and
nonlinear layer, etc.) to obtain a fixed-sized vector representation that is utilized to
describe the semantic information of the whole sentence.

3-word Convolution

Max-pooling

1

2

⋯

…

2

⋯

1

5-word Convolution

Fig. 3.15 Sentence representation model based on a convolutional neural network

66 3 Text Representation

Formally, given a sentence consisting of n words w1w2 · · · wn, the words are first
mapped into a list of word embeddings X = [x1, x2, . . . , xn] by using a pretrained
or randomly initialized word embedding matrix L ∈ R

|V |×d . For a window xi:i+h−1
with a length h, the convolution layer applies the convolution operator6 Ft (1 ≤ t ≤
T , where T denotes the number of convolution operators) to obtain a local feature
yt
i

yt
i = Ft (W × xi:i+h−1 + b) (3.82)

where Ft (·) denotes the nonlinear activation function, W ∈ R
1×hd , b ∈ R, yt

i ∈ R.
The convolution operator Ft traverses the whole sentence from x1:h−1 to xn−h+1:n
and obtains a list of features y t = [yt

1, y
t
2, . . . , y

t
n−h+1]. We can see that yt ∈

R
n−h+1 is a variable-length vector whose dimension depends on the sentence length

n. The sentences vary in length (from several words to hundreds), and accordingly,
the dimension of yt differs for different sentences.

To convert the variable-length yt into a fixed-length output, pooling is an
indispensable operation, and maximum pooling is the most popular mechanism
(Collobert et al. 2011; Kim 2014). It is believed that ŷt = max(yt) represents the
most important feature obtained by the convolution operator in the whole sentence.
T convolution operators result in a T -dimensional vector y = [ŷ1, ŷ2, . . . , ŷT].

The window size h is an empirical value. To make the model robust, the
convolutional neural network generally utilizes windows with different sizes of
h. For example, h = 3 and h = 5 are used in Fig. 3.15, where each window
corresponds to a T -dimensional vector y = [ŷ1, ŷ2, . . . , ŷT]. These vectors
obtained by different windows can be concatenated into a fixed-sized vector, which
is then fed into other network layers, such as for feed-forward neural networks. For
the task of sentence topic classification, cross-entropy minimization is the objective
and can be adopted to optimize the network parameters, similar to the sentiment
analysis task.

3.5 Distributed Representation of Documents

The document is usually the direct processing object in many natural language
processing tasks, such as text classification, sentiment analysis, text summarization,
and discourse parsing. The key for these tasks is to deeply understand the document,
and the premise of document understanding is to represent the document. The
distributed representation of documents can capture global semantic information
efficiently, so it has become an important research direction. The central issue is
how to learn document representation from the representations of its internal words,

6This is also called filter, and it performs information filtering for a window-sized context.

3.5 Distributed Representation of Documents 67

phrases, and sentences. This section will introduce two kinds of methods: general
purpose and task-oriented purpose.

3.5.1 General Distributed Representation of Documents

(1) Document Representation Based on the Bag-of-Words Model

In the general distributed representation of documents, a document can be
regarded as a special form of sentence, that is, the concatenation of all sentences.
Therefore, we can learn distributed document representation using the methods
employed by sentence representation learning. For instance, the bag-of-words model
based on compositional semantics can easily obtain the distributed representation of
document D = (Di)

M
i=1 (Di = si denotes the i-th sentence) from words

e(D) = 1

|D|
|D|∑

k=1

vk × e(wk) (3.83)

in which vk is the weight of word wk and |D| is the number of different words
in document D. The average of word vector vk = 1

|D| or the weighted average of
word vector vk = tf_idf(wk) can be used. This method is simple and efficient, but
it considers neither the order of words in a sentence nor the relationship between
sentences in a document.

(2) Document Representation Based on the Hierarchical Autoencoder

To solve the problem in the bag-of-words model, Li et al. (2015) proposed
a hierarchical autoencoder model. Its underlying concept is that a document
representation e(D) for M-sentence document D = (Di)

M
i=1 is good enough as

long as we can reconstruct the original document D from the representation e(D).
The hierarchical autoencoder model is divided into two modules: one is an

encoder model to learn the document representation e(D) from D, and the other
is a reconstruction model that reconstructs the original document D from the
representation e(D). In the encoder model, long short-term memory (LSTM) is
first used to obtain the representation e(si) of each sentence. These sentence
representations are then used as input to the second LSTM to model the sentence
sequences in the document, ultimately resulting in the document representation
e(D) (where e(si) and e(D) are the LSTM hidden representations corresponding
to the end mark of the sentence and of the document, respectively)

e(si) = hs
ends

(enc) (3.84)

hs
t (enc) = LSTM

(
e(wt),h

s
t−1(enc)

)
(3.85)

68 3 Text Representation

e(D) = hD
endD

(enc) (3.86)

hD
t (enc) = LSTM

(
e(st),h

D
t−1(enc)

)
(3.87)

where enc denotes the encoder LSTM.
The reconstruction (decoder) model aims to reconstruct document D from its

distributed representation e(D), and it also employs the hierarchical LSTM: it
first reconstructs the sentence hidden representation hs

t (dec) (dec denotes decoder
LSTM) and then reconstructs all the words in the sentence st

hD
t (dec) = LSTM

(
e′(st−1),h

D
t−1(dec), cD

t

)
(3.88)

hs
t (dec) = LSTM

(
e(wt−1),h

s
t−1(dec)

)
(3.89)

where hD
0 (dec) = e(D), e′(st−1) is the hidden representation corresponding to the

end mark of the previous sentence st−1 and cD
t is the context representation of the

encoder model, which can be calculated by an attention mechanism

cD
t =

M∑

k=1

akh
D
k (enc) (3.90)

ak = exp (vk)∑
k′ exp (vk′)

(3.91)

vk = vT × f
(
W 1 × hD

t−1(dec) + W 2h
D
k (enc)

)
(3.92)

in which ak is the weight of each sentence in the encoder model, W 1,W 2 ∈ R
d×d .

hs
0(dec) = e′(s0) is the hidden representation of the reconstructed sentence. Based

on hs
t (dec), the probability of the reconstruction word wt can be computed as

follows:

p (wt |·) = softmax
(
e(wt),h

s
t (dec)

)
(3.93)

The objective function of this neural network is to maximize the likelihood of the
original document, that is, the reconstructed word at each time should be the same
as that in the corresponding position of the original document.

In Fig. 3.16, the document contains two sentences. The first LSTM layer is
used to encode two sentences and obtain the representations e(s1) and e(s2) (the
hidden representation corresponding to the sentence end mark). Then, the second
LSTM layer is used to encode sentence sequences e(s1) and e(s2) and obtain the
document representation e(D). Taking document representation e(D) as input, we
can calculate the context of the encoder representations e(s1) and e(s2) by the
attention mechanism. Then, the hidden representation hD

t (dec) of each sentence is
reconstructed, and each word is generated to reconstruct sentences. After training,

3.5 Distributed Representation of Documents 69

The film finished . He will watch it again .

ℎ ℎ

The film finished . He will watch it again .

Fig. 3.16 Sentence representation model based on an autoencoder

the hierarchical autoencoder model can obtain the distributed representation e(D)

for any document.

3.5.2 Task-Oriented Distributed Representation of Documents

The task-oriented distributed representation of documents, which has the final goal
of optimizing the performance of downstream tasks, has been widely applied in
tasks such as text classification and sentiment analysis. This section will introduce
a task-oriented document representation method proposed by Tang et al. (2015b).

In this method, documents are regarded as composed of sentences, and sentences
are regarded as composed of words. Therefore, semantic composition from words
to sentences and from sentences to documents is the key concept in document
representation. Assume that document D = (Di)

M
i=1 is composed of M sentences

and the ith sentence Di = si = wi,1 · · · wi,n is composed of n words. Then,
a learning model based on document representation can be divided into three

70 3 Text Representation

Fig. 3.17 Document
representation model based
on hierarchical autoencoder

ℎ0

1

ℎ −1 ℎ

−1

⋯

⋯

ℎ

⋯

⋯

ℎ0 ℎ −1 ℎ ℎ

⋯ ⋯

LSTM/CNN⋯ ⋯

softmax

layers: the bottom layer of sentence representation and the middle and top layers
of document representation, as shown in Fig. 3.17.

The layer of sentence representation learns the semantic composition from the
words in sequence wi,1 · · · wi,n to sentence si . The former sections in this chapter
have introduced several sentence representation models, such as recurrent neural
networks, recursive neural networks, and convolutional neural networks. Among
them, recurrent neural networks and convolutional neural networks are widely
used. Both of these networks can be applied to obtain the distributed sentence
representation:

esi = LSTM(wi,1 · · · wi,n) (3.94)

esi = CNN(wi,1 · · · wi,n) (3.95)

In practice, we can compare these two network architectures and choose the one
with better performance.

3.5 Distributed Representation of Documents 71

The layer of document representation is used to learn the semantic composition
from sentences in sequence s1 . . . sM to document D. One popular model for this
process is bidirectional LSTM networks. Taking distributed sentence representation

es1 · · · esM as input, bidirectional LSTM learns the forward hidden states
−→
hi and

backward states
←−
hi of each sentence si :

−→
hi = LSTM

(
esi ,

−→
h i−1

)
(3.96)

←−
hi = LSTM

(
esi ,

←−
h i+1

)
(3.97)

The bidirectional hidden representations are concatenated into a single represen-

tation hi = [−→hi ,
←−
hi] for the sentence si . Based on the hidden representation of each

sentence, the document representation can be obtained by the average or attention
mechanism

eD =
M∑

i=1

vihi (3.98)

where vi = 1
M

or vi is the weight learned by an attention mechanism.
Given the distributed document representation eD , the classification layer first

applies a feed-forward network to convert eD into vector x = [x1, . . . , xC] whose
dimension is the category number C. Then, the softmax function is used to convert
vector x into probability distribution p = [p1, . . . , pC]:

x = f (W × eD + b) (3.99)

pk = exp(xk)∑C
k′=1 exp(xk′)

(3.100)

In the text classification or sentiment analysis task, large-scale labeled training
data T = {(D,L)} exist, where D is the document and L is the correct category
corresponding to the document. The objective function aims to minimize the cross-
entropy over the training data:

Loss = −
∑

D∈T

C∑

k=1

Lk(D) log(pk(D)) (3.101)

If document D belongs to category k, then Lk(D) = 1; otherwise, Lk(D) = 0.
After training, the sentence layer and the document layer can learn the distributed
representation for any document.

72 3 Text Representation

3.6 Further Reading

Since words are the basic language unit that composes phrases, sentences, and
documents, word representation learning is the basis and the most critical research
direction. The research frontier of representation learning for words mainly focuses
on the following four directions: (1) how to fully exploit information on the internal
structure of words (Xu et al. 2016; Bojanowski et al. 2017; Pinter et al. 2017);
(2) how to more effectively use contextual information (Ling et al. 2015; Hu et al.
2016; Li et al. 2017a) and other sources of external knowledge such as dictionaries
and knowledge graphs (Wang et al. 2014; Tissier et al. 2017); (3) how to better
interpret word representations (Arora et al. 2016; Wang et al. 2018); and (4) how
to effectively evaluate the quality of word representations (Yaghoobzadeh and
Schütze 2016). Lai et al. (2016) summarized the mainstream methods for word
representation and offered proposals on how to learn better word representations.

The learning representations of phrases, sentences, and documents mostly
focuses on the mechanism of semantic composition. For example, Yu and Dredze
(2015) proposed a semantic composition function model for feature fusion to
learn the distributed representation of phrases. Wang and Zong (2017) investigated
the advantages and disadvantages of different composition mechanisms in the
representation learning of phrases. Hashimoto and Tsuruoka (2016) studied whether
the semantics of a phrase can be obtained from the semantics of its internal words.
Learning sentence representations pays more attention to semantic composition
(Gan et al. 2017; Wieting and Gimpel 2017) and the utilization of linguistic
knowledge (Wang et al. 2016b). There are usually two methods for document
representation: one based on compositional semantics and the other based on
topic models. Making full use of their advantages and delivering better document
representations have become hot research topics (Li et al. 2016b).

Exercises

3.1 Please compare the vector space model and the distributed representation model
and summarize the advantages and disadvantages of each.

3.2 Please analyze noisy contrastive estimation and negative sampling and com-
ment on the advantages and disadvantages of the two methods.

3.3 Please design an algorithm to detect whether a Chinese word is semantically
transparent or not.

3.4 Please analyze the unsupervised recursive autoencoder to determine why it
cannot learn the semantic representations of phrases.

3.5 For learning distributed sentence representations, a recurrent neural network
can capture the word order information, and a convolutional neural network can

Exercises 73

summarize the key information for a window-sized context. Please design a model
that could combine the merits of both models.

3.6 Please comment on whether it is reasonable to represent a whole document
with a single distributed vector. If it is not reasonable, please design a new method
to represent the documents.

Chapter 4
Text Representation with Pretraining
and Fine-Tuning

4.1 ELMo: Embeddings from Language Models

As introduced in the previous section, a word can be well represented by its context.
Thus, the quality of word representations (embeddings) depends at least on two
factors. The first is whether the contexts are sufficiently rich: do we have abundant
text data containing diverse contexts for each word? The second is whether the
context is well captured and exploited. In other words, the word representations
will remain unsatisfactory if the model cannot effectively utilize and represent all
the contexts of a word. When word embeddings are applied to downstream tasks,
another important issue arises that must also be addressed: are word embeddings
context dependent? For example, a large language model based on a recurrent
neural network (RNN) produces word embeddings as a byproduct. The usage will
be context independent if we directly apply the pretrained word embeddings into the
downstream tasks, but it will be context dependent if we first employ the pretrained
RNN to obtain the dynamic representations according to the test sentence and then
apply them to downstream tasks.

Generally, ELMo,1 proposed by Peters et al. (2018), is the first successful model
to attempt to solve all the above problems, and it achieves remarkable performance
improvements in several downstream text-processing tasks. ELMo employs the
pretraining framework. In the pretraining stage, a bidirectional LSTM-based lan-
guage model is trained on the 1B Word Benchmark set (including approximately
30 million sentences).2 In the specific applications, the pretrained bidirectional
LSMT first performs on the test sentences, and then task- and context-dependent
word embeddings are calculated according to dynamic hidden representations in
the neural model. Last, the context-dependent word embeddings are fine-tuned in
task-dependent models to perform specific text-processing tasks.

1Codes and models can be found at https://allennlp.org/elmo.
2https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark.

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_4

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_4&domain=pdf
https://allennlp.org/elmo
https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
https://doi.org/10.1007/978-981-16-0100-2_4

76 4 Text Representation with Pretraining and Fine-Tuning

4.1.1 Pretraining Bidirectional LSTM Language Models

ELMo employs the bidirectional LSTM-based language model for pretraining.
Given a sentence (SOSx1 · · · xj−1xj · · · xnEOS) (SOS and EOS are special
symbols indicating the start and end of the sentence), a forward language
model computes the probability of xj conditioned on its left contexts
p(xj |SOS, x1, · · · , xj−1), while a backward language model calculates the
probability of xj conditioned on its right contexts p(xj |xj+1, · · · , xn,EOS).
Intuitively, both of the bidirectional contexts can be captured.

As illustrated in Fig. 4.1, the bottom layer first projects each symbolic token into
a distributed representation using CNN over characters. Then, both forward and
backward LSTMs are employed to learn two language models utilizing L layers. To
calculate p(xj |SOS, x1, · · · , xj−1), the forward language model passes the token
embedding xj−1 through L forward LSTM layers, resulting in the top representation−→
h L

j−1. Then, a softmax function is adopted to compute the probability of xj :

p(xj |SOS, x1, · · · , xj−1) = softmax(
−→
h L

j−1, xj) =
−→
h L

j−1 · xj

∑
x ′

−→
h L

j−1 · x′
(4.1)

Similarly, the backward language model employs L backward LSTM layers to

obtain
←−
h L

j+1 and compute p(xj |xj+1, · · · , xn,EOS). The network parameters of
bidirectional LSMTs are optimized to maximize the following log likelihood of

ℎ1
1 ℎ −1

1 ℎ1

⋯

⋯

ℎ1

ℎ1
1 ℎ −1

1 ℎ1
ℎ1

ℎ0
1

ℎ0
1

ℎ +1
1

ℎ +1
1

⋯

⋯

ℎ1 ℎ −1 ℎ
⋯

⋯

ℎ

ℎ1 ℎ −1 ℎ ℎ

ℎ0

ℎ0

ℎ +1

ℎ +1

⋯

⋯

⋯ ⋯⋯

Fig. 4.1 The architecture of ELMo

4.1 ELMo: Embeddings from Language Models 77

forward and backward language models over T training sentences (30 million used
in the original ELMo work):

T∑

t=1

n+1∑

j=0

(
logp(x

(t)
j |SOS, x

(t)
1 , · · · , x

(t)
j−1; θ) + logp(x

(t)
j |x(t)

j+1, · · · , x(t)
n , EOS; θ)

)

(4.2)

4.1.2 Contextualized ELMo Embeddings for Downstream
Tasks

After pretraining, bidirectional LSTMs are available. Instead of directly applying
the learned fixed word embeddings xj (static embedding) into downstream tasks,
ELMo embeddings are dynamic depending on specific contexts in the test sentences.
Specifically, each test sentence in a downstream task is input into the pretrained
bidirectional LSTMs, resulting in (2L+1)-layer representations, including one input
layer and L hidden layers of forward and backward LSTMs (L = 2 in the original
ELMo work). All the representations of xj can be rewritten as follows:

Rj = {xj , (
−→
h l

j ,
←−
h l

j)|l = 1, · · · , L} = {hl
j |l = 1, · · · , L} (4.3)

where h0
j = xj denotes the input layer representation and hl

j = [−→h l
j ;

←−
h l

j] if
l ∈ {1, · · · , L}. Given a test sentence, bidirectional LSTMs first obtain the L

forward and backward hidden layer representations; then, ELMo embeddings are
linear combinations of each layer:

ELMotask
j = γ task

L∑

l=0

wtask
l hl

j (4.4)

in which wtask
l determines the contribution of representations in each layer. γ task

specifies the importance of ELMo embeddings in the specific task.
In downstream applications, ELMo embeddings are typically employed as

additional features in a supervised model for a specific text-processing task.
Suppose the baseline supervised model (e.g., CNN, RNN, or feed-forward
neural networks) adopted in the specific task learns the final hidden states
(htask

1 , · · · ,htask
j , · · · ,htask

n) for a test sentence (x1, · · · , xj , · · · , xn). ELMo
embeddings can be leveraged in two ways to augment the baseline supervised
model. On the one hand, they can be combined with the input embedding xj of
the baseline model, leading to [xj ; ELMotask

j] as new inputs for the supervised
model. On the other hand, ELMo embeddings can be concatenated with the final
representations htask

j of the baseline model, resulting in [htask
j ; ELMotask

j], which

78 4 Text Representation with Pretraining and Fine-Tuning

can be directly employed to perform prediction without changing the baseline
supervised architecture.

Enhanced with ELMo embeddings, remarkable performance improvements can
be achieved in several text-processing tasks, such as question answering, textual
entailment, semantic role labeling, coreference resolution, named entity recognition,
and sentiment analysis.

4.2 GPT: Generative Pretraining

Despite the great success of ELMo, it still has some weaknesses to be addressed.
First, ELMo adopted a two-layer shallow bidirectional LSTM, which makes it
difficult to learn all the language regularities of the text data, and thus its potential
is limited. Second, bidirectional LSTMs are not the best for capturing long-distance
dependency, since they need n − 1 passes for the dependence modeling of the
first word and the n-th word in a sequence, and their results would be further
worsened by the gradient vanishing problem. Third, pretrained models are not fully
exploited, since they are only being used to obtain representations that will be
further employed as additional features for downstream tasks. That is, the fine-
tuning model in the downstream supervised task learns from scratch and does
not share the parameters of the pretraining model. Accordingly, Radford et al.
(2018) propose a deep pure attention-based model GPT inspired by Transformer
(Vawani et al. 2017) for both pretraining and fine-tuning. Specifically, GPT employs
Transformer’s decoder, which contains 12 self-attention layers, to pretrain a feed-
forward language model and fine-tune the same 12-layer self-attention model for
downstream tasks. This section first briefly introduces the Transformer and then
gives an overview of GPT.

4.2.1 Transformer

The Transformer3 was originally proposed to perform machine translation
that automatically converts a source language sentence (token sequence
(x0, · · · , xj , · · · , xn)) into a target-language sentence (y0, · · · , yi, · · · , ym). It
follows the encoder-decoder architecture, in which the encoder obtains the semantic
representation of the source sentence and the decoder generates the target sentence
token by token from left to right based on the source-side semantic representations.

3Model and codes can be found at https://github.com/tensorflow/tensor2tensor.

https://github.com/tensorflow/tensor2tensor

4.2 GPT: Generative Pretraining 79

Fig. 4.2 The architecture of
Transformer

Input

Input

Embedding

Positional

Encoding

Outputs

(shifted right)

Output

Embedding

Mask Multi-head

Intra-Attention

Multi-Head

Inter-Attention

Feed

Forward

Add&Norm

Add&Norm

Positional

Encoding

Add&Norm

×

×

Multi-head

Intra-Attention

Feed

Forward

Add&Norm

Add&Norm

Output

Probabilities

Linear

Softmax

The encoder includes L layers, and each layer is composed of two sublayers: the
self-attention4 sublayer followed by the feed-forward sublayer, as shown in the left
part of Fig. 4.2. The decoder, as shown in the right part of Fig. 4.2, also consists
of L layers. Each layer has three sublayers. The first mechanism is the masked
self-attention mechanism. The second sublayer is the decoder-encoder attention
sublayer, and the third sublayer is the feed-forward sublayer. Residual connection
and layer normalization are performed for each sublayer in both the encoder and
decoder.

Obviously, the attention mechanism is the key component. The three kinds of
attention mechanisms (encoder self-attention, decoder masked self-attention, and
encoder-decoder attention) can be formalized into the same formula:

Attention(q,K,V) = softmax

(
qKT

√
dk

)
V (4.5)

4The self-attention sublayer calculates the i-th representation in the upper layers by using the i-th
hidden state in the current layer to attend to all the neighbors including itself, resulting in attention
weights which are then employed to linearly combine all the representations in the current layer. It
will be formally defined later.

80 4 Text Representation with Pretraining and Fine-Tuning

where q , K, and V represent the query, the key list, and the value list, respectively.
dk is the dimension of the key.

For the encoder self-attention mechanism, the queries, keys, and values are from
the same layer. For example, we calculate the output of the first layer in the encoder
at the j -th position. Let xj be the sum vector of the input token embedding and the
positional embedding. The query is vector xj . The keys and values are the same,
and both are the embedding matrix x = [x0 · · · xn]. Then, multihead attention with
h heads is proposed to calculate attention in different subspaces:

MultiHead(q,K,V) = Concat(head1, · · · , headi, · · · , headh)WO

headi = Attention(qW i
Q,KW i

K,V W i
V)

(4.6)

in which Concat means that it concatenates all the head representations. W i
Q, W i

K ,

W i
V , and WO denote the projection parameter matrices.
Using Eq. (4.6) followed by residential connection, layer normalization, and a

feed-forward network, we can obtain the representation of the second layer. After L

layers, we obtain the input contexts C = [h0, · · · ,hn].
The decoder masked self-attention mechanism is similar to that of the encoder

except that the query at the i-th position can only attend to positions before i, since
the predictions after the i-th position are not available in the autoregressive left-to-
right unidirectional inference:

zi = Attention(qi ,K≤i ,V ≤i) = softmax

(
qiK

T≤i√
dk

)
V ≤i (4.7)

The decoder-encoder attention mechanism calculates the source-side dynamic
context that is responsible for predicting the current target-language word. The
query is the output of the masked self-attention sublayer zi , and the keys and values
are the same encoder contexts C. The residential connection, layer normalization,
and feed-forward sublayer are then applied to yield the output of a whole layer.
After L such layers, we obtain the final hidden state zi . The softmax function is
then employed to predict the output yi , as shown in the upper right part of Fig. 4.2.

4.2.2 Pretraining the Transformer Decoder

As shown in Fig. 4.3, GPT utilizes the unidirectional Transformer decoder intro-
duced above to pretrain the feed-forward language model on large-scale text data
(e.g., the English text BookCorpus) It applies masked self-attention to attend to all

4.2 GPT: Generative Pretraining 81

⋯

⋯

⋯

⋯

⋯ℎ ℎ1 ℎ ℎ

⋯

Unidirectional

Transformer Decoder

⋯

⋯

⋯

⋯

⋯ ℎ

⋯

ℎ1

ℎ2

Fig. 4.3 The architecture of GPT

the preceding contexts while keeping the future contexts inaccessible. As Fig. 4.3
illustrates, when learning the representation of h1

j , xj only attends to previous tokens
SOS, x1, · · · , xj . Each layer performs the same operations, leading to the hidden
representation of the top layer hj .

GPT predicts the next token xj+1 with probability p(xj+1|x0, · · · , xj) and
optimizes the network parameters by maximizing the conditional log likelihood over
the complete set of T training sentences:

L1 =
T∑

t=1

n+1∑

j=0

logp(x
(t)
j |SOS, x

(t)
1 , · · · , x

(t)
j−1; θ) (4.8)

4.2.3 Fine-Tuning the Transformer Decoder

When performing downstream tasks, the pretrained Transformer decoder is
employed as the starting point and can be slightly adapted and further fine-tuned
according to the target text-processing tasks. We know that GPT is only pretrained
with the language model as the objective function and the network cannot perform
specific tasks such as named entity recognition. Thus, it is necessary to fine-tune
the GPT model to fit the specific tasks using task-dependent training data.

Suppose a supervised classification task contains training instances of input
sequences and output labels, such as (x, y) where x = (SOSx1 · · · xj · · · xnEOS).
The pretrained Transformer decoder will generate for x a sequence of final
representations (hSOS,h1, · · · ,hj , · · · ,hn,hEOS) after L stacked masked self-
attention layers. A linear output layer and softmax function are newly introduced
to predict label probability with hEOS :

p(y|x) = p(y|SOS, x1, · · · , xj , · · · , xn,EOS) = softmax(hEOSW y) (4.9)

82 4 Text Representation with Pretraining and Fine-Tuning

The network parameters of the pretrained Transformer decoder and the newly
added linear projection parameter matrix W y are then fine-tuned to maximize the
following objective:

L2 =
∑

(x,y)

logp(y|x) (4.10)

To improve the generalization ability and accelerate convergence, GPT further
combines the pretrained language model objective during fine-tuning:

L = L2 + λ × L1 (4.11)

For downstream tasks in which the input is not a single but multiple sequences,
GPT simply concatenates the sequences with delimiter tokens to form a long
sequence to match the pretrained Transformer decoder. For example, in the entail-
ment task, which determines whether a premise x1 entails hypothesis x2, GPT uses
(x1; Delim; x2) as the final input sequence, where Delim is a delimiter token.

Radford et al. (2019) present an enhanced version of GPT-2,5 which achieves
promising performance in language generation tasks. Note that the model architec-
ture is the same as that of GPT. The difference lies in that GPT-2 utilizes many
more English texts and a much deeper Transformer decoder. The English texts
contain over 8 million documents with a total of 40 GB of words. The deepest
model contains 48 layers and 1542 M network parameters. Radford et al. (2019)
demonstrate that only with pretraining can the model perform downstream natural
language understanding and generation tasks without fine-tuning. For example, they
show that the pretrained model can generate abstractive summarization quite well,
achieving comparable performance with some supervised summarization models
on the CNN Daily Mail dataset. Brown et al. (2020) further invent GPT-36, and the
largest model contains up to 175 billion parameters. Surprisingly, GPT-3 shows that
it can perform most of the natural language understanding and generations tasks
even in few-shot or zero-shot scenarios as long as the training data is adequate and
the neural network model is large enough.

4.3 BERT: Bidirectional Encoder Representations
from Transformer

Although the GPT model achieves substantial progress in several natural language
understanding and generation tasks, the left-to-right decoder architecture of GPT
learns the semantic representation of each input xj by relying only on the left-side

5The codes and models are available at https://github.com/openai/gpt-2.
6The models and examples are available at https://github.com/openai/gpt-3.

https://github.com/openai/gpt-2
https://github.com/openai/gpt-3

4.3 BERT: Bidirectional Encoder Representationsfrom Transformer 83

⋯

⋯

⋯

⋯

⋯ℎ ℎ1 ℎ ℎ

⋯

Bidirectional

Transformer Encoder

⋯

⋯

⋯

⋯

⋯ ℎ

⋯

ℎ1

ℎ2

Fig. 4.4 The architecture of BERT

context x0, x1, · · · , xj−1 and cannot access the right-side context xj+1, · · · , xn.
It is well known that bidirectional contexts are crucial in many text-processing
tasks, such as sequential labeling and question answering. Accordingly, Devlin
et al. (2019) proposed a new pretraining and fine-tuning model called BERT,7

which employs the bidirectional encoder of Transformer, as shown in Fig. 4.4, to
fully exploit the contexts for semantic representation. As this figure shows, the
representation of each input token hj is learned by attending to both the left-side
context SOS, x1, · · · , xj−1 and the right-side context xj+1, · · · , xn.

The contributions of BERT are threefold. First, BERT employs a much deeper
model than GPT, and the bidirectional encoder consists of up to 24 layers with
340 million network parameters (BERTLARGE). Second, BERT designs two novel
unsupervised objective functions, including the masked language model and next
sentence prediction, considering that the conventional conditional language model
cannot be used for BERT. Third, BERT is pretrained on even larger text datasets
(both BookCorpus with 800 million words and English Wikipedia with 2.5 billion
words) than GPT. BERT is the first work to achieve breakthroughs and establish
new state-of-the-art performance on 11 natural language understanding tasks, even
outperforming humans on question answering tasks. Next, we briefly introduce the
pretraining and fine-tuning procedure for BERT.

4.3.1 BERT: Pretraining

Both ELMo and GPT employ the conditional language model as the unsuper-
vised pretraining objective. In contrast, the conventional language model, which
conditions only in the one-sided history context, is not appropriate for BERT
since BERT needs to simultaneously access the bidirectional contexts, and the

7Codes and pretrained models can be available at https://github.com/google-research/bert.

https://github.com/google-research/bert

84 4 Text Representation with Pretraining and Fine-Tuning

⋯

ℎ ℎ1 ℎ2 ℎ

⋯

⋯

⋯

⋯

⋯ ℎ

⋯

ℎ2
1

ℎ2
2

2

Fig. 4.5 Illustration of the problem wherein conditional language models are inappropriate for
BERT

representation learning process of the multilayer encoder for a specific input token
would see itself when predicting this input token. We use Fig. 4.5 to explain
this problem. Suppose that we plan to use the left context (SOS, x1) and the
right context (x3, · · · , xn,EOS) to predict x2, namely, calculating the probability
p(x2|SOS, x1, x3, · · · , xn,EOS). At the first layer, the Transformer encoder learns
the representation h1

2 by attending to all the contexts except x2, as shown by gray
dotted lines in Fig. 4.5. At the second layer, the Transformer encoder learns h2

2 in
the same manner by attending to all the contexts (h1

SOS,h1
1,h

1
3, · · · ,h1

n,h
1
EOS).

However, since h1
SOS,h1

1,h
1
3, · · · ,h1

n, and h1
EOS have already considered x2, as

shown by the dotted black lines, h2
2 will contain the information of x2 (see the

word itself) through the information passing along the solid black lines in Fig. 4.5.
Consequently, it is problematic if hL

2 is employed to predict x2.
To solve this problem, two unsupervised prediction tasks are introduced to

pretrain BERT. One is the masked language model, and the other is next sentence
prediction.

Masked Language Model The main approach underlying the masked language
model is that some percentage of the tokens in the input sequence are randomly
masked, and the model is then optimized to predict only the masked tokens. For
example, given an input sequence (SOSx1x2 · · · xnEOS), x2 may be randomly
masked, meaning it is substituted by a special symbol MASK, as illustrated in
Fig. 4.6. Then, BERT will learn semantic representations of the new sequence
(SOSx1MASK · · · xnEOS), obtaining the final representations in the L-th layer
(hSOS,h1,hMASK, · · · ,hn,hEOS). By comparing Fig. 4.6 with Fig. 4.5, it is easy
to see that hMASK does not contain any information of x2 because it is absent in the

4.3 BERT: Bidirectional Encoder Representationsfrom Transformer 85

⋯

ℎ ℎ1 ℎ ℎ

⋯

⋯

⋯

⋯

⋯ ℎ

⋯

ℎ2
1

ℎ2
2

2

Fig. 4.6 Illustration of the masked language model for BERT

input. Finally, hMASK can be utilized to predict x2. Through the example illustration,
it can be intuitively understood that the masked language model is a reasonable
approach to optimizing the parameters of BERT using bidirectional contexts.

The question remains of how many and what kind of input tokens should be
replaced. In practice, BERT randomly masks 15% of all the tokens in each input
sequence and predicts them at the top layer. However, since the sequences are always
unmasked in the test environment, a mismatch will arise between the training and
testing phases. To address this issue, BERT does not always replace a token with
MASK. For each of the selected 15% of tokens, 80% are replaced with MASK, 10%
are replaced by another random token, and the remaining 10% remain unchanged.

Next Sentence Prediction Some text-processing tasks, such as text entailment and
question answering, must deal with two sequences rather than a single sequence. For
example, in the text entailment task, it must be determined whether the first sentence
(premise) entails the second sentence (hypothesis). This is equivalent to predicting
a label of Yes/No for the concatenation of the sentences representing a premise
and a hypothesis. If BERT is only pretrained on single sentences, it will not best fit
these downstream tasks. Accordingly, BERT’s design includes another unsupervised
training objective function that determines whether the second sequence B naturally
follows the first one A. For example, A is a sentence I am from Beijing and B is
Beijing is the capital of China. B is a natural sentence following A. If B is The
presidential election will be held in 2020, B does not follow A in natural text.

The training data can be constructed easily. Each pretraining instance (A,B)

is chosen according to the following strategy: in 50% of the instances, the second
sequence B indeed follows A in the monolingual corpus (e.g., BookCorpus), serving
as positive examples, while for the other 50%, B is a random sentence selected from
the corpus and serving as negative examples.

86 4 Text Representation with Pretraining and Fine-Tuning

During pretraining, A and B are concatenated into a single sequence (A[SEP]B),
where [SEP] is a separator symbol between two sentences. BERT learns the L

layers’ semantic representations for the sequence with the bidirectional Transformer
encoder. The final hidden representation of the first token (SOS is used in this
manuscript, and [CLS] is employed in the original paper of BERT) hL

SOS is fed
into a linear projection layer and a softmax layer to predict whether B follows A.

4.3.2 BERT: Fine-Tuning

Similar to GPT, the pretrained BERT is employed as the starting point for
downstream tasks and can be slightly adapted and further fine-tuned according to the
target text-processing tasks. BERT is only pretrained with a masked language model
and next sentence prediction as the objective function, and the network cannot
directly perform specific tasks such as text entailment and question answering.
Therefore, it is necessary to fine-tune BERT to fit the specific tasks with task-
dependent training data.

BERT can be applied to two kinds of downstream tasks: sequence-level clas-
sification tasks and sequence labeling tasks. For the classification tasks, the input
sequence is first fed into the pretrained BERT, and the final hidden representation
of the first token hL

SOS is utilized for classification. hL
SOS is linearly projected by

a parameter matrix WO and is then fed into the softmax layer to calculate the
probability distribution of the categories. The network parameters of the pretrained
BERT and the newly introduced projection matrix WO are fine-tuned to maximize
the probability p(y|x) of label y on the supervised classification training set.

For the sequence labeling task, each token xj yields a final hidden representation
hL

j through the pretrained BERT. A linear projection layer and a softmax function

further operate on hL
j to predict the label yj . All the network parameters are fine-

tuned to maximize the probability p(y|x) of the label sequence y in the supervised
sequential labeling training data.

4.3.3 XLNet: Generalized Autoregressive Pretraining

Although BERT has achieved great success in many text-processing tasks,
there are still some shortcomings for this model. The most critical issue is
that a serious discrepancy between pretraining and fine-tuning persists for
BERT, since the massively used special symbol MASK during pretraining
never appears in the downstream tasks during fine-tuning. Furthermore, BERT
assumes that the masked tokens in the input sequence are independent of
each other. According to the design of BERT, 15% the input tokens are
randomly masked. For instance, after random masking, the original input

4.3 BERT: Bidirectional Encoder Representationsfrom Transformer 87

2 3 41

0

1

3

2 3 41

0

1

3

2 3 41

0

1

3

2 3 41

0

1

3

3 → 2 → 4 → 1 4 → 3 → 1 → 2

2 4 3 1 1 4 2 3

Fig. 4.7 Permutations of the sequence (x1, x2, x3, x4) and their autoregressive language model

sequence (SOS, x1, x2, · · · , xj−1, xj , xj+1, · · · , xn−1, xn,EOS) may become
(SOS, x1, MASK, · · · , xj−1, MASK, xj+1, · · · , MASK, xn,EOS). It is obvious
that x2 and xn−1 will not be used in the prediction of xj when pretraining BERT
(similarly, (x2, xj) not for xn−1 and (xj , xn−1) not for x2). In practice, however, x2,
xj , and xn−1 may depend on each other.

To overcome the above shortcomings, Yang et al. (2019) proposed a generalized
autoregressive pretraining model named XLNet8 This model aims to maintain
BERT’s merits in capturing the bidirectional context well without using the masking
strategy. XLNet mainly includes two ideas that are novel compared to BERT:
permutation language modeling and two-stream self-attention.

Permutation Language Modeling Intuitively, all the left and right contexts would
have an opportunity to appear before the focal token xj if we enumerate all the
permutations of the input sequence. Take the sequence (x1, x2, x3, x4) as an example
and suppose that x3 is our focus. As shown in Fig. 4.7, different permutations will
provide different contexts for x3. The bottom right is the permutation that moves all
the bidirectional contexts before x3. Accordingly, any feed-forward (autoregressive)
language model can be applied to pretrain XLNet while conditioning on bidirec-
tional contexts.

8The codes and pretrained models are available at https://github.com/zihangdai/xlnet.

https://github.com/zihangdai/xlnet

88 4 Text Representation with Pretraining and Fine-Tuning

Let Zn be the set of all the possible permutations of an n-token sequence, and
let zj , z<j be the j -th element and the preceding j − 1 elements in a specific
permutation z ∈ Zn. Then, XLNet is pretrained to maximize the expectation of
the autoregressive language model probabilities of the permutation set:

T∑

t=1

⎧
⎨

⎩Ez∈Zn

⎡

⎣
n∑

j=1

logp(x(t)
zj

|x(t)
z<j

; θ)

⎤

⎦

⎫
⎬

⎭ (4.12)

Note that XLNet only permutes the factorization order (the decomposition
approach to calculating the probability of p(x)) rather than reordering the original
sequence, as Fig. 4.7 shows.

Two-Stream Self-Attention When calculating p(xzj |xz<j ; θ) in the permutation
language model, the hidden representation h(xz<j) is learned with the Transformer
self-attention mechanism, and a softmax algorithm is further employed to calculate
the probability distribution of the next token. It is easy to see that h(xz<j) is not
aware of the target position j when predicting xj . Thus, p(xzj |xz<j ; θ) is computed
regardless of the target position, and p(xzk |xz<j ; θ) (k ≥ j) shares the same
probability distribution. That is, the conditional language model probability of a
token will always be the same regardless of location when it is given the same
history context. Obviously, this position insensitive property is undesirable because
language is sensitive to word order and position. Accordingly, XLNet designs a new
two-stream self-attention mechanism to address this issue.

Two types of hidden representations can be learned at time step j : content
representation h(xz≤j) and query representation g(xz<j):

hl (xzj) = Attention(qj = hl−1(xzj),K≤jV ≤j = hl−1(xz≤j)) (4.13)

gl (xzj) = Attention(qj = gl−1(xzj),K<jV <j = gl−1(xz<j)) (4.14)

Note that the content representation h(xz≤j) is the same as those hidden states in
the conventional Transformer. The query representation g(xz<j) is position aware,
but it is learned without using the content information of the zj -th token. The query
representation at the top layer gL(xz<j) will be used to predict xzj . Initially, h0(xzj)

is the token embedding of xzj , and g0(xzj) is a trainable vector w. Figure 4.8
illustrates the main idea behind the two-stream self-attention model. Suppose the
factorization order is 2 → 4 → 3 → 1 and we need to predict x3 given
(x2, x4). Gray solid lines denote the content representation flow (the same as in the
conventional Transformer), while the black solid lines show the query representation
process. The black dotted line indicates that the input serves only as the query, and
its values are not used during the attention computation procedure. For example, g1

3
is a function of the weighted summation of word embeddings x2 and x4, excluding

4.3 BERT: Bidirectional Encoder Representationsfrom Transformer 89

3

ℎ3
1

3
1

ℎ3
2

3
2

Fig. 4.8 Two-stream attention model for the perturbation 2 → 4 → 3 → 1

x3. The weights are estimated using g0
3 = w as the query to attend to x2 and x4. If

XLNet includes two layers, g2
3 will be adopted to predict x3.

To speed up the convergence of the training process, XLNet only predicts the
last few tokens of each sampled factorization order instead of the whole sequence.
In addition, XLNet also incorporates some sophisticated techniques, such as relative
position embedding and the segment recurrence mechanism from Transformer-XL
(Dai et al. 2019). Finally, XLNet can outperform BERT on 20 text-processing tasks.

Interestingly, researchers at Facebook (Liu et al. 2019) find that BERT is
significantly undertrained. They report that with the careful design of the key
hyperparameters and training data size, BERT9 can match or even exceed XLNet
and other variants.

4.3.4 UniLM

ELMo, BERT, and XLNet aim to fully explore the bidirectional contexts of the input
sequence and are mainly designed for natural language understanding tasks. GPT is
appropriate for natural language generation tasks such as abstractive summarization.
Nevertheless, GPT can only utilize left-side context. An interesting question is how
to combine the merits of both BERT and GPT to design a pretraining model for text
generation tasks.

9They have named the reimplementation RoBERTa; details are available at https://github.com/
pytorch/fairseq.

https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq

90 4 Text Representation with Pretraining and Fine-Tuning

⋯ ⋯

⋯

⋯

⋯

⋯ℎ ℎ ℎ ℎ

⋯ ⋯

⋯

⋯

⋯

⋯ℎ ℎ ℎ ℎ

⋯ ⋯

Fig. 4.9 The architecture of UniLM

Dong et al. (2019) proposed a unified pretraining language model UniLM,10

which can adapt the Transformer model for monolingual sequence-to-sequence
text generation tasks. Given a pair of two consecutive sequences (x, y) in the
monolingual corpus, UniLM considers x as the input sequence and y as the output
sequence. As illustrated in Fig. 4.9, UniLM applies a bidirectional Transformer
encoder to the input sequence and a unidirectional Transformer decoder to the
output sequence. The same masking mechanism as used for BERT is employed
to pretrain the UniLM model. By pretraining the model on large-scale monolingual
data, UniLM can be further fine-tuned to perform text generation tasks, such as
abstractive summarization and question generation. Dong et al. (2019) report that
UniLM can achieve the new state-of-the-art performance for abstractive summa-
rization tasks on the CNN Daily Mail dataset.

To obtain a comprehensive understanding of various pretraining models, we list
them in Table 4.1 and outline the key architecture and features of each model.

4.4 Further Reading

This chapter briefly introduces several popular pretraining models, including ELMo,
GPT, BERT, XLNet, and UniLM. We can see that the pretraining and fine-tuning
paradigms have led to major breakthroughs in many natural language understanding
and generation tasks. Recently, the pretraining methodology has been developing
quickly, and many improved models have been proposed, most of which focus on
improving the BERT framework. These new models can be roughly divided into
the following three categories. (More information about pretraining models can be
found in the survey paper (Qiu et al. 2020)).

10Codes and models can be found at https://github.com/microsoft/unilm.

https://github.com/microsoft/unilm

4.4 Further Reading 91

Table 4.1 Comparison of different pretraining models

Model Architecture Key features Most fitted tasks

ELMo Bidirectional LSTMs First large-scale pretrained model that
provides dynamic embedding based on
test sequences for fine-tuning

Understanding

GPT Transformer decoder First architecture to accommodate
pretraining and fine-tuning on the same
model

Understanding

GPT-2 Transformer decoder Enhanced GPT with deeper layers using
more text data

Generation

GPT-3 Transformer decoder Upgraded GPT with very deeper layers
using huge scale of text data

Generation

BERT Transformer encoder Denoising autoencoder paradigm that
employs masked language model and
next sentence prediction as objectives

Understanding

XLNet Transformer encoder Generalized autoregressive language
model using input permutations

Understanding

UniLM Transformer Generalized pretraining model for both
natural language understanding and
generation

Generation

One research direction aims at designing more sophisticated objective functions
or incorporating knowledge into the BERT architecture. Sun et al. (2019) propose a
model, ERNIE, that improves the masked language model by masking the entities
rather than characters (subwords or words) as in the original BERT. They prove that
the entity masked model works very well on many Chinese language processing
tasks. They further upgrade the model to ERNIE-2.0, which incrementally learns
pretraining tasks using a multitask learning framework (Sun et al. 2020). Zhang et al.
(2019) present another improved model, also called ERNIE, that incorporates the
representation learning of entities in knowledge graphs into the BERT pretraining
process.

Another direction aims to make the pretrained model as compact as possible.
Since BERT is very heavy and contains a huge number of parameters, it is
computationally expensive and memory intensive, especially for the inference step.
Sanh et al. (2019), Tang et al. (2019), and Jiao et al. (2019) propose using the
knowledge distillation strategy to compress the big model into a small one with
negligible performance drop. Lan et al. (2019) propose reducing the memory
usage and speeding up the training procedure of BERT with two parameter
reduction approaches, namely, factorized embedding parameterization and cross-
layer sharing.

The third direction explores pretraining models for generation and cross-lingual
tasks. While most of the studies tackle natural language understanding tasks by
enhancing BERT, an increasing number of researchers are turning their attention
to pretraining for generation tasks and cross-lingual tasks. Both UniLM and the
MASS model proposed by Song et al. (2019) facilitate generation problems, but the

92 4 Text Representation with Pretraining and Fine-Tuning

latter uses a smart design. The MASS model masks a consecutive subsequence seq

in a sentence and uses the masked sequence as input to predict the consecutive
subsequence seq with a sequence-to-sequence model. Cross-lingual pretraining
is also attracting increasing attention. Conneau and Lample (2019) present a
model XLM for cross-lingual language model pretraining using pairs of bilingual
translation sentences as input.

There is another issue, in that the inference procedure in the generation tasks
always follows a left-to-right manner and cannot access future information. One
promising direction is to perform synchronous bidirectional inference for generation
tasks, such as the work of Zhou et al. (2019) employed in machine translation.

Exercises

4.1 Please analyze the complexity of different pretraining models including ELMo,
GPT, BERT, and XLNet.

4.2 It is said that the masked language model is one type of denoising autoencoder.
Please provide a detailed analysis of this claim.

4.3 Both GPT and UniLM can be employed in language generation tasks. Please
comment on the difference between the two models when they are used for
generation.

4.4 The task of next sentence prediction is shown to be helpful in BERT; please
analyze the scenarios in which the next sentence prediction task is not necessary
and give the reasons.

4.5 XLM is a cross-lingual pretraining model. Please see the details of the model
and identify the kinds of downstream tasks for which it could be employed.

Chapter 5
Text Classification

5.1 The Traditional Framework of Text Classification

For simplicity of description, in the following we use “document” instead of “a
piece of text” at different levels, and the text classification or text categorization
problem can also be called document classification or document categorization. If
not specified, the methods described below apply not only to document classification
but also to text classification at other levels (e.g., sentence classification). As shown
in Fig. 5.1, the goal of document classification is to divide a collection of documents
into a set of predefined categories such as “technology,” “sports,” or “entertainment.”

The traditional framework of a document classification system is represented
in Fig. 5.2. The system consists of three separate components: text representation,
feature selection, and classification. The literature (Sebastiani 2002) summarizes
text classification techniques according to this framework. The three stages are
normally separate in traditional document classification. In the following three
subsections, we will introduce these three stages respectively.

In document classification, a document must be correctly and efficiently rep-
resented for subsequent classification algorithms. The representation method must
truly reflect the content of the text and have sufficient ability to distinguish different
types of text. We have systematically introduced text representation methods in
Chap. 3. For more details on the text representation methods, particularly the
traditional vector space model, readers can refer to Sect. 3.1, and we will not go
into detail on these here. However, it is worth noting that the selection of a text rep-
resentation method depends on the choice of classification algorithm. For example,
discriminative classification models (such as ME and SVM) usually use the vector
space model (VSM) for text representation. Text representation in a generative
model (such as NB) is determined by the class-conditional distribution hypothesis,
e.g., the multinomial distribution or the multivariable Bernoulli distribution.

There are two steps to using the vector space model for text representation: (1)
generating a feature vector composed of a sequence of terms (e.g., the vocabulary)

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_5&domain=pdf
https://doi.org/10.1007/978-981-16-0100-2_5

94 5 Text Classification

Documents

Acme
ArticleAcme

Article
Documents

Documents

Documents

technology

sports

entertainment

Fig. 5.1 An example of document classification

Text

Representation

Feature

Selection
Classification

Fig. 5.2 The main components of text classification based on traditional machine learning

based on the training data and (2) assigning a weight to each term in the vector
and performing some normalization for each document in the training and testing
datasets. The vector space model is simple to use, but it loses too much information
from the original documents.

We construct a small dataset for text classification, as shown in Table 5.1. The
dataset includes two classes: “education” and “sport.” Each class in the training set

Table 5.1 Text classification dataset

Id Document Category

train_ d1 Beijing Institute of Technology was established in 1958 as one of the
earliest universities that established a computer science major in China.

Education

train_ d2 Students from Beijing Institute of Technology won the 4th China
Computer Go Championship.

Education

train_ d3 The Gymnasium of Beijing Institute of Technology is the venue for the
preliminary volleyball competition of the 2008 Beijing Olympic Games
in China.

Sport

train_ d4 In the 5th East Asian Games, the total number of medals of China
reached a new high. Both the men’s and women’s volleyball teams won
championships.

Sport

test_ d1 Beijing Institute of Technology is a national key university of China that
focuses on science and engineering.

test_ d2 The Fudan University volleyball team won the volleyball championship
in this year’s college games.

5.2 Feature Selection 95

Table 5.2 Vocabulary for the text classification dataset given in Table 5.1

1958, 2008, 4th, 5th, Asian, Beijing, China, Olympic, champion, competition, computer, early,
east, establish, game, go, gymnasium, high, institute, major, man, medal, new, number, one,
preliminary, reach, science, student, team, technology, total, university, venue, volleyball,
woman

includes four documents (train_ d1 and train_ d2 belong to the education class, and
train_ d3 and train_ d4 belong to the sport class), and the test set consists of two
documents (test_ d1 and test_ d2). Table 5.2 provides the vocabulary of the text
classification dataset. Each document can be represented as a vector in the vector
space based on this vocabulary.

5.2 Feature Selection

The traditional vector space model represents a document based on a high-
dimensional vector space. To reduce the noise contained in such a high-dimensional
vector and improve the computational efficiency, it is necessary to reduce its dimen-
sion before performing classification. In machine learning and pattern recognition,
dimension reduction methods fall into two main categories: feature extraction and
feature selection.

The purpose of feature extraction is to map the original high-dimensional sparse
feature space into a low-dimensional dense feature space. The classical feature
extraction methods include principal component analysis (PCA) and independent
component analysis (ICA).

Feature selection is the process of selecting a subset of features for text represen-
tation and classification. In comparison with feature extraction, feature selection has
been more widely discussed and used for text data. The feature selection methods
for text classification normally include unsupervised and supervised methods. The
former can be applied to a corpus without category annotation, but its effect is often
limited. The representative approaches include term frequency (TF) and document
frequency (DF), where the latter relies on category annotation, which can more
effectively select a better subset of features for text classification. The commonly
used supervised methods include the mutual information (MI), information gain
(IG), and chi-square statistic (χ2) methods. Yang and Pedersen (1997) and Forman
(2003) systematically summarized the feature selection methods used in text
classification and pointed out that a good feature selection algorithm can effectively
reduce the feature space, remove redundant and noise features, and improve the
efficiency of the classifier.

We introduce supervised feature selection methods in this subsection.

96 5 Text Classification

5.2.1 Mutual Information

In information theory, suppose that X is a discrete random variable whose probabil-
ity distribution is p (x) = P (X = x). The entropy of X is defined as follows:

H (X) = −
∑

x

p (x) log p (x) (5.1)

Entropy, also known as the expectation of self-information, is used to measure the
average level of “information” or “uncertainty” inherent in the variable’s possible
outcomes. If a random variable has greater entropy, it has greater uncertainty, and
consequently, a larger amount of information is needed to represent it, while less
entropy means less uncertainty and requires less information.

Suppose X and Y are a pair of discrete random variables with the joint
distribution p (x, y) = P (X = x, Y = y). Then, the joint entropy of X and Y is
defined as:

H (X, Y) = −
∑

x

∑

y

p (x, y) log p (x, y) (5.2)

The joint entropy indicates the uncertainty (i.e., the amount of information needed
for representation) of a pair of random variables.

The conditional entropy describes the uncertainty of random variable Y given the
value of random variable X. In other words, it indicates the amount of additional
information needed to represent Y under the condition that the value of X is known.
It can be defined as follows:

H (Y |X) =
∑

x

p (x)H (Y |X = x)

= −
∑

x

∑

y

p (x, y) log p (y|x) (5.3)

H(Y |X) = 0 if and only if the value of Y is completely determined by X.
Conversely, H(Y |X) = H(Y) if and only if Y and X are independent of each other.

The relationship between entropy, joint entropy, and conditional entropy can be
described as follows:

H (Y |X) = H (X, Y) − H (X) (5.4)

Figure 5.3 displays the relationship between entropy, joint entropy, and condi-
tional entropy. Suppose that the circle on the left represents entropy H(X) and the
circle on the right represents entropy H(Y). The union of the two circles represents
the joint entropy H(X, Y), the crescent on the left represents the conditional entropy
H(X|Y), the crescent on the right represents the conditional entropy H(Y |X), and

5.2 Feature Selection 97

Fig. 5.3 The relationship
between entropy, joint
entropy, and conditional
entropy

;

the intersection of the two circles is called the mutual information of X and Y , as
defined below.

Mutual information reflects the degree to which two random variables are related
to each other. For two discrete random variables X and Y , their mutual information
is defined as:

I (X; Y) =
∑

x,y

p (x, y) log
p (x, y)

p (x) p (y)
(5.5)

The relationship between entropy, conditional entropy, and mutual information
is as follows:

I (X; Y) = H (Y) − H (Y |X) = H (X) − H (X|Y) (5.6)

Mutual information is a measure of the interdependence between two random
variables. It can be regarded as the amount of the reduction in uncertainty in a
random variable when another random variable is known.

Let I (x; y) = log p(x,y)
p(x)p(y)

denote the pointwise mutual information (PMI)
of X and Y when they take the value (x, y). Equation (5.6) shows that MI
is the expectation of PMI. In text classification, PMI measures the amount of
discriminative information of class cj provided by feature ti .

For a given collection of documents, we first calculate the value of each term
ti and class cj in Table 5.3. Nti ,cj indicates the document frequency of term ti
appearing in class cj ; Nti,c̄j indicates the document frequency of term ti appearing
in all classes except cj ; Nt̄i,cj

indicates the document frequency of all terms except
ti appearing in class cj ; and Nt̄i,c̄j

indicates the document frequency of all terms
except ti appearing in all classes except cj . N = Nti,cj + Nti ,c̄j + Nt̄i,cj

+ Nt̄i,c̄j
is

the total number of documents.

98 5 Text Classification

Table 5.3 The document
frequency statistic for each
feature and class

Class

Feature cj c̄j

ti Nti ,cj
Nti ,c̄j

t̄i Nt̄i ,cj
Nt̄i ,c̄j

Based on the principle of maximum likelihood estimation, we can estimate the
following probability:

p
(
cj

) = Nti,cj + Nt̄i,cj

N
(5.7)

p (ti) = Nti,cj + Nti,c̄j

N
(5.8)

p
(
cj |ti

) = Nti ,cj + 1

Nti,cj + Nti,c̄j + M
(5.9)

p
(
cj |t̄i

) = Nt̄i ,cj
+ 1

Nt̄i,cj
+ Nt̄i,c̄j

+ M
(5.10)

where M denotes the number of categories and p
(
cj |ti

)
and p

(
cj |t̄i

)
are estimated

with Laplace smoothing to avoid zero probabilities.
On this basis, the mutual information I

(
ti; cj

)
between ti and cj can be

calculated as

I
(
ti; cj

) = log
Nti,cj N(

Nti ,cj + Nt̄i,cj

) (
Nti,cj + Nti,c̄j

) (5.11)

Finally, we can take either the weighted average of I (ti; cj):

Iavg(ti; cj) =
∑

j

p
(
cj

)
I
(
ti; cj

)
(5.12)

or the maximum value among different classes

Imax(ti; cj) = max
j

{
I
(
ti; cj

)}
(5.13)

to measure the amount of discriminative information that item ti contains for all
classes.

The process of feature selection, hence, first calculates the MI score (Eq. (5.12)
or Eq. (5.13)) for all terms, then ranks the terms according to their MI scores, and
finally selects a subset of the top-ranked terms as the selected features.

5.2 Feature Selection 99

Table 5.4 MI feature selection results for the text classification dataset

Features MI

Computer game volleyball 0.4055

1958 2008 4th 5th Asian Olympic competition early east establish go gymnasium high
major man medal new number one preliminary reach science student team total
university venue woman

0.2877

China champion 0.0000

Beijing institute technology 0.1823

Table 5.4 gives the results of the feature selection for the text classification dataset
(Table 5.1) based on the MI method.

5.2.2 Information Gain

Information gain (IG) denotes the reduction in uncertainty of the random variable Y

given the condition that random variable X is observed:

G (Y |X) = H (Y) − H (Y |X) (5.14)

Such a reduction in uncertainty can be represented by the difference between H(Y)

and H(Y |X).
In the text classification task, we can regard a feature Ti ∈ {ti , t̄i} as a binary

random variable that has a Bernoulli distribution (also called a 0-1 distribution) and
regard the class C as a random variable that has a categorical distribution. Based on
this, information gain can be defined as the difference between entropy H(C) and
conditional entropy H(C|Ti):

G (Ti) = H (C) − H (C|Ti)

= −
∑

j

p
(
cj

)
log p

(
cj

) −
⎡

⎣

⎛

⎝−
∑

j

p
(
cj,ti

)
log p

(
cj |ti

)
⎞

⎠

+
⎛

⎝−
∑

j

p
(
cj , t̄i

)
log p

(
cj |t̄i

)
⎞

⎠

⎤

⎦ (5.15)

While using the same number of top-ranked features for text classification,
IG performs significantly better than MI in many text classification applications
because information gain takes both ti and t̄i into consideration and can be viewed
as a weighted average of the pointwise mutual information I (t̄i; cj) and I (ti; cj)

(Yang and Pedersen 1997):

G (Ti) =
∑

j

p(ti , cj) · I (ti , cj) + p
(
t̄i , cj

) · I
(
t̄i , cj

)
(5.16)

100 5 Text Classification

Table 5.5 IG feature selection results for the text classification dataset

Features IG

Computer game volleyball 0.1308

1958 2008 4th 5th Asian Beijing Olympic competition early east establish go
gymnasium high institute major man medal new number one preliminary reach
science student team technology total university venue woman

0.0293

China champion 0.0000

Table 5.5 gives the feature selection results for the text classification dataset
(Table 5.1) based on IG.

5.2.3 The Chi-Squared Test Method

The chi-square (χ2) test is a statistical hypothesis testing method. It is widely used
to test the independence of two random variables by determining whether there is a
statistically significant difference between the expected frequency and the observed
frequency.

As applied to text classification, suppose term Ti ∈ {ti , t̄i} and class Cj ∈{
cj , c̄j

}
are two binary random variables that both obey a Bernoulli distribution,

where ti and t̄i represent whether ti appears in a document or not and cj and c̄j

represent whether the class of a document is cj or not.
On this basis, we propose the null hypothesis: Ti and Cj are independent of each

other. That is, p(Ti, Cj) = p (Ti) · p
(
Cj

)
. For each term Ti and class Cj , we

calculate the chi-square statistics:

χ2 (Ti, Cj

) =
∑

Ti∈{ti ,t̄i}

∑

Cj ∈{cj ,c̄j }
(NTi ,Cj − ETi,Cj)

2

ETi,Cj

(5.17)

where NTi,Cj denotes the observed document frequency defined in Table 5.3 and
ETi,Cj denotes the expected document frequency based on the null hypothesis (i.e.,
Ti and Cj are independent of each other).

Under the null hypothesis, Eti,cj can be estimated based on Eqs. (5.17) and (5.18)
as follows:

Eti,cj = N · p
(
ti , cj

) = N · p (ti) · p (
cj

)

= N · Nti,cj + Nti,c̄j

N
· Nti ,cj + Nt̄i ,cj

N
(5.18)

5.2 Feature Selection 101

Table 5.6 Chi-square feature selection results for the text classification dataset

Features χ2

Computer game volleyball 4.0000

1958 2008 4th 5th Asian Beijing Olympic competition early east establish go
gymnasium high institute major man medal new number one preliminary reach
science student team technology total university venue woman

1.3333

China champion 0.0000

Similarly, we can estimate Et̄i,cj
, Eti,c̄j , and Et̄i,c̄j

. Finally, by bringing the above
results into Eq. (5.17), the chi-square statistic can be written as:

χ2 (Ti , Cj

) =
N ·

(
Nti,cj Nt̄i ,c̄j

− Nt̄i,cj
Nti ,c̄j

)2

(
Nti,cj + Nt̄i ,cj

)
·
(
Nti,cj + Nti,c̄j

)
·
(
Nti,c̄j

+ Nt̄i,c̄j

)
·
(
Nt̄i,cj

+ Nt̄i,c̄j

)

(5.19)

The higher the χ2
(
Ti, Cj

)
value, the less valid the null hypothesis is, and the

higher the correlation between Ti and Cj .
Similar to MI and CHI, the weighted average or maximum χ2

(
Ti, Cj

)
across all

classes can measure the amount of discriminative information contained by term Ti ,
and the top-ranked terms can be used as the selected features:

χ2
max (Ti) = max

j=1,...,M

{
χ2 (Ti, Cj

)}
(5.20)

χ2
avg (Ti) =

M∑

j=1

p(cj)χ
2 (Ti, Cj

)
(5.21)

Table 5.6 shows the results from the feature selection for the text classification
dataset (Table 5.1) using the χ2 method.

5.2.4 Other Methods

Nigam et al. (2000) proposed a weighted log-likelihood ratio (WLLR) method to
measure the correlation between term ti and class cj for feature selection for text
classification:

WLLR(ti, cj) = p
(
ti |cj

) · log
p
(
ti |cj

)

p
(
ti |c̄j

)

= Nti,cj

Nti ,cj + Nt̄i,cj

· log
Nti,cj (Nti ,c̄j + Nt̄i,c̄j

)

Nti ,c̄j (Nti ,cj + Nt̄i,cj
)

(5.22)

102 5 Text Classification

Table 5.7 The text classification dataset (Table 5.1) after feature selection

Id Document after dimension reduction Category

train_d1 computer university Education

train_d2 computer Education

train_d3 game volleyball Sport

train_d4 game medal volleyball Sport

test_d1 university

test_d2 game university volleyball volleyball

Li et al. (2009a) further analyzed six kinds of feature selection methods (MI, IG,

χ2, WLLR, and so on). They found that frequency p
(
ti |cj

)
and odd ratio p(ti |cj)

p(ti |c̄j)
are

two basic components in feature selection, and the above feature selection methods
can be formulated as the combination of the two basic components. Based on this,
they proposed a general feature selection method called general weighted frequency
and odd (WFO) for text classification:

WFO
(
ti , cj

) = p
(
ti |cj

)λ
(

log
p
(
ti |cj

)

p
(
ti |c̄j

)
)1−λ

=
(

Nti ,cj

Nti ,cj + Nt̄i ,cj

)λ (
log

Nti ,cj (Nti ,c̄j + Nt̄i,c̄j
)

Nti ,c̄j (Nti ,cj + Nt̄i,cj
)

)1−λ

(5.23)

We assume that the feature space obtained after feature selection is {computer,
volleyball, game, medal, university}. Based on the reduced feature set, the text
representations of the documents in Table 5.1 are shown in Table 5.7.

5.3 Traditional Machine Learning Algorithms for Text
Classification

After text representation and feature selection, the next step is to employ a
classification algorithm to predict the class label of the documents. Early text
classification algorithms included the Rocchio approach, the K-nearest neighbor
classifier, and decision trees. The most widely used text classification algorithms in
traditional machine learning are naïve Bayes, maximum entropy (ME), and support
vector machines (SVM).

5.3 Traditional Machine Learning Algorithms for TextClassification 103

5.3.1 Naïve Bayes

The Bayesian model is a kind of generative algorithm that models the joint
distribution p(x, y) of the observation x and its class y. In practice, the joint
distribution is transformed into the product of the class-prior distribution p(y) and
the class-conditional distribution p(x|y):

p (x, y) = p(y) × p(x|y) (5.24)

The Bernoulli distribution or the categorical distribution can be used to model
the former for binary and multiclass classifications, respectively. The remaining
problem is how to estimate the class-conditional distribution p(x|y) for different
applications.

In text classification, to solve the above problem, it is necessary to further
simplify the class-conditional distribution of documents. A simple way is to ignore
the word order relationships in the document and assume that a document is a
bag of words where the individual words are interchangeable. Mathematically,
such simplification can be described as an assumption that the class-conditional
distributions of words are independent of each other. Based on this assumption,
the class-conditional distribution of a document can be written as the product of
multiple class-conditional distributions of words. Such a bag-of-words assumption
is consistent with the discriminant model where a document can be represented
based on a vector space model. The Bayesian model under this assumption is called
the naïve Bayes model.

There are two main hypotheses for the class-conditional distribution, known as
the multinomial distribution and the multivariate Bernoulli distribution (McCallum
et al. 1998). The multivariate Bernoulli distribution only captures the presence of
words in a document and ignores their frequency. In comparison, the multinomial
distribution is used more often and has generally better classification performance.
In this section, we will introduce the naïve Bayes model based on the multinomial
distribution.

First, we represent a document x as a sequence of words:

x = [
w1, w2, · · · , w|x|

]
(5.25)

Under the bag-of-words assumption, p(x|y) has the form of a multinomial
distribution:

p(x|cj)= p([w1, w2, · · · , w|x|]|cj)

=
V∏

i=1

p(ti |cj)
N(ti ,x) (5.26)

where V is the dimension of the vocabulary, ti is the i-th term in the vocabulary,
θi|j = p(ti |cj) is the probability of occurrence of ti in class cj , and N(ti , x) is the
term frequency of ti in document x.

104 5 Text Classification

We take the multiclass classification problem as an example for description. We
assume that the class y obeys the categorical distribution:

p
(
y = cj

) = πj (5.27)

According to the assumption of a multinomial distribution, the joint distribution
of p (x, y) can be written as

p(x, y = cj) = p(cj) · p(x|cj) = πj

V∏

i=1

θ
N(ti ,x)
i|j (5.28)

Naïve Bayes learns the parameters (π , θ) based on the principle of maximum
likelihood estimation (MLE). Given the training set {xk, yk}Nk=1, the optimization

objective is to maximize the log-likelihood function L (π, θ) = log
N∏

k=1
p (xk, yk).

By solving the MLE problem, we obtain the estimated value of the parameters:

πj =
∑N

k=1 I (yk = cj)∑N
k=1

∑C
j ′=1 I (yk = cj ′)

= Nj

N
(5.29)

θi|j =
∑N

k=1 I (yk = cj)N(ti , xk)∑N
k=1 I (yk = cj)

∑V
i′=1 N(ti′ , xk)

(5.30)

It can be seen that the estimated value of the class-prior probability πj is the
document frequency of the j -th class in the training set, and the estimated value of
the class-conditional probability of term ti in class cj is also the frequency of ti in
the documents of class cj over all the terms in the vocabulary.

To prevent the occurrence of zero probabilities, a Laplace smoothing technique
is often applied to Eq. (5.30):

θi|j =
∑N

k=1 I (yk = cj)N(ti , xk) + 1
∑V

i′=1
∑N

k=1 I (yk = cj)N(ti′ , xk) + V
(5.31)

We train a multinomial naïve Bayes model on the dimension-reduced training set
(Table 5.7). Let t1 = computer, t2 = volleyball, t3 = game, t4 = medal, t5 = university,
and y = 1 for the class “education” and y = 0 for the class “sport.” The parameter
estimation results are shown in Table 5.8.

Table 5.8 Naïve Bayes
parameter estimation on the
dimension-reduced text
classification dataset
(Table 5.7)

p(y) p(y = 1) = 0.5 p(y = 0) = 0.5

p(ti |y) p(t1|y = 1) = 0.375 p(t1|y = 0) = 0.1

p(t2|y = 1) = 0.125 p(t2|y = 0) = 0.3

p(t3|y = 1) = 0.125 p(t3|y = 0) = 0.3

p(t4|y = 1) = 0.125 p(t4|y = 0) = 0.2

p(t5|y = 1) = 0.25 p(t5|y = 0) = 0.1

5.3 Traditional Machine Learning Algorithms for TextClassification 105

We classify the test documents in Table 5.7 based on the above model. Suppose
the representation of test document test_d1 is x1. The joint probabilities of x1 and
each class are

p (x1, y = 1) = p (y = 1) · p (t5|y = 1) = 0.125

p (x1, y = 0) = p (y = 0) · p (t5|y = 0) = 0.05

According to Bayes’ theorem, the posterior probabilities of x1 belonging to each
class are

p (y = 1|x1) = 0.125

0.125 + 0.05
= 0.714

p (y = 0|x1) = 0.286

Thus, test_d1 belongs to the “education” class.
Similarly, the joint probabilities of the test document test_d2 belonging to each

class are

p (x2, y = 1) = p (y = 1) · p (t2|y = 1)2 · p (t3|y = 1) · p (t5|y = 1) = 0.00024

p (x2, y = 0) = p (y = 0) · p (t2|y = 0)2 · p (t3|y = 0) · p (t5|y = 0) = 0.00135

The posterior probabilities are

p (y = 1|x2) = 0.153

p (y = 0|x2) = 0.847

Thus, test_d2 belongs to the “sport” class.

5.3.2 Logistic/Softmax and Maximum Entropy

Logistic regression is a classification algorithm, although its name contains the
term “regression.” It is a linear classification model that is widely used for binary
classification. Softmax regression is its extension from binary classification to
multiclass classification. In natural language processing, there is also a commonly
used model called maximum entropy (ME). Although softmax regression and
maximum entropy were proposed in different ways, their essence is the same.

We first introduce the three models with an emphasis on logistic regression.
We begin by introducing the sigmoid function σ (z) = 1

1+e−z , which can convert
the range of real numbers (from negative infinity to positive infinity) to the range
of probability (from 0 to 1). Thus, it is often used to approximate a distribution. Its

106 5 Text Classification

derivative is

dσ(z)

dz
= σ (z) (1 − σ (z)) (5.32)

For a binary classification problem, let y ∈ {0, 1} denote its class, x denote
the feature vector, and θ denote the weight vector. Logistic regression defines the
posterior probability of y ∈ {0, 1} given x as follows:

{
p(y = 1|x; θ) = hθ (x) = σ(θTx)

p(y = 0|x; θ) = 1 − hθ (x)
(5.33)

where the probability p(y = 1|x) is defined by a logistic function.
The two equations above can be written in a unified form:

p(y|x; θ) = (hθ (x))y(1 − hθ (x))(1−y)

=
(

1

1 + e−θTx

)y (
1 − 1

1 + e−θTx

)(1−y)

(5.34)

For the hypothesis given by Eq. (5.34), logistic regression estimates the parame-
ters based on the principle of maximum likelihood estimation. Given a training set
{(xi , yi)} , i = 1, · · · , N , the log-likelihood of the model is

l(θ) =
n∑

i=1

yilog hθ (xi) + (1 − yi)log (1 − hθ (xi)) (5.35)

First-order optimization methods such as gradient ascent and stochastic gra-
dient ascent are usually used to solve this optimization problem. In addition,
quasi-Newton methods such as BFGS (Broyden–Fletcher–Goldfarb–Shanno) and
L-BFGS (limited-memory BFGS) are also used to increase learning efficiency for
large-scale training data.

Softmax regression is the extension of logistic regression from binary classifica-
tion to multiclass classification, and it is also called multiclass logistic regression.
Logistic regression can also be viewed as a special case of softmax regression
where the number of classes is two. Softmax regression is the most widely used
classification algorithm in traditional machine learning and is often used as the last
layer of deep neural networks to perform classification.

Given the feature vector x, the posterior probability of class y = cj is defined in
terms of a softmax function as follows:

p(y = cj |x; Θ) = hj (x)

= exp(θT
j x)

∑C
l=1 exp(θT

l x)
, j = 1, 2, · · · , C (5.36)

where the parameters of the model are Θ = {θ j }, j = 1, · · · , C.

5.3 Traditional Machine Learning Algorithms for TextClassification 107

Given the training set {(x1, y1) , . . . , (xN, yN)}, the log-likelihood of softmax
regression is

L (Θ) =
N∑

i=1

C∑

j=1

I (yi = cj)log hj (xi) (5.37)

Note that the negative log-likelihood of softmax regression is also called the
cross-entropy loss function and is widely used in classification. It is worth noting
that softmax regression and naïve Bayes can be seen as a pair of discriminant
generative models (Ng and Jordan 2002).

In comparison with softmax regression, maximum entropy is a widely used
model in NLP classification tasks. Maximum entropy assigns the joint probability
to observation and label pairs (x, y) based on a log-linear model that is quite similar
to softmax regression:

p
θ
(x, y) = exp(θ · f (x, y))∑

x′,y ′ exp(θ · f (x′, y ′))
(5.38)

where θ is a vector of weights, as mentioned earlier, and f is a function that maps
pairs (x, y) to a binary-value feature vector.

The feature vector in softmax regression is defined based on the vector space
model of the observation x. In maximum entropy, it is defined by the following
feature function, which describes the known relationships between the observation
x and the class label y:

fi (x, y) =
{

1, x satisfies a certain fact, and y belongs to a category
0, others

(5.39)

By using the text classification dataset in Table 5.7, for example, we can construct
one feature function of (x, y) as follows: whether the category is “education”
when the document contains the word “university.” When the feature template is
consistent with the definition of the vector space model of softmax regression, the
two models are equivalent. It has also been proven that the parameter estimation
principles of the two methods (i.e., maximum entropy and maximum likelihood)
are also identical.

5.3.3 Support Vector Machine

Support vector machine (SVM) is a kind of supervised discriminative learning
algorithm for binary classification. It is one of the most popular and widely
discussed algorithms in traditional machine learning. There are two core ideas in
SVM: first, if the data points are linearly separable, a good separation in terms of

108 5 Text Classification

a hyperplane is the one that has the largest distance to the nearest training data
points on both sides; second, if the data points are linearly nonseparable, SVM can
transform the data to high-dimension space, where the data points may become
linearly separable through nonlinear transformation based on kernel functions. The
linear SVM is widely used for text classification.

The logistic regression model mentioned above is also a kind of linear binary
classification model that uses maximum likelihood as its learning criterion. The
learning criterion used in linear SVM is called the maximum margin.

For a linear classification hypothesis

f (x) = wTx + b (5.40)

Its classification hyperplane is wTx +b = 0. The maximum margin criterion can be
expressed as

max
w,b

1

2
‖w‖2

s.t. yi

(
wTxi + b

)
≥ 1, i = 1, · · · , N (5.41)

As a quadratic optimization problem, it can be solved with any off-the-shelf
quadratic programming optimization package. However, instead of directly solving
the primal optimization problem, SVM tends to solve the following dual problem
based on the Lagrange multiplier method:

max
α

N∑

i=1

αi − 1

2

m∑

i,j=1

yiyjαiαj 〈x i , xj 〉

s.t. αi ≥ 0, i = 1, · · · , N

N∑

i=1

αiyi = 0 (5.42)

where αi ≥ 0 is the Lagrange multiplier. The solutions of the dual problem satisfy
the Karush–Kuhn–Tucker (KKT) conditions. According to the KKT conditions,
only the weights of data points on the boundaries of the margin are positive (αi > 0),
and the weights of the remaining data points are all zero (αi = 0). It can be further
inferred that the classification hyperplane is only supported by the data points on
the boundaries. This is the main reason why the model is called a “support vector”
machine.

The hard-margin SVM can work only when the data are completely linearly
separable. In the case of noise points or outliers, the margin of SVM will become
smaller or even negative. To solve this problem, the soft-margin SVM was proposed,

5.3 Traditional Machine Learning Algorithms for TextClassification 109

which introduces slack variables into the primary problem:

max
w,b

1

2
‖w‖2 + C

N∑

i=1

ξi

s.t. yi

(
wTxi + b

)
≥ 1 − ξi

ξi ≥ 0, i = 1, . . . , N (5.43)

where ξi is the slack variable and C is the parameter that determines the tradeoff
between increasing the margin size and ensuring that the points lie on the correct
side of the margin boundary. The corresponding dual problem of soft-margin
SVM is

max
α

N∑

i=1

αi − 1

2

m∑

i,j=1

yiyjαiαj 〈x i , xj 〉

s.t. 0 ≤ αi ≤ C, i = 1, · · · , N

N∑

i=1

αiyi = 0 (5.44)

Meanwhile, to address the linearly nonseparable classification problem in low-
dimensional space, SVM introduces the kernel function, which allows the algorithm
to fit the maximum-margin hyperplane in a transformed high-dimensional feature
space. Although the problem is linearly nonseparable in the original input space, it
might be linearly separable in the transformed feature space.

The kernel function is defined as the inner product of kernel data in the
transformed space:

K(x, z) = ϕ(x)Tϕ (z) (5.45)

According to Eq. (5.44), the operations involved in SVM are all inner product
operations toward x. We can therefore use a nonlinear kernel function to replace
the dot product in the transformed feature space without needing to know the exact
mapping function. The resulting dual problem is formally similar to the previous
problem:

max
α

W (α) =
N∑

i=1

αi − 1

2

m∑

i,j=1

yiyjαiαjK(xi , xj)

s.t. 0 ≤ αi ≤ C, i = 1, · · · , N

N∑

i=1

αiyi = 0 (5.46)

110 5 Text Classification

and the decision function is accordingly

f (x) =
N∑

i=1

α∗
i yi〈ϕ (xi) , ϕ (x)〉 + b∗

=
N∑

i=1

α∗
i yiK (xi , x) + b∗ (5.47)

The commonly used kernel functions include:

• Linear kernel: K(x, z) = xTz,
• Polynomial kernel: K(x, z) = (

xTz + c
)d

,

• Radial basis function: K (x, z) = exp
(
−|x−z|2

2δ2

)

as well as some other kernels, such as the sigmoid kernel, pyramid kernel, string
kernel, and tree kernel functions. The linear kernel function is mostly used in text
classification because the feature space representing a document is usually high-
dimensional and linearly separable.

Thus far, we have introduced how to convert the primal problem of SVM into the
dual problem shown in Eq. (5.46), but we still need to solve the dual problem and
obtain the optimal parameters α∗ and b∗. A representative method for this task is
the sequential minimal optimization (SMO) algorithm. Interested readers can refer
to Platt (1998) for more details.

As a representative classification algorithm in traditional machine learning, SVM
has been widely used in text classification since the 1990s. According to the
comparative study of Yang and Liu (1999), SVM’s performance on topic-based text
classifications is significantly better than those of NB, linear least squares fit, and a
three-layer feed-forward neural network and is equivalent to or slightly better than
the k-nearest neighbor classifier. For the sentiment classification task (Pang et al.
2002), it was also reported that SVM performed better than NB and ME on the
movie review corpus.

5.3.4 Ensemble Methods

The pursuit of ensemble methods has been motivated by the intuition that the
appropriate integration of different participants might leverage distinct strengths. In
traditional machine learning, ensemble methods mostly combine multiple learning
algorithms to obtain better predictive performance than any of the base learning
algorithms alone. There are three main methods for generating multiple base
learning algorithms: (1) training on different data subsets; (2) training on different
feature sets; and (3) adopting different classification algorithms.

Bagging (bootstrap aggregating) and boosting algorithms belong to the first
category. Bagging, proposed by Breiman (1996), involves training each base

5.4 Deep Learning Methods 111

classifier based on a randomly extracted subset of the training set and obtaining
the ensemble predication by voting on multiple base classifiers. Boosting involves
incrementally building an ensemble model by training each base classifier iteratively
to emphasize the training instances that previous base classifiers misclassified.
AdaBoost is one of the representative (Freund et al. 1996) variants of the boosting
algorithm.

Ensemble learning has been successfully applied to text classification. An early
study (Larkey and Croft 1996) combined different types of machine learning
algorithms to obtain an ensemble classifier with better performance for text
classification. Schapire and Singer (2000) proposed BoosTexter, a text classification
system based on boosting, which performed better than traditional algorithms. Xia
et al. (2011) performed a comparative study of the effectiveness of the ensemble
technique for sentiment classification by integrating different feature sets and
classification algorithms to synthesize a more accurate sentiment classification
procedure.

5.4 Deep Learning Methods

Traditional text representation and classification algorithms rely on manually
designed features, which have many shortcomings, such as the high-dimensional
problem, data-sparsity problem, and poor representation learning ability. In recent
years, deep learning techniques, represented by deep neural networks, have made
great breakthroughs in speech recognition, image processing, and text mining.
Because of its powerful representation learning ability and the end-to-end learning
framework, deep learning has been widely applied to and made great progress in
many text mining tasks, including text classification.

In the following, we will introduce several representative deep learning methods
for text classification.

5.4.1 Multilayer Feed-Forward Neural Network

A multilayer feed-forward neural network is a forward-structured artificial neural
network that maps a set of input vectors to a set of output vectors in a multilayer fully
connected manner. Compared to the linear classification algorithm, a multilayer
forward neural network adds a hidden layer and an activation function for nonlinear
transformation. Ideally, a multilayer feed-forward network can approximate any
nonlinear functions.

Figure 5.4 shows the structure of a three-layer feed-forward network. Suppose
x ∈ R

M,h ∈ R
S, y ∈ R

C are the input layer, hidden layer, and output layer,
respectively. The nodes between two adjacent layers are fully connected. For
example, the hidden node bh is connected with all input nodes, x1, &, xi , &, xM , and

112 5 Text Classification

1

1 2 ℎ ……

…

… …Input layer

Output layer

Hidden layer

…

Fig. 5.4 The structure of a three-layer feed-forward neural network

the output node yj is connected with all hidden nodes, b1, &, bh, &, bS . W ∈ R
M×S

represents the weight matrix between the hidden layer and the output layer, where
whj is the weight of the connection between bh and yj . V ∈ R

S×C represents the
weight matrix between the input layer and the hidden layer, where vih is the weight
of the connection between xi and bh. The network structure can be formulated as
follows:

bh = σ (αh) = σ

(
M∑

i=1

vihxi + γh

)
(5.48)

ŷj = σ
(
βj

) = σ

(
S∑

h=1

whjbh + θj

)
(5.49)

where σ(·) is a nonlinear activation function such as sigmoid.
Given a training set D = {(

x1, y1
)
,
(
x2, y2

)
, . . . ,

(
xN, yN

)}
, define the

following least mean squares loss function:

E = 1

2

N∑

k=1

C∑

j=1

(
ŷkj

− ykj

)2
(5.50)

Learning or training can be viewed as the process of optimizing the loss function,
i.e., determining the optimal parameters of the model that best fits the training data
according to the loss function. For training, a feed-forward neural network uses the

5.4 Deep Learning Methods 113

back-propagation (BP) algorithm, which is essentially a stochastic gradient descent
optimization.

Artificial neural networks were investigated in the early research on text clas-
sification (Yang and Liu 1999) but have not been widely used because of the
computational inefficiency at that time. Moreover, neural networks were only used
as a classifier module rather than an end-to-end joint framework of feature represen-
tation learning and classification widely used now. A document was first represented
as a sparse feature vector x = [x1, x2, x3, · · ·]T based on the manually designed
vector space and then sent to the feed-forward neural network for classification only,
similar to the process for traditional classification algorithms such as naïve Bayes
and SVM.

Recently, with the development of representation learning ability and the appli-
cation of the end-to-end learning method, artificial neural network models, renamed
deep learning, have achieved great success in many text data mining fields,
including text classification. The representative deep learning algorithms include
convolutional neural networks and recurrent neural networks.

5.4.2 Convolutional Neural Network

Convolutional neural network (CNN) is a special kind of feed-forward neural
network in which the hidden layers consist of a series of convolutional and pooling
layers. In comparison with multilayer feed-forward neural networks, a CNN has the
characteristics of local connection, shared weights, and translation invariance.

Figure 5.5 shows the basic structure of a convolutional neural network for text
classification, which consists of an input layer, a convolutional layer, a pooling layer,
a fully connected layer, and an output layer.

A text classification model based on CNN usually has the following steps:

(1) The input text is normally subjected to morphological processing (e.g., tok-
enization for English or word segmentation for Chinese) and converted to a
word sequence, and then the word embedding is used for the initialization of
the network.

(2) Feature extraction is then performed through the convolutional layer. Taking
Fig. 5.5 as an example, there are three different sizes of convolution kernels,
2 × 5, 3 × 5, and 4 × 5, and two convolution kernels for each size. It should
be noted that when computing the convolutional representation matrix of the
input text, the two-dimensional convolution is usually performed only in one
direction (i.e., the width of the convolution kernel and the dimension of the
word vector are maintained), and the step of the convolution operation is set to
1. Each convolution kernel is used to operate on the representation matrix of
the input text, and each convolution kernel will obtain a vector representation
of the input text.

114 5 Text Classification

Sentence matrix
7 × 5

3 region sizes:(2,3,4)

2 filter for each region size

totally 6 filters

convolution

activation function

2 feature

maps for

each region

size

1-max pooling

softmax function

regularization in

this layer

2 classes
6 univariate

vectors

concatenated

together to form a

single feature

vector

d=5

I

like

movie

very

much

this

!

Fig. 5.5 The basic structure of CNN for text classification

(3) The pooling layer downsamples the feature vectors outputted by the convolu-
tional layer and obtains an abstract text representation whose dimension is equal
to the number of convolution kernels. The vector representation outputted by the
pooling layer is then fed into the softmax layer (i.e., a fully connected layer plus
a normalization layer) for classification.

Kim (2014) first proposed convolutional neural networks for text classification
and found that they achieved significantly better performance than classical machine
learning methods in both topic and sentiment classification tasks. Kalchbrenner et al.
(2014) proposed a dynamic convolutional neural network that used the dynamic k-
max pooling operation to downsample and several of the most important features
to represent local features after two-dimensional convolutions. Zhang et al. (2015)
proposed a character-level CNN that represents the text and performs convolution

5.4 Deep Learning Methods 115

operations at a finer granularity (e.g., characters) and achieved better or competitive
results in comparison with word-level CNN and RNN.

5.4.3 Recurrent Neural Network

(1) RNN, LSTM, Bi-LSTM, and GRU

Recursive neural network is a kind of deep neural network created by applying
the same set of weights recursively over a structured input. It has been widely used
in learning sequences and tree structures in natural language processing. Usually, the
recursive neural network over time (i.e., a modeling sequence) is called a recurrent
neural network. In the following, RNN refers to recurrent neural network if not
stated specifically otherwise.

The structure of a recurrent neural network is shown in Fig. 5.6. The left side is
the structure that runs recurrently over time, and the right side is the structure that is
expanded to a sequence. Suppose xt is the input at time step t and ot is the output
of the model. It can be seen that ot is related to not only xt but also the hidden layer
state of the previous time step s t−1. ot can be described as follows:

s t = f (Uxt + Wst−1) (5.51)

ot = V st (5.52)

where U ∈ R
h×d , W ∈ R

h×h, and V ∈ R
c×h are the weight matrices of the input

node to the hidden node, the current hidden node to the next hidden node, and the
hidden node to the output node, respectively. d , h, and c are the dimensions of the
input layer, the hidden layer, and the output, respectively. f is a nonlinear activation
function (e.g., tanh). By feeding ot to a softmax layer, we can perform classification
for each node or the entire sequence:

pt = softmax (ot) (5.53)

Unfold

s

−1

−1

−1

+1

+1

+1

Fig. 5.6 The structure of a recurrent neural network

116 5 Text Classification

RNN learns the model parameters by the back-propagation through time (BPTT)
algorithm, which is a generalization of the back-propagation algorithm of feed-
forward neural networks.

To address the problems of vanishing gradients and exploding gradients when
processing long sequence data, Hochreiter and Schmidhuber (1997) proposed the
long short-term memory (LSTM) model, which was further improved and promoted
by Gers et al. (2002). Schuster and Paliwal (1997) proposed the bidirectional RNN
to make better use of the forward and backward context information. Graves et al.
(2013) employed bidirectional LSTM (Bi-LSTM) in speech recognition to encode
the sequence from front to back and back to front. To address the complexity and
redundancy of LSTM, Cho et al. (2014) proposed a gated recurrent unit (GRU)
based on LSTM. GRU simplifies the structure of LSTM by combining the forget
gate and the input gate into an update gate while merging the cell state and the
hidden layer.

When using an RNN to model sequence data, one can learn from the attention
mechanism of the human brain, which adaptively selects some key information from
a large number of input signals. This approach can improve the performance and
efficiency of the model. Inspired by this, the attention mechanism was proposed
to differentiate the importance of component units in sequence in semantic com-
position. For example, the representation of a sentence will be the weighted sum
of the representations of the words it contains, and furthermore, the representation
of a document will be the weighted sum of the representations of the sentences it
contains.

More details of LSTM, GRU, and the attention mechanism can be found in
Chap. 3 of this book.

(2) Sentence-Level Classification Model Based on RNN

In this section, we take sentence-level sentiment classification as an example to
introduce how to apply RNN to text classification. Let us assume that the input
sentence is “I like this movie” and the class label is “positive.”

As shown in Fig. 5.7, we first obtain the initial representation of the sentence
with the pretrained word vector [x1, x2, . . . , xT]. Each word embedding xt is sent
to Bi-LSTM according to the word order:

−→
c t ,

−→
h t = LSTM

(−→
c t−1,

−→
h t−1,wt

)
(5.54)

←−
c t ,

←−
h t = LSTM

(←−
c t+1,

←−
h t+1,wt

)
(5.55)

The hidden vector is

ht =
[−→

h t ,
←−
h t

]
(5.56)

After preprocessing all words, the hidden states are [h1,h2, . . . ,hT].

5.4 Deep Learning Methods 117

I am pleased filmword embedding

hidden states

attention weights

sentence

representations

Softmax

classification

…

Fig. 5.7 The basic structure of RNN for sentence-level text classification

Then, we calculate the attention weight αt according to the attention mechanism:

αt = softmax
(
uT

t q
)

(5.57)

where ut = tanh (Wht + b) and q is the query vector. The final sentence
representation vector is obtained in the form of the weighted sum of the hidden
state of each word in the sentence:

r =
∑

t

αtht (5.58)

The prediction is finally obtained by feeding r to a softmax layer:

p = softmax(W cr + bc) (5.59)

where W c and bc are the weight matrix and the bias term, respectively.

118 5 Text Classification

The cross-entropy E between the ground truth y and the prediction distribution
p is used as the loss function:

E = −
C∑

j=1

yj log pj (5.60)

The model parameters are learned through the BPTT algorithm.

(3) Hierarchical Document-Level Text Classification Model

Document-level text classification refers to text classification for the entire
document, where each document is assigned a class label. A simple method for
document-level text classification is to treat the document as a long sentence and
employ an RNN to encode and classify it. However, this approach does not consider
the hierarchical structure of the document.

A document usually contains multiple sentences, and each sentence contains
multiple words. Therefore, a document can be modeled according to such a “word-
sentence-document” hierarchy. Tang et al. (2015a) first employed CNN (or LSTM)
to encode word sequences in a sentence and then used a gated RNN to encode
the sentence sequences in the document. Yang et al. (2016) furthermore proposed a
hierarchical attention GRU model that consists of five parts: the word-level encoding
layer, the word-level attention layer, the sentence-level encoding layer, the sentence-
level attention layer, and the softmax layer, as shown in Fig. 5.8.

• Word-level encoding layer: For each sentence, we send the initialized word

embedding to Bi-GRU and obtain the forward hidden state
−→
h it and the backward

hidden state
←−
h it of each word. Their concatenation is used as the representation

of each word hit =
[−→

h it ,
←−
h it

]
.

• Word-level attention layer: We first calculate the weight according to αit =
exp

(
uT

ituw

)
∑

t exp
(
uT

ituw

) , where uit = tanh (Wwhit + bw) and uw is a query vector that

measures the importance of each word in the sentence. It can be seen as a high-
level representation of the query statement “Which word is more important?”
It is randomly initialized in the model and trained with the other parameters of
the model jointly. Finally, the weighted sum of the hidden representation of each
word is used as the representation of the sentence si = ∑

t αithit .
• Sentence-level encoding layer: After word-level encoding and attention, each

sentence obtains its representation. A document consists of multiple sentences.
Similar to the word-level encoding layer, the representation of each sentence is

sent to the Bi-GRU to obtain the forward embedding vector
−→
h i and the backward

embedding vector
←−
h i . The concatenation is used as the hidden representation of

each sentence hi =
[−→

h i ,
←−
h i

]
.

5.4 Deep Learning Methods 119

sentence

encoder

sentence

attention

word

attention

word

encoder

ℎ1

1

ℎ2

2

ℎ

1
2

ℎ21 ℎ22 ℎ

21 22

Softmax

ℎ1 ℎ2 ℎ

ℎ21 ℎ22 ℎ

Fig. 5.8 The hierarchical structure of RNN for document-level text classification

• Sentence-level attention layer: We introduce the attention mechanism again
to distinguish the importance of different sentences for document represen-

tation. The weight for each sentence is αi = exp
(
uT

i us

)
∑

i exp
(
uT

i us

) , where ui =
tanh (W shi + bs). The final document representation is also a weighted sum of
the representations of all sentences v = ∑

i αihi .
• Softmax layer: The document representation v is sent to a softmax layer for

document classification: p = softmax(W cv + bc), where W c and bc are the
weight matrix and bias, respectively.

120 5 Text Classification

5.5 Evaluation of Text Classification

Assume that there are M categories in a text classification task, represented by
C1, . . . , CM . For each of the classes, we calculate statistics on the number of
documents with respect to the following four cases:

(1) True positive (TP): where the system correctly predicts it as a positive example
(i.e., both the prediction and the ground truth belong to this class).

(2) True negative (TN): where the system correctly predicts it as a negative
example (i.e., both the prediction and the ground truth do not belong to this
class).

(3) False positive (FP): where the system incorrectly predicts it as a positive
example (i.e., the prediction belongs to this class, but the ground truth does
not belong to this class).

(4) False negative (FN): where the system incorrectly predicts it as a negative
example (i.e., the ground truth belongs to this class, but the prediction does
not belong to this class).

After obtaining TP, TN, FP, and FN for each class, we can obtain the microlevel
statistics as shown in Table 5.9.

I. Recall, Precision, and F 1 Score

By using j ∈ {1, 2, . . . ,M} to denote the class index, we define the following
metrics for each class:

(1) Recall is defined as the proportion of examples being correctly predicted as this
class among all examples whose ground truth is this class:

Rj = TPj

TPj + FNj

× 100% (5.61)

(2) Precision is defined as the proportion of examples being correctly predicted as
the current class among all examples being predicted as the current class:

Pj = TPj

TPj + FPj

× 100% (5.62)

Table 5.9 The microlevel
statistics of text classification

Category TP FP FN TN

C1 TP1 FP1 FN1 TN1

C2 TP2 FP2 FN2 TN2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

CM TPM FPM FNM TNM

5.5 Evaluation of Text Classification 121

(3) An ideal system with high precision and high recall will return many results,
with all results labeled correctly. A system with high recall but low precision
returns many positive predictions, but most of them are incorrect in comparison
with the ground truth labels. A system with high precision but low recall
returns very few positive predictions, but most of its predicted labels are
correct when compared with the ground truth labels. We ideally hope that a
classification system has both high recall and high precision, but the two are
often contradictory. We therefore define the harmonic average of precision and
recall as the F1 score to comprehensively evaluate the effects of these two
aspects.

To distinguish the importance of recall and precision, we can also define a more
general Fβ score:

Fβ = (β2 + 1)PR

β2P + R
× 100% (5.63)

When β = 1, Fβ becomes the standard F1 score.

II. Accuracy, Macroaverage, and Microaverage

Recall, precision, and F score can only evaluate the classification performance
for a certain class. To measure the performance on the entire classification task, we
define the classification accuracy as follows:

Acc = #Correct

N
× 100% (5.64)

where N is the number of all examples and #Correct is the number of examples that
are correctly predicted.

In addition to classification accuracy, we can also use the macroaverage and
microaverage of previous class-oriented measures across all classes to evaluate the
performance of the entire classification task.

The recall, precision, and F1 score based on the macroaverage are defined as
follows:

Macro_ P = 1

C

C∑

j=1

TPi

TPi + FPi

(5.65)

Macro_ R = 1

C

C∑

j=1

TPi

TPi + FNi
(5.66)

Macro_ F1 = 2 × Macro_ P × Macro_ R

Macro_ P + Macro_ R
(5.67)

122 5 Text Classification

Table 5.10 An example of
binary classification results

Prediction/ground truth Positive(+) Negative(−) Total

Positive(+) 250 20 270

Negative(−) 50 180 230

Total 300 200 500

Table 5.11 The evaluation of the classification results in Table 5.10

TP FP FN TN Recall Precision F1 Acc

Positive(+) 250 20 50 180 0.8333 0.9259 0.8772 0.8600

Negative(−) 180 50 20 250 0.9000 0.7826 0.8372

Macroaverage 0.8667 0.8543 0.8605

Microaverage 0.8600 0.8600 0.8600

The recall, precision, and F1 score based on the microaverage are defined as
follows:

Micro_ P =
∑C

j=1 TPi
∑C

j=1(TPi + FPi)
(5.68)

Micro_ R =
∑C

j=1 TPi
∑C

j=1(TPi + FNi)
(5.69)

Micro_ F1 = 2 × Micro_ P × Micro_ R

Micro_ P + Micro_ R
(5.70)

According to the classification results of a binary classification problem as shown
in Table 5.10, we calculate all the aforementioned measures in Table 5.11.

III. P-R Curve and ROC Curve

In a classification problem, predictions are made based on the comparison of the
prediction score and a predefined prediction threshold. For example, the threshold
value of logistic regression is normally set to be 0.5. When the positive probability
is greater than 0.5, we predict it as positive; when the positive probability is less
than 0.5, we predict it as negative.

To evaluate the performance of classification models more comprehensively
under different recall scores, we can adjust the prediction threshold of the classifier
and observe the corresponding precision-recall (P-R) curve by using recall as the x-
axis and precision as the y-axis. The P-R curve shows the tradeoff between precision
and recall for different thresholds, and the area under the P-R curve can be used to
measure the general performance of a classification system. A high area under the
curve represents both high recall and high precision, where high precision relates to
a low false-positive rate, and high recall relates to a low false-negative rate. High
scores for both show that the classifier returns accurate results (high precision) and
returns a majority of all positive results (high recall). The mean average precision

5.6 Further Reading 123

(mAP) is a metric that can be viewed as a simplification of the area under the P-R
curve. It computes the average precision for recall over 0 to 1. For example, we can
set the recall to be 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Then, we use
the 11-point average precision for evaluation.

Similar to the P-R curve, we can also plot the ROC (receiver operating charac-
teristic) curve by using the false-positive rate as the x-axis and the true positive rate
(i.e., recall) as the y-axis. The area under the ROC curve is called AUC (area under
the ROC curve). The higher the AUC value is, the better the general classification
performance of the classifier.

The ROC curve summarizes the tradeoff between recall and the false-positive
rate. The P-R curve summarizes the tradeoff between precision and recall. The
ROC curve is appropriate when the observations are balanced between each class,
whereas the P-R curve is more suitable for imbalanced datasets.

5.6 Further Reading

Classification algorithms based on statistical machine learning can be roughly
divided into two categories: the discriminative model and the generative model.
In general, a discriminative model models the decision boundary between the
classes (i.e., learns the decision function y = f (x) or the posterior probability
p(y|x) directly); a generative model explicitly models the distribution of each
class p(x|y) as well as the joint distribution of observation and class label (i.e.,
p (x, y) = p(y)p(x|y)). With application to text classification, the typical genera-
tive model is the naïve Bayes model, and the typical discriminative models include
logistic/softmax regression, maximum entropy model, support vector machine, and
artificial neural networks.

The classification models introduced in this chapter are all designed for clas-
sification on the entire document, and the discussion has not involved structure
predication in the document. Given a piece of text x that consists of multiple nodes
xt , it is a classification task to predict the label of x and a sequence labeling task to
predict the labels of all nodes xt in x. In a sequence labeling task, each node xt has a
label yt . Typical sequence labeling models include hidden Markov models (HMMs)
and conditional random fields (CRFs). HMM can be viewed as an extension of the
naïve Bayes model from classification to sequence labeling. In addition to modeling
the relationship between xt and yt , HMMs also use the state transition probability to
model the relationship of yt−1 and yt . Similarly, the CRF model is the extension of
maximum entropy from classification to sequence labeling. The CRF model adopts
the log-linear model hypothesis of the maximum entropy model and defines similar
feature functions. In addition, the CRF model also defines a state transition feature
function to learn the structural relationships in a sequence. Interested readers can
refer to Zong (2013); Li (2019) for more details about the sequence labeling models.

Recurrent neural networks naturally have the ability to handle both classification
and sequence labeling problems. In the RNN structure shown in Fig. 5.6, if we

124 5 Text Classification

perform prediction on each node of the sequence, it is a sequence labeling problem;
if we obtain the representation of the entire document via semantic composition
(e.g., attention) and only perform classification for the document, it is a classification
problem. Such a high degree of flexibility is also a major advantage of deep neural
networks for text modeling in comparison with traditional machine learning models.

Exercises

5.1 Please derive the naïve Bayes model under the assumption of multivariable
Bernoulli distribution according to (McCallum et al. 1998).

5.2 What are the main differences between the softmax regression model and the
maximum entropy model?

5.3 Why is the linear kernel more widely used than the other nonlinear kernels
when using SVM for text classification?

5.4 What are the main differences between the multilayer feed-forward neural
network and the convolutional neural network?

5.5 Can a convolutional neural network capture n-gram grammatical features in
text? Why?

5.6 What are the main differences between recurrent neural networks and con-
volutional neural networks? Which do you think is more suitable for document
classification? Why?

Chapter 6
Text Clustering

6.1 Text Similarity Measures

Different clustering algorithms can produce different results by adopting different
perspectives, but almost all of them are performed based on similarity measures.
Therefore, the key problem of text clustering is how to effectively measure the
similarity of texts.

In text clustering, a cluster is represented by a collection of similar documents,
and there are three main types of text similarities:

• Similarity between two documents;1

• Similarity between two document collections;
• Similarity between a document and a document collection.

We will introduce the three kinds of similarity measures below.

6.1.1 The Similarity Between Documents

(1) Distance-Based Similarity

In a vector space model, a document is represented as a vector in the vector space.
The simplest way to measure document similarity is to use the distance between two
vectors in vector space. The smaller the distance between two vectors, the higher
the similarity of the two documents. The commonly used distance metrics include
Euclidean distance, Manhattan distance, Chebyshev distance, Minkowski distance,
Mahalanobis distance, and Jaccard distance.

1For the simplicity of description, we use “document” to refer to a piece of text at different levels
(e.g., sentence, document, etc.).

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_6

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_6&domain=pdf
https://doi.org/10.1007/978-981-16-0100-2_6

126 6 Text Clustering

Let a and b be the vector representations of two documents, and the following
distances are defined as follows.

a. Euclidean distance

d (a, b) =
(

M∑

k=1

(ak − bk)
2

)1/2

(6.1)

b. Manhattan distance

d(a, b) =
M∑

k=1

|ak − bk| (6.2)

c. Chebyshev distance

d(a, b) = max
k

|ak − bk| (6.3)

d. Minkowski distance

d(a, b) =
(

M∑

k=1

(ak − bk)
p

)1/p

(6.4)

(2) Cosine Similarity

Cosine similarity computes the similarity between two vectors by calculating the
cosine of the angle between the two vectors:

cos(a, b) = aTb

‖a‖‖b‖ (6.5)

The range of cosine similarity is [−1, 1]. The smaller the angle between the two
vectors is, the higher the cosine similarity. When the angle between two vectors is
0◦ (i.e., the same direction), the cosine similarity is 1; when the angle between two
vectors is 90◦ (i.e., orthogonal direction), the cosine similarity is 0; when the angle
between two vectors is 180◦ (i.e., opposite direction), the cosine similarity is −1.

The inner product of two vectors is proportional to the cosine similarity. The
inner product of two vectors after L-2 normalization (see Chap. 3) is equivalent to
the cosine similarity: a · b = aTb (Fig. 6.1).

Distance-based similarity measures the absolute distance between two vectors in
the vector space. Cosine similarity measures the angle of vectors in the vector space
and is the most widely used method for measuring the similarity of texts.

6.1 Text Similarity Measures 127

Fig. 6.1 Distance
measurement samples in the
vector space model

cos

dis ,

(3) Distribution-Based Similarity

The previous two kinds of similarity measures are performed based on the vector
space. However, a document is sometimes represented by a distribution rather than
a vector space model, especially in generative models. In this case, the statistical
distance can be used to measure the similarity between two documents.

Statistical distance measures the difference between two distributions. A com-
monly used metric is the Kullback–Leibler (K-L) distance (also called K-L diver-
gence). Based on the BOW assumption, a document can be represented by a
categorical distribution over terms. Suppose P and Q are two categorical distri-
butions, and the K-L distance of P and Q is defined as

DKL(P‖Q) =
∑

i

P (i) log
P(i)

Q(i)
(6.6)

The K-L distance is not symmetrical, that is, DKL(P‖Q)
= DKL(Q‖P). A
symmetrical K-L distance can therefore be used instead:

DSKL(P,Q) = DKL(P‖Q) + DKL(Q‖P) (6.7)

It is worth noting that when a document is of short length, it is meaningless to
use a categorical distribution to represent it and use the K-L distance to measure
the similarity of two documents. In fact, such distribution-based metrics are more
suitable for measuring the similarity between two collections of texts than that
between two short pieces of texts.

128 6 Text Clustering

(4) Other Measures

There are other methods for similarity measures. For example, the Jaccard similarity
coefficient is another widely used metric that measures the similarity between two
sets; it is defined as the size of the intersection divided by the size of the union of
the two sets:

J
(
xi , xj

) = |xi ∩ xj |
|xi ∪ xj | (6.8)

where a document is represented by a set of words.
Note that the aforementioned similarity measures can be used not only in text

clustering but also in other text data mining tasks.

6.1.2 The Similarity Between Clusters

A cluster is a collection of similar documents. The similarity between two clusters
can be computed based on the similarities of the documents contained in them.
Suppose d(Cm,Cn) denotes the distance between clusters Cm and Cn, d(xiandxj)

denotes the distance between documents xi and xj . There are several ways to
measure the similarity between the two clusters as follows.

(1) A single linkage denotes the shortest distance between two documents extracted
from two clusters respectively:

d(Cm,Cn) = min
xi∈Cm,xj ∈Cn

d(xi , xj) (6.9)

(2) A complete linkage denotes the longest distance between two documents
extracted from two clusters respectively:

d(Cm,Cn) = max
xi∈Cm,xj ∈Cn

d(xi , xj) (6.10)

(3) The average linkage denotes the average distance between two documents
extracted from two clusters respectively:

d(Cm,Cn) = 1

|Cm| · |Cn|
∑

xi∈Cm

∑

xj ∈Cn

d(xi , xj) (6.11)

6.2 Text Clustering Algorithms 129

(4) The centroid method is the distance between the centroid of two clusters:

d(Cm,Cn) = d(x̄(Cm), x̄(Cn)) (6.12)

where x̄(Cm) and x̄(Cn) denote the centroids of the clusters Cm and Cn,
respectively.

(5) Ward’s method. For each cluster, we first define the within-cluster variance
as the sum of squares of the distance between each document and the cluster
centroid. The increase in total within-cluster variance after merging the two
clusters can therefore be used as a cluster distance metric:

d(Cm,Cn) =
∑

xk∈Cm ∪Cn

d(xk, x̄(Cm ∪ Cn))

−
∑

xi∈Cm

d(xi , x̄(Cm)) −
∑

xj ∈Cn

d(xj , x̄(Cn))
(6.13)

where d(a, b) = ‖a − b‖2.

Ward’s method is a criterion applied in hierarchical clustering. It minimizes the
total within-cluster variance by finding the pair of clusters at each step that leads to
a minimum increase in total within-cluster variance after they are merged.

In addition to the five abovementioned methods, the K-L divergence can also be
used for calculating the distance between two clusters. The equation for the K-L
divergence is shown as Eq. (6.6). The difference is that the categorical distributions
P and Q are estimated by a cluster rather than a document.

6.2 Text Clustering Algorithms

There are extensive types of text clustering methods, including partition-based
methods, hierarchy-based methods, density-based methods, grid-based methods,
and graph-based methods, each of which contains some typical algorithms. In the
following, we introduce several representative text clustering algorithms.

6.2.1 K-Means Clustering

The K-means algorithm, proposed by MacQueen in 1967, is a widely used partition-
based clustering algorithm.

For a given dataset {x1, x2, . . . , xN }, the goal of K-means clustering is to
divide the N samples into K (K ≤ N) clusters to minimize the sum of the
squared distances within each cluster, which is called the within-cluster sum of

130 6 Text Clustering

squares (WCSS):

arg min
C

K∑

k=1

∑

x∈Ck

‖x − mk‖2 (6.14)

To achieve this objective, the standard K-means clustering algorithm (also called
the Lloyd–Forgy method) uses the iterative optimization method. In each iteration
step, the distances between each sample and the K centroids (i.e., the means) of the
cluster are first calculated. The samples are then assigned to the clusters with the
nearest centroid, and the centroids of existing clusters are updated. This process is
repeated until the minimum WCSS is reached.

Formally, given the initial centroids of the K clusters m
(0)
1 ,m

(0)
2 , . . . ,m

(0)
K , the

algorithm iterates in the following two steps:

(1) Assignment: Assign each sample into the cluster that minimizes the sum of
squares within clusters:

C(t)(xi) = arg min
k=1,...,K

||xi − m
(t−1)
k ||2 (6.15)

where t denotes the steps of the iterations and C(x) denotes the index of the
cluster to which x is assigned.

(2) Updating: Update the centroids for each of the K clusters:

m
(t+1)
k = 1

|C(t)
k |

∑

xi∈C
(t)
k

xi (6.16)

The two steps are iteratively performed until the algorithm converges to a local
minimum. But such an alternated iterative optimization cannot guarantee the global
minimum of the WCSS.

In practice, we can also choose different distance metrics. For example, in text
clustering, the cosine similarity is more often used:

d
(
x,m

(t)
k

)
= x · m

(t)
k

‖x‖
∥∥∥m(t)

k

∥∥∥
(6.17)

However, it should be noted that the above iterative optimization can ensure the
decrease in WCSS only under the Euclidean distance metric. If different distance
metrics are used, there is a risk that the algorithm may not converge.

In summary, the K-means clustering algorithm is described as follows.
Table 6.1 displays a small text clustering dataset that contains ten short docu-

ments extracted from the domains of education, sports, technology, and literature.

6.2 Text Clustering Algorithms 131

Algorithm 1: K-means clustering algorithm
Input : dataset D = {x1, x2, . . . , xN }, number of clusters K;
Output: clusters {C1, C2, . . . , CK }.

1 Randomly select K samples in D as the initial mean vectors {m1,m2, . . . ,mK };
2 while not converged do
3 for i = 1, . . . , N do
4 for k = 1, . . . , K do
5 calculate the distance d(x i ,mk) = ‖xi − mk‖2 between xi and mk ;
6 end
7 divide sample xi into the cluster of nearest mean vector arg mink{d(xi ,mk)}
8 end
9 for i = 1, . . . , K do

10 update the mean vector of each cluster: mnew
k = 1

|Ck |
∑

xi∈Ck

xi .

11 end
12 end

Table 6.1 Text clustering dataset

ID Sentence

x1 Beijing Institute of Technology was established in 1958 as one of the earliest
universities that established a computer science major in China.

x2 Students from Beijing Institute of Technology won the 4th China Computer Go
Championship.

x3 The Gymnasium of Beijing Institute of Technology is the venue for the preliminary
volleyball competition of the 2008 Beijing Olympic Games in China.

x4 In the 5th East Asian Games, the total number of medals of China reached a new
high. Both the men’s and women’s volleyball teams won championships.

x5 Artificial intelligence, also known as machine intelligence, refers to the intelligence
represented by an artificially produced system.

x6 Artificial intelligence is a branch of computer science that attempts to produce an
intelligent machine that can react in a manner similar to human intelligence.

x7 The three Go competitions between artificial intelligence AlphaGo and human
champion Jie Ke end with the human’s thorough defeat.

x8 The first sparrow of spring! The year beginning with youngest hope than ever!

x9 The brooks sing carols and glees to the spring. The symbol of youth, the grass blade,
like a long green ribbon, streams from the sod into the summer.

x10 The grass flames up on the hillsides like a spring fire, not yellow but green is the
color of its flame.

Let D = {x1, x2, . . . , x10} denote this clustering dataset, in which xi cor-
responds to the i-th document. Before text clustering, we first perform feature
selection. The dataset includes 118 words. Due to the small scale of the corpus,
we have not chosen supervised feature selection methods (such as MI and IG)
for feature selection. Instead, we use an unsupervised feature selection method,
term frequency, to select those features with a frequency of no less than two in
this corpus. This method results in a simplified vocabulary that contains 22 words:

132 6 Text Clustering

Table 6.2 Dimension-reduced text clustering dataset

ID Sentence

x1 Beijing institute technology university computer science China

x2 Beijing institute technology China computer champion

x3 Beijing institute technology volleyball competition game China

x4 game China volleyball win champion

x5 artificial intelligence machine intelligence intelligence

x6 artificial intelligence computer science intelligent machine human intelligence

x7 artificial intelligence go competition human champion

x8 spring young

x9 spring young grass green

x10 grass spring green

“volleyball,” “Beijing,” “China,” “institute,” “win,” “go,” “champion,” “computer,”
“science,” “technology,” “human,” “race,” “university,” “artificial,” “intelligence,”
“machine,” “game,” “competition,” “spring,” “young,” “green,” “grass.”

The dimension-reduced dataset is shown in Table 6.2.
We perform K-means clustering on the corpus dimension-reduced dataset by

setting K = 3 and use the Euclidean distance as the similarity measure. We use
principal component analysis (PCA) to reduce the dimension of the feature space
and take the top two components as the x-axis and y-axis to visualize the clustering
process:

(i) Initialization: The initial clusters are {C1 : {x4}, C2 : {x5}, C3 : {x8}};
(ii) The first iteration: Calculate the distance of each document to the centroid

of each cluster. Taking x3 as an example, its distances to the three centroids
x4, x5, andx8 are 2.45, 3.16, and 3, respectively. Thus, x3 is assigned to
its nearest cluster C1. After assignment for each document, the updated
clusters become {C1 : {x2, x3, x4} , C2 : {x5, x6, x7} , C3 : {x1, x8, x9, x10}},
as shown in Fig. 6.2a.

(a) after 1st iteration (b) after 2nd iteration

Fig. 6.2 Clustering text with K-means algorithm (K = 3)

6.2 Text Clustering Algorithms 133

(iii) The second iteration: Calculate the distance of each document to the centroid
of each cluster after the first iteration. Taking x1 as an example, its distances
to the three centroids are 2.08, 3.02, and 2.29. Thus, x6 is assigned to
its nearest cluster C1. After assignment for each document, the updated
clusters become {C1 : {x1, x2, x3, x4} , C2 : {x5, x6, x7} , C3 : {x8, x9, x10}},
as shown in Fig. 6.2b.

(iv) The third iteration: According to the distance between each document and the
centroid of each cluster after the third iteration, the cluster assignments no
longer need to be changed, and the algorithm converges. The final clusters
are {C1 : {x1, x2, x3, x4} , C2 : {x5, x6, x7} , C3 : {x8, x9, x10}}, as shown in
Fig. 6.2b.

Although the K-means algorithm is widely used because of its simplicity and
efficiency, it still has several shortcomings: 1© it remains difficult to determine the
value of clustering number K , and 2© the result depends on the selected initial
centroids or metric selection. For example, if documents x2, x5, and x8 are selected
as initial centroids of three clusters, the algorithm will terminate within one iteration,
and the final clustering results will be {C1 : {x1, x2, x3, x4}, C2 : {x5, x6, x7}, C3 :
{x8, x9, x10}}.

6.2.2 Single-Pass Clustering

In comparison with K-means, single-pass clustering is an even simpler and more
efficient clustering algorithm, as it only needs to traverse a collection of documents
once to perform the clustering. In the initial stage, the algorithm takes a document
from the corpus and constructs a cluster with this document. It then iteratively
processes a new document and computes the similarity between this document
and each existing cluster. If the similarity is lower than a predefined threshold, a
new cluster will be generated; otherwise, it will be assigned to the cluster with the
highest similarity. This process repeats until all the documents in the dataset have
been processed.

Single-pass clustering involves a similarity computation between a document and
a cluster, the methods for which are summarized in Sect. 6.2. In standard single-pass
clustering, the similarity between the document and the mean vector of the cluster
is employed.

The detailed algorithm is described as follows.
We perform single clustering on the dimension-reduced dataset shown in

Table 6.2. The opposite value of the Euclidean distance is used as the similarity
metric, and the threshold T is set to be −2.3. All documents are processed in
sequence. The clustering process is as follows:

(i) Read the first document x1, establish an initial cluster C1, and assign x1 to
C1. The initial cluster is {C1 : {x1}};

134 6 Text Clustering

Algorithm 2: Single-pass clustering algorithm
Input : dataset D = {x1, x2, . . . , xN }, similarity threshold T ;
Output: clusters {C1, C2, . . . , CM }.

1 M = 1; C1 = {x1}; m1 = x1
2 for i = 2, . . . , N do
3 for k = 1, . . . ,M do
4 calculate the similarity d(xi ,mk) between xi and mk

5 end
6 select the cluster of highest similarity k∗ = arg max

k
{d(x i ,mk)}

7 end
8 if d(x i ,mk∗) > T then
9 add xi into cluster Ck∗ : Ck∗ ← (Ck∗ ∪ xi)

10 update the mean vector of Ck∗ : mk∗ = 1
|Ck∗ |

∑
xj ∈Ck∗

xj

11 end
12 else
13 M+ = 1; CM = {xi}
14 end

(ii) Process document x2. Because the similarity between x2 and the centroid of
C1 is −2.18, which is higher than T , we assign x1 to C1. The updated clusters
are {C1 : {x1, x2}};

(iii) Process document x3. The similarity between x3 and the centroid of the
existing clusters C1 is −2.18, which is higher than T ; therefore, we assign
x3 to C1. The updated clustering result is {C1 : {x1, x2, x3}};

(iv) Process document x4. The similarity between x4 and the centroid of
the existing cluster C1 is −2.47. The highest similarity is lower than
T ; therefore, we assign x4 to C2. The updated clustering result is
{C1 : {x1, x2, x3} , C2 : {x4}};

(v) Process document x5. The similarities between x5 and the centroids
of existing clusters C1 and C2 are −2.85 and −2.83, respectively.
The highest similarity is lower than T ; therefore, we establish a
new cluster C3 and assign x5 to it. The updated clustering result is
{C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5}};

(vi) Process document x6. The similarities between x6 and the centroids of exist-
ing clusters C1, C2 and C3 are −3.02, −3.32, and −1.73 respectively. The
highest similarity is higher than T (with C3); therefore, we assign x6 to C3.
The updated clustering result is {C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5, x6}};

(vii) Process document x7. The similarities between x7 and the centroids of exist-
ing clusters C1, C2 and C3 are −3.13, −3.0, −2.18 respectively. The highest
similarity is higher than T (with C3); therefore, we assign x7 to C3. The
updated clustering result is {C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5, x6, x7}};

(viii) Process document x8. The similarities between x8 and the centroids of
existing clusters C1, C2 and C3 are −2.67, −2.65, −2.33 respectively.
The highest similarity is lower than T ; therefore, we establish a

6.2 Text Clustering Algorithms 135

new cluster C4 and assign x8 to it. The updated clustering result is
{C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5, x6, x7} , , C4 : {x8}};

(ix) Process document x9. The similarities between x9 and the centroids
of existing clusters C1, C2, C3, C4, and C5 are −3.02, −3.0, −2.73
and −1.41 respectively. The highest similarity is higher than T (with
C4); therefore, we assign x9 to C4. The updated clustering result is
{C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5, x6, x7} , , C4 : {x8, x9}};

(x) Process document x10. The similarities between x10 and the centroids
of existing clusters C1, C2, C3 and C4 are −2.85, −2.83, −2.53
and −1.22 respectively. The highest similarity is higher than T (with
C4); therefore, we assign x10 to C4. The updated clustering result is
{C1 : {x1, x2, x3} , C2 : {x4} , C3 : {x5, x6, x7} , C4 : {x8, x9, x10}};

Thus, all documents in the corpus are processed. The final clustering result is
shown in Fig. 6.3.

Because of its simplicity and efficiency, the single-pass clustering algorithm is
suitable for scenarios including large-scale and real-time streaming data, such as
topic detection and tracking, which we will introduce in Chap. 9. However, it also
contains some inherent flaws. For example, its performance greatly depends on the
order of processed documents, and the threshold is sometimes hard to determine in
advance.

Fig. 6.3 Clustering result with single-pass clustering algorithm

136 6 Text Clustering

6.2.3 Hierarchical Clustering

Hierarchical clustering is a class of cluster analysis methods that seek to build a
hierarchy of clusters. It can be divided into two main types:

(1) Agglomerative hierarchical clustering: This is a bottom-up approach where
each element starts in its own cluster and similar pairs of clusters are merged as
we move up the hierarchy.

(2) Divisive hierarchical clustering: This is a top-down approach where all elements
start in one cluster and splits are performed recursively as we move down the
hierarchy.

In agglomerative hierarchical clustering, each document is initially considered as
an individual cluster, and the most similar two clusters are merged together in each
iteration until one cluster or K clusters are formed.

In the clustering process, the similarity between two clusters needs to be calcu-
lated. The commonly used measures, including single linkage, complete linkage,
average linkage, and Ward’s method, are described in detail in Sect. 6.2.

Algorithm 3: Agglomerative hierarchical clustering algorithm
Input : dataset D = {x1, x2, . . . , xN }, number of clusters K;
Output: clusters {C1, C2, . . . , CK }.

1 for i = 1, . . . , N do
2 Ci = {xi}
3 end
4 for i = 1, . . . , N do
5 for j = 1, . . . , N do
6 calculate the similarity between two clusters d(Ci , Cj)

7 end
8 end
9 while size(C) > K do

10 find the nearest two clusters Ci∗ and Cj∗ .
11 for h = 1, . . . , size({Ck}) do
12 if h
= i∗ and h
= j∗ then
13 update the similarity d(Ch,Ci∗ ∪ Cj∗)
14 end
15 delete Ci∗ and Cj∗ from C
16 add Ci∗ ∪ Cj∗ to C
17 update the index of each cluster and record samples in each cluster.
18 end
19 end

The results of hierarchical clustering can be represented by a dendrogram, which
is a tree-like diagram that records the sequences of merges or splits, as shown in
Fig. 6.4. Each leaf node represents a document, and each intermediate node has two
subnodes, indicating that the two component clusters merged into one cluster. The

6.2 Text Clustering Algorithms 137

document

0.0

0.2

0.4

0.6

0.8

1.0
d
is

ta
n
ce

1 2 3 4 5 6 7 8 9 10

Fig. 6.4 The agglomerative hierarchical clustering results (dendrogram)

height of the leaf nodes is 0, and the height of each intermediate node represents
the distance of its two subnodes and is inversely proportional to their similarity.
Cutting the tree horizontally at a given height yields partitioning clustering results
at a selected level.

We perform agglomerative hierarchical clustering on the dimension-reduced
clustering dataset shown in Table 6.2 by using cosine to measure the similarity
between documents and average linkage to measure the similarity between clusters
and setting the expected number of clusters K as 3. The clustering process is as
follows:

(i) Initialize a cluster for each document. This results in ten clusters in our task.
The initial clusters are {C1 : {x1}, C2 : {x2}, C3 : {x3}, C4 : {x4}, C5 :
{x5}, C6 : {x6}, C7 : {x7}, C8 : {x8}, C9 : {x9}, C10 : {x10}}.

(ii) Compute the similarities between each cluster pair. Because the similarity
between clusters C9 and C10 is the highest (0.87), the two clusters are merged.
The updated clusters are {C1 : {x1} , C2 : {x2} , C3 : {x3} , C4 : {x4} ,

C5 : {x5} , C6 : {x6} , C7 : {x7} , C8 : {x8} , C9 : {x9, x10}}.
(iii) Compute the similarities between each cluster pair and merge the two clusters

C1 and C2, which have the highest similarity. The updated clustering result
is {C1 : {x1, x2} , C3 : {x3} , C4 : {x4} , C5 : {x5} , C6 : {x6} , C7 : {x7} ,

C8 : {x8} , C9 : {x9, x10}}.
(iv) Compute the similarities between each cluster pair and merge the two clusters

C5 and C6, which have the highest similarity. The updated clustering result
is {C1 : {x1, x2} , C3 : {x3} , C4 : {x4} , C5 : {x5, x6} , C7 : {x7} , C8 : {x8} ,

C9 : {x9, x10}}.
(v) Compute the similarities between each cluster pair and merge the two

clusters C1 and C3, which have the highest similarity. The updated clustering

138 6 Text Clustering

result is {C1 : {x1, x2, x3} , C4 : {x4} , C5 : {x5, x6} , C7 : {x7} , C8 : {x8} ,

C9 : {x9, x10}}.
(vi) Compute the similarities between each cluster pair and merge the two clusters

C8 and C9, which have the highest similarity. The updated clustering result is
{C1 : {x1, x2, x3} , C4 : {x4} , C5 : {x5, x6} , C7 : {x7} , C8 : {x8, x9, x10}}.

(vii) Compute the similarities between each cluster pair and merge the two clusters
C5 and C7, which have the highest similarity. The updated clustering result is
{C1 : {x1, x2, x3} , C4 : {x4} , C5 : {x5, x6, x7} , C8 : {x8, x9, x10}}.

(viii) Compute the similarities between each cluster pair and merge the two clusters
C1 and C4, which have the highest similarity. The updated clustering result is
{C1 : {x1, x2, x3, x4}, C5 : {x5, x6, x7}, C8 : {x8, x9, x10}}.

At this point, the number of clusters reaches the preset value (K = 3), and the
hierarchical clustering ends. The clustering results in terms of the dendrogram are
shown in Fig. 6.4.

The top-down divisive hierarchical clustering process follows the opposite pro-
cess as the bottom-up clustering process. Initially, all the documents are contained
in one cluster, and the documents that are not similar are separated iteratively from
the cluster until all documents are divided into different clusters.

6.2.4 Density-Based Clustering

In density-based clustering, clusters are defined as areas of higher density than the
remainder of the data. The basic concept is that the densely distributed data points
in the data space are separated by the sparsely distributed data points; the connected
high-density regions are the target clusters we are looking for.

Density-based spatial clustering of applications with noise (DBSCAN) is a
representative algorithm of density-based clustering. Given a set of data points in
the data space, the points that are closely connected (points with many nearby
neighbors) will be grouped together and marked as high-density regions, and the
points that lie alone in low-density regions (whose nearest neighbors are too far
away) will be marked as outliers.

Let r denote the radius of the neighborhood and n denote the minimum number of
data points required to construct a high-density region. On this basis, the following
basic concepts are defined.

• r-neighborhood: The r-neighborhood of a sample P refers to the circular domain
with P at the center and r as the radius.

• Core point: Point P is a core point if P ’s r-neighborhood contains at least n

points.
• Directly reachable: Point Q is directly reachable from P if Q is in the r-

neighborhood of P .
• Reachable: If there exists a sequence of data points P1, P2, . . . , PT and Pt+1

is directly reachable from Pt for any t = 1, . . . , T − 1, we say that point

6.2 Text Clustering Algorithms 139

Fig. 6.5 An illustration of
the DBSCAN algorithm

PT is reachable from P1. According to the definition of direct reachability,
P1, P2, . . . , PT −1 in the sequence are all core points.

• Density-connected: Two points Q1 and Q2 are density-connected if both Q1 and
Q2 can be reachable from a core point P .

The DBSCAN algorithm supposes that for any core point P , the points in the
dataset that are reachable from P belong to the same cluster. Figure 6.5 gives an
example of the DBSCAN algorithm where n = 4. Point A and other hollow points
are core samples, and boundary points B and C are non-core points. Points B and
C are reachable from point A, that is, B and C are density-connected; therefore,
together with the core points, they construct a cluster. Point N is a noise point that
is not density-connected to A, B, or C.

Starting from a core point, the DBSCAN algorithm expands continuously to
reachable regions to obtain a maximum region containing core points and boundary
points. In this region, any two points are connected with each other and aggregated
into a cluster. The process is repeated for each unlabeled core point until all core
points in the dataset are processed. The points that are not included in any clusters
are called noise points and grouped in a noise cluster.

We perform DBSCAN clustering on the dimension-reduced clustering dataset
shown in Table 6.2, using cosine distance with r = 0.6 and n = 3. The clustering
process is as follows.

(i) Initially, mark all data points as unvisited. Select x1 first and mark it as visited.
The r-neighborhood of x1 includes points x1, x2 and x3. Because its size is
not smaller than n, make the connected high-density region {x1, x2, x3}. The
clustering result is {C1 : {x1, x2, x3}};

(ii) Select an unvisited point x4 and mark it as visited. The r-neighborhood of x4
includes x1, x2, and x3. The updated clustering result is {C1 : {x1, x2, x3, x4}};

(iii) Select an unvisited point x5 and mark it as visited. The r-neighborhood
of x5 includes x5, x6, and x7, the size of which is not smaller than n.

140 6 Text Clustering

Algorithm 4: DBSCAN algorithm
Input : dataset D , radius r , the number of samples n required to construct a high-density

region;
Output: set of clusters C .

1 C = ∅

2 for P in D do
3 if P has been visited then
4 continue
5 end
6 find a set RP of all samples in the r-neighborhood of P

7 if |RP | < n then
8 mark P as a noise sample
9 end

10 else
11 add sample P to a new cluster C

12 find a set SP of directly reachable samples from P

13 for Q in SP do
14 if Q is a noise sample then
15 add Q to cluster C

16 end
17 if Q has not been visited then
18 add Q to cluster C

19 end
20 find a set RQ of samples within the r-neighborhood of Q

21 if |RP | ≥ n then
22 SP = SP ∪ RQ

23 end
24 add C to C

25 end
26 end
27 end

Therefore, make the connected high-density region {x5, x6, x7} a new cluster.
The updated clustering result is {C1 : {x1, x2, x3, x4} , C2 : {x5, x6, x7}};

(iv) Select an unvisited point x8 and mark it as visited. The r-neighborhood of
x8 includes x8, x9, and x10, the size of which is smaller than n. There-
fore, make the connected high-density region {x8, x9, x10} a new cluster.
The updated clustering result is {C1 : {x1, x2, x3, x4} , C2 : {x5, x6, x7} ,

C3 : {x8, x9, x10}};
(v) At this point, all points in the dataset are marked as visited, and clustering is

finished. The final clustering result is {C1 : {x1, x2, x3, x4} , C2 : {x5, x6, x7} ,

C3 : {x8, x9, x10}}, as shown in Fig. 6.6.

6.3 Evaluation of Clustering 141

Fig. 6.6 The clustering result with the DBSCAN clustering algorithm

6.3 Evaluation of Clustering

The evaluation of clustering is also called cluster validity analysis. There are two
main categories of methods for evaluating clustering: external criteria and internal
criteria. The main difference between them is whether external information is used
for clustering validation.

6.3.1 External Criteria

In external criteria, the quality of clustering is measured by the consistency between
the clustering result and a clustering reference, which is considered the ground truth.
The clustering reference is usually manually labeled.

For a dataset D = {d1, d2, . . . , dn}, assume that the clustering reference is
denoted by P = {P1, P2, . . . , Pm}, where Pi represents the i-th cluster in the
clustering reference, and the clustering result is C = {C1, C2, . . . , Ck}, where
Ci is a model-obtained cluster. For any two different samples d i and dj in D ,
define the following four relationships based on their co-occurrences in C and P ,
respectively:

(1) SS: d i and dj belong to the same cluster in C and the same cluster in P;
(2) SD: d i and dj belong to the same cluster in C but different clusters in P;
(3) DS: d i and dj belong to different clusters in C but the same cluster in P;
(4) DD: d i and dj belong to different clusters in C and different clusters in P;

142 6 Text Clustering

Let a, b, c, d denote the number of SS, SD, DS, and DD, respectively. The
following evaluation measures can be defined:

(a) Rand index

RS = a + d

a + b + c + d
(6.18)

(b) Jaccard index

JC = a

a + b + c
(6.19)

(c) Fowlkes and Mallows index

FMI =
√

a

a + b
· a

a + c
(6.20)

The range of the above three indices is [0, 1]. The larger the value of the index is,
the higher the similarity of C and P and the better the performance of the clustering
result C .

6.3.2 Internal Criteria

The internal criteria are based on internal information (such as distribution and
structure) and evaluate a cluster without reference to external information. Cohesion
and separation are two key factors for evaluating the clustering performance in inter-
nal criteria. Generally, internal criteria prefer clusters with high similarity within a
cluster (high cohesion) and low similarity between clusters (high separation).

The typical internal criteria include the silhouette coefficient, I index, Davies–
Bouldin index, Dunn index, Calinski–Harabasz index, Hubert’s Γ statistic, and the
cophenetic correlation coefficient. Most of these metrics include factors of both
cohesion and separation. In the following, we will introduce the representative
measure: the silhouette coefficient. Readers can refer to (Liu et al. 2010) for the
details of other methods.

The silhouette coefficient was first proposed by Peter J. Rousseeuw in 1986 and
has become a commonly used internal criterion for clustering evaluation. Assuming
d is a sample belonging to cluster Cm, we first calculate the average distance
between d and the other samples in Cm as:

a(d) =

∑

d ′∈Cm,d
=d ′
dist(d, d ′)

|Cm| − 1
(6.21)

6.4 Further Reading 143

We then calculate the minimum average distance between d and the samples in
the other clusters:

b(d) = min
Cj :1≤j≤k,j
=m

⎧
⎪⎪⎨

⎪⎪⎩

∑

d ′∈Cj

dist(d, d ′)

|Cj |

⎫
⎪⎪⎬

⎪⎪⎭
(6.22)

Among them, a(d) reflects the degree of cohesion in the cluster to which d

belongs; b(d) reflects the degree of separation between d and the other clusters.
On this basis, the silhouette coefficient with respect to d is defined as follows:

SC(d) = b(d) − a(d)

max{a(d), b(d)} (6.23)

The overall silhouette coefficient is then defined as the average silhouette
coefficient across all samples in the dataset:

SC = 1

N

N∑

i=1

SC(d i) (6.24)

The range of the silhouette coefficient is [−1, 1]. The higher the silhouette
coefficient is, the better the clustering performance.

6.4 Further Reading

The performance of text clustering depends on the quality of the text representation.
Traditional text clustering methods mainly use the vector space model for text
representation. This type of representation has some inherent shortcomings, includ-
ing high-dimensional and sparsity problems, which are inefficient for similarity
calculation and text clustering.

In text classification, supervised feature selection methods (e.g., MI and IG) are
widely used to improve the quality of text representation. However, because the
labels of documents are unknown in text clustering, we can only use unsupervised
feature selection methods (e.g., document frequency and term frequency). The
unsupervised feature extraction algorithms (e.g., PCA, ICA) are also options for
dimension reduction in text clustering. In addition, topic models such as latent
semantic analysis (LSA), probabilistic latent semantic analysis (PLSA), and latent
Dirichlet distribution (LDA) also provide a way to represent a document by
transforming the high-dimensional sparse vectors of words into low-dimensional
dense vectors of topics. In addition, some studies also attempt to use the concepts
in a knowledge base (such as WordNet, HowNet, Wikipedia, etc.) to guide text
representation, similarity calculation, and clustering.

144 6 Text Clustering

In recent years, with the rise of deep learning, distributed representations such
as word embedding have been widely used in text data mining. For example, as
introduced in Chap. 3, a piece of text at different levels (e.g., word, phrase, sentence,
and document) can be represented by a densely distributed low-dimensional vector.
Another advantage of representation learning is that it can learn a task-related
representation. Both advantages bring new perspectives to text clustering.

In addition to the clustering methods we described above, there are some special
clustering algorithms, such as suffix tree clustering (STC), that are specific to
text processing. As a type of data structure, a suffix tree was first proposed to
support effective matches and queries for strings. By using the suffix tree structure
to represent and process text, the suffix tree clustering algorithm regards text as
a sequence of words rather than a set of words and captures more word order
information.

Clustering text streams is a special problem of text clustering, which has been
widely used in the fields of topic detection and tracking and social media mining.
Unlike traditional text clustering, the text data in these fields often appear in the form
of online text streams, which creates challenges for text clustering. The single-pass
clustering algorithm is a widely used method for real-time large-scale text stream
clustering. We will also see in Chap. 9 that some online variants of the traditional
clustering algorithms, such as group-average agglomerative clustering (Allan et al.
1998a; Yang et al. 1998), have also been proposed to address these challenges.

Exercises

6.1 Please point out the similarities and differences between the classification and
clustering problems.

6.2 What is the relationship between Euclidean distance and cosine similarity when
measuring the similarity of two documents?

6.3 Is KL divergence suitable for the similarity calculation of short documents?
In addition to KL divergence, can you think of other distribution-based similarity
calculation methods?

6.4 Please give the detailed K-means clustering process for the clustering dataset
in Table 6.2 when document x1, x5, and x8 are selected as the initial centroids.

6.5 What is the single-pass clustering results if the document order for processing
is reversed in Table 6.2?

6.6 Please try to perform divisive hierarchical clustering on the clustering dataset
in Table 6.2.

Chapter 7
Topic Model

7.1 The History of Topic Modeling

The following text is extracted fromWalden, a book by Henry David Thoreau, where
the words with wavy lines are related to animals, the words with dots are related to
locations, the words with double underscores are related to plants, and the words
with underscores are related to colors.

The first
�������
sparrow of spring! The year beginning with younger hope than ever!

The faint silvery warblings heard over the partially bare and moist fields from
the

�������
bluebird, the song

������
sparrow, and the

�������
red-wing, as if the last flakes of winter

tinkled as they fell! What at such a time are histories, chronologies, traditions,
and all written revelations? The brooks sing carols and glees to the spring. The

�����
marsh

�����
hawk, sailing low over themeadow, is already seeking the first slimy

life that awakes. The sinking sound of melting snow is heard in alldells, and
the ice dissolves apace in theponds. The grass flames up on thehillsides like a
spring fire—“etprimitus oritur herba imbribus primoribus evocata”—as if the
earth sent forth an inward heat to greet the returning sun; not yellow but green
is the color of its flame;—the symbol of perpetual youth, the grass-blade, like
a long green ribbon, streams from the sod into the summer, checked indeed
by the frost, but anon pushing on again, lifting its spear of last year’s hay with
the fresh life below. It grows as steadily as the . . .rill oozes out of theground. It
is almost identical with that, for in the growing days of June, when therills
are dry, the grass-blades are their channels, and from year to year the

�����
herds

drink at this perennial green stream, and the mower draws from it betimes
their winter supply. So our human life but dies down to its root, and still puts
forth its green blade to eternity.

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_7

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_7&domain=pdf
https://doi.org/10.1007/978-981-16-0100-2_7

146 7 Topic Model

Table 7.1 The topic in the
above paragraph

Animal Plant Location Color

Sparrow Grass Meadow Silvery

Bluebird Grass-Blade Dells Green

Marsh hawk Hay Ponds Yellow

By extracting these words, we can obtain a set of topics, each of which is denoted
by a set of representative words, as shown in Table 7.1.

The idea of topic modeling is derived from the field of information retrieval.
Susan Dumais et al. proposed latent semantic indexing (LSI), using singular value
decomposition (SVD) technology to map document vectors from high-dimensional
word space to a low-dimensional semantic space (i.e., topic space). This method can
discover the implicit topic information in texts, such as the linguistic phenomena of
polysemy and synonymy, without relying on any prior knowledge, and ultimately
provide search results that match the user’s query not only at the lexical level but
also at the semantic level.

The LSI model is based on the framework of algebra, while the probabilistic
latent semantic indexing (PLSI) model proposed by Thomas Hofmann simulates
the process of generating words in documents through the probabilistic generative
model and extends the LSI model to the framework of probability. LSI and PLSI are
also called latent semantic analysis (LSA) and probabilistic latent semantic analysis
(PLSA), respectively, and have been widely used in information retrieval, natural
language processing, and text data mining.

The PLSA model can only fit a limited collection of documents in terms of the
training dataset. The parameter space of PLSA increases linearly with the number of
documents contained in the training set, which makes it either prone to overfitting
or challenges its ability to infer meaning from unseen documents. To solve these
problems, David Blei et al. proposed the latent Dirichlet allocation (LDA) model,
which introduced the prior distribution of parameters on the basis of PLSA and
replaced the MLE used in PLSA with Bayesian estimation. LDA can be used not
only as a text representation method but also for dimension reduction and has been
successfully applied in many downstream text data mining tasks.

7.2 Latent Semantic Analysis

In 1988, Susan Dumais et al. proposed using LSA for distributional semantic
representation (Dumais et al. 1988; Deerwester et al. 1990). The goal is to represent
a piece of text by a set of implicit semantic concepts rather than the explicit terms
in the vector space model.

LSA assumes that words with similar semantics are more likely to appear in
similar pieces of text. Unlike the high-dimensional and sparse text representation
method VSM, LSA uses SVD technology to map high-dimensional representations

7.2 Latent Semantic Analysis 147

of texts into a low-dimensional latent semantic space. This low-dimensional repre-
sentation reveals the semantic relationship among words (documents). Such latent
semantic concepts are called topics.

7.2.1 Singular Value Decomposition of the Term-by-Document
Matrix

Given a set of documents, the following term-by-document matrix can be con-
structed based on the vector space model:

X =
⎡

⎢⎣
x1,1 . . . x1,n

...
. . .

...

xm,1 . . . xm,n

⎤

⎥⎦

where xi,j denotes the weight of the i-th term in the j -th document, m is the number
of terms, n is the number of documents. Thus,

[
xi,1, · · · , xi,n

]
denotes the represen-

tation of the i-th term across all documents, and each column
[
x1,j , · · · , xm,j

]T

denotes the representation of the j -th document in the vector space model.
Perform SVD on X:

X = T �DT (7.1)

where � = diag(σ1, . . . , σr) is an r-order rectangular diagonal matrix with
nonnegative real numbers σ1, · · · , σr (σ1 ≥ σ2 ≥ · · · ≥ σr > 0) on the
diagonal. The column vectors of T (t1, t2, · · · , tr) and the column vectors of D

(d1, d2, · · · , dr) construct a set of unit orthogonal vectors that satisfies T TT = I r

and DTD = I r .
The above formula can also be written in the form of the sum of r-rank matrices:

X = σ1t1d
T
1 + · · · + σr t rd

T
r (7.2)

where the singular value σ1, · · · , σr reflects the strength of r independent concepts
implied in X.

In text representation, the traditional term-by-document matrix is usually very
sparse because of the high dimension of the feature space and the short length
of documents. Meanwhile, there is a high linear correlation among the high-
dimensional features. LSA decomposes the term-by-document matrix X by trun-
cated SVD, as shown in Formula (7.2), keeping the k (k < r) largest singular values.
The orthogonal space composed of the k singular values and the corresponding
singular vectors is regarded as the latent semantic space of the text. This means
that the dimension of text representation can be reduced from m to k by selecting
k latent topics instead of m explicit terms as the basis for text representation. The

148 7 Topic Model

Fig. 7.1 Matrix
decomposition of LSA model

w
o
rd

s

documents

w
o
rd

s

topics

topics

to
p
ic

s

documents

to
p
ic

s

k-rank approximation of the original matrix X is then obtained:

X̂ = σ1t1d
T
1 + · · · + σktkd

T
k (7.3)

written in the form of matrices:

X̂ = T k�kD
T
k (7.4)

where T k = [t1 · · · tk] is called the term-by-topic matrix and Dk = [d1 · · · dk] is
called the document-by-topic matrix. The above matrix decomposition process is
illustrated in Fig. 7.1.

Such a low-rank approximation is expected to merge the dimensions associated
with terms that have similar meanings, for example, {car, truck, flower} → {1.38 ×
car + 0.52 × truck, flower}.

7.2.2 Conceptual Representation and Similarity Computation

After obtaining the low-rank approximation of the term-by-document matrix, we
are concerned with the following five issues.

(1) Conceptual representation of terms

Each row in X̂ corresponds to one term represented by a vector of its term
weights in different documents.

The conceptual representation of terms tj can be obtained by extracting the j -th
row of X̂ in Eq. (7.8):

[
xj,1 · · · xj,n

] = [tj,1 · · · tj,k]�kD
T
k

= [σ1tj,1 · · · σktj,k]DT
k

(7.5)

If we treat �kD
T
k as the coordinate system of the latent semantic space, the

conceptual representation of the j -th term is [tj,1 . . . tj,k].
The similarity between different terms can therefore be measured by the inner

product of two row vectors of X̂. For this purpose, a quadratic symmetric matrix

7.2 Latent Semantic Analysis 149

X̂X̂
T

is constructed to contain the inner product of all terms:

X̂X̂
T = T k�kD

T
k Dk�kT

T
k

= T k�k (T k�k)
T

(7.6)

The similarity between the i-th and j -th terms, i.e., the elements of the i-th row and

the j -th column in X̂X̂
T

, is equal to the inner product of the corresponding row
vectors in the matrix T k�k .

(2) Conceptual representation of documents

Extracting the i-th column of the matrix in Eq. (7.8), we can obtain the
conceptual representation of the i-th document:

xi = [
x1,i · · · xm,i

]T

= T k�k

[
d1,i · · · dk,i

]T

= T k

[
σ1d1,i · · · σkdk,i

]T

(7.7)

Similarly, the inner product of two column vectors is used to measure the simi-
larity between two documents. Constructing another quadratic symmetric matrix:

X̂
T
X̂ = DkΣkT

T
k T kΣkD

T
k

= (DkΣk) (DkΣk)
T

(7.8)

The similarity between the i-th and the j -th document, i.e., the element of the i-th

row and the j -th column in X̂
T
X̂, is equal to the inner product of the corresponding

row vectors of the Dk�k matrix.

(3) The correlation between terms and documents

The term-by-document approximation matrix X̂ reflects the relevance between
terms and documents. Formula (7.4) can be rewritten as:

X̂ = T k�kD
T
k

= T k�
1/2
k �

1/2
k DT

k

(7.9)

By taking T k�
1/2
k as the coordinate system, the conceptual representation of

the j -th term can be written as [√σ1tj,1 · · · √σktj,k]T. By taking Dk�
1/2
k as the

coordinate system, the conceptual representation of the i-th document is expressed
as [√σ1d1,i . . .

√
σkdk,i]T. Thus, the correlation between the j -th term and the i-th

150 7 Topic Model

document is derived as follows:

[√
σ1tj,1 · · ·√σktj,k

] [√
σ1d1,i · · · √σkdk,i

]T =
k∑

h=1

σhtj,hdh,i

= [X̂]j,i
(7.10)

(4) Conceptual representation of new documents

We have described the conceptual representations of the documents contained
in the training dataset, and now, we explain how to obtain their conceptual
representation. Suppose x′ is a new document. By taking the column vector
δ1t1, δ2t2, · · · , δktk of Tk�k as the coordinate system, we can describe the relation-
ship between x′ and its representation in the new coordinate system d ′ as follows:

x′ = T k�kd
′ (7.11)

After applying a left multiplication to both sides of the equation by �−1
k T T

k , we
obtain d ′ as follows:

d ′ = �−1
k T T

k x′

= Fx′ (7.12)

where F = �−1
k T T

k is called the folding-in matrix, which represents a linear
transformation from term space to concept space.

7.3 Probabilistic Latent Semantic Analysis

LSA is based on the framework of algebra, but algebra lacks insight from the
perspective of probability. In addition, the difficulty of using SVD on a large
scale also restricts the application of LSA. In 1999, Thomas Hoffmann proposed
the probabilistic latent semantic analysis (PLSA) model (Hofmann 1999), which
extended latent semantic analysis’s algebra framework to include probability.

7.3.1 Model Hypothesis

PLSA is a probabilistic graphical model that models the process of text generation
based on probabilistic graphs. Figure 7.2 shows the plate diagram of PLSA, where
random variables d, w, and z represent documents, terms, and topics, respectively.
d and w are observable variables, and z are hidden variables that cannot be directly

7.3 Probabilistic Latent Semantic Analysis 151

Fig. 7.2 The plate diagram of PLSA

observed. M , N and K denote the number of terms, documents, and topics. In
PLSA, the document-by-topic matrix D and term-by-topic matrix T in LSA, as
shown in Fig. 7.1, are modeled by the document-conditional topic distributions
p(z|d) and topic-conditional term distributions p(w|z), where p(zk|di) denotes
the probability of topic zk conditioned on document di , and p

(
wj |zk

)
denotes the

probability of term wj conditioned on topic zk .
The PLSA model assumes that a document is generated by the following process:

For each document:

Choose a document di according to the probability p(di);

For each word position in each document:

Choose a topic zk , according to the probability p (zk |di);

Choose a term wj according to the topic zk and the probability p
(
wj |zk

)
.

Accordingly, the joint distribution of observed variables
(
di, wj

)
can be written

as:

p
(
di, wj

) = p (di) p
(
wj |di

)

= p (di)

K∑

k=1

p(wj |zk)p(zk |di)
(7.13)

where p(wj |zk) and p (zk|di) are parameters to be estimated.

7.3.2 Parameter Learning

Given a training corpus containing multiple documents, PLSA estimates the
parameters p(wj |zk) and p (zk|di) based on the principle of maximum likelihood
estimation (MLE). If the training corpus is regarded as a sequence of documents,
each document consists of a sequence of terms, and the log-likelihood of the joint

152 7 Topic Model

distribution of observed variables can be written as:

L = log
N∏

i=1

M∏

j=1

p
(
di, wj

)n(di,wj)

=
N∑

i=1

M∑

j=1

n
(
di, wj

)
log p (di)

K∑

k=1

p
(
wj |zk

)
p (zk|di)

(7.14)

where n
(
di, wj

)
is the frequency of term wj in document di .

Due to the existence of hidden variables zk , the log-likelihood contains the
log of sum, and it is difficult to perform MLE directly. Instead, the expectation
maximization (EM) algorithm can be used to solve the MLE problem. This book
omits the detailed derivations of the EM algorithm for PLSA and only displays its
main steps. Interested readers can refer to (Mei and Zhai 2001) for more details.

The main steps of the EM algorithm for PLSA are as follows:

(1) Parameter Initialization: Θ(0) = {p (
wj |zk

)(0)
, p (zk|di)

(0)}.
(2) E-step: Calculate the posterior probability of the latent variables given

the observed variables based on current parameter Θ(t) = {p (
wj |zk

)(t)
,

p (zk|di)
(t)}:

p
(
zk|di, wj

) = p
(
wj |zk

)
p (zk|di)

K∑
h=1

p
(
wj |zh

)
p (zh|di)

(7.15)

(3) M-step: Perform the traditional MLE to maximize the lower bound of L under
parameter Θ(t) and obtain the updated parameters Θ(t+1).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p
(
wj |zk

)(t+1) =
∑N

i=1 n
(
di, wj

)
p
(
zk|di, wj

)
∑M

j=1
∑N

i=1 n
(
di, wj

)
p
(
zk|di, wj

)

p (zk|di)
(t+1) =

∑M
j=1 n

(
di, wj

)
p
(
zk|di, wj

)

n (di)

(7.16)

where n (di) denotes the total number of terms contained in document di .
(4) Repeat E-step and M-step until the algorithm converges.

Based on the above equations, we can easily obtain the conditional topic
distribution given a document in the training corpus. For an unseen document d ′,
we can keep parameter p(w|z) learned from the training corpus fixed, continuously
run the EM algorithm based on d ′, and update p(z|d ′) iteratively until the algorithm
converges.

7.4 Latent Dirichlet Allocation 153

7.4 Latent Dirichlet Allocation

Let θ i = [p(z1|di), p(z2|di), . . . , p(zK |di)] denote the conditional topic distri-
bution given the i-th document and ϕk = [p(w1|zk), p(w2|zk), . . . , p(wV |zk)]
denote the conditional term distribution given the k-th topic. In PLSA, θ i and ϕk are
viewed as deterministic but unknown variables in advance and can be estimated by
performing MLE on the training corpus. The size of parameters θ i increases linearly
with the number of documents, and such linear growth in parameters suggests that
the model is prone to overfitting.

To address these problems, David Blei, Andrew Ng, and Michael Jordan pro-
posed a more generalized topic model based on PLSA, the LDA (Blei et al. 2003).
LDA introduces a Dirichlet distribution as the priors to the document-conditional
topic distribution and the topic-conditional term distribution. The parameters θ i and
ϕk are considered random variables and are drawn from two Dirichlet distributions
rather than, as in PLSA, being treated as deterministic variables.

The Dirichlet distribution and the categorical distribution are a pair of conjugate
distributions, and the learning algorithm of the model is also changed from max-
imum likelihood estimation to Bayesian estimation, accordingly. In comparison,
LDA is a more well-defined generative model whose parameters do not grow with
the size of the training corpus and are able to generalize easily to new documents.
Girolami and Kabán (2003) proved that PLSA is essentially a special type of LDA
based on MAP estimation by taking a uniform Dirichlet distribution Dir(1) as the
prior distribution.

7.4.1 Model Hypothesis

The plate diagram of LDA is shown in Fig. 7.3, where double circles denote observ-
able variables, single circles denote latent variables, arrows denote conditional
dependency between two variables, and boxes denote repeated operations.

The main notations in LDA are shown in Table 7.2. In LDA, the generation
process of a document is assumed as follows.

For each topic:

Choose ϕk ∼ Dir(β), where ϕk is the parameter of the term distribution given

the k-th topic.

For each document:

Choose θm ∼ Dir(α), where θm is the parameter of the topic distribution given

the m-th document.

For each word position in each document:

Choose a topic for the current position: zm,n ∼ Cat(θm).

Based on the topic zm,n, choose a term for the current position wm,n ∼ Cat(ϕzm,n
).

154 7 Topic Model

∈ 1,

,

,

∈ 1,

Fig. 7.3 The plate diagram of LDA

Table 7.2 The main parameters of the LDA model

Parameters Meaning

M The number of documents

K The number of topics

V The number of terms(i.e., The dimensions of the vocabulary)

α The hyperparameter of the Dirichlet prior distribution with respect to θm

β The hyperparameter of the Dirichlet prior distribution with respect to ϕk

θm The conditional topic distribution given the m-th document

ϕk The conditional term distribution given the k-th topic

Nm The length of m-th document

zm,n The topic assigned to the n-th word position in the m-th document

wm,n The term assigned to the n-th word position in the m-th document

zm = {
zm,n

}Nm

n=1 The topic sequence of the m-th document

wm = {
wm,n

}Nm

n=1 The term sequence of the m-th document

w = {wm}Mm=1 The term sequence of a set of documents

z = {zm}Mm=1 The topic sequence of a set of documents

It is worth noting that the original paper introducing LDA (Blei et al. 2003)
only presented the Dirichlet prior to the document-conditional topic distribution
θm, and the topic-conditional term distribution ϕk was modeled in the same way as

7.4 Latent Dirichlet Allocation 155

that in PLSA. The following research further introduced the Dirichlet prior for ϕk .
In addition, the original paper used a Poisson distribution to model the document
length. For each document, the document length is first chosen according to a
Poisson distribution. However, this assumption does not affect the inference of the
distribution of terms and topics in documents. Therefore, most of the following
studies have removed the modeling of document length.

7.4.2 Joint Probability

As defined in Table 7.2, w and z denote the sequence of terms and topics of a set of
documents. The joint distribution of w and z can be factorized into two parts:

p (w, z) = p (w|z) p (z) (7.17)

where p (z) is the probability of the topic sequence and p (w|z) is the probability of
the term sequence given the topic sequence.

According to the former hypothesis, the topic of the n-th word position in the m-
th document zm,n is assigned according to the categorical distribution Cat(θm), that
is p(zm,n = k|θm) = θm,k . Multiple trials of the categorical distribution correspond
to a multinomial distribution; therefore, the probability of the topic sequence zm

given θm is:

p (zm|θm) =
Nm∏

n=1

p
(
zm,n|θm

) =
K∏

k=1

θ
nm,k,•

m,k (7.18)

where Nm and K have been defined in Table 7.2, and nm,k,• denotes the number of
occurrences of topic k in the m-th document.

In LDA, the document-conditional topic distribution θm is drawn from the
Dirichlet prior distribution:

p(θm) = 1

Δ(α)

K∏

k=1

θ
αk−1
m,k (7.19)

where Δ (α) =
∏K

i=1 Γ (αi)

Γ
(∑K

i=1 αi

) .

The joint probability of zm and θm is:

p(zm, θm)= p(zm|θm)p(θm)

= 1

Δ(α)

K∏

k=1

θ
nm,k,•+αk−1
m,k

(7.20)

156 7 Topic Model

The marginal distribution of zm is obtained by integrating θm in the joint
probability:

p (zm) =
∫

p (zm, θm) dθm

= 1

Δ (α)

∫ K∏

k=1

θ
nm,k,•+αk−1
m,k dθm

= Δ(nm,•,• + α)

Δ(α)

(7.21)

where nm,•,• = {nm,k,•}Kk=1.
The entire corpus is composed of M independent documents; therefore, the

probability of the topic sequence of the entire corpus is:

p (z) =
M∏

m=1

p (zm)

=
M∏

m=1

Δ(nm,•,• + α)

Δ(α)

(7.22)

Similarly, the probability of the terms sequence given the topic sequence can be
obtained. According to the former hypothesis, the conditional probability of term
w(i) = t given topic z(i) = k at the i-th word position is:

p
(
w(i) = t|z(i) = k

)
= ϕk,t

The generation of each word in a document is independent. Let wk denote a
sequence of terms where the topic at each position is k across the entire corpus,
and zk is the corresponding sequence of topics where each element is topic k. Given
parameter ϕk , the probability of wk is:

p(wk|zk,ϕk) =
∏

{i:z(i)=k}
p(w(i)|z(i) = k,ϕk)

=
V∏

t=1

ϕ
n•,k,t

k,t

(7.23)

where n•,k,t denotes the frequency of term t under topic k in the corpus.

7.4 Latent Dirichlet Allocation 157

Similarly, ϕk is drawn from the Dirichlet prior distribution:

p
(
ϕk

) = 1

Δ(β)

V∏

t=1

ϕ
βt−1
k,t (7.24)

where Δ(β) =
∏K

i=1 Γ (βi)

Γ
(∑K

i=1 βi

) .

Given the topic zk , the joint probability of wk and ϕk is:

p(wk,ϕk|zk) = p(ϕk)p(wk|zk,ϕk)

= 1

Δ(β)

V∏

t=1

ϕ
n•,k,t +βt−1
k,t

(7.25)

By integrating ϕk in joint probability, the distribution p (wk|zk) is obtained as
follows:

p (wk|zk) =
∫

p
(
wk,ϕk|zk

)
dϕk

= 1

Δ (β)

∫ V∏

t=1

ϕ
n•,k,t+βt−1
k,t dϕk

= Δ(n•,k,• + β)

Δ(β)

(7.26)

where n•,k,• = {
n•,k,t

}V

t=1.
Because the generation of each word is independent, the probability of the term

sequence given the topic sequence z in the whole corpus is:

p (w|z) =
K∏

k=1

p (wk|zk)

=
K∏

k=1

Δ(n•,k,• + β)

Δ(β)

(7.27)

By integrating the above two factors (Eqs. 7.22 and 7.27), we can obtain the joint
probability of the term and topic sequences as follows:

p (w, z) = p (w|z) p (z)

=
K∏

k=1

Δ(n•,k,• + β)

Δ(β)

M∏

m=1

Δ(nm,•,• + α)

Δ(α)

(7.28)

158 7 Topic Model

7.4.3 Inference in LDA

In the context of the probabilistic graphical model, inference refers to the process
of inferring the values of hidden variables according to observed variables. The
key inferential problems in LDA are to infer the distribution of latent topics
given the observed words p(z|w), based on the Bayesian inference framework,
and estimate the posterior distribution of θm and ϕk , i.e., p(θm|zm,wm) and
p(ϕk|wk, zk).

However, LDA is somehow difficult to infer exactly, and approximate infer-
ence algorithms, such as variational Bayes expectation maximization (VBEM),
expectation propagation (EP), and Markov chain Monte Carlo (MCMC), have
been proposed for inference in LDA. VBEM was first used in the original paper
on LDA (Blei et al. 2003). Griffiths and Steyvers (2004) proposed the LDA
approximation inference based on Gibbs sampling, which is a representative method
of MCMC.

MCMC is a sampling technique based on the Markov chain. It is often used
to solve the challenge of sampling from high-dimensional random variables. By
constructing a Markov chain that takes the target distribution as its stationary
distribution, a sample of the target distribution can be approximately generated for
each transition in the chain after the “burn-in” period, which eliminates the influence
of initialization parameters.

Gibbs sampling is a special case of MCMC that is relatively simple to understand
and implement. Suppose that the target distribution is p(x). In Gibbs sampling, a
randomly selected dimension x(i) of the distribution is sampled alternately for each
time, given the values of all the other dimensions x(¬i):

p
(
x(i)|x(¬i)

)
= p

(
x(i), x(¬i)

)

p
(
x(¬i)

) (7.29)

When applying Gibbs sampling to the inference of LDA, we need to sample the
following conditional distribution p(z(i)|z(¬i),w):

p
(
z(i)|z(¬i),w

)
= p (w, z)

p
(
w, z(¬i)

)

∝ n
(¬i)
•,k′,t ′ + βt ′

∑
t

n
(¬i)
•,k′,t + βt

(
n

(¬i)

m′,k′,• + αk′
) (7.30)

where w is the sequence of terms in the training corpus and z is the corresponding
sequence of topics. m′, k′, and t ′ are the index for document, term, and topic at the i-
th position; n

(¬i)
m,k,. denotes the frequency of topic k in document m after the removal

for the i-th position; and n
(¬i)
.,k,t denotes the frequency of term t under topic k in

7.4 Latent Dirichlet Allocation 159

the sequence after removal of the i-th position. The detailed derivation of Formula
(7.30) can be found in (Heinrich 2005).

By sampling p
(
z(i)|z(¬i),w

)
, the Gibbs sampling algorithm generates a topic

each time at one word position in the sequence with alternation and constructs a
Markov chain that can be transformed between states. After passing the “burn-in”
period, the Markov chain enters into a stable state. The stationary distribution can
afterwards be used as an approximation of the target distribution p(z|w). The flow
chart of LDA inference is as follows.

Algorithm 5: Gibbs sampling for the inference of LDA
Input : The number of documents M , the length of each document Nm, the sequence of

terms corresponding to the document set w, the number of topics k, the
hyperparameters α and β. the maximum number of iterations T ;

Output: Topic vectors z, estimates of the expectations of the posterior distributions Φ̂ and
Θ̂ .

1 #Initialization
2 zero all count variables: nm,k,•, n•,k,t

3 for m = 1, . . . ,M do
4 for n = 1, . . . , Nm do

5 Random Initialization zm,n ∼ Cat
(

1
K

, 1
K

, . . . , 1
K

)

6 end
7 end
8 #Gibbs Sampling
9 t = 0

10 while t < T or until the algorithm converges do
11 for m = 1, . . . ,M do
12 for n = 1, . . . , Nm do
13 t = wm,n, k = zm,n

14 nm,k,•− = 1, n•,k,t− = 1

15 Sampling based on Formula (7.30) zm,n = k̃ ∼ p
(
z(i)|z(¬i),w

)

16 n
m,k̃,•+ = 1, n•,k̃,t− = 1

17 t+ = 1
18 end
19 end
20 end
21 #Parameter Estimation

22 According to Formulas (7.33) and (7.34), we can estimate ϕ̂k,t and θ̂m,k , respectively.

In LDA, the parameters θ and ϕ are considered to be random rather than
deterministic variables. Instead of estimating their exact values, we can infer their
posterior distributions and observe their properties based on statistics such as
expectation and variance. Based on the conjugate relationship between the Dirichlet
distribution and categorical distribution, we can further determine that the posterior

160 7 Topic Model

distribution of θ and ϕ still follow the Dirichlet distributions:

p (θm|zm,wm) = 1

Δ
(
nm,•, · · · + α

)
K∏

k=1

θ
nm,k,•+αk−1
m,k (7.31)

p
(
ϕk|wk, zk

) = 1

Δ(n•,k,• + β)

V∏

t=1

ϕ
n•,k,t +βt−1
k,t (7.32)

The expectations of the posterior distributions of ϕ and θ based on the training
corpus are as follows:

ϕ̂k,t = E(ϕk,t) = n•,k,t + βt

V∑
t=1

n•,k,t + βt

(7.33)

θ̂m,k = E(θm,k) = nm,k,• + αk

K∑
k=1

nm,k,• + αk

(7.34)

which contains not only the likelihood information in the training corpus but also
the prior information of the parameters.

7.4.4 Inference for New Documents

The inference of the conditional topic distribution θ given new document dm can
be achieved by continuously performing Gibbs sampling only on the new document
dm while keeping the topic-conditional term distribution ϕk unchanged.

p
(
z̃(i) = k|w̃(i) = t, w̃(¬i), z̃(¬i); w, z

)
∝ ϕ̂k,t

(
n

(−i)

m̃,k,.
+ αk

)

= n•,k,t + βt∑
t n•,k,t + βt

•
(
n

(¬i)

m̃,k,
+ αk

)

(7.35)

where w̃(i) and z̃(i) denote the sequences of terms and topics at the i-th position
of the new document, respectively, w̃(¬i) and z̃(¬i) denote the term and topic in
the new document m̃ after the removal of the i-th position, respectively, and n

(¬i)

m̃,k,•

denotes the frequency of topic k in the new document m̃ after the removal of the i-th
position.

7.5 Further Reading 161

After the Markov chain converges to the stationary distribution, the expectation
of Eq. (7.35) will be used as the “estimation” of the conditional topic distribution θ

given the new document m̃:

θ̂m̃,k = E
(
θm̃,k

) = nm̃,k,• + αk∑
k nm̃,k,• + αk

(7.36)

where nm̃,k,• denotes the frequency of topic k in the new document m̃.

7.5 Further Reading

LDA is one of the topic models in the field of text analysis receiving the most
attention, and it is widely used in many text data mining tasks. A document can
be represented as a distribution of topics based on the LDA model. Such topic-
based text representation can be further used in many downstream tasks, such as
word or document similarity calculation, text clustering, text classification, text
segmentation, collaborative filtering, and so on.

Meanwhile, many LDA variants have been proposed to either improve its topic
modeling ability or extend its applications to different scenarios.

For example, Blei and Lafferty (2006) proposed a correlated topic model (CTM),
which captured the correlation between potential topics by using a logistic normal
distribution instead of a Dirichlet distribution. Griffiths et al. (2004) proposed a
hierarchical LDA for modeling tree-level topics. Li and McCallum (2006) proposed
a PAM (Pachinko allocation model) that represented the relationship between topics
as a directed acyclic graph. Chang and Blei (2009) proposed RTM (relational
topic models) for modeling the topics among interlinked documents (i.e., document
networks).

To incorporate the annotations into LDA for supervised learning, Mcauliffe and
Blei (2008) proposed a supervised latent Dirichlet allocation (SLDA) model, and
Ramage et al. (2009) proposed a labeled LDA model, both of which extend the
standard LDA from unsupervised learning to supervised learning.

In addition to using LDA to model topics in plain text, a series of LDA variants
have been proposed to model text-related external attributes, such as author, user,
sentiment, and network structure. For example, Steyvers et al. (2004) proposed an
author-topic model (ATM), which established a user model in the process of text
generation and built a topic-conditional term distribution for each of the authors.
McCallum et al. (2005) proposed an author recipient topic (ART) model, where
the generation of topics and terms in a document was determined by both author
and recipient. In addition to only considering user information, Zhao et al. (2011)
proposed a Twitter-LDA model that introduced the concepts of topic categories and
topic types to facilitate the analysis of the topical differences between social media
and traditional media. Many LDA extensions have also been proposed to model
the additional attributes in social media, including time, place, interest, community,

162 7 Topic Model

and network structure. Aiming to provide topic modeling for review text containing
sentiment and opinion, Mei et al. (2007) proposed a topic–sentiment mixture model
(TSM) by introducing sentiment variables on the basis of a traditional topic model.
Follow-up work included a multiaspect sentiment analysis (MAS) model (Titov and
McDonald 2008) and a joint sentiment–topic (JST) model (Lin and He 2009). We
will introduce these models in Sect. 8.5.3 in detail.

Traditional topic models are based on static text data, but the topics in a text
data stream are dynamic and change with time. Blei and Lafferty (2006) proposed a
dynamic topic model, which segmented text streams according to time and assumed
that the parameters of the time series satisfied the first-order Markov hypothesis.
In the topic over time (TOT) model proposed by Wang and McCallum (2006), the
time information was modeled in another way: they introduced the time labels as
observable variables into the topic model and associated topic and term sequence
generation with time labels.

Exercises

7.1 How does the topic model handle polysemy and synonym in the text?

7.2 What is the difference between LSA and PLSA? Which is more suitable for
modeling large-scale text data?

7.3 Please read the paper (Mei and Zhai 2001) and derive the EM algorithm in
PLSA in detail.

7.4 Try to analyze the connection between PLSA and LDA and their differences.

7.5 Why is it we cannot directly estimate the specific value of the parameters of
document-conditional topic distribution and topic-conditional term distribution in
LDA based on a set of documents but can only estimate their posterior probabilities
and expectations?

7.6 Try to learn and derive the LDA inference method based on variational EM.

7.7 As a distributed text representation method, please elaborate the topic models’
similarities with and differences from the representation learning methods repre-
sented by word2vec.

Chapter 8
Sentiment Analysis and Opinion Mining

8.1 History of Sentiment Analysis and Opinion Mining

The main tasks of sentiment analysis and opinion mining include the extraction,
classification, and inference of subjective information in texts (e.g., sentiment,
opinion, attitude, emotion, stance, etc.). It is one of the most active research areas
in natural language processing and text data mining. A large number of research
papers in this field have been published in top academic conferences (including
ACL, EMNLP, COLING, IJCAI, AAAI, SIGIR, CIKM, WWW, KDD, and so on).
At the same time, evaluations and competitions for sentiment analysis and related
tasks, including TREC,1 NTCIR,2 COAE, NLPCC, SemEval3 and so on, have
been launched and thereby also effectively promoted the development of sentiment
analysis research.

Early sentiment classification studies were primarily rule-based approaches.
Turney (2002) proposed a PMI-IR method to identify the semantic orientation (SO)
of words (or phrases) in text, accumulated the polarities of these words/phrases,
and ultimately obtained the polarity of the whole document. Pang et al. (2002)
first introduced machine learning into the sentiment classification of movie reviews
and compared three classical classification algorithms (naïve Bayes, maximum
entropy, and support vector machines). This work laid the foundation for the study
of machine learning-based sentiment classification. However, traditional statistical
machine learning algorithms use the bag-of-words model for text representation,
which disrupts the original structure of the text and loses word order, syntactic
structure, and some semantic information.

1https://trec.nist.gov/.
2https://research.nii.ac.jp/ntcir/index-en.html.
3https://en.m.wikipedia.org/wiki/SemEval.

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_8

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_8&domain=pdf
https://trec.nist.gov/
https://research.nii.ac.jp/ntcir/index-en.html
https://en.m.wikipedia.org/wiki/SemEval
https://doi.org/10.1007/978-981-16-0100-2_8

164 8 Sentiment Analysis and Opinion Mining

In subsequent studies, sentiment analysis techniques were naturally divided into
two categories, i.e., rules-based methods and machine learning-based methods. The
former performs sentiment analysis at different granularities of text based on the
sentiment orientation of the words provided by a sentiment lexicon. The latter
focuses on more effective feature engineering for text representation and machine
learning. The main features include word order and its combination, part of speech
(POS), high-order n-gram, syntactic structure information, and so on.

From the perspective of methods, although statistical machine learning methods
in sentiment classification follow the framework of traditional topic-based text
classification models, there are some special problems, such as sentiment polarity
shift and domain adaptation, that need to be dealt with separately. Sentiment
classification has emerged based on different machine learning settings, such as
semisupervised sentiment classification, class-imbalanced sentiment classification,
and cross-linguistic sentiment classification. In recent years, the deep learning
method represented by artificial neural networks has been gradually applied to many
sentiment analysis tasks and has achieved great success.

From the perspective of tasks, in addition to document- or sentence-level
sentiment classification, more sentiment analysis tasks have been proposed at
different granularities, including aspect-level sentiment analysis, word or phrase-
level sentiment classification, and sentiment dictionary construction. In recent years,
a series of generalized sentiment analysis tasks, such as emotion analysis and stance
classification, have also emerged in the field of sentiment analysis.

8.2 Categorization of Sentiment Analysis Tasks

In the following, we will categorize the sentiment analysis tasks from the perspec-
tives of task output and analysis granularity.

8.2.1 Categorization According to Task Output

Sentiment classification is one of the core tasks of sentiment analysis and can
be regarded as a special type of text classification problem. Traditional text
classification mainly refers to the classification of text content according to objective
information, while sentiment classification aims to classify the text according to
subjective information.

The most studied task of sentiment classification is sentiment polarity classifi-
cation, or positive-negative classification, the goal of which is to predict whether a
document or a sentence contains sentiments that are positive (thumbs up) or negative
(thumbs down). Polarity classification requires that the content contained in the
text be subjective. It is meaningless to conduct sentiment analysis on text that only
contains objective information (such as a person’s height and weight or the time and

8.2 Categorization of Sentiment Analysis Tasks 165

location of an event). In the early research on sentiment analysis, there was a small
amount of work dedicated to the subjective–objective classification of sentences
(which we call subjectivity detection). Subjective–objective classifications are
different from polarity classifications, although they look similar. They all belong to
a binary classification problem, but they have different types of classification labels:
the former is subjective or objective, while the latter is positive or negative. Wiebe
et al. (2004) provided a detailed review of subjectivity detection based on different
methods and features.

In addition to the positive and negative categories, the neutral category is often
considered in sentiment classification, which results in the three-class (positive–
negative–neutral) sentiment classification problem. Neutral texts normally contain
two cases: objective text that does not contain sentiments and subjective text that
contains mixed positive and negative sentiments. In addition, there are also some
fine-grained sentiment analysis outputs, such as sentiment classification according
to rating levels (such as 1 to 5 stars), sentiment regression based on sentiment
strength (from 0 to 100%), emotion classification based on psychological emotions
(such as angry, sad, happy, etc.), or stance classification toward a topic (support,
against, or neural).

8.2.2 According to Analysis Granularity

Based on analysis granularity, sentiment analysis tasks can be divided into
document-level sentiment analysis, sentence-level sentiment analysis, word-level
sentiment analysis, and aspect-level sentiment analysis.

(1) Document-level sentiment analysis

Early research focused on sentiment classification for the entire document; in
other words, it aimed to determine the sentiment expressed by the whole document.
Document-level sentiment analysis task is defined as follows: given a document
d that may contain multiple sentences or even multiple paragraphs, the goal is
to determine the sentiment polarity o(d) of the entirety of d . Figure 8.1 shows a
document-level book review that contains three paragraphs. The goal of document-
level sentiment analysis is then to identify the author’s sentiment (e.g., positive or
negative) based on the whole document.

Turney (2002) and Pang et al. (2002) are the representative works from the
early research on document-level sentiment classification focused on book or movie
reviews. In addition to the book and movie domains, there are many document-
level reviews on the Internet, including electronic product reviews, hotel reviews,
restaurant reviews, etc. The tasks involved in detecting the sentiment of reviews at
the document-level are all within the scope of document-level sentiment analysis.

166 8 Sentiment Analysis and Opinion Mining

Fig. 8.1 An example of document-level sentiment classification

Fig. 8.2 An example of sentence-level sentiment analysis

(2) Sentence-level sentiment analysis

The granularity of document-level sentiment analysis is relatively rough because
the entire document usually contains multiple topics, and the sentiment may vary
for these different topics. In contrast, the topics involved in a sentence tend to
be relatively simple, therefore the sentiment in a sentence is more unique. Many
natural language processing techniques, such as syntactic parsing, use sentences as
the processing unit, and sentiment analysis at the sentence level is more likely to
incorporate such linguistic knowledge.

Sentence-level sentiment analysis can be defined as follows: given a sentence s,
the goal is to determine the sentiment polarity o(s) of s. Figure 8.2 gives a sentence-
level review, and the goal of the sentence-level sentiment analysis task is to identify
the sentiments expressed by this sentence.

Early research on sentence-level sentiment analysis included the subjective–
objective classification of sentences. Supervised learning methods used vocabulary,

8.2 Categorization of Sentiment Analysis Tasks 167

n-grams, POS, word order, and other features for text representation and naïve
Bayes, maximum entropy and other classifiers for classification (Wiebe et al. 1999,
2004). Pang and Lee (2004) used the minimum cut algorithm in graph theory to
extract a set of sentences that represents the sentiments of the entire document
and then performed sentiment classification on these representative sentences. One
disadvantage of sentence-level sentiment classification is that the sentiments need
to be manually annotated when building a classifier based on supervised learning
algorithms, while the sentiments for a document-level review can often be obtained
based on natural annotation (such as the rating of a review provided by the users).

With the development of social media (such as Twitter, Facebook, Weibo, and
WeChat) in recent years, there has been a class of message-level sentiment analysis
tasks. Such message-level texts are usually short and contain a small number of
sentences, often referred to as “short text.” This type of sentiment analysis task can
actually be handled as a sentence-level sentiment analysis or a short document-level
sentiment analysis without considering the structure of the social network.

(3) Word-level sentiment analysis and sentiment lexicon construction

In addition to document- and sentence-level sentiment analysis, some studies
have focused on sentiment analysis of more fine-grained units. Words and phrases
are often considered to be the smallest unit of sentiment expression. For convenience
of description, we refer to the sentiment analysis of both words and phrases as word-
level sentiment analysis. Word-level sentiment analysis is defined as follows: given
a word or phrase p, the goal is to determine the sentiment polarity o(p) of p.

For a given corpus, word-level sentiment analysis is equivalent to the task
of sentiment lexicon construction. Most of the current general-purpose sentiment
lexicons are constructed manually, and although they are suitable for many fields,
they have difficulty fully covering the sentiment vocabulary from different domains
in practical applications. Furthermore, the manual construction of sentiment lexi-
cons is time- and labor-consuming. Therefore, the research community has mostly
focused on the study of the automatic construction of sentiment lexicons. These
methods are mainly divided into three categories: knowledgebase-based methods,
corpus-based methods, and a combination of the two.

(4) Aspect-level sentiment analysis

Aspect-level sentiment analysis is the task of extracting the aspects associated
with an opinion target in the review text and identifying the fine-grained sentiment
polarity toward a specific aspect. Figure 8.3 displays an example of an opinion
summary based on aspect-level sentiment analysis. In comparison, document- and
sentence-level sentiment analysis only identify the overall sentiment of a document
or a sentence and do not refer to the sentiments of specific aspects of the opinion
target.

In early research (Hu and Liu 2004), aspect-level sentiment analysis was
called feature-based opinion mining. Later work (Liu 2012, 2015) further defined
an opinion as a quadruple (g, s, h, t), where g represents the opinion target, s

represents the sentiment toward g, h denotes an opinion holder, and t denotes

168 8 Sentiment Analysis and Opinion Mining

Fig. 8.3 An example of an opinion summary based on aspect-level sentiment analysis

Table 8.1 An example of aspect-level sentiment analysis

Review text The phone looks good, the speed is very fast, the camera is also
good, but the battery capacity is a little small, and the battery life
is normal

Analysis result {(appearance, positive), (speed, positive), (camera,
positive),(battery capacity, negative), (battery life, negative)}

the time of the comment. An opinion target usually contains an entity and its
attributes. In this case, the above quadruple becomes a quintuple (e, a, s, h, t), and
the aspect-level sentiment analysis is defined as the extraction and identification of
such quintuples from review texts. For simplicity, in this book, we only focus on the
opinion pair (g, s), as shown in Table 8.1.

8.3 Methods for Document/Sentence-Level Sentiment
Analysis

Except for slight differences in text representation, the methods for document-
and sentence-level sentiment analysis are similar. Therefore, in this section, we
introduce the two levels together.

8.3 Methods for Document/Sentence-Level Sentiment Analysis 169

8.3.1 Lexicon- and Rule-Based Methods

The rule-based approach to sentiment classification usually leverages external
linguistic knowledge, such as a sentiment lexicon, to determine the sentiment
polarity of a given document or sentence.

Das and Chen (2001) identified the sentiment of words (+1 for the positive, −1
for the negative, and 0 for the neutral) based on a manually constructed sentiment
lexicon and accumulated the polarities of these words to obtain the polarity of the
entire text.

Turney (2002) proposed a PMI-IR (pointwise mutual information-information
retrieval) approach to estimate the sentiment orientation (SO) of phrases with
predefined patterns and determine the sentiment polarity of the whole document
by averaging the SO of each of the candidate phrases that appear in the document.
This approach mainly consists of the following three steps:

Step 1: Extracting candidate words and phrases containing sentiment (mostly
adjectives and adverbs and their phrases) based on a set of predefined patterns
presented in Table 8.2.

Step 2: Estimating the SO of the candidate phrase using the PMI-IR method. By
using “excellent” as the positive seed word and “poor” as the negative seed
word and estimating the PMI score between each candidate phrase and the seed
word, they defined the difference between two PMI scores as the SO value of the
candidate phrase:

SO (phrase) = PMI (phrase, “excellent") − PMI (phrase, “poor") (8.1)

where the PMI score between two words (phrases) is calculated as follows:

PMI (w1, w2) = log
p (w1, w2)

p (w1)p(w2)
(8.2)

where p(w1, w2) is the probability that the words or phrases w1 and w2 cooccur
in the text. PMI(w1, w2) measures the similarity between w1 and w2 from the
perspective of co-occurrence.

Table 8.2 Part-of-speech patterns for extracting candidate phrases from reviews (Turney 2002)

First word Second word Third word (not extracted)

Adjective (JJ) Noun (NN, NNS) Any

Adverb (RB, RBR, RBS) Adjective (JJ) Nonnoun (NN, NNS)

Adjective (JJ) Adjective (JJ) Nonnoun (NN, NNS)

Noun (NN, NNS) Adjective (JJ) Nonnoun

Adverb (RB, RBR, RBS) Verb (VB, VBD, VBN, VBG) Any

170 8 Sentiment Analysis and Opinion Mining

PMI-IR empirically estimates the PMI and SO values based on the information
retrieval results from the AltaVista search engine as follows:

SO (phrase) = log
hits (phrase NEAR “excellent") · hits (“poor")

hits (phrase NEAR “poor") · hits (“excellent")
(8.3)

where the NEAR operator indicates that two words cooccur in a certain window
length, and hits(query) indicate the number of queries returned by the search
engine.

Step 3: Accumulating the SO values of all candidate phrases appearing in the
text and determining the sentiment polarity according to the average SO value
(positive or negative).

In addition to the PMI-IR method, there are still many studies that directly obtain
the sentiment polarity or intensity of a candidate word or phrase based on an external
sentiment lexicon. We refer to this kind of method as lexicon-based unsupervised
sentiment classification. Instead of simply accumulating the SO values of candidate
words in the document, Taboada et al. (2011) designed a set of delicate rules to deal
with special linguistic phenomena such as negation, contrast, sentiment intensifiers,
sentiment diminishers and irrealis in the language of English.

8.3.2 Traditional Machine Learning Methods

The advantage of rule-based methods is that they are easy to use and do not rely on
a manually annotated corpus. However, their performance is limited by the quality
of rules and lexicons. In the past two decades, statistical machine learning methods
have been rapidly developed and widely applied to sentiment analysis and opinion
mining.

(1) Early research

The early research followed the framework of traditional text classification,
which used a bag-of-words model for text representation followed by traditional
statistical learning algorithms for classification.

Pang et al. (2002) first introduced statistical machine learning algorithms into
the task of sentiment polarity classification of movie reviews. A supervised learning
classifier was trained on manually labeled positive and negative reviews. They
compared three kinds of classification algorithms, including naïve Bayes (NB),
maximum entropy (ME), and support vector machines (SVM). In terms of feature
engineering, they investigated several kinds of features, including n-grams (uni-
grams, bigrams), POS and position, and compared two feature weighting schemes
(term frequency and presence). Table 8.3 reports the classification performance for
different settings.

8.3 Methods for Document/Sentence-Level Sentiment Analysis 171

Table 8.3 The sentiment classification performance for different settings on the movie review
corpus (Pang et al. 2002)

Features # of features Frequency or presence NB ME SVM

Unigrams 16165 Frequency 78.7 N/A 72.8

Unigrams 16165 Presence 81.0 80.4 82.9

Unigrams+bigrams 32330 Presence 80.6 80.8 82.7

Bigrams 16165 Presence 77.3 77.4 77.1

Unigrams+POS 16695 Presence 81.5 80.4 81.9

Adjectives 2633 Presence 77.0 77.7 75.1

Top 2633 unigrams 2633 Presence 80.3 81.0 81.4

Unigrams+position 22430 Presence 81.0 80.1 81.6

Pang et al. (2002) reported that the machine learning methods have a higher
classification accuracy than human predicted results. The performance gap in the
three classifiers is small, where SVM performs slightly better than ME and NB.
However, their performance is not as good as that on traditional topic-based text
classification. Meanwhile, regarding feature engineering, the performance of uni-
grams only is generally the best and slightly better than that of unigrams+bigrams,
and the performance of presence term weighting is slightly better than that of
term frequency (TF). Subsequent studies have shown that classifier performance
is domain dependent in sentiment classification, and there is no permanent winner
across different domains (Xia and Zong 2011).

On the basis of (Pang et al. 2002), a large number of studies have been conducted
by employing machine learning for sentiment classification. On the one hand,
researchers have tried to design new text representation methods that are more
suitable for sentiment classification from the perspective of feature engineering.
On the other hand, they have also explored the usage of new machine learning
algorithms for sentiment classification. In recent years, in particular, with the
rapid development of deep learning, a large number of deep neural networks have
been proposed in sentiment classification. We will introduce these methods in
Sect. 8.3.3.

(2) Deep linguistic features

The BOW text representation used by traditional machine learning methods
breaks the inherent structure of the text, ignores the word order information,
destroys the syntactic structure, loses a portion of the semantic information, and
finally makes sentiment classification less effective.

To address this problem, many researchers have attempted to explore more deep-
level linguistic features from text that can effectively express sentiments. These
linguistic features include position information (Pang et al. 2002; Kim and Hovy
2004), POS information (Mullen and Collier 2004; Whitelaw et al. 2005), word
order information (Dave et al. 2003; Snyder and Barzilay 2007), high-order n-
grams (Pang et al. 2002; Dave et al. 2003), and syntactic structure (Dave et al. 2003;
Gamon 2004; Ng et al. 2006; Kennedy and Inkpen 2006).

172 8 Sentiment Analysis and Opinion Mining

In (Pang et al. 2002; Kim and Hovy 2004), position information was used
as an auxiliary feature of words to generate a feature vector, and it potentially
complemented the information contained in a simple vocabulary. POS information
plays an important role in describing sentiment in texts. In the early subjectivity
detection research, adjectives were already used as features (Hatzivassiloglou and
McKeown 1997), where the experimental results showed that the subjectivity of a
sentence has a higher correlation with the adjectives than with the other POS tags.
Mullen and Collier (2004), Whitelaw et al. (2005) argued that although adjectives
are an important feature of sentiment classification, this does not mean that other
parts of POS tags have no effect on sentiment classification. For example, some
nouns and verbs often contain important sentiment information (such as the noun
“genius,” the verb “recommend,” etc.). The comparative experiments in (Pang
et al. 2002) showed that the classification results using only adjective features are
significantly poorer than those using the same number of high-frequency words.

High-order n-grams are widely used features in many natural language process-
ing tasks, including sentiment classification. Pang et al. (2002) reported that the
performance of unigrams alone is higher than that of bigrams. However, Dave et al.
(2003) reported that in some cases, bigrams and trigrams achieve better performance
than unigrams alone. Generally, in practice, higher-order n-gram features are often
used as a complement to unigram features rather than being used separately.

Although higher-order n-grams can reflect some of the word order and depen-
dency relationship (especially in adjacent words), they cannot capture the long-term
dependencies of words in a sentence. To capture this kind of information, deeper
linguistic analysis tools such as syntactic parsing must be incorporated in feature
engineering.

A simple method is to extract interdependent word pairs as features. For example,
“recommend” and “movie” are a pair of interdependent words in the dependency
tree shown in Fig. 3.3. In this way, the long-term dependency between “recommend”
and “movie” can be captured, although they are not neighbors. These interdependent
word pairs contain some of the syntactic structure information that may contribute
to sentiment classification. However, studies have drawn inconsistent conclusions
about whether such features are effective. For example, Dave et al. (2003) argued
that the introduction of “adjective–noun” dependency does not provide useful
information in addition to the traditional bag-of-words feature template. Ng et al.
(2006) made use of not only the “adjective–noun” dependency but also the “subject–
predicate” and “verb–object” dependencies as supplemental features to traditional
unigram, bigram, and trigram features, ultimately failing to improve sentiment
classification performance. Gamon (2004) improved sentiment classification per-
formance by using the syntactic relationship features extracted from the constituent
tree, but the performance from using these linguistic features alone is still lower than
that from using simple unigram features. In Kennedy and Inkpen (2006), syntactic
analysis was also employed to model sentiment contrast, sentiment intensifier, and
sentiment diminisher problems.

8.3 Methods for Document/Sentence-Level Sentiment Analysis 173

(3) Term weighting and feature selection

In traditional topic-based text classification, the frequency of words is important
information. TF and TF-IDF are frequently used term-weighting schemes. However,
in sentiment classification, Pang et al. (2002) found that using Boolean weight
(i.e., the presence of words) can achieve even better results than TF weights. One
possible explanation for such a finding is that the repetition of words contains more
topic information but does not provide more sentiment information. In subsequent
studies, presence has become the most commonly used term-weighting scheme for
sentiment classification based on traditional machine learning.

On the other hand, as we introduced in Sect. 5.3, feature selection methods, such
as mutual information (MI), information gain (IG), and so on, have been widely
used in traditional topic-based text classification. Cui et al. (2006), Ng et al. (2006),
Li et al. (2009a) applied these feature selection methods (such as IG) to sentiment
classification tasks and proved the effectiveness of feature selection in sentiment
classification.

(4) Ensemble learning

Aue and Gamon (2005) first applied ensemble learning to sentiment classification
by combining training corpora from different source domains based on ensemble
learning and obtained improved classification performance. Whitehead and Yaeger
(2010) used SVM as the base classifier algorithm and studied four ensemble learning
algorithms based on feature subset extraction to test the performance of sentiment
classification. Their results showed that ensemble learning can significantly improve
system performance. Xia et al. (2011) conducted a comparative study by examining
the effects of different classification algorithms, different feature representations,
and different ensemble learning strategies for sentiment classification on five
document-level reviews and proved the effectiveness of ensemble learning in
sentiment classification.

(5) Hierarchical sentiment classification

McDonald et al. (2007) transformed the research perspective from traditional
single-grained document-level sentiment classification to multilevel granularity
hierarchical sentiment classification. The document–sentence level hierarchical
sentiment classification problem was modeled as a joint sequence labeling problem.
The respective sentiments of sentences and the overall sentiment of the whole
document were learned under a unified conditional random field (CRF) framework;
then, the sentiment label of the document was used to correct the sentiment labels of
sentences. Mao and Lebanon (2007) considered the sentiment labels of consecutive
sentences as a kind of sentiment flow and used the CRF model to capture the change
in sentiment intensity in the flow.

174 8 Sentiment Analysis and Opinion Mining

8.3.3 Deep Learning Methods

In recent years, deep learning methods represented by artificial neural networks
have been widely used in many fields of natural language processing and text
data mining because of their deep feature representation ability and joint end-to-
end learning architecture. In Sect. 5.5 of this book, we have already introduced
the commonly used neural networks for text classification (e.g., CNN and RNN).
As mentioned, sentiment classification can be viewed as a kind of special text
classification task. Therefore, the neural networks in Sect. 5.5 can still be applied
to sentiment classification. In this subsection, we focus on several deep learning
models that are used for sentiment classification, in particular.

(1) Recursive neural network based on constituent tree

In the previous section, we mentioned that syntactic features play an important
role in sentiment classification. To this end, Socher et al. (2011a) first proposed a
recursive neural network by using the syntactic tree as the input for sentence-level
sentiment classification. In Fig. 8.4, we display two kinds of RNNs for sentence
modeling, where subfigure (a) is a recurrent neural network modeling a sentence
described by a sequence of words, and subfigure (b) is a recursive neural network
modeling a sentence described by a constituent tree.

Each nonleaf node of the tree has two child nodes. In representation, the vector
representations of the two child nodes are concatenated as the input of the parent
node. After linear transformation and nonlinear activation are performed, we obtain
the vector representation of the parent node. Let c1 ∈ R

d and c2 ∈ R
d denote the

vector representations of the two child nodes, respectively, and p ∈ R
d denote the

vector representation of the parent node. This process can be written as:

p = f

(
W

[
c1
c2

]
+ b

)
(8.4)

1
3.5

1
5

5.5
6.1

4.5
3.8

2.5
3.8

0.4
0.3

2.1
3.3

7
7

4
4.5

2.3
3.6

the country of my birth

1
5

5.5
6.1

1
3.5

2.5
3.8

0.4
0.3

2.1
3.3

7
7

4
4.5

2.3
3.6

the country of my birth

(a) recurrent neural network (b) recursive neural network

Fig. 8.4 Examples of two neural network modeling methods for sentence classification

8.3 Methods for Document/Sentence-Level Sentiment Analysis 175

where W ∈ R
d×2d is the weight matrix, b ∈ R

d is the bias, and f (·) is the activation
function.

The topology defined by the constituent tree is recursively forwarded from
bottom to top until the entire tree is processed, and all nodes share parameters W

and b. Finally, the representations of the root note and all intermediate nodes can
be obtained. The representation of the root node is used as the representation of the
entire sentence and then fed to a softmax layer for classification.

Similar to the BPTT algorithm used for training the recurrent neural network,
the back-propagation through structure (BPTS) algorithm is used for training a
recursive neural network.

(2) Matrix–vector recursive neural network

On the basis of the abovementioned recursive neural network, Socher et al.
(2012) further proposed a matrix–vector recursive neural network (MV-RNN). The
structure of MV-RNN is shown in Fig. 8.5.

Each node of the tree in Fig. 8.5 is represented by a vector–matrix pair (a,A),
where a ∈ R encodes the representation of the current node, and A ∈ R

d×d encodes
a node’s modifying effect upon its adjacent child node. For example, the node
“very” may enhance the semantics of “good,” while “not” may reverse the semantics
of “good.” Assuming that the representations of two child nodes are (a,A) and
(b,B), the process of integrating the representations of the two child nodes into the
representation of the parent node p is described as

p = f

(
W

[
Ba

Ab

])
(8.5)

Fig. 8.5 The structure of the matrix–vector recursive neural network (Socher et al. 2012)

176 8 Sentiment Analysis and Opinion Mining

Fig. 8.6 Illustration of a
recursive neural tensor
network (Socher et al. 2013)

=

=

T

V[1:2]

Slices of

Tensor Layer
Standard

Layer

where W ∈ R
d×2d is the weight matrix, and f (·) is the activation function. Ab

implements the modification of “very” upon “good” in Fig. 8.5.
Socher et al. (2012) conducted a binary sentiment classification experiment on

the sentence-level IMDB movie review dataset and obtained state-of-the-art results.
The constituent tree of the sentence was obtained based on the Stanford Parser.
One disadvantage of the MV-RNN model is that it requires an additional Rd×d

parameter matrix for each word in the vocabulary, which greatly increases the
model’s parameter space.

(3) Recurrent neural tensor network

To address MV-RNN’s shortcomings, Socher et al. (2013) further proposed a
recursive neural tensor network (RNTN), as shown in Fig. 8.6. In the RNTN model,
two child nodes a and b are combined into a parent node p in the following way:

p = f

(
[a, b] V [1:d]

[
a
b

]
+ W

[
a
b

])
(8.6)

where V [1:d] ∈ R
2d×2d×d is a tensor, and h = xT V [1:d]x ∈ R

d is called the tensor
product of x. hi can be calculated from each channel V [i] of the tensor V as follows:
h = xT V [i]x.

As mentioned above, MV-RNN models the interaction of two child nodes by
introducing a matrix representation for each word. In contrast, in RNTN, such
interaction was modeled by a tensor V [1:d] shared by different nodes, which
significantly reduced the scale of the parameter space.

Meanwhile, they released the Stanford Sentiment Treebank (SST) dataset, which
has become the benchmark dataset for subsequent sentence-level sentiment analysis
studies. Other studies using recursive neural networks include (Irsoy and Cardie
2014), etc.

8.3 Methods for Document/Sentence-Level Sentiment Analysis 177

1

1

2

2

3

3

4

4

1

1

2 3

2

4 6

Fig. 8.7 The architecture of LSTMs and Tree-LSTMs

(4) Tree-structured long short-term memory networks

A recurrent neural network is established according to time steps, and a recursive
neural network is established according to the tree structure. To combine the
advantages of the two networks, Tai et al. (2015) proposed a tree-structured
long short-term memory network (Tree-LSTM), which gives the recurrent neural
network the ability to model tree structures. The basic idea of Tree-LSTM is
illustrated in Fig. 8.7. It consists of two variants:

(a) Child-Sum Tree-LSTM: The hidden state of a node in Child-Sum Tree-LSTMs
is determined by the sum of the hidden states of all its child nodes. It is suitable
for a dependency tree when the number of child nodes is uncertain and the child
nodes are order-independent (e.g., the dependency tree). In this case, the model
is called a Dependency Tree-LSTM.

(b) N-ary Tree-LSTM: This variant is suitable for tree structures where the child
nodes are ordered but the number of child nodes is N at most. In comparison
with the Child-Sum Tree-LSTM, the N-ary Tree-LSTM introduces a separate
parameter matrix for each child node. Both models define separate forget gates
for each child node, but in N-ary Tree-LSTMs, one forget gate contains the
interaction between all child nodes. When the N-ary Tree-LSTM is applied to
constituent trees, it is called Constituent Tree-LSTM.

178 8 Sentiment Analysis and Opinion Mining

The binary constituent tree was used in (Tai et al. 2015), where each intermediate
node contains only two child nodes: the left child and the right child. They
conducted experiments on the SST dataset, and the results proved that Tree-LSTMs
can achieve significant improvements over the standard LSTM and its existing
variants.

(5) Hierarchical modeling for document-level sentiment analysis

A document can be viewed as a sentence sequence, where each sentence is a word
sequence. To capture the word–sentence–document hierarchy, Tang et al. (2015b)
proposed two hierarchical document classification models named Conv-GRNN and
LSTM-GRNN.

In contrast to the standard RNN that encodes a document by a word sequence,
Tang et al. (2015b) modeled a document in two levels. In the first level, a set of
sentence-level LSTMs (or CNNs) was used to model each sentence and produce the
representation of each sentence from the representations of the words comprising
it, based on average pooling. In the second level, a simplified GRU module called
GRNN was exploited to obtain the document representation by using the sentence
representations as the input. The document representation is ultimately fed to a
softmax layer for document-level sentiment classification. Experimental results on
the restaurant datasets of Yelp 2013 through 2015 and the IMDB movie review
dataset proved the effectiveness of their hierarchical approach in comparison with
existing nonhierarchical approaches.

8.4 Word-Level Sentiment Analysis and Sentiment Lexicon
Construction

The sentiment lexicon is an important resource in rule-based sentiment classifi-
cation. The automatic construction of sentiment lexicons is an important research
direction in the field of sentiment analysis and opinion mining. The method applied
to this task can be mainly divided into three categories: knowledgebase-based
methods, corpus-based methods, and a combination of the two. Wang and Xia
(2016) present a detailed review of the automatic methods used to construct English
and Chinese sentiment lexicons.

8.4.1 Knowledgebase-Based Methods

Some languages have open and complete semantic knowledgebases, such as
WordNet in English. A sentiment lexicon can then be constructed by mining
the relationships between words (such as synonym, antonym, hypernym, and
hyponym).

8.4 Word-Level Sentiment Analysis and Sentiment Lexicon Construction 179

On the basis of some already-known positive and negative seed words, Hu and
Liu (2004) made use of synonym, antonym, and other relationships defined in
WordNet to expand the seed word set and ultimately obtained a general-purpose
sentiment lexicon.

The above sentiment lexicon was constructed based on adjectives only. However,
sentiment words include not only adjectives but also some nouns, verbs, and
adverbs. The lexicon also only provided sentiment polarity without sentiment
intensity or neutral words. Some research work has been proposed to address
these problems (Strapparava et al. 2004; Kim and Hovy 2004; Blair-Goldensohn
et al. 2008). For example, Blair-Goldensohn et al. (2008) added a set of neutral
words in the process of lexicon expansion. In addition to the relationship between
words, some research work, such as (Kamps et al. 2004; Andreevskaia and Bergler
2006; Baccianella et al. 2010; Esuli and Sebastiani 2007), made use of the path of
relationships between two words as well as the interpretation of words provided by
the knowledgebase to construct the sentiment lexicons.

The knowledgebase-based method can quickly build a general-purpose sentiment
lexicon. However, it has obvious disadvantages, such as a strong dependence on the
quality of the knowledgebase and low coverage of domain-specific sentiment words.

8.4.2 Corpus-Based Methods

As we have mentioned, sentiment analysis is a domain-related task. There are large
gaps between the usages of sentiment words in different domains. Even the same
sentiment word used for different domains or different targets may express different
sentiment polarities. For example, for “fast” in the two clauses “the computer runs
fast” and “the battery powers off fast,” the sentiment polarities are completely
opposite.

When general-purpose sentiment lexicons are used for sentiment analysis in
a specific domain, the recall rate is usually very low. To solve this problem, it
is necessary to construct a domain-specific sentiment lexicon. The corpus-based
sentiment lexicon construction method exactly meets this need. It can automatically
extract sentiment words from the corpus and identify their sentiment polarities and
intensities, and it has the characteristics of better domain adaptability and higher
sentiment classification accuracy. Its methods can be further divided into conjunc-
tion methods, co-occurrence methods, and representation learning methods.

(1) Conjunction methods

The essence of conjunction methods is to infer the sentiment polarity changes
of neighboring words based on conjunctions in texts. For example, the sentiment
polarity before and after certain coordinate conjunctions (e.g., “also,” “and”)
usually does not change, but the sentiment polarity before and after the adversative
conjunctions (e.g., “but,” “however”) usually reverses. Take a look at the following

180 8 Sentiment Analysis and Opinion Mining

review text: “Overall good, although it is a bit expensive, and delivery is not fast.
But it is still very satisfying online shopping.”

There are four clauses in this review, separated by three conjunctions. The
first is an adversative conjunction (“although”) that reverses the sentiment from
positive to negative (“good” → “expensive”); the second is a coordinate conjunction
(“and”) that holds the sentiment (“expensive” → “not fast”); and the third is another
adversative conjunction (“but”) that reverses the sentiment from negative to positive
(“not fast” → “satisfied”).

Hatzivassiloglou and McKeown (1997) summarized conjunction patterns
between words in the English language and investigated the polarity relations
of the words before and after the conjunction on a large-scale corpus. On this
basis, they proposed a rule-based approach to identify the sentiment polarities of
candidate words (adjectives in this work). Based on the corpus and a sentiment
seed word set, they first collected the adjectives connected by the conjunctions,
marked the polarity of the high-frequency words in them, and used a logistic
regression model to determine whether the two words connected by conjunction
have the same sentiment polarity or opposite sentiment polarity. Then, they made
use of the clustering algorithm to generate two clusters of words and annotated
sentiment polarities of the two clusters. Some subsequent research (Kanayama
and Nasukawa 2006) has further improved the algorithm. Wang and Xia (2015)
applied a similar approach to the automatic construction of the Chinese sentiment
lexicon.

The disadvantage of conjunction methods is that they largely depend on linguistic
rules, and their coverage is relatively low because they normally use adjectives as
candidates.

(2) Co-occurrence methods

The principle of the co-occurrence methods is that words that have similar
contexts in the text have similar semantics, including sentiment.

As described in Sect. 8.3.1, Turney (2002) estimated the PMI scores between the
candidate word and the positive/negative seed words. The difference between two
PMI scores is finally used to measure the SO of the candidate word:

SO (t) = PMI
(
w,w+) − PMI(w,w−) (8.7)

where w represents the candidate word, and w+ and w− represent the positive and
negative seed words, respectively. If the SO score is larger than a preset threshold
(normally 0), the word will be categorized as positive, and vice versa.

Apart from PMI, co-occurrence can also be measured by the other metrics. For
example, Turney and Littman (2003) made use of latent semantic analysis (LSA) to
calculate the SO as follows:

SO_LSA (w) =
∑

w+∈Pwords

LSA
(
w,w+) −

∑

w−∈Nwords

LSA(w,w−) (8.8)

8.4 Word-Level Sentiment Analysis and Sentiment Lexicon Construction 181

where Pwords and Nwords represent a set of positive seed words and a set of
negative seed words, respectively.

In addition to considering the co-occurrence between the candidate word and the
seed word, another approach is to directly calculate the co-occurrence between the
candidate word and the sentiment category of the text (usually short text such as a
sentence, message, or short review). In Wang and Xia (2017), the PMI between the
candidate word and the naturally labeled sentiment of the review that contains the
word is used instead:

PMI (t,+) = log
p (+|t)
p (+)

(8.9)

PMI (t,−) = log
p(−|t)
p(−)

(8.10)

Then, the SO of the candidate word can be calculated as follows:

SO (t) = PMI (t,+) − PMI(t,−) (8.11)

In comparison, the co-occurrence methods are simple to implement and can
obtain not only the sentiment polarity but also the sentiment intensity. Therefore,
they are widely used in practice. However, they wholly rely on the assumption that
words in similar contexts have similar sentiments, which does not hold well due to
the polarity shift problem in texts (such as negation and contrast). If two words have
high co-occurrence in a contrast structure (e.g., “it is good, but a bit expensive”),
although they may have similar contexts, they actually have opposite sentiments.

(3) Representation learning methods

As we have introduced in Chaps. 3 and 4, many word representation learning
techniques (such as NNLM, log-bilinear, word2vec, GloVe, etc.) have been pro-
posed in the literature and successfully applied to text data mining. The existing
representation learning methods assume that words with similar contexts have
similar semantics. However, such methods only consider the semantic similarity
while ignoring the sentiment similarity of words in a context.

To solve this problem, Tang et al. (2014b) proposed a sentiment-aware represen-
tation learning method that incorporated both semantic and sentiment information.
It added sentence-level sentiment supervision based on the traditional skip-gram
model in addition to language model supervision for word representation learning.
Based on such sentiment-aware word embedding, a softmax regression classifier
achieved better results on the SemEval 2013 sentiment classification task than were
achieved with traditional features. To further construct a sentiment lexicon based
on sentiment-aware word embedding, Tang et al. (2014a) collected a large set of
sentiment seed words as the training dataset and then trained a word-level sentiment
prediction model by using softmax regression as the classifier and sentiment-aware

182 8 Sentiment Analysis and Opinion Mining

representation as the features. The classifier was finally used to predict the sentiment
polarity for unknown words.

Vo and Zhang (2016) proposed a document-level sentiment-aware representation
learning method. It established a neural network to learn a two-dimensional word
embedding for each word. The two dimensions represent the word’s positive and
negative probabilities, and the sentiment lexicon is constructed by treating the
difference between the two scores as the sentiment score of each word.

Wang and Xia (2017) proposed sentiment-aware representation learning as well
as the sentiment lexicon construction method by incorporating both document
and word-level sentiment supervision. In addition to document-level sentiment
labels, the PMI-SO method is used to generate word-level pseudo sentiment labels.
Sentiment supervision at both the document and word levels together was used to
better learn sentiment-aware word representation. Based on such a representation,
they examined two kinds of lexicon construction methods similar to (Tang et al.
2014b; Vo and Zhang 2016).

8.4.3 Evaluation of Sentiment Lexicons

There are two main kinds of evaluation methods for sentiment lexicons. Direct
evaluation is performed by comparing the constructed lexicon with a ground truth
(e.g., a general-purpose lexicon); the indirect evaluation applies the sentiment
lexicon to a sentiment analysis task and evaluates its performance by using the
sentiment lexicon as features.

For direct evaluation, one simple approach is to randomly extract a certain
number of sentiment words in the lexicon and calculate the precision, recall, and
F1 scores in comparison with a ground truth lexicon.

The indirect evaluation needs to be performed based on a downstream sentiment
analysis task such as document-level sentiment classification, which can be further
divided into supervised and unsupervised sentiment classification.

In the case of supervised sentiment classification, the sentiment lexicon is
typically used to build a feature template to train supervised classifiers (e.g., softmax
regression, SVM, etc.) based on a sentiment classification corpus and evaluate the
performance of sentiment classification. As shown in Table 8.4, Mohammad et al.

Table 8.4 Sentiment classification feature template based on sentiment lexicon (Mohammad et al.
2013)

Feature ID Meaning

1 Total count of tokens in the text with sentiment score greater than 0

2 The sum of the sentiment scores for all tokens in the text

3 The maximal sentiment score

4 The nonzero sentiment score of the last token in the text

8.5 Aspect-Level Sentiment Analysis 183

(2013) designed a sentiment lexicon feature template for each sentiment category
(positive and negative). Tang et al. (2014a), Wang and Xia (2017) also made use of
this template for sentiment lexicon evaluation.

In the case of unsupervised sentiment classification, rule-based sentiment classi-
fication methods (introduced in Sect. 8.3.1) are commonly adopted to determine the
sentiments in a given corpus. The sentiment classification metrics such as accuracy
or F1 score are then used to evaluate the quality of the sentiment lexicon.

8.5 Aspect-Level Sentiment Analysis

As mentioned earlier, sentiment analysis can be carried out at multiple levels, such
as the document, sentence, word, and aspect levels. The purpose of word/phrase-
level sentiment analysis is to identify the sentiment polarity of a word or phrase. The
purpose of document/sentence-level sentiment analysis is to identify the sentiment
of a document or sentence without involving the specific opinion target. In contrast,
the goal of aspect-level sentiment analysis is to extract the opinion target (also called
the aspect) in the review and identify the user’s sentiment toward this aspect.

For simplicity, in this section, we only focus on the aspect-level sentiment
analysis task, which extracts and recognizes the aspect–sentiment pair (g, s), where
g is the aspect, and s is the sentiment category, rather than trying to capture the
quadruple or quintuple mentioned in Sect. 8.2.2. The aspect-level sentiment analysis
mainly includes two basic tasks: aspect term extraction and aspect-based sentiment
classification. We next review the methods for conducting these two tasks.

8.5.1 Aspect Term Extraction

Aspect term extraction can be viewed as a special type of information extraction
problem. The aspect and sentiment often appear in pairs in a review, which is a
unique characteristic of aspect term extraction in comparison with the other infor-
mation extraction tasks. The methods can be mainly divided into three categories:

(1) Unsupervised learning methods

Early aspect term extraction methods were mainly based on heuristic rules.
In general, domain-specific aspects are concentrated on certain nouns or noun
phrases. Therefore, high-frequency nouns or noun phrases are usually explicit aspect
expressions. The pioneering work of (Hu and Liu 2004) involved POS tagging to
select high-frequency nouns and noun phrases as candidate aspect terms. Although
this method was simple and easy to use, the extracted aspect terms usually contained
considerable noise. To improve the extraction performance, Popescu and Etzioni
(2007) tried to filter out nonopinion aspects in high-frequency nouns and noun
phrases by calculating the PMI between the candidate aspects (e.g., “Epson 1200”)

184 8 Sentiment Analysis and Opinion Mining

and the automatically generated discriminator phrases (e.g., “is a scanner”). Ku
et al. (2006) calculated the TF-IDF value of words at the document and paragraph
granularity level and then judged whether the candidate word was a valid aspect
by comparing its frequencies across the documents/paragraphs and inside the
document/paragraph. Yu et al. (2011) used a shallow parser to extract suitable noun
phrases as candidate aspects, based upon which an aspect ranking algorithm is
employed to extract important aspect terms.

In addition to using the aspect’s noun characteristics, some other studies have
also attempted to exploit the relationship between aspect term and opinion term to
assist in aspect term extraction because aspects and their corresponding sentiments
usually appear in pairs in reviews. To utilize this relationship, Hu and Liu (2004)
supposed that if there is no high-frequency aspect term, but there is an opinion term
in a review, the noun or noun phrase closest to the opinion term will be extracted as
an aspect term. Similar methods are also applied in (Blair-Goldensohn et al. 2008).
Zhuang et al. (2006) used a dependency parser to identify the relationship between
the aspect and the opinion terms to extract aspect terms. Qiu et al. (2011) further
proposed a double-propagation algorithm based on dependency trees to extract
aspect terms and opinion terms simultaneously.

(2) Traditional supervised learning methods

Kobayashi et al. (2007) made use of a dependency tree to find candidate pairs of
aspect terms and opinion terms and then used the tree-structure-based classifier to
classify the aspect–opinion pairs.

Because aspect term extraction is a special case of information extraction,
sequence labeling models, such as hidden Markov models (HMMs) and CRFs, can
be used for aspect term extraction. Jin et al. (2009) made use of an HMM framework
to extract aspects and their sentiments.

Based on the linear-chain CRF model, Li et al. (2010a) proposed Skip-chain
CRF, Tree CRF, and Skip-tree CRF for aspect term extraction. Jakob and Gurevych
(2010) studied aspect term extraction under both single-domain and cross-domain
settings based on CRF. They developed a feature template including token, POS,
dependency relations, word distance, and opinion features. The feature template is
summarized in Table 8.5. In the cross-domain setting, they found that the same
sentiment words may have different polarities in different domains; for example,
“unpredictable” in the movie review is positive, but in the automobile domain, it is
negative. Moreover, the vocabulary of aspects in different domains are substantially
different from each other; that is, aspect terms are closely related to their domains.
This is also the main difficulty in cross-domain aspect term extraction.

In the aspect term extraction task of the SemEval 2014 competition, Chernyshe-
vich (2014) proposed a new tagging scheme to replace the previous BIO scheme
in CRF. In their scheme, FA denotes the aspect word before the head word of
a noun phrase; FPA refers to the aspect words after the head word; FH denotes
the head word of a noun phrase; FI denotes other nouns in the noun phrase; and
“O” represents nonaspect words or symbols. The new scheme can force the head
word aspect to always be labeled with the same tag FH, which helps provide more

8.5 Aspect-Level Sentiment Analysis 185

Table 8.5 Feature templates used for aspect extraction with CRF (Jakob and Gurevych 2010)

Feature Description Example

Token Current token “food”

Part of speech The part-of-speech tag of the
current token

Noun

Dependency path The direct dependency relationship
between the current token and the
opinion expression in a sentence

In the sentence “I like the food,”
suppose “food” is the current token
and “like” is an opinion expression;
there is a direct dependency relation
DOBJ, between “food” and “like”

Word distance Whether the current token is in the
phrase closest to the opinion
expression

Yes

Opinion sentence Whether the current token contains
an opinion expression

No

accurate aspect extraction. They also defined a rich feature template, including 15
types of features in three categories (lexical level, semantic level, and sentiment
level). Inspired by the named entity recognition (NER) task, Toh and Wang (2014)
introduced the head word feature, POS of the head word, and the index feature,
in addition to the traditional features such as token, POS, and dependency, into
the CRF feature template. In addition to these, they also added features generated
from external sources including the token’s syntactic categories (e.g., “noun.food”)
defined in WordNet, word cluster information trained using Yelp and the Amazon
corpora, etc., and ultimately obtained state-of-the-art performance, ranking 1st and
2nd for the restaurant and laptop domains, respectively, at SemEval 2014.

(3) Deep learning methods

Liu et al. (2015b) proposed the first deep learning architecture for aspect term
extraction based on RNN. They compared the effects of a variety of settings in
RNN (Elman-type RNN, Jordan-type RNN, LSTM), bidirectionality, training for
word embedding from different corpora, and fine-tuning during training. The results
proved that word embedding improves the performance of both CRF and RNN
models for aspect extraction, and without using any hand-crafted features, RNN
outperforms feature-rich CRF-based models.

Wang et al. (2016a) proposed a recursive neural conditional random field
(RNCRF) model for the coextraction of aspect and opinion terms and in reviews.
As shown in Fig. 8.8, a recursive neural network is first employed by using
the dependency tree of a given sentence as the input to recursively obtain the
representations of each word in the tree and the inter-word dependencies. These
representations are fed to the softmax layer to predict the probability of each word.
A linear-chain CRF is arranged at the top to obtain the optimal labels over the entire
sequence. They manually annotated the opinion terms for each review sentence
based on the SemEval 2014 aspect term extraction dataset. The experiments showed

186 8 Sentiment Analysis and Opinion Mining

Fig. 8.8 Coextraction of
aspect and opinion terms
based on RNCRF (Wang
et al. 2016a) () like() ()

(ℎ)

like(ℎ)

(ℎ)

(ℎ)

NSUBJ

DOBJ

DET

Pairwise connections in linear-chain CRF

Input-output connections in CRF

that RNCRF significantly outperforms traditional CRF methods that used many
feature engineering approaches.

Li and Lam (2017) proposed a deep multitask learning framework for aspect
and opinion term extraction with memory interaction. Since the aspect term
and the opinion term often appear in pairs, they defined two modules, namely,
Aspect-LSTM and Opinion-LSTM, for the extraction of aspect and opinion terms,
respectively. The two LSTM modules exchange information through a memory
interaction mechanism. Finally, they concatenated the sentence representation based
on a Sentence-LSTM and the hidden states of Aspect-LSTM for aspect term
extraction. The model structure is shown in Fig. 8.9.

8.5.2 Aspect-Level Sentiment Classification

The aspect-level sentiment classification refers to the task of identifying the
sentiment polarity toward a given aspect in a review. The main methods of aspect-
level sentiment classification include lexicon-based methods, traditional machine
learning methods, and deep learning methods.

(1) Lexicon-based approach

The basic idea of the lexicon-based approach is to design opinion-oriented
rules to determine the sentiment of each aspect in a sentence by taking compound
expressions, syntactic trees, and the phenomenon of sentiment polarity shift, which
all may affect sentiments, into consideration.

8.5 Aspect-Level Sentiment Analysis 187

S-LSTM

1 2 3 …

ℎ3 ℎ ℎ3 ℎ ℎ3 ℎ ℎ ℎ…

ℎ1 ℎ2 ℎ3 ℎ…

ℎ1
0 ℎ2

0 ℎ3
0 ℎ0…

1
0

2
0

3
0 0…

1
…2 3

ℎ

O-LSTM

A-LSTM

Word Embedding

Memory

Interaction

Fig. 8.9 Deep multitask learning with memory interaction for aspect and opinion term extraction
(Li and Lam 2017)

Hu and Liu (2004) simply used the sum of the scores of all sentiment words in a
sentence as the sentiment score of the aspect in the sentence based on a sentiment
lexicon. Kim and Hovy (2004) considered not only the polarity of sentiment words
but also their sentiment intensity in the opinion region and used the sum or the
product of the sentiment scores in the region as the sentiment score of the aspect.
Ding et al. (2008) designed detailed sentiment calculation rules for different aspects
and considered the distance between sentiment words and aspect words when
integrating the scores of sentiment words in the sentence.

score (f) =
∑

wi∈s

SO(wi)

dist(wi, f)
(8.12)

where SO(wi) represents the sentiment of word wi , and dist(wi, f) represents the
distance between wi and the aspect word f . According to this rule, a sentiment
word that is closer to the aspect word will contribute more to the sentiment score of
the aspect. They also considered complex linguistic phenomena such as negation,
contrast, synonym, antonym, and sentiment dependence in the context.

Although the lexicon-based approach is simple and straightforward, it relies
heavily on rules and lexicons. To improve its performance, Blair-Goldensohn et al.
(2008) enhanced this approach in conjunction with a supervised learning approach.
Thet et al. (2010) used the sentiment-based lexical resource SentiWordNet to
determine the sentiment polarity and intensity of each aspect in a review.

188 8 Sentiment Analysis and Opinion Mining

(2) Traditional classification methods

Jiang et al. (2011) analyzed the dependency of aspect words and other words
in a review sentence and found the importance of using aspects as features for
aspect-based sentiment classification. They designed a series of aspect-related
features, added them to the traditional sentiment classification feature template, and
significantly improved the performance of aspect-based sentiment classification.

Kiritchenko et al. (2014) designed a complex feature template that includes three
types of features—shallow features, lexicon features, and syntactic features—each
of which incorporates the aspect information. Based on this feature template, they
employed an SVM classifier and achieved the best performance in the SemEval
2014 aspect-based sentiment classification task. To reduce the above method’s
reliance on syntactic analysis, Vo and Zhang (2015) divided a review into three
parts: aspect term, left context, and right context. Based on the three component
parts, a feature template including traditional word embedding, sentiment-specific
word embedding, and lexicon features was extracted, and finally, an SVM classifier
was used for aspect-based sentiment classification. Although this work used word
embedding features, it was still based on a traditional machine learning framework.

(3) Deep learning method

With the development of deep learning methods for application in the field of
natural language processing, some end-to-end deep learning frameworks have also
been developed for aspect-based sentiment classification.

Dong et al. (2014) proposed an adaptive recursive neural network (AdaRNN) for
aspect-based sentiment classification on Twitter. They made use of a dependency
parser to parse tweets, performed semantic compositions in a bottom-up manner,
propagated the sentiment information to the target node based on recursive neural
networks, and finally fed the representation to a softmax layer for sentiment classi-
fication. They also established an aspect-based sentiment classification corpus from
Twitter. They used the official API to collect tweets according to preset keywords,
which were later considered aspects, and manually annotated their sentiment labels.
The corpus contained 6,248 training examples and 692 test examples with 25%,
50%, and 25% positive, neutral, and negative examples, respectively. This Twitter
corpus, together with the restaurant and laptop datasets from SemEval 2014, was
widely used in subsequent research on aspect-based sentiment classification.

Tang et al. (2015a) proposed three LSTM-based aspect-level sentiment classifi-
cation neural networks, as shown in Fig. 8.10: (1) A standard LSTM, which encodes
each sentence and uses the last hidden state to represent the sentence, without
special treatment of aspect terms; (2) A TD-LSTM, in which a sentence is divided
into left and right parts according to the position of the aspect term, and the two
subsentences are encoded by two LSTMs along opposite directions. Finally, the last
hidden states of the two LSTMs are used for classification and achieve better results
than the standard LSTM. (3) Based on the TD-LSTM, a TC-LSTM that appends the
embedding of the aspect term to the embedding of each word and obtains further
improvement.

8.5 Aspect-Level Sentiment Analysis 189

1

LSTM

ℎ1

2

LSTM

ℎ2

LSTM

ℎ

LSTM

ℎ

LSTM

ℎ

LSTM

ℎ

LSTM

ℎ

LSTM

ℎ

softmax

… … …

target words

1

LSTM

ℎ1

LSTM

ℎ

LSTM LSTM

ℎ

target words

ℎ

LL L L LSTM

ℎ

LSTM

ℎ

LSTMLSTM

ℎ

……

target words

ℎ

R RRR

……

softmax

1

LSTM

ℎ1

LSTM

ℎ

LSTM LSTM

ℎℎ

LL L L

……

LSTM

ℎ

LSTM

ℎ

LSTMLSTM

ℎ

……

ℎ

R RRR

softmax

(a) LSTM

(b) TD-LSTM

Fig. 8.10 LSTM-based aspect-level sentiment classification models (Tang et al. 2015a)

Wang et al. (2016c) proposed an attention-based LSTM model based on aspect
embedding (ATAE-LSTM) for aspect-based sentiment classification. The main
structure is shown in Fig. 8.11. Their model first concatenates the embeddings of
each word with the aspect term for use as the input of the LSTM. The hidden state
is then appended with the aspect term embedding again and operated with a standard
attention mechanism. Finally, the sentence is represented by the weighted average
of the hidden states and fed to a softmax layer for classification.

Tang et al. (2016) proposed a deep memory network (DMN) model. They
designed a context- and position-based attention mechanism to capture the influ-
ences of words at different positions on the sentiment of the aspect, and they
enhanced the model’s representation ability through a multihop neural network.
Chen et al. (2017a) further proposed a recurrent attention network on memory

190 8 Sentiment Analysis and Opinion Mining

ℎ1 ℎ2 ℎ3 ℎ

LSTM LSTM LSTM LSTM

3

…

21

Attention

Aspect Embedding

H

Word Embedding

Aspect Embedding

Fig. 8.11 Aspect-level sentiment classification model based on the attention mechanism (Wang
et al. 2016c)

(RAM) based on DMN. In contrast to modeling the embedding of context as
memory in DMN, they employed a bidirectional LSTM to encode the review
sentence, used the hidden state matrix as memory, and replaced the ordinary linear
transformation in DMN with RNN to construct the multilayer network.

As we introduced earlier, a review can be divided into three parts: left context,
aspect term, and right context. The early work of (Vo and Zhang 2015), discussed
above, learned the embeddings for each of the three parts and employed an SVM
for classification. On this basis, Zhang et al. (2016b) further proposed a three-way
gated neural network that first uses a bidirectional gated neural network to encode
the sentence to obtain the hidden states and then divides them into three parts based
on the aforementioned approach. The three parts are pooled separately, resulting in
three representations. Finally, a three-way gated structure is employed to trade off
the three representations to better obtain the aspect-related sentence representation.
Liu and Zhang (2017) used a similar method to obtain the representations of the
above three parts based on LSTM, coupled with contextualized attention. Ma et al.
(2017) also used LSTM to model the aspect term and its context separately (but
without distinguishing left and right contexts) and designed an interactive attention
network (IAN) to obtain better aspect and context representations.

8.5 Aspect-Level Sentiment Analysis 191

…

N
eu

tral

1

2

P
o

sitiv
e

N
eg

ativ
e

T
h
em

es…

1

2

, ,

2, ,

, ,

1, ,

, ,

1 −

Fig. 8.12 Topic–sentiment mixture (TSM) model (Mei et al. 2007)

8.5.3 Generative Modeling of Topics and Sentiments

Because the aspects in the review are often strongly related to topics, generative
topic models such as PLSA and LDA have been used by researchers to model the
topics and sentiments in reviews. Mei et al. (2007) first defined the topic–sentiment
analysis (TSA) problem and proposed a probabilistic mixture model called the
topic–sentiment mixture (TSM) to model and extract multiple topics and sentiments
in a collection of blog articles. A blog article was assumed to be generated by
sampling words from a mixed model involving a background language model, a
set of topic language models, and two (positive and negative) sentiment language
models, as shown in Fig. 8.12. TSM can extract the topic/subtopics from blog
articles, reveal the correlation of these topics and different sentiments, and further
model the dynamics of each topic and its associated sentiments.

Titov and McDonald (2008) proposed a model for multiaspect sentiment analysis
(MAS) that first employs the multigrain LDA model to discover the topics in
reviews, then identifies the aspects associated with the topics, and finally performs
sentiment analysis directed toward the aspects. The model uses aspect ratings to

192 8 Sentiment Analysis and Opinion Mining

Fig. 8.13 Joint sentiment–topic (JST) model (Lin and He 2009)

discover the corresponding topics and can thus extract fragments of text discussing
these aspects without the need for annotated data. It has been demonstrated that
the model can discover corresponding coherent topics and achieve aspect rating
accuracy comparable to that of a standard supervised model.

Lin and He (2009) also introduced sentiment information into traditional LDA
by proposing a joint sentiment–topic (JST) model, as shown in Fig. 8.13. For each
document, a parameter πd is sampled according to πd ∼ Dir(γ); for each sentiment
category of each document, a parameter θd,l is sampled according to θd,l ∼ Dir(α);
for each topic under each sentiment category, a parameter ϕl,k is sampled according
to ϕl,k ∼ Dir(β). On this basis, for each word position i in a document, the
sentiment label li , the topic zi , and the term wi are generated according to three
categorical distributions: li ∼ Cat(πd), zi ∼ Cat(θd,li), and wi ∼ Cat(ϕli ,zi

),
respectively. A sentiment lexicon was used as a priori information to guide topic
and sentiment detection.

Jo and Oh (2011) proposed a sentence-level LDA (Sentence-LDA) model based
on traditional LDA. This model added sentence-level topic modeling between the
granularity of documents and words. On this basis, they proposed an aspect–
sentence unification model (ASUM) similar to JST. The difference is that ASUM
assumes that different words of the same sentence have the same topic and
sentiment. Figure 8.14 compares the structures of standard LDA, Sentence-LDA,
and ASUM.

Brody and Elhadad (2010) introduced a local topic model (Local LDA), which
works at the sentence level and employs a small number of topics to automatically
infer the aspects. For sentiment detection, they presented a method for automatically
deriving an unsupervised seed set of positive and negative adjectives that can replace
manually constructed sets.

Zhao et al. (2010) proposed a MaxEnt-LDA hybrid model to jointly discover
both the aspects and the aspect-specific opinion words. The novelty of their model is
the integration of a discriminative maximum entropy (MaxEnt) component with the
standard generative component (LDA). The MaxEnt component allows the model

8.6 Special Issues in Sentiment Analysis 193

Fig. 8.14 Comparison of standard LDA, SLDA, and ASUM (Jo and Oh 2011)

to leverage arbitrary features such as POS tags to help separate aspect and opinion
words.

Mukherjee and Liu (2012) proposed a semisupervised aspect–sentiment joint
extraction model that allows users to provide some seed aspect words for a
few aspect categories to guide the topic model so that the extracted aspects and
sentiments are more in line with the user’s needs.

8.6 Special Issues in Sentiment Analysis

8.6.1 Sentiment Polarity Shift

Sentiment polarity shift refers to a linguistic phenomenon wherein the sentiment
in a text changes due to special linguistic structures such as negations, contrasts,
intensifiers, and diminishers. These structures are also called “sentiment shifters” in
(Liu 2012) and “contextual valence shifters” in (Polanyi and Zaenen 2006).

The sentiment-shifted text is often similar to the original text in text represen-
tation. For example, “I don’t like this book” and “I like this book” have a high
similarity when using the bag-of-words model for text representation, but their
sentiment polarities are completely opposite. According to the statistics in (Li et al.
2010b), more than 60% of the sentences in product reviews contain explicit polarity
shifts, which makes research on polarity shifts in sentiment analysis necessary. Liu
(2015) performed a detailed analysis of different types of polarity shifts. In practical
applications, negations and contrasts will reverse the polarity of sentiment, while
intensifiers and diminishers will only change the intensity of sentiment. Therefore,
negations and contrast were more discussed in the literature on polarity shifts in
sentiment classification.

Focusing on word/phrase-level sentiment analysis, Wilson et al. (2005) began
with a sentiment lexicon whose sentiment polarity was determined in advance as
prior knowledge and built a supervised classifier to learn the contextual polarity
of words. Based on syntactic patterns, Choi and Cardie (2008) designed a series

194 8 Sentiment Analysis and Opinion Mining

of hand-written rules motivated by compositional semantics to address the polarity
shift problem for phrase-level sentiment analysis. Nakagawa et al. (2010) proposed
a semisupervised clause-level sentiment analysis model that captured the negation
structures based on the interactions between nodes in a dependency tree.

In aspect-level sentiment classification, Hu and Liu (2004), Ding and Liu (2007),
Ding et al. (2008) designed a set of linguistic rules, including the negation rule, the
but-clause rule, the intrasentence conjunction rule, and the pseudo intrasentence
conjunction rule, to match various types of sentiment shifts, such as negations,
contrasts, intensifiers, and diminishers.

In document-level and sentence-level sentiment classification, the methods for
addressing the polarity shift problem vary with the type of sentiment classification
method. Generally, in lexicon- and rule-based sentiment classification approaches,
it is relatively easy to address polarity shifts by designing a set of rules to first
match the patterns of different polarity shifts and then adjust the sentiment score
accordingly. For example, in the case of negation, the sentiment score of the
polarity-shifted word will be reversed; in the case of intensifiers and diminishers,
the sentiment score will be increased and decreased, respectively. Finally, the
scores of the respective parts are accumulated to obtain the sentiment score of
the entire sentence or document. Taboada et al. (2011) is a representative work on
these approaches and presented detailed rules for different types of polarity shifts
(negations, contrasts, intensifiers, diminishers, irrealis, etc.) in the English language.

In traditional machine learning-based approaches, the bag-of-words is a widely
used model for text representation. However, it is relatively difficult to integrate
polarity shift information into the BOW model.

A simple way to deal with this is simply attaching “NOT” to words in the scope of
negation, so that in the text “I don’t like book,” the word “like” becomes a new word
“like-NOT” (Das and Chen 2001, 2007). However, Pang et al. (2002) reported that
this only had negligible effects on improving the sentiment classification accuracy.

There were also some attempts to model polarity shift phenomena by using
more linguistic features and lexicon resources. For example, Na et al. (2004)
proposed modeling negation by looking for specific POS tag patterns. Kennedy
and Inkpen (2006) made use of a syntactic tree to model three types of sentiment
shift (negations, intensifiers, and diminishers). Their experimental results showed
that handling polarity shifts can significantly improve the performance of rule-
based systems, but the improvements were very slight compared to the baselines of
machine learning systems. Ikeda et al. (2008) proposed a machine learning method
based on a sentiment lexicon extracted from General Inquirer to model polarity
shifts for both word-wise and sentence-wise sentiment classification.

Li and Huang (2009), Li et al. (2010a) proposed a method that first classified
each sentence in a text into a polarity-unshifted part and a polarity-shifted part
based on certain rules and on a trained binary detector, respectively. The two
components were then represented as two bags of words and finally combined for
sentiment classification. Orimaye et al. (2012) proposed an inter-sentence polarity
shift detection algorithm to identify consistent sentiment polarity patterns and used
only the sentiment-consistent sentences for document-level sentiment classification.

8.6 Special Issues in Sentiment Analysis 195

Xia et al. (2016) divided polarity shifts into two cases: explicit polarity shifts and
implicit polarity shifts. The former includes explicit linguistic structures such as
negation and contrast; the latter mainly refers to implicit sentiment incoherence
between sentences. On this basis, they proposed a rule-based method to detect
explicit polarity shifts and a statistics-based method to detect implicit polarity shifts.
Different processing methods were adopted to eliminate the polarity shift of the
different parts, and then the different parts were integrated to obtain the sentiment
of the entire document.

Xia et al. (2013b, 2015b) proposed a framework called dual sentiment analysis
(DSA) to address the polarity shift problem. By making use of the sentiment
classification characteristic of having two opposite class labels (i.e., positive and
negative), they propose a data expansion technique by creating sentiment-reversed
(antonymous) reviews for each training and testing review. The original and reversed
reviews were constructed in a one-to-one correspondence and were modeled by a
pair of bags-of-words (Dual BOW) models. On this basis, a dual training algorithm
and a dual prediction algorithm were proposed, respectively, to use both the
original and the reversed samples in pairs for training a statistical classifier and
then to make predictions by considering the two sides of one review. Because of
the removal of polarity shift structures during the reversed review construction
process and the usage of Dual BOW text representation, the DSA framework can
potentially alleviate the polarity shift problem. Xia et al. (2015a) further extended
the DSA framework from the supervised learning to the semisupervised learning
setting by proposing a dual-view cotraining method for semisupervised sentiment
classification.

Qian et al. (2017) proposed a solution to address the sentiment polarity shift
problem under the deep learning framework. A linguistically regularized LSTM was
developed that encoded a sentence from right to left based on LSTM and predicted
the sentiment at each position. They performed sentiment prediction at each
word position by modeling the relationship between neighboring sentiment words,
negation words, and intensity words as constraints, so as to learn linguistically
regularized representation and ultimately improve the performance of sentiment
classification.

8.6.2 Domain Adaptation

In statistical machine learning, the learning process for a specific domain typically
requires a large number of annotated samples in that domain, and the training and
test data are assumed to have identical distributions. Therefore, statistical machine
learning usually suffers from the “domain-dependence” problem: classifiers trained
on annotated samples in a certain domain (we refer to it as the source domain)
usually perform well on test samples in the same domain but perform poorly on test
samples in a different domain (which we refer to as the target domain), especially
when the distributions of the source and target domains are significantly different.

196 8 Sentiment Analysis and Opinion Mining

Since the distribution of review data is highly dependent on the type of product, this
“domain-dependence” problem is very common in sentiment analysis. To address
this problem, “domain adaptation” (also known as “transfer learning” in the field
of machine learning) has become a popular research topic in the fields related to
sentiment analysis.

The goal of domain adaptation is to train an adaptive classifier for the target
domain, conditioned on labeled data from the source domain, with the help of a
large amount of unlabeled data (or a small amount of labeled data) from the target
domain. Since it is next to impossible to annotate sufficient labeled data for each
product type, domain adaptation is very important and truly beneficial for sentiment
classification. For example, given some labeled reviews from the restaurant domain
and unlabeled reviews from the electronics domain, the goal of domain adaptation
is to directly utilize these labeled and unlabeled data to train a robust model that can
effectively classify product reviews in the electronic domain.

In sentiment analysis, Aue and Gamon (2005) first explored the domain adap-
tation problem; they proposed using the EM algorithm to train a classifier with
both the labeled samples of the source domain and the unlabeled samples of the
target domain, but the results were not satisfactory. Later, Jiang and Zhai (2007)
analyzed the domain adaptation problem and proposed two kinds of methods:
instance adaptation and labeling adaptation. Furthermore, Pan and Yang (2009)
divided existing transfer learning methods into three categories: the instance-based
transfer, feature-based transfer, and parameter-based transfer.

The feature-based approaches aim at finding “good” feature representations for
the target domain based on the labeled data of the source domain and a large amount
of unlabeled data (or a small amount of labeled data) of the target domain and then
using the new feature representations to train a domain adaptive classifier. Structure
correspondence learning (SCL), proposed by Blitzer et al. (2007), is a representative
work in this field. Blitzer et al. (2007) first defined a set of pivot features, usually
domain-invariant sentiment words, and used the remaining words as nonpivot
features. They then learned the mapping matrix between the two feature spaces,
subsequently using singular value decomposition (SVD) to obtain the principal
component subspace of the mapping matrix. Finally, they projected the nonpivot
features to the mapping matrix subspace to obtain new feature representations
for sentiment classification; this approach has been demonstrated to achieve good
performance. Inspired by SCL, a series of similar approaches have been proposed.
In these, the basic idea is to use the domain-invariant features of the source and
target domains as a bridge to associate each domain’s domain-specific features
based on their co-occurrence with the domain-invariant features. Based on the co-
occurrence among features, these approaches typically utilize different subspace
methods to map the features of the source domain and the target domain to the
same subspace and finally perform classification in the new subspace. For example,
Pan et al. (2010b) and Pan et al. (2010a) proposed two transfer learning algorithms:
transfer component analysis (TCA) and spectral feature alignment (SFA). These
two methods employ the concepts of principal component analysis and spectral
clustering to construct the association between the source domain and the target

8.6 Special Issues in Sentiment Analysis 197

domain and learn the effective feature representations for the target domain. Xia
and Zong (2011) believed that features with different types of POS tags have
different domain independence properties. For example, adjectives and adverbs
in two different domains tend to be similar, while nouns tend to differ greatly
between two different domains. According to this characteristic, they divided the
original feature space into several subsets and trained base classifiers with each
feature subset in the source domain. Finally, they adopted ensemble learning to learn
appropriate weights for each component, which derives a new labeling function for
the target domain.

With the recent trend of deep learning in NLP, a series of neural transfer learning
algorithms have been proposed. Similar to SCL, the basic approach underlying
these algorithms is to first construct some domain-independent auxiliary tasks as
a bridge to associate the domain-specific features of each domain and then optimize
the auxiliary tasks via neural networks to map all the domain-specific features to
the same subspace for sentiment classification. For example, Yu and Jiang (2016)
designed two auxiliary tasks that used nonpivot features to predict the occurrence of
the positive pivot feature and the negative pivot feature. With the two auxiliary tasks,
they proposed using the nonpivot features and the original features as an input pair
and employed a bichannel convolutional neural network (Bichannel CNN) to jointly
train the auxiliary task and the main sentiment classification task. In this way, the
nonpivot features and the original features are mapped to two target-domain-aware
subspaces, which are combined for the final sentiment classification on the target
domain. Based on this work, Ding et al. (2017) and Li et al. (2017c) respectively
used traditional rule-based predictions and adversarial domain discriminators as
auxiliary tasks and then used LSTM to jointly train the auxiliary tasks and the main
task, respectively. Subsequently, Li et al. (2018) proposed combining the auxiliary
tasks in (Yu and Jiang 2016) and (Li et al. 2017c) and used the hierarchical attention
network for multitask learning, achieving the best results among the current feature-
based approaches on several benchmark datasets.

The parameter-based transfer assumes that the model parameters of the source
domain and the target domain have the same prior distribution, and the shared
priors can be used as constraints for model optimization to transfer the classification
knowledge from the source domain to the target domain. Xue et al. (2008) proposed
a PLSA-based domain adaptation method, where they extended the traditional
PLSA to exploit the shared topics between the two domains with topic bridges
(referred to as topic-bridged PLSA). This method assumes that the source and target
domains share the prior distribution p(z|w) in the graphical model, and it uses the
EM algorithm to optimize the model based on the shared prior distribution, which
was shown to be effective in cross-domain text classification. Li et al. (2009b)
extended the traditional nonnegative matrix decomposition to domain adaptation.
Specifically, they proposed performing nonnegative matrix decomposition on both
the source and target domains under the constraint that the two domains share the
same p(z|c) matrix; this transfers the shared sentiment knowledge from the source
domain to the target domain. Their key idea is similar to the topic-bridged PLSA
model.

198 8 Sentiment Analysis and Opinion Mining

The instance-based transfer approaches aim to assign appropriate weights to each
source-labeled sample based on its similarity to the distribution of the target domain
and to train an adaptive classifier by importance sampling on the training samples
in the source domain. This problem belongs to the sample selection bias problem
(Zadrozny 2004) in machine learning, where the key challenge is estimating
the density ratio, i.e., the ratio of the probabilities of the samples occurring in
the source domain and target domain. The density ratio is used to measure the
probability of each source sample occurring in the target domain (also known as
the weight for importance sampling). However, the estimation of the density ratio
is challenging. Although several theoretical approaches have been proposed in the
field of machine learning (Shimodaira 2000; Huang et al. 2007; Sugiyama et al.
2008; Bickel et al. 2009), most of them failed to achieve satisfactory performance in
many NLP tasks, including sentiment analysis. To address this problem, Xia et al.
(2013a) proposed a method based on positive-unlabeled learning (PU Learning) to
calculate the similarity between each source sample and the target distribution. They
identified the samples in the source and the target domains as the U-set and the P-
set, respectively, and identified some reliable nontarget domain samples from the
source domain as the N-set. Based on the EM algorithm, they further established a
semisupervised classifier to predict the probability of each source sample belonging
to the target domain and used this probability as the similarity between the source
sample and the target distribution. The probabilities after calibration were then
used for importance sampling and achieved good performance in cross-domain
sentiment classification. On this basis, Xia et al. (2014) further proposed a logistic
approximation approach for jointly calculating the similarity between each source
sample and the target distribution and estimating the density ratio for importance
sampling. More recently, Xia et al. (2018) analyzed the bias-variance dilemma in
instance-transfer approaches and proposed the idea of controlling sample weight
variance while overcoming sample selection bias, which largely improved the
stability of the instance-based approaches.

8.7 Further Reading

Pang and Lee (2008), Liu (2012), Liu (2015) provided comprehensive reviews of
sentiment analysis and opinion mining.

In addition to the traditional sentiment analysis and opinion mining tasks, some
generalized sentiment analysis tasks, such as emotion classification and stance
classification, have been proposed in this field.

Emotion classification can be viewed as an extension of sentiment classification.
It aims to identify people’s emotions in multiple dimensions from the perspective
of human psychology (Ekman et al. 1972; Plutchik and Kellerman 1986). In text
analysis, emotions are usually divided into six categories: love, joy, surprise, anger,
sadness, and fear. The main techniques in emotion classification include lexicon-
based methods, traditional machine learning methods, and deep learning methods.

8.7 Further Reading 199

Based on emotion classification, a new task called emotion cause analysis has been
recently proposed, with the goal of identifying and extracting the corresponding
causes of emotions in texts (Gui et al. 2016; Ding et al. 2019; Xia et al. 2019; Xia
and Ding 2019; Ding et al. 2020).

Stance classification is another new area of sentiment analysis that has emerged
in recent years. Sentiment classification aims to identify the sentiment polarity
(positive, negative, or neutral) in texts, while stance classification focuses on
detecting people’s stance (support, deny, query, comment) toward a given target
(e.g., “homosexual love”). In aspect-level sentiment classification, the opinion target
is usually a fine-grained explicit aspect in reviews, while in stance classification, the
target is normally a topic or an event. SemEval 2016 launched an evaluation of
stance detection in tweets (Mohammad et al. 2016). Similar evaluations based on a
Chinese microblog were organized by NLPCC 2016.

Exercises

8.1 What is the difference between sentiment classification and traditional topic-
based text classification tasks?

8.2 What is the difference between document-level sentiment classification and
sentence-level sentiment classification? What are their respective advantages and
disadvantages?

8.3 Please analyze the similarities and differences between the PMI method shown
in Formulas (8.12) and (8.13) and the mutual information feature selection method
introduced in Sect. 4.3.1 of this book.

8.4 Please analyze the differences between the two hierarchical sentiment classifi-
cation methods mentioned in Sect. 8.3.2 and Sect. 8.3.3, respectively.

8.5 What is the difference between sentence sentiment classification using a
recurrent neural network and that using a recursive neural network? What are the
advantages and disadvantages of each method?

8.6 Please point out the advantages and disadvantages of the three corpus-based
sentiment dictionary construction methods described in Sect. 8.4.2.

8.7 What are the advantages and disadvantages of treating aspect extraction and
aspect-based sentiment classification as two separate tasks in aspect-level sentiment
analysis? Can you design a joint end-to-end model of aspect extraction and aspect-
based sentiment classification?

Chapter 9
Topic Detection and Tracking

9.1 History of Topic Detection and Tracking

Traditional TDT technology was established and developed in an evaluation-driven
manner. The original motivation for TDT research was proposed by the Defense
Advanced Research Projects Agency (DARPA) in 1996. Their aim was to explore
a new technology to automatically detect and track topics in news data streams
without human intervention.

In 1997, researchers from DARPA, Carnegie Mellon University (CMU), and
University of Massachusetts (UMass) initiated preliminary studies of TDT, later
called TDT1997 or TDT Pilot. They focused on how to find topic-related informa-
tion from data streams (text or voice) and included two parts: enabling the system
to automatically locate the boundaries of two events by searching for fragments
consistent with the intrinsic theme and detecting the emergence of new events and
the reproduction of old events. They carried out basic research (Allan et al. 1998a)
and established a TDT pilot corpus.1 This corpus includes nearly 16,000 stories,
from July 1, 1994, to June 30, 1995, taken half from Reuters newswire and half
from CNN broadcast news transcripts. For the evaluation of TDT performance, they
proposed the metrics of miss and false alarm rates and used a detection error tradeoff
(DET) plot to visually display the errors in the TDT system.

Starting in 1998, the National Institute of Standards and Technology (NIST),
sponsored by DARPA, hosted the annual TDT evaluation conference, which was
one of two conferences in the Translingual Information Detection, Extraction
and Summarization (TIDES) project (the other is the Text REtrieval Conference,
TREC). Many famous universities, companies, and research institutes, such as IBM
Watson Research Center, BBN Technologies Company, CMU, UMass, University
of Pennsylvania, University of Maryland, and Dragon Systems Company, actively
participated in the conference. TDT1998 held the first public TDT evaluation, with

1https://catalog.ldc.upenn.edu/LDC98T25.

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_9

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_9&domain=pdf
https://catalog.ldc.upenn.edu/LDC98T25
https://doi.org/10.1007/978-981-16-0100-2_9

202 9 Topic Detection and Tracking

the evaluation tasks including news story segmentation, topic detection, and topic
tracking, and for the first time, it introduced the Chinese corpus. TDT1999 added
two new tasks: first story detection (FSD) and link detection (LD).

TDT2002, the 5th TDT conference, held in autumn 2002, further enriched the
corpus by incorporating the Arabic corpus. At the same time, new technologies such
as text filtering, speech recognition, machine translation, and text segmentation were
added to the research content of TDT.

TDT2004 canceled the task of news story segmentation because most instances
of practical application were easily separable. Meanwhile, two new tasks, super-
vised adaptive topic tracking and hierarchical topic detection, were added. The TDT
conference was held for 7 consecutive years, with the last one being TDT2004. The
TDT corpus is still open to the public, and researchers can obtain the TDT tasks and
corpus through the website of the Linguistic Data Consortium2 (LDC).

In recent years, social media platforms, such as Twitter, Facebook, Weibo,
and WeChat, have developed into important channels for discussions on current
affairs, information exchanges, and the expression of opinions. A large number of
users participate in discussions of events, persons, products, and other content on
these platforms and generate a large amount of text data, which becomes a mirror
reflecting society. The research on TDT in social media has even more important
practical significance. However, at the same time, texts on social media platforms
raise new problems and challenges to TDT research because of their properties, such
as short contexts, rich forms, dynamic topics, massive volumes, and a large number
of nonstandard language phenomena.

Allan (2012) and Yu et al. (2007) summarized the studies of traditional TDT.
In the following sections, we first introduce the terminologies and tasks in TDT
and then review the traditional technologies considering four aspects: text repre-
sentation, text similarity, topic detection, and topic tracking. Finally, following the
extension from traditional media to social media, we introduce the research of TDT
in social media.

9.2 Terminology and Task Definition

9.2.1 Terminology

The goal of TDT is to automatically discover topics from text data streams and link
topic-related content together. It involves concepts such as event, topic, story, and
subject.

Event: In a TDT study, an event refers to an activity or a phenomenon that
occurs at a specific time and place and is associated with certain

2https://www.ldc.upenn.edu/.

https://www.ldc.upenn.edu/

9.2 Terminology and Task Definition 203

actions or conditions. Usually, an event is a story or a series of stories,
which consist of detailed descriptions of the cause, time, place, process,
and result of the event. For instance, “Trump defeated Hillary in the
November 8, 2016, presidential election and became the 45th President
of the United States” is an event in TDT. It has specific attributes such
as a time, place, and person.

Topic: Topic was defined as an event in the original TDT Pilot study, but
since TDT1998, it has been given a broader meaning that includes
not only the initial event but also the subsequent events and other
events directly related to it. In other words, a topic can be viewed
as a core event together with its direct-relevant events, making it a
collection of related stories about one event. Assume that the “512
Wenchuan earthquake” is a topic and “a strong earthquake of magnitude
8.2 occurred in Wenchuan, China, on May 12, 2008” is the core event
of this topic. Subsequent events, such as earthquake rescue and post-
earthquake reconstruction, are also part of the topic because they are
directly related to the core event. The research on TDT originated from
early event detection and tracking (EDT). However, compared with
EDT, the object of TDT extends from events occurring at specific times
and places to topics with more relevant extensions.

Subject: The subject in TDT is a summary of one kind of event or topic; it
covers a group of similar events but does not involve any specific events.
It therefore has a wider meaning than a topic in TDT. For instance,
“earthquake disaster” is a subject, and the “512 Wenchuan earthquake”
is a specific topic under that subject. Note that the concept of a “topic” in
the topic model is different from that in TDT. Specifically, “topic” and
“subject” in TDT are concepts describing events, representing a series
for a specific event and a group of similar events, respectively, while
“topic” in a topic model represents the underlying semantics of words
in the text.

Story: A story in TDT denotes an article in a newswire or a piece of broadcast
news that is composed of two or more statements of independent events.

9.2.2 Task

NIST divides TDT into the following five basic tasks.

(1) Story Segmentation

The purpose of story segmentation (SS) is to discover all topics and their
boundaries in a news story and divide the story into multiple substories with a
complete structure and independent topics, as shown in Fig. 9.1. For example, given
a piece of broadcast news that includes multiple topics such as politics, sports
events, finance, and economics, an SS system needs to divide the broadcast into

204 9 Topic Detection and Tracking

audio signial or text data stream

story Non-story

Fig. 9.1 Story segmentation task in TDT

Following stories

First stories

=Topic1

= Topic2

Fig. 9.2 First story detection task in TDT

segments of different topics. SS is designed mainly for news broadcasting, which
contains two kinds of data streams: the audio signal and the text data stream
transcribed from the audio signal. TDT2004 removed this task because most of the
instances can be easily segmented in practice.

(2) First Story Detection

The FSD task aims to automatically detect the first discussion of a given topic
from a chronological stream of news, as shown in Fig. 9.2. This task requires judging
whether a new topic is discussed in each story. It is therefore considered to be
the basis for topic detection, and it is called transparent testing of topic detection.
TDT2004 renamed FSD to new event detection (NED).

(3) Topic Detection

The goal of the TD task is to detect topics in the news data streams without
providing prior knowledge about any topics, as shown in Fig. 9.3. The output of
FSD is one story, while the output of TD is a collection of stories that discuss the
same topic. The difficulty of TD is the absence of prior knowledge of the topic; it
means that the TD system must be independent of a certain topic but apply to any
topic.

Although most of the stories refer to only one topic, there are also some stories
that involve multiple topics organized in a hierarchical structure. In response to
this problem, TDT2004 defined a hierarchical topic detection (HTD) task that

9.2 Terminology and Task Definition 205

Topic2

Topic1

Fig. 9.3 Topic detection task in TDT

Training set

Test set

known topics

unknown

Fig. 9.4 Topic tracking task in TDT

transformed the organization of topics from a parallel relationship in FSD and TD
to a hierarchical structure.

(4) Topic Tracking

The goal of topic tracking (TT) is to track subsequent stories of known topics,
that is, to detect the related follow-up stories in the data streams given one or more
stories associated with a topic, as shown in Fig. 9.4. The topic is denoted by several
related stories rather than by a query (the NIST evaluation usually provided one to
four stories for each topic).

(5) Link Detection

The goal of link detection (LD) is to judge whether two stories belong to the same
topic, as shown in Fig. 9.5. Similar to TD, no prior knowledge is provided; the LD
system establishes a topic relevance detection model that does not depend on stories
from one topic as the reference. LD is often considered a core module in other TDT
tasks (e.g., topic detection and topic tracking) rather than an independent task. A
good link detection system can improve the performance of other TDT tasks.

206 9 Topic Detection and Tracking

?

Fig. 9.5 Link detection in TDT

Table 9.1 Basic text mining
techniques involved in TDT

Main task Basic technique

Representation of topic/story Text representation

Link detection Text similarity computation

Topic detection Text clustering

Topic tracking Text classification

In general, TDT studies the relationship between stories and topics. It mainly
solves the following technical problems: (a) representation of topics and stories;
(b) similarity between topics and stories; (c) clustering of topics and stories; and
(d) classification of topics and stories. Table 9.1 shows the text mining techniques
involved in different TDT tasks.

9.3 Story/Topic Representation and Similarity Computation

In Chaps. 3, 5, and 6, we introduced the standard text representation and text
similarity computation methods in detail. This section will briefly introduce the
methods of text representation and similarity computation in TDT. Text prepro-
cessing techniques, including stemming, lemmatization, and stop word filtering, are
usually employed first. Then, a vector space model (VSM) or language model (LM)
is often applied for text representation.

VSM is one of the most commonly used text representation models in TDT.
It regards a story as a document, ignores the order of terms, and uses a vector
to represent this document. TF-IDF and its variants are usually used as the term-
weighting scheme. Allan et al. (2000) pointed out the limit of text similarity
computation in VSM. Many researchers have proposed improving the representation
ability of VSMs based on information extraction and feature engineering. For
example, the information of the name entity (Yang and Liu 1999; Kumaran and
Allan 2004, 2005), the 4Ws (who, what, when, where) (Kumaran and Allan 2004),
and semantic concepts (Kumaran and Allan 2004) have been added to vector space
to improve the performance.

9.3 Story/Topic Representation and Similarity Computation 207

There are three kinds of similarity measures between stories or topics: the
similarity between two stories, the similarity between a story and a topic, and the
similarity between two topics; these correspond to the content in Sect. 6.2.

Identifying the similarity between two stories is also called link detection in TDT.
The goal of link detection is to determine whether two randomly selected stories
discuss the same topic. A basic approach is as follows: first, each story is represented
as a vector based on VSM, and then the similarity is calculated by the cosine
distance of the two vectors. Finally, a preset threshold is used to determine whether
the corresponding stories are relevant to each other. If the cosine similarity is greater
than the threshold, the two stories are relevant; otherwise, they are irrelevant. The
similarities between stories can also be measured by traditional Euclidean distance,
the Pierson correlation coefficient, and other similarity measures.

The correlation between a story and a topic can be transformed into the problem
of computing the similarities between the story and all the stories that constitute the
topic, in which the key problem is link detection for a pair of stories. In some work,
a topic is represented as a single model (e.g., using the centroid vector of all stories
under the topic to represent the topic), thereby converting the similarity between a
story and a topic into that between the story and the centroid vector, where the key
technique is still link detection.

Researchers at the University of Massachusetts (UMass) studied a variety of
similarity computation methods, including cosine distance, weighted sum, language
models, and Kullback-Leibler divergence. Experiments on the TDT3 corpus showed
that cosine distance performs best in link detection (Allan et al. 2000).

Another line of methods applies language models to story representation and
link detection. The language model has been widely used in text mining as a
generative probability model for representing natural language. Let the random
variables C and S represent a topic and a story, respectively. According to Bayes’
theorem, the posterior probability p(C|S) of the topic C conditioned on the story
S is proportional to the product of the prior probability p(C) and the conditional
probability p(S|C), that is

p (C|S) = p(C)p(S|C)

p(S)
∝ p (C) p (S|C) (9.1)

Assuming that the terms in story S are independent of each other given the topic,
we obtain

p (C|S) ∝ p (C)
∏

i

p (ti |C) (9.2)

where p(ti |C) is the probability that term ti appears in topic C.
Language modeling furthermore provides a method for computing the similarity

between a story and a topic (or two stories). In the unigram language model, a subset

208 9 Topic Detection and Tracking

Cj with respect to the j -th topic can be represented as a multinomial distribution as
follows:

p
(
S|Cj

) =
∏

i

p(ti |Cj) (9.3)

where ti denotes the ith term in the vocabulary. Based on maximum likelihood
estimation, we can estimate p(ti |Cj) as the term frequency of ti in Cj divided by
the total number of terms in Cj .

In practice, the data sparsity problem may cause p(ti |Cj) to equal zero. To avoid
this problem, we can use the smoothing technique to estimate p(ti |Cj)

psmooth
(
ti |Cj

) = λp
(
ti |Cj

) + (1 − λ) p (ti |G) (9.4)

where p(ti |G) is an estimated probability of word ti in a general corpus G. Since
the texts in TDT appear in a time series, and new texts may have words that did not
appear in previous documents, as a kind of prior knowledge, estimation based on a
general corpus is reasonable.

The problem determining which topic is most likely to generate the given story
S can be described as

arg max
j

p(S|Cj)

p(S)
= arg max

j

∏

i

p(ti |Cj)

p(ti)
= arg max

j
log

∏

i

p(ti |Cj)

p(ti)
(9.5)

Therefore, D
(
S,Cj

) = ∑
i log

p(ti |Cj)

p(ti)
can be defined as the similarity between

story S and topic Cj .
If a story is regarded as a distribution of words, then the similarity between a

story S and a topic C can be measured by the similarity between two distributions,
e.g., Kullback-Leibler divergence:

DKL (C‖S) = −
∑

i

p (ti |C) log
p (ti |S)

p (ti |C)
(9.6)

Moreover, if two stories Sa and Sb to be compared are regarded as two multinomial
distributions of terms, the Kullback-Leibler (KL) divergence can also be used for
LD. Similarly, KL divergence can also measure the similarity between two topics.
These techniques have been applied in Lavrenko and Croft (2001) and Leek et al.
(2002).

On the basis of story/topic representation and similarity computation, most TDT
tasks, such as topic detection and topic tracking, can be formulized as clustering or
classification problems.

9.4 Topic Detection 209

9.4 Topic Detection

The purpose of topic detection is to capture new (i.e., previously undefined) topics
from a continuous stream of stories. The topic information, such as time, content,
and number of stories, is unknown in advance, and there are also no annotated data
for supervised learning. Therefore, topic detection is an unsupervised learning task
and usually considered to be a clustering problem. Therefore, most topic detection
algorithms can be regarded as a kind of modification or extension to standard text
clustering algorithms. The standard clustering algorithms take the whole dataset as
the input, while the input of topic detection is a continuous data stream of stories
with a clear temporal relationship. The topics in the data stream also tend to change
dynamically. These issues need to be addressed when using traditional clustering
methods for topic detection.

Topic detection can be divided into two main types: online topic detection and
retrospective topic detection. The input of online topic detection is a real-time story
data stream, and thus subsequent stories do not yet exist. When a new story appears,
the system is required to make a real-time decision on whether the story is a new
topic. The input of retrospective topic detection is the whole corpus, containing all
stories over time. Retrospective topic detection requires the system to decide for
each story which topic it belongs to in an offline manner and to divide the whole
corpus into several topic clusters accordingly. In comparison, the focus of online
topic detection is to detect new topics from real-time data streams, while the purpose
of retrospective topic detection is to discover previously unmarked news topics from
existing stories.

In the following, we will describe the two topic detection tasks separately.

9.4.1 Online Topic Detection

Online topic detection aims to detect new topics from real-time stories. Since the
information for new topics is unknown beforehand, it cannot be retrieved by a
certain query. In addition, the task requires that the system make real-time decisions
as soon as each story appears. For these reasons, incremental clustering algorithms
are usually employed for online topic detection.

One simple method is based on single-pass clustering. The algorithm processes
the input stories sequentially and represents each story based on a VSM. The model
uses words (or phrases) as terms and TF-IDF (or its variants) as the term-weighting
scheme to represent each story. Then, the similarities between the new story and all
existing topics are computed. The similarity between a story and a topic is usually
transformed into the similarity between the story and the centroid vector of the
topic. If the similarity is higher than a preset merge-split threshold, the story will be
classified into the most similar cluster (a cluster represents a topic); otherwise, the
story will establish a new cluster. The above process is repeated until all the stories

210 9 Topic Detection and Tracking

in the data stream have been processed. This algorithm ultimately forms a set of flat
clusters, where the number of clusters depends on the merge-split threshold. More
details of the single-pass clustering algorithm can be found in Sect. 6.3.2.

In the early research into TDT, researchers at UMass and CMU adopted the
single-pass clustering method (Allan et al. 1998b; Yang et al. 1998). To make the
algorithm better suited to real-time data streams, they made some modifications to
the text representation and similarity computations.

Specifically, Allan et al. (1998b) represented the content of a story as a query
and compared it to all previous queries. If a new story triggers an existing query, it
is assumed that the story discusses the topic corresponding to the triggered query.
Otherwise, the story is considered to contain a new topic.

Assume that q is a query and denoted as a vector over a set of terms. Based on
the term set, a document is represented as a representation vector d . The correlation
between a query q and a story d is defined as

eval (q, d) =
∑N

i=1 wi · di

N∑
i=1

wi

(9.7)

where wi represents the relative weight of a query term qi and di is the appearance
of term qi in the story.

Because the future documents (i.e., stories) are unknown, the inverse document
frequency (IDF) is estimated based on an auxiliary corpus c (which should belong
to the same domain):

idfi = log |c|+0.5
dfi

|c| + 1
(9.8)

where dfi represents the document frequency of qi in corpus c and |c| is the number
of documents contained in corpus c. Meanwhile, the average term frequency is
calculated as

tfi = ti

ti + 0.5 + 1.5 · dl
avg_dl

(9.9)

where ti denotes the frequency of qi in d, dl is the length of d , and avg_dl is the
average length of all documents in c. On this basis, they set the weight of qi as

twi = 0.4 + 0.6 · tfi · idfi (9.10)

In addition, the features in query q are dynamic. Each time a new story appears,
the top n high-frequency words of all existing documents in the data stream are
selected to construct the new term set. Thus, all query representations in the past

9.4 Topic Detection 211

need to be updated. The corresponding weight of qi is the average value of tfi in all
existing stories.

Many studies have observed that documents that appear more closely in time in
the data stream are more likely to discuss the same topic; therefore, using the timing
of news stories may improve NED performance. Based on this idea, a time penalty
was added to the threshold model. When the j th document in the data stream is
compared with the ith query (i < j), j − i is introduced to the threshold as a time
penalty:

θ
(
q(i), d(j)

)
= 0.4 + p ·

(
eval

(
q(i), d(j)

)
− 0.4

)
+ tp · (j − i) (9.11)

where eval(q(i), d(i)) is the initial threshold of query q(i), p is the weight of the
initial threshold, and tp is the weight of the time penalty.

As mentioned in Sect. 6.3.2, the single-pass clustering algorithm is very sensitive
to the order of the input sequence. Once the order changes, the clustering results may
vary greatly. However, in TDT, the order of the input stories is fixed, which makes
single-pass clustering highly suitable for TDT. Meanwhile, single-pass clustering
has its advantage for real-time large-scale topic detection because it is simple and
fast and supports online operations. The aforementioned work mainly involves three
aspects of improvement upon standard single-pass clustering: (1) establish a better
story representation, (2) find a more reasonable similarity computation method, and
(3) make full use of the time information in the data stream.

9.4.2 Retrospective Topic Detection

The main goal of retrospective topic detection (GTD) is to review all news stories
that have happened in the past and detect topics from them.

To address this task, the researchers at CMU proposed a hierarchical clustering
algorithm based on group average clustering (Allan et al. 1998a; Yang et al. 1998),
which has since been widely used in retrospective detection. This method adopts a
divide-and-conquer strategy to hierarchical clustering: it divides the ordered story
stream into several averaged buckets, adopts a bottom-up hierarchical clustering in
each bucket, and then aggregates the more proximate clusters into a new cluster.
Through repeated iterations, a topic cluster structure with a hierarchical relationship
can ultimately be obtained.

Subsection 6.2.3 has already introduced bottom-up hierarchical clustering in
detail. The basic idea is to initially treat each example as a separate cluster and
then repeatedly merge the two most similar clusters until all examples have been
merged into one cluster.

Finally, the algorithm constructs a hierarchical clustering dendrogram. The top
level of the dendrogram represents a coarse-grained topic partition, and the lower
level represents a more fine-grained topic partition. The time complexity of the

212 9 Topic Detection and Tracking

algorithm is O(mn), where n is the number of stories in the corpus and m is the
size of the bucket. The disadvantage of the algorithm is that it is only suitable for
retrospective topic detection and cannot be applied to online topic detection.

9.5 Topic Tracking

The goal of topic tracking is to detect follow-up related stories from the news data
stream given a small number of stories related to the topic as a priori knowledge.

On the one hand, topic tracking is related to information filtering in the informa-
tion retrieval field. We can thereby perform topic tracking based on the information
filtering techniques. The basic approach in topic tracking is to establish a query filter
that takes a small number of stories to be tracked as positive examples, where the
other stories are the negative examples. We then compute the similarity between the
query and each subsequent story and finally determine whether the story matches
the tracking topic by comparing the similarity score to a preset threshold. There
are normally two ways to build a query filter in practice. The first focuses on how
to better represent the topics to be tracked based on VSM, including establishing
queries based on relevance feedback, extracting features based on shallow parsing,
and attempting different feature weighting methods. The other is based on language
modeling, which usually requires a large-scale background corpus.

On the other hand, topic tracking can also be viewed as two kinds of text
classification tasks. Stories are categorized into two classes: the positive class
denotes the relevance to the topic, and the negative class denotes irrelevance to the
topic. A training set is constructed based on a small number of positive stories and
a large number of negative stories, and a linear classifier is trained to predict the
category of new stories.

CMU is the representative for research institutes using the k-NN classifier
for topic tracking. Their algorithm incrementally builds a training set comprising
positive and negative stories. When a new story appears, the similarities between it
and each example in the training set are calculated. After comparing the similarity
with a preset threshold, the new story is first classified as positive or negative. Then,
the nearest k training examples are assessed to determine which topic the story
belongs to. Although the k-NN method is simple and straightforward, the class
imbalance problem (i.e., the number of negative samples is much higher than that of
positive samples) makes it difficult to find a reasonable threshold for the algorithm.
One improvement is a k-NN model based on positive and negative examples: the
former k-NN is used to compute the similarity between a new story and positive
examples S+, while the latter is used to compute the similarity between a new story
and the negative examples S−. Last, a linear weighted combination of the two K-
NN predictions is used for the final prediction.

Researchers from UMass used the Rocchio algorithm for topic tracking. They
used three different term-weighting schemes for story representation and similarity

9.6 Evaluation 213

calculation. They also tried to dynamically adjust the topic vector during the
tracking process.

Some researchers have employed decision trees for topic tracking. The major
drawback of this method is that it can only give prediction results such as “yes” or
“no” and cannot output a continuous prediction score, which is needed to produce
a valid DET curve. Subsequent research includes introducing more information
on news stories (such as “when,” “where,” and “who”) into story and topic
representation and constructing a strong topic tracker with an ensemble of multiple
weak trackers.

Since the initial training data used to construct a topic model is normally very
sparse, and there is also insufficient prior knowledge about the tracking topics,
a topic tracking model that is trained based only on initial training data is often
insufficient and inaccurate. Furthermore, because the topics are dynamic in topic
tracking, the model cannot always track effectively after a period of time. To
address this problem, some researchers proposed a new subtask called adaptive topic
tracking (ATT), with the goal of adjusting the topic tracking model dynamically
during the tracking process.

The work on ATT mainly focused on modifying the topic tracking model based
on the system’s pseudolabels. Most approaches established a dynamic term vector,
adjusted the weight of terms dynamically, and trained the model in an incremental
learning manner. The systems developed by the Dragon company (Yamron et al.
2000) and UMass (Connell et al. 2004) were the first to attempt unsupervised
learning for ATT. The former added relevant stories into the training corpus and
learned a new language model for topic tracking. The latter took the centroid of all
prior stories as the representation of a topic and used the average correlation between
prior stories and the centroid topic as the threshold. Each time a relevant story is
detected during the follow-up process, it is added into the corpus, and the centroid
and threshold are re-estimated correspondingly. By self-learning, ATT gradually
adds pseudolabeled examples for model learning and modification, which reduces
the limitation created by training only on the initial training corpus. However, the
self-learning module in ATT is totally based on pseudolabeled examples. When the
pseudolabels are not correct, this method can easily lead to the incorporation of
irrelevant information, subsequently cause concept drift, and ultimately affect the
performance of follow-up topic tracking.

9.6 Evaluation

TDT is an evaluation-driven technology. The TDT conferences have released five
TDT corpora, including the TDT pilot corpus, TDT2, TDT3, TDT4, and TDT5.
These corpora are provided by the Linguistic Data Consortium (LDC).

The corpora contain both broadcasting and text data except TDT5. The initial
TDT corpus contained only English languages and subsequently added the Chinese
and Arabic languages. Three annotations (“yes,” “brief,” and “no”) were employed

214 9 Topic Detection and Tracking

in TDT2 and TDT3, and two annotations (“yes” and “no”) were employed in TDT4
and TDT5, where “yes” means that the story and the topic are highly correlated,
“brief” means that the correlation score is less than 10%, and “no” means that
the two evaluate as uncorrelated. The broadcasting corpus includes not only news
stories but also non-news stories such as commercial trade and financial stories, for
which LDC provided three additional annotations: “news,” “miscellaneous,” and
“untranscribed.”

The TDT task can be essentially considered as a binary classification problem.
Similar to the method of evaluating text classification described in Sect. 5.6, we
can categorize the prediction results for TDT into four different cases, as shown in
Table 9.2. By using the missed detection rate (MDR) and false alarm rate (FAR)
as the basis, a DET curve can be plotted to observe the mistakes of a TDT system.
Figure 9.6 is an example of the DET curve, where the x-axis is FAR and the y-axis
is MDR. The closer the DET curve is to the lower-left corner of the coordinate, the
better the TDT system performance is.

The performance of a TDT system can be quantified by a CDet indicator defined
as

CDet = CMD · pMD · ptarget + CFA · pFA · pnon_target (9.12)

where pMD and pFA are the conditional probabilities of missed detections (MD) and
false alarms (FA), respectively, CMD and CFA are preset coefficients of MD and FA,
ptarget represents the prior probability of a target topic, and pnon_target = 1 − ptarget.
CMD, CFA, and ptarget are all preset parameters. The formulations of pMD and pFA
are as follows:

pMD = #missed_detections

#targets
× 100% (9.13)

pFA = #false_alarms

#non_targets
× 100% (9.14)

Generally, the normalized CDet is used as the final performance of a TDT system:

CDet−Norm = CDet

min
{
CMD · ptarget, CFA · pnon_target

} (9.15)

Table 9.2 Four kinds of
prediction results from the
TDT tasks

Reference

Target Non-target

Prediction Yes Correct False alarm

No Missed detections Correct

9.7 Social Media Topic Detection and Tracking 215

DET

Probabilities of false alarm (%)

P
ro

ba
bi

lit
ie

s
of

 m
is

se
d

de
te

ct
io

ns
 (

%
)

80

60

40

20

10

5

2

1

0.5

0.2
0.1

80604020105210.50.20.1

Fig. 9.6 TDT detection error tradeoff (DET) diagram

9.7 Social Media Topic Detection and Tracking

In recent years, the ways in which information is shared and disseminated on the
Internet have gradually moved from the Web 1.0 era, which is represented by
mainstream media websites, to the Web 2.0 era, which is represented by social
media websites and applications. Traditional TDT mainly focuses on the content
of traditional media, while social media TDT confront the following challenges:
(1) the characteristics of user-generated context (UGC) in social media (e.g., short
text, dynamic topic, irregular gramma, and diversified modals) increase the difficulty
of text representation and TDT modeling; (2) the huge amount of data shared and
propagated through social media brings great difficulty to real-time TDT; and (3)
due to wide participation and openness, social media platforms are often the first site
people use to report many emergencies. Therefore, bursty/breaking topic detection
has attracted much attention in social media TDT.

In the following, we first introduce the differences between TDT in social media
and traditional TDT and then introduce the main tasks and approaches of social
media TDT. Lastly, we emphasize bursty topic detection in social media.

216 9 Topic Detection and Tracking

9.7.1 Social Media Topic Detection

The main goal of social media topic detection is to detect hot topics in the social
media data stream. Similar to traditional topic detection, the social media topic
detection task can also be divided into online topic detection and retrospective topic
detection. However, due to the real-time nature of social media, more attention is
being paid to online topic detection.

From the perspective of event types, social media topic detection can be
categorized into specific and nonspecific topic detection. Specific topic detection
aims at discovering historical topics that have already happened or detecting planned
topics such as upcoming meetings or festival celebrations. Related information, such
as the time, place, and main content of the known events, can be used to construct a
topic detection model. Nonspecific topic detection focuses on detecting new topics
from real-time data streams without any knowledge of the topic in advance (e.g.,
earthquakes) and collecting relevant follow-up stories. Nonspecific topic detection
is the emphasis of social media topic detection.

(1) Specific Topic Detection

Specific topic detection methods can be divided into unsupervised and supervised
machine learning methods. Similar to traditional topic detection, unsupervised topic
detection methods in social media are mainly based on clustering or dynamic query
expansion. The difference between traditional and unsupervised topic detection is
that in addition to text content, the latter normally incorporates more social media-
related information for topic representation and similarity calculation. For example,
Lee and Sumiya (2010) proposed a local festival detection task from Twitter data
streams. They found that the number of users and tweets will significantly increase
when there are local festivals. They first collected Twitter data with geographical
tags and then used the k-means algorithm to cluster these data and find topics
in specific areas to detect local festivals. Massoudi et al. (2011) proposed a topic
detection model for microblogs based on dynamic query expansion, in which they
integrated text content and social media attributes such as emoji, hyperlink, number
of fans, and number of retweets and replies for topic representation.

When the topic information is known in advance, such information can be used
to compare with a labeled dataset. Then, supervised machine learning algorithms
can be applied for topic detection. For example, Popescu and Pennacchiotti (2010)
first collected a Twitter corpus and labeled it manually according to known
topics. A supervised gradient boosted decision tree was then trained to detect
controversial topics. They emphasized the importance of a rich and diverse feature
set including hashtags, linguistic structure, and emotion features. Popescu et al.
(2011) subsequently tried more features such as location and the number of replies.
Supervised topic detection performs more effectively than unsupervised methods.

9.8 Bursty Topic Detection 217

(2) Nonspecific Topic Detection

Information on nonspecific topics is unknown in advance. Traditional methods
mainly use clustering to detect nonspecific topics, but the character of social media
content makes these methods less effective.

On the one hand, some studies added social media-related features as new
features for topic representation. For example, based on the classical incremental
clustering algorithm (Allan et al. 1998a; Becker et al. 2011) explored the usage of
retweets, replies, and mentions as features to detect social media topics. Feng et al.
(2015) aggregated Twitter data in two dimensions (time and space) and designed
a hashtag-based single-pass clustering method. Phuvipadawat and Murata (2010)
concluded that accurate recognition of the proper name of an entity could help in
the accurate calculation of text similarity and ultimately improve topic detection
performance. The topics were then sorted by the number of fans and retweets to
identify breaking news in the Twitter data stream.

On the other hand, some research tried to modify existing clustering algorithms
or design new clustering algorithms to meet the requirements of social media
applications. For example, Petrović et al. (2010) attempted to improve performance
when applying traditional topic detection approaches to large-scale real-time data
streams from social media. They further proposed an online NED method with
constant time and space based on locality sensitive hashing. This method can
effectively reduce the search space and significantly improve the efficiency of the
system without decreasing the topic detection performance.

9.7.2 Social Media Topic Tracking

The main task of social media topic tracking is detecting microblogs related to
existing topics from the social media data stream.

Similar to social media topic detection, existing studies mainly focus on how to
use the special attributes of social media for topic representation and how to improve
the sparseness of that representation. Phuvipadawat and Murata (2010) used rich
social attributes such as URLs, hashtags, number of retweets, and user portraits
to calculate the popularity of tweets and successfully tracked unexpected topics in
social media. Lin et al. (2011) viewed the hashtag as a kind of topic indicator and
used them to train a pretopic language model. Perplexity-based classifiers were then
applied to filter the tweet stream to detect topics of interest.

9.8 Bursty Topic Detection

Bursty topic detection, also known as bursty/breaking event detection, refers to the
detection of unexpected topics that develop rapidly in microblog data streams.

218 9 Topic Detection and Tracking

Bursty topic detection is different from traditional topic detection. Traditional
topic detection emphasizes the detection of new topics without judging whether
the detected topic is bursty or not. However, bursty topic detection focuses on
the detection of topics’ bursty features and bursty periods. Fung et al. (2005)
divided bursty topic detection methods into document-pivot methods and feature-
pivot methods. The former first detects topics through document clustering and then
evaluates the burst of topics; the latter first extracts bursty features and then clusters
these features to generate bursty topics.

The traditional topic detection approaches are mainly document-pivot methods.
However, because the number of topics and stories is huge and hot topics change
rapidly in social media, traditional document-pivot detection methods are often
inefficient for social media bursty topic detection, and feature-pivot methods have
attracted more attention.

Both document-pivot and feature-pivot methods need to identify the bursty
status. The former usually recognizes burst states based on clustered topics, while
the latter usually recognizes burst states based on feature discovery. In the following,
we first introduce the classical burst status recognition algorithms and then review
the representative document-pivot and feature-pivot bursty topic detection methods.

9.8.1 Burst State Detection

Kleinberg (2003) proposed a burst state detection algorithm for text data streams.
It was later called the Kleinberg algorithm, and it has been widely used in bursty
topic detection. The core idea of the algorithm is to simulate the time intervals
between adjacent texts or sets of features in a data stream with an automation
model to discover the optimal hidden state of the text at different time points. The
states consist of a normal state and a burst state, which are denoted by different
distributions of features, and the transition between states indicates the emergence
or disappearance of a “burst.”

In the Kleinberg algorithm, a text stream is organized into a sequence of
messages, where each message has a corresponding arrival time. For a given term
w, the algorithm records the arrival time of w and accordingly obtains a sequence
of arrival times tw = (t0, t1, . . . , tn). This determines a sequence of time intervals
(called interarrival gaps) xw = (x1, . . . , xn) where xi = ti − ti−1. If xw is assumed
to be generated by a binary state automaton, the problem will be transformed into a
hidden Markov problem with the goal of solving the hidden state sequence with a
known observation sequence. Finally, the bursty period is determined based on the
obtained dynamic hidden state of the feature from the bursty and normal periods.

9.8 Bursty Topic Detection 219

In detail, an exponential distribution is used to simulate the interarrival gaps.
Suppose the interval x is distributed according to the density function as follows:

f (x) = αe−αx, α > 0, x > 0 (9.16)

and the corresponding cumulative distribution function is

F (x) = 1 − e−αx, α > 0, x > 0 (9.17)

The expectation of x is α−1, where α represents the arrival rate of the documents.
For a two-state model, a normal state q0 (low state) and a burst state q1 (high

state) are defined. At each arrival time for w, the automaton must be in one of the
states, which potentially affects the next arrival time of the w. The state will switch
to another state or remain unchanged with a certain probability. Bursty topics are
recognized as transitioning from a low state to a high state in a period of time.

As shown in Fig. 9.7, when a term is in a low state q0, the interval x has a density
function f0 (x) = α0e−α0x . When a term is in a high state q1, the interval x has a
different density function f1 (x) = α1e−α1x . Obviously, the arrival rate α1 > α0.

Suppose that the corresponding state sequence of x is q = (qi1, qi2 , . . . , qin),
where in ∈ {0, 1}, the probability of state transition is p, and the number of state
transitions in the sequence is b. Then, the density function for interval sequence x

is

fq (x) =
n∏

t=1

fit (xt) (9.18)

and the prior probability of q is

p (q) = pb(1 − p)n−b (9.19)

= −

= −

high statelow state

distributed parameter

for the interval x is

distributed parameter

for the interval x is

the probability of state transition is

(a) (b)

Fig. 9.7 (a) The distribution of the interval time for a normal and a burst state. (b) State transition
model

220 9 Topic Detection and Tracking

According to Bayes’ theorem, the posterior probability of q under x can be written
as

p (q|x) = p(q)fq(x)∑
q ′

p(q ′)fq ′(x)

= 1

Z

(
p

1 − p

)b

(1 − p)n
n∏

t=1

fit (xt) (9.20)

where Z = p(q)fq(x)∑
q′ p(q′)fq′ (x)

.

The negative log-likelihood of the posterior distribution is

− ln p (q|x) = b ln

(
1 − p

p

)
+
(

n∑

t=1

− ln fit (xt)

)
−n ln (1 − p)+ ln Z (9.21)

where the third and fourth terms in the above formula are independent of q.
According to the maximum likelihood estimation, the following loss function can
be defined:

c (q|x) = b ln

(
1 − p

p

)
+
(

n∑

t=1

− ln fit (xt)

)
(9.22)

Determining the optimal hidden state sequence is equivalent to finding a state
sequence that minimizes c (q|x). The first term in c (q|x) favors a sequence with
a small number of state transitions, while the second term favors state sequences
that conform well to the sequence x (i.e., making the value of the density function
corresponding to each xt as large as possible).

If each state in the state sequence q belongs to several continuous state levels
(q0, q1, . . . , qi, . . .), the Kleinberg algorithm can be further extended from two
states to an infinite number. The function τ (i, j) is defined to capture the loss of
the transition from state si to state sj . The transition loss from the low state to the
high state is proportional to the number of intervening states, and the transition loss
from the high state to the low state is 0:

τ (i, j) =
{

(j − i) γ ln n, j > i

0, j ≤ i
(9.23)

where γ is the state transition control parameter (usually set to 1). Given the
parameters s and γ , this automaton can be represented by A∗

s,γ (asterisk denotes the
infinite states). For a given interval sequence x = (x1, x2, . . . , xn), the algorithm’s
goal is to solve a state sequence q = (qi1, qi2 , . . . , qin) to minimize the cost
function. Let δ (x) = min

i=1,...,n
{xi}, and the maximum state level can be obtained

9.8 Bursty Topic Detection 221

by k = �1 + logs T + logs δ (x)−1�, where �·� is the ceiling function. It can be
proven that if q∗ is the optimal state sequence of automaton Ak

s,γ , it is also the
optimal sequence of A∗

s,γ . Thus, the infinite state sequence optimization problem is
transformed into the finite state optimization problem.

In the last step, a standard forward dynamic programming algorithm (such as
the Viterbi algorithm) can be used to solve the above problem. Given an interval
sequence x = (x1, x2, . . . , xt), the minimum loss sequence Cj (t) can be expressed
as follows:

Cj (t) = − ln fj (xt) + min
l

(Cl (t − 1) + τ (l, j)) (9.24)

Cj (t) can be solved iteratively according to time t , where the initial state value is
C0 (0) = 0, Cj (0) = +∞. Finally, the optimal state sequence corresponding to x

is obtained.
It is worth mentioning that the Kleinberg algorithm can detect bursts at the

feature level (detecting the burst state of features/terms), as well as at the topic level
(detecting the burst state of clustered topics). Therefore, it can be applied not only
to feature-pivot bursty topic detection but also to document-pivot topic detection.

9.8.2 Document-Pivot Methods

Document-pivot methods first detect new topics from text data streams and then
determine their burstiness. A traditional method is to first divide the text data
stream into different windows according to the time of their appearance and perform
clustering on the text in each window. Each cluster represents one topic, and
features are extracted from the cluster to represent that topic. Finally, a bursty state
recognition algorithm is applied to determine whether the topic is bursty or not.

Chen et al. (2013) first designed a strategy to obtain a real-time microblog data
stream related to a given entity (such as a person or company name). For each time
step t , a single-pass clustering algorithm is applied to the messages within the time
window [t − T , t] (T is the length of a unit window). The similarity between each
message and the clustering centers is calculated. If the similarity is larger than the
preset threshold, the message will be merged into the existing cluster; otherwise,
the message constitutes a new cluster. Finally, each cluster is treated as a topic. The
algorithm runs continuously to detect new topics in real-time data streams. They
further established a semi-supervised classifier based on cotraining to detect whether
the topics are burst or not. Figure 9.8 denotes a bursty topic evolution curve, where
ts denotes the time of one topic’s occurrence, thot denotes the time the topic becomes
hot, and the period [ts, thot] was defined as the bursty period. They labeled ts and thot
for each bursty topic in an offline training dataset. An SVM classifier was trained
based on six features, including user growth rate, message growth rate, and response

222 9 Topic Detection and Tracking

Fig. 9.8 The bursty period of
one bursty topic

timeline

message

growth rate, and then it offered predictions for new topics detected from an online
data stream as to whether they were bursty topics.

Diao et al. (2012) proposed a topic model called TimeUserLDA to detect bursty
topics in social media data streams. The model was motivated by the finding that
messages published at the same time are more likely to have the same topic and
that messages published by the same author are also more likely to describe the
same topic. Based on this, they incorporated the time and author information into
a traditional LDA to model the messages. They mined a set of potential concepts
C from a large-scale Twitter dataset, with each concept representing a topic in
social media. For each topic c ∈ C, they calculated its occurrence frequency
(mc

1,m
c
2, . . . ,m

c
T) along the time axis. Finally, they used an automaton similar to

Kleinberg (2003) to identify the bursty topics.
Document-pivot methods are more suitable for topic detection in traditional

media. As we have mentioned, the characteristics of social media, such as the short
length, high volume, and broad topics, make document-pivot methods less efficient.
Therefore, most of the applications for the bursty topic detection of social media are
based on feature-pivot detection methods.

9.8.3 Feature-Pivot Methods

As shown in Fig. 9.9, the feature-pivot methods first discover a set of bursty features
and then generate bursty topics. Here, “features” usually denote words or terms in
texts. Text data streams are generally divided into equal-length and nonoverlapping
time windows (such as “hours” or “days”) in advance. Then, different kinds
of methods, including feature selection methods, probabilistic methods, and the
Kleinberg algorithm, are used to identify the bursty features.

One type of simple method uses the absolute or relative number of features and
their changing speed as indicators for bursty feature selection. For example, for each

9.8 Bursty Topic Detection 223

1 2 3

Text stream

Identify the burst features Group the burst

features into events

Determine the hot

periods of the events

Fig. 9.9 Feature-pivot bursty topic detection methods

feature (e.g., words) in each time window, the relative word frequency Aij = Fij

Fmax

and the word frequency growth rate Bij = Fij −Fi(j−1)

1+Fi(j−1)
are calculated. The features

are ordered according to these indices, and a set of burst features is finally selected.
Fung et al. (2005) proposed a feature-pivot emergency detection method based

on a probabilistic model. They first divided the text stream into D = {d1, d2, . . . },
where di represents the text published on day i. Based on a binomial distribution,
they identified a set of bursty features by comparing a feature’s daily occurrence
probability with its global occurrence probability. Subsequently, these bursty fea-
tures were grouped into several bursty events, each of which comprised a subset of
bursty features. Finally, the probability of the hot bursty event was calculated by
computing the expected probability of the bursty event based on the subset of bursty
features and comparing it with the expected value to determine the hot periods of
each bursty event.

Other studies used spectrum analysis to detect bursty features and topics. For
example, He et al. (2007a) employed discrete Fourier transform (DFT) to transform
the time-series text data stream from the time domain to the frequency domain.
The bursty topics in the time domain were supposed to correspond to the peaks in
the frequency domain. The frequency domain attributes were then used to identify
bursty features and their related periods.

He et al. (2007b) employed the Kleinberg algorithm to first recognize bursty
features. For each bursty feature fj (t) in time window t , they calculated a bursty
weight, which they combined with the static weight (e.g., TF-IDF weight) as a
dynamic term-weighting scheme for bursty feature representation tf-idfij + δwj (t)

, where i is the index of documents and δ > 0 is the bursty coefficient. Based on
such a dynamic weight, topic clustering and classification experiments carried out
on the TDT3 corpus achieved better performance than the traditional methods.

Cataldi et al. (2010) proposed a bursty feature extraction and bursty topic
detection method based on content aging theory. First, nutrition is defined for each
feature k under each time window TWt taking into account the factors of word

224 9 Topic Detection and Tracking

frequency and user authority. The energy of feature k in time window TWt is then
defined as the mean square difference between the nutrient value of feature k in
current time window TWt and that in the previous s time windows. Energy is also
used as an indicator to measure the burstiness of feature k in time window TWt : the
feature with a larger energy value has higher burstiness. By using all the features
in window TWt as candidates, the bursty feature set EKt is obtained by sorting the
candidates according to their energy value. Finally, a feature relation graph TGt is
constructed with features in a window as nodes and correlation coefficients between
features as edge weights. The burst topics are then sorted and annotated based on
strongly connected subgraphs containing bursty features.

9.9 Further Reading

At the beginning of this century, TDT was an active research direction in text
mining. Recent development in this direction, on the one hand, is reflected in the
change in its application (i.e., from traditional media to social media), which we
have described in Sects. 9.7 and 9.8. In addition, several studies have attempted to
apply the latest machine learning theory to this development. For example, Fang
et al. (2016) improved the traditional feature space via word embedding to improve
the performance of story and topic representation and similarity computation.
However, there are few works of this type. Moreover, since clustering is the most
frequent task in TDT and there are few deep learning-based clustering algorithms,
research on TDT based on deep learning is also scarce.

Meanwhile, TDT is closely related to several hot areas of text mining, such as
information retrieval, sentiment analysis, and event extraction. In comparison with
information retrieval, extraction, and summarization, TDT emphasizes the abilities
to detect, track, and integrate information. In addition, TDT usually addresses text
data streams with temporal relationships rather than static texts. TDT can be used
to monitor several kinds of information sources to capture new topics in time and to
carry out historical research on the origin and development of topics. It has broad
application prospects in many fields, such as information security, public opinion
mining, and social media analysis. The joint technique of TDT and sentiment
analysis can effectively detect not only hot topics but also people’s views and
opinions about that topic.

TDT also has a strong correlation with event extraction. The former emphasizes
the automatic organization of macrolevel events in text data, while the latter
emphasizes fine-grained event recognition and element extraction in a piece of text.
The studies of TDT were driven by the TDT conferences, while research into event
extraction focused on the evaluations of ACE (automatic content extraction) and
KBP (knowledge base population).

9.9 Further Reading 225

Exercises

9.1 Please point out the similarities and differences between topic detection and
topic tracking.

9.2 Compared with traditional news texts, what are the characteristics of text
representation under social media?

9.3 What are the disadvantages of applying the standard single-pass clustering
algorithm to the online topic detection of news stories? Do you have any solutions
to these issues?

9.4 What is the difference between feature-pivot methods and document-pivot
methods for bursty event detection?

9.5 Please derive the Kleinberg algorithm if there are five states (representing five-
level burstiness).

9.6 How can the Kleinberg algorithm be used in the case of feature-pivot methods
and document-pivot methods for bursty event detection, respectively?

Chapter 10
Information Extraction

10.1 Concepts and History

IE refers to a text data mining technology that extracts factual information such as
entities, entity attributes, relationships between entities and events from unstruc-
tured or semistructured natural language texts (such as web news, academic
literature, and social media) and generates structured outputs (Sarawagi 2008).
Unlike information retrieval technology, which searches for related documents
or webpages from document sets or the open Internet based on specific queries,
IE technology aims to generate machine-readable structured data and directly
provide users with answers to questions instead of letting users find answers
from numerous related candidate documents. IE technology also provides technical
support for downstream tasks such as intelligent question answering and automatic
decision-making. For example, we may want to extract information about natural
disaster events from relevant news reports, including the name, time, place, and
consequences of natural disasters. We may aim to extract information about a
disease from medical records, including etiology, symptoms, drugs, and effects. In
addition, we may also attempt to extract information about an acquisition event from
a report of one company’s acquisition of another, including acquirer, acquiree, time,
and amount.

Typical IE tasks include named entity recognition (NER), entity disambiguation,
relation extraction, and event extraction. Taking the news report of Google’s
acquisition of DeepMind as an example (as shown in Fig. 10.1), IE will identify
entities such as the time, person, location, and organization of the event, analyze the
relationship between these entities (for example, Larry Page is CEO of Google), and
finally extract all the specific information about the company’s acquisition event.

Note that different event types correspond to different event structures. For
example, in terrorist attacks, as shown in Fig. 10.2, casualties are very important
and should be accurately extracted in addition to time and location information.

IE technology can be traced back to the late 1970s, and since the late 1980s,
the US government has sponsored a series of evaluation activities on IE, spurring

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_10

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_10&domain=pdf
https://doi.org/10.1007/978-981-16-0100-2_10

228 10 Information Extraction

On January 2014, Google acquires artificial

intelligence startup DeepMind with about 400M

dollars. DeepMind is located in London and it

was founded by neuroscientist Demis Hassabis,

a former child prodigy in chess, Shane Legg,

and Mustafa Suleyman. The acquisition was

reportedly led by Google CEO Larry Page.

Event Type: Company Acquisition

Event: Google Acquires DeepMind

Acquirer: Google

Acquiree: DeepMind

Time: January 2014

Amount 400M dollars

… …

Fig. 10.1 An example of a company acquisition

On the evening of 11 December

2018, a shooting attack occurred in

Strasbourg, France, when a man

attacked civilians in the city's busy

Christkindelsmärik, killing five and

wounding 11 before fleeing in a taxi.

Event Type: Terrorist Attack

Specific Type: Shooting Attack

Date: 11 December 2018

Location: Strasbourg, France

Death: 55

Injuries: 11

… …

Fig. 10.2 An example of a terrorist attack event

the rapid development of this technology. In 1987, the Defense Advanced Research
Projects Agency (DARPA) launched the first Message Understanding Conference
(MUC11) to evaluate the performance of IE technology, calling for international
research institutions to compete on the same standard datasets provided by DARPA.
For example, given ten intelligence texts in the naval military area, the IE system
is required to output the coreference relationship between the entities contained in
the text. From 1987 to 1997, the MUC evaluation was held seven times, mainly
focusing on text in limited fields, such as naval military intelligence, terrorist
attacks, personnel position changes, and aircraft crashes. The evaluation tasks
included NER, coreference resolution, relation extraction, and slot filling.

In 1999, the Automatic Content Extraction (ACE) meeting began to replace the
MUC; it focused on extracting finer-grained entity types (e.g., facility names and
geopolitical entities), entity relations, and events from the dialog corpus and broader
news data, such as political and international events. ACE was carried out until
2008. In later evaluation activities, IE tasks have been extended by increasing the
difficulty accordingly, such as multilingual (English, Chinese, and Arabic) IE, entity
detection, and tracking.

The series of MUC and ACE evaluation conferences provide a number of
standard test data that play an important role in the development of IE technology.
Since 2009, ACE has become a subtask of the Text Analysis Conference (TAC2),
namely, the knowledge base population (KBP). The KBP has been held every year

1https://www.ldc.upenn.edu/collaborations/past-projects/ace.
2https://www.idc.upenn.edu/collaborations/past-projects/ace.

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.idc.upenn.edu/collaborations/past-projects/ace

10.2 Named Entity Recognition 229

since 2000. The KBP focuses more on open domain data (such as webpages), and
the extraction task mainly focuses on entity attribute extraction and entity linking,
such as mining all relevant information (entity attributes) of a given entity (such as
“Steven Jobs”) from two million news pages and populating the mined information
into the knowledge base (entity linking).

Several other conferences evaluate IE. For example, the Conference on Compu-
tational Natural Language Learning (CoNLL3) organized a language-independent
NER task in 2003. SIGHAN4 (Special Interest Group on Chinese Language
Processing, ACL) held two evaluations on named entity identification in 2006 and
2007. They also effectively promoted the development of IE technology. In China,
the CCKS (China Conference on Knowledge Graph and Semantic Computing)
and NLPCC have organized several evaluation tasks for Chinese language-oriented
entity recognition and entity linking in recent years, actively promoting the devel-
opment of IE technology in China.

In summary, IE technology can be classified from different perspectives. Con-
sidering the domain aspect of the input data, it can be divided into two categories:
limited domain and open domain. According to the type of extracted information,
it can be divided into entity recognition, relation extraction, and event extraction.
From the view of implementation methods, it can be classified into rule-based,
statistical learning-based, and deep learning-based approaches.

10.2 Named Entity Recognition

NER is a fundamental task in natural language processing. In IE, NER aims at
identifying entities belonging to specified categories in text. These entities mainly
represent seven categories: person, location, organization, time, date, currency or
quantity number and percentage. Because the constitution of time, date, quantity
number, and percentages follows obvious rules, regular expressions are commonly
used to accurately recognize them, while the identification of person, location, and
organization faces larger challenges. Therefore, NER research mainly focuses on
the recognition of these three types of entities.

The NER task can be further divided into two subtasks: entity detection and entity
classification. The entity detection task aims to detect whether a word string in a
given text is an entity. That is, it determines the beginning and ending boundaries of
the entity. The entity classification task aims to judge the specified category of the
detected entities.

In the last sentence of the left part of Fig. 10.1 The acquisition was reportedly led
by Google CEO Larry Page, the detection task first identifies two entities Google

3https://www.sinall.org/conll.
4https://www.signll.org/conll.

https://www.sinall.org/conll
https://www.signll.org/conll

230 10 Information Extraction

and Larry Page. Subsequently, the classification task predicts that Google and Larry
Page are organization and person, respectively.

As NER is a basic and key technology in natural language processing and text
data mining, we will provide a detailed introduction of different NER methods, such
as rule-based methods, supervised machine learning methods, and semisupervised
machine learning methods.

10.2.1 Rule-based Named Entity Recognition

Since both the internal structure and external context of person, location, and
organization names have certain rules to follow, early research on NER mostly
focused on rule-based methods, among which regular expression is commonly used.

Compared to location and organization names, person names are much easier to
identify for many languages (e.g., English, Chinese, and Japanese). For example, in
English, person names usually begin with capital letters and follow some kind of
titles such as Mr. , Dr., or Prof.. Therefore, a regular expression title [capitalized-
token+] can be designed to recognize such person names efficiently. The regular
expression indicates that if the predecessor of the current word is a title and the
current word begins with a capital letter, the word will be recognized as a person
name. For instance, we can find that John in the sentence Prof. John leaves school
is a person name according to the above regular expression.

In Chinese, the regularity of person names is even stronger. Most person names
contain two or three Chinese characters, and these Chinese characters used for
person names are very limited. For example, there are approximately 300 popular
surnames. According to statistics, the top ten most frequent surnames (Li, Wang,
Zhang, Liu, Chen, Yang, Zhao, Huang, Zhou, Wu) account for approximately
40% of the population. Chinese characters for given names are also relatively
limited. Statistics show that there are approximately 1000 commonly used Chinese
characters for given names. In terms of context, Chinese names also have obvious
patterns. For example, the titles before and after a person’s name usually containMr.,
Ms., Director, Professor, and so on. Verbs such as say, point out, and express often
appear after the person’s name. These contexts are key clues for identifying names or
excluding impossible candidates. Therefore, in addition to collecting the names of as
many famous people as possible and putting them into the predefined vocabulary for
retrieval, candidate names can be selected with the help of a dictionary of surnames
and given names. Then, a large number of names can be identified more accurately
through rules combined with clues such as titles and salient context. Liu (2000) used
limited Chinese surnames as a trigger to determine the left boundary of the candidate
name. Then, by calculating the probability of the presence of two or three words on
the right side, the candidate names with the highest possibility are selected. Finally,
these rules are employed to exclude the impossible candidates and determine the
most appropriate names.

10.2 Named Entity Recognition 231

Organization names and location names also follow some composition rules.
Taking Chinese as an example, many organization names end with the words
university, company, group, and center, while location names usually end with the
words city, county, town, and street. Chen and Zong (2008) conducted a detailed
analysis of the composition patterns of organization names. However, the above
clues can only determine the right boundaries of some specific entities, while the
left boundaries are very difficult to fix. In addition, the contexts around these entities
provide less information to help determine the left and right boundaries. Therefore,
a more practical solution is to construct a database of location and organization
names.

Nevertheless, even with a large-scale database of person, location, and organiza-
tion names, rule-based NER methods still face many challenges. On the one hand,
a phrase in different contexts may lead to different types of entities. For example,
Washington can be either a person name or a location name. In addition, common
words may also be a type of entity. For example, Bill at the beginning of a sentence
could be either an ordinary word or a person name. Furthermore, many entities are
frequently abbreviated in the text. For example, United States of America is usually
written as USA. This abbreviation can cause ambiguity in many cases. IFA can be
either International Franchise Association or International Factoring Association.
More importantly, new named entities, especially for person and organization
names, are constantly emerging, and the consistency becomes less reliable. These
problems mean that rule-based methods enhanced with entity databases are difficult
to handle and cannot obtain high recognition accuracy. Furthermore, the rule-
based approach also faces the problem of system maintenance, as it requires the
constant modification or addition of new rules that may conflict with existing ones.
Therefore, the development of a NER model using an automatic learning framework
is desirable.

10.2.2 Supervised Named Entity Recognition Method

Given a collection of text data, suppose all person, location, and organization entities
are manually labeled, as shown in the examples below. Supervised NER systems
attempt to design machine learning methods that learn automatic prediction models
based on these correctly labeled training data.

• He graduated last year and worked in [New York]/LOC
• The dog attacked [Louis Booy]/PER in the front garden
• [Akashi]/PER is the head of the [Department of Humanitarian affairs]/ORG

Researchers usually regard this task of supervised NER as a sequence labeling
problem. The sequence labeling model first needs to determine the label set and
the language granularity for labeling. BIO is a widely used label set in which “B”
denotes the beginning of an entity, “I” indicates the middle or end of an entity, and
“O” denotes the outside of any entity. For person, location, and organization names,

232 10 Information Extraction

seven tags can be employed: PER-B, PER-I, LOC-B, LOC-I, ORG-B, ORG-1, and
O. Among them, PER, LOC, and ORG denote person, location, and organization
names, respectively. PER-B indicates the starting point of a person name, and PER-
I represents the middle or end part of a person name. LOC-B, LOC-I, ORG-B, and
ORG-I have similar meanings.

Words and characters are usually the basic language units for label annotation.
For example, the location name New York can be annotated as New/LOC-B
York/LOC-I on the word level and N/LOC-B e/LOC-I w/LOC-I Y/LOC-I o/LOC-I
r/LOC-I k/LOC-I on the character level. In this chapter, we introduce supervised
NER methods based on word-level annotations. Accordingly, the above three
annotated instances can be converted into word-level annotations as follows:

• He/O graduated/O last/O year/O and/O worked/O in/O New/LOC-B York/LOC-I
• The/O dog/O attacked/O Louis/PER-B Booy/PER-I in/O the/O front/O garden/O
• Akashi/PER-B is/O the/O head/O of/O the/O Department/ORG-B of/ORG-I

Humanitarian/ORG-I affairs/ORG-I

Formally, given training data of M annotated sentences, D = {(Xm, Ym)}Mm=1,
Xm is the word sequence (sentence) and Ym is the corresponding label sequence
that shares the same length as Xm. Ymi ∈ {ORG-B, ORG-I, LOC-B, LOC-I, PER-
B, PER-I, O} denotes the gold label corresponding to the i-th word Xmi . Sequential
labeling-based NER aims to design a parameter model f (θ) and learns reasonable
model parameters θ∗ from D. f (θ∗) will be employed to predict the label sequence
of the test sentence. As shown in Fig. 10.3, a reasonable label sequence (the upper
row) is correctly predicted for the input sentence (the English sentence in the bottom
row).

There are many supervised machine learning models for sequence labeling. We
introduce three typical methods for NER.

(1) Named entity recognition method based on hidden Markov model

Given a sentence of word sequence x = x0x1 . . . xT (observation sequence), the
sequence labeling model aims to search for a hidden label sequence y = y0y1 . . . yT

(state sequence) to maximize the posteriori probability p(y|x). The hidden Markov
model (HMM) decomposes p(y|x) using Bayesian rules:

p(y|x) = p(x, y)

p(x)
= p(y) × p(x|y)

p(x)
(10.1)

Since probability p(x) is fixed for a given sentence and has no influence
on any label sequence, maximizing conditional probability p(y|x) is equivalent

was reportedly led by Google CEO Larry PageacquisitionThe

O O O O O ORG-B O PER-B PER-IO

Fig. 10.3 An example of sequence labeling for named entity recognition

10.2 Named Entity Recognition 233

to maximizing the joint probability p(x, y), namely, the product of the prior
probability p(y) and the likelihood p(x|y). To efficiently calculate p(y) and
p(x|y), HMM assumes that the label sequence satisfies the first order Markov, the
label value of the hidden state yt relies only on yt−1, and the observation value xt

is only generated by yt . Therefore, the joint probability p(x, y) is decomposed into
the following formula:

p(x, y) = p(y) × p(x|y) =
T∏

t=0

p(yt |yt−1) × p(xt |yt) (10.2)

We can see from the above formula that HMM simulates the process of generating
the observation sequence. More details about the HMM can be found in Rabiner and
Juang (1986), Zong (2013). Then, the HMM only needs to calculate p(yt |yt−1) and
p(xt |yt). In the HMM, p(yt |yt−1) is the state transition probability from the previ-
ous state to the current state, and p(xt |yt) is the emission probability from current
state to the current observation. Given the training data D = {(x(m), y(m))}Mm=1,
state transition probability p(yt |yt−1) and emission probability p(xt |yt) can be
calculated by using maximum likelihood estimation:

p(yt |yt−1) = count(yt−1, yt)

count(yt−1)
(10.3)

p(xt |yt) = count(xt , yt)

count(yt)
(10.4)

count(yt−1, yt) denotes the co-occurrence count of yt and yt−1. count(xt , yt) is the
co-occurrence count of yt and xt .

Concerning the task of NER, not all the label pairs have transition probabilities.
For example, the tags PER-I, LOC-I, and ORG-I cannot appear after tag O, and
PER-B cannot be followed by LOC-I or ORG-I. The probability of these transitions
should be all 0.

Since some words and labels may never co-occur in the training data, a data
sparsity problem will arise. To handle this issue, a smoothing algorithm (e.g.,
Laplace smoothing and interpolation smoothing) is usually employed to assign a
small probability to the unknown emission pairs during probability estimation.

Given an input sentence x = x0x1 . . . xT , the posterior probability of any label
sequence y = y0y1 . . . yT can be obtained by using the above HMM formula.
The optimal label sequence can be found by naively exhausting all the possible
tag sequences and choosing the one with the highest probability. However, the
exhaustive search is too inefficient and impossible in practice. Thus, dynamic
programming algorithms are commonly applied to solve such problems. The Viterbi
decoding algorithm is used in the HMM model.

234 10 Information Extraction

The Viterbi algorithm needs to maintain two sets of variables, δt (y) and ϕt(y),
where δt (y) records the maximum probability of the path ending with label y up to
time t , and ϕt(y) records the label of the previous time-step t −1 that leads to δt (y):

δt (y) = max
y ′ {δt−1(y

′)p(y|y ′)p(xt |y)} (10.5)

ϕt(y) = argmax
y ′

{δt−1(y
′)p(y|y ′)p(xt |y)} (10.6)

We can use the following formula to predict the label of the T -th word at the end
of the sentence:

yT = argmax
y

{δT (y)} (10.7)

Then, the following formula is employed to retrospectively find the optimal label
sequence:

yt = ϕt+1(yt+1) (10.8)

Figure 9.4 shows an example of NER using the HMM model. The NER method
based on HMM is simple and effective. It is a popular generative machine learning
method from the early studies of NER (Zhou and Su 2002).

However, the assumption of HMM is too strict to capture more and richer
contextual features. For example, in Fig. 10.4, the label of y8 not only relies on
the label of y7 but also depends on the label of y6. Moreover, the observed word
Larry would also provide some clues to predict y9 in addition to Page and y8. Under
the framework of HMM, these contexts cannot be modeled and exploited due to
rigorous assumptions, and the absence of richer contexts limits its performance in
NER. Accordingly, discriminant models that excel at exploring all kinds of contexts
are gradually becoming popular, among which the conditional random field model
(CRF) is one of the most widely used sequence labeling models.

x2
x3 x4 x5 x6 x7 x8 x9x1

x0

y2 y3 y4 y5 y6 y7 y8 y9y1y0

O O O O ORG-B O PER-B PER-IOO

was reportedly led by Google CEO Larry PageacquisitionThe

Fig. 10.4 HMM-based named entity recognition

10.2 Named Entity Recognition 235

Table 10.1 Feature templates commonly used in NER

Lexical features Current word xt , previous word xt−1, next word xt+1,
word combinations xt−1xt , xt xt+1, xt−1xt xt−1, and so on

Label features Current label yt , previous label yt−1, label combinations
yt−1yt , and so on

Label–word combination features xt yt , yt−1xt , yt−1xt yt , and so on

Dictionary features Whether the string xt−1xt , xt xt+1, xt−1xt xt−1 is in a given
dictionary

(2) Named entity recognition method based on the conditional random field
model

The CRF model (Lafferty et al. 2001) is a kind of undirected graph model, and the
model for sequential labeling tasks is called the linear-chain conditional random
field (linear-chain CRF). The linear-chain CRF is a discriminative model that
calculates the conditional probability of the label sequence y = y0y1 . . . yT given
an input sequence x = x0x1 . . . xT as follows:

p(y|x) = 1

Zx

exp

{
T∑

t=1

∑

k

λkfk(yt−1, yt , x, t)

}
(10.9)

where fk(yt−1, yt , x, t) denotes a feature function that acts on the labels and
inputs. λk ≥ 0 is the weight of fk(yt−1, yt , x, t), indicating the importance or
contribution of this feature. The feature weights are optimized on the training data
D = {(x(m), y(m))}Mm=1. The design of feature functions fk(yt−1, yt , x, t) and
the learning of parameter weights λk are the two key issues of the CRF model
(McCallum and Li 2003).

Formally, feature function fk(yt−1, yt , x, t) maps discrete feature combinations
to Boolean variables as follows:

fk (yt−1, yt , x, t) =
{

1, if yt−1 = ORG-B, yt = ORG-I, xt = Page
0, Otherwise

(10.10)

The above equation tells us that if the labels of the previous and current time steps
are ORG-B and ORG-I and the current word input is Page, then the feature function
obtains a value of 1. Otherwise, its value is 0. Feature functions can be designed by
considering the combinations of yt−1, yt , and xt , and usually, each feature function
f is called a feature template. For NER, there are many feature templates available.
Table 10.1 lists some common feature templates.

Based on the templates, hundreds of thousands or even millions of features can be
extracted from training data D = {(x(m), y(m))}Mm=1. Each feature corresponds to a
weight parameter λk that needs to be learned. The learning of λk is task independent

236 10 Information Extraction

and can be optimized by the conventional CRF training algorithm; one can obtain
the parameters by using CRF open source tools (such as CRF++5).

Zx is a normalization factor, which needs to be solved by forward and backward
algorithms in the process of model training. Details can be found in Sutton and
McCallum (2012). The objective of parameter optimization is to maximize the
conditional likelihood over the labeled data:

L(Λ) =
M∑

m=1

log(p(y(m)|x(m),Λ)) + logp(Λ) (10.11)

where p(Λ) is the prior probability of the parameters. During testing, the normal-
ization factor Zx can be ignored since we only aim to find the label sequence with
maximum probability, but we are not concerned with the probability value.

argmax
y

p(y|x) = argmax
y

1

Zx

exp

{
T∑

t=1

∑

k

fk(yt−1, yt , x, t)

}

= argmax
y

{
exp

(
T∑

t=1

∑

k

fk(yt−1, yt , x, t)

)} (10.12)

Similar to the HMM model, the optimal label sequence can be efficiently
obtained by searching with the Viterbi dynamic programming algorithm. The
calculation formula for the two variables is as follows:

δt (y) = max
y ′

{
δt−1(y

′) × exp

(
∑

k

λkfk(y
′, yt , x, t)

)}
(10.13)

ϕt(y) = argmax
y

′

{
δt−1(y

′) × exp

(
∑

k

λkfk(y
′, yt , x, t)

)}
(10.14)

Figure 10.5 gives an illustration of the NER method based on CRF. Compared
with HMM, CRF is a global optimization model with no independence assumption,
and more contextual features can be exploited in label sequence prediction. As a
result, the ultimate NER performance can improve. The famous NER tool developed
by Stanford University (Stanford NER) is implemented with CRF as the core model.
However, both generative HMM and discriminative CRF are based on discrete
symbols such as words or characters, which will lead to two problems. First, data
sparsity is a major issue. If a word has not been seen in the training sample,
it is impossible to predict its label. Second, these methods cannot capture the
semantic similarity between any two strings, such as speak and say. The semantic

5https://taku910.github.io/crfpp.

https://taku910.github.io/crfpp

10.2 Named Entity Recognition 237

x2
x3 x4 x5 x6 x7 x8 x9x1

x0

y2 y3 y4 y5 y6 y7 y8 y9y1y0

O O O O ORG-B O PER-B PER-IOO

was reportedly led by Google CEO Larry PageacquisitionThe

Fig. 10.5 CRF-based named entity recognition

similarity between these two words is close, but the symbolic representations of
these two words prevent us from exploiting this similarity. Fortunately, neural
network models based on distributed representations are good at abstracting deep
semantic information, capturing semantic similarity between words, and thus have
become a new popular model in NER research.

(3) Named entity recognition based on neural networks

Neural network models are good at automatically learning global and deep semantic
distributed features for the input sentence. The NER model directly utilizes the
learned distributed features rather than requiring a manual design that extracts
discrete features to feed the classifier.

First, each word is mapped into a low-dimensional real-valued vector. Then, a
multilayer network structure is adopted to learn the abstract distributed represen-
tation of the word sequence, and finally, the label of each input word is predicted
based on the deep abstract representation.

Many neural network models, such as feed-forward neural networks, recurrent
neural networks, convolutional neural networks, and recursive neural networks, have
been introduced in the previous chapters. This chapter will take the recurrent neural
network augmented with a CRF model as an example to introduce the application
of neural network-based NER (Huang et al. 2015).

First, let us see how the recurrent neural network learns the deep abstract
representation of a sentence. Here, the recurrent neural network adopts bidirectional
long short-term memory (Bi-LSTM). As shown in Fig. 10.6, given the word
sequence x = x0x1 . . . xT , Bi-LSTM maps each word xi into a low-dimensional
real-valued vector representation ei ∈ R

d1 (see the bottom in Fig. 10.6), where
d1 indicates the vector dimension, and ei is generally randomly initialized and
optimized during training. The forward LSTM obtains the distributed representation−→
h i ∈ R

d2 corresponding to each word (d2 denotes the neuron number in the hidden
layer). Similarly, the backward LSTM can obtain another distributed representation←−
h i ∈ R

d2 (please refer to the introduction of distributed representation in Chap. 3

for the calculation process).
−→
h i can capture the context information of ei and its

left side.
←−
h i can capture the context information of ei and its right side. Hence, by

238 10 Information Extraction

x2 x3 x4 x5 x6 x7 x8 x9x1x0

y2 y3 y4 y5 y6 y7 y8 y9y1y0

O O O O ORG-B O PER-B PER-IOO

ℎ 2 ℎ 3 ℎ 4 ℎ 5 ℎ 6 ℎ 7 ℎ 8 ℎ 9ℎ 1ℎ 0

ℎ 2 ℎ 3 ℎ 4 ℎ 5 ℎ 6 ℎ 7 ℎ 8 ℎ 9ℎ 1ℎ 0

2 3 4 5 6 7 8 910

was reportedly led by Google CEO Larry PageacquisitionThe

Fig. 10.6 Named entity recognition based on the LSTM-CRF model

concatenating
−→
h i and

←−
h i , Bi-LSTM captures the global features centered on ei

through hi = [−→h i; ←−
h i].

If Bi-LSTM is directly used to identify named entities, the following formula
can be employed to calculate the probability of each label yi ∈{ORG-B, ORG-I,
LOC-B, LOC-I, PER-B, PER-I, O} for each word xi .

p(yi) = p(eyi) = softmax(eyi) = hi · eyi∑
k hk · eyi

(10.15)

where eyi denotes the distributed representation corresponding to the label yi . The
label of word xi corresponds to the yi with the maximum probability. Since Bi-
LSTM cannot utilize the relationship between category labels and cannot rule out
unreasonable combinations such as ORC-B and PER-I, the CRF model can be used
for global optimization on top of the Bi-LSTM model; we call this the Bi-LSTM-
CRF model.

The Bi-LSTM-CRF model also directly models conditional probability p(y|x).

p(y|x) =
∏T

t=1 ϕt(yt−1, yt , x)
∑

y
′
∏T

t=1 ϕt(y
′
t−1, y

′
t , x)

(10.16)

where ϕt(yt−1, yt , x) = exp(W yt−1,yt × hi + byt−1,yt), W yt−1,yt and byt−1,yt

are parameter weights and biases, respectively. The above formula is actually a
generalization of the CRF model in feature modeling.

In the CRF model, ϕt(yt−1, yt , x) = exp(
∑

k λkfk(yt−1, yt , x, t)) can
be transformed into ϕt(yt−1, yt , x) = exp(Λyt−1,yt F (yt−1, yt , x, t)), where
F(yt−1, yt , x, t) and Λyt−1,yt are eigenvectors and eigenvalues, respectively.

10.2 Named Entity Recognition 239

Therefore, BI-LSTM is equivalent to automatically learning a set of eigenvectors
F(yt−1, yt , x, t) = hi .

The training and decoding of the BI-LSTM-CRF model is similar to that of the
CRF model. For example, the Viterbi algorithm can obtain globally optimal label
sequences according to the input sequence x = x0x1 . . . xT .

10.2.3 Semisupervised Named Entity Recognition Method

Given large-scale annotated data, supervised NER methods can achieve acceptable
performance. However, the annotation corpus of named entities is very limited in
practice. Most of the training sets contain only approximately 100,000 sentences,
and areas such as financial fields may not be covered. This leads to serious
limitations in the performance of NER, especially in domain adaptation. From
another perspective, there are massive unlabeled corpora in various languages
and areas in reality. If these unlabeled data can be fully exploited in addition to
the limited annotated data, NER will be much better. Following this direction,
researchers resort to semisupervised NER methods.

Formally, we let Dl = {(x(m), y(m))}Mm=1 represent the limited labeled data, and
Du = {(x(n))}Nn=1 denote the unlabeled corpus where N � M . The semisupervised
NER method aims at fully exploring these two kinds of data (Dl,Du) (l and u

denote labeled and unlabeled data, respectively). In the remainder of this subsection,
we introduce semisupervised NER from the perspectives of models and features.

From the model perspective, the CRF model can be extended to account for
unlabeled data, i.e., semisupervised CRF model (semi-CRF) (Suzuki and Isozaki
2008). We know that in supervised CRF, the objective function is the conditional
likelihood of the labeled data:

L(Λ|Dl) =
M∑

m=1

log(p(y(m)|x(m),Λ)) + logp(Λ) (10.17)

For unlabeled data Du = {(x(n))}Nn=1, marginal likelihood pu = ∑N
n=1

logp(x(n), θ) can be optimized. Since logp(x(n), θ) = ∑
y∈Y logp(x(n), y, θ),

where Y represents all possible tag sequences, p(x(n), y, θ) can also be calculated
in a manner similar to p(y|x) = ∏T

t=1 ϕt(yt−1, yt , x)/Zx . Therefore, the following
objective function can be designed on the unlabeled dataset:

L(Θ |Du) =
N∑

n=1

∑

y∈Y
log(P (x(m), y,Θ)) + logp(Θ) (10.18)

Since parameter Θ contains Λ, L(Λ|Dl,Θ) and L(Θ|Du,Λ) can be optimized
through iterative optimization. For example, L(Λ|Dl,Θ) can be optimized on

240 10 Information Extraction

the labeled data (parameters (Θ \ Λ) that are unique to unlabeled data can be
initialized with a uniform distribution), and then L(Θ |Du,Λ) can be optimized on
the unlabeled data with updated Λ. In the second loop, the new Θ optimizes Λ

again, and this process repeats until the parameters converge.
From the feature perspective, unlabeled data can be used in many ways, either

employed for mining more features according to the similarity of language units or
utilized for extracting diverse context patterns. To exploit more features, the typical
method is to use the distributed similarity of language units (such as character, word,
etc.) in large-scale unlabeled data to discover effective features (Ratinov and Roth
2009). Specifically, Brown clustering and other algorithms can be adopted to cluster
language units in unlabeled data. For example, say and tell should be grouped into
one cluster. Assuming that the cluster is Cu, Cu can be used as a feature for NER. If
say is the important context of the named entity in the annotated corpus, while tell
only appears in the unlabeled data, tell and its context can be employed to correctly
predict named entities because similar contexts are shared between say and tell in
the same cluster Cu.

Algorithm 6: Semisupervised named entity recognition algorithm
Input : Dl : Small-scale annotated data; Du: Large-scale unlabeled data.
Output: Dl-new: New labeled training data.

1 #Initialization
2 Dl-new = Dl

3 for k = 1, . . . , K do
4 Step 1: Use the CRF model to train the NER model Ck on Dl-new
5 Step 2: Use Ck to construct new annotation Dnew from Du

6 Step 3: Dl-new = Dl-new + Dnew; Du = Du − Dnew

7 end

Another method for NER is to mine the diversity of context patterns. The basic
idea is that we can select representative samples with high confidence and low
redundancy from the unlabeled data and treat them as labeled samples to enlarge
the supervised training data (Liao and Veeramachaneni 2009). The corresponding
algorithm is shown in Algorithm 6. In each iteration, the NER model Ck is trained
with the most recent labeled data Dl-new, and the unlabeled data Du is automatically
annotated with Ck . Intuitively, samples with high confidence (e.g., label prediction
probability p > 0.9) can be selected as gold samples to be added into the training
data. However, this kind of simple method cannot effectively improve performance
because the samples with high confidence basically have the same context pattern
as the training samples, which results in the newly added instances failing to enrich
the context features for NER. In contrast, we should pay attention to the redundancy
of new samples while considering high confidence.

Therefore, step 2 is the most important in the above algorithm. First, Ck is used
to automatically label the samples in Du, and the confidence value of each language
unit in the samples is calculated. If a sequence sequ in a sample is labeled as a named

10.2 Named Entity Recognition 241

entity NE ∈ {PER, LOC, ORG} and the confidence value is greater than T (e.g.,
T = 0.9), this shows that sequ can very likely be a named entity. Then, we search
all the samples su containing sequ from Du. If the confidence value of sequ in su
is low (e.g., less than 0.5), it indicates that the features learned by model Ck cannot
correctly identify sequ in sample su, although sequ is predicted to be a named entity
in other samples. This indicates that the contextual features of sequ in sample su are
quite different and further that su contains entity sequ but records richer and diverse
contextual patterns about the entity sequ. Therefore, sample su is more informative
about entity sequ and can be added to Dl-new as a labeled instance.

Furthermore, for the three types of named entities, namely, person, location, and
organization names, if a sample s

′
u in Du contains a high-confidence entity seq

′
u

and the context of seq
′
u is highly indicative, for example, appellation words such as

professor, Mr., and chairman indicating the person’s name, and company and center
indicating the organization’s name, then s

′′
u is obtained by removing the appellation

words in the context of seq
′
u in s

′
u. Then, s

′′
u is automatically labeled with Ck . If the

confidence value of seq
′
u is relatively low, it tells us that s

′′
u without the indicator can

provide a diverse context pattern for identifying entity seq
′
u. As a result, s

′′
u can be

added to Dl-new.
In addition to the above methods, co-training algorithms can also be employed.

This kind of method adopts a multiview model6 and designs two groups of
independent and sufficient features f1 and f2, which are used to construct two
classifiers C1 and C2, respectively. Then, C1 automatically labels the unlabeled
samples in Du and regards the samples with high confidence as labeled instances
to be added to the training data, which is used to train C2. Then, C2 automatically
labels the remaining unlabeled samples in Du and treats high-confidence samples
as annotated data. The above process iterates until convergence. However, because
it is very difficult to design two independent and sufficient sets of features in the
NER task, multiview-based methods are generally not as effective as the previously
introduced two methods.

10.2.4 Evaluation of Named Entity Recognition Methods

NER methods are usually evaluated in an objective manner. First, a test set DT

(no overlap with the training data) is selected and manually labeled with entities
such as person, location, and organization names according to the annotation
specification used for the training data, resulting in a reference DR . Suppose one
method automatically recognizes the named entities in the test data DT and obtains
the system output Ds . Then, the performance of the NER method can be calculated
by comparing the system output Ds to the gold reference DR .

6Multiview refers to multiple views of data, such as speech and vision views in videos. The two
views are independent of each other and can be regarded as two dimensions of the data.

242 10 Information Extraction

The calculation process involves three variables, count(correct), count
(spurious), and count(missing), which are explained as follows:

count(correct): the number of named entities correctly recognized in Ds , that
is, the overlap between Ds and DR .

count(spurious): the number of named entities recognized by the method in Ds

but not considered as named entities in the gold reference DR .
count(Missing): the number of named entities that exist in the reference DR that

are not recognized by the system in Ds .

Based on the above three variables, the precision, recall, and F1 can be
calculated:

precision = count(correct)

count(correct) + count(spurious)
× 100% (10.19)

recall = count(correct)

count(correct) + count(missing)
× 100% (10.20)

F1 = 2 × precision × recall

precision + recall
(10.21)

F1 is usually used to measure the overall performance of the NER methods.

10.3 Entity Disambiguation

Entity ambiguity refers to the problem in which a name mention may correspond to
multiple entities in the real world. Please look at the following two sentences about
the mention Michael Jordan.

1© Michael Jordan is a leading researcher in machine learning and artificial
intelligence.

2© Michael Jordan wins the NBA MVP.

In the first sentence, Michael Jordan refers to a professor, while in the second
sentence, Michael Jordan refers to the basketball player. Obviously, the same
name mention maps into different real-world entities. The process of predicting the
mapping from a mention into a real-world entity is called entity disambiguation or
entity linking.

In documents, webpages, research papers, and other text sets, all entities exist
in the form of mentions, which include named entities, pronouns, noun phrases,
and other formats. In this chapter, we focus on named entities for disambiguation.
However, even if only named entities are considered, the same named entity will
appear in different forms, such as full names, abbreviations, and nicknames. Thus,
the entity disambiguation task faces several major challenges. For example, United

10.3 Entity Disambiguation 243

States of America appears in the form of the abbreviation USA in many cases, and
IFA can be either International Franchise Association or International Factoring
Association.

Taking the name mention Michael Jordan, which is commonly used in the
literature as an example, we introduce the typical methods for entity disambiguation.

The entity disambiguation task can be formalized with a quadruple: ED =
{M,E,K, f }, where E = {e1, e2, . . . , eT } denotes the set of all entities in the real
world.

M = {m1,m2, . . . ,mN } represents the mentions that need disambiguation in the
documents.

K denotes the knowledge source, or background knowledge, that can be utilized
for entity disambiguation. It can be the social network related to one person’s name
or knowledge bases such as Wikipedia and WordNet.

f : M × K → E is the entity disambiguation function, which maps a mention
to the entity in the real world. For example, Michael Jordan in the first sentence
above will be mapped to the entity Michael Jordan (Professor). Michael Jordan in
the second sentence above will be mapped to the entity Michael Jordan (Basketball
Player).

According to whether the real-world entity set E is given or not, entity
disambiguation methods can be classified into clustering-based and linking-based
methods.

10.3.1 Clustering-Based Entity Disambiguation Method

When the entity set E is unknown, the entity disambiguation function f becomes
a clustering algorithm that clusters the name mention set M = {m1,m2, . . . ,mN }
in the documents into different groups. In each group, all the mentions refer to the
same entity in the real world.

Currently, most entity disambiguation methods are data-driven. The available
knowledge mainly includes context information C and background knowledge K .
Context information C refers to the context in which the mention is located, such as
all the words in a window centered on the mention. Background knowledge K refers
to social networks, Wikipedia, ontology, and so on. According to the background
knowledge used, the clustering-based methods can be further roughly divided into
vector space-based, social network-based, and Wikipedia-based clustering methods.

(1) Clustering methods based on the vector space model

The vector space-based clustering method does not use any background knowledge
but only uses the context information around the mention (Bagga and Baldwin 1998;
Mann and Yarowsky 2003; Fleischman and Hovy 2004; Pedersen et al. 2005). This
kind of method is based on a distributed assumption: mentions that share the same
entity should have similar context distributions, while mentions referring to different
entities must have quite different contexts.

244 10 Information Extraction

The process behind this kind of method can be generally divided into three
steps: (a) obtaining a real-valued vector representation for each mention in M =
{m1,m2, . . . ,mN } by using a vector space model; (b) calculating the distance
between mentions in M; (c) clustering based on the distance between mentions and
determining which mentions can be mapped into the same entity.

Taking the bag-of-words (BOW)-based context representation model as an
example, let the context of mi be ci = {ci1, ci2 , . . . , cim}, where cik is a word
in the context window with mi as the center or a word in the document where
mi is located. Generally, cik does not include stop words. For instance, in the
two example sentences about Michael Jordan given earlier, the mention Michael
Jordan in the first sentence can be represented by {researcher, machine learning,
artistic intelligence}, and the mention Michael Jordan in the second sentence can
be denoted by {NBA, MVP}. Then, TFIDF can be used to calculate the real-valued
context vector xi = {xi1, xi2, . . . , xi|V | } of mi . The vocabulary V contains all the
nonstop words of the documents and shapes the feature space for each mention mi .
xik is the TFIDF weight of the k-th word.

xik = tf_idf(cik) (10.22)

In addition to the TFIDF method, we can also use a variety of distributed
representation methods introduced in the text representation chapter. For example,
the weighted average method of word vectors or the distributed representation
method based on convolutional neural networks can be used to learn the context
representation xi of mi .

Given the context vector representation of mi , cosine similarity is used to
calculate the distance between two mentions:

sim(mi,mj) = sim(xi , xj) = cosine(xi , xj) (10.23)

Hierarchical agglomerative clustering (HAC) is a commonly used method for
clustering based on cosine distance and has been employed many times in evalua-
tions of entity disambiguation tasks. HAC adopts a bottom-up merging clustering
strategy. First, each mention is taken as a cluster, and then the two clusters with the
highest similarity are merged until the maximum similarity score is less than some
threshold or only one cluster remains. The distance between two clusters u and v

can be calculated as follows:

sim(u, v) =
∑

mi∈u,mj ∈v sim(mi,mj)

||u|| × ||v|| (10.24)

Finally, mentions in the same cluster correspond to the same entity in the real
world.

10.3 Entity Disambiguation 245

(2) Clustering method based on social networks

The clustering method based on social networks is mainly used to disambiguate
name mentions. The method assumes that the entity corresponding to a mention is
determined by its associated entity network.7 This method takes the social network
between entities as background knowledge (Bekkerman and Mccallum 2005; Malin
et al. 2005; Minkov et al. 2006). For example, the mentions in the social network
of Michael Jordan (Basketball Player) include { Scottie Pippen, Dennis Rodman,
Magic Johnson, Shaquille O’Neal, Kobe Bryant, . . . }; The mentions in the social
network of Michael Jordan (Professor)” include { Yoshu Bengio, David Blei,
Andrew Ng, Geoffrey Hinton, Yann LeCun, . . . }.

The core idea of the social network method is based on the observation that the
webpages about the persons who know each other well or have similar backgrounds
are very likely to be linked with each other, while persons with the same name
mention but different backgrounds rarely have linkages between them. The basic
idea of name disambiguation is that for name mention th whose entity is h, the
background knowledge K is the mention set TH = {th1, . . . , thN } (TH contains
th), each of which has a social relationship with h. th1 , . . . , thN are used as query
terms to retrieve from the search engine, and each query retains the top L returned
webpages, resulting in the set D which contains hN × L webpages. The webpage
returned by retrieving t may link to the entity of the person name h or the entity of
the same name h

′
. Therefore, the goal of person name disambiguation is to learn the

function f . With the help of background knowledge K , we can predict whether a
webpage d ∈ D containing name mention th links to the specific entity of the person
name h.

The clustering method based on a social network aims to construct a connection
graph GLS = (V ,E) for the webpage set D, and each node in V corresponds to a
webpage in D. If there is an edge between di and dj , then the two webpages di and
dj have a link relationship. Given GLS , it is easy to find the connected subgraph
with the most nodes, which is called central clustering C0. The remaining clusters
(connected subgraphs) are C1, . . . , CB(B < hN × L). Then, whether a webpage d

in D links to h will be determined by the following function f :

f (d, h) =
{

1, if d ∈ Ci : ‖Ci − C0‖ < δ, i = 0, . . . , B

0, Otherwise
(10.25)

There are three problems to be solved: (a) how to judge whether two webpages
have a link relationship; (b) how to measure the distance between two clusters; and
(c) how to determine the distance threshold δ. Bekkerman and Mccallum (2005)
proposed the following solutions to these three problems:

7This idea is very similar to the PageRank algorithm in which the importance of a webpage is
determined by the pages linking to it.

246 10 Information Extraction

For the first question, a hyperlink set LS(d) for each webpage d is constructed.
If di and dj satisfy LS(di) ∩ LS(dj)
= ∅, then there is a link relationship between
them. Otherwise, di and dj have no link relationship. LS(d) consists of three parts:

LS(d) = url(d) ∪ (links(d) ∩ TR(D)) (10.26)

In which, url(d) retains the first-level directory of the URL corresponding to d .
For example, if the URL of d is http://www.ia.cas.cn/yjsiy/zs/sszs/, url(d) returns
http://www.ia.cas.cn/yjsjy. If the website of d is http://www.ia.cas.cn, url(d) will
return http://www.ia.cas.cn. TR(D) = {url(di)} \ POP, where POP denotes a
collection of popular websites, such as www.google.com. Then, TR(D) becomes the
website after all results returned by url(di) excluding the popular websites. links(d)

represents a collection of all webpage addresses in d .
For the second question, the distance between two clusters is measured by the

cosine distance between two real-valued vectors. Each element in the vector is
represented by a specific tf_idf(w):

tf_idf(w) = tf(w)

log google_df(w)
(10.27)

where google_df(w) indicates the number of webpages returned by the Google
search engine according to query w, which can be estimated through the Google
API.

Concerning the final question, δ is not predefined, and it is usually dynamically
determined. For example, one-third of webpages in D should satisfy δ.

(3) Clustering method based on wikipedia

Wikipedia is currently the largest semistructured knowledge base in the world,
containing large-scale concepts and rich semantic knowledge about concepts.
The vast majority of these concepts include persons, organizations, locations,
occupations, publications, etc. Each article in Wikipedia describes a concept, and
the title of the article corresponds to a mention of the concept, such as artificial
intelligence. Moreover, the article contains rich link information between concepts,
which can directly reflect the correlation between them. For example, the webpage
of artificial intelligence contains several hyperlinks, which link to the concepts
of computer science, machine learning, natural language processing, and so on.
Therefore, Wikipedia can be used as powerful background knowledge for the entity
disambiguation task.

Taking the following three sentences as examples, we introduce the method of
using Wikipedia to disambiguate the name mention Michael Jordan.

MJ1: Michael Jordan is a leading researcher in machine learning and artificial
intelligence.

MJ2: Michael Jordan has published over 300 research articles on topics in
computer sciences, statistics, and cognitive science.

http://www.ia.cas.cn/yjsiy/zs/sszs/
http://www.ia.cas.cn/yjsjy
http://www.ia.cas.cn
http://www.ia.cas.cn
www.google.com

10.3 Entity Disambiguation 247

MJ3: Michael Jordan wins the NBA MVP.

The entity disambiguation process using Wikipedia is also divided into three
steps. First, we represent a mention with a vector of relevant concepts in Wikipedia.
Then, we calculate the similarity between any two mentions. Finally, HAC is
employed to cluster the mentions. Since the HAC algorithm is introduced in the
previous section, only the first two steps will be detailed here.

The idea behind the Wikipedia-based method is that if two mentions point to the
same entity, the Wikipedia concepts should be highly relevant to the context of the
mentions. Otherwise, the concepts in their context will be quite different. Therefore,
mention m can be represented by the Wikipedia concept vector in its context:

m = (c1, w(c1,m)), (c2, w(c2,m)), . . . , (cn,w(cn,m)) (10.28)

where w(ci,m) indicates the relevance score between Wikipedia concept ci and
mention m in the context, which can be calculated by the following formula:

w(ck,m) = 1

|m|
∑

ck∈m,ck
=c

sr(c, ck) (10.29)

where sr(c, ck) denotes the correlation score between the two Wikipedia concepts
and is calculated using the following formula:

sr(ci, cj) = log(max(|A|, |B|)) − log(|A ∩ B|)
log(|W |) − log(min(|A|, |B|)) (10.30)

where A and B represent the collection of all concepts linked to ci and cj in
Wikipedia, respectively, and |W | is the total number of concepts in Wikipedia.
According to the calculation results obtained by the above formula, MJ1, MJ2, and
MJ3 can be expressed in the following forms:

MJ1: Researcher (0.42) Machine Learning (0.54) Artificial Intelligence (0.51)
MJ2: Research (0.47) Statistics (0.52) Computer Science (0.52) Cognitive Science

(0.51)
MJ3: NBA (0.57) MVP (0.57)

Next, we need to calculate the similarity between any two mentions mi and mj .
First, the concepts in mi and mj are aligned. For example, for any concept c in mi ,
the most similar concept is searched in mj by:

align(c,mj) = argmax
ck∈mj

sr(c, ck) (10.31)

248 10 Information Extraction

Then, the semantic relevance score in the mi → mj direction is calculated:

SR(mi → mj) =
∑

c∈mi
w(c,mi) × w(align(c,mj),mj) × sr(c, align(c,mj))∑

c∈mi
w(c,mi) × w(align(c,mj),mj)

(10.32)

SR(mj → mi) can be calculated in a similar way.
Finally, the similarity between mentions mi and mj can be obtained by using the

following formula:

Sim(mi,mj) = 1

2
(SR(mi → mj) + SR(mj → mi)) (10.33)

Based on the similarity between any two mentions, the HAC algorithm is
employed to perform entity disambiguation. Details of this method can be found
in the literature (Han and Zhao 2009a).

10.3.2 Linking-Based Entity Disambiguation

Linking-based entity disambiguation is also called entity linking, and its goal is to
learn a mapping function f : M × K → E to accurately link each name mention
m ∈ M = {m1,m2, . . . ,mN } in the document to its referent entity in the entity set
E = {e1, e2, . . . , eT }. Wikipedia is commonly used as background knowledge K .

Suppose a document consists of the following sentence:

EL1: Michael Jordan is a leading researcher in machine learning and artificial
intelligence, and he also plays basketball in his free time.

The mentions include {Michael Jordan, Researcher, Machine Learning, Artificial
Intelligence, Basketball}, of which Michael Jordan is the most ambiguous. The
candidate entities consist of {Michael Jordan (basketball player), Michael Jordan
(football player), Michael Jordan (mycologist), Michael Jordan (professor), . . . }.
Entity linking aims to link the mention Michael Jordan in this document to the
entity Michael Jordan (professor).

A typical entity-linking method includes two steps: (1) determine the candidate
entity set and (2) rank the candidate entities. The first step is to determine the
possible candidate set Em from E for a given mention m. The second step attempts
to score all the entities in the candidate set Em and select the entity that is ranked
first as the final answer.

(1) Determine the candidate entity set

The candidate entity set directly affects the candidate space of entity linking. If
the correct entity is not included in the candidate space, the entity linking will fail

10.3 Entity Disambiguation 249

regardless of how accurate the subsequent entity ranking algorithm is. Therefore, it
is very important to generate the appropriate set of candidate entities.

The most popular method is to produce the candidate set by resorting to the
search engine. Shen et al. (2015) summarized a variety of methods for determining
candidate entity sets, and the approach of constructing a (mention, entities) dictio-
nary is widely used. This method employs Wikipedia as the knowledge source to
construct a dictionary of (mention, entities) and ultimately generates a dictionary
Dic = {key, value} in the form of key–value pairs, where the key represents
mentions (such as Michael Jordan) and the value denotes the corresponding
candidate entity set (such as {Michael Jordan (basketball player), Michael Jordan
(football player), Michael Jordan (mycologist), Michael Jordan (professor),..}).
Dictionary D is constructed mainly by exploring various features of Wikipedia
pages, such as entity pages, redirection pages, disambiguation pages, bold phrases
in the first paragraph, and hyperlinks in pages.

In Wikipedia pages with entity descriptions, the titles are usually the most
common mentions corresponding to entities. For example, the Wikipedia page with
the title Microsoft describes the entity of Microsoft Corporation. Therefore, (title,
entity) can be added to the dictionary as <key, value>.

The redirection page links different mentions of the same entity, which generally
represent synonyms, abbreviations, etc. For example, Edson Arantes do Nascimento
is redirected to Pele. Therefore,Edson Arantes do Nascimento and Pele can be added
to the dictionary as <key, value>, respectively.

The disambiguation page contains different entities corresponding to the same
mention. For example, the disambiguation page of Michael Jordan contains multiple
links to different entities. Therefore, the title of the disambiguation page can be used
as key, and all entities in the page can be added to the dictionary as values.

The first paragraph of a Wikipedia page is often a summary of the whole article
and usually contains some phrases in bold font. These phrases are often aliases, full
names, or abbreviations of corresponding entities. For example, the first paragraph
of the page ofMichael Jordan contains the phrasesMichael Jeffrey Jordan andMJ in
bold font. The former is the full name, and the latter is the abbreviation. Therefore,
each bold phrase can be used as a key, and the entity described in the page can be
added to the dictionary as a value.

Each Wikipedia page contains several hyperlinks. For example, the Michael Jor-
dan page contains a hyperlink ACC pointing to the page Atlantic Coast Conference.
These hyperlinks generally provide information such as aliases or abbreviations for
entities. Therefore, the hyperlink can be used as a key, and the linked entity can be
added to the dictionary as a value.

Through the above operations, a comprehensive mapping dictionary Dic from
name mention to candidate entities can be constructed. According to Dic, each
mention m in the document can obtain the corresponding candidate entity set Em

by exact or partial matching of character strings. According to the statistics, each
mention corresponds to an average of more than 10 candidate entities.

250 10 Information Extraction

Alternatively, Han and Zhao (2009b) proposed a method that submits the
mentions and their contextual words to search engines such as Google, taking the
returned entities described in Wikipedia pages as candidate entity sets.

(2) Rank candidate entity concepts

Given the candidate entity set Em for the mention m, the next step is to rank the
entities in Em to find the correct entity that has a linking relationship with m. The
classical methods can be divided into two categories, namely, independent entity
ranking and joint entity ranking. The independent entity ranking method assumes
that different mentions in a document are independent of each other. When ranking
candidate entities of a mention, only the context of the mention and the semantic
information of the candidate entity are taken into consideration. In contrast, the joint
entity ranking method assumes that the mentions in the document are related to each
other and belong to the same topic, so they should influence each other during the
entity-linking process.

We introduce each of them in the following:

(a) Independent Entity Ranking

The core problem of this method is calculating the semantic correlation between
the mention and the candidate entities. The contexts and semantic knowledge base
are the main sources for ranking.

The context-based ranking method assumes that there is a link between a mention
and an entity if they share a similar context. The key of this method is to measure
the context similarity between mentions and candidate entities. The vector space
model is the most widely used context representation method. First, context vectors
are constructed for the mentions and candidate entities. For example, the words in a
window (e.g., K = 50) that centers the mention in the text are considered to be the
context. Similarly, all the words in the Wikipedia page where the entity is located
can also be used as context. Then, the BOW model is employed to represent the
context of mentions and entities, and cosine similarity based on TFIDF is used to
calculate the distance between mentions and entities SimTFIDF (Chen et al. 2010).

Han and Zhao (2009b) leveraged the Wikipedia concepts appearing in the context
to construct contextual vectors and then calculated the semantic distance Simwiki
between the mention and the entity. This is similar to the method that calculates
Sim(mi , mj) in clustering-based entity disambiguation.

With the development of deep learning methods in recent years, entity-linking
algorithms based on neural networks have become popular. Their core idea is to use
a distributed text representation model to calculate semantic similarity between the
mention and candidate entities Simdistri (He et al. 2013; Sun et al. 2015). Figure 10.7
demonstrates the basic framework of the entity-linking algorithm based on neural
networks (Sun et al. 2015). The goal of this algorithm is to calculate the similarity
between the mention and the candidate entity. First, the words and positions in the
context are represented by real-value distributed vectors, and then convolutional
neural networks are employed to learn the distributed vector representation vc of
the context. Meanwhile, the vector representations of the mention, entity, and entity

10.3 Entity Disambiguation 251

⋯

⋯

,

Michael JordanMichael JordanIs a leading researcher in machine
learning and artificial intelligence

(professor)

Fig. 10.7 Neural network-based entity linking

category8 are obtained by averaging the word vectors, respectively denoted as vm,
vew, and vel . Then, the tensor model is leveraged to combine vc and vm, vew ,
and vel , resulting in vmc and ve, which denote the contextualized mention and the
candidate entity, respectively. Finally, cosine distance Simdistri = cosine(vmc, ve) is
utilized to measure the similarity between the entity and the candidate entity.

For distributed text representation, convolutional neural networks and word
vector averaging methods have been introduced in detail in Chaps. 3 and 4. We
introduce how the tensor model works below.

Given the vectors vc ∈ R
d and vm ∈ R

d , the formula for calculating vmc using
the tensor model is as follows:

vmc = [vc; vm]T [M i]1:L[vc; vm] (10.34)

where [vc; vm] represents the concatenation of the context vector and the mention
vector, M i ∈ R

d×d is a tensor that performs an operation on [vc; vm] to obtain an
element, and L tensors will lead to a L-dimensional vector output, namely, vmc ∈
R

L. The vector representation ve of the entity can be obtained by the same method.
Note that the word embeddings, position vectors, and tensor matrix M i are all neural
network parameters and need to be optimized in the training process.

The training process optimizes an objective function on the supervised data. In
ranking-based entity linking, max-margin loss (MML) is generally employed as the
objective function. It requires that the correct mention–entity pair (m, e) has a higher

8The entity category can be retrieved from the knowledge base and is generally expressed by a
phrase. For example, Donald Trump’s entity category is president of the United States.

252 10 Information Extraction

similarity score than the incorrect mention–entity pair (m, e′) and the similarity gap
should be greater than a certain threshold ε:

loss =
∑

(m,e)∈T

max{0, score(m, e′) + ε − score(m, e)} (10.35)

where T denotes the annotated dataset consisting of all the correct mention–
entity pairs. (m, e) is a positive sample, and (m, e′) is a negative sample. e′
= e

can be randomly selected from the entity set E. The score function score(m, e)

can be calculated through Simdistri, which denotes the similarity of distributed
representations between the mention and entity. In addition, score(m, e) can be a
weighted sum of various similarities, such as SimTFIDF, SimWiki, Simdistri. In the
weighed sum algorithm, the popularity Pop(ei) of the candidate entity can also be
used:

Pop(ei) = countm(ei)∑
ej ∈Em

countm(ej)
(10.36)

where countm(ei) indicates the number of times that m links to ei in all Wikipedia
pages.

(b) Joint Entity Ranking

To make full use of the topic consistency in the whole document, the joint entity
ranking method infers the linking relations of all the mentions in the document.
Taking the graph-based ranking algorithm as an example (Han et al. 2011), we next
introduce the joint entity ranking method.

The method consists of two steps: (1) construct the referent graph RG for all
the mentions and their candidate referent entities in the document; (2) perform
global inference of entity linking on the referent graph RG. Taking the sentences
EL1 given at the beginning of this Sect. 10.3.2 as an example, we first introduce
the construction method of the referent graph and then detail the global inference
algorithm of entity linking.

The referent graph RG between mentions and candidate entities in a document
is a weighted undirected graph G = (V ,E), in which V contains all mentions and
their candidate referent entities in the document, and E includes two types of edges.
One is the mention–entity edge, which depicts the correlation between the mention
and a candidate entity. The other is the entity–entity edge, which depicts the semantic
correlation between two candidate entities. Figure 10.8 is a semantic referent graph
corresponding to the example EL1. The core problem is to calculate the weights
of mention–entity and entity–entity edges during RG construction. The mention–
entity edge weight in the figure can be calculated based on the context similarity
using the BOW model (i.e., SimTFIDF(m, e), as introduced earlier). The entity–entity
edge weight can be computed with sr(ei, ej), which calculates the relevance between
entities based on Wikipedia, as introduced earlier.

10.3 Entity Disambiguation 253

Michael Jordan1

artificial
intelligence

Michael Jordan2

Michael Jordan3

Michael Jordan4

machine
learning

researcher

basketball

artificial intellgience

machine learning

basketball

researcher

mention

entity

0.15

0.05

0.12

0.08

0.11

0.19

0. 24

0.36 0. 09

0.42

0.13

0.16

0.25

0.21

0.48Michael Jordan

Fig. 10.8 Relevance graph between mentions and entities

In Fig. 10.8, the candidate entities Michael Jordan(1), Michael Jordan(2), Michael
Jordan(3), and Michael Jordan(4) respectively denote Michael Jordan (basket-
ball player), Michael Jordan (football player), Michael Jordan (mycologist), and
Michael Jordan (professor).

After the construction of the mention–entity referent graph RG, the next step
is to jointly infer entity linking. The joint inference process can be divided into
three steps: (1) assign a confidence score for each candidate entity; (2) perform a
random walk through the “mention–entity” and “entity–entity” edges in the graph
to pass confidence; and (3) globally infer the entity linking according to the entity
confidence.

In the initialization stage of step (1), the confidence score of the candidate
entity is approximated by the importance score of the corresponding mention. The
importance score of each mention m in the document is calculated by the normalized
TFIDF value:

Importance(m) = tf_idf(m)∑
m′∈D tf_idf(m′)

(10.37)

m′ denotes any mention in the document D.
The key of step (2) is to calculate the final confidence score rD(e) of each

candidate entity. The calculation of rD(e) involves three variables: s, r , and T . s

is the initial confidence vector, si = Importance(mi); r denotes the score vector
of the final confidence of the candidate entities and r i represents the confidence
of the i-th entity, namely, rD(ei). T is the transition matrix, and T ij indicates the
transition weight of the confidence from node j to node i. T ij can be either the

254 10 Information Extraction

mention-to-entity transition weight p(m → e)9 or the entity-to-entity transition
weight P(ei → ej), which can be calculated by the following formulas:

p(m → e) = SimTFIDF(m, e)∑
e′∈Em

SimTFIDF(m, e′)
(10.38)

p(ei → ej) = sr(ei, ej)∑
ek∈Nm

sr(ei , ek)
(10.39)

where Nm represents the adjacent entities of ei in RG. Based on s and T , r is
calculated through the following iterative process:

r0 = s (10.40)

r t+1 = (1 − λ) × T × r t + λ × s (10.41)

The results can be obtained by solving the above formula:

r = λ × (I − (1 − λ)T)−1s (10.42)

where I is the identity matrix. Finally, the entity linking of each mention in the
document can be optimized by solving the following formula:

e∗ = argmax
e

SimTFIDF(m, e) × rD(e) (10.43)

10.3.3 Evaluation of Entity Disambiguation

Researchers have designed different automatic evaluation methods for clustering-
based and linking-based entity disambiguation.

For the clustering-based entity disambiguation task, the evaluation method is
to evaluate the effect of mention clustering10 for the same name in the docu-
ment set. Assume that the gold clustering result on the set of n mentions is
L = {L1, L2, . . . , LM }, and the clustering result given by the system is C =
{C1, C2, . . . , CN }. The automatic evaluation method is mainly evaluated based on
the two aspects of clustering purity and inverse purity. For cluster Ci in the system,
cluster Lj sharing the largest intersection with Ci can be found in L. Accordingly,

9The transition is unidirectional and there is no transition from the entity to the mention.
10The mention is usually a person’s name that is ambiguous because it corresponds to different
entities in different contexts. For example, Michael Jordan corresponds to entities in different doc-
uments. The clustering-based entity disambiguation method performs clustering on all appearances
of Michael Jordan in the document set.

10.3 Entity Disambiguation 255

|Ci∩Lj |
|Ci | is called the precision of Ci , and the weighted sum of the precision of all

system clusters is called the purity. The calculation of inverse purity is similar except
that inverse purity focuses on the recall of clustering. The calculation formulas of
the two values are as follows:

Purity =
∑

i

|Ci |
n

max
j

Precision(Ci, Lj) (10.44)

Precision(Ci, Lj) = |Ci ∩ Lj |
|Ci | × 100% (10.45)

Inverse Purity =
∑

i

|Li |
n

max
j

Precision(Li, Cj) (10.46)

Precision(Li, Cj) = |Li ∩ Cj |
|Li | × 100% (10.47)

Generally, the performance of clustering is measured by the harmonic average
Fα=0.5 of purity and inverse purity:

Fα = 1

α 1
Purity + (1 − α) 1

Inverse Purity

(10.48)

For entity-linking tasks, the evaluation method is similar to that of the classi-
fication task. The performance of entity linking is directly measured by precision
and recall. For document D, assume that the manually annotated mention list is
M = {mi,mj , . . . ,mM} and the gold entity-linking result is E = {ei, ej , . . . , eM}.
Suppose the system identified mention list is M ′ = {m′

i′ ,m
′
j ′ , . . . ,m′

N ′ }, and the
automatic entity-linking result generated by the system is E′ = {e′

i′, e
′
j ′ , . . . , e′

N ′ },
where i and i ′ respectively denote the positions of the mentions in the document.
Then, the intersection of the automatic and gold results can be obtained as follows:

M∗ = {
mk|∀k,mk = m′

k

}
(10.49)

E∗ = {
ek|∀k,mk ∈ M∗, e′

k = ek

}
(10.50)

where M∗ indicates the set of correctly recognized mentions by the system, and E∗
is the set of correctly linked entities for mentions in M∗. The precision, recall, and
F1 value are calculated by the following formulas:

Precision = |E∗|
|E′| × 100% (10.51)

256 10 Information Extraction

Recall = |E∗|
|E| × 100% (10.52)

F1 = 2 × Precision × Recall

Precision + Recall
(10.53)

10.4 Relation Extraction

In natural language texts, only entities cannot provide abundant semantic informa-
tion. For example, in the following two sentences, it is difficult to reveal the core
information contained in the text by just identifying the person names of John and
Mary and the location name of London.

Example: [John] is from [London]. [John] and [Mary] officially registered for
marriage in 2007.

Generally, our real world can be seen as a network composed of nodes and
edges. Nodes represent various entities, and edges denote the relationship between
entities. Therefore, in addition to identifying and disambiguating the entities,
another important task is identifying the semantic relationship between them. In
the above example, John is a citizen of London, and the relation can be expressed
as citizen_of(John, London). John and Mary are husband and wife, and the relation
can be expressed as spouse(John, Mary).

Relation extraction is a task that aims to identify the entities in texts and
determine the relationships between these entities. This technology plays a key role
in many downstream tasks, such as knowledge graph construction, social network
analysis, and automatic question answering.

Formally, the entity relation can be expressed as an n + 1 tuple t =
(e1, e2, . . . , en, r), where e1, e2, . . . , en denotes n entities in natural language texts,
and r denotes the relationship among these n entities, which is called the n-ary
relation. At present, the binary relations (the relationship between two entities) are
the research focus, and in most cases, the two entities are in the same sentence.
Therefore, we focus on binary relations in this section and detail the relation
extraction methods for entities in a single sentence, namely, recognizing the triple
t = (e1, e2, r) in a sentence. In the above example, each sentence contains a relation
triple: [John, London, citizen_of] and [John, Mary, spouse].

Assuming that the entities in the sentence have been identified and disambiguated
using the aforementioned NER and entity disambiguation techniques, entity relation
extraction becomes a task for predicting relation types. In the open domain
scenarios, there are thousands of relation types. To simplify the problem, we take
the guidelines of popular IE evaluations, such as MUC, ACE, and Semeval, as
an example to introduce the methods of implementing relation extraction. All the
evaluation campaigns provide manually labeled training data of entity relations
(denoted as Dtrain = {si, (ei1 , ei2 , ri)}Ni=1), the set of relation types (denoted as

10.4 Relation Extraction 257

Table 10.2 Distribution of
relationship categories in the
ACE 2003 training set

Relation type Subtype Frequency

AT(2781) Based-in 347

Located 2126

Residence 308

NEAR(201) PART(1298) Relative-locationa 201

Part-of 947

Subsidiary 355

Other 6

ROLE(4756) Affiliate-partner 204

Citizen-of 328

Client 144

Founder 26

General-staff 1331

Management 1242

Member 1091

Owner 232

Other 158

SOCIAL(827) Associatea 91

Grandparent 12

Other-personal 85

Other-professionala 339

Other-relativea 78

Parent 127

Siblinga 18

Spousea 77
aIn the table means this relationship is symmetrical; e.g., in the

relation type spouse, A is the spouse of B, and B is also the
spouse of A

R = {rk}Kk=1) and the test dataset (denoted as Dtest = {sj , (ej1, ej2)}Mj=1). The
training data include N sentences (si for the i-th sentence) and K relation types. For
example, in ACE 2003 and 2004, the annotated data included 16,771 instances from
1000 English documents, 5–7 main relation types, and 23−24 subtypes. Table 10.2
gives the statistics for all kinds of relation types in the ACE 2003 training data. The
relation extraction system needs to learn a model from the training data and predict
the appropriate relation type from the type set R for each entity pair (ej1, ej2) in the
test set.

As seen from the statistics in Table 10.2, the distribution of relation types is
very unbalanced. For example, the Founder subtype in the ROLE relation and
the Grandparent subtype in the SOCIAL relation occurred only 26 and 12 times,
respectively. In contrast, the Locate subtype in the AT relation appeared more
than 2100 times. In addition, the ACE relation extraction task also defines some
subtype categories that are very difficult to identify, such as Based-in, Located, and
Residence. In the example sentence China’s Huawei Company has business all over

258 10 Information Extraction

the world, Huawei and China have the Based-in relation. In the sentence John went
to Beijing for business trips, John and Beijing have a Located relationship. In the
sentence John moved to Beijing, John and Beijing belong to the Residence relation
type. It can be seen that the nuances between these relation types are sometimes
difficult to distinguish even by human experts.

Since the set of relation types is given, the relation prediction task is usually
converted into a supervised relation classification problem. The basic idea is to
extract informative features from the contexts of two entities and the whole sentence.
Then, machine learning methods can be employed to train the classification models
on the annotated training corpus f (s, (e1, e2)) ∈ R. Finally, the classifier predicts
the relation type between entities. Classification methods can be generally divided
into methods based on discrete feature engineering and methods using distributed
representation learning. We will detail these two kinds of methods in the following
sections.

10.4.1 Relation Classification Using Discrete Features

The key to predicting the relation type between entities is to fully mine and utilize
the contexts of these entities. For example,marriage in the context is one of the most
important indicators for the Spouse relation type. In the example John and Mary
officially registered for marriage in 2007, if the key contextual feature registered for
marriage can be effectively used, we can easily predict the relation between John
and Mary.

There are several kinds of methods for relation classification using discrete
features. The main difference lies in feature selection and classification models.
In terms of feature selection, different levels of granularity such as lexicon, syntax,
and semantics can be used. In terms of classification models, maximum entropy,
perceptron, and support vector machines can be employed. Since classification
models are detailed in the previous sections, we introduce two typical methods for
feature selection: explicit discrete feature engineering and implicit kernel function
features.

(1) Relation classification using explicit discrete features

Explicit discrete features are symbol strings representing lexical, syntactic, and
semantic structures. Taking the entity pair (John, Mary) in the sentence John and
Mary officially registered for marriage in 2007 as an example, we introduce which
discrete features can be explored. Zhou et al. (2005) conducted a very detailed
study on the selection of discrete features. According to their research, the following
discrete features are proven effective.

(a) Word feature

There are four main types of such features: 1© words contained in the entity pair
(e1, e2); 2© words between the entities e1 and e2; 3© words in front of the entity e1;

10.4 Relation Extraction 259

and 4© words after the entity e2. Corresponding to the above example, the specific
features are listed below:

WE1: The word in entity e1. In the above example, it is John;
HE1: The head word in entity e1. If e1 is a phrase, HE1 corresponds to the

head word of the phrase. If e1 is just a word, HE1 is e1 itself. In this
case, it is John;

WE2: The word in entity e2. In this case, it is Mary;
HE2: The head word in entity e2. In this case, it is Mary;
HE12: The concatenation of HE1 and HE2. In this case, it is John-Mary;
WBNULL: A Boolean variable that is True if there is no word between e1 and e2

and False otherwise. It is False in the above example;
WBFL: If there is only one word between e1 and e2, WBFL indicates that

word. In this case, it is and;
WBF: If there are multiple words between e1 and e2, WBF indicates the

first word;
WBL: If there are multiple words between e1 and e2, WBL represents the

last word;
WBO: If there are multiple words between e1 and e2, WBO represents

words other than WBF and WBL;
BM1F: The first word before e1. In this case, there is no word before John,

so BM1F is NULL;
BM1L: The second word before e1. In this case, BM1L is NULL;
AM1F: The first word after e2. In this case, AM1F is officially;
AM1L: The second word after e2. In this example, AM1L is registered.

(b) Entity type feature

Entity types offer a strong indication of the relation between entities. If e1 is a
person name and e2 is an organization name, then we can determine that e1 and
e2 belong to one of the relations in {Client, Founder, General-staff, Management,
Member, Owner}. Obviously, the entity type is an important feature. The entity
types mainly include PERSON, ORGANIZATION, LOCATION, FACILITY, and
GPE (geopolitical entity, such as country names). We can use the following entity
type feature:

ET12: Entity type combination of e1 and e2. In the above example, ET12 is
PERSON-PERSON.

(c) Mention feature

The mention feature refers to the mention type of the entity in the text, which is
a specific NAME, NOMIAL, or PRONOUN.

ML12: Mention type combination of e1 and e2. In the above example, ML12 is
NAME-NAME.

260 10 Information Extraction

(d) Overlap features

The overlap feature refers to the statistics for word overlapping between two
entities e1 and e2. Specific features include the following:

#EB: The number of entities between e1 and e2, and #EB = 0 in the above
example;

#WB: The number of words between two entities e1 and e2, and #WB = 1 in the
above example;

E1 > E2: A Boolean variable where if e1 contains e2, the value is True; other-
wise, it is False. In the above example, this Boolean variable is False. Similar
features include E2 > E1,ET12+E1>E2,ET12+E1 < E2,HE12+E1>E2,
and HE12+E1<E2.

(e) Base phrase chunking features

Before using this kind of feature, we first need to obtain the phrase parse tree of
the sentence. Base phrase chunking features mainly include three categories: 1© The
phrase head words between (e1; e2), including the head words of the first phrase, the
last phrase, and the middle phrase; 2© The phrase head words in front of the entity
e1, including the head words of the first two phrases; 3© The head words after the
entity e2, including the head words of the latter two phrases. In addition, the path
from one entity to the other in the parse tree can also be considered. The specific
features are as follows:

CPHBNULL: A Boolean variable where if there is no phrase between e1 and e2,
the value is True; otherwise, the value is False. In the above example,
this variable is False;

CPHBFL: If there is only one phrase between e1 and e2, then CPHBFL
represents the head word of the phrase; otherwise, it is empty. In
the above example, CPHBFL is and;

CPHBF: If there are multiple phrases between e1 and e2, then CPHBF
denotes the head word of the first phrase; otherwise, it is empty. In
the above example, CPHBF is NULL;

CPHBL: If there are multiple phrases between e1 and e2, then CPHBL
represents the head word of the last phrase; otherwise, it is empty. In
the above example, CPHBL is NULL;

CPHBO: If there are multiple phrases between e1 and e2, then CPHBO
represents the head word of the phrase except for the first and last
phrases; otherwise, it is empty. In the above example, CPHBO is
NULL.

CPHBE1F: The head word of the first phrase before e1. In the above example,
CPHBE1F is NULL;

CPHBE1L: The head word of the second phrase before e1. In the above example,
CPHBE1L is NULL;

CPHAE1F: The head word of the first phrase after e2. As shown in Fig. 10.9,
there are four base phrases after e2, namely, ADVP, VBD, and two

10.4 Relation Extraction 261

Fig. 10.9 The phrase structure parsing corresponding to the second clause in the example at the
beginning of Sect. 10.4

Fig. 10.10 The dependency parsing corresponding to the second clause in the example at the
beginning of Sect. 10.4

PPs. The head word of ADVP is officially, and therefore, the value
of CPHAE1F is officially;

CPHAE1L: The head word for the second phrase after e2. In the above example,
CPHAE1L is registered;

CPP: A path connecting two entities e1 and e2 in a phrase structure tree.
As seen from Fig. 10.9, CPP is NNP-NP-NNP;

CPPH: If there are at most two phrases between e1 and e2, then CPPH
denotes the phrase path between e1 and e2 associated with head
words; otherwise, it is empty. In the above example, CPPH is
NNP(John)-NP-NNP(Mary).

(f) Dependency tree feature

Before using this feature, we need to obtain the dependency parse tree for the
sentence as shown in Fig. 10.10.

The dependency features are as follows:

ET1DW1: The combination of entity type and dependent word of e1. In the
above example, ET1DW1 is PERSON-registered;

H1DW1: The combination of head and dependent words of e1. In the above
example, H1DW1 is John-registered;

262 10 Information Extraction

ET2DW2: The combination of entity type and dependent word of e2. In the
above example, ET2DW2 is PERSON-John;

H2DW2: The combination of head and dependent words of e2. In the above
example, H2DW2 is Mary-John;

ET12SameNP: the combination of ET12 and a Boolean value indicating whether
e1 and e2 are included in the same noun phrase. In the aforemen-
tioned example, ET12SameNP is PERSON-PERSON-True;

ET12SamePP: the combination of ET12 and a Boolean value indicating whether
e1 and e2 are included in the same preposition phrase. In the
aforementioned example, ET12SamePP is PERSON-PERSON-
False;

ET12SameVP: the combination of ET12 and a Boolean value indicating whether
e1 and e2 are included in the same verb phrase. In the aforemen-
tioned example, ET12SameNP is PERSON-PERSON-False;

(g) Phrase parse tree feature

Phrase parse tree features include the following two:

PTP: Phrase label path from e1 to e2 (removing duplicate labels). As shown in
Fig. 10.9, PTP is NNP-NP-NNP;

PTPH: The phrase label path from e1 to e2 combined with the head word of the
top-level phrase. In Fig. 10.9, PTPH is NNP(John)-NP(John)-NNP(Mary).

(h) Semantic features

In addition to the lexical and various syntactic features, many semantic resources
can also be used to enhance the feature representation. A list of trigger words
indicating the relation between a country name and a person name is a commonly
used resource. The country names are easy to collect, and the trigger words can
be obtained in two ways: they can be collected from semantic dictionaries such as
WordNet and HowNet or obtained from the training data. The specific features are
used as follows:

• Country name list features:

ET1Country: If e2 is a country name, then ET1Country represents the entity
type of e1;

CountryET2: If e1 is the country name, then CountryET2 denotes the entity
type of e2.

• Trigger word features for relations between people

ET1SC2: If e2 triggers the personal social relation, ET1SC2 represents the
combination of the entity type of e1 and the semantic class of e2;

SC1ET2: If e1 triggers the personal social relation, SC1ET2 denotes the
combination of the entity type of e2 and the semantic class of e1.

For an entity pair (e1, e2) and the sentences they are in, various discrete features
such as lexicon, syntax, and semantics can be extracted in the above manner, and

10.4 Relation Extraction 263

Fig. 10.11 Phrase structure
tree and its subtree collection

PP

in

NP

2007

IN
PP

in

NP

2007

IN

PP

NP

2007

IN

PP

in

NPIN

PP

NPIN in

IN NP

2007

then the semantic relation between e1 and e2 can be predicted using a classifier such
as a support vector machine.

(2) Relation classification using kernel functions

Explicit discrete features usually capture the local contexts, and it is difficult to
model the similarity between syntactic structures. In many cases, if the syntactic
structure of the test sentence stest is very similar to the syntactic structure of sentence
strain in the training data, then the entity pairs in stest are very likely to have the
same relation type as the entity pairs in strain. Therefore, it becomes a challenge
to extract structural features and effectively calculate the similarity between two
syntactic structures.

Intuitively, we can extract all the subtrees in a syntactic tree and determine the
shared subtrees between the syntactic trees of the two sentences. As shown in
Fig. 10.11, six subtrees are extracted from a phrase structure tree containing two
leaf nodes. All subtrees can be exhaustively extracted from the tree corresponding
to each sentence in the training data. Assume that n different subtrees appear in all
sentences and are recorded in the order of occurrence as subt1, subt2, . . ., subtn.
Then, the syntactic tree corresponding to any sentence can be represented as an n-
dimensional vector, where the i-th element represents the number of times subti
appears in the tree. If hi(T) is used to indicate the number of occurrences of subti
in the syntactic tree T , T can be expressed as h(T) = (h1(T), h2(T), . . . , hn(T)).

Based on the above analysis, the structural similarity between any two sentences
can be obtained by calculating the inner product h(T1) ·h(T2). The method is simple
and easy, but the number n of subtrees is very large. The number of nodes increases
exponentially with the size of the tree, and it is not easy to exhaustively extract
all subtrees. Therefore, efficiently calculating the structural similarity becomes a
challenge. Collins and Duffy (2002) proposed a method to calculate h(T1) · h(T2)

based on tree kernel and convolutional tree kernel and applied the structural
similarity into syntax parsing. Later, researchers introduced this method to the
relation classification task and further proposed kernel methods based on phrase
structure trees (Zelenko et al. 2003), dependency trees (Culotta and Sorensen 2004),
convolutional kernels (Zhang et al. 2008), and so on.

264 10 Information Extraction

We take the phrase structure tree as an example to introduce the calculation
method of the inner product h(T1) · h(T2) based on tree kernels. Assume that N1
and N2 are the sets of nodes in trees T1 and T2, respectively. If the subtree rooted at
n matches the i-th element in the subtree set, then Ii(n) = 1; otherwise, Ii(n) = 0.
Since hi(T1) = ∑

n1∈N1

Ii(n1), hi(T2) = ∑
n2∈N2

Ii(n2), therefore, h(T1) · h(T2) can be

calculated by the following kernel function K(T1, T2):

K(T1, T2) = h(T1) · h(T2) =
∑

i

hi (T1)hi(T2)

=
∑

n1∈N1

∑

n2∈N2

∑

i

Ii (n1)Ii(n2)

=
∑

n1∈N1

∑

n2∈N2

C(n1, n2)

(10.54)

where C(n1, n2) = ∑
i

Ii (n1)Ii (n2) can be solved by the following recursive

method:

(1) If the CFG rule11 with n1 as the root node in T1 is different from the CFG rule
rooted at n2 in T2, then C(n1, n2) = 0;

(2) If the CFG rule rooted at n1 in T1 is the same as the CFG rule with n2 as the root
node in T2, and both n1 and n2 are part-of-speech nodes, then C(n1, n2) = 1;

(3) If the CFG rule with n1 as the root node in T1 is the same as the CFG rule rooted
at n2 in T2, but n1 and n1 are not part-of-speech nodes, then,

C(n1, n2) =
nc(n1)∑

j=1

(1 + C(ch(n1, j), ch(n2, j))) (10.55)

where nc(n1) denotes the number of child nodes of n1, and ch(ni , j) represents
the j -th child node of ni(i = 1, 2). Since the CFG rule rooted at n1 in T1 is
the same as the CFG rule with n2 as the root node in T2, nc(n1) = nc(n2).
Collins and Duffy (2002) proved that the above recursive calculation method
is equivalent to the naive method that directly calculates h(T 1) · h(T 2) by
exhausting all subtrees, and the computation complexity of the kernel function
K(T1, T2) is only O(|N1| · |N2|).

The above recursive algorithm can be applied to any tree structure, regardless
of whether the tree structure is a whole syntactic tree or a subtree. Based on this
property, researchers further proposed a method to tackle relation classification
using convolutional kernel functions. The basic idea is to select a number of subtrees
according to a specified strategy. For example, for the relation classification task,

11CFG represents context-free grammar, e.g., VP → PP VP.

10.4 Relation Extraction 265

the subtrees around the entity pair are selected from the tree structure, and the
kernel function calculation can be performed for each subtree according to the
above recursive algorithm. Finally, the results of all the kernel functions are summed
together to obtain the structural similarity between the two sentences. Unlike the tree
kernel method, since the kernel function is calculated between the tree segments of
the two syntactic trees, the number of nodes between the tree segments may vary
greatly. For example, the tree segment in T1 contains 10 nodes, while T2 contains
only 3. As a result, the convolutional tree kernel function needs to consider the
difference in the node number. Usually, a hyperparameter λ (0 < λ � 1) is used
to balance the node numbers. The calculation formulas in steps (2) and (3) of the
above recursive algorithm are modified to:

C(n1, n2) = λ (10.56)

C(n1, n2) = λ

nc(n1)∑

j=1

(1 + C(ch(n1, j), ch(n2, j))) (10.57)

Accordingly, the convolutional kernel function is defined as:

h(T1) · h(T2) =
∑

k

λsizekhk(T1) · hk(T2) (10.58)

where sizek is the number of CFG rules for the k-th subtree fragment.
After determining the kernel function h(T1) ·h(T2), the relation classification can

be modeled using a support vector machine or other classification models. Zhang
et al. (2008) proved through experiments that kernel methods can lead to better
performance.

10.4.2 Relation Classification Using Distributed Features

Although the methods based on discrete features improve relation classification,
they suffer from two issues. First, these methods rely on the quality of part-of-
speech tagging and syntactic analysis. Second, discrete features confront sparseness
problems and cannot capture the potential semantic similarities between features.
To overcome these problems, many researchers have recently proposed relation
classification methods based on distributed feature representation and achieved
much better classification results. In this section, we introduce the method using
convolutional neural networks for relation classification that was proposed in Zeng
et al. (2014).

The main idea is that instead of using discrete features, distributed feature
representations are employed to overcome the data sparseness problem and bridge
the semantic gap. We first learn local distributed representation to capture the

266 10 Information Extraction

⋯word

representation

lecial feature sentence feature

relation type

probability distribution

input: [John] and [Mary] officially registered for marriage in 2007

lecial feff ature sentence feff ature

local and global

feature represenation

Fig. 10.12 Relation classification method based on distributed feature representation

surrounding contexts of the entity pair. Then, we employ convolutional neural
networks to model the global information of the sentence where the entity pair is
located. The overall framework of the method is shown in Fig. 10.12.

The input of the model is a sentence s = (w1, w2, . . . , wn) in which two entities
e1 and e2 are given. The model first maps each word wi into a low-dimensional
real-valued vector (word embedding) xi ∈ R

d , resulting in a list of vectors
X = {x1, x2, . . . , xn}. Then, word-level and sentence-level representations are
learned: 1© lexicalized distributed feature representation Xlex ∈ R

d1 ; 2© distributed
feature representation of sentences Xsen ∈ R

d2 . The word-level and sentence-
level representations are concatenated to obtain a global feature representation:
Xfinal = [Xlex; Xsen] ∈ R

d1+d2 . Finally, the linear transformation and the softmax
function are used to calculate the probability distribution of the relation types,
wherein the one corresponding to the maximum probability is chosen as the relation
type between two entities (e1, e2):

O = W o · Xfinal (10.59)

p(li |s, e1, e2) = softmax(Oi) = eOi

∑nl

k=1 eOk
(10.60)

10.4 Relation Extraction 267

where W o ∈ R
nl×(d1+d2) is the weight matrix, nl represents the number of relation

types, and li represents the i-th type. As introduced in Chaps. 3 and 4, word
embeddings can be learned through pretraining and fine-tuning. The initial word
embeddings can be obtained by pretraining on large-scale unlabeled data using
methods such as skip-gram and continuous bag-of-words (CBOW). Fine-tuning
optimizes word embeddings on the limited relation classification training set.

The following sections describe the methods for learning word-level distributed
representations Xlex and sentence-level distributed representations Xsen.

(1) Word-level distributed representations

The word-level features are the key clues for predicting the relation type between
entity pairs. Three kinds of word-level features can be considered: 1© the entities
themselves (e1, e2); 2© the contexts of the two entities; 3© the hypernym of each
entity in the semantic knowledge base (such as WordNet in English, HowNet in
Chinese, and so on). Since these three kinds of features are all specific words, we
can concatenate all these word embeddings to obtain the word-level distribution
representation Xlex.

(2) Sentence-level Distributed representations

Since the word-level features only consider the local contextual information of the
entities, it is usually impossible to capture key clues that indicate the relation type.
For example, the key word marriage in Fig. 10.12 is far from the two entities
John and Mary, and it is hard to capture using local contexts. Therefore, learn-
ing the sentence-level distributed feature representations is a promising solution.
Figure 10.13 shows a sentence-level representation learning framework based on
convolutional neural networks. Because Chap. 3 has already detailed the CNN-
based sentence representation method, the following parts will introduce the core
module that is adapted for the relation classification task.

In the relation classification task, the dependence between words (especially
between the entity and other words) is a very important feature, and the traditional
neural network method cannot capture this dependency information. Therefore, it
is often necessary to adapt convolutional neural networks to explicitly model word
dependency. To this end, the input word feature WF is represented by the context
in a fixed window. For example, WF of the i-th word wi corresponding to window
size 3 is [xi−1; xi; xi+1], that is, the concatenation of the corresponding word
embeddings of the three words. In addition, the position feature (PF) of the word in
the sentence is taken as the input, and PF is the vector representation of the relative
distance between the word and the two entities (e1, e2). For example, the relative
distances between marriage and the two entities John and Mary in Fig. 10.12 are 6
and 4, respectively. In the model, the relative distances can also be mapped into
continuous real-valued vectors. Assuming that the distances between the words
wi and (e1, e2) are di1 and di2 , then PF is the concatenated representation of the
vectors corresponding to the relative distances di1 and di2 : PF=[xdi1

; xdi1
]. The

268 10 Information Extraction

lexcial feature

WF

position feature

PF

⋯convolution

max pooling

sentence feature

representation

Fig. 10.13 Sentence-level feature representation based on convolutional neural networks

concatenation of the word feature WF and the position feature PF can be used as
the final input to the convolutional neural network.

Zeng et al. (2014) found that without using any syntactic and semantic features,
the best relation classification performance can also be achieved with word-level
and sentence-level distributed representations, where the position feature PF was
proven to play a very important role.

10.4.3 Relation Classification Based on Distant Supervision

The previously introduced methods using discrete and distributed features are
both supervised models that suffer from two issues in practical use. First these
supervised models require a manually annotated corpus of entity relations, which
is time-consuming and labor-intensive to create, and the training data size is
usually limited. In addition, the annotated corpus is domain specific, and the
relation classification performance will decrease considerably for out-of-domain
data. Accordingly, researchers resort to the distant supervision method, which can
automatically obtain high-confidence samples from massive unlabeled data and treat
these samples as annotated data. Then, supervised methods can be employed to learn
a relation classification model (Mintz et al. 2009).

Existing open semantic knowledge bases (such as Freebase and HowNet) are
important resources used by distant supervised methods. A large number of entity
relation examples (e1, e2, r) are provided in the semantic knowledge base, such

10.4 Relation Extraction 269

as (John, Mary, spouse). Mintz et al. (2009) extracted 1.8 million entity relation
examples that include 940,000 English entities and 102 relations from Freebase.
Distant supervision uses these instances as seeds to automatically label unlabeled
data.

The basic idea is as follows. For a given entity relation example (e1, e2, r) in the
semantic knowledge base, if a sentence s from the massive unlabeled data contains
the entity pair (e1, e2), then the relation between e1 and e2 in that sentence s is very
likely to be r . Therefore, some distinct features for this relation r can be extracted
from s. Taking the entity relation instance (John, Mary, spouse) as an example, the
entity pair (John, Mary) appears in the unlabeled sentences below:

John and his wife Mary attended the ceremony.
Mary successfully gave birth to a girl, and John became a father on that date.

Here, the distant supervised model will assume that there is a spouse relation type
between the two entities in the two sentences. From these sentences, complementary
features such as various lexicalized contexts and syntactic information can be
extracted to enrich the features used in the original model.

To minimize the impact of noise, the distant supervised model uses a feature
merging technique. For an entity relation instance (e1, e2, r), if there are n sentences
in the unlabeled data including the same entity pair (e1, e2), then the features
extracted from these n sentences are combined and used in combination as an
additional feature. For example, the feature extracted from the sentence John and
Mary are both famous basketball players has nothing to do with the spouse relation.
If the features extracted from this sentence are directly used alone as features, it
will become noise. Feature combination will somewhat lower the influence of the
irrelevant features.

Mintz et al. (2009) proved in experiments that distant supervision could perform
with 67.6% accuracy in relation classification.

10.4.4 Evaluation of Relation Classification

The evaluation of relation classification methods generally focuses on the precision,
recall, and F1 scores. Given a test set, assuming that the manually labeled entity
relation result is R and the automatically recognized result is O , then the precision,
recall, and F1 scores are calculated as follows:

precision = |O ∩ R|
|O| × 100% (10.61)

recall = |O ∩ R|
|R| × 100% (10.62)

270 10 Information Extraction

F1 = 2 × precision × recall

precision + recall
(10.63)

where |O| and |R| denote the number of entity relations in the system output and
the reference, respectively. |O ∩ R| represents the number of entity relations where
the system output matches the reference.

10.5 Event Extraction

An event is a specific occurrence involving participants. An event has several prop-
erties, such as event type, participants, time, location, reasons, consequences, and
so on. Compared to entity recognition and relation classification, event extraction
is a more complicated task, and different types of events correspond to different
structures. For example, the company acquisition event includes acquirer, acquiree,
price, etc. end-position events include position, employer, person, time, etc. The
variability of events makes event extraction a major challenge in the open domain.
In this section, we introduce event extraction tasks in specific domains.

10.5.1 Event Description Template

In the evaluations of event extraction organized by MUC, ACE, and TAC, the
event definition and the event types are slightly different. We use the annotation
standard of ACE 2005, which defines a total of 8 major event types and 33 subtypes.
Contestants are required to train models using the given annotated corpus, use the
trained model to identify specific event types from unseen test data, and finally fill
the slots of predefined event templates.

Each event type corresponds to a template. Table 10.3 lists the event types labeled
by ACE 2005.

An event is usually described within a sentence, in which there is always a
keyword (e.g., born and leave in the examples below) indicating the event types.
Such words are called triggers.

[Andy Mike] was born in [New York] [in 1969].
[On March 22], [Baidu Chief Scientist Andrew] announced on Twitter that he

will leave [Baidu].
The main task of event extraction is to determine the event type and extract the

corresponding elements of this event type. Trigger words are the core elements that
determine the event type, and thus they are the key to event extraction. The event
elements belong to two categories: participants and attributes, which are usually
referred to as event arguments.

The event participants are the entities that are involved in this event and usually
named entities such as persons and organizations. The event attributes consist of

10.5 Event Extraction 271

Table 10.3 Annotated event type in ACE 2005

Event type (major-type) Event type (subtype)

Life Be-Born, Marry, Divorce, Injure, Die

Movement Transport

Transaction Transfer-ownership, Transfer-money

Business Start-Org, Merge-Org, Declare-Bankruptcy, End-Org

Conflict Attack, Demonstrate

Contact Meet, Phone-Write

Personnel Start-Position, End-Position, Nominate, Elect

Justice Arrest-Jail, Release-Parole, Trial-Hearing, Charge-Indict, Sue,
Convict, Sentence, Fine, Execute, Extradite, Acquit, Appeal, Pardon

Table 10.4 Template for the
Be-Born event

Trigger Born

Person-Arg Andy Mike

Time-Arg 1969

Place-Arg New York

Table 10.5 Template for
End-Position event

Trigger Leave

Person-Arg Andrew

Entity-Arg Baidu

Position-Arg Chief Scientist

Time-Arg March 22

two categories: general attributes and event-specific attributes. Since the location,
time, and duration appear in almost all events, such attributes are called general
event attributes. The event-specific attributes are determined by the specific event
type, such as the crime attribute in the Convict event and the position attribute in the
Start-Position event. Considering all participants and attributes, there are a total of
35 different arguments in the annotation system of ACE 2005.

The triggers and arguments for events of each type can be organized and
represented by a template, which can be a universal template or a specific template
related to the event type. The universal template contains 36 slots; one of these needs
to be filled with trigger words, and the remaining slots correspond to 35 different
arguments. Since the event arguments for various types of events are quite different,
and each event type only activates a few of the 36 slots in the universal template,
specific templates are usually adopted for each specific event type.

Tables 10.4 and 10.5 are specific templates for the two events Be-Born and End-
Position, respectively. The specific template corresponding to the remaining event
types can be referred to LDC (2005).

After the templates describing events are determined, the event extraction task
is converted into a slot filling task. That is, it finds the trigger word and the event
arguments and then fills them into the slots corresponding to a specific template.
In addition to event types and event arguments, the overall attributes of an event

272 10 Information Extraction

are often useful in IE. The overall attributes mainly include the following four
categories: polarity (positive or negative), modality (known or unknown), genericity
(specific or universal), and tense (past, present, future, or unspecified).

10.5.2 Event Extraction Method

(1) Pipeline event extraction method

Ahn (2006) proposed a pipeline method for event extraction, which divided event
extraction tasks into four subtasks: (a) trigger detection, that is, to detect the trigger
and determine the event type; (b) argument identification, detecting which entity
mentions and values are arguments of the specific event; (c) attribute assignment,
determining the specific attribute values of the modality, polarity, genericity, and
tense of the event; and (d) event coreference, determining whether different event
mentions refer to the same event. Ahn treats each subtask as a classification problem,
designed corresponding features for each subtask, and then trained the model using
the same classifiers, such as the maximum entropy model and the support vector
machine.

Compared with the latter two subtasks, the first two are more important.
Accordingly, we mainly introduce the methods for the first two subtasks of trigger
detection and argument identification. The main contribution of Ahn’s pipeline
approach lies in its feature design. Therefore, we focus on the features used in Ahn’s
method.

Events are occasionally triggered by multiple words (or phrases), but researchers
find through analysis that more than 95% of the trigger words are single words,
so the detection of trigger words can be simply regarded as word classification.
Furthermore, trigger words are often verbs, nouns, and pronouns. Therefore, trigger
detection is further simplified into the multiclass classification problem of specific
parts-of-speech. There are a total of 34 categories, of which 33 are event types and
the remaining one is a None class, indicating that it is not a trigger for any event.
For example, in the aforementioned examples,AndyMike, 1969, born, andNew York
can be used as trigger candidates. The ideal model can classify Andy Mike, 1969,
and New York into the None class and correctly identify born as the Be-Born event.
To achieve high classification performance, Ahn designed the following features:

(a) Lexical features: including the full word, lowercased word, lemmatized word,
POS tags, depth of a word in the parse tree;

(b) Semantic features: for the detection of trigger words in English, with the help
of WordNet, if the candidate word belongs to the type verbs, nouns, adjectives,
or adverbs and there is a corresponding entry in WordNet, the synset of the first
sense will be regarded as a feature;

(c) Contextual features: including three words before and after the candidate word
and their POS tags;

10.5 Event Extraction 273

(d) Dependency features: if the candidate word is dependent on a certain depen-
dency relationship, then the relation label, the dependent word, the part-of-
speech, and the entity category will all be regarded as features.

According to the above features, training instances can be extracted from the
ACE annotated corpus to optimize the classifier. Through analyzing the ACE data,
it can be found that trigger words account for less than 3% of all words; that is, most
words are not trigger words. As a result, the 34-class classification faces a serious
imbalance problem. To address this issue, a two-step strategy is more appropriate:
the first step is to train a binary classifier to filter out non-trigger words, and the
second step is to train a multiclass classifier to determine which event type the
trigger word belongs to. Experiments have shown that the two-step strategy helps to
achieve better performance.

For argument identification, it is usually assumed that candidate entities such as
name entities, time, and proper nouns have been recognized (can be implemented
using the entity recognition and disambiguation methods introduced in the earlier
section), such as the name Andy Mike, time 1969, and location New York. The
argument identification task can be converted into a multiclassification problem
with 36 types. Since there are 35 argument types in the ACE annotation data, there
are a total of 36 types, including a None type. The argument identification task
can be converted into a multiclassification problem with 36 types. Similar to the
trigger detection task, it also faces a serious class imbalance problem: more than
70% of the candidate entities do not belong to any argument. That is, the None type
occupies more than 70%. In addition, there is another phenomenon that needs to
be addressed. Each event type involves far fewer than 36 types of arguments. For
example, the Be-Born event includes only three arguments. Therefore, the argument
identification task can be converted to a multiclassification problem for specific
event types. For example, after the trigger word born is correctly detected, the event
type is confirmed, and the candidate entities Andy Mike, 1969, and New York can
only be classified into four argument categories (person, time, place, and None).

No matter whether it is a 36-class classification model or a multiclassification
model for specific event types, feature design is still the key component. Ahn
designed the following features:

(a) Event trigger and type features: the trigger word itself, its POS tag, the depth of
the trigger word in the parse tree, and the event type;

(b) Entity head features: entity head word, its POS tag, and its depth in the parse
tree;

(c) Entity determiner if any;
(d) Entity type and mention type: mention types include name, pronoun, and other

nouns; entity types include person, location, organization, time, and so on;
(e) Dependent path between entity head word and trigger word; the dependency

path is a sequence of words, POS tags, and dependency labels.

274 10 Information Extraction

Experiments on the ACE 2005 dataset show that multiclassification models
for specific event types can achieve better classification results than the 36-class
classification model.

(2) Joint event extraction model

Pipeline-based event extraction inevitably faces error propagation problems: the
errors of the previous modules propagate to the subsequent modules and will
continue to be amplified. Meanwhile, the subsequent modules cannot help the
decision process of the previous modules.

For example, if the trigger detection is incorrect, the subsequent argument
identification cannot be correct. At the same time, the results of the argument
identification cannot be employed to help in trigger detection. In fact, trigger words
and event arguments influence each other in many cases. In the following examples,
fired is the trigger for the Attack event in the first example, while in the second
example, fired is the trigger for End-Position. In the first example, if the model
correctly identifies Peter as the victim argument in the Die event, this result can
be helpful to determine fired in the sentence as the trigger for the Attack event.
Similarly, if the Cleveland Cavaliers in the second example is correctly identified
as the NBA club, it will help to predict that fired is the trigger for the End-Position
event.

[Peter] died when [gunmen] fired on the [crowd] with AK-47.
[The Cleveland Cavaliers] fired the head coach [Henry].
In addition, there may be multiple events in the same sentence. As shown in

the first example, there are two events of Attack and Die. The pipeline method
cannot capture the dependencies between triggers and arguments belonging to
different events. Figure 10.14 illustrates the correct results for the trigger words
and event arguments for the two events in the first example. The pipeline method
independently extracts these two events, and it is very likely that Peter cannot be
identified as the goal of the Attack event. Ideally, we should make full use of the
global information to pass the victim argument Peter of the Die event to the Attack
event.

Die Attack

Victim Target

Target Instrument

Agent Attacker

Instrument

Peter died when gunmen fired on the crowd with AK-47

Fig. 10.14 Attack and Death share the two arguments victim and instrument

10.5 Event Extraction 275

To solve the above problems, Li et al. (2013b) proposed a joint labeling algorithm
for both trigger detection and argument identification. The event extraction task
is regarded as a structural learning problem, and the structural perceptron model
is employed to simultaneously identify both triggers and event arguments. This
approach not only captures the dependencies between triggers and arguments across
different events but also leverages global information. The details of this algorithm
are elaborated below.

First, we formalize the joint labeling task. The event types are represented by
L ∪ {∅}, where L contains 33 event types, and ∅ indicates that the candidate word
is not a trigger for any event type. R ∪ {∅} represents the argument set. R contains
35 event arguments, and ∅ indicates that the candidate is not an argument for the
focal trigger word.

The input of the algorithm is a sentence consisting of n words or phrases x =
(x1; x2; · · · ; xn) and a list of candidate arguments ε = {ek}mk=1. For the sentence
in the first example above, n = 10, {ek}mk=1 ={Peter, gunmen, crowd, AK-47}.
Therefore, the input can be expressed by x = 〈

(x1; x2; · · · ; xn), {ek}mk=1

〉
.

The output y of the algorithm can be represented by the following equation:

y = 〈t1, (a11, . . . , a1m), . . . , tn, (an1, . . . , anm)〉 (10.64)

where ti ∈ L ∪ {∅} is the trigger marker (event type) of the i-th word or phrase xi ,
and aij ∈ R ∪ {∅} indicates that the candidate argument ej is an argument of the
event type ti . Take the simplest event Bill Gates founded Microsoft as an example;
the input and correct output are:

x = 〈(Bill Gates, founded,Microsoft), {Bill Gates,Microsoft}〉 (10.65)

y = 〈∅, (∅,∅), Start_Org, (Agent, Org),∅, (∅,∅)〉 (10.66)

where n = 3, m = 2, {ek}mk=1 ={Bill Gates, Microsoft}. In the output result
y, Start_Org indicates that the second word founded is a trigger belonging to the
Start_Org event. Agent indicates that Bill Gates is the founder and Org indicates
that Microsoft is the company founded in the Start_Org event. The goal of the joint
labeling algorithm is to accurately generate the result y for any x, which can be
solved by the following objective function:

y = argmax
y ′∈Y (x)

W · F (x, y ′) (10.67)

where F (x, y ′) represents a feature vector and W is a corresponding feature weight.
The feature vector can be defined as the features in the pipeline method and some
global features. The parameter W can be optimized based on a perceptron model
with an online update algorithm. If z is the gold result on x, and y is the model
result, then parameter W can be updated by the following formula:

W = W + F (x, z) − F (x, y) (10.68)

276 10 Information Extraction

Algorithm 7: Parameter training algorithm for joint event extraction

Input : Training Dataset D = {xi , zi}Ni=1, Maximum iteration T .
Output: Feature weight parameter W .

1 #Initialization
2 W = 0
3 for t = 1, . . . , T do
4 #Online update for each training instance.
5 foreach (x, z) ∈ D do
6 y = beamSearch(x, z,W)

7 #Parameter update
8 if y
= z then
9 W ← W + F (x, z1:|y|) − F (x, y)

10 end
11 end
12 end

The detailed training procedure is given in Algorithm 7 (Huang et al. 2012).
For each training instance (x, z) in the training dataset D, the model predicts

result y for x using a beam search algorithm. If the predicted output y is inconsistent
with the gold result z, the parameter W is updated using a perceptron algorithm. This
training process can be repeated T times on the training dataset D. The beam search
algorithm is the core component, and the details can be found in Algorithm 8.

The beam search algorithm initializes with an empty stack B and then focuses on
each position of the input sentence from left to right (lines 2–3 in the algorithm). For
the word or phrase xi to predict, we enumerate the possible results of being a trigger
word and retain the best K candidates (lines 5–6). If this is the parameter training
process, it is necessary to compare whether the current model output matches the
gold result. If not, the process terminates early (lines 8–9). After candidate trigger
prediction, we classify the candidate arguments (lines 12–22): for each candidate
argument ek , examine all of the trigger candidates in the stack B (line 14). If xi is
the trigger word, put all possible argument types into the buffer (line 19) and retain
the best K candidates (line 22). Lines 23–24 are similar to lines 8–9. The algorithm
iterates until the last position of the sentence. Finally, the model outputs the best
prediction in stack B (line 28).

(3) Event extraction model based on distributed representation

The joint event extraction method not only considers the relationship between
trigger detection and argument classification but also fully exploits the dependency
information between multiple events. However, similar to all methods based on
discrete features, the joint event extraction model is also unable to capture the
semantic similarity between words, and it is difficult to utilize the deep semantic
features on the sentence level. Therefore, joint event extraction delivers limited
performance.

10.5 Event Extraction 277

Algorithm 8: Beam search algorithm for joint event extraction

Input : Sentence and candidate event element x = 〈
(x1, x2, . . . xn), {ek}mk=1

〉
; real label z in

training procedure; beamSize k, event type set L ∩ {∅}, event argument set R ∩ {∅}.
Output: Optimal prediction sequence of x.

1 #Set storage space for beam, initialized with empty
2 B ← [ε]
3 for i = 1, . . . , n do
4 #Trigger word prediction
5 buf ← {y′♦l|y′ ∈ B, l ∈ L ∪ {∅}}
6 B ← Kbest(buf)
7 #Early update
8 if z1:ti /∈ B then
9 return B[0]

10 end
11 #Argument prediction
12 foreach ek ∈ {ek}mk=1 do
13 buf ← ∅

14 foreach y′ ∈ B do
15 buf ← buf ∪ {y′♦∅}
16 #xi is trigger word

17 if y
′
ti

= ∅ then
18 #Consider all argument types
19 buf ← buf ∪ {y′♦r|r ∈ R}
20 end
21 end
22 B ← Kbest(buf)
23 if z1:aik

/∈ B then
24 return B[0]
25 end
26 end
27 end
28 return B[0]

In recent years, an increasing number of methods based on distributed feature
representation have been employed for event extraction tasks, and they have proven
to be much better than methods using discrete features. The main idea behind
these is that distributed real-valued vectors are first used to represent words to
overcome sparsity problems and capture semantic similarities between words. Then,
deeper and global features are further learned. Finally, the classification algorithm
is utilized to perform the trigger detection and argument classification tasks.

This section takes the method proposed in Chen et al. (2015b) as an example to
introduce the application of distributed feature representations in event extraction
tasks. From the perspective of machine learning, the method based on distributed
representations also follows the data-driven methodology for event extraction and
continues to decompose this task into trigger detection and argument classification.
Moreover, the two cascaded subtasks are both considered as a multiclassification

278 10 Information Extraction

Peter

died

when

gunmen

fired
on

the

crowd

with

AK−47

Word Embedding Lexical Distributed Representation Argument Classification

Sentence Distributed Represenation

Sentence Feature Convolution Dynamic Pooling

Fig. 10.15 Argument classification model based on distributed feature representation

problem. Thus, the same neural network architecture can be employed for each
subtask.

Compared with the trigger detection task, the event argument classification task
is more complicated. Therefore, we mainly introduce the methods of distributed
feature representation in the argument classification task and then discuss the model
adaptation required for the trigger detection task.

We assume that the event is expressed by a sentence. Once the trigger word t is
detected, the argument classification task aims to determine whether an argument
candidate is a true argument of the trigger t and further decide which type of
argument. Suppose we now need to classify the argument type of crowd with respect
to the trigger fired for the example sentence introduced in the previous section.
Figure 10.15 shows the flow chart of the process of argument classification for this
example.

As shown in Fig. 10.15, the argument classification task is divided into three
parts. The first part is the word embedding, which maps each word into a low-
dimensional real-valued vector. The second part is the distributed representation
of lexical and sentence-level features, including (a) distributed representations
for combinations of different levels of lexicalized features and (b) distributed
representations of global features at the sentence level. The third part is the argument

10.5 Event Extraction 279

classification module that determines the type of argument candidate based on
lexical and sentence-level distributed representations.

Word embedding is the foundation of the whole process. Due to the limited
scale of the training data for event extraction, it is difficult to obtain high-quality
word embeddings using limited annotated data. Therefore, word embeddings can be
pretrained on large-scale unlabeled monolingual data, e.g., Wikipedia pages. In the
previous chapter of this book, we introduced several efficient methods to learn word
embeddings, such as CBOW and skip-gram. These pretrained word embeddings can
be further fine-tuned together with optimizing the model, as shown in Fig. 10.15.

The second part is the core of the argument classification model. After each word
in the sentence is mapped into a low-dimensional real-valued vector, we will learn
two types of feature representations, namely, lexicalized and sentence-level features.
For the lexicalized features, we model the context centering upon the trigger word
t and the candidate event argument e. Specifically, if window size Kl is used, the
word embeddings of t , e, and the Kl words before and after them are concatenated to
form a long vector representation Rl , serving as the lexicalized distributed features.

Since the local context cannot capture global information, it is easy to ignore
important clues. For example, in Fig. 10.15, if the context window Kl = 1, the
indicative information AK-47 cannot be contained in the context of the argument
candidate crowd. Therefore, it is necessary to learn the global sentence-level
features. Convolutional neural networks are typically employed for sentence rep-
resentation learning and have been successfully applied to tasks such as text
classification, sentiment analysis, and machine translation. However, classical
convolutional neural networks are not suitable for direct application to the argument
classification task because there may be multiple trigger words and candidate
arguments in a sentence. The convolutional neural network does not model position
information, so it is difficult to obtain a global sentence representation that is
sensitive to trigger words and candidate arguments. To address this issue, Chen
et al. (2015b) proposed a dynamic convolutional neural network model, as shown in
Fig. 10.15. The dynamic convolutional neural network is divided into three modules:
1© surface feature input; 2© convolutional operation; 3© dynamic pooling.

Surface features include word embeddings, relative position information, and
event types. For the i-th word wi in the sentence, we first obtain the corresponding
word embedding xi ∈ R

dw . Then, we calculate the distance disit between wi and the
trigger word t and the distance disie between wi and the candidate event argument
e. For example, in Fig. 10.15, the relative distance between the word gunmen and
the trigger word fired is 1, and the distance between gunmen and the candidate
argument crowd is 4. The distances are then mapped into continuous vectors xit

and xie ∈ R
dd . Next, the event type corresponding to the trigger word t is mapped

into a vector xc ∈ R
dc . Finally, xi , xit , xie, and xc are concatenated as the input

Li ∈ R
d corresponding to the i-th word wi , where d = dw + 2 × dd + dc. Given a

sentence s containing n words s = w1 · · · wi · · · wn, the surface feature input is an
n × d matrix L1:n.

The convolutional operation aims to summarize the global semantic information
from the surface features L1:n with filters. A filter fk ∈ Rh×d scans from the first

280 10 Information Extraction

word to the last word of the sentence at the pace of a window including h words,
and each window Li:h+i−1 leads to an output value.

vki = f (W k · Li:h+i−1 + bk) (10.69)

where W k and bk are weight and bias, respectively. f is a nonlinear activation
function. By traversing each window, fk will obtain a (n−h+1) dimensional vector
vk = [vk1 , . . . , vki , . . . , vkn−h+1]. If K filters are used, a matrix of K × (m − h + 1)

dimensions will be obtained. Since n is the length of a sentence, the dimensions
of the resultant vectors will vary for sentences of different lengths. Thus, a pooling
operation is required.

Max pooling and average pooling are the most commonly used pooling opera-
tions. Max pooling selects the largest element from the vector vk as a typical feature.
Since conventional max pooling is insensitive to positions, it is difficult to reflect
the contributions of the trigger word and the candidate arguments. As a result, the
pooling method needs to be adapted. The dynamic max pooling method is proposed
for the event extraction task, as it is a pooling method that is sensitive to the positions
of trigger words and candidate arguments. As shown in Fig. 10.15, the vector vk is
dynamically divided into three parts according to the trigger word and the candidate
argument: vk,1:e, vk,e+1:t , vk,t+1:n−h+1, where e and t represent the position of the
candidate argument and the trigger word, respectively. If the trigger word is in front
of the candidate event argument, then vk,1:t , vk,t+1:e, vk,e+1:n−h+1. Finally, we can
select the maximum output from the three vectors vk,1:e, vk,e+1:t and vk,t+1:n−h+1
and obtain a three-dimensional vector. The dynamic pooling output of the K filters
is concatenated, and finally, a vector with a fixed dimension Rs ∈ RK×3 is obtained.
We can see that each dimension in the vector is sensitive to the trigger word, and the
candidate argument and the vector can better represent the sentence semantics.

The third part of the argument classification model uses a feed-forward neural
network, which takes as input the representation [Rl; Rs] obtained by concate-
nating lexical features Rl and sentence-level features Rs . The softmax function is
employed to calculate the probability distribution of the candidate argument e given
the trigger word t .

Returning to the trigger detection task, we can use the same framework as shown
in Fig. 10.15, but the model is simpler. Unlike event argument classification, in
which the input includes a sentence, a trigger word, and a candidate argument,
the input of the trigger detection task is a sentence and a candidate trigger word.
Therefore, the learning of lexicalized and sentence-level features in the second part
of Fig. 10.15 needs to be adjusted accordingly. For lexicalized feature learning, it is
only necessary to take the words centering on the candidate trigger as the context.
For sentence-level feature learning, dynamic pooling only takes the candidate
trigger word as the segmentation point and chooses the maximum values from the
left and right convolution vectors, respectively. The classification model of the third
part in Fig. 10.15 remains unchanged.

Experiments show that the event extraction model based on distributed feature
representation can achieve much better performance.

10.6 Further Reading 281

10.5.3 Evaluation of Event Extraction

The general method for evaluating the event extraction model is as follows. Given a
test set Testevent, human experts correctly label the events in Testevent, and the results
serve as reference Refevent. The event extraction model M automatically extracts
events on the test set Testevent to obtain the results Modelevent. By comparing the
prediction result Modelevent with the reference Refevent, the precision, recall, and F1
score can be calculated.

Almost all the methods divide the event extraction task into two steps, trigger
detection and event argument classification, and further divide trigger detection
into two subtasks, trigger word location and event type classification; and event
argument classification is also divided into argument identification and argument
classification. Therefore, an objective evaluation generally tests these four subtasks
separately.

If the model correctly locates the trigger word in the event description, the
trigger word is correctly recognized. Given the trigger word, if the event type is
also correctly predicted, the result of the event type classification is correct. If a
candidate argument is correctly identified as the associated attribute of the trigger
word, the event argument identification is correct. If the correctly identified event
argument is further predicted to be the correct type, the final argument classification
result is correct. The precision, recall, and F1 score can be easily calculated based
on these results.

10.6 Further Reading

In summary, IE includes multiple interdependent tasks, such as entity recognition,
relation classification, and event extraction. Currently, this community is still
dominated by cascaded methods that mainly focus on specific domains.

From the perspective of methods, the deep learning method has become the
dominant model for each subtask of IE. There is a trend toward exploring more
effective models. For example, Miwa and Bansal (2016) and Peng et al. (2017) used
more expressive neural networks to model relation extraction, such as TreeLSTM
and GraphLSTM. Narasimhan et al. (2016) and Wu et al. (2017) optimized IE
models with advanced methods such as reinforcement learning and adversarial
learning. To reduce error propagation, the joint modeling of two or more tasks
is also a focus of many researchers. For example, the joint modeling of entity
recognition and relation classification (Li and Ji 2014; Zheng et al. 2017) formalizes
these two tasks into a unified sequence labeling problem. To utilize more contexts,
global optimization and inference for IE tasks has also become a potential research
direction (Zhang et al. 2017).

From the view of data, the training data for each task in IE is very limited, and
it is difficult to support sophisticated machine learning models. The question of

282 10 Information Extraction

how to automatically generate large-scale high-quality annotated training data for
IE has become a hot research topic, and a popular approach proposed in recent
years is the distant supervision method based on a knowledge base (Mintz et al.
2009; Riedel et al. 2010; Hoffmann et al. 2011; Surdeanu et al. 2012; Zeng et al.
2015; Lin et al. 2016; Chen et al. 2017b; Luo et al. 2017). However, the distant
supervision method faces the problem of noisy and erroneous data. For example, not
all sentences containing Yaoming and Yeyi indicate a spouse relationship. Therefore,
it is challenging to reduce the influence of noise as much as possible. Recently,
some researchers have proposed a multi-instance learning method based on the at
least one positive example hypothesis (Zeng et al. 2015) and another model based on
the selective attention mechanism (Lin et al. 2016). In addition to the use of distance
supervision methods in relation classification, this method has also been introduced
into event extraction tasks, producing a large number of annotated event data (Chen
et al. 2017b). In addition, an efficient crowdsourcing approach has also become a
reasonable strategy for expanding training data (Abad et al. 2017).

From the perspective of application, academic research still mainly concentrates
on IE technology in specific domains. However, in real applications, especially
in the era of big data, the IE technology of the open type and open domain is
more demanding. Therefore, research on open domain IE has received increasing
attention. Open domain entity extraction tasks focus on entity expansion technology
in open text (data in Internet) (Pennacchiotti and Pantel 2009; Jain and Pennacchiotti
2010). Open domain relation extraction focuses on mining entity relations without
predefined relation types (Banko et al. 2007; Mausam et al. 2012; Angeli et al. 2015;
Stanovsky and Dagan 2016). Event aggregation and new event prediction focus on
the aggregation of multiple events and new event detection without predefined event
types (Do et al. 2012; Huang and Huang 2013).

Exercises

10.1 Named entity recognition (NER) is usually performed as a sequence labeling
task based on the character level. Please comment on the advantages and disadvan-
tages of character-based NER compared to word-based NER.

10.2 Please identify and analyze the reason why the semisupervised method could
improve performance in NER.

10.3 In the entity disambiguation task, the entity set is usually known but incom-
plete in real applications. How can entity disambiguation be performed in this
scenario? Could clustering-based methods and linking-based approaches be com-
bined in a unified framework?

10.4 Please discuss the reasons why position embeddings are helpful in relation
classification methods using distributed features.

10.6 Further Reading 283

10.5 Please comment on the challenge of distance supervision for relation classi-
fication and compare the related work addressing the noise resulting from distant
supervision.

10.6 Event extraction is usually based on the assumption that the event occurs in
a sentence. Please point out the challenges of the event extraction task if the events
occur across the sentences.

Chapter 11
Automatic Text Summarization

11.1 Main Tasks in Text Summarization

Automatic text summarization aims to compress the input texts and generate a
condensed summary. Generally, the short summary must satisfy the requirements
of sufficient information by covering the main content of the original text and
providing low redundancy and high readability. It has become an important means
of data mining, information filtering, extraction, and recommendation.

In 1958, H.P. Luhn first proposed the idea of automatic summarization (Luhn
1958), which opened the prelude to the study of automatic text summarization.
With the upsurge of the information age, there is an urgent need for a technology
that can help users obtain useful information efficiently and quickly and enable
them to understand the gist of news events in a short time to reduce reading time.
This demand has promoted the rapid development of automatic summarization
technology, moving it gradually toward maturity. Since 2000, the evaluation of text
automatic summarization technology (DUC1, TAC2 etc.) organized by the National
Institute of Standards and Technology (NIST) has further accelerated research into
this technology, attracting the attention of more researchers and entrepreneurs.

Automatic text summarization technology can be divided into different types
from different perspectives. Considering the function of the summary, it can be
divided into indicative, informative, and critical summarizations. The indicative
summarization provides only key topics of the input document (or collections of
documents). It aims to help users decide whether they need to read the original
text, such as through title generation. Informative summarization provides the main
information of the input document (or collections of documents) so that users do
not need to read the original text. Critical summarization provides not only the main

1https://duc.nist.gov./.
2https://tac.nist.gov/about/index.html.

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2_11

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0100-2_11&domain=pdf
https://duc.nist.gov./
https://tac.nist.gov/about/index.html
https://doi.org/10.1007/978-981-16-0100-2_11

286 11 Automatic Text Summarization

information of the input document (or document sets) but also key comments on the
original text.

Based on the number of input documents, automatic summarization can be
divided into single-document and multidocument summarization. Considering the
relation between input and output languages, automatic summarization can be
divided into monolingual, crosslingual, and multilingual summarization. The input
and output of monolingual summarization are in the same language, while the input
of crosslingual summarization is in one language (e.g., English), and the output is
in another (e.g., Chinese). Multilingual summarization takes documents in multiple
languages as input (e.g., English, Chinese, and French) and produces the summary
in one of the input languages (e.g., English).

Considering the different applications, automatic summarization technology
can be divided into generic summarization and query-based summarization. The
former summarizes the main points of the original author, while the latter provides
content closely related to the user’s query. Based on the methods generating the
summary, automatic summarization technology can also be divided into extraction-
based summarization, compression-based summarization, and abstraction-based
summarization. The extraction-based method produces summaries by extracting
important sentences from the original text, and the compression-based approach
summarizes the original text by extracting and compressing important sentences,
while abstraction-based summarization generates final outputs by rewriting or
reorganizing the content of the original text.

Figure 11.1 gives the basic framework of automatic text summarization technol-
ogy. As shown in the figure, the final summaries can be titles, short summaries, or
long summaries based on the length of the required output.

Since multidocument summarization involves a much broader range of technol-
ogy, it has always attracted the most concern and offered the most challenging
research direction in the field of automatic summarization. As noted in the pre-
vious definition, multidocument summarization aims to compress the information
expressed by multiple documents into a summary according to a compression ratio.
From the application point of view, when searching information on the Internet, the
search engine usually returns hundreds of pages on the same topic. If these pages

si
n
g
le

d
o
cu

m
en

t

m
u

lt
ip

le

d
o
cu

m
en

ts

user’s query

extraction-based model

compression-based model

abstraction-based model

title summary

short summary

long summary

monolingual or

multilingual summarization models

Fig. 11.1 The basic framework of automatic text summarization

11.2 Extraction-Based Summarization 287

are transformed into a concise summary that can reflect the main information, it
will greatly improve the efficiency with which users can retrieve information. In
addition, several news agencies often report events on the same topic, and the same
agency will usually report a series of events on the same topic. If we can extract
a concise summary of these highly relevant documents, it will effectively reduce
the cost of information storage and allow users to save time while still knowing
the events. These are the typical applications of multidocument summarization
technology.

In contrast, single-document summarization can be regarded as a special case
of multidocument summarization. In recent years, due to the availability of a large
number of annotated data, single-document summarization has gradually attracted
increasing attention.

11.2 Extraction-Based Summarization

Extraction-based automatic summarization directly extracts sentences from the
original text to generate a summary. Although this seems to deviate from the essence
of summarization, it is simple and effective in practical applications, and summary
sentences can also maintain fluency and readability. Taking multidocument auto-
matic summarization as an example, this chapter will introduce the basic idea and
method for implementing of extraction-based automatic summarization.

The task of multidocument automatic summarization can be formalized as
follows: given a document set D = {Di}, i = 1, · · · , N . Each document Di ={
Si1 , · · · , Sij , · · · , SiM

}
consists of a sequence of iM sentences. Extraction-based

summarization chooses K sentences from the document to form a summary, where
K is the number of sentences manually set or is obtained through the compression
ratio. In many automatic summarization systems, the number of sentences K can
be different as long as the final summary is controlled within a limited number of
words (e.g., 100 words for English summaries).

From the above formal description, we can see that three key steps are needed to
complete automatic summarization: 1© finding the most important and informative
candidate sentences, 2© minimizing the redundancy of candidate sentences, and 3©
generating a summary according to a compression ratio or summary length require-
ments based on sentence order constraints. In the first step, we need to design an
evaluation method to estimate the importance of sentences, and in the last two steps,
we need to construct a constraint-based summary generation algorithm.

11.2.1 Sentence Importance Estimation

Since Luhn proposed automatic summarization technology in 1958, there have
been many algorithms developed to estimate the importance of sentences. Based

288 11 Automatic Text Summarization

on whether the algorithm relies on manually labeled data, they can be divided into
unsupervised and supervised algorithms.

(1) Unsupervised algorithms

Unsupervised algorithms can be divided into three categories: (a) word
frequency-based algorithms, (b) document structure-based algorithms, and (c)
graph-based algorithms.

(a) Word frequency-based algorithm

Words are the most commonly used features in sentence importance estimation
algorithms. The basic assumption is that the more frequently a word appears in
a document, the more important it is. If a sentence contains more high-frequency
words, the more important it is. Based on this assumption, the following formula
can be used to calculate the importance score of the sentence Sij :

Score
(
Sij

) =
∑

wk∈Sij
Score (wk)

∣∣{wk|wk ∈ Sij

}∣∣ (11.1)

Score (wk) = tfwk = count (wk)∑
w count (w)

(11.2)

Score
(
Sij

)
denotes the importance score of the j -th sentence in the i-th

document, and count (wk) denotes the number of times it appears in the whole
document Di .

∑
w count (w) is the occurrence of all words in the entire document.

Since some words, such as in, this, and for, make no contribution to evaluating the
importance of sentences, in practice, they are usually removed as stop words (see
Chap. 2). Score (wk) is usually called the term frequency (TF).

This method is simple and easy, but it has a serious defect: some words are not
important for expressing the meaning of a sentence, but they frequently appear in
different documents and sentences, and their scores are high in the TF algorithm. To
overcome this shortcoming, inverse document frequency (IDF) is widely used:

idfwk = log
|D|∣∣{j |wk ∈ Dj

}∣∣ (11.3)

idfwk is a measure of word universality. If idfwk is larger, the denominator in formula
(11.3) is smaller, indicating that fewer documents contain the word, then the word
is more important for those specific documents.

It can be seen that both tfwk and idfwk can only represent one aspect of the
importance of the word wk . To more comprehensively describe the importance of
the word wk to document Sij , the TFIDF calculation method is employed by using
the following formula to calculate the final score Score (wk):

Score (wk) = tf_idfwk
= tfwk × idfwk (11.4)

11.2 Extraction-Based Summarization 289

The calculation of the sentence importance score given in formulas (11.1) to
(11.4) above is simple, but it cannot model the coverage of the final summary.
To overcome this shortcoming, topic analysis methods such as the latent semantic
analysis (LSA) method (Landauer 2006) and the latent Dirichlet allocation (LDA)
model (Blei et al. 2003) have been proposed. For a detailed description of such
methods, please see Chap. 7 of this book.

In addition, some clue words (e.g., in a word, in short) and named entities are
often used as informative features.

(b) Document structure-based algorithm

In addition to content features, document structure clues can often indicate the
importance of sentences. Among them, the position of a sentence in the document
and the length of the sentence are two common document structure features
considered (Edmundson 1969). Some studies have shown that the first sentence in
each paragraph can best reflect and express the information of the whole paragraph,
especially in English critical articles. Thus, sentence position in the document is
very important. In many studies, the importance of sentence position is calculated
by the following formula:

Score
(
Sij

) = n − j + 1

n
, (11.5)

where j denotes the position of the sentence Sij in the document and n represents
the number of sentences in the document.

(c) Graph-based algorithm

The importance of a sentence is reflected not only by the internal words of
the sentence but also by the relationship between it and other sentences in the
documents. The more other sentences there are that support the importance of this
sentence, the more important this sentence is. This idea comes from the PageRank
algorithm: if a page is linked from thousands of pages or several important pages,
this page is important (Page and Brin 1998).

The PageRank algorithm is a ranking model based on a directed graph. For a
directed graph G (V,E), V is a set of nodes in which each node represents a web
page, and E is a set of directed edges where each edge e = (

Vi, Vj

)
indicates that

it can jump from web page Vi to web page Vj . For a node Vi , In (Vi) denotes the
set of pages linked to Vi , and |In (Vi)| is the in-degree of Vi . Out (Vi) denotes the
web pages that Vi can link to, and |Out (Vi)| is the out-degree of Vi . The weight of
each page indicates the importance of that page. The weight can be calculated by
the following formula:

S (Vi) = 1 − d

N
+ d ×

∑

Vj∈In(Vi)

1∣∣Out
(
Vj

)∣∣S
(
Vj

)
(11.6)

where d ∈ [0, 1] is the damping factor that assigns Vi a prior probability of jumping
to any other node Vj from Vi . d is usually set to 0.85 in page ranking. The graph-

290 11 Automatic Text Summarization

based ranking algorithm assigns a random weight to each node during initialization
and then iteratively calculates the formula (11.6) until the weight difference of
each node between two successive iterations Sk+1 (Vi) − Sk (Vi) is smaller than
a predefined threshold.

Graph-based sentence importance estimation algorithms are an extension of
PageRank, for example, the LexRank algorithm (Erkan and Radev 2004) and the
TextRank algorithm (Mihalcea and Tarau 2004). The difference is that in the
LexRank algorithm, the directed graph G (V,E) becomes the undirected graph,
and each edge of the graph e = (

Vi, Vj

)
carries a weight Wij . In graph G (V,E),

V denotes the set of sentences, and E denotes the set of undirected edges. If there is
e = (

Vi, Vj

) ∈ E, then the two sentencesVi and Vj have relevance or similarity. The
degree of correlation or similarity is represented by Wij , which can be computed in
multiple ways. We introduce a common cosine similarity method based on TFIDF
to calculate the similarity of two sentences:

Wij =

∑
w∈Vi,Vj

(tf_idfw)2

√ ∑
x∈Vi

(tf_idfx)2 ×
√ ∑

y∈Vj

(
tf_idfy

)2

where w ∈ Vi, Vj denotes a word that simultaneously occurs in Vi and Vj . Given a
weighted undirected graph G (V,E), the importance score of each node (sentence)
is calculated by the following formula:

S (Vi) = 1 − d

N
+ d ×

∑

Vj∈adj(Vi)

Wij∑

Vk∈adj(Vj)

Wkj

S
(
Vj

)
(11.7)

where Vj ∈ adj (Vi) denotes the set of nodes adjacent to Vi , i.e., the set of nodes
with edges linked to Vi . The initial value of the node importance score and the
condition of convergence are similar to those of PageRank. The TextRank algorithm
(Mihalcea and Tarau 2004) and LexRank algorithm have the same basic idea, but the
main difference is the way to calculate the similarity between the two sentences. The
TextRank algorithm uses the word overlap between two sentences as the similarity
metric

Wij =
∣∣{wk|wk ∈ Vi & wk ∈ Vj

}∣∣

log |Vi | + log
∣∣Vj

∣∣

where
∣∣{wk|wk ∈ Vi & wk ∈ Vj

}∣∣ denotes the number of words co-occurring in two
sentences; |Vi | and

∣∣Vj

∣∣ are the number of words in sentences Vi and Vj . We provide
a specific example to illustrate the LexRank algorithm. There are three documents
on the same topic, and each document includes multiple sentences, as shown in
Table 11.1. d1s1 indicates the first sentence in the first document, d2s2 is the second

11.2 Extraction-Based Summarization 291

Table 11.1 Sentence set of multiple documents

Number ID Sentences

1 d1s1 On Tuesday, January 10, FIFA announced that the World Cup had expanded
to 48 teams for the first time since 1998. In the 87-year history of the World
Cup, the rules and schedules had changed several times. The number of
participating teams had increased from 16 to 48

2 d1s2 Gianni Infantino has been in charge of FIFA for nearly a year. At the
beginning of his tenure, he advocated for reform. The World Cup expansion
is his biggest reform in nearly a year

3 d1s3 He put forward the idea of expanding the participating teams, which shares
his previous motivation for enlarging the number of teams in the European
Cup. He did not want the teams who participated in the World Cup finals to
always be the same faces. He hoped that more marginal teams could enter
the finals and experience the joy of the football festival

4 d2s1 Yesterday, the FIFA Council formally voted on the expansion plan. No
surprise, the plan of 48 teams divided into 16 groups was approved. The
official twitter of FIFA immediately announced the news

5 d2s2 Since Infantino was elected president of FIFA in February 2016, the
expansion of the World Cup has become imperative. The number of teams
and the competition rules are the only uncertainty

6 d2s3 At the beginning, Infantino proposed to expand the Word Cup finals to 40
teams. On this premise, he proposed two competition systems, one is
divided into eight groups, each of which has five teams, and the other is
divided into ten groups, each of which includes four teams

7 d2s4 Two months later, Infantino put forward a new plan that includes 48 teams
divided into 16 groups, each of which includes three teams. The top two of
the group will qualify, and then they go through the knockout rounds to
decide the champion

8 d2s5 The World Cup teams will be expanded from 32 to 48, which means that
nearly a quarter of FIFA members will be able to participate in the future
World Cup. Some football-weak countries that could not compete in the
World Cup in the past will now have the oppotunity

9 d2s6 “There is no better way than getting their national team involved in the
World Cup to promote football in the first place.” Infantino said before

10 d3s1 On January 10, Beijing time, FIFA announced that from the start of the 2026
World Cup, the number of teams will be increased from 32 to 48.

11 d3s2 Ultimately, FIFA official announced that after 2026, the teams are divided in
to 16 groups in the group stage. Each group includes three teams and will
have a single round-robin competition. The top two teams will enter the next
round and then go through to the knockout rounds. All the matches will be
completed in 32 days

12 d3s3 Although parties had different opinions before, it was in the interest of more
FIFA members to expand the teams, which was also consistent with
Infantino’s promise and statement when he was elected president of FIFA
last year. Therefore, this expansion reflects the general trend.

292 11 Automatic Text Summarization

d1s1

d1s2

d1s3

d2s1

d2s2

d2s3

d2s4

d2s5

d2s6

d3s1

d3s2

d3s3

[0.103]

[0.066]

[0.076]

[0.085]

[0.078]

[0.093]

[0.101]

[0.083]

[0.049]

[0.101]

[0.097]

[0.069]

Fig. 11.2 An undirected graph built from multidocument sentences

sentence in the second document, and so on. Figure 11.2 shows an undirected graph
based on these 12 sentences from three documents. TFIDF similarities between
sentences are calculated and provided in Table 11.2. The graph-based LexRank
algorithm iteratively computes equation (11.7) until convergence. This leads to the
final importance score of each sentence, as the values shown in the brackets of
Fig. 11.2. Among them, the sentence with the highest score is d1s1, which is in line
with our human judgment. Obviously, the graph-based algorithm is very effective.

(2) Supervised algorithms

There are a large number of summaries generated by specialists in many application
scenarios, especially in single-document summarization. Almost every academic
paper has a summary given by the author. Obviously, given the labeled training
data, sentence importance estimation can not only employ valuable features (e.g.,
location, word frequency, and graph-based ranking score) but also explore machine
learning models (e.g., SVM, log-linear model, and neural networks).

For supervised algorithms, the best reference summaries should consist of
sentences that appeared in the original document, and each sentence in the document
is assigned a score between 0 and 1, indicating the degree to which that sentence that
should be included in the summary, namely, the importance score of the sentence.
Generally, a document contains dozens or hundreds of sentences, and sometimes

11.2 Extraction-Based Summarization 293

T
ab

le
11
.2

T
he

co
si

ne
si

m
il

ar
it

y
be

tw
ee

n
di

ff
er

en
ts

en
te

nc
es

’
T

FI
D

F
va

lu
es

1
0.

12
9

0.
14

1
0.

12
1

0.
18

7
0.

10
6

0.
13

7
0.

17
3

0.
07

6
0.

47
1

0.
26

6
0.

15

0.
12

9
1

0.
23

9
0.

04
0.

11
4

0.
03

9
0.

03
2

0.
08

6
0.

08
5

0.
13

7
0.

10
9

0.
12

0.
14

1
0.

23
9

1
0.

04
4

0.
10

1
0.

09
4

0.
02

7
0.

16
7

0.
05

2
0.

14
0.

14
4

0.
19

9

0.
12

1
0.

04
0.

04
4

1
0.

15
2

0.
26

2
0.

36
5

0.
19

7
0.

07
1

0.
07

2
0.

13
8

0.
09

6

0.
18

7
0.

11
4

0.
10

1
0.

15
2

1
0.

15
6

0.
19

6
0.

10
9

0.
08

8
0.

09
1

0.
02

9
0.

17
6

0.
10

6
0.

03
9

0.
09

4
0.

26
2

0.
15

6
1

0.
49

8
0.

11
4

0.
08

2
0.

11
9

0.
21

4
0.

05
1

0.
13

7
0.

03
2

0.
02

7
0.

36
5

0.
19

6
0.

49
8

1
0.

13
5

0.
08

4
0.

14
2

0.
28

2
0.

02

0.
17

3
0.

08
6

0.
16

7
0.

19
7

0.
10

9
0.

11
4

0.
13

5
1

0.
15

2
0.

20
6

0.
09

1
0.

06
9

0.
07

6
0.

08
5

0.
05

2
0.

07
1

0.
08

8
0.

08
2

0.
08

4
0.

15
2

1
0.

04
0.

02
1

0.
04

3

0.
47

1
0.

13
7

0.
14

0.
07

2
0.

09
1

0.
11

9
0.

14
2

0.
20

6
0.

04
1

0.
36

9
0.

12
9

0.
26

6
0.

10
9

0.
14

4
0.

13
8

0.
02

9
0.

21
4

0.
28

2
0.

09
1

0.
02

1
0.

36
9

1
0.

16
2

0.
15

0.
12

0.
19

9
0.

09
6

0.
17

6
0.

05
1

0.
02

0.
06

9
0.

04
3

0.
12

9
0.

16
2

1

294 11 Automatic Text Summarization

more, so it is clearly impractical for experts to assign each sentence a specific impor-
tance score. Human-generated summaries are usually not exactly the sentences from
the documents, and so automatically transforming manually produced summaries
into ideal training data suitable for extraction-based summarization becomes an
important problem to be solved for supervised algorithms.

Given the set of (Doc, Sum), one can assign a Boolean value of 0 or 1 or a
real-valued number between 0 and 1 to each sentence in Doc = {s0, s1, · · · , sn}
according to the similarity between it and the reference summary Sum. If a Boolean
value is given, the sentence importance estimation becomes a classification problem.
If a real-valued number is given, it is transformed into a regression problem. In
fact, regardless of the type of value assigned, a sentence is scored to calculate
the similarity between si and the reference summary Sum. Many methods can
be employed to measure the similarity between two sentences, such as the edit
distance and concise distance based on distributed representations. According to
the similarity matching algorithm, a sentence si will obtain a similarity score for
its similarity with each sentence in Sum. The highest score can be regarded as
the final score of the correlation between si and Sum. If only a Boolean value is
needed, we check whether the score of si is greater than the predefined threshold. If
it is larger than the threshold, 1 will be assigned, otherwise, 0. After preprocessing,
the final training data can be obtained: document Doc = {s0, s1, · · · , sn} and its
corresponding sentence score SenLabel = {sl0, sl1, · · · , sln}.

Taking the Boolean value as an example, the sentence importance estimation
problem is transformed into a sequential labeling task. Given a large number of sets
of (Doc, SenLable), a classifier F is learned to predict a Boolean value tag for each
sentence in the new document Doc′ = {

s′
0, s

′
1, · · · , s′

n

}
, and the probability that the

tag is true will be taken as the importance of the sentence. Next, we introduce two
algorithms using discrete features and distributed representations.

(a) Sentence importance estimation based on the log-linear model

To estimate sentence importance using machine learning algorithms, the key
issue is designing effective features. Different machine learning methods rely on
different assumptions. The naive Bayesian method assumes that the features are
conditionally independent when the label is given. The hidden Markov model
assumes that the first-order Markov property is satisfied between sentences. In
contrast, the log-linear model has no independence hypothesis for features. In this
section, we present the sentence importance estimation algorithm by taking the log-
linear model as an example (Osborne 2002).

The log-linear model is a discriminative machine learning method that directly
synthesizes various features to model the posterior probability P (sl|s)

p (sl|s) = 1

Z (s)
exp

{
∑

i

λifi (s, sl)

}
(11.8)

11.2 Extraction-Based Summarization 295

where Z (s) = ∑
sl

exp

{∑
i

λifi (s, sl)

}
is the normalization factor. fi (s, sl)

denotes all kinds of sentence features, and λi is the corresponding feature weight.
sl is a Boolean-valued sentence tag, and the value true(1) or false(0) reflects
whether the sentence is or is not a summary sentence. Because the training data
are extremely unbalanced (only a few positive examples in a document indicate
summary sentences, and the others are all negative examples), many machine
learning algorithms, including the log-linear model, tend to predict most of the test
sentences will be negative (non-summary sentences). To alleviate this problem, we
can add a class priori constraint:

sl∗ = argmaxslp (sl) × p (sl|s) = argmaxsl

(
logp (sl) +

∑

i

λifi (s, sl)

)

(11.9)

Generally, the prior probability p (sl) can be obtained by optimizing the above
objective function on the training data. Concerning the discrete features, we can
exploit various features from surface information to deep knowledge, such as the
sentence position in documents, sentence length, TFIDF statistics for words in
sentences, ranking score based on the graph model, and text structure information.

The log-linear model is optimized based on the above features, and a posterior
probability p (sl|s), which is actually the importance of the sentence, can be
obtained for each sentence in the input document during the testing. If it is required
to directly answer whether the sentence should be selected into the summary using
p (sl|s), the choice can be made according to whether the posterior probability
p (sl|s) is larger than a certain threshold (e.g., 0.5).

(b) Sentence importance estimation based on deep neural networks

Although discrete features such as sentence length and word frequency can
reflect the importance of a sentence to a certain extent, they cannot model the
global semantic information of a sentence. More importantly, discrete features
face a serious problem of data sparsity and cannot capture the semantic similarity
between words (phrases, sentences). For example, abstract and summary have
similar meanings, but they cannot be reflected by discrete feature representations
such as word frequency.

In recent years, to overcome the aforementioned shortcomings, deep learning
methods represent linguistic units in different granularities, such as words, phrases,
sentences, and documents, to low-dimensional real-valued vectors, expecting that
linguistic units with similar semantics will be close to each other in the vector
space. This distributed representation paradigm avoids complicated feature engi-
neering work. To predict the sentence importance using deep neural networks,
the central problem is deciding which kind of neural network structure should be
employed to learn the semantic representation of sentences. Recurrent, recursive,
and convolutional neural networks are commonly used in distributed sentence

296 11 Automatic Text Summarization

representation learning. Next, we will use convolutional neural networks as an
example to introduce sentence importance estimation using distributed feature
representations (Nallapati et al. 2017).

Given a sentence s = w0w1 · · · wn−1, each word is mapped into a low-
dimensional vector, resulting in a sequence of vectors Xw = [Xw0, Xw1, · · · ,

X wn−1], as shown at the bottom of Fig. 11.3. The convolutional neural network
includes a convolution operator and a pooling operator. The convolution operator
extracts local information, while the pooling operator summarizes the global
information of a sentence.

The convolution operator consists of L filters W ∈ R
h×k , and each filter extracts

local features along the window of h words Xwi:i+h−1

ui = σ (W · Xwi:i+h−1 + b) (11.10)

convolution

max pooling

s0

⋯

sn

0 1 ⋯ ⋯

ℎ0 ℎℎ1 ⋯ ⋯ℎ

0 1 ⋯ ⋯

discourse

representation

label prediction

Fig. 11.3 The convolutional neural network for learning sentence semantic representation

11.2 Extraction-Based Summarization 297

where σ is a nonlinear activation function (e.g., ReLU and Sigmoid) and b denotes
the bias item. When a filter convolves from Xw0 to Xwn−1, a vector u =
[u0, u1, · · · , un−1] can be obtained. If L different filters are adopted, we will have
L local feature vectors of n-dimension.

Because sentences have different lengths, pooling operators are necessary to keep
the output of convolutional neural networks within fixed dimensions. Generally,
maximum pooling is the most frequently applied. This method chooses the max-
imum value of a vector as the representative feature: û = max (u). Thus, each filter
leads to the output of one dimension, and L filters will result in an L-dimensional
vector. We can stack multilayer convolution and pooling operators, and ultimately,
through a series of linear and nonlinear transformations, we will obtain a fixed
dimension output xi , which can be used as the global semantic representation of
sentences, as shown in Fig. 11.3.

Given a global sentence representation, various sequence labeling algorithms can
be employed. We introduce the model based on a long short-term memory network
(LSTM)

hi = LSTM (xi ,hi−1) (11.11)

yi = softmax (hi) (11.12)

where hi = LSTM (xi ,hi−1) is calculated as follows:

⎡
⎢⎢⎣

ii

f i

oi

ĉi

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

σ

σ

σ

tanh

⎤
⎥⎥⎦W

[
xi

hi−1

]

ci = ii � ĉi + f i � ci−1

hi = oi � tanh (ci)

Formula (11.12) shows that each sentence will eventually obtain a posterior
probability of the True label, which will be used as the score for the sentence
importance.

For a single-document summarization task, choosing sentences with a high
importance score can satisfy the requirement of information quantity. Composing
the extracted sentences into a summary according to the order in which they
appear in the document can ensure the fluency and readability of the output. For
the multidocument summarization task, if each document carries a timestamp,
composing summaries first according to the sentence order in a document and then
according to the chronological order of the multiple documents can also ensure
outputs of high readability (Barzilay et al. 2002). However, optimizing the order of

298 11 Automatic Text Summarization

sentences in summaries is still an open problem given multiple documents without
timestamps.

11.2.2 Constraint-Based Summarization Algorithms

At the beginning of this chapter, we mentioned that wide coverage and low
redundancy are the basic requirements for automatic summarization. Generally,
summaries are relatively short, limited to no more than K sentences or no more
than N words (e.g., 100 Chinese characters for Chinese summarization). Therefore,
maximizing coverage is actually equivalent to minimizing redundancy under the
constraint of summary length. The widely used algorithm for minimizing redun-
dancy is derived from the idea of maximum marginal relevance (MMR) (Carbonell
and Goldstein 1998). The MMR algorithm is mainly proposed for query-related
document summarization tasks. It takes the following formula:

MMR (R,A) = argmax
si∈R\A

{
λSim1 (si ,Q) − (1 − λ) max

sj ∈A
Sim2

(
si , sj

)}
(11.13)

where R is the set of all sentences, A denotes the set of selected summary sentences,
Q stands for the user query, si denotes any sentence in the set of unselected
sentences, and sj means any sentence in the set of selected sentences. Sim2

(
si, sj

)

is the similarity between two sentences si and sj . λ is a hyperparameter that weighs
correlation and redundancy. The larger lambda is, the more si ’s relevance to the
user query is emphasized; otherwise, redundancy is more emphasized. As seen from
formula (11.13), the basic idea of the MMR algorithm is to select the sentence from
the unselected sentence set R\A that is most relevant to the input query but most
irrelevant to the already selected sentences. This operation is performed iteratively
until the number of sentences or words reaches the predefined threshold.

In general automatic document summarization tasks, the redundancy calculation
method is similar to the MMR algorithm. Basically, the following calculation
formulas can be used:

MMR′ (R,A) = argmax
si∈R\A

{
λScore (si) − (1 − λ) max

sj ∈A
Sim

(
si , sj

) · Score
(
sj
)}

(11.14)

where Score (si) denotes the importance score of sentence si . The above formula
indicates that sentences that have the highest importance score but are most
dissimilar with the already selected sentences will be chosen for each iteration. If
the graph-based method is used to calculate the importance score of sentences, the
structure information of graphs can be fully utilized to minimize redundancy. We
introduce how to generate summaries given the sentence importance score in the
framework of the graph-based summarization:

11.3 Compression-Based Automatic Summarization 299

1© We first initialize two sets, A = ∅ and B = {si |i = 1, · · · , n}, which denote
the summary sentence set and the unselected sentence set, respectively. We then
initialize the overall score of the importance and redundancy for each sentence
RS (si) = Score (si), i = 1, · · · , n (at the beginning, the redundancy score
is unknown, and the overall score only includes the importance score of the
sentence).

2© Then, we rank set B according to the score from high to low in the results of
RS (si).

3© Assuming si is the sentence with the highest score or, say, the sentence that ranks
first in B, we remove si from B and add it to A. Then, we update the overall
score of each remaining sentence in B according to the following formula:

RS
(
sj
) = RS

(
sj
) − λSim

(
si, sj

) · Score (si)

4© We return to step 2© and do the next iteration until set B is empty or set A meets
the requirement in terms of sentence number.

The extraction-based automatic summarization methods take sentences as the
basic unit. The algorithm is simple and intuitive and can maintain the fluency
and readability of the summary. However, these methods confront some difficult
problems, such as the irreconcilable contradiction between the coverage and the
summary length. The length constraints of summaries are generally expressed
by the number of words or sentences contained in the final summary. Length
constraints limit the number of generated sentences, while the requirement of
summary coverage aims at extracting more information, that is, extracting more
sentences. If the sentences selected into summaries are important but contain too
much useless information, which leads to longer sentences, it will directly prevent
other important sentences from being included in the summary.

11.3 Compression-Based Automatic Summarization

Compression-based automatic summarization can alleviate the aforementioned
problem of extraction-based summarization to some extent. The basic idea is
to condense sentences by retaining important content and deleting unimportant
information so that the final summary can contain more sentences under a fixed
length (word count) with improved information coverage. Compressing sentences
remains a major challenge.

300 11 Automatic Text Summarization

11.3.1 Sentence Compression Method

Sentence compression can be defined as a word deletion task (Knight and Marcu
2002), namely, deleting the unimportant words to form a compressed version of
the sentence. Formally, given a sentence s = w0 · · ·wi · · ·wn−1, we aim to find
a condensed substring t = w′

0 · · · w′
j · · · w′

m−1 of s. The substring t may be
continuous or discontinuous with m < n. If w′

j = wi , ∀w′
j ′>j

, ∃wi′>i,w
′
j ′ = wi′ .

That is, the compressed result maintains the same word order as the original
sentence.

Simple unsupervised methods or data-driven supervised models can be employed
to perform sentence compression. Unsupervised methods generally depend on
manually designed rules, and tree-based compression approaches are widely used
(Turner and Charniak 2005). For any sentence, the approach first obtains the
phrase structure tree corresponding to the sentence and then deletes the unimportant
subtrees according to the designed rules, and the remaining tree structure constitutes
the condensed sentence. Handcrafted rules usually include removing prepositional
phrase subtrees and deleting temporal phrase subtrees and clauses. As shown in
Fig. 11.4, after deleting the prepositional phrase and temporal phrase from the left
tree, the right tree structure can be obtained. The simplified tree structure leads to
the compressed result The government has not made comments.

We introduce two types of supervised sentence compression method (Knight and
Marcu 2002): the generative model and the discriminant model. Parallel sentence
corpora {sk, tk}Kk=1 consisting of large-scale original sentences and corresponding
consistent results are the basic resource for supervised methods. Some examples of
parallel sentences are as follows (Si denotes the original sentence, and Ti denotes
the compressed sentence):

S1: The two presidents held a 1 h telephone conference yesterday.
T1: The two presidents held a telephone conference.
S2: Children are counting stars in the sky at the doorway.
T2: Children are counting stars.
S3: The government has not yet commented on this incident.

IP

NP

DT NN

The government

RBVBZ

VP

has not yet

made

ADV

VBN

VP

PP

NP

NPINNNSDT JJ

NP

any official comments on DT

IP

NP

NNDT

made

VP

VBN

VP

NNSThe has not

VBZ RB

NN

on the incident

government

comments

Fig. 11.4 Sentence compression based on the phrase structure tree

11.3 Compression-Based Automatic Summarization 301

T3: The government has not commented.

Note that the compressed result is only a continuous or discontinuous subse-
quence of the original sentence. Related studies mainly focus on English data, such
as the Ziff-Davis corpus and the parallel corpus3 manually constructed from British
Broadcasting News. The training data are relatively small, including approximately
1000 to 1500 sentence pairs.

Next, we introduce the supervised generative and discriminative methods.

(1) Sentence compression based on the noisy channel model

The noisy channel model assumes that the original sentence is generated by
adding auxiliary information to the compressed result. Given the original long
sentence s, the goal is to find the best compressed sentence t to maximize the
posterior probability p (t|s), which can be decomposed by the Bayesian rule:

p (t|s) = p (t) · p (s|t)
p (s)

Since the original sentence is fixed, the denominator p (s) on the right side of the
above formula can be neglected in the optimization process. Searching for the best
compressed result t requires solving the following optimization problem:

t∗ = argmax
t

p (t) · p (s|t)

where p (s|t) is called the channel model, which represents the probability that the
original sentence is generated from the compressed output, and p (t) is called the
source model, which measures the fluency of the compressed result.

Typically, the corresponding parsing trees are used to replace the original
sentence and the compressed output. As shown in Fig. 11.5, suppose t1 is the optimal
compressed version of the original sentence s under the noisy channel mode. s can
be inferred from the observed output t1 of the noisy channel model. The probability
of the source model and the channel model can be calculated as follows:

(a) Source Model

When using parse trees instead of original sentences, the source model will be
used to measure the degree to which the compressed parse tree conforms to the
grammar. The probabilistic context-free grammars (PCFG) and bigram language
model can be employed to calculate the source model

p̂tree (t1)=pcfg (TOP → G|TOP) · pcfg (G → HA|G) · pcfg (A → CD|A) ·
pcfg (H →a|H) · pcfg (C →b|C) · pcfg (D→e|D) · pbigram (a|EOS) ·
pbigram (b|a) · Pbigram (e|b) · pbigram (EOS|e)

3http://jamesclarke.net/research/resources.

http://jamesclarke.net/research/resources

302 11 Automatic Text Summarization

G

H A

a C B

b

c

D

eQ R

Z d

G

H A

a C

b

D

e

G

DF

eH

a

K

b

(s) (t1) (t2)

Fig. 11.5 The syntactic tree of the original sentence and the output of the noisy channel model

where pcfg (TOP→G|TOP) denotes the probability of generating G from the root
node TOP. pcfg (G→HA|G) denotes the probability of generating two nodes
HA from node G with PCFG. pbigram (b|a) represents the bigram language model
probability between leaf nodes a and b. Other variables in the formula have similar
meanings.

(b) Channel Model

There are two parts in the channel model: one is the probability that the
compressed tree expands to the original tree, and the other is the context-free
grammar probability of the new subtree added in the original tree compared to that
of the compressed tree:

pexpand_tree (s|t1) = pexp (G → HA|G → HA) · pexp (A → CBD|A → CD) ·
pcfg (B → QR|B) · pcfg (Q → Z|Q) · pcfg (Z → c|Z) ·
pcfg (R → d|R)

pexp (G → HA|G → HA) and pexp (A → CBD|A → CD) denote the probabil-
ity that binary tree G → HA remains unchanged and binary tree A → CD expands
to ternary tree A → CBD, respectively. The newly expanded node B generates a
subtree in four steps: 1© Generate nodes Q and R through context-free grammar
B → QR; 2© New node Q generates node Z; 3© Node Z generates the terminal
symbol c 4© Node R directly produces the terminal symbol d . pcfg (B → QR|B),
pcfg (Q → Z|Q), pcfg (Z → c|Z), and pcfg (R → d|R) measure the probability of
each step.

(c) Search the best compressed sentence

According to the source model and channel model, the posterior probability of
the compressed tree t1 can be calculated through the following formula:

p̂compress_tree (t1|s) = p̂tree (t1) · pexpand_tree (s|t1)
p̂tree (s)

11.3 Compression-Based Automatic Summarization 303

In practice, the compressed sentence with the highest posterior probability will
be chosen. For two candidate compressed trees, t1 and t2, if p̂compress_tree (t1|s) >

p̂compress_tree (t2|s), t1 is selected and the compressed sentence can be obtained by
concatenating the leaves of t1.

(d) Model parameter training

From the probability formula of the source model and the channel model, it can
be seen that the parameters of the noisy channel model include three parts: 1© the
rule deduction probability of context-free grammars, e.g., pcfg (G → HA|G); 2©
the tree structure extension probability, e.g., pexp (A → CBD|A → CD)); 3© the
bigram language model probability, e.g., pbigram (b|a) .

To estimate the above three kinds of probabilities, we need to parse the
training data {〈sk, tk〉}Kk=1 to obtain the tree structures of the original sentence
and the compressed sentence. For the probabilities of the first kind, the maximum
likelihood estimation can be used to obtain the rule deduction probability of context-
free grammar in the tree structures of the original and compressed sentences.
For example, if G → HA appears 20 times while G occurs 100 times, then
pcfg (G → HA|G) = 0.2.

For the probabilities of the second class, it is necessary to perform node
alignment between the tree structures of 〈s, t〉 and then calculate the extended
probability of the tree structure by using the maximum likelihood estimation
method. For example, if (A → CD,A → CBD) occurs 10 times together and
A → CD appears 100 times, then pcfg (G → HA|G) = 0.1. For the language
model probabilities, we can simply calculate the bigram probability according to
the counts of words and bigrams.

(e) Model decoding

For the original sentence s whose tree structure has n child nodes, there are
two choices for each node in the process of sentence compression: delete or retain.
Therefore, there are (2n − 1) choices when compressing the original sentences s.
All candidate condensed sentences can be stored in a shared forest, and dynamic
programming can be utilized to search for the best compressed candidate.

Since all the probabilities need to be accumulated in the noisy channel model,
the longer the candidate is, the smaller the posterior probability. Thus, the shorter
candidate compressed sentence will be preferred by the noisy channel model. To
overcome this problem, the posterior probability can be normalized by length:
(
p̂compress_tree (t1|s)

) 1
length(t1)

(2) Decision-based sentence compression method

The decision-based sentence compression method handles sentences from the
perspective of tree structure rewriting. For the example given in Fig. 11.5, the goal
of this method is to rewrite the structure tree of the original sentence s into the
structure tree of the compressed sentence t2. The rewriting process can be achieved

304 11 Automatic Text Summarization

H

a

stack(ST) Input List(IList)

G
H
a

A
C
b

B
Q
Z
c

R

d

D

e

SHIFT;

ASSIGNTYPE H

Step①～②

A
C
b

B
Q
Z
c

R
d

D

e

SHIFT;

ASSIGNTYPE K

B
Q
Z
c

R
d

D
e REDUCE to F

H

a

K

b

H
a

K
b

F
B
Q
Z
c

R
d

D
e DROP B

D
eH

a
K
b

F
SHIFT;

ASSIGNTYPE D

H
a

K
b

F
D
e

REDUCE to G

H
a

K
b

F D
e

G

Stack(ST) Input List(IList)

Step③～④

Step⑤

Step⑥

Step⑦～⑧

Step⑨

Fig. 11.6 Example of decision-base sentence compression

by a series of shift, reduce, and delete actions (similar to the shift-reduce parsing
method).

In this algorithm, the stack (ST) and the input list (IList) are two key data
structures. The stack is used to store the tree structure fragments corresponding
to the compressed sentences so far, and the stack is empty at the beginning of the
algorithm. The input list stores the words corresponding to the original sentence and
their syntactic structure tags. As shown in Fig. 11.6, each word and all the syntactic
tags corresponding to the word are input in sequence. The left part in the second
column denotes the tree structure of the original sentence. G is the root and has two
children H and A. H has only one child a. A has two children, C and B. B has two
children, Q and D. Q has two children, Z and R. Note that each syntactic tag is
only assigned to the leftmost word it covers in the subtree. In this example, the root
node in the structure tree of the original sentence s is G, and G is only attached to
a, the first word of the sentence. Similarly, H is also attached to the word a. As a
result, G and H are the syntactic tags related to the word a. When deleting subtrees,
if a is to be removed, the whole subtree related to the word a will also be deleted.

The process of rewriting the syntactic structure tree is accomplished by the
following four types of actions:

• SHIFT: This action moves the first word in the input list IList into the stack ST;
• REDUCE: Pop K tree fragments up at the top of the ST stack, merge them into a

new subtree, and move the new subtree into ST;
• DROP: Delete the complete subtree corresponding to the syntactic tag from the

input list IList;

11.3 Compression-Based Automatic Summarization 305

• ASSIGNTYPE: Assign a new syntactic label to the top subtree of the ST stack,
which is generally used to rewrite part-of-speech labels of words.

Figure 11.6 shows how to use the four actions mentioned above to rewrite the
original sentence s into the compressed sentence t2 in nine steps. Determining which
action should be performed in each step is the key to the decision-based sentence
compression model, and this can be regarded as the parameters that the model needs
to learn.

According to the training data {〈sk, tk〉}Kk=1, the tree structures of each original
sentence and the compressed sentence constitute a tree pair, from which the number
of times the four kinds of actions occur and their contexts can be counted. Then,
using the contexts as input and specific actions as output, an action classifier can be
optimized.

11.3.2 Automatic Summarization Based on Sentence
Compression

The automatic summarization method based on sentence compression includes
two core algorithms: candidate sentence selection and sentence compression. The
sentence importance estimation algorithm and sentence compression algorithm have
been introduced in previous sections. Here, we discuss how to combine these two
algorithms to obtain the final summary.

Usually, there are three ways to combine the two algorithms:

1© Select-Compress: We first extract the candidate summary sentences according
to the importance score and then simplify them with the sentence compression
algorithm. In the end, we can display more information in the summary given
the same length constraint.

2© Compress-Select: We first simplify all sentences in a document or documents by
using a sentence compression algorithm and then select the summary sentences
according to the sentence importance scores.

3© Joint-Select-Compress: A unified framework is employed to simultaneously
optimize sentence selection and compression and ultimately output the simpli-
fied summary sentences.

Generally, the first method is the most efficient, but the original candidate
summary sentences may not produce the best result after sentence compression.
Furthermore, the compression algorithm only outputs a single result. The latter two
methods aim to optimize the quality of the summaries but need to compress all the
sentences, which significantly sacrifices the efficiency. Therefore, balancing quality
and efficiency becomes the core issue for text summarization methods based on
sentence compression.

We now introduce a compression-based summary method that takes into account
both the efficiency of the method 1© and the quality of the method 3© (Li et al.

306 11 Automatic Text Summarization

2013a). The basic idea behind this approach is to obtain a relatively large set Vs of
candidate summary sentences with an extraction-based summarization algorithm
and then generate the K-best candidates for each sentence in that set using the
sentence compression algorithm. Finally, a unified optimization framework is used
to select the best summary sentences among the K-best candidate condensed
sentences. Integral linear programming can be used as a unified optimization
framework, and the objective function is as follows:

max
∑

i

wici +
∑

j

vj

∑

k

sjk (11.15)

s.t.
∑

k

sjk ≤ 1 ∀j (A)

sjk Occi_jk ≤ ci (B)
∑

jk

sjk Occi_jk ≥ ci (C)

∑

jk

Ljk sjk ≤ L (D)

ci ∈ {0, 1} ∀i (E)

sjk ∈ {0, 1} ∀j, k (F)

wi denotes the weight of the i-th concept, where the coverage of the concept is used
to represent the coverage of the summary. The concept is a tuple of content terms
(e.g., telephone, conference). There are several ways to calculate the weight of the
concept wi , such as using the TFIDF method. vj denotes the weight of compressed
sentences and can directly use the weight of the corresponding original sentences,
which is calculated through the sentence importance estimation method. ci and sjk

are binary variables that indicate whether a concept or a sentence is selected in the
summary. If sjk = 1, the k-th candidate compressed result of the j -th sentence
is chosen. Formula (11.15) shows the objective function that aims to maximize
the coverage of the concepts and the importance score of a sentence. (A)∼(F) are
constraints. (A) indicates that only one compressed result can be selected for each
original sentence. Occi_jk checks whether the i-th concept appears in sentence sjk .
Constraints B and C jointly constrain the concept and the sentence. D constrains
the length of the final summary.

The final results that satisfy all the constraints can be generated by solving
integral linear programming to account for both efficiency and quality.

Compression-based automatic summarization can remove secondary information
or repetitive information in sentences so that a summary with sufficient information
and wide coverage can be generated under length constraints. This method is obvi-
ously more reasonable than the extraction-based summarization approach. However,
it still has some shortcomings: it cannot fuse multiple sentences expressing similar
but complementary information. Assume that two sentences have high importance

11.4 Abstractive Automatic Summarization 307

scores and should be included in the summary. Nevertheless, the two sentences
are similar, and only one can be selected due to the redundancy constraint. As a
result, the complementary and important information in the other sentence will not
appear in the final summary if we employ the extraction-based or compression-
based summarization methods.

11.4 Abstractive Automatic Summarization

The abstractive summarization method is designed to simulate a human-like sum-
mary generation process from document understanding to information compression
to summary generation. This section introduces two abstractive summarization
methods: one is based on information fusion, and the other is based on the encoder-
decoder framework.

11.4.1 Abstractive Summarization Based on Information
Fusion

The abstractive summarization method based on information fusion inherits and
develops extraction-based and compression-based summarization methods. By
considering concepts and facts,4 it simulates the way a human generates a summary
methodology: selecting important concepts and related facts in the process of
text reading, reorganizing these concepts and facts, and, finally, generating new
summary sentences. Taking Fig. 11.7 as an example, the concept of Joe’s dog and
the facts of was chasing a cat and in the garden are more important, so they are
selected and reorganized to produce a summary sentence, Joe’s dog was chasing a
cat in the garden. This process is actually an information fusion procedure between
the two sentences.

According to different definitions of concepts and facts, abstractive summa-
rization methods based on information fusion can also be divided into several
classes. The example given in Fig. 11.7 implements abstractive summarization in
the following three steps: 1© Use the deep semantic analysis method to transform
similar sentences into abstract meaning representation (AMR); 2© Merge two AMR
graphs into one AMR graph; 3© Define concepts and facts using predicate-argument
information and generate comprehensive expressions based on core arguments (e.g.,
dog) (Liu et al. 2015a). Because the performance of the automatic analysis from
sentence to abstract semantic representations is far from satisfactory, this method is
limited to theoretical exploration.

4Concepts and facts have different definitions. Generally, concepts correspond to entities (people,
objects, institutions, etc.) and facts correspond to actions.

308 11 Automatic Text Summarization

Fig. 11.7 Generative summarization based on abstract meaning representation

We now introduce an information fusion approach based on syntactic parsing
technology (Bing et al. 2015). Unlike the above methods based on AMR, this
method employs the syntactic structure tree to define and weigh the importance
of concepts and facts, measures the compatibility between concepts and facts, and
ultimately combines concepts and facts to produce summary sentences.

(1) Definition of concepts and facts

Concepts and facts are determined using parsing trees. Generally, concepts
consist of noun phrases (NP), while facts are verb phrases (VP). Since a parsing
tree is often very deep and there are many nodes rooted at the NP and VP, it is
impossible to use every NP or VP phrase as a candidate for concepts or facts.

11.4 Abstractive Automatic Summarization 309

Fig. 11.8 Generative summarization based on syntactic parsing tree

Thus, we use the following rules to define the candidate concepts and facts using
NP and VP:5

(a) If NP/VP is the child node of a complete sentence or clause node (S and SBAR
in Fig. 11.8), it is considered a concept/fact candidate, represented by S(NP) and
S(VP):

(b) If the parent node of NP/VP is S(NP) (or S(VP)), then it is regarded as a
concept/fact candidate and is denoted as S(NP(NP)) and S(VP(VP));

(c) If the parent node of NP/VP is S(NP(NP)) (or S(VP(VP))), then NP/VP is
treated as a candidate concept/fact.

5In practical application, the scope of candidates for concepts and facts can be expanded or
contracted appropriately according to specific needs.

310 11 Automatic Text Summarization

The remaining NP and VP generally cannot fully represent a concept or fact, so
they are removed from consideration. Note that some of the nodes’ children denote
coreference. For example, in Fig. 11.8a, the WHNP node actually denotes the NP
phrase on its left side. At this time, this NP phrase is also a concept candidate. The
candidate concepts in Fig. 11.8 include I, Joe’s dog, and the dog. The candidate facts
are saw Joe’s dog which was running in the garden, was chasing a cat, and chasing
a cat. Given a document or document set, the parsing tree of each sentence can
be obtained after syntactic parsing. According to the above definition, all candidate
concepts and facts can be extracted.

(2) Importance estimation of concepts and facts

Several sentence importance estimation algorithms have been introduced in
extraction-based summarization methods. These algorithms can be used to calculate
the importance scores for concepts and facts (NP and VP). For example, position in
the documents, TFIDF and graph-based algorithms can be employed. Furthermore,
the importance of NP and VP can also be evaluated by named entity-based methods.

Named entities such as person, location, and organization often indicate key
information in the text, so the number of named entities contained in a concept
or fact will generally reflect its importance. Thus, the importance of NP phrases can
be calculated by the following simple formulas:

Score (NP) = count (NENP)

count (NEdoc)
(11.16)

count (NENP) denotes the number of named entities contained in the NP phrases,
and count (NEdoc) denotes the total number of named entities contained in the
documents where NP phrases are located.

Similarly, the importance of VP can be calculated in the same way. Various
importance scores using different algorithms (TFIDF, graph-based and named
entity-based algorithms) can be integrated by linear combination to obtain a more
accurate importance score for the concept and fact.

(3) Definition of the compatibility between concepts and facts

In the information fusion-based methods, summary sentences are obtained by
combining NP phrases (concepts) and VP (facts). The compatibility of concepts
and facts must be resolved before they are combined, that is, it must be determined
which kinds of NP and VP can be combined to form new sentences. Naturally, if the
NPi phrase and the VPi phrase come from the same sentence node S, the two phrases
can be combined. However, with this approach, only the original subsentence can
be extracted, and new sentences cannot be generated. Thus, we need to define more
relaxed compatibility constraints: if NPj is compatible with NPi , NPj and VPi can
be combined; if VPj is compatible with VPi , NPi and VPj can also be combined.
We now explain how to determine whether NPi and NPj (or VPi and VPj) are
compatible.

11.4 Abstractive Automatic Summarization 311

Since many NP phrases are composed of entities, the compatibility of two NP
can be determined by identifying whether NPi and NPj refer to the same entity.
First, for a document or document sets, all NP representing entities in documents
can be clustered by coreference resolution technology.6 Any two NP phrases in the
same cluster are considered compatible.

VP phrases are more diverse. The compatibility of VPi and VPj can be
determined by the co-occurrence degree of language units such as words, phrases,
and named entities. Specifically, the Jaccard index can be used to calculate whether
two VP VPi and VPj are compatible

J
(
VPi , VPj

) =
∣∣SetVPi ∩ SetVPj

∣∣
∣∣SetVPi ∪ SetVPj

∣∣ (11.17)

where SetVPi
and SetVPj

denote the sets of words, bigrams, and named entities in
VPi and VPj , respectively. If the Jaccard index is larger than a predefined threshold,
VPi and VPj are considered compatible.

(4) Summary generation based on concepts and facts

Under the compatibility constraints of the concepts and facts, abstractive sum-
marization aims to search a set of NP and VP from all the candidate sets of NP
(concepts) and VP (facts) to maximize the importance score. The optimization
process can be modeled by integer linear programming, and the objective function
can be defined as follows:

max
∑

i

αiS
N
i −

∑

i<j

αij

(
SN

i + SN
j

)
RN

ij +
∑

i

βiS
V
i −

∑

i<j

βij

(
SV

i + SV
j

)
RV

ij

(11.18)

αi and βi are Boolean values indicating whether NPi and VPi are selected.
SN

i and SV
i denote the importance scores of NPi and VPi , respectively. αij ∈

{0, 1},βij ∈ {0, 1} indicate whether NPi and NPj and VPi and VPj coexist in the
final summaries. RN

ij and RV
ij denote the similarity score between NPi and NPj and

VPi and VPj . If NPi and NPj are coreferential, RN
ij = 1. Otherwise, it can be

calculated by the above Jaccard index.
Through the above objective function, the first and third terms are used to

maximize the importance scores of the selected NP and VP, and the second
and fourth terms are utilized to penalize the selection of similar phrases. While
optimizing the above objective functions, we need to ensure that the compatibility
constraints between concepts and facts are satisfied.

6For example, the open-source toolkit released by Stanford University can perform coreference
resolution for English entities. https://nlp.stanford.edu/projects/coref.shtml.

https://nlp.stanford.edu/projects/coref.shtml

312 11 Automatic Text Summarization

To model the compatibility constraints, a Boolean variable γij is introduced. If
NPi and VPj are compatible, γij = 1. The compatibility constraints of NP and VP
are

∀i, j, αi ≥ γij ; ∀i,
∑

j

γij ≥ αi (11.19)

∀j,
∑

i

γij = βj (11.20)

The selection of NP or VP should follow the co-occurrence constraints:

αij − αi ≤ 0 (11.21)

αij − αj ≤ 0 (11.22)

αi + αj − αij ≤ 1 (11.23)

βij − βi ≤ 0 (11.24)

βij − βj ≤ 0 (11.25)

βi + βj − βij ≤ 1 (11.26)

The first two inequalities mentioned above show that if NPi and NPj coexist
in the final summary, then αij = 1, indicating that both NP should appear in the
summary at the same time. The third inequality indicates the opposite constraint.
Similarly, the latter three inequalities are the co-occurrence constraints for VPi and
VPj .

Of course, the summary length constraints are indispensable

∑

i

l (NPi) × αi +
∑

j

l
(
VPj

)× βj ≤ L (11.27)

where L is the predefined length limit for the output summary, such as 100 words.
l (NPi) and l

(
VPj

)
denote the lengths of NPi and VPj , respectively.

To better control the output of the summaries, more constraints can be appro-
priately added. For example, we can require that NP exclude pronouns (you, I,
he, etc.) or that the number of concepts (i.e., NP) should not exceed a certain
value. Integer linear programming (ILP) searches for an optimal subset of candidate
concepts and facts that not only maximizes the importance score but also satisfies
all the above constraints. Based on the selected subset and compatibility variables
γij , new summary sentences will be generated. The experimental results show that
the abstractive summarization method based on information fusion is significantly
better than the original extraction-based summarization method.

However, the abstractive summarization method based on information fusion
includes several cascading modules, ranging from recognition of the semantic units
of sentences (e.g., concepts and facts) to the importance estimation of the semantic

11.4 Abstractive Automatic Summarization 313

units and, finally, to summary sentence generation by fusing the semantic units from
various sources. This system is complicated and strongly depends on the quality of
the syntactic parsing or semantic analysis. Thus, this method is difficult to widely
use.

11.4.2 Abstractive Summarization Based on the
Encoder-Decoder Framework

Consider how humans perform text summarization. Loosingly speaking, humans
first read the documents and abstractly represent the contents in the brain (like the
encoder). Then, humans sum up the gist of the documents and finally generate the
summary using their own words (like the decoder).

Inspired by the end-to-end neural machine translation framework, Rush et al.
(2015) proposed an abstractive summarization method based on the encoder-
decoder framework. It first encodes the text in the semantic vector space to simulate
the process of text understanding by humans and then generates the summary word
by word through the decoder network to simulate the process of natural language
sentence generation.

Unlike equivalent semantic transformation in machine translation, text summa-
rization is a process of semantic compression. That is, the semantic information
contained in the summary is only a subset of the semantics in the original text. In
theory, we can semantically represent a document or documents in the vector space,
condense the content, and, finally, convert the condensed semantic representation
into summary output. However, to date, there is no effective way to use a vector in
the real-valued semantic space to represent the complete semantic information of the
whole text or document set. Mapping methods with a very high compression ratio
need to be further studied. Accordingly, at present, the abstractive summarization
method based on the encoder-decoder framework is mainly applied to the tasks of
microblog summarization, sentence summarization, and title generation.

Next, we introduce an example of sentence summarization generation based on
the encoder-decoder framework. Given an original sentence X = (

x1, x2, · · · , xTx

)
,

we plan to generate a simplified version Y = (
y1, y2, · · · , yTy

)
. xj and yi

denote the low-dimensional real-valued vector of the j -th and i-th words in the
sentence X and Y . It is required that Ty < Tx , meaning that the length of the
simplified sentence should be shorter than the original sentence. Without loss
of generality, a bidirectional recurrent neural network (BiRNN) can be used to
encode the original sentence X and obtain the hidden semantic representation C =(
h1,h2, · · · ,hTx

)
. Another recurrent neural network takes the hidden semantic

representation C of the original sentence as input and maximizes the conditional
probability p (yi |y<i,C) to generate the simplified sentences word by word, in
which y<i = y0, y1, · · · , yi−1. We next detail how to obtain C with the encoder
and how to calculate conditional probability p (yi |y<i,C) with the decoder.

314 11 Automatic Text Summarization

As mentioned above, the encoder uses forward and backward recurrent neural
networks (BiRNN) to obtain the hidden semantic representation C of the original
sentence X. The forward neural network encodes the sentence word by word from

left to right and generates a hidden semantic representation for each position
−→
h =(−→

h 1,
−→
h 2, · · · ,

−→
h Tx

)
, where

−→
h j = RNN

(−→
h j−1, xj

)
(11.28)

−→
h 0 can be generally initialized with 0 vectors. RNN represents the operator of the

recurrent neural network. It is employed to convert two input vectors
−→
h j−1 and xj

into an output vector
−→
h j . GRU and LSTM can be adopted here. Taking GRU as an

example, the formula is as follows:

−→
r j = Sigmoid

(
W rxj + U r−→h j−1

)
(11.29)

−→z j = Sigmoid
(
W zxj + U z−→h j−1

)
(11.30)

−→
m j = tanh

(
Wxj + U

(−→
r j � −→

h j−1

))
(11.31)

−→
h j = −→z j � −→

h j−1 + (
1 − −→z j

) � −→
m j (11.32)

−→
r j and −→

z j denote the reset gate and update gate, respectively. W r , U r , W z, U z,
W , and U are learnable parameter matrices. � denotes elementwise multiplication.←−
h j can be calculated in a similar way. Each element in C (hj =

[−→
h j ; ←−

h j

]
)

denotes the concatenation of two vectors.
The decoder leverages the attention mechanism to dynamically compute the

conditional probability p (yi |y<i,C)

p (yi |y<i,C) = p (yi|y<i, ci) = g (yi−1, zi , ci) (11.33)

where g (·) denotes the nonlinear activation function. zi denotes the hidden repre-
sentation at timestep i, which is jointly determined by the hidden representation
zi−1, the output of previous timestep yi−1 and ci :

zi = RNN (zi−1, yi−1, ci) (11.34)

Note that ci is not the i-th element of C but computed by an attention module:

ci =
Tx∑

j=1

αij hj (11.35)

11.4 Abstractive Automatic Summarization 315

αij denotes the correlation between the output of the current timestep yi and the
semantic representation of the j -th input word hj , which is calculated as follows:

αij = exp
(
eij

)

Tx∑
j ′=1

eij ′

(11.36)

eij = vT
a tanh

(
W azi−1 + Uahj

)
(11.37)

where W a , U a , and va are the learnable parameter matrices in the attention module.
Given N labeled instances (original sentence, simplified sentence) as the training
data DTrain = {(Xn, Yn)}Nn=1, the encoder-decoder framework will optimize all the
weight parameters to maximize the conditional log-likelihood:

L (θ) = 1

N

N∑

n=1

Ty∑

i=1

logp
(
yn
i |yn

<i,X
n; θ

)
(11.38)

Figure 11.9 illustrates an example of the abstractive sentence summarization
method based on the above encoder-decoder framework. Given the original sentence
The life should allow failure, after adding the end-of-sentence symbol EOS, the
hidden semantic representations corresponding to each position can be obtained
by using the BiRNN. The recurrent neural network decoder uses the attention
mechanism to dynamically calculate the input context (e.g., c2). Then, it predicts the
output at each timestep according to the hidden state and the output of the previous
timestep in the decoder as well as the dynamic context c2 of the input. For example,
the output of the second timestep is the word tolerate. This process is iterated until
the end-of-sentence symbol EOS is generated and finally the simplified sentence
Life tolerates failure is obtained.

In addition to the BiRNN, we can employ convolutional neural networks and
self-attention neural networks. The abstractive sentence summarization model can
be regarded as the core technology of many other summarization tasks. For example,
the title generation task can be transformed into a sentence summarization task: the
input is an article (usually the first sentence or first several sentences of the article),
and the output is a single sentence. However, the arbitrary truncation of the article
for the input tends to mean that important information is lost, and thus it is not
the ideal solution. To address this issue, we can adopt a coarse-to-fine approach.
First, we use an extraction-based summarization method to extract one or several
important sentences from the article, and then we use these sentences as input to
generate titles with the encoder-decoder framework.

316 11 Automatic Text Summarization

Fig. 11.9 The sentence simplification model based on the encoder-decoder framework

11.5 Query-Based Automatic Summarization

The automatic summarization methods described above focus only on the salience
of the content in the document, and they are generally referred to as generic
summarization. In many cases, people expect to read a summary that not only
contains important information but also is related to a specific topic or query.
Therefore, topic-based or query-based automatic summarization methods have
gradually become a popular research task.

Query-based automatic summarization methods can be formally defined as
follows: given a document or document set D and a query τ expressed in a string or
sentence, we attempt to generate a summary that is closely related to the query τ .
As seen from the definition, compared with generic summarization, the query-based
summarization method emphasizes not only the importance of summary but also the

11.5 Query-Based Automatic Summarization 317

relevance between the result summary and input query. In this section, we introduce
three algorithms to calculate the relevance between the sentences and the query.

11.5.1 Relevance Calculation Based on the Language Model

In the early years of research, the query-based automatic summarization method
mainly focused on generating summaries of personal profiles (or biographies). It
produces summaries according to the queries of who is X and what is X. Taking the
summary generation of a biography as an example, we briefly introduce a method
of relevance calculation based on a language model (Biadsy et al. 2008).

For the query who is X, this method designs a classifier that identifies whether
a sentence in document D is related to the introduction of a biography. First, an
unsupervised method is used to extract the biography texts from Wikipedia with
information extraction technology, and the extracted biography texts are employed
in a language model Lwiki. In addition, another general language model Lnews is
trained using news documents. Then, for a sentence s in the test documents, if
Lwiki (s) > Lnews (s), s is considered to belong to the biography information, while
Lnews (s)>Lwiki (s) means that it does not belong.

11.5.2 Relevance Calculation Based on Keyword
Co-occurrence

Here, we introduce a text summarization method for open queries. This method
measures the importance of a sentence by calculating the number of keywords in it,
and the keywords are determined by both the query and the original document set.

In a query sentence, not every word deserves attention. The usual approach is
to identify all the nouns, verbs, adjectives, and adverbs in the query sentence and
regard them as query keywords; these are denoted by the set WSquery.

The keywords in the original document set can be obtained by calculating the
topic words WStopic. Topic words are those words that are more likely to appear
in current documents on a specific topic than in other general texts. For example,
spacecraft is more likely to appear in aerospace-related news reports and is a
topic word, while today can appear in any document and is thus not a topic
word. Therefore, the proportion of topic words in a sentence basically reflects the
importance of the sentence. The set of topic words can be determined by computing
the likelihood ratio, mutual information, and TFIDF. For example, we can calculate
the TFIDF value of each word in the document set, sort all words, and select the top
N words to obtain the topic word set WStopic.

318 11 Automatic Text Summarization

Then, each word in the text is assigned a probability by the following equation:

p (w) =
⎧
⎨

⎩

0.0, if w /∈ WStopic and w /∈ WSquery

0.5, if w ∈ WStopic or w ∈ WSquery

1.0, if ∈ WStopic and w ∈ WSquery

(11.39)

For each sentence in the document, the weighted average score based on the word
probability p (w) is used as the final score of the sentence. To some extent, this
score reflects not only the importance of the content but also the degree of relevance
between the sentence and the query. Finally, the result summary can be generated
according to the sentence score in the same way as the generic summarization
method.

11.5.3 Graph-Based Relevance Calculation Method

As mentioned earlier, the graph-based PageRank algorithm is widely used in
extraction-based generic summarization. This algorithm can be easily adapted to
query-based summarization. In the graph-based PageRank algorithm, the impor-
tance score of sentences is calculated as follows:

S (Vi) = 1 − d

N
+ d ×

∑

Vj ∈adj(Vi)

Wij∑

Vk∈adj(Vj)

Wjk

S
(
Vj

)
(11.40)

To model the relevance between the query and text sentence as well, the cosine
similarity between the text sentence and the query can be used as the relevance
score rel (Vi, τ). It can be further employed as the initial score in the graph-
based algorithm: S (Vi |τ) = rel (Vi, τ). Equation (11.7), which focuses only on
the sentence importance, can be appropriately adapted to iteratively calculate a
comprehensive score that takes into account both the sentence importance and the
correlation between the query and this sentence:

S (Vi |τ) = (1 − d) × S (Vi |τ)∑
Vk∈adj(Vi)

S (Vk|τ)
+ d ×

∑

Vj ∈adj(Vi)

Wij∑

Vk∈adj(Vj)

Wjk

S
(
Vj |τ

)

(11.41)

After calculating the score of each sentence with the above formula, the final
summary sentences can be generated according to the length and redundancy
constraints.

11.6 Crosslingual and Multilingual Automatic Summarization 319

11.6 Crosslingual and Multilingual Automatic
Summarization

Quickly and effectively obtaining information in the current complex multilin-
gual environment has become a major concern in both academia and industry.
Accordingly, crosslingual and multilingual summarization technology is attracting
increasing attention.

11.6.1 Crosslingual Automatic Summarization

Crosslingual automatic summarization uses the documents in source language A

as input and outputs a summary in target language B. In this section, we employ
English-Chinese crosslingual summarization as an example to introduce some
popular methods.

Ideally, if the quality of machine translation is sufficient, crosslingual summa-
rization is not a problem. In this case, English summaries can be generated first and
then translated into Chinese using machine translation. Although the performance
of machine translation has improved due to deep learning technology, it is still far
from satisfactory. Therefore, simultaneously considering both content importance
and translation quality is a challenge for crosslingual summarization.

At present, the extraction-based method is dominant in crosslingual summa-
rization, but neither of the two popular methods considers the quality of the
machine translation. The first method summarizes before translation, and the
second translates before summarization (Wan et al. 2010). As the name implies,
the method that summarizes before translation first extracts summary sentences
from English documents and then translates the English summary into Chinese.
The method that translates before summarization first translates all the sentences
in the English documents into Chinese and then extracts the summary sentences
from the Chinese translations. Each of the two methods has its advantages and
disadvantages. The former method can make full use of English information, but
due to the unsatisfactory quality of machine translation, the translated summaries
may contain many errors; that is, the original important summary sentence may
be incorrectly translated. The latter method can take full advantage of Chinese
information, but the summary sentences selected from Chinese translations that
contain translation errors may not correspond to the actual important information in
the original English texts. That is, the selection of summary sentences according to
Chinese features may be negatively influenced by translation errors. Therefore, only
using the information of one language is not the best approach. Next, a graph-based
crosslingual summarization method is introduced that can simultaneously make full
use of information from both languages, which to some extent avoids translation
errors (Wan 2011).

320 11 Automatic Text Summarization

English Sentences

Chinese Sentences (translated)

Relation between

Chinese Sentences

Relation between English

and Chinese Sentences

Relation between

English Sentences

Fig. 11.10 The crosslingual summarization method based on the graph model

Formally, an English dataset Den can be first translated into Chinese Dcn.
Suppose that V en = {

sen
i |1 ≤ i ≤ n

}
and V cn = {

scn
i |1 ≤ i ≤ n

}
denote sentences

in Den and Dcn, respectively; n is the number of sentences in the documents, and
scn
i is the Chinese translation of sen

i . As shown in Fig. 11.10, we can construct
an undirected graph G = (V en, V cn, Een, Ecn, Eencn) with five elements, where
Een denotes the relation between any two sentences in the English documents,
Ecn represents the relation between any two sentences in the translated Chinese
documents, and Eencn is the relation between any sentence in V en and any sentence
in V cn.

Suppose that W en =
(
W en

ij

)

n×n
is the weight matrix of edges in Een, and W en

ij

denotes the similarity between the i-th sentence sen
i and the j -th sentence sen

j in the
English documents V en:

W en
ij =

{
simcosine

(
sen
i , sen

j

)
, i
= j

0, others
(11.42)

simcosine

(
sen
i , sen

j

)
is the cosine similarity between the TFIDF vectors of sen

i and

sen
j . The weight matrix W cn =

(
W cn

ij

)

n×n
of edges in Ecn can be calculated in a

similar way.

Concerning the weight matrix W encn =
(
W encn

ij

)

n×n
for Eencn, each element

W encn
ij is related to both English sentence sen

i and Chinese sentence scn
j . The

corresponding TFIDF vectors belong to two languages and are not in the same
semantic space, so their similarity cannot be calculated directly with the cosine
distance. Since we know that scn

i is the translated Chinese version of sen
i , and the

original English version of scn
j is sen

j , while sen
i and sen

j , scn
i and scn

j are in the same

11.6 Crosslingual and Multilingual Automatic Summarization 321

space, simcosine

(
sen
i , sen

j

)
and simcosine

(
scn
i , scn

j

)
can approximate W encn

ij :

W encn
ij =

√
simcosine

(
sen
i , sen

j

)
× simcosine

(
scn
i , scn

j

)
(11.43)

Because an undirected graph is adopted here, W en, W cn, and W encn
ij are all

diagonal matrices, which means W en = (W en)T, W cn = (W cn)T, and W encn =
(W encn)T. Normalization of each line in the matrix leads to Ŵ en and Ŵ cn and Ŵ encn.
If u

(
sen
i

)
and v

(
scn
i

)
, respectively, denote the importance score of Chinese sentence

scn
i and English sentence sen

j , then u
(
sen
i

)
and v

(
scn
i

)
can be iteratively updated

according to the following formula until convergence:

v
(
scn
i

) = α
∑

j

W cn
ji v

(
scn
j

)
+ β

∑

j

W encn
ji u

(
sen
j

)
(11.44)

u
(
sen
j

)
= α

∑

i

W en
ij u

(
sen
i

) + β
∑

i

W encn
ij v

(
scn
i

)
(11.45)

where α + β = 1 balances the contribution of two languages. Once v
(
scn
i

)
is

obtained, summary sentence selection algorithms in the generic summarization
method can be used to obtain the final Chinese summary.

To fully consider content importance and translation accuracy, Zhang et al.
(2016a) extended the abstractive method based on information fusion in generic
summarization to meet the special requirements of crosslingual summarization
tasks. The difference is that in generic summarization, NP and NP denote concepts
and facts, respectively, while Zhang et al. (2016a) used agent (ARG0) in the
predicate-argument structure to represent concepts and used the combination of
predicates and arguments (Predicate + ARG1 or Predicate + ARG2) to represent
facts. Similar to extraction-based crosslingual summarization, English sentences are
first translated into Chinese by means of a machine translation system, and then
concepts and facts are extracted.

Figure 11.11 illustrates the crosslingual summarization method based on the
information fusion model. It can be seen from the figure that the predicate-argument
structure of an English sentence is obtained by semantic role labeling (SRL). Then,
the concepts (ARG0) and facts (Predicate+ARG1 or Predicate+ARG2) in English
sentences are aligned to Chinese phrases by using the relationship between word
translations (i.e., word alignment in machine translation). For example, 美国 总
统 布什(President George Bush) and 布什 总统(President Bush) expressed the
same concept. 他 第二 次 访问(made his second visit) and 访问 该 地区(made
to the region), 授权 为 受灾 地区(authorized federal disaster assistance), 授权
的 联邦 救灾 援助(authorized federal disaster assistance), and计划 检查 的 状
态(made plans for an inspection tour of the state) all express facts. Since these two
sentences describe the same concept of President Bush, they can be combined into
one sentence in the process of abstractive summary generation. Through calculation,

322 11 Automatic Text Summarization

president bush authorised federal disaster assistance for the affected areas and made plans for an inspection tour of the state .

president george bush yesterday made his second visit to the region since the hurricane hit .

ARG0 AM-TMP ARG1 ARG2 AM-TMP

ARG0 ARG1 ARG2 ARG1

En:

Ch:

En:

Ch:

president bush made his second visit to the region and authorised federal disaster assistance for the affected areas .En:

Ch:

Information Fusion based on Predicate Structures

Fig. 11.11 Crosslingual summarization method based on the information fusion model

it is found that the facts of他第二次访问(made his second visit) and授权的联
邦救灾援助(authorized federal disaster assistance) not only have high importance
scores but also have good translation quality. By combining compatible concepts
and facts, the final summary sentence can be obtained:布什 总统 他 第二 次 访
问 该 地区， 授权 为 受灾 地区 的 联邦 救灾 援助(President Bush made his
second visit to the region and authorized federal disaster assistance for the affected
areas). The two key issues in the whole process are calculating comprehensive
scores (importance and translation quality) for the concepts and facts and assessing
the compatibility between concepts and facts.

When calculating the comprehensive score of concepts and facts, the importance
score Sim can be estimated in various ways, as described in previous sections.
For example, we can calculate the proportion of named entities or adopt a graph-
based bilingual estimation model. In the computation of translation quality, Zhang
et al. (2016a) merged the word translation probability plex and the language model
score plm. Specifically, given an English concept or fact, phen = e0e1 · · · el and its
corresponding translation phcn = c0c1 · · · cm, the word probability can be calculated
as follows:

plex
(
phcn|phen, a

) =
⎧
⎨

⎩

m∏

j=0

1

|{i| (i, j) ∈ a}|
∑

∀(i,j)∈a

p
(
cj |ei

)
⎫
⎬

⎭

1
m+1

(11.46)

where a denotes the translation correspondence (word alignment) between the
words in phcn and phen. For example, (i, j) ∈ a indicates that cj and ei are the
word translation pair. The word alignment a and the lexical translation probability

11.6 Crosslingual and Multilingual Automatic Summarization 323

p
(
cj |ei

)
can be obtained by utilizing the word alignment tool GIZA++7 in machine

translation. The language model probability of the Chinese translation phcn can be
calculated through the following n-gram model:

plm
(
phcn

) =
m−n+1∑

j=0

p
(
cj |cj−n+1 · · · cj−1

)
(11.47)

The translation quality can be calculated by multiplying the word translation
probability and the language model probability: Strans = plex

(
phcn|phen, a

) ×
plm

(
phcn

)
. Finally, the weighted sum of importance score Sim and translation

quality Strans measures the comprehensive score of a concept or fact: Scom =
αSim + βStrans.

The compatibility between concepts and facts includes the compatibility between
concepts and the compatibility between concepts and facts. Compatibility assess-
ment between concepts aims to determine whether two concepts described in
different sentences belong to the same concept. Compatibility assessment between
concepts and facts aims to determine whether a concept is the subject of a fact. The
compatibility between concepts can be judged by coreference (anaphora) resolution
and similarity calculation. For example, President George Bush and President
Bush are two compatible concepts because they share the same entity Bush and
title President. The concept conceptch and the fact factch satisfy the compatibility
constraint if and only if conceptch and factch come from the same sentence or
conceptch and fact′ch come from the same sentence and fact′ch is compatible with
factch.

Given the comprehensive scores for concepts and facts and their compatibility,
algorithms such as the ILP used in generic summarization based on the information
fusing method can be employed to obtain a Chinese summary from English
documents.

11.6.2 Multilingual Automatic Summarization

Multilingual automatic summarization takes documents on the same topic in
different languages as the input and outputs a summary in one of the languages.
For example, a Chinese summary can be generated from documents written in a
mix of English, Japanese, and Chinese on the same topic. In real life, multilingual
summary tasks are very helpful. We know that the world’s major media usually
report a large number of important events (e.g., the World Cup and US presidential
election) in different languages every day. Although the topic is the same, different
reports may focus on different aspects. Therefore, compressing multilingual texts

7http://www.statmt.org/moses/giza/GIZA++.html.

http://www.statmt.org/moses/giza/GIZA++.html

324 11 Automatic Text Summarization

into a summary in the user’s language is very helpful for a user aiming to acquire
global information.

In the multilingual summarization task, a typical method is to summarize after
translation. First, the texts of all other languages are translated into a specific lan-
guage through a machine translation system. Then, generic summarization methods
are employed to generate the final summary. Many studies have found that extracting
summary sentences from machine translation results leads to poor summarization
quality. Similar to crosslingual summarization, a key problem arises: how to make
full use of the imperfect machine translation results? In the summarization after
translation method, the machine-translated Chinese sentences are treated equally to
the original Chinese sentences, although machine-translated Chinese sentences are
obviously inferior to the originals in terms of information accuracy and text fluency
and should be distinguished from the original natural Chinese sentences.

To address these issues, Li et al. (2016a) proposed a multilingual summarization
method based on an adaptive graph model, which is an extension of the undirected
graph model. It automatically selects some edges among the undirected edges
connecting two languages using an adaptive method and converts them into directed
edges. Its basic process is as follows:

Given the English and Chinese document sets Den and Dcn, V en ={
sen
i |1 ≤ i ≤ n

}
and V cn = {

scn
i |1 ≤ i ≤ m

}
denote sentences in Den and Dcn.

First, an undirected graph G = (V en, V cn, Een, Ecn, Eencn) is constructed. Then,
before running the graph algorithm, some undirected edges (namely, bidirectional
edges) in the set Eencn that connects the two languages will be changed into
undirected edges if the English sentence only contributes to the importance of its
translated Chinese counterpart.

As shown in Fig. 11.12, the Chinese translation Sen2cn
1 of the English sentence

Sen
1 and the natural Chinese sentence Scn

1 are close in meaning, but Sen2cn
1 is less

informative than Scn
1 . Under such conditions, the natural Chinese sentence Scn

1
is preferred over the translation Sen2cn

1 . Therefore, the undirected edge between

English Sentences

Chinese Sentences

1

1

1 :

1 :

The plane crashed on to the Syria side of

the Turkish-Syrian border.

1 :

Fig. 11.12 Multilingual summarization based on the adaptive graph model

11.7 Summary Quality Evaluation and Evaluation Workshops 325

English sentence Sen
1 and Chinese sentence Scn

1 needs to be transformed into the
undirected edge from Sen

1 to Scn
1 , indicating that Sen

1 only recommends Scn
1 and Sen

1
is not recommended by Scn

1 .
A key issue then arises regarding how to measure whether Scn

1 and Sen2cn
1 are

similar in terms of semantics. Various approaches can be employed to address this
issue. First, we can calculate the correlation score between Scn

1 and Sen2cn
1 with the

cosine similarity. If the result exceeds a prespecified threshold, these two sentences
are considered to be similar to each other. Second, we can check if Scn

1 entails Sen2cn
1

with the textual entailment method, where Scn
1 and Sen2cn

1 are similar in semantics
if the entailment stands. Third, we can also determine whether the natural Chinese
sentence Scn

1 is a translation of the English sentence Sen
1 . The two sentences will be

treated similarly if the translation probability is greater than a threshold.
After the edges in Eencn are processed, the graph-based algorithm can iteratively

calculate the importance scores of the Chinese and English sentences. This method
not only avoids choosing English sentences similar to natural Chinese sentences
but also retains complementary but important English sentences by including their
Chinese translations as part of the final summary.

11.7 Summary Quality Evaluation and Evaluation
Workshops

Researchers in the automatic text summarization research community constantly
propose new methods and algorithms and determine whether these new methods
and algorithms improve the summarization quality compared to the older ones.
Therefore, summary quality evaluation has become an important research topic for
the rapid iteration of summarization technology.

11.7.1 Summary Quality Evaluation Methods

Compared with the evaluation of text classification and machine translation outputs,
quality evaluation for summarization is a more intractable problem because there is
no perfect summary in theory. For the same document or document set, different
people will generate different summaries. Although summary quality evaluation
faces enormous difficulties and challenges, it still attracts the attention of many
researchers. Generally, summary quality evaluation methods are divided into manual
methods and automatic approaches.

(1) Manual evaluation methods

Manual evaluation is the most intuitive method. Generally, experts are asked to score
the summary generated from an automatic summarization system, basing these

326 11 Automatic Text Summarization

scores on the consistency, fluency, and information capacity of the summary. In
the Document Understanding Conference (DUC) evaluation conducted by NIST in
2005, the manual evaluation focused on the following six aspects: grammaticality,
non-redundancy, referential clarity, focus, structure, and coherence. Each score
ranged from 1 to 5, in which 1 represents the worst and 5 the best. These six
evaluation metrics are now widely accepted in manual evaluations. However, the
scores given by different experts in a manual evaluation are quite divergent: a system
summary evaluated by one expert as being of good quality may be evaluated by
another expert as very poor. Therefore, overcoming the divergency problem between
experts has attracted many researchers, and several methods have been proposed to
address this issue. Among them, the pyramid method (Nenkova and Passonneau
2004) is one effective way to solve this problem.

In the pyramid method, the summary content unit (SCU) is the key concept, as
it represents the important semantic unit at the subsentence level of the summary.
Different summaries may share the same SCUs, even though the words used may
be quite different. The SCU can be as short as a modifier of a NP or as long as
a clause. In the process of analyzing and annotating an SCU, the annotator needs
to describe the SCUs shared by different summaries in his/her own words. If the
information contained in a sentence only appears in one summary, the sentence can
be divided into clauses, and each clause can be treated as an SCU. For a collection
of documents (test sets), m experts are first invited to write m reference summaries
Sum(r0, r1, . . . , rm). All reference summaries are then manually analyzed, and a set
of SCUs is extracted. If an SCU is mentioned by w reference summaries, the weight
w is assigned to this SCU.

The fewest SCUs appear in all m reference summaries, while the number of
SCUs mentioned by (m− 1) reference summaries is greater, and the largest number
of SCUs occurs in only one reference summary; thus, the SCU values are distributed
in a pyramid form, which explains why it is called the pyramid method.

For a summary generated by one system, the first step is to manually analyze the
SCUs of the system summary; the second step is to calculate the sum of the scores
of all SCUs in the reference summary; and then the third step is to calculate the
ratio of the system summary score to an ideal summary score and take the ratio as
the evaluation score for the system summary.

We will next use an example to illustrate how to determine the SCUs (Table
11.3).

Table 11.3 An example of summary content units (SCUs)

A2: In the 2016 US presidential election, Trump defeated Hillary Clinton and was elected.

B4: He won the 45th US presidential election.

C3: Trump became the 45th US president.

D1: The 2016 US election was full of suspense and Trump finally won the election.

11.7 Summary Quality Evaluation and Evaluation Workshops 327

As shown in the table above, we assume that there are four reference summaries.
A2 denotes the second sentence in the first reference summary, B4 represents the
fourth sentence in the second reference summary, and C3 and D1 are similar.
The human annotator extracts the SCUs containing similar information from these
reference summaries. A semantic analysis shows that these sentences contain two
summary content units SCU1 and SCU2. Since SCU1 appears in all four reference
summaries, the value of SCU1 is 4, and similarly, the value of SCU2 is 2.

SCU1: Trump was elected the 45th US president

A2: Trump defeated Hillary Clinton and was elected

B4: He won the 45th US presidential election

C3: Trump became the 45th US president

D1: Trump finally won the election

SCU2: The US held a presidential election in 2016.

A2: In the 2016 US presidential election

D1: The 2016 US election

The m reference summaries correspond to a pyramid with a height of m.
Figure 11.13 shows a pyramid with a height of 4 constructed by four reference
summaries. If an SCU appears in all four reference summaries, this SCU is placed
at the top tier of the pyramid W = 4. An SCU mentioned in only one summary is
placed at the bottom tier W = 1. The pyramid height may be less than the number
of reference summaries; for example, if there is no SCU shared by three reference
summaries, the pyramid will not have the layer of W = 3.

For an m-tier pyramid, Ti denotes the i-th layer, and all SCUs in Ti have weights
of i. That is, these SCUs are mentioned in i reference summaries. |Ti | denotes the
number of SCUs in Ti . For an ideal summary that needs to contain X SCUs, it is
expected that the SCUs at the top of the pyramid will be included first and then the
SCUs at the m − 1 and m − 2 levels can be included in that order until X SCUs are
included. The formula for calculating the score is as follows:

Scoreideal =
m∑

i=j+1

i × |Ti | + j ×
⎛

⎝X −
m∑

i=j+1

|Ti |
⎞

⎠ (11.48)

where j = max
k

(
m∑

t=k

|Tt | ≥ X

)
.

Fig. 11.13 Example of a
pyramid constructed by four
reference summaries

328 11 Automatic Text Summarization

Figure 11.13 shows a pyramid of four reference summaries. The figure shows that
there are six SCUs in the four reference summaries, two of which are mentioned in
all reference summaries, with the other four appearing in three reference summaries.
For an ideal summary containing four SCUs, there must be two SCUs at the top tier
of the pyramid (W = 4), and the other two are at tier W = 3. The two solid circles
in the figure represent two ideal summaries containing four SCUs.

Assume that after comparison between the automatic summary result and the
reference summary, it is found that Di SCUs at tier Ti appear in the system summary,
i.e., Di SCUs in the system summary are mentioned by i reference summaries.
Then, the total number of SCUs in Sumsys is

∑m
i=1 i × Di , whose score is

Scoresys =
m∑

i=1

i × Di (11.49)

Let X = ∑m
i=1 Di denote the number of SCUs that should be included in an

ideal summary; then, the final evaluation score of the system summary becomes
Scoresys/Scoreideal. Obviously, it is precision oriented. We can also let X be the
average number of SCUs in the reference summaries, and then the final evaluation
score Scoresys/Scoreideal will be recall oriented.

The pyramid method can minimize the influence of the differences in reference
summaries. However, manual evaluation always takes considerable time and human
resources. For example, it is reported that in a summary evaluation of the DUC,
it takes approximately 3000 h to manually evaluate the quality of the summaries.
Accordingly, automatic evaluation methods are more attractive.

(2) Automatic evaluation methods

Automatic evaluation methods can be divided into two categories. One is
intrinsic evaluation, which directly evaluates the quality of the summary results.
The other is extrinsic evaluation, which indirectly evaluates the summary quality by
analyzing the performance of the downstream tasks that rely on the results of the
summarization.

Intrinsic evaluation methods are intuitive and efficient; thus, they are commonly
used. Generally, intrinsic evaluation methods can also be divided into two cate-
gories: form metrics and content metrics. Form metrics focus on the grammar,
coherence, and organizational structure of the summaries. Content metrics focus
on summary content and information, which are believed to be the most important
in automatic evaluation. We will here introduce a widely used intrinsic evaluation
method based on content metrics, Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE) (Lin 2004).

ROUGE was proposed by (Lin 2004) and has become almost the de facto
automation evaluation metric for summarization methods. The basic idea of
ROUGE is borrowed from BLEU (BiLingual Evaluation Understudy) (Papineni
et al. 2002), which is an automatic evaluation method for machine translation. In
contrast to BLEU, which is precision oriented, ROUGE focuses on recall.

11.7 Summary Quality Evaluation and Evaluation Workshops 329

Assuming that a document set corresponds to a reference summary r and that the
summary result generated by the system is sum, ROUGE-n (n denotes the number
of words contained in the matching unit, namely, n-gram) is calculated as follows:

ROUGE-n(sum, r) =
∑

n−gram∈r

countmatch(n-gram, sum)

∑
n−gram∈r

count(n-gram)
(11.50)

where n denotes the length of the phrase n-gram and countmatch(n-gram, sum) indi-
cates the maximum number of times that n-gram appears in both reference summary
r and system summary sum. If n-gram appears a times in the reference summary
and b times in the system summary, countmatch(n-gram, sum) = min(a, b). It can
be seen from the above equation that ROUGE-n is recall oriented.

If there are multiple reference summaries R = {r0, r1, . . . , rm}, ROUGE-n can
be calculated by comparing the system summary with each reference summary, and
the highest matching score is taken as the final result:

ROUGE-nmulti(sum) = max
r∈R

ROUGE-n(sum, r) (11.51)

There are many other recall-based evaluation metrics within ROUGE, such as
ROUGE-L and ROUGE-S. ROUGE-L calculates the matching rate of common
substrings. The basic idea is that the longer the common substring is, the more
similar the two sentences are. Let s0, s1, . . . , su refer to all the sentences in reference
summaries R and sum denote the summary (can be viewed as the concatenation of
all summary sentences) generated by the system. Then, ROUGE-L can be calculated
by the following formula:

ROUGE-L(sum) = (1 + β2)RLCSPLCS

RLCS + β2PLCS
(11.52)

where RLCS and PLCS can be computed by

RLCS =
∑u

i=1 LCS(si , sum)
u∑

i=1
|si |

(11.53)

PLCS =
∑u

i=1 LCS(si , sum)

|sum| (11.54)

in which LCS(si , sum) denotes the longest common substring of si and sum. |si |
denotes the length of the reference summary, while |sum| is the length of the system
summary.

ROUGE-S is a special case of ROUGE-n (n=2), which is also called the skip
bigram matching rate. For example, in the sentence Trump became president,

330 11 Automatic Text Summarization

Trump-president is a skip bigram. ROUGE-S is calculated as follows:

ROUGE-S(sum) = (1 + β2)RSPS

RS + β2PS

(11.55)

where RS and PS are the recall and precision of the skip bigram, respectively.

11.7.2 Evaluation Workshops

Evaluation workshops in automatic summarization have greatly promotes the devel-
opment of summarization technology. Since 2001, an automatic summarization
evaluation forum has been held almost every year, including the DUC and Text
Analysis Conference (TAC) evaluation organized by the NIST of the United States,
the multi-lingual summarization evaluation (MSE) and MultiLing evaluation orga-
nized by the Association for Computational Linguistics (ACL), and the automatic
summarization evaluation organized by the international conference on Natural
Language Processing and Chinese Computing (NLPCC). These evaluation work-
shops essentially conduct the same process. First, the organizer releases the training
data to the participants, which they can use to train their summarization systems.
Then, the organizer releases the test data to the participants and asks participants to
submit the outputs of their system before a prespecified deadline. Subsequently, the
organizer will evaluate the submitted summaries using both manual and automatic
evaluation methods. The participants are then invited to introduce their systems and
communicate with each other at the evaluation workshop.

(1) The DUC evaluation workshop

NIST started the DUC in 2001, which was launched by Professor Daniel Marcu
from the University of Southern California. The main task of the DUC is to evaluate
the development trends in text summarization technology. From 2001 to 2007,
the DUC attracted over 20 participants each year. In 2001 and 2002, the DUC
focused on single- and multidocument news summarization. NIST collected 60
news document sets, each of which discussed a certain topic, and provided several
human-generated summaries for each document set as references. Among them, 30
document sets were used as training data, and the other 30 were employed as test
data.

In 2003, the DUC introduced new evaluation tasks, such as generating very
short summaries for a single document, which is similar to headline generation;
multidocument summarization based on events and opinions; and question-oriented
summaries, which require the summaries generated by the system to answer
specified questions. In 2004, the DUC explored the evaluation of crosslingual
text summarization. However, this was more similar to evaluation of the transla-
tion before summarization method because the organizer only provided machine-
translated English documents as input, and the source language information was

11.7 Summary Quality Evaluation and Evaluation Workshops 331

unknown to the participants. From 2005 to 2007, the DUC mainly evaluated query-
based multidocument summarization. The DUC ended in 2008, and the TAC (Text
Analysis Conference), also organized by NIST, began to take over the task of text
summary evaluation.

(2) The TAC evaluation workshop

Since 2008, the TAC has organized four evaluation tasks, including text sum-
marization, automatic question answering, text entailment, and knowledge base
population. The text summarization evaluation was organized five times (2008–
2011 and 2014). In 2008 and 2009, the TAC designed the update summarization
evaluation; this task assumes that users have read some earlier documents on a topic,
and the system aims to produce an updated summary given some new documents
on the same topic.

The TAC began to focus on guided summarization in 2010 and 2011. Given
multiple documents on the same topic, guided summarization systems generate
summaries containing all specified features for the prespecified event categories and
aspects. The TAC also explored a language-independentmultilingual summarization
task in 2011. This task required that the summarization methods proposed by
the participants be universal, i.e., not only effective in the summarization task
of one language but also achieving good results in other languages. Later, this
language-independent summarization evaluation task was continued by the Mul-
tiLing workshop and was held every 2 years.

In 2014, TAC organized an evaluation task of automatic summarization for
documents from the literature on biomedical science and technology: given a group
of papers citing the same literature, the system was required to identify the text
blocks describing the references and generate a structured summary for the cited
literature.

(3) MSE evaluation workshop

The ACL organized the MSE workshop in 2005 and 2006. The organizers
provided a collection of texts on the same topic in Arabic and English, requiring
the system to submit an English summary of fewer than 100 words. Most of
the participants used machine translation systems to translate Arabic documents
into English and then converted these into monolingual text summarization tasks.
The evaluation results showed that the summaries generated by this translate-
before-summarization method were worse than those produced by monolinguistic
summarization methods using only the original English documents. This result may
be due to two reasons: on the one hand, the Arabic-to-English machine translation
system may not have been good enough at that time or, on the other hand, the
multilingual summarization method may not have made effective use of the machine
translation results.

(4) The NLPCC evaluation workshop

The DUC, TAC, and other workshops mainly focus on English summarization,
while there is almost no evaluation for Chinese texts. The NLPCC conference

332 11 Automatic Text Summarization

has been organizing evaluation workshops on Chinese automatic summarization
since 2015. In 2015 and 2017, the NLPCC organized an evaluation task of single-
document news summarization.8 In 2015, it was more oriented toward social
networks, in which the system is required to generate a summary of news documents
in 140 Chinese characters that could be published on Weibo.

In 2016, the NLPCC explored a new text summarization task for sports news.9

Given a Chinese script file for the live broadcast of a sports event, the system
attempted to generate a brief report of the event. We can see from the evaluation
tasks that the Chinese evaluation workshops have paid more attention to practical
applications of summarization technologies.

11.8 Further Reading

In this chapter, we introduce the typical tasks and methods of automatic summariza-
tion. Many other summarization tasks are not involved in this area, for example,
comparative summarization (Huang et al. 2011), update summarization (Dang
and Owczarzak 2008), timeline summarization (Yan et al. 2011), and multimodal
summarization (Wang et al. 2016a; Li et al. 2017b). The purpose of comparative
summarization is to generate summaries from multiple perspectives for documents
on similar topics, such as comparative summarization for reports on the 2008 and
2016 Olympic Games. Assuming that the user already knows earlier information on
a topic, the goal of the update summarization is to generate a brief updated summary
based on new documents on the same topic. The timeline summarization generates a
series of short summaries for an event or a topic according to the timeline. Detailed
descriptions and the most recent progress on these tasks can be found in (Yao et al.
2017).

In addition to the summarization of pure text, text-centered multimodal summa-
rization has recently attracted increasing attention. This approach attempts to answer
the following questions: how to make full use of the relevant image information
when generating summaries given texts and images (Wang et al. 2016a); how
to integrate texts, images, videos, and audio on the same topic; how to model
multimodal information to generate a comprehensive but short text summary (Li
et al. 2017b); and how to generate summaries presented in multimodal forms (Zhu
et al. 2018, 2020).

From a methodological point of view, in recent years, the end-to-end abstractive
method has been one of the frontier methods (Rush et al. 2015; Chopra et al.
2016; Gu et al. 2016; Tan et al. 2017; Nema et al. 2017; Zhou et al. 2017). This
kind of method involves three key technologies: accurately encoding the original

8http://tcci.ccf.org.cn/conference/2015/pages/page05_evadata.html.
http://tcci.ccf.org.cn/conference/2017/taskdata.php.
9http://tcci.ccf.org.cn/conference/2016/pages/page05_evadata.html.

http://tcci.ccf.org.cn/conference/2015/pages/page05_evadata.html
http://tcci.ccf.org.cn/conference/2017/taskdata.php
http://tcci.ccf.org.cn/conference/2016/pages/page05_evadata.html

11.8 Further Reading 333

text, precisely finding and attending to the salient information in the original text,
and compressing and generating the final summary. Zhou et al. (2017), Gu et al.
(2016), Tan et al. (2017), and Nema et al. (2017) discussed these three issues
in detail. However, at present, the end-to-end methods mainly focus on sentence
summarization and single-document summarization. Applying this paradigm to
multidocument, multilingual and multimodal summarizations remains an open
problem.

Although ROUGE is currently the de facto evaluation metric for automatic
summarization, designing more accurate and reasonable evaluation methods con-
tinues to be a hot research topic. Kurisinkel et al. (2016) proposed an evaluation
method considering context independence to determine whether the information
contained in a summary sentence is complete. Peyrard and Eckle-Kohler (2017)
proposed a modified pyramid method to automate manual evaluation. Zhu et al.
(2018) designed an automatic evaluation algorithm for multimodal summarization
technologies. Although automatic evaluation approaches are relatively behind other
areas in research, we believe that they will achieve significant progress with the
development of summarization methods.

Exercises

11.1 Please compare extractive and abstractive summarization from the perspec-
tives of resource demand, model complexity, and performance.

11.2 The summary sentences generated by extractive methods are combined
without logical order. Please design an algorithm to put the summary sentences in
good order.

11.3 Abstractive summarization usually truncates the text to prevent the input to
the model from being too long. Please explain why we need to do this and design
an algorithm without this constraint to improve the summarization quality.

11.4 Multidocument summarization is usually more difficult than single-document
summarization, and extractive methods are most often used. Please analyze the
reasons behind this and design an algorithm combining extractive and abstractive
methods for multidocument summarization.

11.5 Please list some scenarios where speech and vision modalities are necessary
to generate better text summaries.

11.6 Summarization evaluation is very challenging because everyone can provide a
different summary result for the same input document. Please comment on whether
it is possible to design a good evaluation method without using reference summaries.

References

Abad, A., Nabi, M., & Moschitti, A. (2017). Self-crowdsourcing training for relation extraction. In
Proceedings of ACL.

Aggarwal, C. C. (2018). Machine learning for text. Berlin: Springer.
Ahn, D. (2006). The stages of event extraction. In Proceedings of TERQAS (pp. 1–8).
Allan, J. (2012). Topic detection and tracking: Event-based information organization. New York,

NY: Springer.
Allan, J., Carbonell, J., Doddington, G., Yamron, J., & Yang, Y. (1998a). Topic detection and

tracking pilot study final report. In Proceedings of the DARPA Broadcast News Transcription
and Understanding Workshop (pp. 194–218).

Allan, J., Lavrenko, V., & Jin, H. (2000). First story detection in tdt is hard. In Proceedings of
CIKM (pp. 374–381).

Allan, J., Papka, R., & Lavrenko, V. (1998b). On-line new event detection and tracking. In
Proceedings of SIGIR (pp. 37–45).

Andreevskaia, A., & Bergler, S. (2006). Mining wordnet for a fuzzy sentiment: Sentiment tag
extraction from wordnet glosses. In Proceedings of EACL (pp. 209–216).

Angeli, G., Johnson Premkumar, M. J., & Manning, C. D. (2015). Leveraging linguistic structure
for open domain information extraction. In Proceedings of ACL and IJCNLP.

Arora, S., Li, Y., Liang, Y., Ma, T., & Risteski, A. (2016). A latent variable model approach to
PMI-based word embeddings. In Transactions on ACL (pp. 385–400).

Aue, A., & Gamon, M. (2005). Customizing sentiment classifiers to new domains: A case study.
In Proceedings of RANLP.

Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SentiWordNet 3.0: An enhanced lexical resource
for sentiment analysis and opinion mining. In Proceedings of LREC (pp. 2200–2204).

Bagga, A., & Baldwin, B. (1998). Entity-based cross-document coreferencing using the vector
space model. In Proceedings of ACL-COLING.

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., & Etzioni, O. (2007). Open information
extraction from the web. In Proceedings of IJCAI.

Barzilay, R., Elhadad, N., & McKeown, K. R. (2002). Inferring strategies for sentence ordering in
multidocument news summarization. Journal of Artificial Intelligence Research, 17, 35–55.

Becker, H., Naaman, M., & Gravano, L. (2011). Beyond trending topics: Real-world event
identification on twitter. In Proceedings of ICWSM (pp. 438–441).

Bekkerman, R., & Mccallum, A. (2005). Disambiguating web appearances of people in a social
network. In Proceedings of WWW (pp. 463–470).

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic language model.
Journal of Machine Learning Research, 3, 1137–1155.

© Tsinghua University Press 2021
C. Zong et al., Text Data Mining, https://doi.org/10.1007/978-981-16-0100-2

335

https://doi.org/10.1007/978-981-16-0100-2

336 References

Biadsy, F., Hirschberg, J., & Filatova, E. (2008). An unsupervised approach to biography
production using wikipedia. In Proceedings of ACL (pp. 807–815).

Bickel, S., Brückner, M., & Scheffer, T. (2009). Discriminative learning under covariate shift.
Journal of Machine Learning Research, 10(9), 2137–2155.

Bing, L., Li, P., Liao, Y., Lam, W., Guo, W., & Passonneau, R. J. (2015). Abstractive multi-
document summarization via phrase selection and merging. In Proceedings of ACL.

Blair-Goldensohn, S., Hannan, K., McDonald, R., Neylon, T., Reis, G., & Reynar, J. (2008).
Building a sentiment summarizer for local service reviews. In Proceedings of WWW Workshop
Track (pp. 339–348).

Blei, D. M., & Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of ICML.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine

Learning Research, 3, 993–1022.
Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders:

Domain adaptation for sentiment classification. In Proceedings of ACL (pp. 440–447).
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword

information. Transactions of the Association for Computational Linguistics, 5, 135–146.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Brody, S., & Elhadad, N. (2010). An unsupervised aspect-sentiment model for online reviews. In

Proceedings of NAACL (pp. 804–812).
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al. (2020). Language

models are few-shot learners.
Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering

documents and producing summaries. In Proceedings of SIGIR.
Cataldi, M., Di Caro, L., & Schifanella, C. (2010). Emerging topic detection on twitter based on

temporal and social terms evaluation. In Proceedings of MDM/KDD (pp. 1–10).
Chang, J., & Blei, D. (2009). Relational topic models for document networks. In Artificial

Intelligence and Statistics.
Chen, P., Sun, Z., Bing, L., & Yang, W. (2017a). Recurrent attention network on memory for aspect

sentiment analysis. In Proceedings of EMNLP (pp. 452–461).
Chen, S. F., & Goodman, J. (1999). An empirical study of smoothing techniques for language

modeling. Computer Speech and Language, 13(4), 359–394.
Chen, X., Xu, L., Liu, Z., Sun, M., & Luan, H. (2015a). Joint learning of character and word

embeddings. In Proceeding of IJCAI.
Chen, Y., Amiri, H., Li, Z., & Chua, T.-S. (2013). Emerging topic detection for organizations from

microblogs. In Proceedings of SIGIR (pp. 43–52).
Chen, Y., Liu, S., Zhang, X., Liu, K., & Zhao, J. (2017b). Automatically labeled data generation

for large scale event extraction. In Proceedings of ACL.
Chen, Y., Xu, L., Liu, K., Zeng, D., & Zhao, J. (2015b). Event extraction via dynamic multi-pooling

convolutional neural networks. In Proceedings of ACL.
Chen, Y., & Zong, C. (2008). A structure-based model for Chinese organization name transla-

tion. ACM Transactions on Asian Language Information Processing. https://doi.org/10.1145/
1330291.1330292

Chen, Z., Tamang, S., Lee, A., Li, X., Lin, W.-P., Snover, M. G., et al. (2010). Cuny-blender
TAC-KBP2010 entity linking and slot filling system description. In Theory and Applications of
Categories.

Cheng, X., & Zhu, Q. (2010). Text mining principles. Beijing: Science Press (in Chinese).
Chernyshevich, M. (2014). IHS R&D belarus: Cross-domain extraction of product features using

CRF. In Proceedings of SemEval (pp. 309–313).
Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., et al.

(2014). Learning phrase representations using RNN encoder–decoder for statistical machine
translation. In Proceedings of EMNLP.

Choi, Y., & Cardie, C. (2008). Learning with compositional semantics as structural inference for
subsentential sentiment analysis. In Proceedings of EMNLP (pp. 793–801).

https://doi.org/10.1145/1330291.1330292
https://doi.org/10.1145/1330291.1330292

References 337

Chopra, S., Auli, M., & Rush, A. M. (2016). Abstractive sentence summarization with attentive
recurrent neural networks. In Proceedings of ACL.

Collins, M., & Duffy, N. (2002). Convolution kernels for natural language. In Proceedings of NIPS.
Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep

neural networks with multitask learning. In Proceedings of ICML.
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural

language processing (almost) from scratch. The Journal of Machine Learning Research, 12,
2493–2537.

Conneau, A., & Lample, G. (2019). Cross-lingual language model pretraining. Advances in Neural
Information Processing Systems, 32, 7059–7069.

Connell, M., Feng, A., Kumaran, G., Raghavan, H., Shah, C., & Allan, J. (2004). UMass at TDT.
In Proceedings of TDT (Vol. 19, pp. 109–155).

Cui, H., Mittal, V., & Datar, M. (2006). Comparative experiments on sentiment classification for
online product reviews. In Proceedings of AAAI.

Culotta, A., & Sorensen, J. (2004). Dependency tree kernels for relation extraction. In Proceedings
of ACL.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., & Salakhutdinov, R. (2019). Transformer-XL:
Attentive language models beyond a fixed-length context. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (pp. 2978–2988).

Dang, H. T., & Owczarzak, K. (2008). Overview of the TAC 2008 update summarization task. In
Proceedings of TAC.

Das, S., & Chen, M. (2001). Yahoo! for amazon: Extracting market sentiment from stock message
boards. In Proceedings of APFA, Bangkok, Thailand (Vol. 35, p. 43)

Das, S. R., & Chen, M. Y. (2007). Yahoo! for amazon: Sentiment extraction from small talk on the
web. Management Science, 53, 1375–1388.

Dave, K., Lawrence, S., & Pennock, D. (2003). Mining the peanut gallery: Opinion extraction and
semantic classification of product reviews. In Proceedings of WWW (pp. 519–528).

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing
by latent semantic analysis. Journal of the American Society for Information Science, 41(6),
391–407.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers) (pp. 4171–4186).

Diao, Q., Jiang, J., Zhu, F., & Lim, E.-P. (2012). Finding bursty topics from microblogs. In
Proceedings of ACL (pp. 536–544).

Ding, X., & Liu, B. (2007). The utility of linguistic rules in opinion mining. In Proceedings of
SIGIR (pp. 811–812).

Ding, X., Liu, B., & Yu, P. (2008). A holistic lexicon-based approach to opinion mining. In
Proceedings of the 2008 International Conference on Web Search and Data Mining (pp. 231–
240).

Ding, Y., Yu, J., & Jiang, J. (2017). Recurrent neural networks with auxiliary labels for cross-
domain opinion target extraction. In Proceedings of AAAI (pp. 3436–3442).

Ding, Z., He, H., Zhang, M., & Xia, R. (2019). From independent prediction to reordered predic-
tion: Integrating relative position and global label information to emotion cause identification.
In Proceedings of AAAI (Vol. 33, pp. 6343–6350).

Ding, Z., Xia, R., & Yu, J. (2020). ECPE-2D: Emotion-cause pair extraction based on joint
two-dimensional representation, interaction and prediction. In Proceedings of ACL (pp. 3161–
3170). Stroudsburg: Association for Computational Linguistics.

Do, Q., Lu, W., & Roth, D. (2012). Joint inference for event timeline construction. In Proceedings
of IJCNLP and COLING.

Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., & Xu, K. (2014). Adaptive recursive neural network
for target-dependent twitter sentiment classification. In Proceedings of ACL (pp. 49–54).

338 References

Dong, L., Yang, N., Wang, W., Wei, F., Liu, X., Wang, Y., et al. (2019). Unified language model
pre-training for natural language understanding and generation. In Proceedings of NeurIPS.

Dumais, S. T., Furnas, G. W., Landauer, T. K., Deerwester, S., & Harshman, R. (1988). Using
latent semantic analysis to improve access to textual information. In Proceedings of SIGCHI
(pp. 281–285).

Edmundson, H. P. (1969). New methods in automatic extracting. Journal of the ACM (JACM),
16(2), 264–285.

Ekman, P., Friesen, W. V., & Ellsworth, P. (1972). Emotion in the human face: Guide-lines for
research and an integration of findings: Guidelines for research and an integration of findings.
Elmsford, NY: Pergamon.

Erkan, G., & Radev, D. R. (2004). Lexrank: Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence Research, 22, 457–479.

Esuli, A., & Sebastiani, F. (2007). Pageranking wordnet synsets: An application to opinion mining.
In Proceedings of ACL (pp. 424–431).

Fang, A., Macdonald, C., Ounis, I., & Habel, P. (2016). Using word embedding to evaluate the
coherence of topics from twitter data. In Proceedings of SIGIR (pp. 1057–1060).

Feng, W., Zhang, C., Zhang, W., Han, J., Wang, J., Aggarwal, C., et al. (2015). Streamcube:
Hierarchical spatio-temporal hashtag clustering for event exploration over the twitter stream.
In Proceedings of ICDE (pp. 1561–1572).

Firth, J. R. (1957). A synopsis of linguistic theory. In F. R. Palmer (Ed.), Studies in linguistic
analysis. Oxford: Philological Society.

Fleischman, M., & Hovy, E. (2004). Multi-document person name resolution. In Proceedings of
ACL.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification.
Journal of Machine Learning Research, 3, 1289–1305.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proceedings
of ICML (Vol. 96, pp. 148–156).

Fung, G. P. C., Yu, J. X., Yu, P. S., & Lu, H. (2005). Parameter free bursty events detection in text
streams. In Proceedings of VLDB (pp. 181–192).

Gamon, M. (2004). Sentiment classification on customer feedback data: Noisy data, large feature
vectors, and the role of linguistic analysis. In Proceedings of COLING (pp. 841–847).
Stroudsburg: Association for Computational Linguistics.

Gan, Z., Pu, Y., Henao, R., Li, C., He, X., & Carin, L. (2017). Learning generic sentence
representations using convolutional neural networks. In Proceedings of EMNLP (pp. 2390–
2400).

Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with LSTM
recurrent networks. Journal of Machine Learning Research, 3, 115–143.

Girolami, M., & Kabán, A. (2003). On an equivalence between PLSI and LDA. In Proceedings of
SIGIR (pp. 433–434).

Graves, A., Jaitly, N., & Mohamed, A.-R. (2013). Hybrid speech recognition with deep bidirec-
tional LSTM. In 2013 IEEE workshop on automatic speech recognition and understanding (pp.
273–278). New York: IEEE.

Griffiths, T. L., Jordan, M. I., Tenenbaum, J. B., & Blei, D. M. (2004). Hierarchical topic models
and the nested Chinese restaurant process. In Advances in Neural Information Processing
Systems (pp. 17–24).

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National
Academy of Sciences, 101(Suppl. 1), 5228–5235.

Gu, J., Lu, Z., Li, H., & Li, V. O. (2016). Incorporating copying mechanism in sequence-to-
sequence learning. In Proceedings of ACL.

Gui, L., Wu, D., Xu, R., Lu, Q., & Zhou, Y. (2016). Event-driven emotion cause extraction with
corpus construction. In Proceedings of EMNLP (pp. 1639–1649). Singapore: World Scientific.

Han, J., Kamber, M., & Pei, J. (2012). Data mining-concepts and techniques (3rd ed.). Burlington:
Morgan Kaufmann.

References 339

Han, X., Sun, L., & Zhao, J. (2011). Collective entity linking in web text: A graph-based method.
In Proceedings of SIGIR.

Han, X., & Zhao, J. (2009a). Named entity disambiguation by leveraging wikipedia semantic
knowledge. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management (pp. 215–224).

Han, X., & Zhao, J. (2009b). NLPR_KBP in TAC 2009 KBP track: A two-stage method to entity
linking. In Proceedings of TAC 2009 Workshop.

Harris, Z. S. (1954). Distributional structure. Word, 10(2–3), 146–162.
Hashimoto, K., & Tsuruoka, Y. (2016). Adaptive joint learning of compositional and non-

compositional phrase embeddings. In Proceedings of ACL (pp. 205–215).
Hatzivassiloglou, V., & McKeown, K. R. (1997). Predicting the semantic orientation of adjectives.

In Proceedings of EACL (pp. 174–181). Stroudsburg: Association for Computational Linguis-
tics.

He, Q., Chang, K., & Lim, E.-P. (2007a). Analyzing feature trajectories for event detection. In
Proceedings of SIGIR (pp. 207–214).

He, Q., Chang, K., Lim, E.-P., & Zhang, J. (2007b). Bursty feature representation for clustering
text streams. In Proceedings of the 2007 SIAM International Conference on Data Mining (pp.
491–496). Philadelphia: SIAM.

He, Z., Liu, S., Li, M., Zhou, M., Zhang, L., & Wang, H. (2013). Learning entity representation
for entity disambiguation. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers) (pp. 30–34).

Heinrich, G. (2005). Parameter estimation for text analysis. Technical report.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),

1735–1780.
Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., & Weld, D. S. (2011). Knowledge-based

weak supervision for information extraction of overlapping relations. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies (Vol. 1, pp. 541–550).

Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of SIGIR (pp. 50–57).
Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of ACM

SIGKDD (pp. 168–177).
Hu, W., Zhang, J., & Zheng, N. (2016). Different contexts lead to different word embeddings.

In Proceedings of COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers (pp. 762–771).

Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., & Smola, A. J. (2007). Correcting sample
selection bias by unlabeled data. In Advances in Neural Information Processing Systems (pp.
601–608).

Huang, L., Fayong, S., & Guo, Y. (2012). Structured perceptron with inexact search. In Pro-
ceedings of the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (pp. 142–151).

Huang, L., & Huang, L. (2013). Optimized event storyline generation based on mixture-event-
aspect model. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing (pp. 726–735).

Huang, X., Wan, X., & Xiao, J. (2011). Comparative news summarization using linear pro-
gramming. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies: Short Papers (Vol. 2, pp. 648–653). Stroudsburg:
Association for Computational Linguistics.

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging.
Preprint, arXiv:1508.01991.

Ikeda, D., Takamura, H., Ratinov, L., & Okumura, M. (2008). Learning to shift the polarity of
words for sentiment classification. In Proceedings of IJCNLP (pp. 296–303).

Inderjeet, M. (2001). Automatic summarization. Amsterdam: John Benjamins Publishing Co.
Irsoy, O., & Cardie, C. (2014). Deep recursive neural networks for compositionality in language.

In Advances in Neural Information Processing Systems (pp. 2096–2104).

340 References

Jain, A., & Pennacchiotti, M. (2010). Open entity extraction from web search query logs. In
Proceedings of the 23rd International Conference on Computational Linguistics, COLING ’10
(pp. 510–518). Cambridge: Association for Computational Linguistics.

Jakob, N., & Gurevych, I. (2010). Extracting opinion targets in a single and cross-domain setting
with conditional random fields. In Proceedings of EMNLP (pp. 1035–1045). Cambridge, MA:
Association for Computational Linguistics.

Jiang, J., & Zhai, C. (2007). Instance weighting for domain adaptation in NLP. In Proceedings of
ACL (pp. 264–271).

Jiang, L., Yu, M., Zhou, M., Liu, X., & Zhao, T. (2011). Target-dependent twitter sentiment classi-
fication. In Proceedings of NAACL (pp. 151–160). Stroudsburg: Association for Computational
Linguistics.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., et al. (2019). Tinybert: Distilling bert for
natural language understanding. Preprint, arXiv:1909.10351.

Jin, W., Ho, H. H., & Srihari, R. K. (2009). A novel lexicalized HMM-based learning framework
for web opinion mining. In Proceedings of the 26th Annual International Conference on
Machine Learning (Vol. 10). Citeseer.

Jo, Y., & Oh, A. H. (2011). Aspect and sentiment unification model for online review analysis. In
Proceedings of WSDM (pp. 815–824).

Jurafsky, D., & Martin, J. H. (2008). Speech and language processing: An introduction to natural
language processing, computational linguistics, and speech recognition (2nd ed.). Upper
Saddle River: Prentice Hall.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for
modelling sentences. In Proceedings of ACL (pp. 655–665).

Kamps, J., Marx, M., Mokken, R. J., & De Rijke, M. (2004). Using wordnet to measure semantic
orientations of adjectives. In Proceedings of LREC (Vol. 4, pp. 1115–1118). Citeseer.

Kanayama, H., & Nasukawa, T. (2006). Fully automatic lexicon expansion for domain-oriented
sentiment analysis. In Proceedings of EMNLP (pp. 355–363).

Kennedy, A., & Inkpen, D. (2006). Sentiment classification of movie reviews using contextual
valence shifters. Computational Intelligence, 22(2), 110–125.

Kim, S.-M., & Hovy, E. (2004). Determining the sentiment of opinions. In Proceedings of COLING
(pp. 1367–1373). Stroudsburg: Association for Computational Linguistics.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of
EMNLP (pp. 1746–1751).

Kiritchenko, S., Zhu, X., Cherry, C., & Mohammad, S. (2014). NRC-Canada-2014: Detecting
aspects and sentiment in customer reviews. In Proceedings of SemEval 2014 (pp. 437–442).

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., et al. (2015). Skip-
thought vectors. In Advances in Neural Information Processing Systems (pp. 3294–3302).

Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge
Discovery, 7(4), 373–397.

Knight, K., & Marcu, D. (2002). Summarization beyond sentence extraction: A probabilistic
approach to sentence compression. Artificial Intelligence, 139(1), 91–107.

Kobayashi, N., Inui, K., & Matsumoto, Y. (2007). Extracting aspect-evaluation and aspect-of
relations in opinion mining. In Proceedings of EMNLP and CoNLL (pp. 1065–1074).

Ku, L.-W., Liang, Y.-T., & Chen, H.-H. (2006). Opinion extraction, summarization and tracking in
news and blog corpora. In Proceedings of AAAI (pp. 100–107).

Kumaran, G., & Allan, J. (2004). Text classification and named entities for new event detection. In
Proceedings of SIGIR (pp. 297–304).

Kumaran, G., & Allan, J. (2005). Using names and topics for new event detection. In Proceedings
of HLT-EMNLP (pp. 121–128). Vancouver, BC: Association for Computational Linguistics.

Kurisinkel, L. J., Mishra, P., Muralidaran, V., Varma, V., & Misra Sharma, D. (2016). Non-
decreasing sub-modular function for comprehensible summarization. In Proceedings of the
NAACL Student Research Workshop (pp. 94–101).

Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proceedings of ICML.

References 341

Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to generate a good word embedding. IEEE
Intelligent Systems, 31(6), 5–14.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert
for self-supervised learning of language representations. Preprint, arXiv:1909.11942.

Landauer, T. K. (2006). Latent semantic analysis. New York: Wiley.
Larkey, L. S., & Croft, W. B. (1996). Combining classifiers in text categorization. In Proceedings

of SIGIR (pp. 289–297).
Lavrenko, V., & Croft, W. B. (2001). Relevance based language models. In Proceedings of SIGIR,

SIGIR ’01 (pp. 120–127). New York, NY: Association for Computing Machinery.
LDC. (2005). ACE (automatic content extraction) English annotation guidelines for enti-

ties (version 5.5.1). https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/chinese-events-
guidelines-v5.5.1.pdf.

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In
Proeceedings of ICML (pp. 1188–1196).

Lee, R., & Sumiya, K. (2010). Measuring geographical regularities of crowd behaviors for twitter-
based geo-social event detection. In Proceedings of ACM SIGSPATIAL (pp. 1–10).

Leek, T., Schwartz, R., & Sista, S. (2002). Probabilistic approaches to topic detection and tracking.
In Topic detection and tracking (pp. 67–83). Berlin: Springer.

Li, B., Liu, T., Zhao, Z., Tang, B., Drozd, A., Rogers, A., et al. (2017a). Investigating different syn-
tactic context types and context representations for learning word embeddings. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 2421–
2431).

Li, C., Liu, F., Weng, F., & Liu, Y. (2013a). Document summarization via guided sentence
compression. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing (pp. 490–500).

Li, H. (2019). Statistical machine learning (2nd ed.). Beijing: Tsinghua University Press (in
Chinese).

Li, H., Zhang, J., Zhou, Y., & Zong, C. (2016a). Guiderank: A guided ranking graph model for
multilingual multi-document summarization. In Proceedings of NLPCC (pp. 608–620).

Li, H., Zhu, J., Ma, C., Zhang, J., & Zong, C. (2017b). Multi-modal summarization for
asynchronous collection of text, image, audio and video. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing (pp. 1092–1102).

Li, J., Luong, M.-T., & Jurafsky, D. (2015). A hierarchical neural autoencoder for paragraphs and
documents. In Proceedings of ACL (pp. 1106–1115).

Li, Q., & Ji, H. (2014). Incremental joint extraction of entity mentions and relations. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers) (pp. 402–412).

Li, Q., Ji, H., & Huang, L. (2013b). Joint event extraction via structured prediction with global
features. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (pp. 73–82).

Li, S., Chua, T.-S., Zhu, J., & Miao, C. (2016b). Generative topic embedding: A continuous
representation of documents. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (pp. 666–675).

Li, S., & Huang, C.-R. (2009). Sentiment classification considering negation and contrast
transition. In Proceedings of PACLIC (pp. 307–316).

Li, S., Lee, S. Y., Chen, Y., Huang, C.-R., & Zhou, G. (2010a). Sentiment classification and polarity
shifting. In Proceedings of COLING (pp. 635–643).

Li, S., Xia, R., Zong, C., & Huang, C.-R. (2009a). A framework of feature selection methods for
text categorization. In Proceedings of ACL-IJCNLP (pp. 692–700).

Li, T., Zhang, Y., & Sindhwani, V. (2009b). A non-negative matrix tri-factorization approach to
sentiment classification with lexical prior knowledge. In Proceedings of ACL-IJCNLP (pp. 244–
252). Stroudsburg: Association for Computational Linguistics.

Li, W., & McCallum, A. (2006). Pachinko allocation: DAG-structured mixture models of topic
correlations. In Proceedings of ICML (pp. 577–584).

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/chinese-events-guidelines-v5.5.1.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/chinese-events-guidelines-v5.5.1.pdf

342 References

Li, X., Dong, Y., & Li, J. (2010b). Data mining and knowledge discovering. Beijing: High
Education Press (in Chinese).

Li, X., & Lam, W. (2017). Deep multi-task learning for aspect term extraction with memory
interaction. In Proceedings of EMNLP (pp. 616–626).

Li, Z., Wei, Y., Zhang, Y., & Yang, Q. (2018). Hierarchical attention transfer network for cross-
domain sentiment classification. In Proceedings of AAAI (pp. 5852–5859).

Li, Z., Zhang, Y., Wei, Y., Wu, Y., & Yang, Q. (2017c). End-to-end adversarial memory network
for cross-domain sentiment classification. In Proceedings of IJCAI (pp. 2237–2243).

Liao, W., & Veeramachaneni, S. (2009). A simple semi-supervised algorithm for named entity
recognition. In Proceedings of the NAACL HLT 2009 Workshop on Semi-Supervised Learning
for Natural Language Processing (pp. 58–65).

Lin, C., & He, Y. (2009). Joint sentiment/topic model for sentiment analysis. In Proceedings of
CIKM (pp. 375–384).

Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. In Text summariza-
tion branches out (pp. 74–81).

Lin, J., Snow, R., & Morgan, W. (2011). Smoothing techniques for adaptive online language
models: Topic tracking in tweet streams. In Proceedings of ACM SIGKDD (pp. 422–429).

Lin, Y., Shen, S., Liu, Z., Luan, H., & Sun, M. (2016). Neural relation extraction with selective
attention over instances. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 2124–2133).

Ling, W., Tsvetkov, Y., Amir, S., Fermandez, R., Dyer, C., Black, A. W., et al. (2015). Not all
contexts are created equal: Better word representations with variable attention. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1367–
1372).

Liu, B. (2011). Web data mining: Exploring hyperlinks, contents, and usage data. Berlin: Springer.
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language

Technologies, 5(1), 1–167.
Liu, B. (2015). Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge:

Cambridge University Press.
Liu, F., Flanigan, J., Thomson, S., Sadeh, N., & Smith, N. A. (2015a). Toward abstractive

summarization using semantic representations. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (pp. 1077–1086).

Liu, J., & Zhang, Y. (2017). Attention modeling for targeted sentiment. In Proceedings of EACL
(pp. 572–577).

Liu, K. (2000). Chinese text word segmentation and annotation. Beijing: Commercial Press (in
Chinese).

Liu, P., Joty, S., & Meng, H. (2015b). Fine-grained opinion mining with recurrent neural networks
and word embeddings. In Proceedings of EMNLP (pp. 1433–1443).

Liu, Y., Li, Z., Xiong, H., Gao, X., & Wu, J. (2010). Understanding of internal clustering validation
measures. In 2010 IEEE International Conference on Data Mining (pp. 911–916). New York:
IEEE.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al. (2019). Roberta: A robustly optimized
BERT pretraining approach. CoRR, abs/1907.11692.

Lovins, J. B. (1968). Development of a stemming algorithm. Translation and Computational
Linguistics, 11(1), 22–31.

Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of Research and
Development, 2(2), 159–165.

Luo, B., Feng, Y., Wang, Z., Zhu, Z., Huang, S., Yan, R., et al. (2017). Learning with noise:
Enhance distantly supervised relation extraction with dynamic transition matrix. In Proceedings
of ACL.

Ma, D., Li, S., Zhang, X., & Wang, H. (2017). Interactive attention networks for aspect-level
sentiment classification. In Proceedings of IJCAI (pp. 4068–4074).

References 343

Malin, W., Airoldi, E., & Carley, K. (2005). A network analysis model for disambiguation of names
in lists. Computational & Mathematical Organization Theory, 11, 119–139.

Mann, G., & Yarowsky, D. (2003). Unsupervised personal name disambiguation. In Proceedings
of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 (pp. 33–40).

Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing.
Cambridge: MIT Press.

Mao, G., Duan, L., & Wang, S. (2007). Principles and algorithms on data mining. Beijing:
Tsinghua University Press (in Chinese).

Mao, Y., & Lebanon, G. (2007). Isotonic conditional random fields and local sentiment flow. In
Advances in Neural Information Processing Systems (pp. 961–968).

Marcu, D. (2000). The theory and practice of discorse parsing and summarization. Cambridge:
MIT Press.

Massoudi, K., Tsagkias, M., De Rijke, M., & Weerkamp, W. (2011). Incorporating query expansion
and quality indicators in searching microblog posts. In European Conference on Information
Retrieval (pp. 362–367). Berlin: Springer.

Mausam, Schmitz, M., Soderland, S., Bart, R., & Etzioni, O. (2012). Open language learning for
information extraction. In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (pp. 523–534).

Mcauliffe, J. D., & Blei, D. M. (2008). Supervised topic models. In Advances in Neural
Information Processing Systems (pp. 121–128).

McCallum, A., Corrada-Emmanuel, A., & Wang, X. (2005). Topic and role discovery in social
networks. https://scholarworks.umass.edu/cs_faculty_pubs

McCallum, A., & Li, W. (2003). Early results for named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons. In Proceedings of the Seventh Conference
on Natural Language Learning at HLT-NAACL 2003 (pp. 188–191).

McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes text
classification. In AAAI-98 Workshop on Learning for Text Categorization (Vol. 752, pp. 41–
48). Citeseer.

McDonald, R., Hannan, K., Neylon, T., Wells, M., & Reynar, J. (2007). Structured models for fine-
to-coarse sentiment analysis. In Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics (pp. 432–439). Prague: Association for Computational Linguistics.

Mei, Q., Ling, X., Wondra, M., Su, H., & Zhai, C. (2007). Topic sentiment mixture: Modeling
facets and opinions in weblogs. In Proceedings of WWW (pp. 171–180).

Mei, Q., & Zhai, C. (2001). A note on EM algorithm for probabilistic latent semantic analysis. In
Proceedings of CIKM.

Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. In Proceedings of the 2004
Conference on Empirical Methods in Natural Language Processing (pp. 404–411).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representa-
tions in vector space. In Proceedings of ICLR Workshop Track.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., & Khudanpur, S. (2010). Recurrent neural
network based language model. In Eleventh Annual Conference of the International Speech
Communication Association.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed representations
of words and phrases and their compositionality. In Advances in Neural Information Processing
Systems (pp. 3111–3119).

Minkov, E., Cohen, W. W., & Ng, A. Y. (2006). Contextual search and name disambiguation in
email using graphs. In Proceedings of SIGIR (pp. 27–34).

Mintz, M., Bills, S., Snow, R., & Jurafsky, D. (2009). Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP (pp. 1003–1011).

Miwa, M., & Bansal, M. (2016). End-to-end relation extraction using LSTMs on sequences and
tree structures. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (pp. 1105–1116).

https://scholarworks.umass.edu/cs_faculty_pubs

344 References

Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., & Cherry, C. (2016). SemEval-2016 task 6:
Detecting stance in tweets. In Proceedings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016) (pp. 31–41). San Diego, CA: Association for Computational
Linguistics.

Mohammad, S., Kiritchenko, S., & Zhu, X. (2013). NRC-Canada: Building the state-of-the-art
in sentiment analysis of tweets. In Proceedings of SemEval (pp. 321–327). Atlanta, GA:
Association for Computational Linguistics.

Mukherjee, A., & Liu, B. (2012). Aspect extraction through semi-supervised modeling. In
Proceedings of ACL (pp. 339–348). Stroudsburg: Association for Computational Linguistics.

Mullen, T., & Collier, N. (2004). Sentiment analysis using support vector machines with diverse
information sources. In Proceedings of EMNLP (pp. 412–418).

Na, J.-C., Sui, H., Khoo, C. S., Chan, S., & Zhou, Y. (2004). Effectiveness of simple linguistic pro-
cessing in automatic sentiment classification of product reviews. In Knowledge Organization
and the Global Information Society: Proceedings of the Eighth International ISKO Conference
(pp. 49–54).

Nakagawa, T., Inui, K., & Kurohashi, S. (2010). Dependency tree-based sentiment classification
using CRFs with hidden variables. In Proceedings of NAACL (pp. 786–794).

Nallapati, R., Zhai, F., & Zhou, B. (2017). Summarunner: A recurrent neural network based
sequence model for extractive summarization of documents. In Thirty-First AAAI Conference
on Artificial Intelligence.

Nallapati, R., Zhou, B., dos santos, C. N., Gulcehre, C., Xiang, B. (2016). Abstractive text
summarization using sequence-to-sequence rnns and beyond. Preprint, arXiv:1602.06023.

Narasimhan, K., Yala, A., & Barzilay, R. (2016). Improving information extraction by acquiring
external evidence with reinforcement learning. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing (pp. 2355–2365).

Nema, P., Khapra, M. M., Laha, A., & Ravindran, B. (2017). Diversity driven attention model
for query-based abstractive summarization. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1063–1072).

Nenkova, A., & Passonneau, R. J. (2004). Evaluating content selection in summarization: The
pyramid method. In Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004 (pp.
145–152).

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. In Advances in Neural Information Processing Systems (pp.
841–848).

Ng, V., Dasgupta, S., & Arifin, S. N. (2006). Examining the role of linguistic knowledge sources
in the automatic identification and classification of reviews. In Proceedings of COLING/ACL
(pp. 611–618).

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled
and unlabeled documents using EM. Machine Learning, 39(2–3), 103–134.

Orimaye, S. O., Alhashmi, S. M., & Siew, E.-G. (2012). Buy it-don’t buy it: Sentiment classifica-
tion on amazon reviews using sentence polarity shift. In Proceedings of PRICAI (pp. 386–399).
Berlin: Springer.

Osborne, M. (2002). Using maximum entropy for sentence extraction. In Proceedings of the ACL-
02 Workshop on Automatic Summarization-Volume 4 (pp. 1–8). Stroudsburg: Association for
Computational Linguistics.

Page, L., & Brin, S. (1998). The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(17), 107–117.

Paice, C. D. (1990). Another stemmer. ACM SIGIR Forum, 24(3), 56–61.
Pan, S. J., Ni, X., Sun, J.-T., Yang, Q., & Chen, Z. (2010a). Cross-domain sentiment classification

via spectral feature alignment. In Proceedings of WWW (pp. 751–760).
Pan, S. J., Tsang, I. W., Kwok, J. T., & Yang, Q. (2010b). Domain adaptation via transfer

component analysis. IEEE Transactions on Neural Networks, 22(2), 199–210.

References 345

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10), 1345–1359.

Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proceedings of ACL (pp. 271–278). Stroudsburg:
Association for Computational Linguistics.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in
Information Retrieval, 2(1–2), 1–135.

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine
learning techniques. In Proceedings of EMNLP (pp. 79–86). Stroudsburg: Association for
Computational Linguistics.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: A method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (pp. 311–318).

Pedersen, T., Purandare, A., & Kulkarni, A. (2005). Name discrimination by clustering similar
contexts. In International Conference on Intelligent Text Processing and Computational
Linguistics (pp. 226–237).

Peng, N., Poon, H., Quirk, C., Toutanova, K., & Yih, W.-T. (2017). Cross-sentence N-ary relation
extraction with graph LSTMs. Transactions of the Association for Computational Linguistics,
5, 101–115.

Pennacchiotti, M., & Pantel, P. (2009). Entity extraction via ensemble semantics. In Proceedings
of the 2009 Conference on Empirical Methods in Natural Language Processing (Vol. 1, pp.
238–247). Stroudsburg: Association for Computational Linguistics.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., et al. (2018). Deep contex-
tualized word representations. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers) (pp. 2227–2237).

Petrov, S., & McDonald, R. (2012). Overview of the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-Canonical Language (SANCL).

Petrović, S., Osborne, M., & Lavrenko, V. (2010). Streaming first story detection with application
to twitter. In Proceedings of NAACL-HLT, HLT ’10 (pp. 181–189). Stroudsburg: Association
for Computational Linguistics.

Peyrard, M., & Eckle-Kohler, J. (2017). Supervised learning of automatic pyramid for
optimization-based multi-document summarization. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1084–1094).

Phuvipadawat, S., & Murata, T. (2010). Breaking news detection and tracking in twitter. In Pro-
ceedings of IEEE/WIC/ACM WI-IAT, WI-IAT ’10 (pp. 120–123). New York: IEEE Computer
Society.

Pinter, Y., Guthrie, R., & Eisenstein, J. (2017). Mimicking word embeddings using subword RNNs.
In Proceedings of EMNLP (pp. 102–112).

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector
machines (pp. 212–223).

Plutchik, R., & Kellerman, H. (1986). Emotion: Theory, research and experience. Volume 3 in
biological foundations of emotions. Oxford: Pergamon.

Polanyi, L., & Zaenen, A. (2006). Contextual valence shifters. In Computing attitude and affect in
text: Theory and applications (pp. 1–10). Berlin: Springer.

Popescu, A.-M., & Etzioni, O. (2007). Extracting product features and opinions from reviews. In
Natural language processing and text mining (pp. 9–28). Berlin: Springer.

Popescu, A.-M., & Pennacchiotti, M. (2010). Detecting controversial events from twitter. In
Proceedings of CIKM, CIKM ’10 (pp. 1873–1876). New York, NY: Association for Computing
Machinery.

Popescu, A.-M., Pennacchiotti, M., & Paranjpe, D. (2011). Extracting events and event descriptions
from twitter. In Proceedings of WWW (pp. 105–106).

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.

346 References

Qian, Q., Huang, M., Lei, J., & Zhu, X. (2017). Linguistically regularized LSTM for sentiment
classification. In Proceedings of ACL (pp. 1679–1689).

Qiu, G., Liu, B., Bu, J., & Chen, C. (2011). Opinion word expansion and target extraction through
double propagation. Computational Linguistics, 37(1), 9–27.

Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., & Huang, X. (2020). Pre-trained models for natural
language processing: A survey. Preprint, arXiv:2003.08271.

Rabiner, L., & Juang, B. (1986). An introduction to hidden markov models. IEEE ASSP Magazine,
3(1), 4–16.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language
understanding by generative pre-training. https://s3-us-west-2.amazonaws.com/openai-assets/
research-covers/language-unsupervised/language_understanding_paper.pdf

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are
unsupervised multitask learners. Technical report, OpenAI.

Ramage, D., Hall, D., Nallapati, R., & Manning, C. D. (2009). Labeled LDA: A supervised topic
model for credit attribution in multi-labeled corpora. In Proceedings of EMNLP (pp. 248–256).
Stroudsburg: Association for Computational Linguistics.

Ratinov, L., & Roth, D. (2009). Design challenges and misconceptions in named entity recognition.
In Proceedings of the Thirteenth Conference on Computational Natural Language Learning
(CoNLL-2009) (pp. 147–155).

Riedel, S., Yao, L., & McCallum, A. (2010). Modeling relations and their mentions without labeled
text. In Proceedings of ECML (pp. 148–163).

Rush, A. M., Chopra, S., & Weston, J. (2015). A neural attention model for abstractive sentence
summarization. In Proceedings of EMNLP.

Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing.
Communications of the ACM, 18(11), 613–620.

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). Distilbert, a distilled version of bert: Smaller,
faster, cheaper and lighter. Preprint, arXiv:1910.01108.

Sarawagi, S. (2008). Information extraction. Foundations and Trends in Databases, 1(3), 261–377.
Schapire, R., & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization.

Machine Learning, 39(2), 135–168.
Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE transactions

on Signal Processing, 45(11), 2673–2681.
Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys

(CSUR), 34(1), 1–47.
See, A., Liu, P., & Manning, C. (2017). Get to the point: Summarization with pointer-generator

networks. In Proceedings of ACL.
Shen, W., Wang, J., & Han, J. (2015). Entity linking with a knowledge base: Issues, techniques,

and solutions. IEEE Transactions on Knowledge and Data Engineering, 27(2), 443–460.
Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the log-

likelihood function. Journal of Statistical Planning and Inference, 90(2), 227–244.
Snyder, B., & Barzilay, R. (2007). Multiple aspect ranking using the good grief algorithm.

In Proceedings of NAACL (pp. 300–307). Rochester, NY: Association for Computational
Linguistics.

Socher, R., Huval, B., Manning, C. D., & Ng, A. Y. (2012). Semantic compositionality through
recursive matrix-vector spaces. In Proceedings of EMNLP (pp. 1201–1211). Stroudsburg:
Association for Computational Linguistics.

Socher, R., Lin, C. C., Manning, C., & Ng, A. Y. (2011a). Parsing natural scenes and natural
language with recursive neural networks. In Proceedings of ICML (pp. 129–136).

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., & Manning, C. D. (2011b). Semi-supervised
recursive autoencoders for predicting sentiment distributions. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (pp. 151–161). Stroudsburg: Associa-
tion for Computational Linguistics.

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

References 347

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., et al.(2013). Recursive
deep models for semantic compositionality over a sentiment treebank. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing (pp. 1631–1642).

Song, K., Tan, X., Qin, T., Lu, J., & Liu, T.-Y. (2019). Mass: Masked sequence to sequence pre-
training for language generation. In Proceedings of ICML.

Stanovsky, G., & Dagan, I. (2016). Creating a large benchmark for open information extraction. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing
(pp. 2300–2305).

Steyvers, M., Smyth, P., Rosen-Zvi, M., & Griffiths, T. (2004). Probabilistic author-topic models
for information discovery. In Proceedings of ACM SIGKDD (pp. 306–315).

Strapparava, C., & Valitutti, A. (2004). Wordnet affect: An affective extension of wordnet. In
Proceedings of LREC (Vol. 4, p. 40). Citeseer.

Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P. V., & Kawanabe, M. (2008). Direct
importance estimation with model selection and its application to covariate shift adaptation.
In Advances in Neural Information Processing Systems (pp. 1433–1440).

Sun, Y., Lin, L., Tang, D., Yang, N., Ji, Z., & Wang, X. (2015). Modeling mention, context and
entity with neural networks for entity disambiguation. In Twenty-Fourth International Joint
Conference on Artificial Intelligence.

Sun, Y., Wang, S., Li, Y., Feng, S., Chen, X., Zhang, H., et al. (2019). ERNIE: Enhanced
representation through knowledge integration. Preprint, arXiv:1904.09223.

Sun, Y., Wang, S., Li, Y., Feng, S., Tian, H., Wu, H., et al. (2020). ERNIE 2.0: A continual pre-
training framework for language understanding. In Proceedings of AAAI.

Surdeanu, M., Tibshirani, J., Nallapati, R., & Manning, C. D. (2012). Multi-instance multi-label
learning for relation extraction. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning (pp.
455–465).

Sutton, C., & McCallum, A. (2012). An introduction to conditional random fields. Foundations
and Trends® in Machine Learning, 4(4), 267–373.

Suzuki, J., & Isozaki, H. (2008). Semi-supervised sequential labeling and segmentation using giga-
word scale unlabeled data. In Proceedings of ACL-08: HLT (pp. 665–673).

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for
sentiment analysis. Computational Linguistics, 37(2), 267–307.

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations from tree-
structured long short-term memory networks. Proceedings of ACL and IJCNLP (pp. 1556–
1565).

Tan, J., Wan, X., & Xiao, J. (2017). Abstractive document summarization with a graph-based
attentional neural model. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1171–1181).

Tang, D., Qin, B., Feng, X., & Liu, T. (2015a). Effective LSTMs for target-dependent sentiment
classification. Proceedings of COLING (pp. 3298–3307).

Tang, D., Qin, B., & Liu, T. (2015b). Document modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing (pp. 1422–1432).

Tang, D., Qin, B., & Liu, T. (2016). Aspect level sentiment classification with deep memory
network. Proceedings of EMNLP (pp. 3298–3307).

Tang, D., Wei, F., Qin, B., Zhou, M., & Liu, T. (2014a). Building large-scale twitter-specific
sentiment lexicon: A representation learning approach. In Proceedings of COLING (pp. 172–
182).

Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., & Qin, B. (2014b). Learning sentiment-specific
word embedding for twitter sentiment classification. In Proceedings of ACL (pp. 1555–1565).

Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., & Lin, J. (2019). Distilling task-specific
knowledge from bert into simple neural networks. Preprint, arXiv:1903.12136.

Thet, T. T., Na, J.-C., & Khoo, C. S. G. (2010). Aspect-based sentiment analysis of movie reviews
on discussion boards. Journal of Information Science, 36, 823–848.

348 References

Tissier, J., Gravier, C., & Habrard, A. (2017). Dict2vec: Learning word embeddings using lexical
dictionaries. In Proceedings of EMNLP (pp. 254–263).

Titov, I., & McDonald, R. (2008). A joint model of text and aspect ratings for sentiment summa-
rization. In Proceedings of ACL (pp. 308–316). Columbus, OH: Association for Computational
Linguistics.

Toh, Z., & Wang, W. (2014). DLIREC: Aspect term extraction and term polarity classification
system. In Association for Computational Linguistics and Dublin City University (pp. 235–
240). Citeseer.

Turner, J., & Charniak, E. (2005). Supervised and unsupervised learning for sentence compression.
In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (pp.
290–297). Stroudsburg: Association for Computational Linguistics.

Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised
classification of reviews. In Proceedings of ACL (pp. 417–424). Stroudsburg: Association for
Computational Linguistics.

Turney, P. D., & Littman, M. L. (2003). Measuring praise and criticism: Inference of semantic
orientation from association. ACM Transactions on Information Systems (TOIS), 21(4):315–
346.

Vawani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention
is all you need. In Proceedings of NeurIPS.

Vo, D.-T., & Zhang, Y. (2015). Target-dependent twitter sentiment classification with rich
automatic features. In Proceedings of IJCAI (pp. 1347–1353).

Vo, D. T., & Zhang, Y. (2016). Don’t count, predict! an automatic approach to learning
sentiment lexicons for short text. In Proceedings of ACL (pp. 219–224). Berlin: Association
for Computational Linguistics.

Wan, X. (2011). Using bilingual information for cross-language document summarization. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1 (pp. 1546–1555). Stroudsburg: Association for
Computational Linguistics.

Wan, X., Li, H., & Xiao, J. (2010). Cross-language document summarization based on machine
translation quality prediction. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics (pp. 917–926). Stroudsburg: Association for Computational
Linguistics.

Wang, K., & Xia, R. (2015). An approach to Chinese sentiment lexicon construction based on
conjunction relation. In Proceedings of CCL.

Wang, K., & Xia, R. (2016). A survey on automatical construction methods of sentiment lexicons.
Acta Automatica Sinica, 42(4), 495–511.

Wang, K., Zong, C., & Su, K.-Y. (2012). Integrating generative and discriminative character-based
models for chinese word segmentation. ACM Transactions on Asian Language Information
Processing, 11(2), 1–41.

Wang, L., & Xia, R. (2017). Sentiment lexicon construction with representation learning based on
hierarchical sentiment supervision. In Proceedings of EMNLP (pp. 502–510).

Wang, S., Zhang, J., Lin, N., & Zong, C. (2018). Investigating inner properties of multimodal
representation and semantic compositionality with brain-based componential semantics. In
Proceedings of AAAI (pp. 5964–5972).

Wang, S., Zhang, J., & Zong, C. (2017a). Exploiting word internal structures for generic Chinese
sentence representation. In Proceedings of EMNLP (pp. 298–303).

Wang, S., Zhang, J., & Zong, C. (2017b). Learning sentence representation with guidance of human
attention. In Proceedings of IJCAI (pp. 4137–4143).

Wang, S., & Zong, C. (2017). Comparison study on critical components in composition model for
phrase representation. ACM Transactions on Asian and Low-Resource Language Information
Processing (TALLIP), 16(3), 1–25.

Wang, W. Y., Mehdad, Y., Radev, D. R., & Stent, A. (2016a). A low-rank approximation approach
to learning joint embeddings of news stories and images for timeline summarization. In
Proceedings of ACL (pp. 58–68).

References 349

Wang, X., & McCallum, A. (2006). Topics over time: A non-markov continuous-time model of
topical trends. In Proceedings of ACM SIGKDD (pp. 424–433).

Wang, Y., Huang, H.-Y., Feng, C., Zhou, Q., Gu, J., & Gao, X. (2016b). CSE: Conceptual sentence
embeddings based on attention model. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (pp. 505–515).

Wang, Y., Huang, M., Zhu, X., & Zhao, L. (2016c). Attention-based LSTM for aspect-level
sentiment classification. In Proceedings of EMNLP (pp. 606–615).

Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge graph and text jointly embedding. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (pp. 1591–1601).

Whitehead, M., & Yaeger, L. (2010). Sentiment mining using ensemble classification models.
In Innovations and advances in computer sciences and engineering (pp. 509–514). Berlin:
Springer.

Whitelaw, C., Garg, N., & Argamon, S. (2005). Using appraisal groups for sentiment analysis. In
Proceedings of CIKM (pp. 625–631).

Wiebe, J., Wilson, T., Bruce, R., Bell, M., & Martin, M. (2004). Learning subjective language.
Computational Linguistics, 30(3), 277–308.

Wiebe, J. M., Bruce, R. F., & O’Hara, T. P. (1999). Development and use of a gold-standard data set
for subjectivity classifications. In Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics (pp. 246–253). College Park, MD: Association for Computational
Linguistics.

Wieting, J., & Gimpel, K. (2017). Revisiting recurrent networks for paraphrastic sentence
embeddings. In Proceedings of ACL (pp. 2078–2088).

Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of HLT-EMNLP (pp. 347–354).

Wu, X., Kumar, V., Ross, J., Joydeep, Q., Yang, G. Q., Motoda, H., et al. (2008). Top 10 algorithms
in data mining. Knowledge and Information Systems, 14, 1–37.

Wu, Y., Bamman, D., & Russell, S. (2017). Adversarial training for relation extraction. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
(pp. 1778–1783).

Xia, R., & Ding, Z. (2019). Emotion-cause pair extraction: A new task to emotion analysis in texts.
In Proceedings of ACL (pp. 1003–1012).

Xia, R., Hu, X., Lu, J., Yang, J., & Zong, C. (2013a). Instance selection and instance weighting
for cross-domain sentiment classification via PU learning. In Proceedings of IJCAI (pp. 2176–
2182).

Xia, R., Pan, Z., & Xu, F. (2018). Instance weighting for domain adaptation via trading off sample
selection bias and variance. In Proceedings of IJCAI (pp. 4489–4495). Palo Alto, CA: AAAI
Press.

Xia, R., Wang, C., Dai, X., & Li, T. (2015a). Co-training for semi-supervised sentiment classifi-
cation based on dual-view bags-of-words representation. In Proceedings of ACL-IJCNLP (pp.
1054–1063).

Xia, R., Wang, T., Hu, X., Li, S., & Zong, C. (2013b). Dual training and dual prediction for polarity
classification. In Proceedings of ACL (pp. 521–525).

Xia, R., Xu, F., Yu, J., Qi, Y., & Cambria, E. (2016). Polarity shift detection, elimination and
ensemble: A three-stage model for document-level sentiment analysis. Information Processing
& Management, 52(1), 36–45.

Xia, R., Xu, F., Zong, C., Li, Q., Qi, Y., & Li, T. (2015b). Dual sentiment analysis: Considering
two sides of one review. IEEE Transactions on Knowledge and Data Engineering, 27(8), 2120–
2133.

Xia, R., Yu, J., Xu, F., & Wang, S. (2014). Instance-based domain adaptation in NLP via in-target-
domain logistic approximation. In Proceedings of AAAI (pp. 1600–1606).

Xia, R., Zhang, M., & Ding, Z. (2019). RTHN: A RNN-transformer hierarchical network for
emotion cause extraction. In Proceedings of IJCAI (pp. 5285–5291). Palo Alto, CA: AAAI
Press.

350 References

Xia, R., & Zong, C. (2011). A POS-based ensemble model for cross-domain sentiment classifica-
tion. In Proceedings of IJCNLP (pp. 614–622).

Xia, R., Zong, C., & Li, S. (2011). Ensemble of feature sets and classification algorithms for
sentiment classification. Information Sciences, 181(6), 1138–1152.

Xu, J., Liu, J., Zhang, L., Li, Z., & Chen, H. (2016). Improve Chinese word embeddings by
exploiting internal structure. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (pp.
1041–1050).

Xue, G.-R., Dai, W., Yang, Q., & Yu, Y. (2008). Topic-bridged PLSA for cross-domain text
classification. In Proceedings of SIGIR (pp. 627–634).

Yaghoobzadeh, Y., & Schütze, H. (2016). Intrinsic subspace evaluation of word embedding
representations. In Proceedings of ACL (pp. 236–246).

Yamron, J. P., Knecht, S., & Mulbregt, P. V. (2000). Dragon’s tracking and detection systems for the
TDT2000 evaluation. In Proceedings of the Broadcast News Transcription and Understanding
Workshop (pp. 75–79).

Yan, R., Wan, X., Otterbacher, J., Kong, L., Li, X., & Zhang, Y. (2011). Evolutionary timeline
summarization: A balanced optimization framework via iterative substitution. In Proceedings
of the 34th International ACM SIGIR Conference on Research and Development in Information
Retrieval (pp. 745–754).

Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In Proceedings of
SIGIR (pp. 42–49).

Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text categorization.
In Proceedings of ICML, Nashville, TN, USA (Vol. 97, pp. 35).

Yang, Y., Pierce, T., & Carbonell, J. (1998). A study of retrospective and on-line event detection.
In Proceedings of SIGIR (pp. 28–36).

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XLNet:
Generalized autoregressive pretraining for language understanding. In Advances in Neural
Information Processing Systems (Vol. 32, pp. 5753–5763).

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention networks
for document classification. In Proceedings of NAACL (pp. 1480–1489).

Yao, J., Wan, X., & Xiao, J. (2017). Recent advances in document summarization. Knowledge and
Information Systems, 53(2), 297–336.

Yu, H., Zhang, Y., Ting, L., & Sheng, L. (2007). Topic detection and tracking review. Journal of
Chinese Information Processing, 6(21), 77–79.

Yu, J. (2017). Machine learning: From axiom to algorithm. Beijing: Tsinghua University Press (in
Chinese).

Yu, J., & Jiang, J. (2016). Learning sentence embeddings with auxiliary tasks for cross-domain
sentiment classification. In Proceedings of EMNLP (pp. 236–246).

Yu, J., Zha, Z.-J., Wang, M., & Chua, T.-S. (2011). Aspect ranking: Identifying important
product aspects from online consumer reviews. In Proceedings of NAACL (pp. 1496–1505).
Stroudsburg: Association for Computational Linguistics.

Yu, M., & Dredze, M. (2015). Learning composition models for phrase embeddings. Transactions
of the Association for Computational Linguistics, 3, 227–242.

Zadrozny, B. (2004). Learning and evaluating classifiers under sample selection bias. In Proceed-
ings of ICML (pp. 114–121).

Zelenko, D., Aone, C., & Richardella, A. (2003). Kernel methods for relation extraction. Journal
of Machine Learning Research, 3, 1083–1106.

Zeng, D., Liu, K., Chen, Y., & Zhao, J. (2015). Distant supervision for relation extraction via
piecewise convolutional neural networks. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (pp. 1753–1762).

Zeng, D., Liu, K., Lai, S., Zhou, G., & Zhao, J. (2014). Relation classification via convolutional
deep neural network. In Proceedings of COLING.

Zhang, J., Liu, S., Li, M., Zhou, M., & Zong, C. (2014). Bilingually-constrained phrase embed-
dings for machine translation. In Proceedings of ACL.

References 351

Zhang, J., Zhou, Y., & Zong, C. (2016a). Abstractive cross-language summarization via translation
model enhanced predicate argument structure fusing. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 24(10), 1842–1853.

Zhang, M., Zhang, Y., & Fu, G. (2017). End-to-end neural relation extraction with global
optimization. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing (pp. 1730–1740).

Zhang, M., Zhang, Y., & Vo, D.-T. (2016b). Gated neural networks for targeted sentiment analysis.
In Proceedings of AAAI (pp. 3087–3093).

Zhang, M., Zhou, G., & Aw, A. (2008). Exploring syntactic structured features over parse trees
for relation extraction using kernel methods. Information Processing & Management, 44(2),
687–701.

Zhang, X. (2016). Pattern recognition (3rd ed.). Beijing: Tsinghua University Press (in Chinese).
Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text

classification. In Advances in Neural Information Processing Systems (pp. 649–657).
Zhang, Z. (2014). Research and implementation of sentiment analysis methods on Chinese weibo.

Master Thesis (in Chinese).
Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., & Liu, Q. (2019). ERNIE: Enhanced language

representation with informative entities. Preprint, arXiv:1905.07129.
Zhao, W. X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., et al. (2011). Comparing twitter and

traditional media using topic models. In European Conference on Information Retrieval (pp.
338–349). Berlin: Springer.

Zhao, W. X., Jiang, J., Yan, H., & Li, X. (2010). Jointly modeling aspects and opinions with a
MaxEnt-LDA hybrid. In Proceedings of EMNLP (pp. 56–65). Stroudsburg: Association for
Computational Linguistics.

Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., & Xu, B. (2017). Joint extraction of entities and
relations based on a novel tagging scheme. In Proceedings of ACL.

Zhou, G., & Su, J. (2002). Named entity recognition using an HMM-based chunk tagger. In
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (pp.
473–480).

Zhou, G., Su, J., Zhang, J., & Zhang, M. (2005). Exploring various knowledge in relation
extraction. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics (pp. 427–434).

Zhou, L., Zhang, J., & Zong, C. (2019). Synchronous bidirectional neural machine translation.
Transactions of the Association for Computational Linguistics, 7, 91–105.

Zhou, Q., Yang, N., Wei, F., & Zhou, M. (2017). Selective encoding for abstractive sentence
summarization. In Proceedings of ACL.

Zhou, Z. (2016). Machine learning. Beijing: Tsinghua University Press (in Chinese).
Zhu, J., Li, H., Liu, T., Zhou, Y., Zhang, J., & Zong, C. (2018). MSMO: Multimodal summarization

with multimodal output. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing (pp. 4154–4164).

Zhu, J., Zhou, Y., Zhang, J., Li, H., Zong, C., & Li, C. (2020). Multimodal summarization with
guidance of multimodal reference. In Proceedings of AAAI.

Zhuang, L., Jing, F., & Zhu, X.-Y. (2006). Movie review mining and summarization. In Proceed-
ings of CIKM (pp. 43–50). New York, NY: Association for Computing Machinery.

Zong, C. (2013). Statistical natural language processing (2nd ed.). Beijing: Tsinghua University
Press (in Chinese).

	Foreword
	Preface
	Acknowledgments
	Contents
	About the Authors
	Acronyms
	1 Introduction
	1.1 The Basic Concepts
	1.2 Main Tasks of Text Data Mining
	1.3 Existing Challenges in Text Data Mining
	1.4 Overview and Organization of This Book
	1.5 Further Reading
	Exercises

	2 Data Annotation and Preprocessing
	2.1 Data Acquisition
	2.2 Data Preprocessing
	2.3 Data Annotation
	2.4 Basic Tools of NLP
	2.4.1 Tokenization and POS Tagging
	2.4.2 Syntactic Parser
	2.4.3 N-gram Language Model

	2.5 Further Reading
	Exercises

	3 Text Representation
	3.1 Vector Space Model
	3.1.1 Basic Concepts
	3.1.2 Vector Space Construction
	3.1.3 Text Length Normalization
	3.1.4 Feature Engineering
	3.1.5 Other Text Representation Methods

	3.2 Distributed Representation of Words
	3.2.1 Neural Network Language Model
	3.2.2 C&W Model
	3.2.3 CBOW and Skip-Gram Model
	3.2.4 Noise Contrastive Estimation and Negative Sampling
	3.2.5 Distributed Representation Based on the Hybrid Character-Word Method

	3.3 Distributed Representation of Phrases
	3.3.1 Distributed Representation Based on the Bag-of-Words Model
	3.3.2 Distributed Representation Based on Autoencoder

	3.4 Distributed Representation of Sentences
	3.4.1 General Sentence Representation
	3.4.2 Task-Oriented Sentence Representation

	3.5 Distributed Representation of Documents
	3.5.1 General Distributed Representation of Documents
	3.5.2 Task-Oriented Distributed Representation of Documents

	3.6 Further Reading
	Exercises

	4 Text Representation with Pretraining and Fine-Tuning
	4.1 ELMo: Embeddings from Language Models
	4.1.1 Pretraining Bidirectional LSTM Language Models
	4.1.2 Contextualized ELMo Embeddings for Downstream Tasks

	4.2 GPT: Generative Pretraining
	4.2.1 Transformer
	4.2.2 Pretraining the Transformer Decoder
	4.2.3 Fine-Tuning the Transformer Decoder

	4.3 BERT: Bidirectional Encoder Representations from Transformer
	4.3.1 BERT: Pretraining
	4.3.2 BERT: Fine-Tuning
	4.3.3 XLNet: Generalized Autoregressive Pretraining
	4.3.4 UniLM

	4.4 Further Reading
	Exercises

	5 Text Classification
	5.1 The Traditional Framework of Text Classification
	5.2 Feature Selection
	5.2.1 Mutual Information
	5.2.2 Information Gain
	5.2.3 The Chi-Squared Test Method
	5.2.4 Other Methods

	5.3 Traditional Machine Learning Algorithms for Text Classification
	5.3.1 Naïve Bayes
	5.3.2 Logistic/Softmax and Maximum Entropy
	5.3.3 Support Vector Machine
	5.3.4 Ensemble Methods

	5.4 Deep Learning Methods
	5.4.1 Multilayer Feed-Forward Neural Network
	5.4.2 Convolutional Neural Network
	5.4.3 Recurrent Neural Network

	5.5 Evaluation of Text Classification
	5.6 Further Reading
	Exercises

	6 Text Clustering
	6.1 Text Similarity Measures
	6.1.1 The Similarity Between Documents
	6.1.2 The Similarity Between Clusters

	6.2 Text Clustering Algorithms
	6.2.1 K-Means Clustering
	6.2.2 Single-Pass Clustering
	6.2.3 Hierarchical Clustering
	6.2.4 Density-Based Clustering

	6.3 Evaluation of Clustering
	6.3.1 External Criteria
	6.3.2 Internal Criteria

	6.4 Further Reading
	Exercises

	7 Topic Model
	7.1 The History of Topic Modeling
	7.2 Latent Semantic Analysis
	7.2.1 Singular Value Decomposition of the Term-by-Document Matrix
	7.2.2 Conceptual Representation and Similarity Computation

	7.3 Probabilistic Latent Semantic Analysis
	7.3.1 Model Hypothesis
	7.3.2 Parameter Learning

	7.4 Latent Dirichlet Allocation
	7.4.1 Model Hypothesis
	7.4.2 Joint Probability
	7.4.3 Inference in LDA
	7.4.4 Inference for New Documents

	7.5 Further Reading
	Exercises

	8 Sentiment Analysis and Opinion Mining
	8.1 History of Sentiment Analysis and Opinion Mining
	8.2 Categorization of Sentiment Analysis Tasks
	8.2.1 Categorization According to Task Output
	8.2.2 According to Analysis Granularity

	8.3 Methods for Document/Sentence-Level Sentiment Analysis
	8.3.1 Lexicon- and Rule-Based Methods
	8.3.2 Traditional Machine Learning Methods
	8.3.3 Deep Learning Methods

	8.4 Word-Level Sentiment Analysis and Sentiment Lexicon Construction
	8.4.1 Knowledgebase-Based Methods
	8.4.2 Corpus-Based Methods
	8.4.3 Evaluation of Sentiment Lexicons

	8.5 Aspect-Level Sentiment Analysis
	8.5.1 Aspect Term Extraction
	8.5.2 Aspect-Level Sentiment Classification
	8.5.3 Generative Modeling of Topics and Sentiments

	8.6 Special Issues in Sentiment Analysis
	8.6.1 Sentiment Polarity Shift
	8.6.2 Domain Adaptation

	8.7 Further Reading
	Exercises

	9 Topic Detection and Tracking
	9.1 History of Topic Detection and Tracking
	9.2 Terminology and Task Definition
	9.2.1 Terminology
	9.2.2 Task

	9.3 Story/Topic Representation and Similarity Computation
	9.4 Topic Detection
	9.4.1 Online Topic Detection
	9.4.2 Retrospective Topic Detection

	9.5 Topic Tracking
	9.6 Evaluation
	9.7 Social Media Topic Detection and Tracking
	9.7.1 Social Media Topic Detection
	9.7.2 Social Media Topic Tracking

	9.8 Bursty Topic Detection
	9.8.1 Burst State Detection
	9.8.2 Document-Pivot Methods
	9.8.3 Feature-Pivot Methods

	9.9 Further Reading
	Exercises

	10 Information Extraction
	10.1 Concepts and History
	10.2 Named Entity Recognition
	10.2.1 Rule-based Named Entity Recognition
	10.2.2 Supervised Named Entity Recognition Method
	10.2.3 Semisupervised Named Entity Recognition Method
	10.2.4 Evaluation of Named Entity Recognition Methods

	10.3 Entity Disambiguation
	10.3.1 Clustering-Based Entity Disambiguation Method
	10.3.2 Linking-Based Entity Disambiguation
	10.3.3 Evaluation of Entity Disambiguation

	10.4 Relation Extraction
	10.4.1 Relation Classification Using Discrete Features
	10.4.2 Relation Classification Using Distributed Features
	10.4.3 Relation Classification Based on Distant Supervision
	10.4.4 Evaluation of Relation Classification

	10.5 Event Extraction
	10.5.1 Event Description Template
	10.5.2 Event Extraction Method
	10.5.3 Evaluation of Event Extraction

	10.6 Further Reading
	Exercises

	11 Automatic Text Summarization
	11.1 Main Tasks in Text Summarization
	11.2 Extraction-Based Summarization
	11.2.1 Sentence Importance Estimation
	11.2.2 Constraint-Based Summarization Algorithms

	11.3 Compression-Based Automatic Summarization
	11.3.1 Sentence Compression Method
	11.3.2 Automatic Summarization Based on Sentence Compression

	11.4 Abstractive Automatic Summarization
	11.4.1 Abstractive Summarization Based on Information Fusion
	11.4.2 Abstractive Summarization Based on the Encoder-Decoder Framework

	11.5 Query-Based Automatic Summarization
	11.5.1 Relevance Calculation Based on the Language Model
	11.5.2 Relevance Calculation Based on Keyword Co-occurrence
	11.5.3 Graph-Based Relevance Calculation Method

	11.6 Crosslingual and Multilingual Automatic Summarization
	11.6.1 Crosslingual Automatic Summarization
	11.6.2 Multilingual Automatic Summarization

	11.7 Summary Quality Evaluation and Evaluation Workshops
	11.7.1 Summary Quality Evaluation Methods
	11.7.2 Evaluation Workshops

	11.8 Further Reading
	Exercises

	References

