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Preface

Population increase coupled with degradation of agricultural lands aggravates crop
protection and production challenges around the globe. The increased farm
fragmentations resulted in pest and disease infestations in farms due to increased
movement, carrying planting materials and resistance to major chemical fertilizers
and pesticides and overexploiting of natural resources. Thus, producing enough crop
yields to feed the rapidly growing population by sustaining its nutritional quality and
maintaining plant and soil health is the major challenge for growth and development.
Furthermore, classical techniques and products used for agriculture farming are also
at their threshold limits of effectiveness in fighting emerging pest and disease
problems and protecting agricultural productivity. One of the possible ways to
deal with these ever-increasing crop protection issues is through microbial biotech-
nology approach. Crop protection through microbial biotechnology involves the
application of microorganisms in farms through the engagements of modern bio-
technology techniques for sustaining future agriculture developments.
Microorganisms are the natural solution for the emerging crop protection issues
without affecting the production and soil fertility. Many research reports suggested
that broad application of microbes used in single or consortia is highly effective in
crop protection systems compared to synthetic fertilizer and pesticides. Looking at
the present need and future scenario, in this book, we are emphasizing the role of
microbial communities for crop protection against major pests and diseases (fungal
as well as bacterial) through the use of diversified biotechnological approaches such
as biofertilizers, biopesticides, and value additions in crops. Further, the book
reflects the emerging paradigms of genetic engineering manipulation through bene-
ficial gene transfer from microorganism which might be the other solution for crop
protection. The book meets the growing need for a comprehensive and holistic
outlook on crop protection issues, underlying principles, important perspectives,
and emerging biological approaches and techniques that are the need of today’s
sustainable agriculture. The chapter focuses on the broad application of microbes in
sustainable agriculture, genetic dependency of plants on the beneficial functions, and
symbiotic cohabitants.

We are extremely honored to receive chapters from professors and leading
scientists with enormous experience and expertise in the field of crop protection,
microbiology and biotechnology, and sustainable agriculture development. The
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book targets the academicians, researchers, scientists, doctoral and graduate students
working on crop improvement approaches.

Our sincere gratitude goes to the contributors for their insights on Microbial
Biotechnology in Crop Protection. We sincerely thank Dr Naren Aggarwal, Editorial
Director, Springer and Ms Aakanksha Tyagi, Associate Editor for their generous
assistance, constant support, and patience in finalizing this book.

Dar es Salaam, Tanzania Manoj Kaushal
Bihar, India Ram Prasad
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Biocontrol: A Sustainable Agricultural
Solution for Management of Plant Diseases 1
Abhishek Walia, Chayanika Putatunda, Rashmi Sharma,
Samriti Sharma, and Abhishek Thakur

Abstract

Plant diseases are required to be controlled for abundance and quality mainte-
nance of food, feed, and other plant-based products around the world. Among
different approaches used by masses to mitigate widespread plant diseases, use of
chemical fungicides and pesticides is most prevalent. However, due to their fast
and specific action, such inputs have significantly contributed to the environmen-
tal pollution and pathogen resistance over a period of time. This has led to
considerable changes in people’s attitude toward the use of these chemical
compounds. Consequently, agronomists have focused their efforts on developing
alternative inputs to these chemicals. Among these alternatives includes the
deployment of antagonistic microorganisms at the plant infection site before or
after infection takes place which is referred to as biological control. The
mechanisms employed by biocontrol organisms for waning or killing of plant
pathogens include their ability to parasitize the pathogens directly by production
of antibiotics or toxins, competition for nutrients and space, production of
enzymes that attack pathogen’s cell wall components, induction of various
defense responses in plants, and possibly others. This chapter will bring an
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important perspective to the biological control of plant pathogens and will outline
and discuss the: (1) types and various mechanisms of biocontrol (2) control of
soil-borne, aerial parts and postharvest diseases of plants using various bacterial
and fungal antagonists (3) hypovirulence factors as a mechanism of biological
control.

Keywords

Antibiosis · Mycoparasitism · Entomopathogenic · Arthropods · Nematodes ·
Viral agents

1.1 Introduction

In the course of the past 20 years, the scenario of world population has drastically
changed. To cater the growing need of food and nutrition of population worldwide,
the crop production needs to be redefined in a novel way along with sustainable
procedures to counter also the menace of global warming and climate change. The
present challenge before agriculture industry, farmers, and researchers across the
globe is to increase the crop production and maintain the quality and vitality of crops
using eco-friendly methodologies. The different crops in the fields and natural
habitats are encountered with different types of pathogens and these pathogens
destroy the overall crops and lead to decrease in crop production. A plant pathogen
is a very wide terminology that refers to any of the organisms, such as bacteria,
fungi, protistans, nematodes, viruses, and other pathogens that cause plant infections
and diseases. Plant pathogens that cause plant diseases weaken the ability of the
farmers or growers to produce good quality and quantity of crops and can infect
almost every type of plants. The traditional and conventional methods of control of
plant pathogens include use of pesticides, insecticides, fungicides, herbicides,
rodenticides, and other chemical formulations. These substances control the plant
pathogens to a good amount but their adverse effects are also seen and felt in food
chain. The numerous negative health effects that have been associated with chemical
pesticides include, among other effects, dermatological, gastrointestinal, neurologi-
cal, carcinogenic, respiratory, reproductive, and endocrine effects (WHO 1990;
Sanborn et al. 2007; Mnif et al. 2011; Thakur et al. 2014). Furthermore, high
occupational, accidental, or intentional exposure to pesticides can result in hospital-
ization and death (WHO 1990; Gunnell et al. 2007). One such detrimental effect of
these chemicals is bioaccumulation which leads to biomagnification. The other
method of plant pathogens control includes use of natural parasites or predators of
plant pathogens which constitutes biological or natural control. Biocontrol
microorganisms are cellular or noncellular entities, capable of replicating or of
transferring genetic material. Various soil and rhizospheric microorganisms have
been explored as potential antagonists that possess characteristics of a candidate
agent. In fact, with increase in the research area related to potential biocontrol
microorganisms, it has been found that such microorganisms have a broader range
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of activities that are correlated with biological management of plant pathogens apart
from antagonism. The other effects of biocontrol agents include increase in plant
vitality, pushing out the pathogens through competition for nutritional resources and
occupation of ecological habitat and niche, and by inducing systemic resistance in
the host through activation of the host defense mechanisms against the invading
pathogen.

The potential biocontrol agents explored so far are Bacillus subtilis, Pseudomo-
nas fluorescens, Gliocladium spp., Trichoderma spp., Beauveria bassiana,
Metarhizium anisopliae, Verticillium lecanii, granulosis viruses, nuclear polyhedro-
sis viruses (NPV), Nomuraea rileyi, Hirsutella sp., Verticillium chlamydosporium,
Streptomyces griseoviridis, Streptomyces lydicus, Ampelomyces quisqualis, Can-
dida oleophila, Fusarium oxysporum (nonpathogenic), Burkholderia cepacia,
Coniothyrium minitans, Agrobacterium radiobacter strain 84, Agrobacterium
tumefaciens, Pythium oligandrum, Erwinia amylovora (hairpin protein), Phlebia
gigantea, Paecilomyces lilacinus, Penicilliuim islanidicum (for groundnut),
Alcaligenes spp., Chaetomium globosum, Aspergillus niger strain AN27, VAM
fungi, Myrothecium verrucaria, Photorhabdus luminescens akhurustii strain K-1,
Serratia marcescens GPS 5, and Piriformospora indica. These biological agents act
on plant pathogens through different modes of action. It includes direct antagonisms
like parasitism, for instance, Trichoderma is a parasite of a range of fungi and
oomycetes in the soil, which produce toxic metabolites and cell wall-degrading
enzymes and inhibit the growth of others, hyperparasitism e.g. Hypovirus, a hyper-
parasitic virus on Cryphonectria parasitica, a fungus causing chestnut blight,
commensalism, mixed-path antagonism by synthesis of chemicals like siderophores,
antibiotics, volatile compounds like HCN, lytic enzymes and indirect antagonisms
like competitive root colonization and plant growth promotion through systemic
acquired resistance (SAR) and induced systemic resistance (ISR) (Walia et al. 2013;
Mehta et al. 2013a, 2013b). Biocontrol agents are safe both for the environment and
for the persons who apply them and avoid environmental pollution (soil, air, and
water) by leaving no toxic residues. It is comparatively easier to manufacture
biocontrol agents, sometimes less expensive than chemical agents. The biggest
advantage of using biocontrol agents is that they can eliminate the specific pathogens
effectively from the site of infection and can be used in combination with
biofertilizers (Mehta et al. 2013c, 2014). Biocontrol agents avoid problems of
resistance and also induce systemic resistance among the crop species. The only
negative aspect of these agents is that these agents work slowly and less effectively
in comparison with the chemical pesticides, as their efficacy almost completely
depends on environmental conditions. However, these constraints can be nullified
due to constant research and more effective biocontrol agents can be generated as
these are the demands of the present world for safe food.
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1.2 Microbial Biocontrol Agents

According to European Union Regulation No 1107/2009, the term microbial bio-
control agents (MBCAs) are surrounded by microorganisms (bacteria, viruses, and
fungi) of different nature. They can be used in covered field or in field crops because
of their ability to act against large number of pathogens, pests, and weeds which
helps in controlling various diseases, agents, and crop pests. The mode of action of
microbial biocontrol agents (MBCAs) will vary from species to species, either they
directly start a lethal biological process or may suppress the aggression of pathogenic
microorganisms by competition. The use of MBCAs in covered field or in field crops
has several advantages like low environmental impact, safe to human health, not
inducing pesticide resistance, and greater potential of replacing chemical pesticide.
The two most successful MBCAs are Bacillus thuringiensis (Bt) (microbial insecti-
cide) and Ampelomyces quisqualis (Aq) (antagonist to pathogens like powdery
mildew agents).

For the application of microbial biocontrol agents, some conditions need to be
satisfied:

1. The legal registration is required for all MBCAs, both at EU level for active
ingredient and at country level for commercialization for each crop. The Bt is
commercially availablein Chile, Germany, Hungary, and France whereas Aq is
also currently available in Italy and Switzerland.

2. The advisers and farmers should be trained for the application of MBCAs.
3. The selection of efficient strains against main pests and pathogens.
4. Familiar with suitable environmental conditions.
5. Familiar with the availability of economically competitive products.
6. The suitable registration and regulations procedure must be known.
7. Awareness about environmental and health issues.

1.2.1 Microorganisms as Microbial Biocontrol Agents

1.2.1.1 Bacteria as Biocontrol Agents
The bacteria have been used as a biocontrol agent to control a number of microbial
diseases by applying on seeds and roots (Chauhan et al. 2014; Ohike et al. 2018).
One of the examples is the use of Streptomyces (nonpathogenic strains) strain to
control scab of Solanum tuberosum L (potato) caused by Streptomyces scabies
(Thaxter). On the other hand, the growth of soft rot potato pathogen Erwinia
carotovora subsp. atroseptica (van Hall) was inhibited by Pseudomonas fluorescens
(Trevisan) strain by synthesizing antibiotic 2,4-diacetylphloroglucinol (DAPG)
(Cronin et al. 1997). Some of the other studies showed that the P. fluorescens
F113 produces siderophore that may play a major role in controlling the potato
soft rot under iron-limiting conditions whereas the major biocontrol determinant
appears to be DAPG.

4 A. Walia et al.



Pseudomonas species have also the potential to control crown gall disease which
is caused by Agrobacterium tumefaciens in many dicotyledonous plants (Khmel
et al. 1998). The most successful and classic bacteria based biocontrol systems is
the use Agrobacterium strain K84 against Agrobacterium tumefaciens. One of the
studies where K84 or K1026 was co-inoculated with pathogenic cells showed the
survival of pathogens on roots up to 8 months later but pathogen was not able to
show any symptoms, providing the evidence that K84 or K1026 was able to prevent
the disease expression rather than killing pathogen cells directly.

There are a number of bacterial strains which produce antifungal metabolites
(excluding metal chelators and enzymes) in vitro such as HCN, kanosamine
2,4-diacetylphloroglucinol (Ph1), oomycin A, oligomycin A, butyrolactones, ammo-
nia, xanthobaccin, zwittermicin A, viscosinamide, pyoluteorin (Plt), pyrrolnitrin
(Pln), and phenazine-1-carboxylic acid (PCA) as well as several uncharacterized
moieties. The PCA gene from Pseudomonas aureofaciens Kluyver Tx-1 has the
capacity to control dollar spot (Sclerotinia homoeocarpa F. T. Bennett) on creeping
bentgrass (Agrostis palustris Hudson).

The antibiotic production in bacteria is mainly a two-component regulated sys-
tem, i.e. it may be a cytoplasmic response factor and environmental sensor (presum-
ably a membrane protein). Mutation in either of the system causes direct effects on
multiple antibiotic production. For example, mutation in gacA gene of P. fluorescens
CHA0 causes the loss of production of Plt, HCN, Phl, protease, and
phospholipase C, whereas mutation in apdA gene of P. fluorescens Pf-5 is responsi-
ble for the lost ability to produce Pln, HCN, and Plt.

Other two-component signaling mechanism showed the production of PCA by
Pseudomonas on roots which inhibits the secondary growth of the pathogenic
bacteria. For Gaeumannomyces graminis var. tritici, Pseudomonas aureofaciens
30–84 acts as a biocontrol agent which causes disease in wheat (Triticium aestivum
L.). In this system, root exudation has increased due to the growth of pathogen in
root which results in increased growth of Pseudomonas aureofaciens 30–84 and
other bacteria in the infection zone. Consequently, production of signal molecule
N-acyl-L-homoserine lactone (HSL) has increased which is produced at low levels
by phzI gene which is sufficient to switch on phzR gene, responsible for the
production of PCA in P. aureofaciens 30–84 at rhizosphere. The end product,
i.e. PCA, further inhibits the growth of pathogen.

Interestingly, signaling between potential biocontrol bacteria and pathogenic
fungi was also detected, i.e. Pythium ultimum Trow is responsible for down-
regulation of five gene clusters of P. fluorescens F113 helps in controlling growth
of this pathogenic bacteria in the rhizosphere of sugar beet and yet another example
trehalose production from Pythium debaryanum up-regulated genes in its biocontrol
strain Pseudomonas fluorescens ATCC 17400. This finding has major impact on
controlling the gene expression of complex microbial communities.

1.2.1.2 Fungi as Biocontrol Agents
Beneficial fungi can prevent the growth of pathogen by colonizing on the shared
habitat, i.e. plant tissues, rhizosphere, or phyllosphere for depriving space and
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nutrients. All the fungal agents may possess such kind of action to certain extent
depending on the adaptation and properties to the environment and host plants.
Trichoderma species are ubiquitous in nature and found in all climatic zone (includ-
ing temperate and tropical regions, tundra, and Antarctic), nearly all soil types (crop
fields, desert, and marsh) and unusual niches such as lakes, marine bivalves, air,
termites, and shellfish. Certain trichoderma chelates iron compounds by producing
siderophores which can inhibit the growth of postharvest pathogens such as Botrytis
cinerea and soil-borne pathogen.

Mycoparasitism is a process of receiving nutrients from one fungus (host) by
another fungus (mycoparasite) in a parasitic manner. Mycoparasitism involves the
penetration of mycoparasite into the host hyphae by forming various peculiar organs
such as haustoria or secretion of different types of enzymes (endochitinases,
β-1,3-glucanases, and proteases) and secondary metabolites which leads to degrada-
tion of fungal structure followed by metabolite/nutrient uptake from the host fungus
(Lopes et al. 2012; Geraldine et al. 2013; Vos et al. 2015). In the initial stage,
pathogen’s hyphae are surrounded by Trichoderma hyphae which then penetrate
into the host cell by breaking chitin through the action of chitinase and glucanase
enzymes. The mycoparasitic fungus hyphae then subsequently release antibiotic
compounds which permeate the affected hyphae and prevent resynthesis of the
cell wall.

Antibiosis is other mechanism which involves antimicrobial compounds pro-
duced by different biocontrol agents to reduce or suppress the growth and/or
proliferation of the phytopathogens. Antibiosis has been noticed in a number of
fungi including Trichoderma having cell wall-degrading enzymes such as xylanase,
cellulase, glucanase, amylase, arabinase, protease, pectinase, lipase, and various
volatile compounds such as 6-n-pentyl-2H-pyran-2-one (6-PAP) and number of
antibiotics such as peptaibols, ethylene, pyrones, gliovirin, gliotoxin, herzianolide,
viridin, trichodermin, formic aldehyde, and trichodermol (Jelen et al. 2013; Hermosa
et al. 2014; Strakowska et al. 2014). T. atroviride mycelia ethyl acetate extract has
the capacity of inhibiting spore germination of F. solani with minimum inhibitory
concentration (MIC) of 0.66 mg/ml (Toghueoa et al. 2016). Trichoderma produced
highly toxic secondary metabolites, i.e. epipolythiodioxopiperazines (ETPs) which
is a diketopiperazine ring. ETPs are produced by certain isolates like gliovirin
through P strains of T. virens while gliotoxin is produced by Q strain (Vey et al.
2001; Mukherjee et al. 2012; Błaszczyk et al. 2014; Scharf et al. 2016). The
biological action has been shown by Purpureocillium lilacinum biological agent
that are antibacterial, antimalarial, antifungal, antiviral, antitumor and having phyto-
toxic activities which control phytopathogens, phytophthora infestans and P. capsici
(Wang et al. 2016). In vitro and field trials of P. lilacinum also showed its capacity of
parasitizing eggs, inhibiting egg hatching, and mortality in juvenile phase of the
Meloidogyne incognita (root-knot nematode) (Singh et al. 2013).

1.2.1.3 Viruses as Biocontrol Agents
Pathogenic virus shows their importance to act as biological control for pest/insect
by manipulating naturally occurring pathogens. Instead of waiting for virus disease
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to appear in populations of pest insects, viruses are collected, mass cultured,
formulated, packaged, stored, and applied when needed to control insect pests
(Falcon 1982). The number of viruses that were already collected about three
decades ago was over 650 entomopathogenic viruses. The entomopathogenic
viruses were mainly baculovirus (dsDNA viruses) which belongs to the main
group of arthropod viral pathogens. Baculovirus has been available as 60 commercial
products which produce characteristic occlusion bodies for better survival in envi-
ronment and for good insect infestation. After ingestion of occlusion bodies, it gets
dissolved due to alkaline midgut and releases the virions for infestation initiation of
epithelial cells before contaminating the whole organism.

Soil acts as a major reservoir for occlusion bodies and helps in controlling the
insect to complete their life cycle under soil surface. The narrow host specificity is
occurred nowadays due to high diversity within baculovirus results from long
coevolution with insects. Due to this it has adverse effect on non-target organisms.
Despite various biocontrol programs, the viruses for below ground biocontrol remain
very less. One of the examples was the use of potato tuberworm granulovirus
(PoGV) for controlling potato tuberworm complex. The various government
agencies in different countries like North Africa, Asia, South America, and in the
Middle East area are working on PoGV against Phthorimaea operculella.
Phthorimaea operculella is responsible for 100% economic losses of potato tubers,
worldwide pest of solanaceous crops. The females of Phthorimaea operculella lay
eggs on leaves and on tubers during growing season. So, based on the life cycle of
P. operculella, the PoGV was tested against the potato tuber worm and success has
been achieved 73% in crops whereas 53% in the stored tubers.

Several new challenges have been led to the growth of agricultural production
which needs to be overcome appropriately and timely for making further growth
possible. The use of excessive chemical fertilizers and pesticides for growth of
agriculture production is becoming a matter of concern where plateau has already
reached for increasing crop production through modern farming in most of the
countries including India. So, for achieving goal in agriculture microbial biological
agents play an important role.

1.3 Biological Mechanisms of Pathogen Inhibition

Plants and pathogens interact throughout their life cycle that notably alter the plant
health in many ways (Sharma et al. 2017). In order to have a positive or negative
effect the organisms must have some form of direct or indirect contact with the host.
By studying the ways in which the organisms interact, one can understand the
mechanisms involved in biocontrol of plant pathogens. Consequently, understand-
ing the mechanisms of biological control of plant diseases through the interactions
between biocontrol agent and pathogen may allow us to maneuver the soil environ-
ment to create conditions favorable for successful biocontrol of plant pathogens
(Sharma et al. 2015a, b, 2016; Guleria et al. 2014). The interactions involved
between host plant and microorganism can be mutualistic, antagonistic, synergistic,
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parasitic, predatory, commensalism, and competition (Bankhead et al. 2004; Mehta
et al. 2015; Guleria et al. 2016). Through negative interactions, pathogens are
antagonized by the presence and activities of antagonists they encounter.

Although numerous microorganisms have been reported worldwide that antago-
nize an array of plant pathogens under in vitro as well as under in planta conditions,
only a few are registered and available commercially for use worldwide. Figures 1.1
and 1.2 depict the most widely reported and commercialized fungal and bacterial
biocontrol agents.

Although the actual use of these commercialized products is still limited, it is
expected that these and other such bio-products will be accepted for use in the near
future. The underlying mechanisms involved in weakening or destroying the plant
pathogens by antagonists are:

• Induction of defense responses in the plants they surround primarily
• Their ability to parasitize the pathogens directly through production of antibiotics

(toxins)
• Hyperparasites and predation
• Their ability to compete for space and nutrients in the presence of other

microorganisms
• Production of enzymes that attack the cell components of the pathogens and

possibly others.

Gliocladium 
virens

•Sold as GlioGard
•Used for the control of
seedling diseases of
ornamental and
bedding plants

Trichoderma 
harzianum

•Sold as F-Stop
•Used for the control of
a number of soilborne
plant pathogenic fungi

Trichoderma 
harzianum/T
. polysporum

•Sold as BINAB T
•Used for the control of
wood decays.

Fig. 1.1 Registered/commercialized fungal biocontrol agents
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The different mechanisms employed by biocontrol agents in controlling the plant
diseases are broadly categorized into three types:

• Direct antagonism
• Mixed path antagonism
• Indirect antagonism.

1.3.1 Direct Antagonism

1.3.1.1 Parasitism
Parasitism is an interactive association in which two phylogenetically and physio-
logically different organisms live together over a prolonged period of time. In this
type of relationship, one organism, usually benefitted, called the “parasite” and the
other called the “host,” is harmed. For example, Trichoderma is a parasite of a range
of fungi and oomycetes in the soil, which produces toxic metabolites and cell wall-
degrading enzymes and inhibits the growth of other fungi and microorganisms.

1.3.1.2 Commensalism
Commensalism is a unidirectional association between two unrelated species by
living together, in which one population (commensals) benefits from these

Agrobacterium 
radiobacter K-

84

•Sold as Gallex /Galltrol
•Used for the control of
crown gall disease of
various crops

Pseudomonas 
fluorescens

•Sold as Dagger G
•Used for the control of
Rhizoctonia and Pythium
damping-off of cotton

Bacillus
subtilis

•Sold as Kodiak
•Used as a seed and
seedling treatment

Fig. 1.2 Registered/commercialized bacterial biocontrol agents
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relationships, while the other (the host) is not harmed. Microbes present in the
rhizosphere control soil-borne pathogens through competition for nutrients and
production of antibiotics and help the plants survive pathogen infection (Kumar
et al. 2016a, b). On the other hand, the microbes have an important role in the growth
of the plant by increasing solubilization of minerals or by synthesizing amino acids,
vitamins, and growth regulators that stimulate the plant growth.

1.3.1.3 Induced Resistance
Induced resistance (IR) is one of the principal mechanisms of biocontrol of major
plant pathogens. Resistance may be induced only at the site of infection called local
resistance or may be throughout the plant parts called systemic resistance. Induced
systemic resistance (ISR) is of prime importance and can protect plants against
multiple soil-borne or foliar pathogens. A variety of microbes are involved in
resistance induction including nonpathogenic saprophytes, beneficial rhizospheric
microorganisms, and avirulent pathogenic strains (Paulitz and Belanger 2001).
Besides living microorganisms, certain chemicals, UV exposure, and manure have
also been known to induce resistance in host plant (Choudhary et al. 2007; Sang
et al. 2010). An avirulent strain of pathogenic fungi Colletotrichum orbiculare when
applied to the seedlings induces resistance in the older leaves of the plant (Tuzun and
Kuc 1985). ISR improvise the secretion of various enzymes involved in plant
defense such as chitinases, cellulases, proteinases, and peroxidases; moreover, the
cell wall has become more lignified, thus restricting the further entry of pathogen in
adjacent healthy tissues (Houston et al. 2016). Certain PGPRs such as Pseudomonas
putida, Serratia marcescens, Flavimonas oryzihabitans, and Bacillus pumilus poten-
tiate the plant defense response against subsequent pathogen challenge. A number of
bacterial determinants act as resistance elicitors of ISR such as pseudobactin,
pyoverdin, salicylic acid, polysaccharides, and flagellin proteins reported so far
(Annapurna et al. 2013).

Salicylic acid (SA), a signal molecule involved in systemic acquired resistance,
was produced by Pseudomonas aeruginosa and induced resistance to gray mold
fungi Botrytis cinerea in beans (De Meyer and Höfte 1997), and exogenously
applied SA in tobacco (Nicotiana tabacum L.) induced resistance against Tobacco
mosaic virus (TMV). In another study by De Meyer et al. (1998) a strain of
Trichoderma harzianum induces similar resistance effect like Pseudomonas
aeruginosa in beans inoculated with gray mold. Inoculation of cucumber seedlings
with spores of T. harzianum resulted in significant increase in peroxidase and
chitinase activities in other foliar parts, thus avoiding subsequent pathogen attack
(Yedidia et al. 1999).

UV exposure has also been known for induction of resistance as evident earlier
when a pathogenic strain of Colletotrichum magna was converted to an avirulent
mutualistic endophytic strain after UV exposure and gene disruption enabling the
mutant avirulent strain to induce resistance in host plants against phytopathogenic
fungi such as Colletotrichum, Fusarium, and Phytophthora. This disease resistance
was correlated to a decrease in the time of activation of host defense systems after
exposure to the pathogens. This phenomenon was termed as “endophyte associated
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resistance” as it did not induce host hypersensitive response and systemically
acquired resistance (Redman et al. 1999).

1.3.1.4 Inhibitory Compounds
Antibiotics are the toxic metabolites released by certain microorganisms and at low
concentration act and inhibit the other microorganisms. Many microorganisms are
known to release one or more types of antibiotics. These antibiotics are particularly
effective in antagonizing various plant pathogens and diseases they cause. To be an
effective antagonist, these inhibitory compounds must be produced in fair amount
near the site of pathogen colonization. In vitro production of various antibiotics by a
number of biocontrol agents has been reported; however, the effective concentration
is difficult to estimate because of very less amount produced and less toxicity to
pathogen. Though there are a number of methods to know the type of
microorganisms producing which antibiotic (Notz et al. 2001), detection of their
production and action under field conditions is difficult because of the uneven
distribution of producer microbes and the pathogens.

A number of antibiotics are produced by PGPRs such as phenazines, pyoluteorin,
oomycinA, 2,4 diacetylphloroglucinol by different species of Pseudomonas and
subtilin, iturin, fengycin, zwittermicin A, bacillomycin by Bacillus spp. and many
others including butyrolactones, kanosamine, rhamnolipids, cepaciamides, antitumor
antibiotics, and antiviral antibiotics. All these antibiotics attack pathogenic bacteria,
fungi, insects, and other phytotoxic compounds depending upon their modes of action
(Dilantha et al. 2005). Their mechanisms of action include rupturing of cell membrane,
disturbing osmotic balance, and inhibitory effect on ribosomes and other cellular
components (Reid et al. 2002; Koch et al. 2021). That may be the reason why some
antibiotics are effective against certain pathogens and not against others, depending
upon the cellular components they attack (McSpadden and Fravel 2002).

1.3.1.5 Hyperparasites and Predation
Hyperparasitism is a phenomenon where the pathogen is killed after direct attack by
biocontrol agent. Hyperparasites are divided into four categories: obligate bacterial
pathogens, mycoviruses as hypovirulence factors, facultative parasites, and
predators. Obligate bacterial pathogens are known to attack nematodes. Tzortzakakis
et al. (2003) reported the interaction between bacterial parasite Pasteuria penetrans
and the root-knot nematode Meloidogyne spp. under in vitro and under in planta
conditions. The bacterial parasite successfully reduced the Meloidogyne population
in soil over repeated crop cycles. Hypovirulence factors are dsRNA viruses those
attack and multiply in fungal pathogens and reduce their virulence. A classic
example is the chestnut blight, which is caused by the fungus Cryphonectria
parasitica, and is controlled through inoculation of cankers caused by the normal
pathogenic strain with that of hypovirulent strains of the same fungi. The
hypovirulent strains had reduced virulence due to infection of dsRNA virus. These
mycoviruses through mycelia fusions pass through hypovirulent to virulent strains of
fungi and the latter are rendered hypovirulent, thus the development of canker either
slows down or completely inhibited (Milgroom and Cortesi 2004). However, it must
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be noted that the interaction between virus, fungus, host plant, and environmental
conditions determines the success or failure of biocontrol.

A number of microbial biocontrol agents act as hyperparasites against powdery
mildew fungi (Ranković 1997; Sullivan and White 2000). Hyperparasite of the
genus Ampelomyces was most common and was found to inhibit as many as
33 different species of powdery mildew fungi (Ranković 1997). Another hyperpara-
site Verticillium lecanii inhibiting many pathogenic fungi reduced the disease
incidence of Sphaerotheca fusca under in planta in low vapor pressure deficit
(VPD) conditions (Verhaar et al. 1996).

Microbial predation, unlike hyperparasitism is a nonspecific interaction and
reportedly less predictable biocontrol success has been known. Trichoderma
harzianum is the widely known predatory fungi that exhibit predatory behavior
under nutrient scarce environment. Trichoderma is an active producer of chitinase
that is directed against fungal cell wall. In compost as substrate when fresh litter is
used, ample amount of readily available cellulose is present, thus Trichoderma does
not directly attack the pathogenic fungi Rhizoctonia solani. However, in
decomposed organic matter, the concentration of free cellulose decreases that
activates the chitinase activity of Trichoderma rendering it to act as a predator of
phytopathogen Rhizoctonia solani (Benhamou and Chet 1997).

1.3.1.6 Competition
Rhizosphere colonizing bacterial and fungal population can inhibit the phytopatho-
genic fungi by imposing a competition for nutrients and space. Reduction in the
concentration of essential elements like carbon, nitrogen, phosphorus, and other
micro-elements often leads to less spore germination and slower germ tube growth,
thus inhibiting the pathogen infection. Microbes often live in a nutrient limiting
environment such as soil and plant surfaces where readily available nutrients are less
available. To successfully colonize these habitats, the pathogen and existing micro-
flora must compete for the available nutrients and space. Host plants release nutrients
in the form of exudates, leachates, ward off cells and dead parts. A competition
between pathogenic and nonpathogenic microorganisms can effectively reduce the
disease incidence and severity. Notably, the soil-borne pathogenic fungi such as
Pythium and Fusarium infect through mycelia fusion and are more prone to nutrient
competition from other indigenous microflora and pathogens that germinate on plant
surface through germ tube and appressorium formation (Ryder and Talbot 2015).
Zimand et al. (1996) also reported the reduction in spore germination of Botrytis
cinerea on detached leaves containing epiphytic bacterial and fungal population. The
control of rot symptoms was attributed to the competition for exuded nutrients on the
leaves.

The most abundant nonpathogenic plant-associated microbes are generally
thought to protect the plant by rapid colonization and thereby exhausting the limited
available substrates so that none are available for pathogens to grow. For example,
effective catabolism of nutrients in the spermosphere has been identified as a
mechanism contributing to the suppression of Pythium ultimum by Enterobacter
cloacae (Van Dijk and Nelson 2000; Kageyama and Nelson 2003). At the same
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time, these microbes produce metabolites that suppress pathogens. These microbes
colonize the sites where water and carbon-containing nutrients are most readily
available, such as exit points of secondary roots, damaged epidermal cells, and
nectaries and utilize the root mucilage.

Competition for ferric iron, an essential micronutrient is also a mechanism of
biocontrol by many BCAs. Iron is used as ferric iron by plants and due to frequent
oxidation reduction it is present in limiting concentration in soil (Shahraki et al.
2009). Sometimes the concentration is too low in soil to support microbial growth.
Therefore in such situations, microbes secrete iron chelating compounds called
siderophores, those have high affinity to chelate ferric iron. Almost all soil microbes
produce siderophores but bacterial siderophores have high affinity to chelate iron
than fungal siderophores thus rendering fungal pathogen devoid of ferric iron
(Neilands 1981). Kloepper et al. (1980a, b) first demonstrated the siderophore
mediated biocontrol of Erwinia carotovora by plant growth-promoting strains of
Pseudomonas fluorescens.

1.3.2 Mixed-Path Antagonism

1.3.2.1 Siderophores
Siderophores are ligands with low molecular weight having high affinity to sequester
iron from the micro-environment. It has the ability to sequester ferric ion and
competitively acquire iron from iron-limiting microenvirons, thereby preventing
growth of other microorganisms (Das et al. 2007). Two major classes of
siderophores, classified on the basis of their functional group, are catechols and
hydroxamate. A mix of carboxylate-hydroxamate group of siderophores is also
reported (Hider and Kong 2010; Sharma et al. 2016: Chauhan et al. 2016). Numer-
ous strains of Streptomyces spp. have been reported as siderophore producers,
namely, S. pilosus (Muller et al. 1984; Muller and Raymond 1984), S. lydicus
(Tokala et al. 2002), and S. violaceusniger (Buyer et al. 1989). Biological control
of Erwinia carotovora by several siderophore-producing and plant growth-
promoting Pseudomonas fluorescens strains A1, BK1, TL3B1, and B10 was
reported for the first time as an important mechanism of biological control (Kloepper
et al. 1980a, b). On the other hand, increased efficiency of iron uptake by the
commensal microorganisms is thought to dislocate pathogenic microorganisms
from the possible infection sites by aggressive colonization in plant rhizosphere.
Sneh et al. (1984) and Elad and Baker (1985) showed a direct correlation between
in vitro inhibition capacity of chlamydospore germination of F. oxysporum and
siderophore synthesis in fluorescent pseudomonads.

1.3.2.2 Antibiosis
The term “antibiosis” came from the term antibiotics, which refers to organic
substances produced by microorganisms that affect the metabolic activity of other
microbes and inhibit the growth (Roshan et al. 2013; Kumar et al. 2015). The result
of antibiosis is often death of microbial cells by endolysis and breakdown of the cell
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cytoplasm. Agrobacterium radiobacter K-84, produced commercially as Agricon
84, was first recognized as a valuable control agent of crown gall since 1973. It is
very effective against A. tumefaciens attacking stone fruit (e.g., plums and peaches),
but not effective against A. tumefaciens strains that attack grapes, pome fruit (e.g.,
apples) and some ornamentals. A variety of antibiotics have been identified, includ-
ing compounds such as 2,4-diacetylphloroglucinol (DAPG), amphisin, oomycinA,
hydrogen cyanide, pyoluteorin, phenazine, tensin, pyrrolnitrin, cyclic lipopeptides
and tropolone produced by pseudomonads and kanosamine, oligomycin A,
xanthobaccin and zwittermicin A produced by Streptomyces, Bacillus, and
Stenotrophomonas spp. (Kumar et al. 2016a). For instance, antibiotic
2,4-diacetylphloroglucinol is reported to be involved in the suppression of Pythium
spp., iturin suppresses the pathogens Botrytis cinerea and Rhizoctonia solani, and
phenazine carboxylic acid antagonist the pathogen Rhizoctonia solani in rice
(Padaria et al. 2016) and phenazines control Gaeumannomyces graminis var. tritici
in wheat.

1.3.2.3 Volatile Substances
Apart from the production of antibiotics, some biocontrol agents are also known to
produce volatile compounds as tools for pathogen inhibition. Common volatile
compounds are hydrocyanic acid (HCN), certain acids, alcohols, ketones, aldehydes
and sulfides (Bouizgarne 2013). HCN production is reported to play a role in disease
suppression (Wei et al. 1991), for instance, Haas et al. (1991) reported HCN
production by strains of P. fluorescens that helped in the suppression of black root
rot of tobacco. Reports on the production of HCN by beneficial microbes in order to
minimize the deleterious effect of pathogenic fungi and bacteria are available
(Ahmad et al. 2008; Gopalakrishnan et al. 2011a, b, 2014).

1.3.2.4 Cell Wall Lysing Enzymes
Inhibition of fungi by various microorganisms relies on production of various
hydrolytic enzymes to a greater extent (Walia et al. 2014; Sharma et al. 2015a, b).
These enzymes include chitinases, proteases, amylases, cellulases, β 1–3 glucanases
and many more those impart in the biocontrol mechanisms of antagonists. Cell wall-
degrading enzymes produced by antagonists affect pathogenic fungi (Chernin et al.
1995) by lysing cell wall or other cellular constituents. Secretion of cellulase enzyme
by Bacillus subtilis strain CKTR significantly reduced the disease severity of collar
rot in tomato caused by Phytophthora capsici, an oomycete with cell wall composed
of cellulose (Sharma et al. 2015a, b). A synergistic effect was observed due to
combination of two enzymes endochitinase and chitobiosidase produced by
Trichoderma harzianum, which was much more prominent than the activity of
Enterobacter cloacae chitinase (Lorito et al. 1993).

Two isolates of Trichoderma, T. reesei and T. harzianum were reported to
produce a series of lytic enzymes such as proteinase, mannanase, laminarinase,
and chitinase which were actively involved in biocontrol mechanism of the two
fungi (Labudova and Gogorova 1988). Wisniewski et al. (1991) also reported release
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of cell wall-degrading enzymes as the possible mechanism of biocontrol by posthar-
vest biocontrol yeast, Pichia guilliermondii.

In addition to the cell wall-degrading enzymes, there are other microbial
by-products which play important role in plant disease control (Phillips et al.
2004). One such by-product is hydrogen cyanide (HCN) that blocks electron trans-
port chain by inhibiting cytochrome oxidase and is highly toxic to aerobic
microorganisms even at picomolar concentrations (Ramette et al. 2003). The fact
is supported by earlier studies where a strain of P. fluorescens CHA0, produced
antibiotics, siderophores and cyanides, but the inhibition of black rot fungus
Thielaviopsis basicola was primarily due to HCN production. Similarly ammonia
secretion by Enterobacter cloacae was involved in the biocontrol of cotton seedling
damping-off caused by Pythium ultimum (Howell et al. 1988).

1.3.2.5 Unregulated Waste Products
Few soil microbes release a range of unregulated waste products or harmful gases,
e.g. ethylene, methane, nitrite, ammonia, hydrogen sulfide, other volatile sulfur
compounds, carbon dioxide, etc., and suppress the growth of other pant pathogenic
bacteria. This interaction between two species is called amensalism. Bacillus
megaterium produces ammonia and has an inhibitory effect on the growth of
Fusarium oxysporum (Shobha and Kumudini 2012).

1.3.2.6 Detoxification and Degradation of Virulence Factor
Biological control by detoxification involves production of a protein that binds with
the pathogen toxin and detoxifies pathogen virulence factors, either reversibly or
irreversibly, ultimately decreasing the virulence potential of pathogen toxin. For
example, the biocontrol agents Alcaligenes denitrificans and Pantoea dispersa are
able to detoxify albicidin toxin produced by Xanthomonas albilineans. Similarly,
strains like B. cepacia and Ralstonia solanacearum can hydrolyze fusaric acid, a
phytotoxin produced by various Fusarium spp. The protein has the ability to bind
reversibly with the toxins of both Klebsiella oxytoca and Alcaligenes denitrificans,
as well as irreversibly with the toxin albicidin in Pantoea dispersa.

1.3.3 Indirect Antagonism

1.3.3.1 Competitive Root Colonization
From the microbial perspective, living plant surfaces and soils are often nutrient
restricted environments. Nutrient limitation is an important mode of action of some
biological control agents. Carbon plays an important role in competition of root
colonization for nutrients such as Trichoderma spp. (Sivan and Chet 1989). Carbon
competition between pathogenic and nonpathogenic strains of F. oxysporum is one
of the main mechanisms in the suppression of Fusarium wilt (Alabouvette et al.
2009). The disease suppression of bacterium Erwinia amylovora causes fireblight by
the closely related saprophytic species E. herbicola due to competition of the
nutrient on the leaf surface. Competition between rhizosphere bacteria and Pythium
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ultimum, a common cause of seedling damping-off for the same carbon source, has
resulted in an effective biological control of the latter organism in several crops.

Germination of the conidia of Botrytis cinerea is inhibited by Pseudomonas
species due to competition for amino acids. This mechanism may not be useful in
suppressing biotrophs such as powdery mildews and rusts, because they do not
require exogenous nutrients for host infection.

1.3.3.2 Plant Growth Promotion Through SAR and ISR
Chemical stimuli are produced by some biocontrol agents, i.e. nonpathogenic plant
growth-promoting rhizobacteria (PGPR) and fungi (PGPF), or by soil- and plant-
associated microbes. Such stimuli can either induce a sustained change in the plants
which increase the capacity of tolerance to infection by pathogens or induce the local
and/or systemic host defenses of the whole plant against broad-spectrum pathogens.
This phenomenon is known as induced resistance. Two types of induced resistance
are distinguished in plants, systemic acquired resistance (SAR) and induced sys-
temic resistance (ISR). The first of the two pathways is mediated by salicylic acid
(SA) which is frequently produced after pathogen infection and induces the expres-
sion of pathogenesis-related (PR) proteins that include a variety of enzymes. The
second method is mainly jasmonic acid (JA) and/or ethylene mediated following the
applications of some nonpathogenic rhizobacteria. The SAR-induced resistant was
observed when Trichoderma harzianum was inoculated in roots and leaves of
grapes, and it provides control of diseases caused by Botrytis cinerea from the site
of application of T. harzianum (Deshmukh et al. 2006). It was found that the
biocontrol agent P. fluorescens strain CHAO induces accumulation of salicylic
acid and by inducing SAR-associated proteins it confers systemic resistance to a
vira1 pathogen in tobacco. Colonization of Glomus intraradices on the roots of
Oryza sativa conferred resistance through induction of defense-related genes
(Campos-Soriano et al. 2012). Penicillium simplicissimum enhanced the resistance
of barley to Colletotrichum orbiculare by inducing salicylic acid accumulation,
formation of active oxygen species, lignin deposition and activation of defense
genes. In addition, Fusarium equiseti and Phoma spp. elicited Arabidopsis thaliana
systemic resistance against Pseudomonas syringae pv. tomato and Pythium
oligandrum against Ralstonia solanacearum.

However, different ISR elicitors like secondary metabolites and proteins involved
in mycoparasitism and antibiosis have also been identified. Secondary metabolites
like trichokinin, alamethicin, harzianopyridone, harzianolide, and 6-pentyl-α-pyrone
have antagonist effects at high doses but in low doses act as ISR inducers. Expres-
sion of endochitinase Ech42 of Trichoderma atroviride was found to act as an ISR
inducer in barley, resulting in an increased resistance to Fusarium spp. infection.
Similarly, chitinase Chit42 of T. harzianum expression increased resistance in potato
and tobacco against the foliar pathogens, B. cinerea, Alternaria solani, and
A. alternata, and soil-borne pathogen, Rhizoctonia solani. The detailed aspects of
these strategies need to be explored more for better results in the fields.
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1.3.3.3 Combination of Modes of Action
Biological control of plant pathogens is an intricate process, which is a result of
multiple mechanisms of action by antagonists. Synergism between different antago-
nistic strains can occur, as reflected in the in planta inhibition of Phytophthora
capsici by a consortium of four Bacillus strains (Sharma et al. 2015a, b). This
inhibition was due to a multitude of mechanisms including release of antibiotics,
cellulase and protease production combined with successful colonization of
antagonists in the rhizosphere. Nonpathogenic Fusarium oxysporum reduced the
fusarium wilt by successful competition for space (infection sites) and nutrients in
the soil (Schneider 1984; Allabouvette et al. 1996).

To efficiently use biocontrol agents, it is important to understand the underlying
mechanisms of action for effective biocontrol, to develop safe application processes;
this is also an important background to select new and efficient strains. Basic
information must be generated at both, the biochemical and the molecular level,
contributing in this way, in the elucidation of effects such as antibiosis, competition
for nutrients, and induction of resistance (Zak et al. 2003).

In the course of last 20 years, the scenario of world population has drastically
changed. To cater the growing need of food and nutrition of population worldwide,
the crop production needs to be redefined in a novel way along with sustainable
procedures to counter also the menace of global warming and climate change. The
present challenge before agriculture industry, farmers, and researchers across the
globe is to increase the crop production and maintain the quality and vitality of crops
using eco-friendly methodologies. The different crops in the fields and natural
habitats are encountered with different types of pathogens and these pathogens
destroy the overall crops and lead to decrease in crop production. A plant pathogen
is a very wide terminology that refers to any of the organisms, such as bacteria,
fungi, protistans, nematodes, viruses, and other pathogens that cause plant infections
and diseases. Plant pathogens that cause plant diseases weaken the ability of the
farmers or growers to produce good quality and quantity of crops and can infect
almost every type of plants. The traditional and conventional methods of control of
plant pathogens include use of pesticides, insecticides, fungicides, herbicides,
rodenticides, and other chemical formulations. These substances control the plant
pathogens to a good amount but their adverse effects are also seen and felt in food
chain. The numerous negative health effects that have been associated with chemical
pesticides include, among other effects, dermatological, gastrointestinal, neurologi-
cal, carcinogenic, respiratory, reproductive, and endocrine effects (WHO 1990;
Sanborn et al. 2007; Mnif et al. 2011; Thakur et al. 2014). Furthermore, high
occupational, accidental, or intentional exposure to pesticides can result in hospital-
ization and death (WHO 1990; Gunnell et al. 2007). One such detrimental effect of
these chemicals is bioaccumulation which leads to biomagnification. The other
method of plant pathogens control includes use of natural parasites or predators of
plant pathogens which constitutes biological or natural control. Biocontrol
microorganisms are cellular or noncellular entities, capable of replication or of
transferring genetic material. Various soil and rhizospheric microorganisms have
been explored as potential antagonists that possess characteristics of a candidate
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agent. In fact, with increase in the research area related to potential biocontrol
microorganisms, it has been found that such microorganisms have a broader range
of activities that are correlated to biological management of plant pathogens apart
from antagonism. The other effects of biocontrol agents include increase in plant
vitality, pushing out the pathogens through competition for nutritional resources and
occupation of ecological habitat and niche, and by inducing systemic resistance in
the host through activation of the host defense mechanisms against the invading
pathogen.

The potential biocontrol agents explored so far are Bacillus subtilis, Pseudomo-
nas fluorescens, Gliocladium spp., Trichoderma spp., Beauveria bassiana,
Metarhizium anisopliae, Verticillium lecanii, granulosis viruses, nuclear polyhedro-
sis viruses (NPV), Nomurea rileyi, Hirsutella species, Verticillium
chlamydosporium, Streptomyces griseoviridis, Streptomyces lydicus, Ampelomyces
quisqualis, Candida oleophila, Fusarium oxysporum (nonpathogenic),
Burkholderia cepacia, Coniothyrium minitans, Agrobacterium radiobacter strain
84, Agrobacterium tumefaciens, Pythium oligandrum, Erwinia amylovora (hairpin
protein), Phlebia gigantean, Paecilomyces lilacinus, Penicilliuim islanidicum (for
groundnut), Alcaligenes spp., Chaetomium globosum, Aspergillus niger strain
AN27, VAM fungi, Myrothecium verrucaria, Photorhabdus luminescens
sakhurustii strain K-1, Serratia marcescens GPS 5 and Piriformospora indica.
These biological agents act on plant pathogens through different modes of action.
It includes direct antagonisms like parasitism, for instance, Trichoderma is a parasite
of a range of fungi and oomycetes in the soil, which produce toxic metabolites and
cell wall-degrading enzymes and inhibit the growth of others, hyperparasitism,
e.g. Hypovirus, a hyperparasitic virus on Cryphonectria parasitica, a fungus causing
chestnut blight, commensalism, mixed-path antagonism by synthesis of chemicals
like siderophores, antibiotics, volatile compounds like HCN, lytic enzymes, and
indirect antagonisms like competitive root colonization and plant growth promotion
through systemic acquired resistance (SAR) and induced systemic resistance (ISR).
Biocontrol agents are safe both for the environment and for the persons who are
applying them and avoid environmental pollution (soil, air, and water) by leaving no
toxic residues. It is comparatively easier to manufacture biocontrol agents, some-
times less expensive than chemical agents. The biggest advantage of using biocon-
trol agents is that they can eliminate the specific pathogens effectively from the site
of infection and can be used in combination with biofertilizers. Biocontrol agents
avoid problems of resistance and also induce systemic resistance among the crop
species. The only negative aspect of these agents is that these agents work slowly
and less effectively in comparison with the chemical pesticides, as their efficacy
almost completely depends on environmental conditions. However, these constraints
can be nullified due to constant research and more effective biocontrol agents can be
generated as these are the demand of present world for safe food.
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1.4 Biocontrol of Plant Pathogens

1.4.1 Biocontrol of Bacterial Plant Pathogens

A broad array of food crops and ornamental plants are susceptible to bacterial
infection. Many a times, abrupt onset of bacterial infections leads to major economic
losses to farmers. Every types of vegetable crops, vines, fruit trees, and ornamental
plants has been distressed by bacterial infections (Amusa and Ojo 2002; Amusa and
Muhammad 2003). Among major bacterial diseases, bacterial wilt caused by
Ralstonia solanacearum and bacterial blight caused by Xanthomonas campestris
are most devastating. Pseudomonas syringae pv. syringae is unique pathovar of
P. syringae that is known to cause disease in nearly 180 different plant species
(Bradbury 1986). This pathogen causes bacterial canker and blast disease in stone
fruit trees and affects nearly all commercially grown Prunus species in the USA
(Ogawa and English 1991). Other bacterial disease of economic important crops
includes Erwinia carotovora var. carotovora causing fruit and vegetable rot under
field and postharvest practices. Xanthomonas citri is a known bacterial pathogen
causing citrus canker, leaf spots, and oozes from infected stems. X. citri has a wide
host range causing necrotic lesions and canker in tangelo, sweet orange, grape, and
lime (Orce et al. 2015).

Since the effective bactericides are very scarce and most fungicides available do
not control bacterial disease. McMullen and Arthur Lamey (2000) reported that
antibacterial antibiotic streptomycin inhibit blight bacteria only at the surface and not
in internal tissues. Due to non-availability of synthetic chemicals for controlling
bacterial diseases of crops, farmers often incur huge losses on crops infected with
these pathogens. He et al. (2020) identified several metabolites produced by Strep-
tomyces sp. A217, which proved to be effective in inhibiting the growth of several
plant pathogenic bacteria and fungi. Since agricultural chemicals are chiefly
concerned with environmental pollution, deposition of residues in food chain and
rendering the pathogens resistance, there is a strong need for considering more
environmentally friendly control measures. Biological control of bacterial diseases
has overcome the many drawbacks of using chemical inputs. Table 1.1 shows some
known bacterial diseases and their reported biocontrol agents. In developed
countries, BCAs have been successfully introduced in commercial markets for
controlling certain diseases such as crown gall, caused by Agrobacterium
tumefaciens (Vicedo et al. 1993), and fire blight of pear, caused by Erwinia
amylovora (Özaktan and Bora 2004). However these commercialized biocontrol
agents have found little applicability worldwide more specifically in developing
nations. Reason for this emanate as the lack of knowledge, facilities and funds
required to conduct research on biological control of plant diseases. In cases where
technologies have been adopted, subsequent problems like inconsistent
performances leading to farmer’s rejection are needed to be addressed.

Numerous saprophytic bacteria belong to genera Pseudomonas, Xanthomonas,
Pantoea, Bacillus, Lactobacillus and certain actinobacteria live as epiphytes in early
growing stages of plants. Some pathogenic bacteria, such as Pseudomonas syringae,
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Erwinia amylovora, E. carotovora, and Xanthomonas also live epiphytically on
many plant tissues before invading and causing plant infection. It has been reported
that foliar spray of these saprophytic bacteria and avirulent strains of pathogenic
bacteria effectively reduced the subsequent pathogenic attack by other pathogenic
bacteria and fungi. For example, foliar spray of Erwinia herbicola formulation
partially inhibited the fire blight of apple blossoms, caused by E. amylovora; and
spraying suspensions of Erwinia and of Pseudomonas inhibited the bacterial leaf
streak of rice, caused by Xanthomonas translucens spp. Oryzicola (Agrios 1997).

Biocontrol of bacteria-mediated frost injury has also been reported. Frost-
sensitive plants are injured due to ice crystal formation below 0 �C. However ice
crystals will not form if no catalyst centers or cell nuclei are present to influence ice
formation even at temperature as low as �10 �C. Three strains of epiphytic bacteria,
P. syringae, P. fluorescens, and E. herbicola, serve as ice nucleation-active catalysts

Table 1.1 List of bacterial pathogens and their biocontrol agents

Bacterial pathogen

Host/
disease
involved Biocontrol agent Reference

Agrobacterium tumefaciens Peach/
crown
gall

Agrobacterium radiobacter
K84

Vicedo et al.
(1993)

Xanthomonas spp. Tomato/
bacterial
spot

Hrp mutant strain of
Xanthomonas campestris
pv. Vesicatoria

Moss et al.
(2007)

Xanthomonas spp. Citrus/
bacterial
canker

Pseudomonas spp. Khodakaramian
et al. (2008)

Ralstonia solanacearum Tomato/
bacterial
wilt

Acinetobacter and
Enterobacter

Xue et al. (2009)

Xanthomonas euvesicatoria Tomato/
bacterial
spot

Mutant strain of
Xanthomonas perforans

Hert et al.
(2009)

Ralstonia solanacearum Tomato/
bacterial
wilt

Bacillus spp. Almoneafy et al.
(2012)

Ralstonia solanacearum Tomato/
bacterial
wilt

Bacillus amyloliquefaciens Tan et al. (2013)

Erwinia carotovora ssp.
Carotovora

Potato/
soft rot

Streptomyces
diastatochromogenes,
Streptomyces graminearus

Doolotkeldieva
et al. (2016)

Erwinia amylovora Pear/fire
blight

Pseudomonas and Pantoea
spp.

Sharifazizi et al.
(2017)

Ralstonia
pseudosolanacearum;
R. syzygii subsp.
Indonesiensis

Tobacco/
bacterial
wilt

Bacteriophage P4282 Alvarez and
Biosca (2017)
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for ice formation at low temperature. However spraying non-ice nucleation-active
bacteria antagonistic to above reported ice nucleation-active bacteria will signifi-
cantly reduce the ice forming bacterial population on the plant surfaces. This
treatment protects frost-sensitive plants from injury at temperatures at which
untreated plants may be severely injured (Agrios 1997).

Another strategy which is gaining prominence in the recent times for screening
out potential biocontrol agents is to look for quorum quenching microbes.
Alymanesh et al. (2016) isolated several bacteria belonging to the genus Pseudomo-
nas, which possessed quorum quenching and were also observed to be effective in
controlling several bacterial and non-bacterial phytopathogens. Similarly, Alinejad
et al. (2020) have also reported that several quorum quenching bacteria like Pseudo-
monas fluorescens, Bacillus pumilus, etc. were capable of controlling
Pectobacterium carotovorum subsp. carotovorum.

1.4.2 Biocontrol of Fungal Plant Pathogens

Fungal plant diseases are quite diverse and affect nearly all plant parts such as root,
stem, leaf, fruit, etc. Besides chemical control of fungal pathogens, biological control
has also been in practice. Studies have highlighted several bacterial and fungal
biocontrol agents to combat fungal diseases. These BCAs may be applied as soil
application or seed treatment mostly against soil-borne fungal pathogens (Sharma
et al. 2015a, b; Hussain 2018; Smolińska and Kowalska 2018). Since many soil-
borne pathogenic fungi can spread readily in aerial plant parts, control of these
pathogens requires suppression of primary inoculum in soil and reduction in the
infection rate (Lo et al. 1997). Table 1.2 shows the major fungal pathogens, their
diseases and biocontrol agents involved in their management.

Biocontrol agents are often employed with additives to improve their efficacy
against fungal pathogens. Lo et al. (1997) reported the seed treatment with 10%
Pelgel primed with solid matrix which enhances biocontrol efficacy of Trichoderma
spp. against Pythium spp. Use of certain surfactants such as Triton 100 as additive
along with Trichoderma gave effective biocontrol as chemical fungicides. Here
surfactant enhanced the biocontrol activity by acting against pathogen’s cell mem-
brane and by enhancing wetting and attachment of Trichoderma spore suspension to
infection site (Lo et al. 1997).

Trichoderma, an effective biocontrol agent of several soil-borne and foliar fungal
pathogens of crop plants, is applied as granular suspension in soil and as spray
suspension. Although population of Trichoderma strain 1295–22 in soils treated
with each separate suspension was found to be equivalent, granular suspension
resulted in more effective decrease in disease incidence of Pythium blight, root rot,
and brown patch when compared to spray application (Lo et al. 1995, 1996, 1997).
This may reflect the inoculum potential of two separate applications and inferred that
efficacy of Trichoderma as BCA is chiefly determined by method of application. The
granules were several millimeter-diameter particles colonized by Trichoderma.
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However, conidial suspension applied as spray, on the other hand, was much smaller
and would therefore be expected to contain lower inoculum potential.

Fusarium, Phytophthora, Pythium, Rhizoctonia, and Alternaria are important
soil-borne phytopathogenic fungi those live as saprophytes on plant debris in soil
and serve as primary inoculum. Therefore, in order to combat the subsequent
infection, suppression of the primary inoculum is required in soil (Lo et al. 1997).
Besides drenching of soil with granular application of BCA, monthly spray applica-
tion is required to inhibit foliar infection of these pathogens from soil. Inhibition of
the secondary inoculum and its dissemination is also important for fungal disease
management (Agrios 1997).

Table 1.2 List of selected fungal pathogens and their biocontrol agents

Fungal pathogen
Host/disease
involved Biocontrol agent Reference

Fusarium
oxysporum f. sp.
lycopersici

Tomato/
vascular wilt

Nonpathogenic
Fusarium spp., Trichoderma spp.,
Gliocladium virens, Pseudomonas
fluorescens, Burkholderia cepacia

Larkin and
Fravel
(1998)

Phytophthora
capsici

Pepper/
crown root
rot

Bacillus spp. and Trichoderma harzianum Sid Ahmed
et al.
(2003)

Fusarium
oxysporum f. sp.
melonis

Musk melon/
vascular wilt

Pseudomonas putida Bora et al.
(2004)

Magnaporthe
oryzae and
Rhizoctonia solani

Rice/Rice
blast and
sheath blight

Pseudomonas fluorescens Reddy
et al.
(2009)

Pythium spp. Tomato/root
diseases

Pseudomonas fluorescens Khalil and
Alsanius
(2010)

Phytophthora
capsici

Pepper/
crown root
rot

Bacillus cereus and Chryseobacterium
spp.

Yang et al.
(2012)

Colletotrichum
Gloeosporioides

Grape
berries/
anthracnose

Bacillus amyloliquefaciens S13-3 Mochizuki
et al.
(2012)

Bipolaris maydis Maize/
southern corn
leaf blight

Bacillus amyloliquefaciens Deng et al.
(2014)

Rhizoctonia
cerealis

Wheat/wheat
sharp eyespot

Bacillus amyloliquefaciens Deng et al.
(2014)

Phytophthora
capsici

Tomato/
crown rot

Bacillus subtilis Sharma
et al.
(2015a, b)

Fusarium
oxysporum

Tomato/
wilting

Bacillus spp./Pseudomonas spp. Verma
et al.
(2018)
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In addition to Trichoderma and other fungal BCAs, many antagonistic bacteria
including species of genus Pseudomonas, Bacillus, Burkholderia, Bacillus have also
been used successfully for biocontrol of various soil-borne fungal pathogens
(Heydari and Misaghi 1998; Haas and Defago 2005; Heydari and Pessarakli 2010;
Sharma et al. 2015a, b). By application of these bacterial antagonists, various fungal
pathogens such as Rhizoctonia solani, Fusarium solani, Pythium, Verticillium
dahliae, Phytophthora capsici, and other soil-borne diseases caused by them such
as root rot, damping-off, collar rot, and vascular wilt have been biologically con-
trolled on major agricultural crops including cotton, wheat, rice, capsicum, and other
crops of economic importance. Shan et al. (2019) have reported that Alcaligenes
faecalis displayed antifungal activities against Botrytis cinerea. Liu et al. (2020)
have reported that lipopeptides produced by Bacillus velezensis HC6 were effective
in controlling Fusarium and Aspergillus.

1.4.3 Biocontrol of Plant Parasitic Nematodes

Nematodes are extremely abundant and diverse eukaryotic, multicellular, inverte-
brate organisms belonging to the kingdom Animalia. These organisms have tube-
within-a-tube body plan. Although most of the nematodes are free-living and feed on
microorganisms like bacteria, fungi, protozoans as well as other nematodes, many
are parasites of animals (including human beings) and plants. Needham (1743) is
credited for the discovery of first described plant parasitic nematode in wheat seeds.
Later, root-knot nematodes on cucumber and cyst nematodes causing “beet-tired”
disease on sugar beets were reported by Berkeley in 1855 and Schacht in 1859,
respectively (Lambert and Bekal 2002). Pioneering work done by Cobb and Carter
went a long way in proving the significance of agricultural nematology. Sasser and
Freckman (1987) estimated annual crop losses amounting to 77 billion dollars
worldwide due to plant parasitic nematodes. The crop losses in 2015, due to
nematodes were projected to be worth 157 billion dollars worldwide, out of which
$40.3 million was reported from India alone (Singh et al. 2015).

All plant parts, including roots, stems, leaves, flowers, and seeds are susceptible
to nematode attacks. However, root associated soil-borne nematodes are quite
commonly encountered. Nematodes make use a specialized spear called a stylet
for feeding on plant cell. The nematode feeding may result into cell death leading to
formation of lesions. On the other hand, there are some nematodes which do not
cause immediate cell death rather they result in enlargement and growth of plant
cells, thus leading to development of nutrient-rich feeding cells for the nematode.
These feeding cells (like giant cells) may result from repeated nuclear division
without complete cell division or by the fusion of adjacent cells into syncytia by
the breakdown of neighboring cell walls. Such feeding cells enable long-term
feeding associations. Some plant nematodes spend most of their time in the soil
(ectoparasites) and others are mostly contained within the plant tissue
(endoparasites). On the basis of modes of lifestyle, the plant parasitic nematodes
show seven major types of strategies (Perry and Maurice 2011) (Table 1.3).
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Ectoparasites: These nematodes do not enter into the host plant but penetrate their
stylets into the host plant roots. These nematodes can affect large number of host
plants. Moreover, since they are ectoparasitic, if conditions become unfavorable on
one host plant, these nematodes tend to move to new host plant. These can result in
formation of root galls in the roots as well as stunting of the root system and are also
responsible for transmission of plant viruses; e.g., Xiphinema or dagger nematode.

Semi-endoparasites: Nematodes that feed as semi-endoparasites are able to par-
tially penetrate the plant and feed at some point in their life cycle. These nematodes’
heads become inserted into the plant root and the nematode forms a permanent
feeding cell. When such nematodes switch to endoparasitic mode, they tend to swell
up and become non-motile. Nematodes like Rotylenchulus reniformis, the reniform
nematode, and Tylenchulus semipenetrans, and the citrus nematode fall into this
category.

Migratory endoparasites: As the name suggests, such nematodes move on migrat-
ing through root tissues and causing destruction of the plant tissue by feeding on
them. These nematodes cause massive plant tissue necrosis because of their migra-
tion and feeding (Jones et al. 2013). Due to such tissue damage, the plants become
susceptible to secondary bacterial and fungal infections which in turn cause further
damage to the plant roots. For example, Pratylenchus or lesion nematode,
Radopholus or burrowing nematode, Hirschmanniella or rice root nematode.

Sedentary endoparasites: This group includes two major kinds of nematodes, viz.
cyst nematodes (e.g., Heterodera, Globodera) and root-knot nematodes (e.g.,
Meloidogyne spp.). As the name suggests, these nematodes have a sedentary mode
of lifestyle and in fact in the earlier stages of life these nematodes remain completely

Table 1.3 Major categories of plant parasitic nematodes

S. no. Nematode type

Main plant
organ
affected Example

1 Ectoparasitic
nematode

Roots Xiphinema (dagger nematode)

2 Semi-
endoparasitic
nematode

Roots Rotylenchulus reniformis (reniform nematode),
Tylenchulus semipenetrans (citrus nematode)

3 Migratory
endoparasitic
nematode

Roots Pratylenchus (lesion nematode), Radopholus
(burrowing nematodes), Hirschmanniella (rice
root nematode)

4 Sedentary
endoparasitic
nematode

Roots Cyst nematodes (Heterodera and Globodera)
Root-knot nematodes (Meloidogyne)

5 Stem and bulb
nematode

Stem, bulb Ditylenchus
Bursaphelenchus xylophilus

6 Seed gall
nematode

Leaves,
seeds

Anguina

7 Foliar nematode Leaves,
foliage, buds

Aphelenchoides
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embedded in the roots of the host plant (Gheysen and Mitchum 2011). However, the
cyst nematodes tend to protrude from the root at later stage of life. These nematodes
cause the formation of large feeder cells like giant cells and syncytia. Female
sedentary endoparasites enlarge considerably into a sac-like shape and are capable
of laying large number of eggs. Eggs are typically laid outside the nematode in a
gelatinous egg mass (Perry and Maurice 2011), but in cyst nematodes most eggs are
retained inside the female body. The cyst nematodes are extremely problematic
because they have the ability to persist for a long period of time in a field by forming
the dormant cysts. Having a resistant or dormant nematode stage enables nematodes
to survive in non-optimal conditions. Resistant stages also aid the nematode in
dispersal. Unlike the cyst nematodes, the root-knot nematodes do not show forma-
tion of any resistant structure to tide over the unfavorable conditions. However, these
nematodes have much broader host range, thus they are able to survive on one host
or the other.

Stem and bulb nematodes: As is indicated by the name, these nematodes (like
Ditylenchus spp.) damage the upper and lower parts of plants. These nematodes are
able to move up the plant stems with the help of water films and hence tend to result
in greater infestation and damages during moist environmental conditions. These
nematodes enter the shoots via buds, petioles, or stomata and then they behave like
the migratory nematodes and cause damage to the host plant by constant feeding and
migration. They tend to form dried fluffy masses (known as “nematode wool.”)
during unfavorable conditions and resume their activity on return of favorable
conditions. Another nematode Bursaphelenchus xylophilus (pine wood nematode)
causing pine wilt disease can be disseminated by insects (Mamiya 1983).

Seed gall nematodes: Seed gall nematodes (Anguina spp.) migrate to the leaves of
plants where they feed as ectoparasites at the tips, causing distortion of the leaves.
Once the plant starts to flower, it penetrates the floral primordia and starts to feed on
the developing seed eventually killing the seed to form a blackened “cockle”
(seed gall).

Foliar nematodes: Foliar nematodes belong to the genus Aphelenchoides. They
migrate in water films on the stems to the leaves of their host plant and penetrate the
leaves through stomata and destructively feed on plant cells resulting in characteris-
tic interveinal chlorosis and necrosis of the leaf, ultimately resulting in death. In the
winter the adult nematodes persist in the dead leaves until favorable conditions arise
in the spring. There are several instances where plant-parasitic nematodes assist
plant-pathogenic bacteria and viruses as carriers as well as specific vectors of
bacterial plant pathogens (Hao et al. 2012). A few examples include the “tundu”
or yellow ear-rot disease of wheat, annual ryegrass toxicity and cauliflower disease
of strawberry are such diseases transmitted by nematodes (Khan and Pathak 1993).

The idea of using biocontrol for controlling the plant parasitic nematodes has
been put forth by Cobb (1917). The efforts put in the direction of nematode
biocontrol using microbial agents have been reviewed by several workers, Thorne
(1927), Linford (1937), Drechsler (1941), Duddington (1962), Pramer (1964),
Rodriguez-Kabana et al. (1965), Mankau (1980), Sayre (1986), Siddiqui and
Mahmood (1996).
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1.4.4 Fungal Agents for Nematode Biocontrol

Kuhn (1877, 1881) was the first person to observe and report the parasitism of
female nematodes belonging to Heterodera schachtii by a fungus (named as
Tarichum auxiliare). The life cycle of nematodes basically comprises of the egg
stage, larval stage, and adult stage. Apart from that some nematodes produce
dormant structures like the cysts which help them in tiding over the unfavorable
environmental conditions. Several investigations carried out across the globe indi-
cate the fact that all these stages of nematode life cycles are susceptible to attacks by
various fungi. For example, Barron (1977) reported Rhopalomyces elegans as a
nematode egg parasite. Kerry et al. (1980), working in England, reported
Nematophthora gynophila was capable of parasitizing the adult females and cysts
of Heterodera avenae (cereal cyst nematode). Stirling and Mankau (1978), working
in California (North America), found a fungal species (Dactylella oviparasidca) that
attacked eggs and adults of Meloidogyne javanica. Jatala et al. (1979), working in
Peru, isolated Paecilomyces lilacinus, which parasitized the eggs and adults of
M. incognita and Globodera pallida. Also, the fungi which have been found to
possess capability to control nematodes can be broadly grouped into predacious
(or nematophagous) fungi, endoparasitic fungi, opportunistic fungi, arbuscular
mycorrhizal fungi.

The nematode-trapping fungi have drawn the attention of scientists as a potential
nematode biocontrol agent from the 1930s (Linford 1937). These soil fungi possess
unique features (like trap cells, hyphal coils, extracellular polymers, adhesive net-
work, adhesive knob, adhesive column, nonconstricting ring and constricting ring)
for ensnaring prey (Niu and Zhang 2011). Most of such fungi can be easily cultured
and hence easy to produce at a large scale. However, there are certain constraints in
utilizing these fungi. These are nonspecific parasites, not aggressive toward
nematodes, also their trapping activity is mainly restricted to the initial stages of
growth (Siddiqui and Mahmood 1996). But in spite of these problems, some
favorable reports of successful use of Arthrobotrys spp. are there (Slepetiene et al.
1993; Dias and Ferraz 1994). Arthrobotrys based nematode biocontrol agents have
been developed for use in mushroom culture and tomato (Cayrol and Frankowski
1979). Some later reports have also indicated A. oligospora as a potential biocontrol
agent (Hashmi and Connan 1989; Grønvold et al. 1993; Bird and Herd 1995;
Chandrawathani and Omar Jand Waller 1998; Jaffee 2004; Yan et al. 2007).

Another category of fungi includes the endoparasitic fungi. These are mostly
obligate parasites generally lack saprophytic phase. They produce motile zoospores
and belong to Chytridiomycetes and Oomycetes (Persmark et al. 1992; Li et al.
2000; Bordallo et al. 2002). The spores of such fungi tend to get attached to
nematode cuticle (Siddiqui and Mahmood 1996). However, certain inherent
problems like limited growth in culture conditions, poor competitiveness, and
susceptibility to mycostasis hamper their establishment in the soil environment,
thus making them relatively less suitable candidates for nematode biocontrol.

The opportunistic fungi or facultatively parasitic fungi include those fungi which
normally have a saprophytic mode of living but can switch to parasitizing the
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nematodes (Jansson and Lopez-Llorca 2001). This group is represented by
Paecilomyces lilacinus and Pochonia chlamydosporia (Verticillium
chlamydosporium) (Lopez-Liorca et al. 2002; Khan et al. 2004). A lot of research
work has been undertaken on the nematode controlling activity of these fungi in
different plants. Reduction in nematode population was found in cucumber (Stephan
et al. 1991) and watermelon (Vicente et al. 1991) by using Paecilomyces lilacinus.
This fungus has been found to be effective against the nematodes belonging to the
Heteroderid group like M. incognita, M. javanica, Heterodera cajani, R. reniformis
(Ekanayake and Jayasundara 1994; Gautam et al. 1995; Siddiqui et al. 1996; Walters
and Barker 1994; Kiewnick and Sikora 2006). Similarly, Pochonia chlamydosporia
has been reported to be effective against nematodes like Globodera, Heterodera,
Rotylenchulus, Meloidogyne, Nacobbus, etc. (De Leij and Kerry 1990; Muller 1992;
Manzanilla-López et al. 2013). They attack the nematodes within the host plant
roots, on the root surface, or in the soil. These fungi can colonize nematode
reproductive structures, penetrating the cuticle barrier (by using extracellular hydro-
lytic enzymes) to infect and kill the nematode hosts. Once in contact with cysts or
egg masses of nematodes, these fungi also grow rapidly and eventually parasitize all
eggs that are in the early embryonic stages of development (Manzanilla-López et al.
2013). Certain other common fungi like Cylindrocarpon, Fusarium, Penicillium
have been found to be associated with nematodes (Crump 1987; Ruanpanun et al.
2010).

Another category of fungi which have inhibitory effect on plant parasitic
nematodes include the arbuscular mycorrhizal fungi. These are obligate root
symbionts associated with majority of land plants. They possess many activities
which enhance the plant growth including transportation of water and nutrients as
well as protection from environmental stress and pathogens and parasites like
nematodes (Gianinazzi et al. 2010; Singh et al. 2011; Vos et al. 2012a; Kaushal
and Wani 2016). There are many reports of suppression of plant parasitic nematodes
by AMF (Veresoglou and Rillig 2012; Pinochet et al. 1996; Hol and Cook 2005).
The protective effects against nematodes have been demonstrated in many plants
like banana, coffee, and tomato (Calvet et al. 2001; Vos et al. 2012b; Alban
et al. 2013).

Several mechanisms can be put forth to explain the protective action of AMF
against parasitic nematodes. These include direct competition (for space or nutrients)
(Schouteden et al. 2015) or inhibition, enhanced or altered plant growth, morphol-
ogy and nutrition, biochemical changes associated with plant defense mechanisms
and induced systemic resistance (Elsen et al. 2008), development of an antagonistic
microbiota possibly by altered root exudates (Whipps 2004). The biocontrol proba-
bly results from a combination of different mechanisms (Vierheilig et al. 2008;
Cameron et al. 2013). Better understanding of the mechanisms involved will proba-
bly result into the development of a commercial product based on AMF for fungal
biocontrol in the near future.
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1.4.5 Bacterial Agents for Nematode Biocontrol

Due to inherent advantages of bacteria like rapid growth, better adaptability, easier
genetic manipulations, etc. many efforts were made to ascertain their possible use for
nematode control. The bacteria which can be used for such purpose include obligate
parasitic bacteria, opportunistic parasitic bacteria, plant growth-promoting
rhizobacteria, parasporal Cry protein-forming bacteria, endophytic bacteria, and
symbiotic bacteria (Tian et al. 2007).

The group of obligate parasitic bacteria is represented by the genus Pasteuria.
Mankau (1975) recognized Bacillus penetrans as a possible candidate for nematode
control. Sayre and Starr (1985) later designated the bacterium as Pasteuria
penetrans. Members of the genus Pasteuria are mycelial, endospore-forming bacte-
ria parasitizing nematodes and water fleas (Sayre and Starr 1985; Bekal et al. 2001).
Pasteuria has been found to be capable of infecting nematodes of 116 genera,
including both many economically important plant-parasitic nematodes and free-
living nematodes (Chen and Dickson 1998; Bird et al. 2003). Pasteuria penetrans
primarily attacks root-knot nematodes such as Meloidogyne spp., Pratylenchus
thornei infects root-lesion nematodes such as Pratylenchus spp., and Pasteuria
nishizawae mainly parasitizes cyst nematodes belonging to the genera Heterodera
and Globodera (Atibalentja et al. 2000). Pasteuria penetrans was found to attach to
the nematode cuticle, then penetrating M. incognita and establishing microcolonies
in the nematode pseudocoelom ultimately killing the nematode and releasing
endospores in the soil (Mankau et al. 1976; Sayre and Wergin 1977). Econem is a
commercially available preparation made using Pasteuria sp. (Abd-Elgawad and
Vagelas 2015).

Opportunistic parasitic bacteria include those bacteria which are generally sapro-
phytic but can switch to nematophagous mode. This category is represented by
Brevibacillus laterosporus and Bacillus sp. B. laterosporus has been reported to
show deleterious effect on four nematode species, viz., Heterodera glycines,
Trichostrongylus colubriformis, Bursaphelenchus xylophilus, Panagrellus redivivus
(Oliveira et al. 2004; Huang et al. 2005). The bacteria has been found to attach to the
epidermis, propagate rapidly, and secrete hydrolytic enzymes (Decraemer et al.
2003), resulting in circular holes in nematode cuticle. Subsequently, the microbe
penetrates inside and digests tissue of host body (Huang et al. 2005).

The plant growth-promoting rhizobacteria have also been found to possess
nematode controlling properties. Mostly bacteria belonging to the genera Bacillus
and Pseudomonas have been found to possess antagonistic activity toward
nematodes. Members of the genus Bacillus have been found to be active against
plant-parasitic nematodes like Meloidogyne, Heterodera, and Rotylenchulus (Gokta
and Swarup 1988; Siddiqui and Mahmood 1999; Kokalis-Burelle et al. 2002; Meyer
2003; Giannakou and Prophetou-Athanasiadou 2004; Li et al. 2005). Similarly,
Pseudomonas strains have also been reported to display antagonistic activity toward
nematodes using a variety of mechanisms including production of antibiotics,
metabolites, extracellular enzymes and the induction of systemic resistance (Spiegel
et al. 1991; Cronin et al. 1997; Siddiqui and Shaukat 2002, 2003; Siddiqui et al.
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2005). Other rhizobacteria reported to show antagonistic effects against nematodes
include members of the genera Actinomycetes, Agrobacterium, Arthrobacter,
Alcaligenes, Azotobacter, Beijerinckia, Burkholderia, Clostridium, Corynebacte-
rium, Desulforibtio, Enterobacter, Flavobacterium, Gluconobacter, Klebsiella,
Methylobacterium, Paenibacillus polymyxa, Rhizobium, Streptomycetes, Serratia,
etc. (Tian et al. 2007; Kaur et al. 2016).

Several commercial products based on such bacteria are available. For example,
Deny is a commercial biocontrol product containing Burkholderia cepacia (Meyer
and Roberts 2002). Another product called Bio Yield™ containing Paenibacillus
macerans and Bacillus amyloliquefaciens is available (Meyer 2003). Another prod-
uct BioNem contains 3% lyophilized Bacillus firmus sporesis used in Israel
(Giannakou and Prophetou-Athanasiadou 2004).

The next category includes Bacillus thuringiensis (Bt) which produces parasporal
crystal inclusions (Cry or δ-endotoxins), possessing toxic activity toward insects and
nematodes. Some Cry proteins are also toxic to other invertebrates such as
nematodes, mites, and protozoans (Feitelson et al. 1992). Six Cry proteins (Cry5,
Cry6, Cry12, Cry13, Cry14, Cry21) have been reported to be toxic to larvae of
various nematodes (Alejandra et al. 1998; Crickmore et al. 1998; Wei et al. 2003;
Kotze et al. 2005). Cry protein exerts tend to result in formation of lytic pores in the
cell membrane of gut epithelial cells ultimately resulting in the eventual degradation
of the intestine (Crickmore 2005; Marroquin et al. 2000). Also some strains of
B. thuringiensis israelensis, B. thuringiensis kurstaki, and B. sphaericus have been
reported to show detrimental effect on the eggs and larvae of parasitic nematode
Trichostrongylus colubriformis (Bottjer et al. 1986; Bowen and Tinelli 1987;
Meadows et al. 1989).

A few endophytic bacteria present inside root tissue have been shown to promote
plant growth and to inhibit disease development and nematode pests (Sturz and
Matheson 1996; Shaukat et al. 2002; Sturz and Kimpinski 2004). For example,
Munif et al. (2000) reported 21 endophytic bacterial isolates obtained from tomato
roots to possess antagonistic properties towardM. incognita. Endophytic bacteria are
thought to inhibit nematodes by competition, production of inhibitory chemicals,
and induction of systemic resistance (Hallmann 2001; Compant et al. 2005).

A new category of bacteria possessing anti-nematode properties has been
identified in case of bacteria like Xenorhabdus spp. and Photorhabdus spp., which
show symbiosis with entomopathogenic nematodes Steinernema spp. and
Heterorhabdus spp., respectively. It has been reported that these bacteria have
some antagonistic activity toward plant parasitic nematodes (Bird and Bird 1986;
Perry et al. 1998; Lewis et al. 2001). These bacteria produce some inhibitory
compounds (Samaliev et al. 2000) toxic to larvae of M. incognita and pine wood
nematode B. xylophilus (Hu et al. 1999).
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1.4.6 Biocontrol of Insects and Mites

Insects form a very diverse group of invertebrate organisms belonging to phylum
Arthropoda and class Insect with hard chitinaceous exo-skeleton. Their body is
segmented into head, thorax, and abdomen and they generally possess three pairs
of jointed legs. They occupy little more than two thirds of the known species of
animals in the world (Ujagir and Oonagh 2009). All types of plants including food
crops, fruit and vegetable plants, oilseeds plants, fiber plants, forest trees, medicinal
plants, weeds, etc. are susceptible to attack by insects. Some insects also attack the
stored food articles, and hence can result in severe crop losses and even food scarcity
(Manosathiyadevan et al. 2017). As per some estimates provided by FAO, insects
cause at least one fifth of worldwide crop losses every year. As per Ujagir and
Oonagh (2009), “Insects that cause less than 5 % damage are not considered as pests.
The insects which cause damage between 5 and 10% are called minor pests and those
that cause damage above 10% are considered as major pests.”Depending on the type
of mouth parts, the insects can be broadly said to be chewing type and sucking type.
Not only this, many insects also act as vectors for various plant diseases. Also, the
damage caused by biting, chewing, piercing (during sucking) by the insect, results
into plant injury, thus making them more susceptible to microbial infection. The
insect pests include leaf hopper, leaf miner, stem borer, whitefly, weevil, aphids,
scarab beetles, caterpillars, locusts, midge, etc. Some of the major crops and their
insect pests are provided in Table 1.4.

Mites form another very significant group of arthropods which can affect agricul-
tural crops as well as stored products. Mites are microscopic arthropods belonging to
class Arachnida and sub-class Acarina. These organisms differ from the insects
mainly due to the fact that they have un-segmented (entire) body and bear four
pairs of legs (Baker and Wharton 1952). There are several plant parasitic mites
associated with the various crops like cereals, pulses, oilseeds, fruits and vegetables,
etc. Some of the commonly encountered mites include Tetranychus, Brevipalpus,
Eotetranycus, Eutetranychus, Tarsonemus, Tenuipalpus, Oligonychus, etc.
(Putatunda et al. 2002). The major phytophagus mites belong to the families

Table 1.4 A few common insect pests of selected crops/plants

S. no. Crop/plant Insect pests

1 Rice Rice stem borer, rice gall midge, green rice leaf hoppers, brown plant
hopper, rice leaf folder, rice earhead bug, whorl maggot

2 Wheat Grain aphid, termites, armyworm, American pod borer, jassid

3 Sugarcane Early shoot borer, internode borer, sugarcane top borer, sugarcane
leaf hopper, woolly aphid

4 Cotton Cotton aphid, cotton leaf hopper, cotton whitefly, spotted bollworm,
pink bollworm, American bollworm

5 Cruciferous
vegetables

Diamond back moth, leaf Webber, cabbage butterfly, cabbage aphid,
mustard sawfly, painted bug

6 Mango Mango hoppers, flower Webber, gall midges, fruit fly, stone weevil,
mango stem borer, red tree ant, mealybug
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Tetranychidae (spider mites), Tenuipalpidae (false spider mite), and Eriophyidae
(gall mites) (Singh et al. 2016). Some of the common symptoms in plants associated
with mite infestation include dusty appearance (especially in case of Tetranychidae),
white spots (chlorosis), mosaic like appearance, formation of galls (in case of
Eriophyidae members) ultimately resulting in drying and shriveling of plants.
Also, just like the insect infestation, the mite infestation also enhances the probabil-
ity of microbial infection.

1.4.7 Bacterial Agents for Insect and Mite Biocontrol

The use of bacterial agents for biocontrol of insect pests is not a new phenomenon.
One of the most commonly used biopesticides is based on the bacteria Bacillus
thuringiensis (Federici 2007). Several commercially available biopesticides include
Biobit, Dipel, and Thuricide based on Bt strain kurstaki HD1. Some other
biopesticides make use of other Bt strains like kurstaki SA-11, kurstaki SA-12,
israelensis, and tenebrionis (Kaur 2000). The insecticidal property of the microbe is
primarily associated with the Cry protein present in the parasporal body. The toxin
remains insoluble in the environment and is converted into the active toxin only
inside the insect gut, thus making it safe for the humans and animals. Moreover,
the toxin shows high level of specificity and hence, it is not expected to impact the
non-target and beneficial insects (Lacey and Siegel 2000; Lacey et al. 2015). The
Cry proteins have been classified into six major groups, out of which five groups are
effective against various insects. Group 1 is effective against lepidopteran insects,
Group 2 targets both lepidopteran and dipteran insects, Group 3 works against the
coleopterans, Group 4 against dipterans, and Group 5 is functional against both
lepidopteran and coleopteran insects (Crickmore et al. 1998).

The commercial potential of Bt also led to cloning of cry genes into other
organisms including bacteria as well as plants. Schnepf and Whiteley (1981) cloned
a cry gene from Bt subsp. Kurstaki into E. coli. Widespread application of Bt led to
emergence of resistance in insects, so targeted delivery systems making use of
non-Bt bacterial systems have been tried. Some of such bacteria which have been
investigated for production and delivery of the Bt toxins include Clavibacter xyli,
Bacillus cereus, Pseudomonas, Rhizobium, Azospirillum spp. (Lampel et al. 1994;
Mahaffee et al. 1994; Obukowicz et al. 1986a, b; Skot et al. 1990; Udayasuryian
et al. 1995). Although the conventional Bt microbial biopesticides have been found
to be effective and eco-friendly, their use is limited by the fact that they tend to get
washed off or get inactivated due to sunlight (Federici and Siegel 2008). Such types
of problems led to development of transgenic crops containing genes encoding Bt
toxins. As per Koch et al. (2015), Bt cotton and Bt corn form the majority of the
commercially approved Bt crops. Apart from these Bt soybean and Bt rice have also
been approved in a few countries.

B. thuringiensis subsp. Israelensis (Bti) has been used for controlling mosquito
and black fly larvae across the globe. Another member of the genus Bacillus,
i.e. B. sphaericus is also used commercially for mosquito biocontrol (Charles et al.
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1996; Lacey et al. 2001). Apart from this, Paenibacillus popilliae for controlling
Japanese beetle and Serratia entomophila for control of white grubs have also been
reported. However, P. popilliae production can only occur under in vivo conditions,
which makes it a relatively less popular biocontrol agent (Klein and Kaya 1995).
Entomopathogenic activities of certain other bacteria have also been reported.
Commare et al. (2002) reported a formulation containing two strains of Pseudomo-
nas fluorescens to be effective in controlling sheath blight disease as well as leaf-
folder insect in rice plant. A new strain of Serratia marcescens has been reported to
show activity against diamondback moth (Jeong et al. 2010). Similarly, a formula-
tion containing two strains of P. fluorescens and a fungal strain of Beauveria
bassiana proved to be capable of controlling leaf-miner insect and collar root
pathogen (Senthilraja et al. 2013).

Another bacterial species Yersinia entomophaga has been recently reported to be
highly pathogenic to an array of insects belonging to Coleoptera, Lepidoptera, and
Orthoptera (Hurst et al. 2011a) and has been shown to be effective against porina
caterpillar (Wiseana spp.) (Brownbridge et al. 2008), Scopula rubraria (Jones et al.
2015), C. zealandica, diamond back moth, Pieris rapae, locust (Locusta
migratoria), and cotton bollworm (Helicoverpa armigera) (Hurst et al. 2011a). It
produces an orally active proteinaceous toxin complex (Yen-Tc) composed of ABC
toxins (Hurst et al. 2011b). Spinosad, obtained from the bacterium
Saccharopolyspora spinosa, is used in commercially available insecticide for
controlling insect pests in vegetables like cole, spinach, lettuce, tomato (Natwick
et al. 2010a, b, c; Koike et al. 2009; Natwick et al. 2013). Constant research efforts
are being done for identifying more and more bacterial species with potential
insecticidal properties. Hiebert et al. (2020) have reported Leuconostoc
pseudomesenteroides to possess insecticidal activity against Drosophilid and aphids.

There are several bacterially derived acaricides are available for controlling plant
parasitic mites. Abamectin is an effective acaricide, containing Avermectin B1 as the
active component obtained from the actinomycete Streptomyces avermitilis (Lasota
and Dybas 1990). Rahman et al. (2016) found abamectin to be quite effective in
controlling Polyphagotarsonemus latus (jute yellow mite) in jute plants. Biopesti-
cide based on Chromobacterium subtsugae strain PRAA4–1T has been found to be
quite effective against several insect pests as well as mites including two-spotted
spider mites. In a field study, biopesticides based on fermentation by-products of
C. subtsugae strain PRAA4–1 and heat-killed Burkholderia spp. strain A396
showed efficacy similar to that of chemical miticides against the two-spotted spider
mite, Tetranychus urticae, in strawberries (Dara 2015).

1.4.8 Fungal Agents for Insect and Mite Biocontrol

Entomopathogenic fungi (EPF) include those fungi which can cause infection in
arthropods including insects, mites, ticks, spiders, etc. About 1000 species of such
entomopathogenic fungi are recognized. As per Chandler (2017) fungi cause death
of the arthropod host due to physical damage and loss of normal functioning
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resulting from fungal colonization of arthropod of tissues and organs, activity of
fungal metabolites, loss of water, and starvation. Most of the commercially available
EPF biopesticides are based on the genera Beauveria and Metarhizium, and few
make use of Isaria, Lecanicillium, and others (Faria and Wraight 2007). The target
pests include members of Hemiptera, Coleoptera, Lepidoptera, Diptera, Orthoptera,
and Acari (mites). In Brazil, a vast range of land is under the use of M. anisopliae
based biopesticide against spittlebug pests on sugarcane and pasture. The fungus is
mass-produced on rice grains and is sold as conidia powder or as fungus-colonized
substrate (Li et al. 2010). Another example of successful application of EPF is the
use of Beauveria brongniartii applied against European cockchafer beetles in central
Europe. McCoy et al. (1971) tested Hirsutella thompsonii against a rust mite
infestation on citrus trees and found very encouraging results which resulted in
development of commercial product known as Mycar in 1976 (McCoy and Couch
1982). Hirsutella thompsonii was also shown to be effective against the two-spotted
spider mite (Tetranychus urticae) in laboratory bioassay (Gardner et al. 1982). A
biopesticide based on Lecanicillium muscarium is registered as “Mycotal” for the
control of whitefly larvae, thrips, and spider mites (Arthurs and Brucks 2017).

Several research efforts have indicated the potential use of fungal agents for
controlling arthropod pests of various crops. Sánchez-Peña et al. (2007) reported
greater than 70% mortality of fall armyworm larvae under lab conditions by using
M. brunneum (earlier known as M. anisopliae) or B. bassiana. Beauveria bassiana
was also shown in laboratory bioassays to be effective against the citrus rust mite
(Alves et al. 2005). It was also found to possess ovicidal activity on two-spotted
spider mite (Shi et al. 2008). Lecanicillium lecanii was found to be effective in
controlling the brown stink bug which is a major soybean pest in Indonesia (Prayogo
2014). Carrillo et al. (2015) reported entomopathogenic fungi (Isaria fumosorosea
3581 and PFR97) and B. bassiana (GHA) to be effective in killing redbay ambrosia
beetle. Maniania et al. (2002) reported that M. brunneum strain ICIPE 69 achieved
good control of adult thrips infesting Chrysanthemum.

EPF not only plays a crucial role in pest management but could also lead to
betterment of plant growth and health (Liao et al. 2014). Dara (2014a) conducted a
field study and found that when B. bassiana was added to the roots of strawberry
transplants, there was improvement in the plant growth and health during the next
few months. Similar results were also obtained on adding B. bassiana in strawberry
fields (Dara 2014b).

1.4.9 Viral Agents for Insect and Mite Biocontrol

Viruses offer another avenue for insect biocontrol. The greatest number of insect
viruses belongs to the Baculoviridae family. Being highly specific toward the
insects, these viruses do not pose any threat to humans or animals and hence are
regarded to be safe. About 30 baculovirus species have either been used to develop
biopesticides or are at a developmental stage for biopesticide development (Lacey
et al. 2015).
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The family Baculoviridae comprises viruses with double-stranded DNA circular
genomes packaged in rod-shaped infective particles or nucleocapsids which in turn
are found within crystal-like proteinaceous bodies called occlusion bodies (OBs)
(Miller and Ball 1998; Harrison and Hoover 2012). These are divided into four
genera on the basis of genome sequence and host specificity (Jehle et al. 2006;
Herniou et al. 2012). Alphabaculoviruses are Lepidoptera-specific
nucleopolyhedroviruses (NPVs), with polyhedral occlusion bodies containing mul-
tiple virions. The Betabaculoviruses include Lepidoptera-specific granuloviruses
(GVs) with rod-shaped occlusion containing only a single virion. The
Gammabaculoviruses comprised of Hymenoptera-specific NPVs with polyhedral
occlusion bodies containing multiple singly enveloped nucleocapsids. The
Deltabaculoviruses are Diptera-specific NPVs with occlusion bodies containing
many virions.

The process of infection in baculoviruses is generally divided into two stages: a
primary infection and amplification stage in the midgut followed by a systemic
infection phase culminating in massive production of occlusion bodies, ultimately
being released from dead insects (Federici 1997; Lacey et al. 2008). In
Gammabaculoviruses and Deltabaculoviruses, production of progeny OBs is much
lower. The infection cycle is initiated by ingestion of Baculoviral occlusion bodies,
which in turn get dissolved in the alkaline pH of larval midgut region, thus leading to
release of virions. These pass through the peritrophic membrane using various
mechanisms and reach the epithelial cells (Del Rincón-Castro and Ibarra 2005;
Slavicek 2012) where the DNA replication occurs (Lapointe et al. 2012). The
progeny virus bud through the basal lamellar membrane and show rapid cell-to-
cell transmission leading to rapid spreading of infection throughout the host body
(Wang et al. 2014) ultimately bringing about the larval death. Larvae in the late stage
of infection climb to the top of the plant/tree, become anchored, and die hanging in
the distinctive V-shaped head-down posture (Federici 1997). The dead bodies
rupture releases the viral occlusion bodies on to foliage and which in turn can be
ingested by insect larvae.

Baculoviruses have been used in a wide variety of crops (Glare et al. 2012) and
have been applied against pests like Helicoverpa/Heliothis spp. and Spodoptera spp.
which impact multiple crops (Gowda 2005). The Baculovirus HearNPV based
bioinsecticide is available for controlling insect pests like Helicoverpa armigera,
cotton bollworm, pod borer, Old World bollworm in a wide range of crops including
maize, soy, cotton, vegetables, legumes (Rabindra and Jayaraj 1995; Buerger et al.
2007). Similarly, HzSNPV based biopesticide is used for biocontrol of Helicoverpa
zea, corn earworm, tomato fruitworm, tobacco budworm in a variety of crops like
corn, cotton, tomato, tobacco (Ignoffo 1999). Also, the viruses SpexMNPV and
SeMNPV have been used to restrict the crop losses caused by Spodoptera exempta
and Spodoptera exigua beet on various plants (Grzywacz et al. 2008; Kolodny-
Hirsch et al. 1997; Lasa et al. 2007). One of the earlier uses of Baculoviruses for
large-scale insect control can be observed in case Codling Moth Granulovirus for
controlling the codling moth. The virus has been widely used in Europe (Tanada
1964; Payne 1982; Lacey and Shapiro-Ilan 2008). In Brazil, velvet bean caterpillar
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(Anticarsia gemmatalis) has been successfully controlled by the use of
A. gemmatalis NPV (AgMNPV) at a comparatively lower rate of application, thus
offering a very economical method for controlling the insect pest (Grzywacz 2017).

Relatively less number of viral pathogens has been found to be associated with
mites. These include citrus red mite and the European red mite (Van der Geest et al.
2000). Although these viruses must be impacting under natural conditions but
commercial application of these is yet to be achieved.

1.5 Applications of Biocontrol Agents

In order to meet the requirements of the growing population, increase in food grains
production is required up to 250 million tonnes by the year 2020. For better
horticultural and agronomic practices, growers often rely on excessive use or misuse
of agrochemicals caused environmental pollution. The toxic chemicals uses have
been increased for the management of increased pest and diseases. But excessive use
causes increase in the resistance to pesticides and fungicides. The World Trade
Organization general agreement on trade and tariff emphasizes more on the use of
pesticide in an eco-friendly way which is least toxic, causing low residual problem
and low levels of disease resistance for crop production. The biocontrol agents alone
or in combination are used to control the number of pest and diseases. The general
properties of biocontrol agents are:

• Cheaper and less costlier than other methods
• Crop protection throughout the crop period
• No toxicity to the plants
• Safer to the environment and person who applies them
• Easy multiplication in soil and no left residue
• Control disease along with root and plant growth enhancement by the way of

promoting beneficial soil micro flora.
• Increased yield
• Easy to handle and apply to the target
• Biological agents can be combined with bio-fertilizer
• Easy to manufacture
• Not harmful for human being and animals.

The biological control agents promote the growth of plants and suppress the
deleterious pathogens by producing growth hormones like cytokinin, auxins, and
gibberellins, etc. with simultaneous increase in the yield. The analyses on
mechanisms of biological control agents represented that these agents promote
plant growth directly by producing plant growth regulators or indirectly by produc-
ing siderophores or antibiotics (soil-borne pathogens) and increase nutrient uptake.
List of bacteria and fungal based biocontrol agents are given in Tables 1.5 and 1.6.
Life cycle of insect virus is given in Fig. 1.3.
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Table 1.5 List of microorganisms effective against plant pathogens and their status

S. no. Substance Effective Status
Date of
approval

Date
of
Expiry

1. Aureobasidium pullulans (strains
DSM 14940 and DSM 14941)

Fungi and
bacteria

Approved 01/02/
2014

31/01/
2024

2. Bacillus amyloliquefaciens subsp.
plantarum D747

Bacteria Approved 01/04/
2015

31/03/
2025

3. Bacillus firmus I-1582 Nematodes Approved 01/10/
2013

30/09/
2023

4. Bacillus pumilus QST 2808 Fungi Approved 01/09/
2014

31/08/
2024

5. Bacillus subtilis str. QST 713 Fungi and
bacteria

Approved 01/02/
2007

30/04/
2018

6. Candida oleophila strain O Fungi Approved 01/10/
2013

30/09/
2023

7. Phlebiopsis gigantea (several
strains)

Fungi Approved 01/05/
2009

30/04/
2019

8. Pseudomonas sp. Strain DSMZ
13134

– Approved 01/02/
2014

31/01/
2024

9. Pythium oligandrum M1 Fungi Approved 01/05/
2009

30/04/
2019

10. Streptomyces K61 (formerly
S. griseoviridis)

Fungi Approved 01/05/
2009

30/04/
2019

11. Streptomyces lydicus WYEC 108 Fungi and
bacteria

Approved 01/01/
2015

31/12/
2024

12. Trichoderma asperellum (formerly
T. harzianum) strains ICC012, T25
and TV1

Fungi Approved 01/05/
2009

30/04/
2019

13. Trichoderma asperellum (strain
T34)

Fungi Approved 01/06/
2013

31/05/
2023

14. Trichoderma atroviride (formerly
T. harzianum) strains IMI 206040
and T11

Fungi Approved 01/05/
2009

30/04/
2019

15. Trichoderma atroviride strain I1237 Fungi Approved 01/06/
2013

31/05/
2023

16. Trichoderma gamsii (formerly
T. viride) strain ICC080

Fungi Approved 01/05/
2009

30/04/
2019

17. Trichoderma harzianum strains
T-22 and ITEM 908

Fungi Approved 01/05/
2009

30/04/
2019

18. Trichoderma polysporum strain IMI
206039

Fungi Approved 01/05/
2009

30/04/
2019

19. Verticillium albo-atrum (formerly
Verticillium dahliae) strain
WCS850

Fungi Approved 01/05/
2009

30/04/
2019

20. Zucchini yellow mosaic virus, weak
strain

Fungi Approved 01/06/
2013

31/05/
2023
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1.6 Conclusion and Future Prospects

To feed the world population which grows at a rapid rate there is always need for
synthetic pesticides. However, by using biological control agents we can minimize
the use of synthetic pesticides, especially in developed countries. Biological system
approach may provide a better alternative to suppress or inhibit the activity of
disease causing agents. Several examples of successful and even outstanding results
of biological control agent methods with plant pathogenic agents in agricultural
fields are known. Also, sometimes suitable agents may not be available for all
species for which biocontrol would be required. Therefore, opportunities for appli-
cation of biocontrol techniques may be limited. The possible use of genetic engi-
neering techniques to manipulate the virulence or host specificity of pathogens and
thus produce right agents for biocontrol purposes may solve the problem. Biological
control agents could be used as integrated management programs where there is

Table 1.6 Beneficial fungi based biocontrol of plant pathogen

S. no. Biocontrol agent Target pathogen Host plant

1. AM: Glomus mosseae Ralstonia solanacearum Tobacco

2. AM: G. intraradices Nacobbus aberrans Tomato

3. AM: Glomus fasciculatum Alternaria alternata Tomato

Avirulent/Hypovirulent strains:
Cryphonectria parasitica

Cryphonectria parasitica Chestnut

4. ECM: Thelephora terrestris and
Pisolithus tinctorius

Phytophthora cinnamomi Shortleaf pine

5. ECM: Laccaria bicolor F. moniliforme Scots pine

6. ECM: Suillus luteus F. Oxysporum Stone pine
scots pine

7. Endophyte: Piriformospora indica R. solani Rice

8. Endophyte: Cryptosporiopsis quercina Pyricularia oryzae Rice

9. Endophyte: Penicillium sp. Pseudomonas syringae
pv. Tomato

Arabidopsis

10. Trichoderma asperellum Fusarium oxysporum f. sp.
lycopersici

Tomato

11. T. koningii, T. viride, T. harzianum Sclerotium rolfsii Groundnut

12. T. harzianum Alternaria brassicae and
A. brassicicola

Mustard

13. T. harzianum Meloidogyne javanica Tomato

14. T. harzianum Botrytis cinerea Bean

15. T. hamatum Phytophthora Rhododendron

16. Yeast: Cryptococcus laurentii and
Sporobolomyces roseus

B. cinerea Apple

17. Yeast: Pichia anomala B. cinerea Apple

18. Verticillium nigrescens V. dahliae Cotton
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necessity of adding biocontrol agents and the success of disease management is not
totally dependent on the biological activity.
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Overview of Nutrient and Disease
Management in Banana 2
Bhawna Dipta, Sonal Bhardwaj, and Manoj Kaushal

Abstract

Bananas are one of the most important crops for consumption as dessert and a
staple food. In world trade for export, it ranks fourth among all agricultural
commodities. The intensive cultivation of this crop warrants high yield and
quality but requires extensive use of chemical fertilizers and pesticides that not
only pollutes the environment by residue accumulation but is also against the
interests of sustainable agricultural practices. Integrated nutrient management is
an economically sound preventive management option which could restore soil
fertility and the productivity of banana. Other feasible management strategies
include the use of resistant cultivars and the introduction of microorganisms or
their mixtures in the rhizosphere to protect them against diseases, thereby leading
to improved establishment as well as overall performance. In this chapter, we
provide an overview of the strategies for the management practices to control the
soil-borne pathogens in banana besides maintaining soil fertility.
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2.1 Introduction

Banana (Musa spp.) is a monocotyledonous perennial giant herb belonging to the
family Musaceae and order Zingiberales. It is one of the fourth key food resources in
the world after rice, wheat, and maize (Ngamau et al. 2014). Banana is a native of the
tropical regions of Southeast Asia (Fuller and Madella 2009) and mostly grown in
tropical and subtropical locales of the world (Dodo 2014). Banana is a great source
of dietary fiber, vitamin C, vitamin B6, and provides sufficient levels of minerals like
potassium, phosphorus, calcium, manganese, copper, and magnesium. Processed
items such as bread, chips, wafers, puree, jam, powder, pulp, beer, and wine can be
produced using a banana. Besides, the tender stem of the banana bearing inflores-
cence is utilized as a vegetable. The banana plant also has medicative applications as
it helps in combating arteriosclerosis, bronchitis, diabetes, hysteria, epilepsy, lep-
rosy, ulcers, hemorrhages, acute dysentery as well as cure skin afflictions. Banana is
primarily grown by small-scale farmers both as a household food security and as a
source of income throughout the year, thus, playing a vital role in poverty alleviation
of the regions involved in its production. Unlike other fruit crops, banana cannot get
water and nutrients from the deeper soil profile as it bears adventitious and horizontal
roots proliferating topsoil. This undeveloped root system inhibits the consumption of
essential mineral nutrients and limits the large-scale production of bananas under
adverse tropical soil conditions. Thus, banana trees require great quantities of
nutrients for their development and fruit production which is chiefly exploited
from a very limited soil depth.

These nutrients may be supplied by the soil or by fertilization to obtain optimum
yield on a sustainable basis (Rajput et al. 2015). In conventional farming, the
intensive use of chemical fertilizers and pesticides has proved to be a tremendous
threat not only to food safety but also to the ecosystem’s health and its sustainability
(Carvalho 2017). Moreover, the outbreak of several diseases due to intensive
cultivation has substantially inflicted yield losses of staggering dimension both in
quantity and quality aspects to the farming community. Consequent problems such
as soil acidification, soil alkalinity, as well as soil, water, and atmospheric contami-
nation have not only caused continuing soil deterioration but also resulted in
declined plant and microbe biodiversity. Even worse, pesticides and residues that
are frequently found in foods lead to different toxic mechanisms such as the
poisoning of gastrointestinal, renal, and nervous systems and pulmonary fibrosis
(Eddleston and Bateman 2012). The present chapter focuses on the integrated
nutrient management (INM) practices, which could restore soil fertility and the
productivity of banana. INM is a strategic, eco-friendly, and economical preventive
management option that includes the use of organic wastes, biofertilizers, and
inorganic fertilizers which improves crop yields and preserves sustainable and
long-term soil fertility while minimizing nutrient losses and improving the
nutrient-use efficiency of crops. The chapter also discusses plant growth promoting
attributes of beneficial microorganisms with special attention to sustainable disease
management of major banana diseases by biocontrol agents.
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2.2 Integrated Nutrient Management

Although chemical fertilizers contribute a lot in fulfilling the nutrient requirement of
banana, their regular, excessive, and unbalanced use may lead to deterioration of the
physical, chemical, and biological properties of the soil, causing nutrient imbalances
and environmental pollution. INM envisages the use of chemical fertilizers with
organic sources like farmyard manure, poultry manure, neem cake, oil cake,
vermicompost, etc., along with biofertilizers in judicious combinations for agricul-
tural productivity and farm profitability (Selim 2020). INM is known to have a
promising effect in arresting the decline in productivity through the correction of
marginal nutrient deficiencies and their positive influence on the physical, chemical,
and biological soil properties is depicted in Fig. 2.1.

2.2.1 Basic Components of INM

2.2.1.1 Organic Sources
Organic food production is a holistic system that enhances soil fertility and
biological diversity as well as improves the quality of fruit. Organic manures
influence soil productivity through their effect on the physical, chemical, and
biological properties of soil. Different kinds of organic materials such as farmyard
manure, urban and rural compost, green manure, press mud have large nutrient
potential to increase the productivity of many crops. Other potential organic sources
of nutrients include industrial byproducts, municipal solid wastes, sewage sludge,

Fig. 2.1 Role of integrated nutrient management in plant growth promotion
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and food industry wastes. A sizeable quantity of crop residues left in the field also
acts as a great source of nutrient supply. Organic sources such as farmyard manure,
agro-waste, press mud, and agro-industrial waste could be properly recycled into
value-added products such as compost and applied alone or together with mineral
sources for plant nutrition.

2.2.1.2 Biofertilizers
Biofertilizers are the preparations containing living/latent cells of efficient strains of
agriculturally beneficial microorganisms that help in increasing the availability and
uptake of nutrients by plants when inoculated in soil or seeds (Richardson et al.
2009; Giri et al. 2019). Moreover, the use of biofertilizers is essential not only to
reduce the quantum of inorganic nutrients or organic manures to be applied but also
to increase the beneficial soil flora and fauna. Inoculation of the crop with nitrogen-
fixing microorganisms before sowing improves nodulation and nitrogen fixation,
which in turn is translated into enhanced growth and grain yield. The majority of the
nitrogen-fixing species belong to α-proteobacteria containing six genera, namely
Rhizobium, Allorhizobium, Bradyrhizobium, Mesorhizobium, Sinorhizobium
(¼Ensifer), and Azorhizobium (Sawada et al. 2003). The β-proteobacteria such as
Burkholderia and Ralstonia also has been reported to fix nitrogen (Willems 2006).
Rhizobium meliloti RMP3 and RMP5 significantly enhanced the percentage of seed
germination, seedling biomass, nodule number, and nodule fresh weight in ground-
nut (Arora et al. 2001). In another study, Verma et al. (2013) reported significantly
increased nodulation, dry weight of root and shoot, grain and straw yield, uptake of
nitrogen and phosphorus by chickpea when treated with Mesorhizobium
sp. BHURC03 and Pseudomonas aeruginosa BHUPSB02. Similarly, Rhizobium
laguerreae strain PEPV40 significantly increased leaf number, size, and weight, as
well as chlorophyll and nitrogen contents in spinach (Jimenez-Gomez et al. 2018).

The utilization of phosphate solubilizing microorganisms (PSM) reduces the use
of expensive phosphatic fertilizers and enhances the availability of aggregated
phosphates in an environment-friendly and sustainable manner. Viruel et al.
(2014) reported that Pseudomonas tolaasii IEXb significantly stimulated seedling
emergence, shoot length, grain yield, grain weight, total dry biomass, and P content
in maize. In another study, increased total P content and total P uptake in cucumber
were observed on treatment with Trichoderma asperellum T34 (Garcia-Lopez et al.
2015). The co-inoculation of P-solubilizers with other beneficial bacteria and/or
mycorrhizal fungi also enhances the efficiency of P-solubilization. Franco-Correa
et al. (2010) reported that treatment of clover with StreptomycesMCR9 and Glomus
sp. significantly increased shoot and root biomass and mycorrhizal root length.
Inoculation of Pantoea agglomerans and Burkholderia anthina enhanced shoot
and root length, shoot and root dry matter, and P uptake in mung bean (Walpola
and Yoon 2013).

2.2.1.3 Chemical Fertilizers
Banana is a gross feeder and requires large amounts of nitrogen and potassium
followed by phosphorus, calcium, and magnesium for its growth, yield, and biomass
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production (Purabi 2017). To fulfill its nutritional attributes, it is essential to apply
these elements in the soil, which mostly comes from inorganic chemical sources.
Nitrogen, an indispensable component of amino acids and nucleic acids, occupies a
prominent place in the plant metabolism system. Plants usually depend upon com-
bined or fixed forms of nitrogen, such as ammonia and nitrate because they are
unable to use atmospheric nitrogen. Nitrogen is mainly responsible for better
vegetative growth in banana. Although nitrogen is distributed evenly throughout
the plant, its highest proportion is found in the suckers and leaves (Babu et al. 2004).

Potassium is the essential plant nutrient in banana production due to its higher
accumulation in the fruit and plant tissue. The adequate supply of potassium
fertilizers not only increases the growth and yield but also improves the quality of
fruits, physiology of the plant and induces resistance against biotic and abiotic
stresses (Wang et al. 2013). Potassium also catalyzes important reactions such as
respiration, photosynthesis, translocation of photosynthates, chlorophyll formation,
and water regulation in banana (Kumar et al. 2020). Banana demands a very high
quantity of potassium for its growth and development up to the flowering stage
(Kumar and Kumar 2008). The phosphorus requirement of banana is very much less
compared to nitrogen and potassium. Phosphorus has a promotive effect on the
young root system and stimulates growth and has depressing effects on the number,
weight, and size of fingers when applied in excess.

2.2.2 Effect of INM Practices on Banana Production

2.2.2.1 Leaf Nutrient Status
Jeeva et al. (1988) reported that Azospirillum inoculation + 100% N application
enhanced height, the mid girth of pseudostem, leaf production, leaf area, and bunch
weight of banana cv. Poovan and also enhanced the N, P, Ca, and Mg contents of
leaves as compared to uninoculated control plants which received 100% nitrogen
alone. Maximum plant height, pseudostem girth, the total number of leaves, and total
leaf area were recorded with poultry manure @ 15 kg/plant + 80% recommended
NPK (200:50:400 g NPK/plant) followed by rice husk ash @ 15 kg/plant + 80
percent recommended NPK and press mud @ 15 kg/plant + 80% recommended
NPK in ratoon of Poovan banana (Jeyabaskaran et al. 2001). Ziauddin (2009)
recorded higher N, P, and K concentrations in index leaf in banana cv. Ardhapuri
when treated with 100% recommended dose of fertilizer combined with farmyard
manure or combined with vermicompost. Selvamani and Manivannan (2009)
reported that combined application of organic manures (FYM, vermicompost, and
neem cake), biofertilizers (VAM, Azospirillum, PSB, and Trichoderma harzianum)
with inorganic fertilizers enhanced the leaf nutrient contents in banana leaf in
different stages of growth.

Highest pseudostem height, pseudostem girth, the total number of leaves, days
taken to shooting, and less number of days for harvesting were registered on an
application of 20 kg FYM + 1 kg neem cake + 200:40:200 g NPK/plant (Badgujar
et al. 2010). Application of 80% RDF (inorganic form: nitrogen @ 43.4 g,
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phosphorus @ 40.0 g, and potassium @ 33.3 g in 12 equal splits) + 20% RDF
(organic form: vermicompost @ 4.285 kg/plant) along with biofertilizers
(Azospirillum @ 50 g, PSB @ 50 g, and KMB-Frateuria aurantia @ 25 g/plant)
showed highest plant height at 3 MAP (months after planting) (129.67 cm) and
5 MAP (184.29 cm), highest pseudostem girth at 3 MAP (35.61 cm) and 5 MAP
(49.74 cm), higher nitrogen concentration in index leaf at 3 MAP (2.93%) and
5 MAP (3.28%), higher phosphorus content in index leaf at 3 MAP (0.26%) and
5MAP (0.24%), and higher potassium content in index leaf at 3 MAP (3.25%) and at
5 MAP (3.54%) (Hussain et al. 2015).

2.2.2.2 Quality Parameters
El-Moniem and Radwan (2003) reported that treatment with biofertilizers + 75%
NPK resulted in higher total soluble solids (TSS), acidity, and starch followed by
biofertilizers + 50% NPK and 100% NPK alone in banana. FYM (10 kg) + neem
cake (1.25 kg) + vermicompost (5 kg) + wood ash (1.75 kg) per plant + triple green
manuring with sunn hemp + double intercropping of cowpea + vesicular arbuscular
mycorrhizae (25 g) + Azospirillum (50 g) + phosphate solubilizing bacteria (50 g)
and Trichoderma harzianum (50 g) per plant recorded maximum TSS, acidity,
ascorbic acid, non-reducing and total sugars besides enhancing the shelf life of
banana and reducing physiological loss in weight in banana cv. Grand Naine
(AAA) (Vanilarasu and Balakrishnamurthy 2014).

Lenka et al. (2016) reported that 100% RDF + PSB + Azospirillum increased pulp
weight (103.81 g), peel weight (32.44 g), TSS (22.2 brix), reducing sugar (8.12), and
non-reducing sugar (3.75) of banana cv. Grand Naine. Ganapathi and Dharmatti
(2018) reported maximum TSS (23.52 brix), total sugars (20.30%), reducing sugars
(20.30%), non-reducing sugars (17.87%), pulp-to-peel ratio (3.81), shelf life
(6.33 days), and titratable acidity (0.25) when treated with vermicompost @
24.20 t/ha + urea @ 535.73 kg/ha + sunn hemp @ 8.88 t/ha + Azospirillum @
30.86 kg/ha and PSB @ 30.86 kg/ha in banana cv. Grand Naine.

2.2.2.3 Yield Attributes
Soil and foliar application of nitrogen in combination with Azotobacter have resulted
in increased plant height, plant girth, the number of hands/bunch, and the number of
fingers/hands in banana cv. Robusta (Kumar and Shanmugavelu 1988). Chezhiyan
et al. (1999) reported an increased bunch weight of 15.3 kg in hill banana var.
Virupakshi when applied with biofertilizers (Azospirillum, phosphobacteria, and
VAM), organic manure (FYM), and 75% NPK. Sabarad (2004) found that inocula-
tion of VAM + Trichoderma harzianum + 180:108:225 g NPK/plant produced better
growth in banana. Gogoi et al. (2004) observed that combined application of
Azospirillum, PSB, and ½ RD of N, RD of P and K increased the number of
hands/bunch, gingers/hand, bunch weight, yield, harvest index of banana, and soil
NPK availability. Bhalerao et al. (2009) reported that application of a recommended
dose of NPK (200:40:200 g per plant) with 10 kg FYM per plant and biofertilizer
(Azospirillum and PSB) @ 25 g per plant resulted in maximum plant height
(216.0 cm), pseudostem girth (70.92 cm), minimum days required to flower
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(258.5 days), and crop duration (356.9 days) in banana cv. Grand Naine. Gaikwad
et al. (2010) found that application of 100% RDF + Azospirillum (50 g/plant) + PSB
(50 g/plant) + VAM (250 g/plant) + Trichoderma harzianum (50 g/plant) recorded a
maximum number of hands per bunch (10.7), number of fingers per bunch (154),
number of functional leaves (12.7), maximum bunch weight (18.0 kg/plant), plant
height (196 cm), stem girth (70.9 cm), and yield (79.8 t/ha) with monetary returns of
Rs. 2,79,300/ha. The treatment with 100% recommended doses of NPK in combi-
nation with farmyard manure and biofertilizers significantly influenced plant growth
and yield of banana (Hazarika and Ansari 2010).

Enhanced yield attributes, viz. the number of fingers/hands, finger length, finger
volume, circumference, and weight of finger in Grand Naine banana were recorded
on treatment with 100% RDF + VAM + Azospirillum + PSB + Trichoderma
harzianum (Hazarika et al. 2011). Butani et al. (2012) studied the effect of chemical
fertilizer and vermicompost on yield, nutrient content, and its uptake in banana
(Musa paradisiaca L.) cv. Grand Naine. The highest yield, nutrient content, and
uptake were recorded with the application of the 300:90:200 g of NPK and 8 kg of
vermicompost per plant. Patel et al. (2012) reported that 300 g N + Azotobacter
registered the highest yield of banana (Musa paradisiaca L.) cv. Grand Naine. 50%
RDF + FYM + Azotobacter (50 g/plant) + PSB (50 g/plant) + Glomus fasciculatum
(250 g/plant) registered maximum plant height (190.84 cm) and plant girth
(81.34 cm) in banana cv. Ardhapuri (Musa AAA) (Patil and Shinde 2013). Chhuria
et al. (2016) observed maximum bunch weight, number of hands/bunch, and number
of fingers/bunch in banana cv. Grand Naine when treated with 100% RDF
(300:100:300 g NPK) + 125 g of Azotobacter, Azospirillum, and PSB. Pattar et al.
(2018) reported better length of the bunch, number of hands per bunch, the weight of
bunch, number of fingers per hand and bunch, the weight of the finger, length and
girth of the finger, yield per plant, and the total yield on treatment with 100% RDF
(200:100:300 g N:P2O5:K2O + 20 kg FYM per plant) + PSB (20 g) + Azospirillum
(20 g) dose in banana cv. Rajapuri.

2.3 Plant Growth Promoting Rhizobacteria

The rhizosphere is the area of soil surrounding the roots where microbes flourish due
to the release of an enormous amount of sugars, amino acids, organic acids,
vitamins, enzymes, and organic or inorganic ions through root exudates. Rhizo-
sphere harbors an extremely complex microbial community including saprophytes,
epiphytes, endophytes, pathogens, and beneficial microorganisms. The beneficial
plant–microbe interactions in the rhizosphere termed as plant growth-promoting
rhizobacteria (PGPR) are the primary determinants of plant health and soil fertility
(Jeffries et al. 2003; Rosier et al. 2018). PGPR are efficient microbial competitors in
the root zone which enhances the plant growth by (1) increasing the availability of
nitrogen, phosphorus, and other essential nutrients to plant (Cakmakci et al. 2006;
Wang et al. 2020), (2) synthesizing phytohormones for plant growth promotion
(Chen et al. 2013; Cakmakci et al. 2020), and (3) controlling diseases and pests by
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the production of antimicrobial metabolites (Farag et al. 2016; Awad et al. 2017; Jin
et al. 2020).

2.3.1 Nitrogen Fixation

Nitrogen is an essential element for synthesizing nucleic acids, proteins, and other
organic nitrogenous compounds. Biological nitrogen fixation (BNF) plays a vital
role as a substitution to commercially available nitrogen fertilizer in crop production
and reduction of the environmental problems besides enriching the soil with nitrogen
for the subsequent crops, thereby restoring the degraded ecosystems. The atmo-
spheric dinitrogen is converted into ammonia by nitrogen-fixing microorganisms
using a nitrogenase enzyme complex, which consists of two-component
metalloenzyme, viz. dinitrogenase reductase, the iron protein and dinitrogenase,
the molybdenum-iron protein (Kim and Rees 1994). Biologically fixed nitrogen is
used directly by the plant as it is less susceptible to volatilization, denitrification, and
leaching and concomitant benefits accruing in terms of effects on the global nitrogen
cycle, global warming, ground and surface water contamination. Nitrogen-fixing
microorganisms generally include members of the family Rhizobiaceae which forms
a symbiosis with leguminous plants (Boakye et al. 2016; Lindstrom and Mousavi
2020), actinomycete Frankia which fixes nitrogen in non-leguminous trees (Wall
2000), and non-symbiotic, free-living, nitrogen-fixing forms such as Azospirillum,
Acetobacter diazotrophicus, Herbaspirillum seropedicae, Azoarcus, Azotobacter,
Nostoc, and Anabaena (Steenhoudt and Vanderleyden 2000; Choudhary and Bimal
2010).

2.3.2 Phosphorus Solubilization

Phosphorus (P) is an essential macronutrient for biological growth and development
after nitrogen. Although P content in soil on an average is 0.05%, only 0.1% of the
total P present in the soil is available to the plants because of its chemical fixation
and low solubility. PSM plays a key role in solubilizing inorganic P and makes it
available to the plants (Dipta et al. 2019). The production of organic acids is the
principal mechanism for microbial solubilization of inorganic phosphates (Alam
et al. 2002; Tandon et al. 2020). Gluconic acid is reported to be the major organic
acid involved in P-solubilization (Vassilev et al. 1996; Castagno et al. 2011).
Secretion of phosphatase, phytase, and phosphonatase plays an important role in
the mineralization of organic P substrates (La Nauze et al. 1970; Qiao et al. 2019).
Among the diverse and naturally abundant microorganisms dwelling the rhizo-
sphere, Aspergillus flavus, A. candidus, A. niger, A. terreus, A. wentii, Fusarium
oxysporum, Penicillium sp., Trichoderma isridae, Trichoderma sp. (Akintokun et al.
2007), Pseudomonas cedrina, Rahnella aquatilis, Rhizobium nepotum, and R.
tibeticum (Rfaki et al. 2015), Bacillus pumilus (Dipta et al. 2017), Azospirillum
lipoferum and A. brasilense (Mohamed et al. 2017) have been reported to meet the P
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demands of plants. Anabaena sp., Calothrix braunii, Nostoc sp., Scytonema sp., and
Tolypothrix ceylonica have also been reported as efficient P-solubilizing
cyanobacteria (Gupta et al. 1998).

2.3.3 Phytohormone Production

Production of various phytohormones such as auxins, cytokinins, and gibberellins
by beneficial microorganisms influences physiological and developmental processes
in plants. Indole-3-acetic acid (IAA) is an important signal molecule that may exert
pronounced effects on plant growth and establishment including cell elongation,
phototropism, geotropism, apical dominance, lateral root initiation, ethylene produc-
tion, and fruit development (Woodward and Bartel 2005). Tryptophan is the main
precursor for modulating the level of IAA biosynthesis (Zaidi et al. 2009). IAA is
also reported to increase root surface area and root length, thus providing the plant
better access to soil nutrients. Moreover, IAA loosens plant cell walls resulting in
root exudation that provides additional nutrients to support bacterial growth (Glick
2012). Production of microbial IAA has been reported to promote the growth
attributes of various crops (Aziz et al. 2012; Mohite 2013; Raut et al. 2017).

Cytokinin, an adenine derived phytohormone, regulates cell division, seed ger-
mination, bud formation, the release of buds from apical dominance, root develop-
ment, and delay of senescence. Cytokinin also mediates the responses to biotic and
abiotic stress (Werner and Schmulling 2009). Xu et al. (2012) reported that
engineered Sinorhizobium strains synthesized more cytokinin that improved the
tolerance of alfalfa to severe drought stress without affecting nitrogen fixation. In
another study, cytokinin-producing rhizobacteria have been reported to alleviate
drought stress in an arid environment (Liu et al. 2013). Gibberellins, a class of
tetracyclic diterpenoid compounds, are essential for the regulation of diverse
developmental processes in plants such as seed germination, stem elongation, leaf
formation, flower, and fruit development. Kang et al. (2014) reported that
gibberellin-producing PGPR Leifsonia soli SE134 stimulated shoot growth in
mutant rice plants deficient in gibberellin synthesis.

2.3.4 Siderophore Production

Nearly all microorganisms depend on the uptake of iron (III). Under aerobic
conditions this essential element is present in the form of insoluble oxide hydrates
(Fe2O3.nH2O); therefore, its concentration is far too low to sustain the
microorganisms. One way to overcome this problem is the production of effective
iron complexing compounds named siderophores. Siderophores are low molecular
weight, ferric ion-specific chelating agents produced by bacteria, actinomycetes,
fungi, and certain algae growing under low iron stress. The term siderophore was
coined by Lankford in 1973. The main roles of these compounds are to selectively
bind iron (Fe3+) and actively transport the iron-siderophore complex into the cyto-
plasm making it available to the microbial cell (Verma et al. 2012). After
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complexation, iron (III) is available in a water-soluble form as ferric-siderophore and
can be taken up by microorganisms (Braun and Braun 2002). Siderophore producing
microorganisms have been reported to promote the growth of various crops such as
potato (Bakker et al. 1986), mung bean (Mahmoud and Abd-Alla 2001), maize
(Sharma and Johri 2003), cowpea (Dimkpa et al. 2008), pepper (Yu et al. 2011), and
cucumber (Qi and Zhao 2012).

2.3.5 Hydrogen Cyanide Production

Hydrogen cyanide (HCN), a secondary metabolite commonly produced by rhizo-
sphere microorganisms may inhibit or enhance plant establishment. The precursor of
microbial cyanide is glycine. Alstrom and Burns (1989) tested the efficacy of two
cyanogenic strains, viz. Pseudomonas fluorescens strain S241 and P. fluorescens
strain S97 on bean and lettuce seedlings before planting in soil. S241 reduced the
growth, whereas S97 increased growth initially. Inhibition by S241 was related to
consistently higher levels of rhizosphere cyanide in comparison with S97 treated
plants and control soils. HCN production by rhizobacteria has been postulated to
play a chief role in the biological control of pathogens. HCN secretion by Pseudo-
monas fluorescens strain CHA0 stimulated root hair formation and suppressed black
root rot in the tobacco (Voisard et al. 1989). Multifarious plant growth-promoting
traits of rhizobacteria associated with banana are shown in Table 2.1.

2.3.6 Biocontrol

Increased use of chemical inputs causes the development of pathogen resistance to
the applied agents and their non-target environmental impacts. Biocontrol agents are,
thus, being considered as a supplemental way of reducing the use of chemicals in
agriculture. A biological control refers to the use of introduced/native microbial
antagonists to suppress or inhibit the activity of one or more pathogens. Several
bacterial strains such as Actinoplanes missouriensis (El-Tarabily 2003), Pseudomo-
nas sp., Pantoea dispersa, Enterobacter amnigenus (Gohel et al. 2004), Bacillus
subtilis (Chang et al. 2010), Rhizobium japonicum (Al-Ani et al. 2012), and Bacillus
pumilus (Kaushal et al. 2017) have been reported to act as biocontrol agents against
various phytopathogens. Among fungi, Trichoderma has been recognized as a major
biocontrol agent against various phytopathogenic fungi by several workers
(de Marco et al. 2000; El-Katatny et al. 2001; Herath et al. 2015; Khatri et al. 2017).

Bananas are susceptible to a wide range of diseases. Some of these diseases are
highly destructive and very contagious, and once introduced they are persistent and
difficult to eradicate. The specific banana cultivars, prevailing environmental
conditions, and the specific disease or pest affect the severity and occurrence of
disease outbreaks and plant damage. The major fungal and bacterial diseases include
panama disease, yellow sigatoka, black sigatoka, crown rot, anthracnose, cigar end
tip rot, stem end rot, moko disease, and tip-over. Banana bunchy top virus (BBTV),
banana bract mosaic virus (BBrMV), banana mild mosaic virus (BanMMV), banana
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virus X (BVX), and banana streak virus (BSV) are the main banana viral diseases. A
list of major banana diseases along with their causal organisms and symptoms is
shown in Table 2.2. Different biocontrol mechanisms, alone or in combination,
might be used to suppress plant diseases directly or indirectly as given below.

2.3.6.1 Antibiosis
Antibiosis involves the production of low-molecular-weight antimicrobial
compounds by the biocontrol agents that suppress or reduce the growth and/or
proliferation of the phytopathogens (Fravel 1988; Mazzola et al. 1995). The produc-
tion of multiple antibiotics probably suppresses diverse microbial competitors and
enhances biocontrol potential. An antibiotic, pyoluteorin isolated from the culture of
Pseudomonas fluorescens was inhibitory to Pythium ultimum (Howell and
Stipanovic 1980). Gurusiddaiah et al. (1986) isolated and characterized antibiotic
from cultures of Pseudomonas fluorescens 2–79 (NRRL B-15132) that showed
excellent activity againstGaeumannomyces graminis var. tritici, Rhizoctonia solani,
and Pythium aristosporum. Howie and Suslow (1991) examined the role of an
antibiotic, oomycin A, isolated from Pseudomonas fluorescens strain Hv37aR2 in
the suppression of Pythium ultimum infection in cotton. They recorded a 70%
reduction in root infection and an average of 50% increase in seed emergence in
cotton.

Table 2.1 Plant growth-promoting traits of rhizobacteria associated with banana

Microorganisms Plant growth-promoting traits References

Enterobacter sp. C3C9, Klebsiella
sp. VI, and Citrobacter sp. III

Nitrogen fixer Martinez et al.
(2003)

Pseudomonas aeruginosa FP10 P-solubilizer, IAA, and
siderophore producer

Ayyadurai et al.
(2006)

Flavimonas oryzihabitans K50V2s
(43)

P-solubilizer, siderophore
producer, and nitrogen fixer

Ngamau et al.
(2012)

Bacillus megaterium, Lactobacillus
casei, and Bacillus subtilis

IAA producer Mohite (2013)

Stenotrophomonas maltophilia
BE25

IAA producer Ambawade and
Pathade (2013)

Bacillus amyloliquefaciens strain
NJN-6

IAA and GA3 producer Yuan et al.
(2013)

Pseudomonas aeruginosa Siderophore and HCN producer Shaikh et al.
(2014)

Ralstonia sp. P-solubilizer, IAA, siderophore,
HCN, and ammonia producer

Jimtha et al.
(2014)

Bacillus subtilis EB-126 and Bacillus
sp. EB-47

P-solubilizer, IAA producer, and
nitrogen fixer

Andrade et al.
(2014)

Bacillus sp. EB. 78 P-solubilizer Matos et al.
(2017)

Pseudomonas putida strain PF1P IAA and GA3 producer Heng and
Zainual (2017)

Bacillus siamensis BE 76 IAA producer Ambawade and
Pathade (2018)
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Table 2.2 List of major banana diseases, their causal organisms, and symptoms

Disease Causal organisms Symptoms

Panama
disease

Fusarium oxysporum f. sp. cubense Gradual yellowing of lower leaves
including leaf blades. The yellowing
progresses to the leaf midriff
eventually collapsing the petiole and
longitudinal splitting of the outer leaf
sheaths in the pseudostem causing
death of banana plants

Yellow
sigatoka

Mycosphaerella musicola Tiny yellow spots/light green streaks
appear on the upper surface of leaves.
Streaks widen, and the center develops
a rusty coloration. Later on, the center
of the lesion dries up and develops a
black ring with a yellow halo

Black
sigatoka

Mycosphaerella fijiensis The appearance of brown rusty streaks
especially on the lower surface of the
leaf. The lesions becomes round to
elliptical and darken giving
characteristic black streaking to the
leaves

Crown rot Colletotrichum musae, Verticillium
theobromae, Musicillium theobromae,
Lasiodoplodia theobromae, Fusarium
semitectum, F. verticillioides, F.
oxysporum, F. graminearum, F.
solani, F. sporotrichoides, F.
pallidoroseum, Nigrospora sphaerica,
Ceratocystis paradoxa, Acremonium
sp., Aspergillus sp., Cladosporium sp.,
and Penicillium sp.

Blackening of the crown tissue spreads
to the pulp resulting in the separation
of fingers from the hand

Anthracnose Colletotrichum musae The fungus attacks the flower, skin,
and distal ends of heads. The diseased
fruit turns blackish and shrivels

Cigar end
tip rot

Trachysphaera fructigena,
Verticillium theobromae, and
Gloeosporium musarum

Gray to black rot spreads from the
perianth to the tip of the fruits

Rhizome
rot/tip-over

Erwinia carotovora Rotting of rhizome with brown
discoloration from the peripheral
region to the core of the rhizome.
Later, the tissue becomes massive soft,
watery, and dark brown to black

Moko
disease

Ralstonia solanacearum The appearance of yellowish
discoloration on the inner leaf lamina.
Young suckers are blackened showing
stunted growth and leaves turn yellow
and necrotic

Bunchy top Banana bunchy top virus (BBTV) Infected suckers bear chlorotic leaves.
Dark green streaks appear on the
midrib of the petiole. The diseased
plants remain stunted and produce a
poor bunch

(continued)
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2,4-diacetylphloroglucinol (DAPG) production by Pseudomonas fluorescens
strain CHA0 resulted in the suppression of black root rot of tobacco and take-all
of wheat caused by Thielaviopsis basicola and Gaeumannomyces graminis var.
tritici, respectively (Keel et al. 1992). Karunanithi et al. (2000) reported inhibition
of root rot of sesamum caused by Macrophomina phaseolina due to the production
of an antibiotic compound, pyrrolnitrin by Pseudomonas fluorescens. The growth of
Fusarium oxysporum f. sp. cubense, Cylindrocladium floridanum ATCC 42971,
C. scoparium ATCC 46300, C. spathiphylli ATCC 44730, and C. spathiphylli Gua5
causing wilt and root necrosis in banana was inhibited by the production of
2,4-diacetylphloroglucinol (DAPG) from Pseudomonas aeruginosa FP10
(Ayyadurai et al. 2006).

2.3.6.2 Parasitism
Parasitism involves the direct utilization of one organism as food by another.
Mycoparasites are fungi that are parasitic on other fungi and are known to play an
important role in disease control (El-Katatny et al. 2001). Mycoparasitism is
mediated by physical penetration of the mycoparasite into the host hyphae via the
development of peculiar organs such as haustoria and secretion of various enzymes
or secondary metabolites leading to degradation of fungal structures followed by
nutrient/metabolite uptake from the host fungus (Daguerre et al. 2014).

2.3.6.3 Competition
This process is considered to be an indirect interaction whereby biocontrol agents or
phytopathogens are excluded by depletion of a food base or by the physical
occupation of the site. Rapid colonization and exhaustion of limited available
substrates are the common processes used by nonpathogenic plant-associated
microbes to protect the plant so that none is available for pathogens to grow. The
biocontrol agents are more competent in uptake or utilizing a substance than
pathogens. A competitive root tip colonization procedure was applied to a random
Tn5luxAB mutant bank of the efficient colonizer Pseudomonas fluorescens
WCS365. Mutant PCL1285 showed competitive root-tip-colonizing abilities equal
to those of wild-type WCS365. However, mutant PCL1286 showed a strongly
enhanced competitive root-tip-colonizing phenotype on tomato and grass compared

Table 2.2 (continued)

Disease Causal organisms Symptoms

Streak Banana streak virus (BSV) Leaves develop yellow streaking that
becomes progressively necrotic and
gives a black-streaked appearance in
older leaves

Bract
mosaic

Banana bract mosaic virus (BBrMV) Yellowish green bands or mottling
appear on young leaves resulting in
abnormal thickening of veins

Mosaic Cucumber mosaic virus (CMV) Light green or yellowish streaks on
young leaves. Bands give a mottled
and distorted appearance
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to its parental strain (de Weert et al. 2004). The production of siderophore discussed
earlier is an example of competition, where the nutrient being competed for is
available Fe3+.

2.3.6.4 Cell-Wall Degrading Enzymes
Diverse microorganisms secrete extracellular hydrolytic enzymes such as chitinases,
cellulases, β-1,3-glucanases, and proteases that can interfere with pathogen growth
and/or activities, playing a role in the suppression of phytopathogen (Mishra et al.
2020). Production of hydrolytic enzymes by mycoparasitic fungi such as
Trichoderma allows them to parasitize the hyphae of phytopathogenic fungi using
prehensile coils and hooks that penetrate the cell walls of respective host and
consume nutrients for their development. The mycelium of Rhizoctonia solani was
degraded by chitinases and β-1,3-glucanases produced by Stachybotrys elegans
(Tweddell et al. 1994). An extracellular protease from Stenotrophomonas
maltophilia strain W81 inhibited Pythium mediated damping-off in sugar beet
(Dunne et al. 1997).

El-Katatny et al. (2001) reported inhibition of phytopathogenic basidiomycete
Sclerotium rolfsii by chitinases and β-1,3-glucanases produced by Trichoderma
harzianum Rifai T24. Similarly, a significant positive correlation was observed
between percentage growth inhibition of Aspergillus niger and lytic enzymes
(chitinase, β-1,3-glucanase, and protease) in the culture medium of Trichoderma
viride 60 (Gajera and Vakharia 2012). In another study, Ashwini and Srividya
(2014) reported that mycolytic enzymes, viz. chitinase, glucanase, and cellulase
from Bacillus subtilis effectively inhibited mycelia of Colletotrichum
gloeosporioides OGC1. Aspergillus griseoaurantiacus KX010988 produced
chitinase with a molecular mass of 130 kDa. It was found to be optimally active at
pH 4.5 and temperature 40 �C. The chitinase showed antifungal activity against the
pathogenic fungus Fusarium solani (Shehata et al. 2018). Streptomyces luridiscabiei
U05 produced chitinase which inhibited the growth of Alternaria alternata, Fusar-
ium oxysporum, F. solani, F. culmorum, Botrytis cinerea, and Penicillium
verrucosum (Brzezinska et al. 2019).

2.3.6.5 Induction of Systemic Resistance
Two different types of systemic resistance can be conferred to host plants by
microorganisms named induced systemic resistance (ISR) and systemic acquired
resistance (SAR). Soil-borne microorganisms that competitively colonize plant roots
and stimulate plant growth mediate ISR, whereas SAR is induced by pathogens
(Romera et al. 2019). ISR is mediated by jasmonic acid (JA) and/or ethylene,
whereas SAR is mediated by salicylic acid (SA) which is responsible for the
expression of pathogenesis-related (PR) proteins. These defense pathways involve
the evolution of specific pattern-recognition receptors (PRRs) for recognition of
microbe-based signals referred to as pathogen or microbe-associated molecular
patterns (PAMPs or MAMPs) or plant-based signals generated upon invasion, i.e.,
damage-associated molecular patterns (DAMPs) (Boller and Felix 2009). Biological
control of major diseases of banana is depicted in Table 2.3.
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Table 2.3 Management of major diseases of banana by biocontrol agents

Biocontrol agents Diseases Target pathogens References

Pseudomonas putida strain
93.1

Root rot Cylindrocladium sp. Sutra et al.
(2000)

Streptomyces
violaceusniger G10

Wilt Fusarium oxysporum f. sp.
cubense

Getha and
Vikineswary
(2002)

Streptomyces sp. strain S96 Wilt Fusarium oxysporum f. sp.
cubense

Cao et al.
(2005)

Pseudomonas aeruginosa
FP10

Wilt and
root
necrosis

Fusarium oxysporum f. sp.
cubense, Cylindrocladium
floridanum ATCC 42971,
C. scoparium ATCC 46300,
C. spathiphylli ATCC 44730,
and C. spathiphylli Gua5

Ayyadurai
et al. (2006)

Cordana sp. and
Nodulisporium sp.

Anthracnose Colletotrichum musae Nuangmek
et al. (2008)

Pseudomonas fluorescens
strain CHA0

Bunchy top Bunchy top virus Kavino et al.
(2008)

Trichoderma viride,
T. harzianum, and
T. koningii

Post-harvest
crown rot

Lasiodiplodia theobromae
and Colletotrichum musae

Sangeetha et al.
(2009)

Pantoea agglomerans and
Flavobacterium sp.

Crown rot Colletotrichum musae and
Lasiodiplodia theobromae

Gunasinghe
and
Karunaratne
(2009)

Bacillus subtilis Leaf spot
and post-
harvest
anthracnose

Pseudocercospora musae
and Colletotrichum musae

Fu et al. (2010)

Trichoderma harzianum
DGA01 and Bacillus
amyloliquefaciens DG14

Black
sigatoka and
leaf spot

Mycosphaerella fijiensis and
Cordana musae

Alvindia
(2012)

Bacillus amyloliquefaciens
strain NJN-6

Wilt Fusarium oxysporum f. sp.
cubense

Yuan et al.
(2013)

Pseudomonas fluorescens
FP7

Anthracnose Colletotrichum musae Peeran et al.
(2014)

Burkholderia spinosa Anthracnose Colletotrichum musae Silva and De
Costa (2014)

Pseudomonas fluorescens Wilt Fusarium oxysporum f. sp.
cubense

Selvaraj et al.
(2014)

Trichoderma atroviride Black
sigatoka

Mycosphaerella fijiensis Cavero et al.
(2015)

Serratia marcescens
CFFSUR-B2

Black
sigatoka

Mycosphaerella fijiensis Gutierrez-
Roman et al.
(2015)

Pantoea agglomerans and
Enterobacter sp.

Anthracnose Colletotrichum musae Khleekorn
et al. (2015)

(continued)
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2.4 Conclusion

Being an exhaustive crop, banana requires large quantities of nutrients from the soil.
INM ensures the efficient and judicious use of all the major sources of plant nutrients
in an integrated manner, which helps not only in bridging the existing wide gap
between nutrient removal and addition, but also ensures a balanced nutrient supply,
thereby enhancing nutrient response efficiency and crop productivity of desired
quality. A wide range of pathogens infects the banana plant. Microbial-mediated
biological control is a powerful and alternative tool against phytopathogens. These
biological agents involve quite diverse metabolites and complex signaling pathways,
which may act alone or synergistically to prevent, mitigate, or control plant diseases.
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Introduction of Potato Cyst Nematodes, Life
Cycle and Their Management Through
Biobased Amendments

3
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Abstract

Potato (Solanum tuberosum L.) is the most important non-cereal food crop
worldwide and is popularly called as king of vegetables because of its nutritional
attributes. The potato cyst nematodes (PCN) (Globodera spp.) are major pests of
potato crops worldwide which comprise two species Globodera rostochiensis
(Woll) and G. pallida (Stone) and eight pathotypes (Ro1 to Ro5 of
G. rostochiensis and Pa1 to Pa3 of G. pallida). They cause significant yield
reductions and severely impact the movement of potatoes around the globe
through quarantine restrictions. Emergence of juveniles from the cysts is
stimulated by host root diffusates, second stage juveniles (J2) of PCN invade
the root tip in the zone of elongation and migrate intra-cellularly to the cortex
surrounding the vascular tissue. Mature cysts get detached from the roots, and can
remain viable in the soil for several years. In general, in the advance stage of PCN
infestation, the symptoms may appear as signs of mineral deficiency, yellowing
of plants in patches, wilting of plants during sunny hours as well as stunted plants
with poor root system. There are various options for controlling and limiting the
damage they cause, including the use of nematicides, following cultural practices
like crop rotation with non-host crops, intercropping with antagonistic crops,
growing of resistant cultivars and summer ploughing. However, due to the
formation of cysts, it will survive in the soil even in the absence of a host, making
many of the cultural management strategies unattractive. Chemical control of
PCN involves the use of very harmful pesticides but due to the increasing concern
about environmental issues, it cannot be followed practically. Therefore, com-
bining of different management approaches is most desirable and effective
method of control.
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3.1 Introduction

Among the parasitic nematodes, the plant parasitic nematodes are very small and
cannot be seen by naked eyes. Generally, it is very difficult to recognize the
nematode damage as it is often looks similar to nutrient deficiency. In addition,
nematodes damage also leads to secondary infection by other organisms. During the
year 1881, Julius Kuhn first recorded the cyst nematode infection in potato from
Germany. Globodera rostochiensis (Woll.) and G. pallida (Stone) are popularly
known as Golden cyst nematodes which hinder the sustainable potato production
worldwide. Among top ten plant parasitic nematodes it stands second based on
economic importance (Grenier and Benjamin 2017). Even in the absence of host
long-term survival of PCN in the soil presents them challenging to the scientists and
policy makers. Wherever the PCN occur, it become a quarantine issue for the
domestic and international commerce in potatoes. Recently new species, Globodera
ellingtonae is reported in potatoes from America (Grenier and Benjamin 2017).

3.2 Origin and Distribution of Potato

Worldwide Potato (Solanum tuberosum) is considered to be the most important food
crop and it belongs to the Solanaceae family. At least 8000 years ago potato
occurred in the valleys of the Andes in South America. During 1531 due to Spanish
invasion in Peru it became the well adapted important food crop there later on it is
appeared in Europe during the sixteenth century (Turner and Evans 1998). Potato
introduced into England from Andes during 1590. As per records, potato introduced
into the Canary Islands from Peru in 1622. From the original two introductions, it
spread too many parts of the world (Fig. 3.1). From the Spanish introduction, it was
diffused throughout the continental Europe and parts of Asia (Turner and Evans
1998) (Table 3.1). Nearly 1680s, it was introduced into India which is now grown
under different agro climatic conditions. While, Mr. John Sullivan, the founder of
present day Udhagamandalam, initially introduced potato to Tamil Nadu in 1822
where the PCN was first reported during 1961 (Jones 1961).

3.3 Origin and Distribution of Potato Cyst Nematodes

The Andean Mountain of South America, the original home for potato is also the
place of origin for PCN. PCN introduced into Europe in the 1850’s along with the
soil remaining on potato tubers brought for late blight resistance breeding and soon
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after it spread throughout the world through the introduction of varieties from
Europe. Hence Europe has been considered as the secondary centre for PCN
distribution. According to Franco et al. (1998) the precise pathways of introduction
from South America to Europe of PCN must remain a matter of assumption. Evans
and Stone (1977) described that PCN probably spread from Europe to other counties
with exported seed tubers of breeding materials.

There is some assumption that PCN were introduced into the Asian countries
during the Second World War while the transportation of human resources, food and
military equipment to many parts of the Asia. But one exception was that from Peru
to Japan, PCN may be transferred through contaminated sacks of Guano, the dried
remains of birds’ semisolid urine, makes excellent fertilizer.

3.3.1 Species

Heterodera rostochiensis was first described by Wollenweber (1923) who
differentiated it from the beet cyst nematode, H. schachtii and proposed as new
species. Later, the heterogeneity withinH. rostochiensis led to the description of new
species, H. pallida with white or cream coloured females by Stone (1973). Subse-
quently, H. rostochiensis and H. pallida were assigned to the new genus Globodera
which lacked a terminal cone, whereas the genus Heterodera contains the lemon
shaped cyst nematodes (Mulvey and Stone 1976; EPPO 2020).

G. rostochiensis was first discovered in the USA in 1941, in India during the
1960s and in Mexico during the 1970s (Grenier and Benjamin 2017). Presently PCN
have been reported from 83 countries with G. rostochiensis (CABI/EPPO 2020a)
and 64 countries with G. pallida (CABI/EPPO 2020b) in six continents, viz., Africa,

Table 3.1 Distribution of
potato from its centre of
origin

S. No.

Introduced

YearFrom To

1. South America Spain 1570

2. South America Holland >1573

3. South America UK 1590

4. UK India <1610

5. Portugal India <1610

6. India Sri Lanka <1610

7. UK Bermuda 1613

8. Bermuda USA 1621

9. Holland Taiwan <1650

10. Taiwan China <1650

11. Spain Philippines <1700

12. UK Holland 1773

13. Holland Java 1794

14. Holland Russia <1800

15. UK Africa 1830
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North America, South America, Asia, Europe and Oceania. In Europe,
G. rostochiensis is present in 39 countries and G. pallida in 38 countries. In North
America, G. rostochiensis is present in six countries and G. pallida in 5 countries. In
South America, both the species are present in eight countries. In Asia,
G. rostochiensis is present in 16 countries and G. pallida in 6 countries (Fig. 3.2).
In Africa, G. rostochiensis is present in 11 countries and G. pallida in 5 countries. In
Oceania, G. rostochiensis is present in three countries and G. pallida in one country.
Populations of G. rostochiensis (Ro1 race) in the British have the virulence against
H1 (ex-andigena) gene which was similar to South American population of
G. rostochiensis (Ro1 race). Whereas, which show restricted genetic introduction
of G. rostochiensis into Europe or other races may be failed to establish due to
climatic condition in Europe (Turner and Evans 1998; Grenier and Benjamin 2017).
Due to scarcity of G. pallida resistance varieties make the control of this species
much more difficult.

3.3.2 Pathotypes

Continuous breeding and selection of resistant potatoes in Britain, Netherlands and
Germany brought to light the occurrence of variation within species, which were
designated separately. International scheme proposed by Kort et al. (1977)
designates five pathotypes ofG. rostochiensis from Ro1 to Ro5 and three pathotypes
of G. pallida from Pa1 to Pa3 (Table 3.2).

In India, the differential host reactions of PCN populations from The Nilgiris and
Kodaikanal hills revealed that the pathotypes Ro1 of G. rostochiensis and Pa2 of
G. pallida are the most prevalent forms (Prasad 1996). The other prevalent
pathotypes are Ro2 and Ro5 of the former and Pa1 and Pa3 of the latter (Table 3.3).

Fig. 3.2 Occurrence of Globodera spp. in Asian countries
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3.3.3 Spread of Disease

The disease normally spreads by the movement of infested soil containing cysts and
larvae, through the following agencies.

1. Movement of seed potatoes from infested fields to the clean fields (cysts, about
0.8 mm in diameter size can be easily escaped in the tuber eyes or in soil that may
adhere to tubers at the harvesting time).

2. Wind, irrigation and rain water (by wind-blown of contaminated soil and water
runoff in the clean field).

3. Raising of seedling from infested area and planting to clean area (cyst may
transfer through seedlings in new field).

4. Movement of compost from infested area (movement of compost from PCN
infested area to clean field may increase the chance of infection).

5. Use of agricultural implements first in the infested area and then in clean plots
(PCN transported on tractor tyres, spade, etc.).

6. Through shoes of the workers and feet of cattle (cysts transfer through boots and
shoes of works and feet of farm animal, dogs, etc.)

7. Through the use of old gunny bags in which the potatoes from infested plots were
packed/stored previously (re-use of old gunny bags in which already stored
potatoes from the infected field).

Table 3.2 Classification of pathotypes of PCN species

Differential hosts

Pathotypes

Globodera rostochiensis Globodera pallida

Ro1 Ro2 Ro3 Ro4 Ro5 Pa1 Pa2 Pa3
S. tuberosum spp. tuberosum + + + + + + + +

S. tuberosum spp. andigena (H1) – + + – + – – +

S. kurtzianum KTT/60.21.19 – – + + + + + +

S. vernei GLKS 58.1642.4 – – – + + + + +

S. vernei (VTn)2 62.33.3 – – – – + – + –

‘+’ indicates susceptibility; ‘–’ indicates resistance (Kort et al. 1977)

Table 3.3 Pathotypes of
Globodera spp. at different
localities of Nilgiri hills in
India

Locality G. pallida G. rostochiensis

Adigaratty Pa1, Pa2, Pa3 Ro1, Ro2

Fernhill Pa1, Pa2, Pa3 Ro1, Ro2, Ro5

Kallatty Pa1, Pa2, Pa3 Ro1

Nanjanad – Ro1, Ro2, Ro5

Vijayanagaram Pa2 Ro1, Ro2, Ro5

Prasad (1996).
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3.3.4 Host Range

Potato (Solanum tuberosum), tomato (Lycopersicon esculentum) and eggplant (Sola-
num melongena) are the agronomic crops attacked by both species on PCN. The
known host range of PCN includes few species of Datura, Hyoscyamus,
Lycopersicon, Physalis, Physoclaina, Salpiglossis and Saracha all in the Solanaceae
family. Oxalis tuberosa Molina, a native Andean tuber crop of economic impor-
tance, is also considered to be a host of PCN (Sullivan 2006). Sullivan et al. (2007)
reported that Datura stramonium, Nicandra physalodes and Solanum nigrum
allowed nematode penetration in the roots but no further development of
G. rostochiensis pathotype Ro1. Similarly, Solanum sisymbriifolium reported as a
potential trap crop for both the species of PCN (Scholte and Vos 2000).

3.4 Symptoms

The disease caused by this nematode is often referred to as ‘potato sickness’. The
presence of the golden nematode in soil is often unnoticed in lightly infested crop
which does not show any above ground symptoms at all. This is because most of the
plants can tolerate nematode invasion by developing more lateral roots as wound
response. However, as the degree of invasion increases, the plants become unable to
defend against PCN and finally express a range of symptoms.

When the infestation is sufficiently heavy and localized, poor growth of plants
appear in small patches (Fig. 3.3) which may be occurred like wilted plant during hot
parts of the day. This is often the first evidence above ground of the presence of the
golden nematode.

More evenly distributed infestations may cause a sudden failure of crops in whole
fields. Repeated cultivation of potatoes encourages the rapid multiplication and
build-up of the parasite. Heavily attacked plants remain severely stunted with dull
and unhealthy looking foliage. As the season advances, the lower leaves turn yellow

Fig. 3.3 Symptoms of field infected with potato cyst nematode

3 Introduction of Potato Cyst Nematodes, Life Cycle and Their Management. . . 85



and brown and wither, leaving only the young leaves at the top, the entire plant now
presenting a somewhat ‘tufted head’ appearance. The browning and withering of the
foliage gradually extend and ultimately causes the premature death of the plant. The
root system is poorly developed, the yield and size of the tubers are reduced
considerably depending upon the degree of infestation. Badly infested plants give
little or no harvest. Close examination of the roots of infected plants reveals the
presence of white or yellow female nematodes sticking to the roots. Symptoms may
vary from year to year, depending on growing conditions and fluctuations in
populations of nematode (Prasad 2006).

3.5 Biology

Potato root diffusates (PRD) consist some chemical substances which stimulated the
hatching of cysts called hatching factor. There are at least 25 hatching factors
responsible for hatching of both the species of PCN. After 3 weeks of plant
emergence only activity of PRD is increased from the root tips. Some hatching
stimulants like α-solanine, α-chaconine and solanoeclepin-A occur naturally in
potatoes (Blaaw et al. 2001). Hatching mainly depends on host root diffusates,
prevailing weather and physical conditions of the cyst.

The second stage juvenile (J2) coming out of the cysts moves actively in soil and
invade the roots by rupturing with its stylet. It enters through the epidermal cell walls
and eventually settles with its head towards the stele and feeds on cells in pericycle,
cortex or endodermis by forming a feeding tube. This induces enlargement of root
cells and breakdown of their walls to form a large ‘syncytium’ or ‘transfer cell’ with
dense granular cytoplasm that provides nourishment for nematode development. The
nematode molts and remains in the syncytium until its development is complete
(Evans and Stone 1977).

The sex of the nematode is determined during J3 stage, the females become
sedentary, swollen and remain attached to the roots and posterior part of the body
comes out by rupturing the root cells. Males retain their thread shape and come out of
the roots to locate and mate the females. The immature females of G. rostochiensis
are golden yellow in colour while that of G. pallida are white or cream in colour
(Fig. 3.4). The white female remains white or cream coloured before finally turning
brown, whereas the yellow female passes prolonged golden-yellow phase before it
turns to brown (Evans and Trudgill 1978).

After the female dies, the body wall becomes thick and forms a hard brown cyst
which is resistant to unfavourable weather. Each cyst contains 200–500 eggs which
displaced in soil during harvest of tubers. The cysts can easily survive in the absence
of a suitable host for next 20–30 years (Turner and Evans 1998). PCN complete life
cycle within 35–40 days therefore it complete normally one generation in one crop
season. However, there are facts that G. rostochiensis has two generation because of
its shorter dormancy (45–60 days) and long crop duration (120 days) whereas
G. pallida has a longer dormancy of 60–75 days and one generation. After complet-
ing the life cycle, cysts enter in the extreme form of dormancy, known as ‘diapause’
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in this period they cannot be stimulated to hatch. After completing diapauses only
60–80% of juveniles can be stimulated to hatch in the presence of host root diffusates
but it never reaches 100% and this is a part of the survival strategy. About 30–33%
spontaneous hatching occurs annually in the absence of host but it can be influenced
by the environmental conditions (Oostenbrink 1950). In the temperate zones in the
absence of the host crop, soil infestation with viable PCN may persist for
20–30 years. The high reproductive capacity of this nematode (up to 70 times) and
their slow rate of decline (40% per year) make them a persistent and serious pest of
potatoes (Evans and Trudgill 1978).

3.6 Yield Losses

The tolerance limit of PCN is 1.3–2.1 eggs/g soil (Greco 1993) while the economic
threshold level is around 20 eggs/g of soil (Evans and Stone 1977). Earlier world-
wide it caused estimated yield loss of 30% (Oerke et al. 1994), whereas Urwin et al.
(2001) reported estimated losses of more than 12%. Under Indian conditions, the
tuber yield loss estimates vary from 5 to 80% depending on the initial inoculum level
(Prasad 1996).

3.7 Management

PCN once established in the fields become very difficult to be eradicated therefore it
remains as a serious endemic pest of potato worldwide. Since the single method for
PCN control is not fully effective for the suppression therefore incorporation of
blend of various management options like host resistance, chemical, biological and
cultural methods is being advocated to bring down the PCN population to levels that
permit profitable cultivation of potato.

Fig. 3.4 Infection of Globodera species
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3.7.1 Cultural Control

3.7.1.1 Crop Rotation
Urwin et al. (2001) reported that the use of crop rotations keep the PCN population
densities below the damaging level. The best sequence affecting PCN density, potato
yield and profitability was determined as maize and lima beans preceding the potato
crop in Peru (Canto 1995), Ecuador (Ravelo 1984) and Cochabamba (Proinpa 1996).
In western Europe a gap between potato crops of susceptible varieties of up to
7 years is necessary (Oostenbrink 1950; Jones 1970). Crop rotation with
non-solanaceous crops is widely recommended for management of PCN because
of their narrow host range. Menon and Thangaraju (1973) observed the effect of crop
rotation of 4 years involving potato, French beans, peas and peas recorded
98.7–99.9% reduction of PCN in the fourth year and increased the yield more than
90% when potato was grown at the end of rotation period. Incorporation of resistant
varieties alone in a 4 year crop rotation programme resulted 67–78% yield increase.
Growing of non-host crop between host crops will reduce the population density of
PCN (Whitehead 1995). Prasad (1993) also reported that crop rotation with the PCN
non-host crops radish, cabbage, cauliflower, turnip, garlic, carrot, green manure crop
like lupin, etc. for 3–4 years brings down the cyst population by 50%. All the
non-solanaceous crops tested reduced the PCN multiplication ratio. Among different
non-solanaceous crops, radish recorded 19.6–21.0% reduction in number of cysts
and 12.2–16.2% reduction in number of eggs per cyst. Which was followed by
garlic, it recorded 15.9–17.7% and 10.3–11.6% reduction in number of cysts and
eggs respectively (Aarti et al. 2017).

3.7.1.2 Intercropping
Manorama et al. (2005) recorded higher potato equivalent yield and reduced cyst
population when potato is intercropped with French Beans (75:50). Intercropping of
potato with mustard in 1:1 plant ratio combined with carbofuran application reduced
PCN infestation and enhanced potato yield (Devrajan and Balasubramanian 2008).
Non-solanaceous crops, viz., marigold and radish were evaluated as a intercrop,
potato intercropped with radish in the ratio of 2:1 was found to be effective in
decreasing the PCN population (Rf: 0.99) (Aarti et al. 2017).

3.7.1.3 Trap Cropping
Growing potatoes to stimulate the hatching of PCN and destroying of potato plant
after the incursion of nematodes in the potato roots can lessen soil infestations
(Webley and Jones 1981). In France, G. pallida populations reduce by 80% per
annum by trap cropping and 98.5% with two trap crops and application of
ethoprophos. Growing potato as a PCN trap crop must be destroyed before the
females are fertilized. The exact time of trap crop destruction is much more impor-
tant as delay in destruction will lead the development of a female. Tolerant cv. Cara
grown in full ridges for 6 weeks in heavily infested soil decreased G. pallida by 75%
(Whitehead 1977; Whitehead et al. 1994). In India, trap cropping with susceptible
potato cultivar attracted more juveniles than the resistant potato cultivar and reduced
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nematode population by 53% (Aarti et al. 2017). The non-tuber bearing solanaceae
wild plant Solanum sisymbriifolium (Lam.) is a promising source of resistance to
PCN and it reduced the PCN populations by 50–80% (Scholte and Vos 2000).

3.7.1.4 Host Plant Resistance
Wolters et al. (1996) identified resistance in 18 out of 22 Solanum accessions, with
the highest levels in S. gourlayi BGRC7180 and S. neorossi BGRC7211 as well as in
the S. sanctae-rosae, S. sparsipilum and S. sucrense. In Germany, Rouselle-
Bourgeois and Mugniery (1995) found resistance to G. rostochiensis R1A in
S. andigena, S. gourlayi, S. spegazzini and S. vernei and resistance to G. pallida
P4A/P5A in S. gourlayi, S. spegazzini, S. sparsipilum and S. vernei. Initially, all
resistance was based on the H1 allele derived from S. tuberosum ssp. andigena CPC
1673, which was effective only against pathotypes R1A and R1B ofG. rostochiensis.
Now these pathotypes widely expand and become virulent so H1 allele is not
effective against all populations of G. rostochiensis (Phillips et al. 1998). Mulder
(1994) reported that resistant cultivars derived from S. tuberosum subsp. andigena
had high level of tolerance compared to S. vernei. Hockland et al. (2012) reported
that UK and Europe have the resistant potato varieties to G. rostochiensis (Ro1) but
there is no cultivars resistance to all the pathotypes of G. pallida. In India, for
locating resistance and for incorporation in commercial potato varieties, a large
collection of germplasm was screened against PCN by Kishore et al. (1969). Dalamu
et al. (2012) documented the potato germplasm resistant to both the species of PCN
located in tuberosum and andigena accessions. In India, S. vernei derived resistant
cultivars Kufri Swarna (Khan et al. 1985), Kufri Neelima (Joseph et al. 2012) and
Kufri Sahyadri (Joseph et al. 2019) were developed to reduce PCN multiplication.
However, in this area conflict between breeder and nematode continues because the
development of virulence in both the species of Globodera.

3.7.2 Physical Control

Soil solarization is most suitable for small areas having long hot summers as in
temperate areas only few centimetre layer of soil get lethal temperature (Whitehead
and Turner 1998).G. rostochiensis eggs (97%) were unable to hatch in the top 10 cm
layer of the soil during hot summer (LaMondia and Brodie 1984). Soil solarization
for 62 days reduced 95% G. rostochiensis population (Mani et al. 1993).

3.7.3 Chemical Control

Nematicides are an effective and trustworthy method to bring down the nematode
population quickly. The efficacy of soil fumigation depends heavily on soil condi-
tion and temperature. Soil can be fumigated successfully above 5 �C (methyl
bromide), 7 �C (1,3-D) or 10 �C (MITC fumigants) (Whitehead and Turner 1998).
In tomato and potato, methyl bromide @488–1464 kg/ha controlled the PCN
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population when applied under gas-tight polythene sheet. However, it has been
banned in some countries as it is harmful to the ozone layer. In UK, soil fumigant
Dazomet found better in controlling the nematodes effectively than equivalent dose
of Telone (Whitehead et al. 1973). Whitehead et al. (1994) reported that ethoprophos
@11.2 kg/ha partially controlled G. pallida in the silty loam soil.

In India, trials have been attempted with different nematicides like DD, DBCP,
Nemafos, V.C.13 and Dasanit 10G. DD applied @1000 l/ha in two split doses in
15 days interval resulted 98–100% control. Dasanit 10G was recommended for three
crop seasons @300 kg/ha in the main season followed by 150 kg/ha in each of the
subsequent two seasons (Gill 1974). Application of Furadon 3G @2 kg a.i./ha at the
time of planting is being recommended for PCN after the standardization as a part of
package of practices for potato in the Nilgiris (Prasad 2006). However, these
chemicals have been banned in the recent past. Fumigant molecule Dazomet
(Basamid 90G) @ 40–50 g/m2 also found to be effective in bringing down the
PCN population but after application the soil needs to be covered with polythene
sheet (Aarti et al. 2016).

Use of calcium hypochlorite solution containing 9% available chlorine as a seed
treatment was found to be effective in reducing PCN population (Manoharan et al.
1978). Cyst adhering potato tubers can be destroyed by immersion in sodium
hypochlorite solution for 2 h and then rinsing in water (Wood and Foot 1977).
Soaking of PCN infested un-sprouted seed potato tubers in 2.0% NaOCl solution
(containing 4% available chlorine) resulted 100% cyst disintegration after 30 min
and there was no harmful effect on tuber sprouting after 2 months of storage (Aarti
et al. 2020). However, repeated use of nematicides is not only expensive but also
hazardous to environment. Hence this has to be supplemented with other
non-chemical approaches to contain the nematode population at low levels.

3.7.4 Bio-control Agents and Organic Amendments

Several workers have studied biological control of Globodera spp. in vitro and
in vivo but no field trial data are available. However, in the recent past some products
have come to market that have nematicidal effects. Most other potential bio-control
agents are still being tested to overcome problems with application methods. Appli-
cation of biological control agents, viz., P. fluorescens and P. lilacinus (Seenivasan
et al. 2007) and organic amendments like neem cake (5 t/ha) combined with
Trichoderma viride (5 kg/ha) confirmed the decreasing in PCN population
(Umamaheswari et al. 2012). Biofumigation with incorporation of radish leaves @
1 kg/m2 and covering with polyethylene sheet recorded maximum yield (25.97 t/ha)
and 1.21 PCN reproduction factor (Rf) (Umamaheswari et al. 2015).
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3.7.5 Integrated Nematode Management

PCN can be managed well when combined the effective control measures, reduction
of G. pallida infestation could be achieved with 5 years of crop rotations with
non-host crops, effective soil fumigation and use of an effective trap crop (White-
head and Turner 1998). To decrease large populations rapidly, a fumigant nemati-
cide or a trap crop should be followed by the growing of a potato crop protected by a
granular nematicide (Phillips et al. 1998). Whitehead et al. (1991) reported that
granular nematicides with susceptible potato cultivars and with crop rotations
effective for the management of G. rostochiensis. Intercropping of potato with
mustard in 1:1 plant ratios applied with carbofuran 3G @ 1 kg a.i./ha reduced
PCN infestation and enhanced potato yield (Devrajan and Balasubramanian 2008).
Devrajan et al. (2004) suggested an integrated approach for PCN management
wherein application of Pseudomonas fluorescens (2.5 kg/ha) + neem cake (1 t/
ha) + mustard intercrop (between potato rows) + carbofuran 3G (1 kg a.i./ha)
increased the tuber yield and decreased the PCN population. Manorama et al.
(2016) reported effective nematode reduction of 47% in 2 years by rotating PCN
susceptible and resistant variety along with application of carbofuran @ 2.0 kg a.i./
ha. For eradication of PCN, soil solarisation (4 weeks) followed by appliance of
neem cake (5 t/ha) in combination with Trichoderma viride (5 kg/ha) recorded
decrease in PCN population (Aarti et al. 2017).

Apart from IPM some of the control measures are recommended at international
level for potato growers by OEPP/EPPO (OEPP/EPPO 2014). In Netherland the
possible control measures, i.e. growing of resistant potato varieties, growing of
potato as a trap crop for 40 days, growing of Solanum sisymbriifolium as a catch
crop and soil fumigation are followed. After the confirmation by photo sanitary
inspectors only the official ban is lifted. In the Slovenia, growing of resistant
varieties, crop rotation for minimum 4 years and removal of volunteer potatoes has
been recommended. In England and Wales, use of PCN resistant potato cultivars,
crop rotation, chemical control, trap cropping (with Solanum sisymbriifolium), use of
green manures and fumigants are followed. In Belgium, the official control
programme includes the use of resistant potato cultivars for the PCN pathotypes,
application of nematicides, viz., metam sodium, metam potassium, ethoprophos,
fosthiazate and oxamyl before planting susceptible cultivar, crop rotation for ware
(1 crop every 3 years) and seed (1 crop every 4 years) potato production. In
Denmark, resistant varieties must be grown in two consecutive years. All machinery
must be cleaned before use in fields, harvested tubers of ware potatoes in infested
fields must not go on at the same time as in seed potato fields, soil and other waste
must be handled carefully to avoid further spread. The usefulness of the control
programme is checked by soil testing after 3 years of application. In Germany, use of
highly resistant varieties, 6 year rotation as no nematicides is available in Germany.
In France, for seed potatoes testing is always done before planting if PCN detected
than not allowed to grow potatoes for 6 years, all volunteer potatoes must be
destroyed. Growers may grow plants such as grass, maize, cereals to avoid the risk
of exporting soil in new field.
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3.8 Future Strategies for PCN Management

Breeding resistant varieties from diverse sources of resistance in wild tuber bearing
Solanum spp. needs to be explored for resistance to wide spectrum of PCN
pathotypes. This also necessitates identification of molecular markers for identifica-
tion of resistance gene in varieties for the species of PCN. By co-ordination between
nematologists and molecular biologists, the possibilities should be explored to
inhibit the activity of genes responsible for production of hatching factors in root
diffusates and also identify, characterize and inhibit the genes which involved in
parasitization of PCN in host plant which may be done through RNAi. As biological
control agents hold a promise in control of potato cyst nematode, identification of
native antagonistic bacteria and fungi from potato rhizosphere and characterization
of their bioactive compounds may serve as novel nematicides against potato cyst
nematode. Researchers around the world quickly adopting the approach CRISPR
Clustered Regularly Interspaced Short Repeats Palindromic Repeats) to edit the
DNA sequences of interested organism. Possibilities of using aeroponic root
leachates for inducing the hatching of potato cyst in the absence of host may become
novel strategy for the management which leads to premature death of juveniles.

3.9 Conclusion

PCN are tiny yet strong pests of potato and create a serious threat to potato
cultivation and global potato trade because of their quarantine significance. Though
eradication of PCN is very difficult if once established but, more recently Western
Australia has been declared free of potato cyst nematodes, after a battle of about
24 years, opening up big opportunities for its $45 million potato industry. This
indicates the possibility of the eradication of this nematode from India as well as in
other countries with the strong background of science based biosecurity policies,
strict regulatory and sanitation measures and management strategies.
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Integrated Nutrient and Disease
Management Practices in Root and Tuber
Crops

4
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Abstract

Root and tuber crops are the second group of cultivated species after cereals as
global sources of carbohydrates. These crops have become the major issue of
interest in the last few years since their production requires very low inputs and
hence they contribute significantly to world food and nutritional security with
immense industrial uses. The flexible adaptability of these crops to marginal soils
and contribution to food security in households have made them an important
component in improving the welfare of poor farmers. However, the repeated use
of fertilizers, fungal chemicals, and antibiotics for prolonged times has not only
led to resistance development in concerned crops but also enhanced toxicity in the
environment. Also, diseases due to bacterial and fungal pathogens are the second
major cause of concern for reducing the productivity that causes fiscal losses to
the growers. Sustainable methods to enhance the income of the farmers growing
these tropical food crops employ the judicious use of natural resources like soil
microbes, crop residues, and applied resources such as chemical fertilizers,
organic manures, and bio-fertilizers. Further, the use of bio-agents/biological
control offers the best possible option to increase crop yields by managing the
pathogens in an environment-friendly manner. This chapter presents, collates,
and discusses the application of sustainable management practices for the
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improvement of soil health and use of potential biocontrol agents which paves
way for enhanced productivity to the development of these crops.

Keywords

Tubers · Biocontrol mechanisms · Bio-agents · Nutrient management · Soil
fertility · Sustainability

4.1 Introduction

Root and tuber crops constitute the third important group of food crops, after cereals
and grain legumes as global sources of carbohydrates. They are consumed as either
staple or subsidiary food by about one-fifth of the world population and have utmost
importance for the world food security. These crops are well known for their high
calorific value and possess the ability to resist adverse soil and climatic conditions
(Saravaiya and Patel 2005). The chief roots and tubers, i.e. cassava, potato, and
sweet potato rank among the top ten food crops produced in the developing
countries. Due to their valuable table yields in conditions where other crops fail,
these crops serve for a long time as the source of food and nutrition for many of the
world’s poorest and immense malnourished households. Hence, these crops are
expected to contribute significantly in increasing the income and nutritional well-
being of the people in the next few decades. Despite as food, they are also used as
livestock feed and raw material for agro-based industries. In the next few decades,
cultivation of root and tuber crops is expected to increase further as there is a
declining trend observed in the production of cereals and pulses in developing
countries due to the effect of climate change.

However, repeated, heavy, and unbalanced applications of chemical fertilizers
not only cause soil erosion but also lower the crop yield and in turn disturb the
environment, subvert ecology, and degrade soil productivity. The integrated nutrient
management (INM) approach consists of the replacement of heavy doses of chemi-
cal fertilizers with effective and balanced quantities of organic manures and inor-
ganic fertilizers along with specific microorganisms. This methodology is becoming
a quite promising practice for eco-friendly and stable production of crops besides
maintaining higher productivity (Selim 2020). Furthermore, low productivity due to
soil-borne pathogens is the major constraints that reduce the quality, quantity, and
market value of these crops besides causing yield losses in field and storage
conditions. Implementation of biological control methods as the earliest effort in
the plant pathogen interactive environment offers an attractive way to replace
chemical fertilizers, pesticides, and other supplements, manage pathogen and pest
control in crops, and increase crop production in an environment-friendly manner
(Panth et al. 2020). Due to the concerns on soil and human health, escalating
awareness on the concept of recycling of available wastes for better nutrient man-
agement, insufficient manual labor involved in undertaking farming, the thrust
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nowadays is to develop sustainable, eco-friendly, and cost-effective methodologies
taking into account the constraints as mentioned above.

This chapter discusses the present status of nutrient management practices in root
and tuber crops through the judicious use of organic manure, chemical fertilizers,
and bio-fertilizers for the improvement of soil health to ensure a step forward
towards productive and profitable crops. Since most of the studies on biocontrol of
diseases are focused only on potato crop and very little interests have been given to
other tuber crops like cassava and sweet potato, therefore, a basic understanding of
postharvest biocontrol systems, upgradation of microbial antagonists exhibiting a
broad spectrum of antifungal potential on different produce and environmental
impacts need to be reconnoitered. Keeping this in consideration, this chapter also
highlights the advancements made in recent years on the spectrum of bacteria and
fungi used as antagonists for control of major diseases of root and tuber crops, their
mechanisms of action, and different modes to augment biocontrol efficiency of the
antagonists.

4.2 Importance of Root and Tuber Crops
in the Accomplishment of Sustainable Development Goals

Root and tuber crops have boosted sustainable food production due to many
captivative reasons. Firstly, these crops are a convenient source of staple food to
tackle food and nutrition security as food yield per unit area of land is more in
comparison to other crops. Secondly, the short cropping cycles (3–4 months) of
potato and sweet potato make them well suited to the double-cropping seasons.
Further, yam and cassava have longer cropping cycle that plays an important role in
the annual cycle of food availability due to their broader agroecological adaptation,
diverse maturity period, and in-ground storage capability that permits flexibility in
the harvesting period for sustained food availability. These crops are also efficient
converters of natural resources into a more usable product, caloric energy in the
growing season, and almost double that of wheat and rice. Being cheap but nutri-
tionally rich staple food meets the dietary demands due to the abundance of protein,
vitamin C, vitamin A, zinc, and iron in them. These crops have high demand both in
local and national markets. Last but not the least, these are far less susceptible to
large-scale market shocks and price speculation during the international market crisis
that is experienced by more widely traded staple crop, such as grains. All these
elements make their contribution to a more stable food system besides being a
predictable source of income. The five major groups of root and tuber crops grown
across the world include crops, viz. cassava (Manihot esculenta), yams (Dioscorea
spp.), sweet potato (Ipomoea batatas), potato (Solanum tuberosum), and edible
aroids known variously as taro (Colocasia esculenta) and tannia (Xanthosoma),
but often denoted as cocoyams. The secondary staples include cassava (Manihot
esculenta) and sweet potato (Ipomoea batatas), whereas elephant foot yam
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(Amorphophallus paeoniifolius), greater yam (Dioscorea alata), and taro (Colocasia
esculenta) are being used as vegetable crops (Mohanty et al. 2010; Sahoo et al. 2012;
Nedunchezhiyan et al. 2013). However, root and tuber crops have major confronts
associated with quality seed production, new variety adoption, losses due to insects
and diseases, low productivity in nutrient-poor soils, tolerance to stress associated
with heat and drought, consumer preferences, are bulky, have high water content and
a relatively short shelf-life that creates a problem in storage of harvested products.
Improved productivity of these crops is a prerequisite since the pressure on agricul-
tural land has increased.

Crop productivity can be increased by using fertilizers as one of the key inputs.
Nowadays, modern varieties of crops require a relatively high quantity of fertilizers
for obtaining higher yields as compared to the traditional cultivars. In the 1960s high
yielding varieties were introduced with an excessive amount of chemical fertilizers
requirements to increase production. This was done to make the country self-
sufficient in food requirements but has impaired the prevailing soil conditions. The
continuous and imbalanced application of chemical fertilizers has been confirmed by
many researchers not only to deteriorate soil health but also led to an ecological
imbalance resulting in decreased nutrient uptake efficacy in plants (Saravaiya et al.
2010). The soils obtaining plant nutrition barely via chemical fertilizers are showing
abating yields due to deteriorated physical conditions besides suffering from micro-
nutrient deficiency with the excessive use of chemical fertilizers. Groundwater
contaminations, environmental pollution, destruction of the ozone layer through
N2O production are other causes of excessive use of nitrogenous fertilizers. On the
other hand, the reconsideration of substitutes has become the need of the hour due to
low organic matter content of most of the soils. The growing rate of world popula-
tion soared hidden hunger and demands a sustainable agricultural approach for
improved crop yield with a high nutritional value (Roriz et al. 2020).

4.3 Soil Fertility Management

Soil fertility is the outcome of a combination between soil properties and crop
management on plant growth and tuber yield (Patzel et al. 2000). Soil fertility and
crop production can be increased through the framework of Integrated Soil Fertility
Management (ISFM). This framework works in conjunction with the combined
application of organic and mineral nutrient sources (Chivenge et al. 2011; Kearney
et al. 2012; Vanlauwe et al. 2010, 2015). Due to the limitation in available resources,
multiple nutritional deficiencies crop up in roots and tubers because of insufficient
availability of soil nutrients (NPK). The INM strategy for root and tuber crops
involves three major components, i.e. the conjoint application of chemical fertilizers,
organic manures, and bio-fertilizers. This strategy of integrated soil fertility man-
agement incorporating practices of both organic and inorganic plant nutrients leads
to averting soil degradation, knowledge to adapt these to local conditions, the
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achievement of higher crop productivity, and thus helping meet the requirements of
future food supply (Bonierbale et al. 2006). The effect of positive interaction
between organic and inorganic mineral inputs on crop productivity and sustainable
soil health is fully acknowledged in the integrated nutrient management paradigm
(Vanlauwe et al. 2002). In an integrated nutrient management strategy, the soils are
recognized as the storehouse of utmost plant nutrients that are indispensable for plant
growth. How these key nutrients are managed has a major impact on plant growth,
soil fertility, and hence sustainability (Janssen 1993). Other factors that upsurge the
importance of using locally available organic sources of plant nutrients to maintain
soil productivity are the escalating costs of fertilizer and the economic conditions of
farmers. Research evidence have also signified maximum corm yields along with the
highest starch and protein content under integrated use of organic manures along
with chemical fertilizers (Kumar et al. 2015).

Unlike chemical fertilizers, organic manures are available locally and used by
farmers to provide nutrients for the crop plants. Organic manure is one of the most
important inputs for increasing the productivity of the crop. The crop production
potential is directly associated with the organic matter content of soils. Important
organic manures include farmyard manure, bio-compost, poultry manure, neem
cake, and vermicompost, etc. however, these are not accessible in such an adequate
quantity that they can escalate food production. An alternative to this is exploiting
organic waste usage and using it as integrated manure by coalescing with
bio-fertilizers and chemicals. Singh and Kalloo (2000) have also recommended the
use of bio-fertilizers in combination with chemical fertilizers and organic sources in
an integrated nutrient approach.

The organic matter present in the soil is the chief source of energy and food for
most of the soil organisms. The organic matter influences soil structure and texture
besides having direct and indirect influence on the microbial population and activity.
The organic matter is a store house of innumerable vital nutrients provides a
congenial environment for the growth and multiplication of diverse microbial
communities present in the soil. Hota et al. (2014) reported that fungal (AM)
inoculation of Colocasia along with optimum doses of NPK and organic manure
improved various microbial colonies in the soil; while conjoint application of FYM
along with NPK and MgSO4 fostered microbial counts in the soil. Conjoint applica-
tion of mineral and organic fertilizers has been reported by several co-workers to
boost yields in yam crop as compared to non-fertilized controls (Ennin et al. 2013;
Susan John et al. 2016). The effects of mineral fertilizers, however, are unexpected.
Hgaza et al. (2012) observed an increase in tuber yield of Dioscorea alata (yam) due
to the addition of mineral NPK fertilizers to low fertile savanna soils. They
concluded that NPK addition accelerated the mineralization rate of soil organic
matter after observing a triggered increase in nitrogen uptake by crop from the soil
without causing any change in root morphology and growth (Hgaza et al. 2011).
However, the negative effects of NPK additions on the soils having very low organic
matter contents have been reported so these results further need to be investigated.
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Rana et al. (2020) have also stressed that the employment of proper irrigation and
improved nutrient management practices increases the yield in potato cultivation.

McGarry et al. (1996) reported an increase in tuber rotting of potato crops during
storage due to the addition of mineral inputs that negatively affected the organoleptic
properties of tubers. Since the use of either organic or mineral has become obligatory
to increase the production of yam, the need of the hour requires further analysis on
the consequences of fertilizer application on tuber quality (Vernier et al. 2000). The
nutrient utilization competencies of motile nutrients N and K can vary according to
species. Though fertilizer application is acknowledged to enhance yields in crops,
however, this practice has led to a reduction in the N and K nutrient use efficiencies
of both these motile nutrients and hence reduced agronomic productivity. This
emphasizes the need for future studies on fertilizer responses for these species.
Further extensive fertilizer applications in different soils could cause losses of
added nutrients, thus instigating fiscal losses owing to the high rates of fertilizers
besides causing problems of water and soil contamination. Also, throughout 3–-
6 months pre and postharvest losses of these crops are extreme that may range from
30 to 60%. The losses depend on the diverse species cultivated and the storing
conditions (Proctor et al. 1981). The triggering factors leading to loss include
(1) weight loss due to aridness, (2) loss of carbohydrate and water due to respiration,
(3) sprouting on breakage of dormancy, (4) losses due to rodents and insects, and
(5) losses due to fungal, bacterial, and viral diseases. Farmers can foster strategies to
cope up with the reduction of soil fertility by selecting and cultivating less demand-
ing cultivars, introducing rotations to benefit from the residual effect of fertilizers
added to previous crops and lessen pests and diseases pressure, and the cultivation of
tuber crops in sites where water, organic matter, and nutrients tend to accumulate
such as lowlands.

The soil biological community is distinct. The soil offers an extremely diverse
and heterogeneous habitat for microorganisms. A single ounce of soil is comprised
of over 10,000 species of bacteria and thousands of species of fungi. Soil biodiver-
sity is an important factor to maintain the activity of the soil biota in the complex soil
habitat and for supporting the critical soil functions such as nutrient cycling. The
microbes in any soil system are present in a state of dormancy, waiting for conditions
that are favorable for their growth. Soil acts as a virtual desert for microbes outside
the rhizosphere (microecological zone in direct proximity of plant roots). As a result,
alternate periods of high and low activity of microbes are common. The microbes
experience a boom in development and activity after offered with finite, high-quality
organic matter in the form of root exudates, crop residues, organic amendments, or
dying roots. Further, the microorganisms experience a bust due to starvation and
breakage of cells apart. Much of the cellular material after breakage is recycled, but a
larger part of the subsequent dead microbial biomass becomes associated with
mineral surfaces via polysaccharides plus fungal hypha. In this association, further
decomposition does not occur, and the building up of steady long-lived SOM starts.
It is this SOM that besides acting as a nutrient reservoir for soil biology also helps to
maintain good soil structure, water-holding capacity, and cation exchange capacity
(Nin et al. 2015) of soil that in turn governs the soil fertility and supports plant
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growth by providing water and nutrients. High-quality organic materials like legume
cover crops, fresh cereals, poultry manures, or slurry manures having a nitrogen
concentration above 2% and a C:N ratio <25 are the direct approaches to stimulate
microbial activity and growth rates. Microbial biomass can be increased by around
36% in just a year or two with the addition of these organic materials (Kallenbach
and Grandy 2011).

The physical and chemical properties of soil have a great influence on crop
productivity and organic matter decomposition by soil microorganisms.
Bio-fertilizers play a supplementary role in crop productivity and are not alternatives
to chemical fertilizers. Application of bio-fertilizer aids in increasing soil microflora
and fauna ultimately upsurging the rate of decomposition, crop productivity, and soil
sustainability. During the decomposition of organic matter, organic acids are
released that help to dissolve soil’s available nutrients and make them available to
be used by the crops. They supply nitrogen to certain crops under specific soil
conditions. The primary types of bio-fertilizers used in India include symbiotic and
non-symbiotic nitrogen-fixing cyanobacteria and phosphate-solubilizers. Another
predominant nutrient is phosphorus that is required in the early stages of plant
growth for optimum production. The indiscriminate use of phosphatic fertilizers
has an adverse effect on the nutritive properties of crops besides posing a chronic
threat to the soil health in the sustainability of crop production worldwide. The
efficient use of phosphate solubilizing microorganisms is the holistic approach that
opens up a new horizon in supplementing phosphorus to the plants resulting in
higher plant productivity besides reducing the quantity of P-fertilizer application to
the soil (Dipta et al. 2019). The development of such multifunctional bio-fertilizers
with the potential to reduce almost 50–75% of chemical fertilizer application to
augment and maintain soil fertility has become a significant concern. Dipta et al.
(2017) recorded that the application of bio-fertilizers along with different P-sources
(tricalcium phosphate, rock phosphate, and bone meal) improved soil nutrients,
i.e. maximum available NPK over initial soil nutrient content. Table 4.1 depicts
the efficacy of integrated nutrient management practices on growth parameters of
root and tuber crops.

4.4 Biocontrol

The menaces of soil-borne disease epidemics in production yields, escalating prices
of chemical fungicides, variations in climate, novel disease outbreaks, and evident
rising distress due to environmental and soil health necessitates the use of integrated
disease management approaches for sustainable crop production. Soil-borne
diseases are problematic that distress the development, vigor, tuber quality, and
even act as restraining factors on the harvestable produce of tubers. When the
management of most of the diseases becomes tricky, the consequences lead to the
use of soil fumigants, which are unfavorable for the growth of beneficial soil-borne
organisms. Therefore, sustainable and biologically constructed disease management
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Table 4.1 Effect of integrated nutrient management on growth parameters of root and tuber crops

Crop Application Growth parameters References

Elephant foot
yam

Pre-planting corm inoculated
with Azotobacter culture

Maximum corm yield
and highest cost
benefit ratio of 1:3.37

Mukhopadhyay
and Sen (1999)

Sweet potato Inoculation of Azotobacter
and AM alone and in
combination with different
levels of N and P

Maximum tuber
yield, highest net
return, and highest
B/C ratio (2.69)

Pushpakumari
and
Geethakumari
(1999)

Sweet potato Application of 1/3rd
(33 kg N ha�1) of the
100 kg N ha�1 and three
strains of Azospirillum
brasilense, viz. spp.
7, UPMB 12, and UPMB 14

Higher root yield,
vigorous vegetative
growth, and higher N
content in the roots
and leaves

Saad et al. (1999)

Sweet potato Urea coated with cow dung
or inoculated with
bio-fertilizer (Azospirillum)

Higher dry matter
production of tubers

Nair et al. (2001)

Sweet potato Application of 50%
recommended doses of
inorganic N (FN), organics
like farm yard manure (FYM
N), poultry manure (PLM
N), pig manure (PGM N),
and bio-fertilizer
(Azospirillum)

Improved bulk
density, organic
carbon, and available
NPK content of the
soil

Nedunchezhiyan
and Reddy
(2004)

Elephant foot
yam

Application of 75% RDF
(inorganic) + 25% RDF
(organic) along with
Trichoderma
(5 kg ha�1) + Pseudomonas
(5 kg ha�1)

Highest height of the
shoot, pseudostem
girth, and canopy
spread

Sengupta et al.
(2008)

Tubers Cattle manure levels (0, 10,
20, 30, 40, and 50 t ha�1)
applied in a main plot, the
sub plot assigned with bio-
fertilizer concentrations
(0, 15, 30, and 45%)

Bio-fertilizer
concentrations
provided the greatest
productivities of total
tubers

Ademar et al.
(2010)

Sweet potato Application of FYM, green
leaf manure, vermicompost
as organic manures and
Azotobacter, phosphorus
solubilizing bacteria,
Trichoderma as bio-agents
along with conventional
production system

Improved soil
microbial biomass
and carbon content

Nedunchezhiyan
et al. (2010)

Elephant foot
yam

Application of 75% RDF
(through inorganic
source) + 25% RDF (through
organic source) + arbuscular
mycorrhizal fungi and

Maximum corm yield Patel et al. (2010)

(continued)
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Table 4.1 (continued)

Crop Application Growth parameters References

Azospirillum both at
5 kg ha�1

Elephant foot
yam
cv. Gajendra

100% RDF (through
inorganic sources) applied
along with Azospirillum and
phosphorous solubilizing
bacteria

Highest corm yield Saravaiya et al.
(2010)

Amorphophallus
paeoniifolius
(Dennst.)
Nicolson
cv. Gajendra

75% of RDF with inorganic
sources and 25% organic
manure (FYM) application
along with AMF and
Azospirillum (5 kg ha�1

each)

Highest corm yield Murthy et al.
(2011)

Sweet potato
cv. Sree Bhadra

Application of FYM, poultry
manure, vermicompost,
mustard cake, Azospirillum,
and phosphobacterium at
different levels and
combinations along with a
recommended dose of
manures and fertilizers

Maximum dry weight
(26.33%), single tuber
weight (214 g),
number of tubers per
plant (3.45), tuber
yield per plant
(450.16 g), and tuber
yield per hectare

Rahul et al.
(2011)

Greater yam Application of 75% RDF
(through IOS) + 25% RDN
(through OS:
FYM) + Azotobacter @
5 kg ha�1 + PSB 5 kg ha�1

Maximum tuber yield Saravaiya et al.
(2011)

Cassava Application of Sunn hemp@
50 kg ha�1 + RD K + 50%
RD NP + Azospirillum @
5 kg ha�1 + phosphorus
solubilizing bacteria (PSB)
@ 5 kg ha�1

Highest tuber yield Ashok et al.
(2013)

Greater yam Application of
vermicompost @
4.72 t ha�1 + castor cake @
1.35 t ha�1and bio-compost
@ 5.07 t ha�1 + neem cake
@ 0.51 t ha�1

Higher tuber yield Kaswala et al.
(2013)

Elephant foot
yam

Vermicompost @ 5 t ha�1,
ash @ 5 t ha�1with
Azospirillum and PSB each
@ 5 kg ha�1

Higher crop growth,
corm yield, and
increased organic
carbon of soil

Kolambe et al.
(2013)

Elephant foot
yam

50% of the recommended
dose of NPK applied along
with bio-fertilizers
(Azospirillum and
phosphobacteria) and
vermicompost

Maximum corm yield Krishnakumar
et al. (2013)

(continued)
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Table 4.1 (continued)

Crop Application Growth parameters References

Sweet potato Vesicular arbuscular
mycorrhiza (VAM) applied
along with lime +
FYM + NPK

Higher yield (10%)
over FYM + NPK
only

Laxminarayana
(2013)

Cassava 3/4 RD of FYM+
NK + Gliricidia green leaf
manure @ 25 t ha�1 applied
alongwith 3% panchagavya

Highest tuber yield,
the maximum net
return, B:C ratio, and
nutrient status of soil

Mhaskar et al.
(2013)

Elephant foot
yam var.
Gajendra

75% RDF with inorganic
source and 25% RDF with
organic source applied along
with arbuscular mycorrhizal
fungi and Azospirllum both
@ 5 kg ha�1

Highest corm yield Venkatesan et al.
(2013a)

Elephant foot
yam

Application of FYM @
10 t ha�1 with Azospirillum
and phosphobacteria both @
5 kg ha�1 along with ash @
5 t ha�1

Highest values of all
vegetative and yield
traits i.e. plant height,
pseudostem girth,
canopy spread, and
corm yield

Venkatesan et al.
(2013b)

Elephant foot
yam
cv. Gajendra

75% recommended dose of
NPK as an inorganic source
applied along with 25%
recommended dose of NPK
through FYM in
combination with
Azospirillum and arbuscular
mycorrhizal fungi both @
5 kg ha�1

Maximum corm
yield, highest starch
(14.09%), and highest
protein content

Kumar et al.
(2015)

Elephant foot
yam

Bio-fertilizers application
i.e. combination of AZ, PSB,
and KMB each at 5 L ha�1

Maximum plant
height, canopy
spread, and number of
leaflets per plant

Navya et al.
(2017)

Potato 50% recommended dose of
N applied through inorganic
fertilizer and remaining 50%
recommended dose of N
through organic manures
(25% FYM plus
25% vermicompost)

Higher growth
characters, tubers
quality, and tuber
yield

Taha et al. (2017)

Potato Application of FYM @
13.5 t ha�1 and blended NPS
@ 245.1 kg ha�1

Highest marketable
and total tuber yields
of 43.52 and
47.04 t ha�1,
respectively

Alemayehu et al.
(2020)

Sweet potato Azotobacter sp. IBCB 10 and
Azotobacter vinelandii
IBCB15 applied along with
50% doses of nitrogen
fertilizer

Increased crop yield
by 57% along with
higher dry matter

Castellanosone
et al. (2020)
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strategies need to be developed in root and tuber production. The use of
microorganisms and/or their metabolites to defend plants against pathogenic threats
is known as biological control (Tomar et al. 2013). Various researchers have
extensively studied the efficacy of biological control agents to combat pathogens
in tuber/seed crops to reduce environmental pollution, ecological disturbance due to
the addition of pesticides being used in fumigation and pre-sowing treatments (Lin
et al. 2018). The suppression of diseases by potential microbial agents via different
mechanisms takes place mainly in the rhizosphere (Van Loon 2007; Badri et al.
2009; Reinhold-Hurek and Hurek 2011). In 1904, Dr. Lorenz Hiltner introduced the
concept of rhizosphere and described it as the soil compartment under the influence
of roots (Smalla et al. 2006; Hartmann et al. 2008). He also proposed that
non-pathogenic microorganisms colonize the vigorous roots.

Bio-agents refer to the naturally occurring living organisms found in the rhizo-
sphere, phylloplane that aid not only in the management of the diseases but also
increase the yield of the crop (Lal et al. 2016). Then there is rhizoplane directly
outside the root matter that acts as an interface amid root and soil and always
constitutes a plethora of microorganisms (Foster 1986). These microorganisms
associated with plant roots can have a constructive, deleterious, or neutral effect
on the plant (Raaijmakers et al. 2009). Nowadays, biological control methods
epitomize a noteworthy complement to other methods of disease control that are
based on genetic approaches and chemical treatments. This is a serious concern since
certain diseases affect the parts underground that are normally beyond the influence
of applied germicidal treatments. However, due to diverse soil biotic and abiotic
factors, the ability of disease control management by these protecting agents gener-
ally depends upon the conditions of their colonization and sufficient biomass. Many
published accounts have shown a lack of consistency on the reliability of these
biocontrol practices (Compant et al. 2005; Latour et al. 2009). Thus, Abd-Elgawad
and Askary (2020) have also suggested the need for characterization of various
important aspects of innumerable organisms residing in the rhizosphere of plants to
grasp the contribution of these microbes in the biocontrol process. Presently, bio-
control encompassing the use of microorganisms has gained extreme popularity and
is being used to counteract innumerable fungal and bacterial diseases on the seed of
potatoes, yams, aroids, and sugar beet (Lebot 2009). Potential bacteria with antifun-
gal properties have become an interesting subject of study all over the world for
potato pathologists and producers.

Biological control of potato late blight is an effective alternative to synthetic
fungicides that have proven toxic to environmental health (Cao and Forrer 2001). In
addition to combating late blight disease in potatoes, these microbes also produce
certain plant growth regulators (phytohormones), improve phosphorus nutrition in
plants, and fix atmospheric nitrogen (Zakharchenko et al. 2011). Since biocontrol
agents colonize their plant host and increase their potential activity with time, they
have the advantage over synthetic fertilizers application. Numerous microorganisms
with significant levels of success rate have been tested for their potential to prevent
major infection of late blight in potatoes. Research with Bacillus cereus showed that
colonization of bacteria on the surface of potato increased to until 61 days even after
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planting (Wharton et al. 2012). Erwinia carotovora colonizes the potato roots and
tubers and is known to cause preemergence seed-piece decay, blackleg, soft stem rot,
and soft rot of tubers. As the pathogen population exceeds 106 colony-forming units
per gram of soil under favorable environmental conditions; at the same time,
fluorescent pseudomonads increase their population via colonizing the rhizosphere
and hence efficiently hinder the growth of pathogens (Azad et al. 1985). Sunaina
et al. (1997) have also reported the ability of fluorescent pseudomonads which when
applied to potato seeds reduced the population of E. carotovora in the subsequent
roots by about 95–100% and in tubers by 27%–100% as compared to untreated
plants. Table 4.2 describes the list of biocontrol agents that have been used to control
various bacterial and fungal diseases of root and tuber crops.

4.4.1 Biocontrol Mechanisms

Bacteria follow the natural mechanisms of biocontrol to combat plant pathogens.
The different strategies to suppress plant pathogens include competition for nutrients
and/or space, antibiosis, siderophore production-mediated suppression of disease,
parasitism, cell-wall lytic enzymes and induced systemic resistance of host plant
(Sharma et al. 2009). An efficient biological control is generally achieved by the
combination of more than one mechanism and in no case, a single mechanism has
been found yet to be satisfactory. Living microorganisms or their metabolites act as
efficient biocontrol agents against plant pathogens via the production of antibiotics
and biosurfactants. These microbes possess the ability to deteriorate the viability of
pathogens and hence prevent the development of disease (Daayf et al. 2003). The
numerous possible mechanisms, operating in an interaction system, to suppress
pathogen infection are shown in Fig. 4.1.

Production of low molecular weight antifungal compounds by several
microorganisms to antagonize the pathogens directly has been reported. Inhibition
of growth of fungal pathogen occurs via secretion of antifungal volatile compounds
(VOCs) (Mari et al. 2012) that are a mixture of low molecular weight lipophilic
compounds. Secretion of lipoproteins from Bacillus subtilis consisting of a lipophilic
fatty acid chain and a hydrophilic peptide ring is an excellent example of biocontrol
properties shown by these bacteria (Chen et al. 2008). Another example is of a
bacterial metabolite named Serenade secreted by Bacillus subtilis strain. This
metabolite stops the plant pathogen spores from germination through three groups
of lipoproteins by disrupting the mycelia and germ tube growth of the pathogen.
Further, these bacterial metabolites also prevent the pathogen to attach itself to the
surface of the leaf (Stephan et al. 2005).

Biosurfactants produced extracellularly or as part of the cell membrane by several
microorganisms are highly specific, naturally occurring, amphiphilic compounds
that help to reduce surface and interfacial tension. Their ability to inhibit fungal
pathogens and biodegradation make them suitable candidates as biocontrol agents
for controlling major diseases of late blight (Tomar et al. 2013). There are certain
other molecules that indirectly affect the pathogens before infection done by the
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Table 4.2 List of biocontrol agents against bacterial and fungal diseases of tuber crops

Crop Biocontrol agent Disease Target pathogens References

Potato Nonpathogenic
Ralstonia
solanacearum

Bacterial
wilt/brown
rot

Ralstonia solanacearum Kempe and
Sequiera
(1983)

Sweet
potato

Nonpathogenic
Fusarium
oxysporum

Fusarium
wilt

Fusarium oxysporum Ogawa and
Komada
(1985)

Potato Bacillus polymyxa Bacterial
wilt/brown
rot

Ralstonia solanacearum Aspiras and
de la Cruz
(1986)

Cassava Fluorescent
pseudomonads

Root rot Erwinia carotovora Hernandez
et al. (1988)

Potato Fluorescent
pseudomonads

Ring rot Clavibacter
michiganensis spp.
sepedonicus

de la Cruz
et al. (1992)

Potato Verticillium
bigutattum

Rhizoctonia
black scurf
and stem
canker

Rhizoctonia solani Van den
Boogert and
Velvis (1992)

Potato Pectobacterium
spp.

Blackleg
and soft rot

Dickeya spp./
Pectobacterium spp.

Costa and
Loper (1994)

Potato Talaromyces flavum Verticillium
wilt

Verticillium dahliae Nagtzaam
and Bollen
(1997)

Potato Fluorescent
pseudomonads

Blackleg
and soft rot

Dickeya spp./
Pectobacterium spp.

Cronin et al.
(1997),
Kastelein
et al. (1999)

Potato Enterobacter
cloacae and
fluorescent
pseudomonads

Fusarium
dry rot

Fusarium spp., mainly
Fusarium roseum var.
sambucinum and
Fusarium oxysporum

Schisler et al.
(2000)

Potato Streptomyces
bacteriophage

Scab Streptomyces spp. mainly
Streptomyces scabiei

McKenna
et al. (2001)

Potato Bacillus sp. Fusarium rot Fusarium roseum var.
Sambucinum

Sadfi et al.
(2002)

Potato Nonpathogenic
Streptomyces

Scab Streptomyces spp. mainly
Streptomyces scabiei

Neeno-
Eckwall et al.
(2001),
Hiltunen
et al. (2009)

Potato Bacillus subtilis B5 Late blight
of potato

Phytophthora infestans Ajay and
Sunaina
(2005)

Potato Bacillus subtilis and
Trichoderma virens

Stem canker Rhizoctonia solani Brewer and
Larkin (2005)

Cassava
and yam

Trichoderma
harzianum and

Rot Botryodiplodia
theobromae, Fusarium

Manjula et al.
(2005)

(continued)
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Table 4.2 (continued)

Crop Biocontrol agent Disease Target pathogens References

Penicillium
oxalicum

solani, and Sclerotium
rolfsii

Yam Bacillus subtilis Rot Botryodiplodia
theobromae, Aspergillus
niger, Penicillium
oxalicum, and Rhizoctonia
spp.

Okigbo
(2005)

Sweet
potato

Penicillium spp. Rot Streptomyces ipomoeae,
Ceratocystis fimbriata,
Macrophomina
phaseolina

Ooshiro et al.
(2007)

Potato Bacillus subtilis,
Paenibacillus
macerans, and
fluorescent
pseudomonads

Bacterial
wilt/brown
rot

Ralstonia solanacearum Naser et al.
(2008)

Potato Pseudomonas
putida

Late blight/
mildew

Phytophthora infestans Andreote
et al. (2009)

Potato Enterobacter
cloacae

Fusarium
dry rot

Fusarium sambucinum Al-Mughrabi
(2010)

Potato Pseudomonas
koreensis

Late blight/
mildew

Phytophthora infestans Hultberg
et al. (2010)

Water
yam

Trichoderma
harzianum,
Pseudomonas
syringae, and
Pseudomonas

Rot Botryodiplodia
theobromae and Fusarium
solani

Okigbo and
Emeka
(2010)

Potato Pseudomonas spp. Black scurf Rhizoctonia solani Khun
AG-3

Tariq et al.
(2010)

Potato Trichoderma
koningii and
Bacillus
megaterium

Nematode
infection
and
fusarium
wilt

Meloidogyne javanica and
Meloidogyne incognita of
root-knot nematodes and
the wilt fungus Fusarium
oxysporum

El-Shennawy
et al. (2012)

Potato Bacillus subtilis and
Trichoderma viride

Late blight
of potato

Phytophthora infestans Lal et al.
(2014)

Yam Trichoderma
harzianum

Rot Penicillium
purpurogenum

Gwa and
Abdulkadir
(2017)

Yam Trichoderma
harzianum

Rot Colletotrichum spp. Gwa and
Ekefan
(2017)

Potato Bacillus
amyloliquefaciens
Ba01

Potato scab Streptomyces scabies Lin et al.
(2018)

110 S. Bhardwaj et al.



pathogen through activation of the host plant’s innate immune defense system (Cao
and Forrer 2001). The major phenomenon of defense systems in host-pathogens
include induced systemic resistance (ISR)/systemic acquired resistance (SAR).
Heller and Gessler (1986) and Doke et al. (1987) were the pioneers to validate this
event for protection against late blight in tomatoes and potatoes, respectively. In
response to pathogenic stress, plants produce certain phytoalexins and/or other
pathogenesis-related proteins as excellent defense mechanisms. A linear water-
insoluble β-1,3-glucan is Curdlan produced via the fermentation of Agrobacterium
sp. activates the plant’s defense system prior to pathogen attack (Li et al. 2014).
Direct antagonists/inducers are either beneficial/effective when the plant is already
infected by a pathogen or they are defensive in case infection has occurred in the
plant beforehand (Stephan et al. 2005).

4.4.1.1 Commensalism
It is a symbiotic interaction among two living entities, where one organism gets the
benefit and the other one is neither harmed nor benefited. In respect to certain host
plants, most of the associated microbes are assumed to be commensals as their
presence either alone or in combination seldom explicits positive or negative
consequences to the host plant. Their presence might extant multiple challenges to
an infection causing pathogen. Whereas, an absence of a measurable decrease in
pathogen infection or disease severity is an indicative of commensal interactions.

Biological control agents (BCA’s)/ Indegenoussoil microfloraPathogens

Rhizosphere

Supression of pathogens
VOC’s

Antagonism,
Competition,

Parasitism,lysis

Fig. 4.1 An overview of a defense mechanism by biocontrol agents
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4.4.1.2 Protocooperation
The organisms involved in this type of mutualism do not depend solely on each other
for their survival and in this case, disease suppression varies on the prevailing
environmental conditions.

4.4.1.3 Competition for Nutrients and Space
Remarkable decrease in growth, activity and/or fecundity of the interacting
organisms occurs at time when competition between pathogens and nonpathogens
within and between species occurs. Competition for space includes the competition
for infective sites and occurs when the specific recognition sites of host-pathogen are
occupied by antagonists. When these places become unavailable for occupying by
the pathogens, recognition, and hence infection fails to appear (Janisiewicz et al.
2000). For successful implementation of this phenomenon and hence biocontrol, the
microbial antagonists must be able to survive under unfavorable conditions and
grow more rapidly than the pathogen (Droby et al. 1992). Evaluation of microbial
agents for wound competence under environmental conditions is another important
character to commence them as commercial potential.

4.4.1.4 Siderophore Production
Furious competition is fomented when a shortage of bioavailable iron in soil
environments and on plant surfaces occurs (Loper and Henkels 1997). Plant
growth-promoting bacteria produce certain low molecular weight compounds
known as siderophores (Das et al. 2007). These compounds competitively acquire
ferric ions under iron-limiting conditions (Whipps 2001). Siderophores are chelating
compounds that form a tight and stable complex by binding with ferric ions and
transport it into the cell (Saraf et al. 2014). Certain species of bacteria, fungi, and
plants are known to produce siderophores as an efficient strategy to overcome iron
deficiency (Shanmugaiah et al. 2015). Bhardwaj et al. (2017) also reported isolates
from rhizosphere of cauliflower to show antagonism against Rhizoctonia solani,
Sclerotinia sclerotiorum, and Pythium spp. known to cause root rot, stem rot, and
damping off diseases, respectively, in the concerned crop.

Several plant growth-promoting strains are recognized to allure iron from heter-
ologous siderophores produced by cohabiting microorganisms (Whipps 2001;
Lodewyckx et al. 2002). The fundamental of diverse bacterial siderophores is to
deprive pathogenic fungi of this essential element with distinct capacities to seques-
ter iron, (O’Sullivan and O’Gara 1992; Loper and Henkels 1999). Bhardwaj et al.
(2018) reported maximum siderophore production by an isolate SB11, followed by
the reference strain (MK5). Further, based on multiple plant growth-promoting
activities, the application of PGPR isolates SB11 and the reference isolate (MK5),
with 75% recommended doses of NP fertilizers, increased the number of
non-wrapper leaves, curd diameter, gross weight of curd, and net curd weight as
compared to control at all the three locations.
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4.4.1.5 Parasitism
A symbiosis where two phylogenetically unrelated organisms coexist over a
prolonged period is referred to as parasitism. This type of symbiosis involves one
organism, being physically smaller of the two (parasite) that gains benefit from the
other (host) being harmed to certain considerable extent. The activities of
hyperparasites and avirulent pathogens result in the achievement of biocontrol via
stimulation of host defense systems.

4.4.1.6 Predation
A biological communication encompassing the hunting and killing of one organism
by another for consumption and sustenance is known as predation. The animals that
feed at higher trophic levels in the macroscopic world are typically referred to as
predators but this term has also been applied to the actions of microbes such as
protists, and mesofauna, e.g. fungal feeding nematodes and microarthropods, that
devour pathogen biomass for their sustenance.

4.4.1.7 Production of Cell-Wall Lytic Enzymes
Several microbial antagonists are known to produce lytic enzymes such as
glucanase, proteinases, and chitinases that degrade the cell-wall of pathogenic
fungi (Lorito et al. 1993; Castoria et al. 2001; Chernin and Chet 2002). Swain and
Ray (2008) studied the interaction between Fusarium oxysporum, the postharvest
rotting pathogens of yam (Dioscorea spp.) tubers and Bacillus subtilis isolated from
cow dung microflora via scanning electron microscopy and reported the lysis of
fungus cell wall by B. subtilis owing to the production of extracellular chitinase.

4.4.1.8 Antibiosis/Allelochemicals
Antibiotics are those microbial toxins that must be produced at low and sufficient
concentrations (doses) near the pathogen to poison or kill other microorganisms.
Allelochemical substances have been reported to be produced by biological control
agents (BCA) (He et al. 2006) and the inhibition of plant pathogens by antibiotics or
chemicals produced by BCA is an allelopathic process. The complete knowledge of
this process is mandatory so as to guarantee high crop yield in any ecosystem (Dania
et al. 2015). Vey et al. (2001) reported Trichoderma strains effectively inhibit the
growth of plant pathogens via the production of volatile and non-volatile toxic
metabolites such as alamethacin, harzianic acid, viridian, tricholin, and peptaibols.
Bacillus subtilis has also been reported to produce allelochemicals such as
bacillomycin, surfactin (Tsuge et al. 1995), subtilin, bacitracin, and subtenolin
(Manjula et al. 2005). In another study, Pseudomonas aeruginosa PNA1 was
shown to strongly reduce the root rot disease tissue culture-derived cocoyam
plantlets (Tambong and Hofte 2001). The biocontrol formulations of antagonistic
microbes can achieve successful commercialization depending upon the determined
and consistent balance of target disease control. Some of the antagonistic microbe-
based biocontrol product formulations available in the market are given in Table 4.3
(Dukare et al. 2018).
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4.5 Conclusion

As the root and tuber crops are formed inside the soil thus the preservation of
preeminent soil physical conditions is a crucial step. In the course of time, as the
developments foster in the INM strategy, much focus will rest on the exploration of
sustainability of the currently developed low input management practices in the long
run for various root and tuber crops with the intention of creating awareness among
the farmers for sustainable crop production through nutrient management strategies.
Despite our understanding of the biological control mechanisms via which the
antagonists offer disease resistance to root and tuber crops, the elementary informa-
tion on the ecology of microbes and survival mechanisms of biocontrol agents on
crop surfaces is less recognized and its understanding is necessary for the successful
implementation of biocontrol technology. Further, a better apprehension of the
intensity of infection levels occurring in the field and the mode of action of these
biocontrol agents are critical factors that need to be addressed. Commercial-scale
formulation of microbial antagonists can also tackle to foster a robust ecosystem and
could gain impetus eventually. All these approaches as a constituent of an integrated
nutrient and disease management represent a great potential for wider public accep-
tance in the near future.
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Microbial Biopesticides Use in Insect-Pest
Management: An Overview 5
Preeti Sharma and Neeta Gaur

Abstract

Insect, pathogens, weeds, and invertebrates as pests cause significant crop losses
worldwide and act as a barrier in achieving the aim of global food security and
reduction in poverty, as in terms of food security the annual crop losses due to
pests correspond to a huge amount of food supply which can otherwise feed
millions of people. The use of synthetic pesticides for crop protection plays a
major role in insect-pest management but simultaneously poses various
challenges; hence, for sustainable agriculture, we need to chalk out alternative
methodologies to meet the need of crop protection. Integrated Pest Management
(IPM) helps in Sustainable Intensification by producing more output from the
same area of land while reducing the negative environmental impacts and at the
same time increasing contributions to natural capital and the flow of environmen-
tal services by using various methods and techniques. Among which, one of the
major methods is Microbial Control, in which pathogens are exploited for
biological control of insect pests through introductory or inundate applications.
Microbial pathogens of insects are intensively investigated to develop environ-
ment friendly pest management strategies in agriculture. Entomopathogenic
viruses, bacteria, and fungi, as biopesticides are currently used as an alternative
to traditional insecticides which overcome the harmful effect of the chemicals on
non-target organism. This chapter reviews the insecticidal properties of microbes,
their potential utility, recent advancement, and case studies in insect-pest
management.
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5.1 Introduction

Over the past few decades besides providing for the livelihood of farmers and
laborer, the agricultural sector also addresses food security for the nation. Due to
various factors the consumption pattern of food in the country has been changing and
food security demand has been raised. According to FAO, food security is a situation
where all people have, at all times, physical and economic access to sufficient, safe,
and nutritious food that meets the dietary needs and food preferences for a healthy
and active life (Thakore 2006). As per 2014 estimates, despite high levels of
agricultural production in India, 15% of the population continues to be under-
nourished (Kristiofferesen et al. 2008). To feed the ever-growing global population,
we need to produce more food. India enacted the National Food Security Act in
2013, the main aim of this act is to provide food and nutritional security to people by
ensuring access to adequate amount of quality food from less per capita arable land
and available water (Roh et al. 2007). As of 2015, 68% of the population of India,
i.e. 81 crore persons (of which 77% are in rural areas and 23% in urban areas) are
covered under the Act. But the crop damage by pests including insects, fungi, weeds,
viruses, nematodes, animals, and birds has a serious impact on farming and agricul-
tural practices for a long time which leads to reduced agricultural production. In
India alone, 30% of the crop yield potential is lost as a result of insect pests, diseases,
and weeds, corresponding to 30 million tons of food grain (Vendan 2016). It has
been estimated that about 67,000 pest species damage agricultural crops. Therefore,
significant efforts are required for pest management to protect the crops (Kumar and
Singh 2014). Although chemical pesticides use in the intensive agriculture to control
pests, have certainly contributed towards improving agricultural production, in terms
of both yield and quality. But this pest management strategy adversely affects the
whole environment including beneficial organisms as well as leaves harmful
residues in food, feed, and fodder and also causes environmental pollutions. Exten-
sive use of synthetic pesticides for insect-pests management in high yielding
varieties provides protection to crops; but it also led to the various problems such
as pesticide residues in food and environment, subsequent impact on the food chain,
groundwater contamination, and pest resistance (Khachatourians 2009; Damalas
2009). To overcome the hazards associated with chemical pesticides, the use of
biopesticides (pesticides derived from such natural materials as animals, plants,
microorganisms and certain minerals) came into existence (Frampton et al. 2012;
Mishra et al. 2015). In this regard, the conventional pesticide industry and market
have undergone major changes over recent decades (Carvalho 2017), which have
entailed greater efficiency of pesticide use than in the past through major
improvements to pest management technology and practices in the context of
Integrated Pest Management (IPM) programs. Over the past 150 years, a great
deal of knowledge has been gathered on the use of microbial biopesticides including
bacterial, fungal, viral, protozoan, or nematode-based preparations as pest control
agents (Kabaluk and Gazdik 2005; Koul and Cuperus 2007; Kaushal 2018). Micro-
bial control agents can be an alternative to chemical pesticides when used as part of
an ecologically based integrated pest management (EBIPM) or area-wide pest
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management strategy (AWPM) (Kabaluk and Gazdik 2007; Pelaez and Mizukawa
2017). These days microbial biopesticides are gaining more interest due to many
reasons, including the problem associated with conventional synthetic pesticides as
resistance, residual problem, and toxicity to environment. In comparison to conven-
tional insecticides they are host specific and safe to the environment but improve-
ment in the production and upgradation in formulation technology of microbial
biopesticides is needed for large level adoption (Koul and Cuperus 2007; Koul
et al. 2008 and Gautam et al. 2018). In this view, this chapter reviews microbial
biopesticides forms, utility, their production and development, opportunities and
challenges associated with them.

5.2 Status of Biopesticide

5.2.1 Indian Status

In India commercial production of biocontrol agents was started by Biocontrol
Research Laboratories (BCRL), a division of Pest Control (India) Limited, under
contract with Plant Protection Research Institute (PPRI). The rise of biopesticides in
India is being encouraged by the government as part of the integrated pest manage-
ment (IPM) program. In the last few years, microbes exhibiting good biocontrol
potential which have been discovered by many workers and researchers (Rabindra
2001; Ignacimuthu et al. 2001; Koul et al. 2003; Ranga Rao et al. 2007). Most of the
microbial products belong to the group antagonistic fungi (especially Trichoderma
spp.), bacteria (especially Bt and P. fluorescens), and viruses consist of NPV and
granuloviruses (GV) and contribute major part for biopesticides market (Kunimi 2007;
Kabaluk and Svircev 2010). At present, organic pesticides contribute 4.2% of the
entire pesticide market in India and also CAGR is likely to increase by 20.2% from
2010 to 2020. In India, organic pesticides have been estimated to have market value of
about 23.92 million USD (Arora 2015) and the market is consistently growing. In
India, different types of bioinsecticides are registered under Insecticides Act, 1968
(Table 5.1) and there are about 150 biopesticide producing companies in India
(Rabindra 2005). State of Maharashtra is the biggest consumer of biopesticides in
India and Trichoderma viride, Pseudomonas fluorescens, and Bacillus thuringiensis
are the best-selling biopesticides in India. India’s Department of Biotechnology
provides cooperation in research and production of biopesticide; ICAR and DBT
support 31 and 22 producer units, respectively. Biocontrol labs have been set up in
different states of the country to promote biopesticides (Gautam et al. 2018).

5.2.2 Global Status

Crop pests cause about 40% reduction in the world’s crop yield, for the management
of these pests 5.6 billion pounds of pesticide are used worldwide and among which
most of the chemical pesticides are responsible for the unbalancing of our environ-
ment (Alavanja 2009). Whereas biopesticides application showed lesser or no
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toxicity to crops and environment. Application and development trend of
biopesticides has been reviewed by Leng et al. (2011). But they are not found
dominating globally as synthetic pesticides do. Worldwide, approximately 1400
biopesticide products are being sold (Marrone 2007) as liquid concentrates, wettable
powders, and ready-to-use dusts and granules. Among them, bacterial products are
more frequently used especially those from Bt-based products (Lisansky 1997).
Currently it is the main bacterium being used in agricultural pest control (Ali et al.
2008). According to the facts, in biopesticide industry 60% of the world biopesticide
market (Fig. 5.1) are occupied by about 200 Bt-based products (Kabaluk and Svireev
2010; CABI 2010; Rabindra 2005), and almost 50% of this are consumed by USA
and Canada in America (Guerra et al. 2001). According to recent study during 2012–
2018 during, the largest market shares in biopesticide belonged to Latin America
(includes Mexico) with 27.9%, followed by Asia with 18.6%, Europe (18.1%),
North America (USA and Canada) 18%, and 18.3% for rest of the world (Damico
2017) (Fig. 5.2).

Table 5.1 Microbial
pesticides registered in
India as of July 2018

S. no Microbial biopesticides

Bacteria

1 Bacillus thuringiensis var. israelensis

2 Bacillus thuringiensis var. kurstaki

3 Pseudomonas fluorescens

4 Bacillus subtilis

Bacillus sphaericus

Fungi

5 Ampelomyces quisqualis Ces.

6 Beauveria bassiana

7 Metarhizium anisopliae

8 Paecilomyces lilacinus

9 Trichoderma harzianum

10 Trichoderma viride

11 Verticillium chlamydosporium Godd.

12 Verticillium lecanii

13 Paecilomyces lilacinus

14 Hirsutella thompsonii

Virus

15 NPV of Helicoverpa armigera

16 NPV of Spodoptera litura

NPV of Pseudomonas fluorescens

Source: Central Insecticide Board (2018).
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Fig. 5.1 Global biopesticide market based on types of microbes used (Source: Kabaluk 2010)
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Fig. 5.2 Global market shares in biopesticides (Source: Damico 2017)
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5.3 Biopesticide

As defined by USEPA, biopesticides are pesticides derived from natural materials
such as animals, plants, bacteria, minerals and also include living organisms that
destroy agricultural pests. The EPA separates biopesticides into three major classes
based on the type of active ingredient used as biochemical, plant-incorporated
protectants, and microbial pesticides (USEPA 2008). At a global level, there is an
inconsistency in understanding the term biopesticide which was defined by USEPA
and that is why International Biocontrol Manufacturer’s Association (IBMA) and the
International Organization for Biological Control (IOBC 2008) promote to use the
term biocontrol agents (BCAs) instead of biopesticide (Guillon 2003). IBMA
classifies biocontrol agents into four groups: (1) macrobials, (2) microbials, (3) natu-
ral products, and (4) semio-chemicals (insect behavior-modifying agents). Biochem-
ical pesticides are chemicals either extracted from natural sources or synthesized to
have the same structure and function as the naturally occurring chemicals. Biochem-
ical pesticides are distinguished from conventional pesticides by their structure and
mode of action (O’Brien et al. 2009). The most important biocontrol agents are
microbials (41%) followed by macrobials (33%) and finally other natural products
(26%) (Guillon 2003). Biopesticides are reaching importance all over the world
nowadays because of their nontoxic eco-friendly mode of actions that are helpful for
the management of various insect pests (Mazid and Kalita 2011). In general,
biopesticides can be classified into three major categories (Fig. 5.3): (1) plant-
incorporated protectants, (2) microbial pesticides, and (3) biochemical pesticides.
When they are used for the management of insect pests, the efficacy of biopesticides
can be equal to that of conventional pesticides, particularly for crops like fruits,
vegetables, nuts, and flowers and they also do not cause any residue problem (Koul
2011). By combining synthetic pesticide performance and environmental safety,
biopesticides execute efficaciously with the tractability of minimum application
limitations and with superior resistance management potential (Kumar 2012;
Senthil-Nathan 2013). Biopesticides are gaining attention and interest among those
concerned people who are developing environmentally friendly and safe integrated
crop management (ICM) compatible approaches and tactics for pest management
(Pandey et al. 2010). In particular, farmers’ adoption of biopesticides may follow the
recent trend of “organically produced food” and the more effective introduction of
“biologically based products” with a wide spectrum of biological activities against
key target organisms, as well as the developing recognition that these agents can be
utilized to replace synthetic chemical pesticides (Copping and Menn 2000;
Chandrasekaran et al. 2012; Senthil-Nathan 2013).

5.3.1 Microbial Biopesticides

Microbial pesticides act as a natural biopesticide in crop protection extend a unique
chance to research in developing countries. The utilization of biopesticide programs
would be required to prevent insect-pest resistance to synthetic chemical pesticides
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(Copping and Menn 2000; Senthil-Nathan 2006; Senthil-Nathan et al. 2006, 2009).
Microbial pesticides are a form of biological control agents, which contain microor-
ganism (bacterium, fungus, virus, protozoan or alga, rickettsia, mycoplasma, and
nematodes) as the active ingredient (MacGregor 2006). They offer the advantages of
higher selectivity and less toxicity in comparison to conventional chemical
pesticides (Khachatourians 2009). They produce toxic metabolites specific to the
pest and also prevent establishment of other microorganisms through competition or
can suppress the pest through various other modes of action (Dowds and Peters
2002; Harris 2009). The most commonly used microbial biopesticides are
biofungicides (Trichoderma, Pseudomonas, Bacillus), bioherbicides
(Phytophthora), and bioinsecticides (Bt) (Harris 2009). Microbial pesticides come
from naturally occurring or genetically altered bacteria, fungi, algae, viruses, or
protozoans (Gupta and Dikshit 2010; Clemson 2007). In biopesticide market,
bacterial biopesticides claim about 74%; fungal biopesticides about 10%; viral
biopesticides, 5%; predator biopesticides, 8%; and “other” biopesticides, 3%
(Thakore 2006). By 2008, there were approximately 73 microbial active ingredients
that were registered by the USEPA. The registered microbial biopesticides included
35 bacterial products, 15 fungi, 6 nonviable (genetically engineered) microbial
pesticides, 8 plant-incorporated protectants, 1 protozoan, 1 yeast, and 6 viruses
(Steinwand 2008). Microbial biopesticides may be delivered to crops in many
forms as live or dead organisms, and spores or in the form of microbe-based
pesticides that are being used presently (CPL 2010; Koul 2011). Various forms of
biopesticides like Bacillus thuringiensis (Bt), a large array of fungi, viruses,
protozoa, and some beneficial nematodes have been formulated for insect-pest
management of various insect pests and for greenhouse, turf, field crop, orchard,
and garden use (Butt et al. 2001a, b; Grewal et al. 2005; EPA 2006).

5.3.1.1 Bacteria
Bacterial biopesticides are the most common form of microbial biopesticides and
also can be used to control the growth of plant pathogenic bacteria and fungi.
Bacteria are prokaryotic, unicellular organism. Most of the insect pathogenic bacte-
ria belong to the families Bacillaceae, Pseudomonadaceae, Enterobacteriaceae,
Streptococcaceae, and Micrococcaceae. Among them member of family Bacillaceae
has received maximum attention as microbial control agents (Koul and Cuperus
2007). Various bacterial species and subspecies, especially Bacillus, Pseudomonas,
etc., have been established as biopesticides and are primarily used to control insect
pests and plant diseases (Koul 2011). Several subspecies of Bacillus thuringiensis
Berliner as B. thuringiensis ssp. kurstaki and aizawai found effective against insect
pests, in which the highest activity found against lepidopteran larval species;
B. thuringiensis israelensis and other insect pests as mosquito larvae, black fly
(simuliid), fungus gnats; B. thuringiensis tenebrionis, coleopteran adults and larvae;
Colorado potato beetle (Leptinotarsa decemlineata); and B. thuringiensis japonensis
strain Buibui, against soil-inhabiting beetles (Copping and Menn 2000; Senthil-
Nathan 2015). They are generally species specific for different insect orders. Its
principal characteristic is the synthesis of crystalline inclusions containing proteins
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known as δ endotoxins or Cry proteins, which have insecticidal properties (Aronson
and Shai 2001). They start to act against pest when come into contact. These toxins
ingested by the larvae lead to gut paralysis after that, the infected larvae stop feeding
and finally they die from the combined effects of starvation and midgut epithelium
impairment (Betz et al. 2000; Darboux et al. 2001). Due to their high specificity and
environmental safety B. thuringiensis and Cry proteins are efficient, safe, and
sustainable alternatives to chemical pesticides for the control of insect pests
(Thakore 2006). Use of microbial pesticide showed significant decrease of synthetic
chemical insecticide usage in studies (James 2009).

5.3.1.2 Fungi
Entomopathogenic fungi act as a major biological control agents for insect-pest
populations (Charles et al. 1996). Insect pathogenic fungal species are found from
different classes with a wide range of adaptations (Park et al. 2009; Khandelwal et al.
2012). The mode of action is varied and depends on both the pesticidal fungus and
the target pest. One advantage of fungal biopesticides in comparison with other
microbial biopesticides is that they do not need to be eaten to be effective. Infection
starts when spores come in contact with integument surface, where the formation of
the germinative tube initiates, the fungi starting to excrete enzymes which degrade
the insect’s cuticle and help in the process of penetration by mechanical pressure
(Koul 2011). Once fungi enter inside the insect, it develops as hyphal bodies that
disseminate through the hemocoel and invade diverse muscle tissues, fat bodies,
Malpighian tubules, mitochondria, and hemocytes, leading to death of the insect
within 3–14 days after infection. Once the insect dies and many of the nutrients are
exhausted, fungi start micelles growth and invade all the organs of the host. Finally,
hyphae penetrate the cuticle from the interior of the insect and emerge at the surface,
where they initiate spore formation under appropriate environmental conditions
(Park et al. 2009; Koul 2011). However, they are living organisms that often require
a narrow range of conditions including moist soil and cool temperatures to prolifer-
ate. The speed with which death occurs is determined in part by the environmental
conditions. Under optimal conditions, target pests may be killed in 3–7 days but
when conditions are not ideal death may be caused in 3–4 weeks (Berry et al. 1991;
Senthil-Nathan 2015). The main route of entrance of the entomopathogen is through
integument and it may also infect the insect by ingestion method or through the
wounds or trachea (Lasa et al. 2007).

Metarhizium anisopliae Sorokin var. anisopliae has the potential to be used as a
biocontrol agent. It propagates worldwide in the soil, demonstrating a wide range of
insect host species. This species comprises a huge number of different strains and
isolates of various geographical origins (Roberts and St Leger 2004). In moist soil
Metarhizium develop filamentous growth and infectious spores, called conidia,
which infect soil-dwelling insects upon contact (Mnyone et al. 2010; Koul 2011).
These entomopathogenic fungi have been registered as microbial agents and are also
under commercial development for the biological control of several pests (Butt et al.
2001a, b).
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Fungal biopesticides include Trichoderma harzianum, which is an antagonist of
Rhizoctonia, Pythium, Fusarium, and other soil-borne pathogens Trichoderma are
acclaimed as an effective, eco-friendly, and cheap, nullifying the ill effects of
chemicals, and very effective for the management of various foliar- and soil-borne
plant pathogens like Ceratobasidium, Fusarium, Rhizoctonia,Macrophomina, Scle-
rotium, Pythium, and Phytophthora spp. (Bailey and Gilligan 2004; Harman 2005;
Corato 2020; Rosskopf et al. 2020). Trichoderma is a fungal antagonist that grows
into the main tissue of a disease-causing fungus and secretes enzymes that degrade
the cell walls of the other fungus and then consumes the contents of the cells of the
target fungus and multiplies its own spores (Dominguesa et al. 2000; Anand and
Reddy 2009). B. bassiana (Balsamo) Vuillemin and Metarhizium anisopliae
(Metchnikoff) Sorokin are naturally occurring entomopathogenic fungi that infect
sucking pests which include Nezara viridula (L) and Creontiades sp. (Khandelwal
et al. 2012).

5.3.1.3 Virus
Viral biopesticides play a significant role in antagonizing pathogens especially
bacteria in the form of bacteriophages. These viruses are widely used for the control
of various insect pests of vegetable and field crops globally, and also effective
against plant-chewing insects. For the order Lepidoptera it is found much effective
against gypsy moths, pine sawflies, Douglas fir tussock moths, and pine caterpillars.
Codling moth is controlled by Cydia pomonella GVs on fruit trees (Lacey et al.
2008) and potato tuberworm by Phthorimaea operculella GVs in stored tubers
(Arthurs et al. 2008). Virus-based products are also available for cabbage moths,
corn earworms, cotton leafworms and bollworms, beet armyworms, celery loopers,
and tobacco budworms (Cory and Myers 2003; England et al. 2004; Raymond et al.
2005; Hewson et al. 2011). Viruses have been isolated from more than 1000 species
of infected insects from at least 13 different insect orders (Roh et al. 2007).
Entomogenous viruses fall into two categories, viz. inclusion viruses
(IV) producing inclusion bodies in the host cells and non-inclusion viruses (NIV)
which do not produce inclusion bodies. The IV are further sub divided into polyhe-
dron viruses (PV) or polyhedroses, which produce polyhedral bodies and granulosis
virus which produce granular bodies. Polyhedroses could inhabit the nucleus and are
called nuclear polyhedrosis viruses (NPV) or the cytoplasm which are called cyto-
plasmic polyhedrosis virus (CPV) (Crickmore 2005; Koul 2011). Most of the insect-
infecting viruses have been isolated from Lepidoptera (560) followed by
Hymenoptera (100), Coleoptera, Diptera, and Orthoptera (40) (Khachatourians
2009; Senthil-Nathan 2015). Some of them have been commercialized for use as
biopesticides. The viruses used for insect control are the DNA-containing
baculoviruses (BVs), Nucleopolyhedrosis viruses (NPVs), granuloviruses (GVs),
acoviruses, iridoviruses, parvoviruses, polydna-viruses, and poxviruses and the
RNA-containing reo-viruses, cytoplasmic polyhedrosis viruses, nodaviruses,
picrona-like viruses, and tetraviruses. However, the main categories used in pest
management have been NPVs and GVs. Among the insect viruses found in nature,
those belonging to the baculovirus family (Baculoviridae) were considered for the
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development of most commercial viral biopesticides (Bravo et al. 2007; DeMaagd
et al. 2001). Baculoviruses are found as safe for vertebrates and to date, no negative
impacts on plants, mammals, birds, fish, or non-target insects have been reported
(Whalon and Wingerd 2003). Major advantages of Baculoviruses are that they can
cause sudden and severe outbreaks for complete control of the pest and they can
replace and serve as an alternative to the chemical pesticides (O’Brien et al. 2009;
Koul 2011). The mechanism of viral pathogenesis is through replication of the virus
in the nuclei or in the cytoplasm of target cells. When Baculovirus ingested by
the larvae it initiates infection. After ingestion, they enter the insect’s body through
the midgut and from there they spread throughout the body. Once in the larval gut,
the virus’s protein overcoat quickly disintegrates, and the viral DNA proceeds to
infect digestive cells. Within a few days, the host larvae are unable to digest food, so
weaken and die (Thakore 2006). As of 2010, over 24 baculovirus species have been
reported to be registered for use in insect-pest management throughout the world
(Kabaluk and Svircev 2010; Moscardi et al. 2011).

5.3.1.4 Nematodes
Another group of microbial biopesticides is the entomopathogenic nematodes,
which control weevils, gnats, white grubs, and various species of the Sesiidae family
(Grewal et al. 2005). Entomopathogenic nematodes are soft bodied, non-segmented
roundworms that are obligate or sometimes facultative parasites of insects. They are
useful for the suppression of soil-borne pests and stem borers. It can kill them within
48 h through the expulsion of pathogenic bacteria (Copping and Menn 2000).
Nowadays many Nematodes under two families Heterorhabditidae and
Steinernematidae have been effectively used as biological insecticides in pest man-
agement programs. Insect juveniles (IJs) are free-living organisms, which can enter
into the host body through mouth, anus, spiracles, or cuticle, after entering into the
host body it releases their bacterial symbionts in to the hemocoel of hosts, killing the
host within 24–48 h (Dowds and Peters 2002; Koul 2011). The nematodes can
complete up to three generations within the host, the parasitic cycle is initiated by the
third-stage IJs and after completion of life cycle IJs leave the cadaver to find the new
hosts. Entomopathogenic nematodes found effective against insect-pest families
found in stored goods like Pyralidae (Shannag and Capinera 2000) and
Curculionidae (Shapiro and McCoy 2000). A field concentration of >2.5 billion
nematodes/ha against some of the major insect pests of row crops, but concentrations
few times higher (7–15 billion/ha) are demanded to accomplish the control of pest
population (Loya and Hower Jr 2002). Artificial selection is useful in increasing
entomopathogenic infectivity and nematicide resistance. The recent discovery that
maize roots damaged by the western corn rootworm emit a key attractant for insect-
killing nematodes has opened the way to explore whether a selection strategy can
improve the control of root pests (Hiltpold et al. 2010). Entomopathogenic
nematodes (EPN) can be mass-produced in vivo and in vitro through solid media
or liquid fermentation. However, there is need of extensive studies and research to
optimize application parameters and develop efficient strains to achieve significant
control of pests through nematodes (Senthil-Nathan 2015). Entomopathogenic
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nematodes are considered nontoxic to humans, relatively specific to their target
pests, and can be applied with the help of standard pesticide equipment (Shapiro-
Ilan et al. 2006).

5.3.1.5 Protozoans
Entomopathogenic protozoans, commonly referred as microsporidians, infect and
also induce chronic and debilitating effects on a wide range of insect pests and
reduce the target pest populations (Grewal et al. 2005). Protozoa are taxonomically
subdivided into several phyla, some of which contain entomogenous species.
Almost 1000 protozoan species, mainly microsporidia, attack invertebrates, includ-
ing numerous insect species like grasshoppers and Heliothis moths. Microsporidia,
such as Nosema spp., are generally host specific and slow acting, most frequently
producing chronic infections. N. bombycis, the first reported microsporidium for
silkworm pebrine disease, which persisted in Europe, North America, and Asia
during the mid-nineteenth century. Pébrine is still an epidemic disease and cause
heavy economic losses in silk-producing countries such as China (Cai et al. 2012;
Koul 2011). Insect pathogenic protozoan species are Nosema spp. and Vairimorpha
necatrix. The biological activities of most entomopathogenic protozoa are complex.
Microsporidia species are among the most commonly observed, and their main
benefits are persistence, recycling in host populations and their debilitating effect
on reproduction and overall fitness of target insects. (Solter and Becnel 2000).
Protozoans produce spores, which are the infectious phase in several susceptible
insects as lepidopteran, orthopteran, and hoppers (Lewis 2002; Senthil-Nathan
2015). Nosema spp. spores are assimilated by the host and develop in the midgut.
The spore formed by the protozoan is the infectious stage and has to be ingested by
the insect host for pathogenic effect. Spores invade host target cells cause massive
infection, demolishing organs and tissues. The infection results in reduced feeding,
vigor, fecundity, and longevity of the insect host as inundatively applied microbial
control agents. The only protozoan registered for use as a biopesticide is the
microsporidian, Nosema locustae, which infects nymphal stages of grasshoppers
and kills them within 3–6 weeks post-infection (Koul 2011). However, not all
infected grasshoppers are killed by this protozoan infection because of difficulty in
assessing of a highly mobile insect (Kaya and Gaugler 1993). Nosema pyrausta is
another beneficial microsporidian that reduces fecundity and longevity of the adults
and also causes mortality of the larvae of European corn borer (Koppenhofer and
Kaya 2002). A study of Nosema pyrausta, a microsporidium infects the European
corn borer, Ostrinia nubilalis, showed both horizontal and vertical transmissions
maintain N. pyrausta in natural populations of European corn borer. N. pyrausta
suppresses populations of European corn borer by reducing oviposition, percentage
hatch, and survival of infected neonate larvae (Koul and Dhaliwal 2002).

134 P. Sharma and N. Gaur



5.4 Effects of Microbial Biopesticides

The main advantages of using microbial insecticides for pest management are their
environmental safety, specificity, and biodegradability. Microbial biopesticide based
on viruses and bacteria are mainly host specific while others, such as fungi and
nematodes, may affect a fairly wide range of insects and related arthropods. Com-
mercially available microbial pathogens are target specific and safe to the environ-
ment and ecosystem. The microbial pesticides do not leave any harmful residues in
the environment, and do not enter the food chain. It has been documented that Bt has
rapid breakdown and low toxicity towards aquatic systems, mammals, and other
non-target organisms (Koul 2011). Bt-sprays are safe to non-target organisms such
as soil microorganisms (protozoa and fungi), Collembola, Mollusca, Crustacea,
Arachnida, aquatic insects, predators, parasitoids, honeybees, earthworms,
salamanders, bird, and mammals (Boomathi et al. 2005; Senthil-Nathan 2015).
Entomopathogenic fungi are also safe for the ecosystem as they do not affect the
specific host, its infected cadavers that drop on the soil, sporulate under congenial
microclimatic conditions, and overwinter in the soil. Particular environmental
conditions are necessary for their infection and their attack starts again as the pest
population prevail. Baculovirus, among the other insect viruses, are regarded as safe
and selective. They have been used worldwide against many insect pests (mainly
Lepidoptera). But the problems associated with the limited use of baculoviruses as
narrow host range, slow killing speed, technical and economic difficulties for in vitro
commercial production, timing of application based on host population monitoring,
and variability in their efficacy in the field under diverse climatic conditions (Vimala
Devi and Hari 2009). Epizootics of baculovirus diseases are frequent in Lepidoptera
and sawflies with very high larval mortality, resulting in a substantial reduction in
insect population. These days research has been focused on the identification of
virulent microbial isolates for effective management of the target pests and their
safety to the natural enemies, persistence in the environment, phytotoxicity in
addition to generating information on the bio-efficacy (Jeyarani et al. 2008).
Ranga Rao et al. (2008) recorded low reduction (3%) of H. armigera parasitoid,
Campoletis chlorideae Uchida, and other natural enemies in the HaNPV sprayed
plots as compared to 60% reduction in the endosulfan treated plots in chickpea.
HaNPV (@ 250 LE ha�1) application on chickpea resulted in a reduction of aerial
and soil-inhabiting natural enemies by 15 and 22%, respectively, over the control
plots, while the reduction in the Endosulfan sprayed plots was 52.4 and 63.1%,
respectively.

5.5 Constraints Related to Microbial Biopesticides Production
and Use

Biopesticides although offer a promising approach in integrated pest management
for sustainable agriculture, but still their adoption is not up to the mark because of
various constraints. It is necessary to maintain the production of quality
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biopesticides, since they are important in rendering sustainability to farming
systems. Insufficient knowledge, lack of adequate machinery, inappropriate
handling and improper distribution, importation laws for live inoculants, and several
other issues can lead to lack of quality products and loss of market (Mishra et al.
2015). Some of the important constraints associated with microbial biopesticides are
as follows:

5.5.1 Lack of Faith and Awareness Among People

These days Agriculture market is moving towards an increase in demand for
environment friendly, chemical residue-free organic products. But adoption of
eco-friendly biopesticides is less due to the lack of awareness about benefits of
microbial biopesticides, and their uneven efficiency. The lack of awareness, knowl-
edge, and confidence in farmers is one of the main reasons for lagging of usage of
these eco-friendly pest control alternatives. Condition is worst in developing
countries where most of the farmers are even not familiar with the term “biopesti-
cide” and lack efficiency and skills to practice and use them (Alam 2000). Certain
extension activities such as organizing teaching programs, workshops, and
entrepreneurs dealing with the idea of promoting sustainable agriculture and efforts
of various government agencies to popularize the use of biopesticides. The National
Farmers Policy (2007) in India has strongly recommended the promotion of
biopesticides for increasing agricultural production and sustaining the health of
farmers and environment (Arora et al. 2010). Hence, it is essential that training
and teaching should be given to the farmers in regard to the use of Microbial
biopesticides (Amin 2013).

5.5.2 Inconsistent Field Performance

Extremely unreliable supply and very inconsistent performance of microbial
biopesticides are the main reasons that many farmers stopped using biopesticides
(Alam 2000). Factors responsible for the poor performance are the rapid decline in
the size of populations of active cells. Abiotic soil factors (e.g., textural type, pH,
temperature, and moisture) exert their (direct) effect on inoculant population dynam-
ics by imposing stresses of various natures on the living microbial cells introduced in
the fields. Furthermore, efficient introduction into soil during the growing season is a
major technical constraint. It is extremely important that a minimum effective
threshold population of the introduced biopesticide is maintained in the soil so as
to combat the pests and pathogens (Arora et al. 2010). Sophisticated quality control
measures, monitoring facilities, reliability, specificity, and replicability in its activity
should be implemented. Technical and chemical compatibility along with innovative
application methods is also necessary.
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5.5.3 Poor Quality and Shelf Life of Microbial Biopesticides

Poor quality and performance are the main reasons those hinder the microbial
biopesticides takeover on the market. It has been reported that the biopesticides
being sold in the market are contaminated and have a low count of microorganisms
with low shelf life result in inconsistent performance (Alam 2000; Arora et al. 2010).
Bacterial survival in the desired formulation is affected by several variables: the
culture medium used for bacterial cultivation, the physiological state of the bacteria
when harvested from the medium, the use of protective materials, the type of drying
technology used, the presence or absence of contaminants, and the rate of dehydra-
tion. It is also important that precautions should be taken to avoid adulteration during
packaging, storage, and application of biopesticides. For the solution of this problem
some techniques as air-dried and lyophilized preparations of biopesticides can be a
better solution (Nakkeeran et al. 2005). Formulations with extended shelf life
include granules, pellets, and dry powder based biopesticides. Granules can protect
the active agent from desiccation and also provide basic food for the agent. Powder
formulation is easy to apply by suspending it in water with wide area of application
(Amin 2013).

5.5.4 Imbalance Between Production and Agribusiness

In industrial point of view raw material and instrumentation facility initially required
for the biopesticide production are costly. The established companies relinquished
their wish to do business in microbial pesticides and finally left the field due to huge
losses in the agribusiness, these are main reasons for less production. Enormous
caution at the stage of manufacture/culture, transportation/distribution, and applica-
tion is needed (in packaging, storage, and use of suitable carrier materials) (Arora
et al. 2001, 2010). However, consistency and long-term returns can reduce the cost
and enhance the profits. A number of features of the agricultural economy make it
difficult for companies to invest in developing new biopesticide products and at the
same time, make it hard for farmers to decide about adopting the new technology
(Chandler et al. 2011). Biopesticide industry is now being forecasted by leading
global management consulting and market research firms which is helpful for market
competency (Leng et al. 2011). The profit in biopesticide business could be made
only by using novel techniques and tools and multifaceted bioformulations based on
microbial consortia with diverse activities can be useful in bringing down the costs
(Arora et al. 2013).

5.5.5 Regulatory Framework and Registration

Regulatory framework related to registration of biopesticide is the main hurdle in the
development which is expensive as well as time consuming (Ehlers 2006). The
governments can frame regulations at the global level by organizing meetings,
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workshops, and conferences regarding uplifting the status of biopesticides/
bioformulation. At present, different countries have different rules and regulations
due to which problems related to registration, use, import, and export do occur.
Government can set up globally accepted uniform acts or laws, so that there is a
common policy regarding the registration and regulation of biopesticides (Kumar
2012).

5.5.6 Health and Environmental Issues

Microbial biopesticides may possess some health risks if not used according to the
instructions mentioned on the product. Bacterial biopesticides containing Bt as
active ingredient which is not reported to show any major adverse effects on
human health, but in some cases, occupational exposure confirmed health risks
(Doekes et al. 2004). But in case of Trichoderma, M. anisopliae, and B. bassiana
allergy to farmworkers has been reported (Darbro and Thomas 2009). Recently
studies show that M. anisopliae treated mice found as a robust fungal allergen
(Ward et al. 2011). So that governments should also set up defined standards and
permissible limits in regard to using biopesticides so that it diminishes the health
risks. Thus, it is necessary that before developing a biopesticide strain monitoring
should be extensively done (Copping and Menn 2000; Kumar 2012).

5.5.7 Competition with Chemical Pesticides

Practically, biopesticides are not as effective as chemicals. In case of chemical
pesticides, lesser quantity is sufficient to kill a vast quantity of pests which is the
main reason why farmers choose chemical pesticides over biopesticides. Studies
shows that the production of major crops around the globe depends on chemical
insecticides in large extant (Aktar et al. 2009). Synergistic action of microbial
biopesticides and chemical pesticides may be helpful (Irigaray et al. 2003). Research
on combining microbial biopesticides with synthetic pesticides has showed improve-
ment in control of some pest species including pesticide-resistant varieties
(Cuthbertson et al. 2005). Microbial biopesticides production and development
can only be enhanced by the removal of above-mentioned constraints. Adoption of
latest technologies and government policies can be helpful to enhance the market for
microbial biopesticides and can secure our crops in sustainable manner.

5.6 Future Perspectives

There are many challenges that are needed to overcome for the performance of
microbial biopesticides. Emphasis on the barriers for research patents, use of pat-
ented technologies as well as on the availability of publicly funded research results
(Boettiger et al. 2006). To implement local production schemes in developing
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countries, intervention at the national and international level is very much important.
It is also needed to have a look into the ecological relevance vis-a`-vis the use of
microbial biopesticides. As such, the effect of microbial biopesticides on microbial
communities must be carefully monitored (Gonzalez 2006). For commercial micro-
bial product, three specific criteria for selection should be required, i.e. toxicity,
production efficiency, and safety of the product. In order to increase the utility of
microbial pathogens in IPM programs, systematic surveys and detailed studies on
the properties, mode of action, and pathogenicity of such organisms are required. It
is expected that with the advanced microbial research coupled with dedicated efforts
from extension specialists, farmers, pest management regulators, and general public
is required. In this way microbial biopesticides could play a prominent role in future
pest management programs (Mocali 2010).

According to the researchers, in the case of B. thuringiensis (Bt) it has been
studied that, insecticidal toxin present in Bt and its survival may not always depend
on insect pathology. It can colonize seedlings from spores in the soil, exchange
genetic information on the phylloplane, and an appreciable multiplication can occur
in the frass of insects that it did not kill. Therefore, longer-term studies in nature and
their survival in soil and plants in the presence of susceptible and non-susceptible
invertebrates are required (Ravensberg 2011). Spores in the frass could be a source
of recolonization from the soil and be transferred to other plants. These findings
illustrate a possible cycle, not dependent on insect pathology, by which
B. thuringiensis diversifies and maintains itself in nature. The mechanism of resis-
tance, specifically for Cry proteins, is a matter of concern. Recently, a database
consisting of 12,519 high-quality sequences have been developed from the larval gut
of European corn borer. This obviously can provide basis for future research to
develop gut-specific DNA microarrays to analyze the changes of gene expression in
response to B. thuringiensis protoxins/toxins and the genetic difference(s) between
Bt resistance and susceptible strains. In fact, 52 candidate genes have been identified
that may be involved in Bt toxicity and resistance. For instance, out of selected
genes, five genes with decreased expression and ten with increased expression in
Cry1Ab-resistant strain of European corn borer may help in identifying the genes
involved in Bt resistance that could provide new leads into the mechanism of
Cry1Ab resistance in these insects (Bizzarri and Bishop 2008). Commercialization
is the final and most difficult step in the development of a microbial product. Costs
amount to US$14–21 million for a new entrepreneur and its introduction time to
market including registration is not less than 5–7 years. Therefore, to examine all
these critical factors in the developmental process and successful commercialization
of microbial biopesticides are the important parameters for the production of
any effective microbial biopesticide (Khajuria 2009).

5.7 Conclusion

Presently biopesticides are being used everywhere in the world, it is also known that
developed countries seem to be ahead in their wider application but their situation
still remains in dilemma for the effective use over the synthetic pesticides. It is also
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believed that biopesticides may be less vulnerable to genetic variations in plant
populations that cause problems related to pesticide resistance and their use is not
overly complicated. Developing countries have huge possibilities for using
biopesticides as the production can be less expensive and labor is cheap in compari-
son to developed nations. Microbial biopesticides are expected to provide predict-
able performance and it must do so in an economically viable manner for their better
acceptability and adaptability. But various challenges as the efficacy of the microbial
activity, survival of microorganisms, delivery systems, determining host range,
avoiding injury to non-target organisms, consistency, performance in field
conditions, economics, government regulations, and confidence among the end
users need to be properly overlooked. However, awareness among the farmers,
manufacturers, government agencies, policy makers, and the common men, training
on production and quality control to manufacturers, and organizational training to
extension workers and farmers to popularize biopesticides may be essential for better
adoption of the technology.
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Arbuscular Mycorrhizal Fungi (AMF)
for Improved Plant Health and Production 6
Syeda Asma Bano and Bushra Uzair

Abstract

Agricultural production must increase due to increase in population. Inorganic
fertilizers are used to promote growth of plants. The use of inorganic fertilizers is
rising day by day, which is very expensive and is a huge cause of environmental
pollution. We need to find out strategies to improve our agricultural productivity
by using environmental friendly approach. Arbuscular mycorrhizal fungi form
symbiotic association with majority of plants and provide the plants with essential
nutrients especially phosphorus; hence, there is less need for inorganic fertilizers.
Most of the species of AMF belong to sub-phylum Glomeromycotina. Four
orders of arbuscular mycorrhizal fungi (Glomerales, Archaeosporales,
Paraglomerales, and Diversisporales) have been identified in this sub-phylum.
There are transport proteins located in the fungus and plant plasma membranes,
which help in the transport of different nutrients. Roots of different plants release
certain exudates after contact with AM fungi, these fungi also respond to plant’s
exudates by releasing certain compounds such as sesquiterpenes, hence after a
mutual dialogue, AM fungi associate itself with the roots of plants. Identification
of AMF involves the use of DNA markers such as smallest subunit (SSU) rRNA
gene, the internal transcribed spacer (ITS), and the large subunit (LSU) rRNA
gene. Plants having AM association are more tolerant to metals, drought, salinity,
heat, and adverse environmental conditions. Soil structure and soil nutrients are
improved due to AMF association. Plants having mycorrhizal association can
better cope with the biotic and abiotic stress conditions than the non-mycorrhizal
plants and can be well adapted to the changing environment conditions. There is a
positive impact on the stability of ecosystem due to the presence of mycorrhizal
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plants. AMF plays important role in sustainable development of agriculture and
may also increase resistance of plants to pathogens attack.

Keywords

Arbuscular mycorrhizal fungi · Bio-fertilizers · Arbuscules · Fungal hyphae ·
Glomeromycota · Symbiosis

6.1 Introduction

The term mycorrhiza has been derived from the Greek words for “fungus” and
“root.” Fungi of phylum Glomeromycota and majority of terrestrial plants show the
arbuscular mycorrhizal symbiosis (Schüssler et al. 2001). Mycorrhiza is associated
with the roots of over 90% of all plant species. An extensive hyphal network is
developed by mycorrhizal fungi in soil, connecting the plant communities and
offering a horizontal transfer of nutrients (Prasad et al. 2017). Symbiotic fungi
associate with the roots of most of the plants to form mycorrhiza, which plays an
important role in the acquisition of nutrients from the soil and therefore plant
nutrition is improved. The life cycle of fungi requires association with host roots,
as hyphal growth is very limited in the absence of host plant. The AM symbiosis
results in bidirectional nutrient exchange: the fungus gets food material by plant
photosynthates, and plant nutrition, mainly phosphate is enhanced by the fungus
(Smith and Read 1997). There is extensive hyphal branching of AM fungi near the
host roots before the development of appressorium. Appressorium is the structure
which is used to penetrate the plant root. Some signaling molecules are released by
host roots, which stimulate the hyphal branching. Akiyama et al. (2005) had isolated
a branching factor named strigolactone (5 deoxystrigol) from the root exudates of
Lotus japonicus. For the parasitic weed striga and orobanche, strigolactones were
known as seed germination stimulants. Plants having mycorrhizal association are
drought tolerant. They are more resistant to pathogens attack and there is reduction
in irrigation and fertilizer requirement. Hence healthy plants are produced as a result
of mycorrhizal association. There is beneficial effect on soil chemistry and soil
biology besides improved nutrients supply to plants as a result of mycorrhizal
association. Generally speaking there are two types of mycorrhiza, ectomycorrhiza
and endomycorrhiza. In endomycorrhizal association, the fungus colonizes the host
plant’s root tissues intracellularly as in arbuscular mycorrhizal fungi (AMF) or
extracellularly as in ectomycorrhizal fungi. The association is sometimes mutualistic
when both fungi and plant partners are benefitted. Mycorrhiza may have a parasitic
association with host plants in some specific conditions (Johnson et al. 1997).
Signaling pathway between plant and mycorrhizal fungi has also been described
and several genes have been identified.
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6.2 Types of Mycorrhizae

There are seven types of mycorrhizae:

1. Ectomycorrhizae
2. Endomycorrhizae
3. Orchid mycorrhizae
4. Arbuscular mycorrhizae
5. Ericaceous mycorrhizae
6. Arbutoid mycorrhizae
7. Ectotrophic mycorrhizae

Among them endo- and ectomycorrhizae are the most abundant and widespread.

6.2.1 Ectomycorrhizae

It is a type of mycorrhizal relationship that is found between a mycobiont, fungal
symbiont, and roots of various plant species. Ectomycorrhizae produce a Hartig net
surrounding the root (Fig. 6.1a). Fungi do not penetrate their cell walls of host.

6.2.2 Endomycorrhizae

Ectomycorrhizae form a symbiotic relationship with the roots in which fungi
penetrate their cell walls of root cortex (Fig. 6.1b).

6.2.3 Orchid Mycorrhizae

These are symbiotic relationships between the roots of plants of the family
Orchidaceae and a variety of fungi. All orchids are myco-heterotrophic at some
point in their life cycle. It is the type of symbiotic relationship in which fungal
hyphae penetrate into the root cells and form pleotons (Fig. 6.1c).

6.2.4 Arbuscular Mycorrhizae

It is a type of mycorrhizae in which symbiont fungus penetrates the cortical cell of
the root of vascular plant and forms vesicle arbuscules and hyphae in the root cortex
(Figs. 6.1d, 6.2, 6.3). The arbuscular mycorrhizal (AM) symbiosis occurs between
fungi of the Glomeromycota (Schüssler et al. 2001) and the majority of terrestrial
plants.
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6.2.5 Ericaceous Mycorrhizae

The members of the plant family Ericaceae and several types of mycorrhizal fungi
form a mutualistic relationship called ericoid mycorrhiza (Fig. 6.1e). These
mycorrhizas are characterized by fungal coils in the epidermal cells of the fine hair
roots of ericaceous species. The plant’s cell membrane remains intact and fits over

Fig. 6.1 (a) Ectomycorrhizae, (b) endomycorrhizae, (c) orchid mycorrhizae, (d) arbuscular
mycorrhizae, (e) ericaceous mycorrhizae, (f) arbutoid mycorrhizae, (g) ectotrophic mycorrhizae

Fungal 
hyphae

Vesicle

Arbuscule

Appressorium

Fig. 6.2 Colonization of plant root by fungal hyphae, vesicles, and arbuscules
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the coils of hyphae. These coils of hyphae serve to increase the surface area available
for nutrient exchange.

6.2.6 Arbutoid Mycorrhizae

Hyphae of arbutoid mycorrhizae penetrate in the outer cortical cell and fill them with
coil (Fig. 6.1f). The main feature of this symbiotic relationship is mantle sheath,
Hartig net, and intracellular coils. Plants of genera Arctostaphylos and Arbutus
exhibit association with arbutoid mycorrhizal fungi. The fungi that form arbutoid
mycorrhizal relationships are basidiomycetes. Most fungal species that form
ectomycorrhizal associations are also basidiomycetes.

6.2.7 Ectotrophic Mycorrhizae

Ectotrophic mycorrhizae is a type of symbiotic relationship in which fungi form
pseudo-parenchymatous sheath around the root and send branches inward as well as
outside in the soil.

6.3 Arbuscular Mycorrhizal Fungi as Plant Growth Stimulators

Arbuscular mycorrhizal fungi (AMF) are one of those micro-organisms which
promote plant growth and nutrition. Fungi of phylum Glomeromycota develop
arbuscular mycorrhizal association. Most of the phosphorus is present in unavailable
form. AMF help in the acquisition of phosphorus for the plant. Besides the phos-
phorus other nutrients like sulfur, nitrogen, and other micro-nutrients are transported

Fig. 6.3 Growth of fungal structures in plant roots (roots were stained by Pelikan ink staining
method)
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to the plant. AMF also enhance tolerance of plants to several environmental stresses
and plant pathogens. These plant pathogens cause huge loss of crop yield worldwide.
AMF protect plants against these pathogens. AMF improve plant growth and
productivity by improving mineral nutrients uptake; hence, plant biomass and
productivity increases (Bona et al. 2016; Fiorilli et al. 2013). Plants having AM
association can cope with the biotic and abiotic stress conditions more efficiently as
compared to non-mycorrhizal plants (Augé 2001; Fiorilli et al. 2013). Mycorrhizal
association can enhance the absorption of roots and resistance of plants to external
stress factors is also improved, especially in high-pressure open-pit mines, they can
promote plant growth and improve the vegetation recovery in the mine reclamation
area (Song et al. 2020). The mechanisms of adaptation of AMF for abiotic stresses
are generally linked to increased hydromineral nutrition, production of osmolytes,
gene regulation, ion selectivity, and synthesis of antioxidants and phytohormones.
As far as the biotic stresses are concerned, AMF are involved in pathogen resistance
including improvement of the plant’s defense system and competition for coloniza-
tion sites (Diagne et al. 2020). AMF also improve plant growth under reduced water
supply conditions (Posta and Duc 2019). AMF regulate plant growth under different
stress conditions. AMF colonization by R. irregularis and F. mosseae can signifi-
cantly reduce the intensity of infection by N. ditissima which causes apple canker—a
major pathogen (Berdeni et al. 2018). Few volatiles were found to be specifically
emitted in response to the symbiont or pathogen (Dreher et al. 2019). Specific
volatile organic compounds emission in response to different organisms could be
based on the action of different receptors at the plasma membrane, such as receptors
for specific factors of AM fungi leading to CSSP activation and receptors that
recognize general fungal presence inducing a PAMP-induced defense response.

Enhanced photosynthetic rate along with water and mineral nutrients has been
observed in plant having AM association. Soil structure and fertility are also
improved by AM association with plants. AM fungi associate with cereals,
vegetables, fruit trees, and many other crop plants, therefore play an important role
in sustainable agriculture.

The main benefit of AMF to the host plant is the acquisition of phosphorus.
Presence of high phosphorus in soil suppresses the development of AM fungi, as
there is transcriptional alteration. Several researchers demonstrated the benefit of
AMF in improving the plant health and yields (Mäder et al. 2000; Rouphael et al.
2015; Hijri 2016). Another important aspect of AMF is the enhancement of root
system development (Gutjahr and Parniske 2013). High value crops could be
inoculated with suitable AMF strain for more yield and better growth. A significant
increase in tuber production was observed as a result of inoculation with
Rhizophagus irregularis (Hijri 2016). Improvement of health of plant due to AM
inoculation has already been demonstrated clearly by many researchers (Schubert
and Lubraco 2000; Balla et al. 2008).

Application of AMF in micropropagation of plants in nurseries is highly success-
ful (Azcón-Aguilar and Barea 1997; Jeffries et al. 2003; Kleinwächter et al. 2012;
Maronek et al. 1981). AMF could also improve nutrients uptake and growth of fruit
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tree at transplant (Lovato et al. 1992; Schubert and Lubraco 2000). Several factors
interfere with the AM symbiotic relationship with plants. High phosphorus contents
in soil hinder this association besides that extensive plowing also reduces AMF
(Douds and Millner 1999; Mäder et al. 2000; Grant et al. 2005; Hartmann et al.
2015). Specific biocides and non-host plants such as chenopodiaceae and
Brassicaceae also affect this association. Mycorrhizal plants also improve soil
fertility due to release of Glomalin, which contains 30 to 40% C and its related
compounds which improve the water holding capacity of soil (Sharma et al. 2017).

6.4 Mechanisms of Arbuscular Mycorrhizal Symbiosis

Plant derived and fungal signaling molecules are responsible for arbuscular mycor-
rhizal symbiosis (Gutjahr and Parniske 2013). The signaling pathway starts from the
strigolactones which are released from plant roots. These strigolactones then stimu-
late the AMF (Akiyama et al. 2005; Besserer et al. 2006; Kretzschmar et al. 2012).
Next AMF release lipochitooligosaccharides which activate further pathway in plant
that is shared with root nodule symbiosis (Harrison et al. 2002; Gutjahr and Parniske
2013) (Fig. 1.3). Hundreds of gene are activated in host cell as a result of AM
symbiosis (Liu et al. 2003; Güimil et al. 2005; Hohnjec et al. 2005; Fiorilli et al.
2013; Gomez et al. 2009; Guether et al. 2009; Breuillin et al. 2010a, 2010b).

AMF also produce glomalin in soil which is a glycoprotein and it is very
important in the stabilization of soil aggregation (Singh et al. 2013). The soil is
protected from erosion due to hyphal network of AMF, hence enhancing plant
growth and improving the mineral nutrition acquisition for the plant. The water
retention capacity of soil is also increased due to the effect of arbuscular mycorrhizal
fungi on soil quantity. Land ecosystem remains intact due to reduced leaching of
nutrients from the soil (Cavagnaro et al. 2015). Querejeta (2017) also showed the
better water holding capacity of mycorrhizal soil. The pre-symbiotic signaling and
hyphopodium formation is affected by the supply of high phosphorus concentration.
This is due to the inhibition of the synthesis of strigolactones by the plants.
Strigolactones play a very important role in the development of pre-symbiotic stages
between AM fungi and plant roots. Strigolactones also stimulate spore germination
and cell proliferation of AMF by activating mitochondria. A transcriptomic study
showed that the genes encoding enzymes for the biosynthesis of carotenoid and
strigolactone are found downregulated under high level Pi supply. In mycorrhizal
plants two phosphate uptake pathways were suggested, one is the direct uptake and
other is mycorrhizal uptake pathway. The direct uptake pathway is controlled by
Pht1 members which is non-mycorrhiza regulated, while the mycorrhizal pathway
was induced by specific arbuscular mycorrhiza related phosphate transporters. The
examples of two of these AM related phosphate transporters are LjPT3 andMtPT4 in
Lotus japonicus and Medicago truncatula which are required for mycorrhizal
symbiosis. Many phosphate transporter genes are expressed in roots under phospho-
rus deficient conditions. Phosphorus transporter genes are also an important part of
the Pi starvation signaling pathway. MYCS (mycorrhiza transcription factor binding
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sequence), a novel cis-elements, was found to be also required for AM-induced or
-specific expression of the AMR PT genes. Plant hormones also play a role during
the establishment of AM symbiosis except other complex factors. However the
reports explaining the correlation between AM development and plant hormones
other than strigolactones are very limited, although several phytohormones, e.g.,
abscisic acid (ABA), auxins, jasmonic acid, and ethylene have already been
described.

The lateral root development is altered by modulating the sensitivity of auxins by
Pi availability. This process involves TIR1 auxin receptor. The development of
lateral roots is induced due to AM colonization. These lateral roots are the favored
sites of AMF colonization. Strigolactones could interact with auxins and the
outgrowth of lateral roots is accelerated under phosphate starvation, while the lateral
root development is suppressed by providing GR24 to the roots of Pi-replete plants.
The mechanisms showing the cross-talk between the signaling of AMF, Pi, and
phytohormones are yet to be explored.

A genetic program is responsible to control the development of arbuscular
mycorrhizal symbiosis as well as nodulation (Harrison 2005; Paszkowski 2006;
Reinhardt 2007; Stacey et al. 2006). Defective plant mutants in both mycorrhiza
and nodule development were isolated; hence, it was suggested that mycorrhizal
symbiosis shares a common signaling pathway with the nodulation pathway (Marsh
and Schultze 2001; Oldroyd and Downie 2006). Many genes that are expressed
during nodulation are also induced during mycorrhization, providing some evidence
about the functional overlap between root symbiosis (Albrecht et al. 1998; Journet
et al. 2001).

Two Nod-factor receptor kinases (nodulation specific), NFR1 and NFR5 have
been known to affect the earliest Nod-factor responses (Radutoiu et al. 2003), but not
the AM symbiosis (Wegel et al. 1998), suggesting that the fungal signaling factor
(Kosuta et al. 2003) is different from Nod factor. Little is known about the mecha-
nism of association between the fungi and the plant; however, some plant signaling
components that play a role in symbiosis are already known. These include a
predicted ion channel (Ané et al. 2004; Imaizumi-Anraku et al. 2005), a receptor
like kinase (Endre et al. 2002; Stracke et al. 2002), and calcium and calmodulin
dependent protein kinase (Levy et al. 2004; Mitra et al. 2004), controlling the
common bacterial and fungal symbiotic pathway. Genes encoding these proteins
are called the common SYM genes. These genes control the process of symbiosis
(Kistner and Parniske 2002). Seven genetic loci have been identified so far in Lotus
japonicas for their participation in the common symbiotic pathway. Calcium spiking
(oscillations in cytoplasmic calcium level due to certain signaling process of symbi-
osis) was observed in several legumes (Kosuta et al. 2008; Oldroyd and Downie
2006; Wais et al. 2000) showing nodulation and mycorrhizal development. Mem-
brane intrinsic protein MtAqp1 was induced during mycorrhizal symbiosis
(Krajinski et al. 2000), which was predicted to play its role during AM association.
A lipid transferase protein gene was expressed in epidermal cells and it may be
linked with appressorium formation (Breuillin et al. 2010a, b), as the transcript level
increased when the fungus formed appressoria and penetrated the roots. Pumplin
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et al. (2010) indicated a gene encoding VAPYRIN protein required for arbuscular
mycorrhizal symbiosis.

Saito et al. (2007) found that Nucleoporin 85 is required for mycorrhization and
nodulation. Nup85 encodes a nucleoporin 85 which is a family of proteins forming
nuclear pore complex, which together with nucleoporin 133 may help in controlling
symbiosis. This gene is required for calcium spiking during symbiotic signaling
process. Nuclear pore complex mediates mRNA export and protein import. Nod
factor failed to show calcium spiking in Nup85 mutant so symbiosis was affected
(Saito et al. 2007). Study of a M. truncatula 6 k root interaction transcriptome (Mt6k-
RIT) revealed the identification of 752 genes upregulated in mycorrhizal tissues and
also involved in nodulation (Küster et al. 2004; Manthey et al. 2004). Seven Lotus
japonicas genes (SYMRK, CASTOR, POLLUX, SYM3, SYM6, SYM15, and
SYM24) were identified to be required for bacterial and fungal symbiosis (Kistner
et al. 2005). Contrary to these common SYM genes, not many genes involved
specifically in mycorrhiza formation have been characterized through mutational
studies although Zhang et al. (2010) have reported a mycorrhizal specific ABC
transporter gene. Another phosphate transporter which is indispensable for mycor-
rhizal symbiosis has been demonstrated by Javot et al. (2007). A widespread
mutualistic association of land plants and fungi is arbuscular mycorrhizal symbiosis
(AMS) which is suggested to have originated early in the evolution of land plant
(Bidartondo et al. 2011; Taylor et al. 1995). Most of the genes required for AMS
have similarities with the evolutionary nitrogen-fixing rhizobium legume symbiosis
(RLS) or by reverse genetic analysis of differently expressed candidate genes
(Gutjahr and Parniske 2013). Genes required for AMS are conserved and are present
in only in host plants and absent from non-host species. For example, two ABC
transporters (STR and STR2), a GRAS transcription factor (RAM1), a phosphate
transporter (PT4), and a lipid biosynthetic enzyme (RAM2) are all required for AMS
and are found only in AMS host plant (Harrison et al. 2002; Wang et al. 2012).

AM symbiosis is very ancient as compared to rhizobial symbiosis (Parniske 2008;
Remy et al. 1994). This gives an indication that the AM signaling pathway had
developed first and rhizobial symbiosis later (Sprent 2007); hence, many genes
became common between the two symbiotic pathways, performing their functions
in mycorrhizal and in nodulation processes. Predicted functions of these genes
include membrane transport, defense and stress responses, primary metabolism,
and regulation of gene expression. Two genes, MtC93310 and MtC50410, were
identified to be induced during arbuscular mycorrhizal symbiosis. MtC50410
belongs to Gras family of transcription factors and it is a homologue of RGA1 and
GAI from A. thaliana (Manthey et al. 2004; Peng et al. 1997; Pysh et al. 1999;
Truong et al. 1997). Transcription factors perform their function alone or with other
proteins in a complex by activating or blocking the recruitment of RNA polymerase
(an enzyme that performs the transcription of genetic information from DNA to
RNA (Latchman 1997)). Previously two GRAS transcription factors NSP1 and
NSP2 were identified to play their role during symbiosis (Smit et al. 2005; Kaló
et al. 2005; Maillet et al. 2011).
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6.5 Signal Exchange and Recognition

Exchange of signals occurs between the plant and fungi, as a result of which the plant
and AM fungal interaction is initiated (Harrison 2005). Certain signal molecules are
released by plant roots which are called the branching factors (BFs). AM fungi
develop branching as a result of these signal molecules. Akiyama et al. (2005)
isolated a branching factor from the root exudates of a model legume Lotus
japonicus, and it was identified as 5, deoxystrigol (strigolactone). These were
previously isolated as seed germination stimulants, from the parasitic plants Striga
and Orobanche (Bouwmeester et al. 2003). The germination of fungal spores can
occur in the soil in the absence of the plant signals; however, extensive growth of the
fungal hyphae occurs due to the root exudates of the plants especially the
strigolactones.

The molecular and cellular events are triggered in AM fungi due to release of
strigolactones from the host roots, which help in stimulating the fungal growth
(Akiyama et al. 2005; Besserer et al. 2006). The expression of mitochondrial related
genes is also induced due to these root exudates; hence, there is activation of fungal
respiratory activity (Tamasloukht et al. 2003). A few examples of natural
strigolactones are: 5, deoxystrigol, strigol, strigyl acetate, sorgolactone, orobanchol,
alectrol. GR24 and GR7 are examples of synthetic analogs. Strigolactones have been
isolated from root exudates of many monocots like maize, millet, sorghum, and
dicots including cotton, cowpea, red clover, Menispermum dauricum, and Lotus
japonicus (Akiyama et al. 2005; Akiyama 2007; Cook et al. 1966, 1972; Hauck et al.
1992; Muller et al. 1992; Siame et al. 1993; Yasuda et al. 2003; Yokota et al. 1998).
Their characterization is difficult due to their instability and very low concentration.
Flavonoids are also present in plant root exudates and are important in the symbiotic
rhizobium legume interaction. They are inducers of rhizobial nodulation genes,
involved in the synthesis of lipochitooligosaccharide signals called Nod factor
(Perret et al. 2000). Flavonoids also stimulate the growth and branching of fungi
(Becard et al. 1992; Gianinazzi-Pearson et al. 1989; Tsai and Phillips 1991).

The stimulatory effect of flavonoids on AMF hyphal growth depends on the
chemical structure of the compound (Becard et al. 1992; Chabot et al. 1992;
Scervino et al. 2007). The flavonoid pattern was altered in mycorrhizal roots and it
may be due to the developmental stage of the AM symbiosis as demonstrated by
Harrison and Dixon (1993) and Larose et al. (2002). Fungi release diffusible
symbiotic signals which are called Myc factors (Maillet et al. 2011). These myc
factors are similar to Nod factors in their structure and are a mixture of sulfated and
non-sulfated simple lipochitooligosaccharides (LCOs). This diffusible factor is
recognized by the plants and certain genes are activated in the plant roots which
may help in the development of AM symbiosis. A mycorrhiza specific factor (Myc)
induced the expression of MtENOD11 in the roots of Medicago truncatula (Kosuta
et al. 2003). Chabaud et al. (2002) also reported the activation of MtENOD11 gene
in epidermal and cortical cells in response to inoculation by Gigaspora rosea.
Mycorrhizal colonization was also reported to be increased as a result of Nod factor
(Olah et al. 2005). About hundred genes expressed in mycorrhizal roots have been
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isolated. Inoculation with different fungi Glomus mosseae and Glomus intraradices
resulted in overlap of genetic program (Hohnjec et al. 2005). One member of an
AM-induced gene encoding blue copper binding proteins (MtBcpl) was expressed in
arbuscule-containing cells, indicating some role of this gene in mycorrhizal symbio-
sis (Hohnjec et al. 2005). Recently two mycorrhiza specific blue copper binding
genes were identified in M. truncatula Jemalong 5 (Parádi et al. 2010). It is possible
that these copper binding genes play some role in mycorrhizal symbiosis. To
understand the mechanism of association of functional AM symbiosis, detailed
analysis of the promotor can also help in the identification of upstream regulatory
mechanism of AM. By using the promotor reporter gene fusion the expression
pattern driven by mycorrhiza specific promoters of M. truncatula was identified as
described by Krajinski and Frenzel (2007).

6.6 Inoculation of AM Fungi in Contaminated Soil

AMF protect the plant from polluted soil by accumulating or sequestering the toxic
metal ion (Weissenhorn et al. 1995; Diaz et al. 1996; Gonzalez-Chavez et al. 2004).
Inoculation of suitable strains of AMF may help in bioremediation of the
contaminated soil. Several different types of heavy metals contaminate the soil.
AMF could help in promoting growth of plant in heavy metal contaminated soil
(Bano and Ashfaq 2013; Leyval et al. 2002; Turnau et al. 2006; Khade and Adholeya
2007; Sheoran et al. 2010). AM inoculation also improves the yield of crop as well as
survival of trees in dry conditions, due to the presence of specific strain of vascular
arbuscular mycorrhizal fungi.

6.7 Molecular Identification of AMF

Analysis of DNA of AMF involves the use of various markers. The use of these
markers began in the early 1990. The smallest subunit (SSU) rRNA gene, the
internal transcribed spacer (ITS), and the large subunit (LSU) rRNA gene are
currently the most commonly used DNA markers. Ecological study used the SSU
region, while taxonomic construction of the Phylum Glomeromycota utilizes ITS
and LSU region.

6.8 Steps of AM Symbiosis

AM symbiosis increases the area of soil from which the plants can access mineral
nutrients as the fungal hyphae grow in areas which the plant roots have not accessed
(Smith and Read 2008). After the germination of fungal spores, some morphological
changes (e.g., fan like structures of hyphae and increase in hyphal length) occur in
the hyphae which increase the possibility of contact between hyphae and host roots
(Fig. 6.4). The biochemical (chemical composition) and topographical properties
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(configuration of the surface) of the host root cell wall help in the formation of AM
fungal appressoria (Giovannetti et al. 1993; Nagahashi and Douds 1997). The fungal
hyphae grow through the plant roots by passing through the root epidermal,
exodermal, and cortical cell layers to reach the inner cortex (Fig. 6.4). The
arbuscules, the symbiotic functional units are formed in the cortex. The host plasma
membrane invaginates and proliferates around the arbuscule (Alexander et al. 1989;
Bonfante-Fasolo 1984; Gianinazzi-Pearson 1996; Harrison 1999). These studies
suggested a 3.7-fold increase in host plasmalemma as a result of which the
periarbuscular membrane is formed. In this way a new apoplastic space is created
between periarbuscular membrane and the arbuscule, called the periarbuscular space
(Bonfante and Perotto 1995; Harrison 1997). This creates a symbiotic interface
which helps in the transport of nutrients to the plant roots and photosynthates from
plant to the fungus. Schoknecht and Hattingh (1976) and Cox et al. (1980) suggested
that the phosphate transport between the fungus and the plant occurs at the
periarbuscular membrane. The movement of phosphorus from the soil to the plant
occurs through fungal hyphae (Pearson and Jakobsen 1993; Sanders and Tinker
1971; Smith and Gianinazzi-Pearson 1988) and the phosphate is translocated as
polyphosphates. Before flowing outward from arbuscule to the periarbuscular space,
the polyphosphates are degraded to phosphate (Cox et al. 1980; Solaiman et al.
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Fig. 6.4 Developmental stages of the arbuscular mycorrhizal association. 1: fungal spores, 2: spore
germination, 3: hyphal elongation, 4: hyphal branching, 5: hyphal attachment to plant root, 6:
penetration of plant roots by fungal hyphae, 7: arbuscules and vesicles formation
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1999). Different stages of development of arbuscular mycorrhizal symbiosis are
shown in Fig. 6.4.

6.9 Mechanism of Nutrient Transport in AM Symbiosis

The symbiotic interfaces for the transport of nutrients are developed during the
colonization process of host plant root (Smith and Smith 1990). Two different
types of symbiotic interface are found: (1) intercellular in which fungal hyphae
occur within the intercellular spaces of root cortex and (2) intracellular in which
fungal hyphae penetrate the walls of the root cells. These interfaces along with
symbiotic structures (arbuscules and hyphae) play important role in nutrient trans-
port (Gianinazzi-Pearson et al. 1991). The transport of nutrients between the two
partners of the mycorrhizal association involves two processes: (1) The solutes flow
out from donor organism as passive transport process into the interfacial apoplast.
(2) These nutrients are taken up by active uptake by the receiver organism (Smith
and Read 2008). Woolhouse (1975) hypothesized the existence of active
mechanisms involved in the transfer of carbon and phosphate. The passive nutrient
transport system involves the transport of nutrients to and from the plant along a
concentration gradient without the use of metabolic energy. Diffusion of nutrients to
the plant occurs, when these nutrients are low in concentration in the plant cells,
while being higher concentration in plants, the carbon compounds are transported
from the leaves to the fungal cells as fungi need carbohydrates to fulfill their food
requirements.

It was proposed that the nutrient transport processes in the AM association are
linked to transport proteins which are present in the plant and fungal plasma
membranes (Harrison 1999). Various cytochemical studies have indicated that the
periarbuscular membrane shows H + -ATPase activity; hence, a proton gradient is
created which facilitates the transport of nutrients to the plant. H + -ATPases belong
to a large family of pumps which are called P type ATPases. All these are energized
by ATP and form a phosphorylated aspartyl intermediate during the reaction cycle,
hence the name P type. The plasma membrane H + -ATPase is a single subunit
protein of approximately 950–1000 amino acid residues (Geisler and Venema 2011).

The intracellular and extracellular pH is also maintained as a result of activity of
H + ATPases (Smith and Raven 1979). H + -ATPases are widespread in plants, for
example, they are present in guard cells and function in stomatal opening.
H + ATPase in root hairs functions in the transport of nutrients. They are highly
concentrated in phloem and help in long distance transport. Their main function is
energization of transport of nutrients. H + -ATPases are integral membrane proteins
that move metabolic solutes across the membranes against their concentration
gradient. These are called transmembrane ATPases. Several genes encoding H +-
-ATPases in different plants have been identified previously. Gianinazzi-Pearson
et al. (2000) demonstrated the induction of two H + -ATPase genes in arbuscule-
containing cells by using promoter β-glucuronidase (GUS) fusions. AM fungi
regulate the expression of H + -ATPase genes in tomato (Rosewarne et al. 1999).
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Ferrol et al. (2002) also indicated the presence of transcripts of H + -ATPase genes in
wild type while they were absent in the mycorrhiza defective mutants plants of
tomato. This indicates that H + -ATPases may be associated with mycorrhizal
symbiosis.

6.10 Requirement of Phosphorus for Plants

Phosphorus is found in two forms in soil, which are organic and inorganic. A few
examples of organic phosphorus are plant residues, manures, and microbial tissues.
The amount of organic phosphorus in soil ranges from 5 to 90% of total soil
phosphorus. Sources of inorganic phosphorus (Pi) include complexes of iron and
aluminum phosphate, phosphorus absorbed on clay particles, and apatite (the origi-
nal source of all phosphorus). These organic and inorganic phosphorus compounds
exhibit reduced solubility in water. The phosphate concentration in the soil solution
can be less than 10μM due to rapid adsorption of phosphate ions to clay and organic
matter (Bieleski and Ferguson 1975; Holford 1997). Hence a lesser amount of
phosphorus is available for absorption by roots, while the Pi concentration in the
living plant cells is within millimolar range. Two ionic forms of phosphorus that can
be absorbed by plants are H2PO4� and HPO42�. These phosphate ions have more
reactivity with the soil particles and hence become part of soil particles by fixation
process (Bache 1964). The locking up of nutrients in the soil is the driving force for
symbiotic relationship. This fixed form of phosphorus cannot be used by the plants.
Mycorrhizal fungi help in the acquisition of phosphorus for the plants that support
this symbiotic association (Bolan 1991; Smith and Read 2008). Organic sources of
phosphorus (e.g. phytic acid and nucleic acids) are also acquired by mycorrhizal
fungi to convert it to the available form for the plants (Jayachandran et al. 1992). The
phosphatase enzyme released by the extraradical arbuscular mycorrhizal hyphae
breaks down the bonds which are present between various elements of the organic
phosphorus (Joner et al. 2000). Hence the majority of the plants having mycorrhizal
association are better in growth as compared to non-mycorrhizal plants (Feng et al.
2003; Smith and Read 2008; Tarafdar and Marschner 1995).

6.11 Phosphate Transporters

Plants having AMF association have extraradical hyphae in the roots, which increase
the area for absorption of minerals especially phosphorus (Jackobsen 1999). These
extraradical hyphae have phosphate transporters, which help to absorb phosphorus
from the soil (Harrison and Buuren 1995; Harrison and Dixon 1993). This explains
that fungal hyphae are initial sites of phosphate uptake. Two different groups of
phosphate transporters have been identified and cloned in recent years. The high
affinity transporters as the name suggests show a high affinity for phosphate and
operate in the micromolar range, while the low affinity transporters work at the
concentrations in the millimolar range (Bieleski and Ferguson 1975). The
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low-affinity phosphate transporters show sequence similarity with the eukaryotic
sodium dependent phosphate transporters (Daram et al. 1999). A low-affinity phos-
phate transporter is present in the chloroplast membrane and it also influences the
allocation of phosphorus within the plant (Versaw and Harrison 2002). High affinity
phosphate transporters are expressed during phosphorus starvation conditions and
have been cloned from the roots of various plant species, for example, Medicago
truncatula MtPT1 and MtPT2 (Chiou et al. 2001; Liu et al. 1998b); tomato LePT1
and LePT2 (Daram et al. 1998; Liu et al. 1998a); Arabidopsis (AtPT1 and ATPT2)
(Muchhal et al. 1996; Smith et al. 1997). Expression of the phosphate transporter in
tomato root suggested its contribution in phosphate uptake (Daram et al. 1998).

Two genes MtPT4 in M. truncatula and StPT3 in potato were found to be
expressed in the arbuscule-containing cells (Harrison et al. 2002; Rausch et al.
2001). This suggests the role of these genes in symbiotic association for the transport
of phosphorus. Similarly a rice phosphate transporter OsPT11 was identified to be
expressed during the arbuscular mycorrhizal symbiosis. Its activation was indepen-
dent of the soil phosphate and nutrient availability, while it was strictly correlated
with the degree of root colonization by Glomus intraradices (Paszkowski et al.
2002). Another tomato phosphate transporter had been identified that may be
involved in the uptake of phosphorus. This was suggested by obtaining the high
transcript levels in arbuscule-containing cells (Rosewarne et al. 1999). Chiou et al.
(2001) showed that MtPT1 protein levels decrease in roots during development of a
symbiosis and it was not detected in roots colonized by AM fungi indicating that this
transporter may not be involved in symbiotic phosphate transport. The activity of
phosphate transporters is linked to H+-ATPases, for the production of a proton
gradient to provide a force for the transport of nutrients between fungi and plant
(Schachtman et al. 1998). One member of H+ ATPase gene family was expressed in
roots of M. truncatula in arbuscule-containing cells (Krajinski et al. 2002) on AM
colonization. The association of phosphate transporters with the periarbuscular
membranes suggests the uptake of phosphorus through the mycorrhizal pathway.

6.12 Conclusion and Future Prospects

Application of AMF may replace the use of industrial fertilizers as these improve the
growth of plants and protect plants under abiotic and biotic stress conditions. AMF
inoculation also provides an environmental friendly approach to nourish plants.
There is a need to produce different arbuscular mycorrhizal bio-fertilizers on large
scale for food security. Lab experiments should be extended to different biogeo-
chemical zones for field applications. Researchers, private and public sectors must
participate to increase the production of AMF and extend its use in different
countries. In the future there is need to identify genes which are responsible for
AMF mediated growth of plants under salinity, drought, and other such environ-
mental stress conditions. In this context both plant and arbuscular mycorrhizal
fungus genes could be explored.
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Plant–Soil–Microorganism Interaction
Involved in Natural Suppression of Take-All
Disease

7

Paola Durán and María de la Luz Mora

Abstract

Take-all disease is the most important root disease in wheat caused by the fungus
Gaeumannomyces graminis var. tritici. Considering economic importance of
wheat, the disease is a serious problem worldwide. The effective and economi-
cally feasible control of the disease is a major problem around the globe.
Strategies based on chemical control of take-all have been inefficient due to
that the control of soil-borne pathogen is depending on the use of soil fumigants
of broad-spectrum gaseous as methyl bromide, chloropicrin, metam sodium
which are unacceptable in agriculture. The discovery of suppressive soils involv-
ing major plant–microbe interactions resulted in some significant advances,
particularly in elucidating the role of the enzymes. These microbes through
several mechanisms including the biocontrol, antibiosis, systemic resistance in
plants (ISR) have made advanced progress in identifying major factors involved
host range and pathogenicity determining as well as recognizing the mechanism
that explains disease suppression. Moreover, the high-throughput sequencing
techniques open new avenues for microbial control of plant disease considering,
for example, the engineering plant microbiome to improve the plant health and
food security.

Keywords

Wheat · Root disease · Soil-borne pathogen · Biological control ·
Gaeumannomyces graminis

P. Durán (*) · M. de la Luz Mora
Scientific and Technological Bioresource Nucleus, Biocontrol Research Laboratory, Universidad
de La Frontera, Temuco, Chile
e-mail: paola.duran@ufrontera.cl

# The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2021
M. Kaushal, R. Prasad (eds.), Microbial Biotechnology in Crop Protection,
https://doi.org/10.1007/978-981-16-0049-4_7

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-0049-4_7&domain=pdf
mailto:paola.duran@ufrontera.cl
https://doi.org/10.1007/978-981-16-0049-4_7#DOI


7.1 Introduction

Take-all disease is caused by the soil-borne pathogenic fungus Gaeumannomyces
graminis. This pathogen causes the most important root disease of wheat (Triticum
aestivum L.) worldwide (Hornby 1983; Cook 2003). However, Ggt can affect
another cereal plants as rye (Secale cereale L.) and triticale (�Triticosecale, hybrid
of wheat and rye). This fact affects significantly the cultural control of the pathogen,
due to agronomic rotation is a better alternative that consists of the culture with
non-susceptible crop hosts for 1–2 years (Cook 2003).

The discovery of suppressive soils limiting the proliferation or damage of the
pathogen opened new alternatives for environmentally friendly techniques for soil-
borne disease biocontrol. This is very important due to the soil-borne pathogen could
increase their incidence as a consequence of climate change (Delgado-Baquerizo
et al. 2020).

Soil suppression is defined as the ability of a natural soil to reduce or suppress the
activity of plant pathogens, mostly due to the presence and activity of soil
microorganisms. Their presence increases the ecosystem resilience by creating
redundancy in ecosystem services, making soil less vulnerable to short-term changes
in the environment (Wall et al. 2012). The suppressiveness could be achieved
indirectly by creating a physical environment that limits the survival, spread, or
infectivity of the pathogen, or favors the plant over the pathogen; or directly by
supporting the proliferation of antagonistic microorganisms (Löbmann et al. 2016).
For example, several studies showed the relation of Pseudomonas spp. and Ggt
suppression due to the production of 2,4-diacetylphloroglucinol (DAPG) (Weller
et al. 2002; Garbeva et al. 2004; Mavrodi et al. 2007; Yang et al. 2014).

Aspects of suppressiveness are still debated, as the relation between pathogen
density and disease incidence. In the case of Fusarium sp. suppression, early studies
reported no relation between these parameters (Amir and Alabouvette 1993).
Mazzola (2002) defined suppressive soils as those in which disease development
is minimal even in the presence of a virulent pathogen and a susceptible plant host.
On the other hand, authors showed that the magnitude of suppression of take-all is
largely dependent on the amount of the pathogen present in the soil relative to the
natural antagonists, the cropping history, and the soil types, likely resulting in
differing capability to suppress take-all (Cook 2003; Chng et al. 2015). In
Gaeumannomyces graminis, recent studies revealed that no differences in fungal
concentration between suppressive and conducive soils were found, confirming that
suppressive soils had low disease incidence despite Ggt DNA concentration (Duran
et al. 2018). Similarly, Chng et al. (2015) evidenced low disease severity coupled
with high Ggt DNA concentrations in roots. Thus, despite that suppressive soils have
been studied for over 100 years (Chandrashekara et al. 2012) and have been
demonstrated for a wide range of soil-borne plant pathogens including bacteria,
nematodes, oomycetes, and fungi (Table 7.1). Techniques to take advantage the
important niche of suppressive soils have not developed.

Actuality, considering that recombinant DNA techniques have provided a solu-
tion to obstacles associated with the use of culture-dependent techniques generating
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Table 7.1 Soil-borne pathogen suppression

Strain
Country/
source soil Plant Cause Reference

Fungi

Rhizoctonia solani,
Fusarium sp

Brazil/
pasture,
fallow
ground,
forest

Common bean Abiotic (hydrolysis of
fluorescein diacetate,
CO2)
Biotic (total microbial
activity)

Ghini and
Morandi
(2006)

Rhizoctonia solani Egypt Sugar beet Plant growth
promoting (PGP
yeast), Candida
valida, Rhodotorula
glutinis,
Trichosporon asahii

El-Tarabily
(2004)

Rhizoctonia solani India Rice Pseudomonas spp Rangarajan
et al. (2003)

Rhizoctonia
solani,
Pythium
aphanidermatum,
fusarium
oxysporum

Belgium Mungbean PGP rhizobacteria
(Brevibacillus brevis,
Bacillus subtilis)

Li et al.
(2005)

Rhizoctonia
solani,
Macrophomina
phaseolina,
Fusarium solani

Pakistan Tomatoes PGP rhizobacteria
(Pseudomonas
fluorescens,
Pseudomonas
aeruginosa,
Bradyrhizobium
japonicum)

Siddiqui and
Shaukat
(2002)

Rhizoctonia solani Germany Sugar beet Abiotic (pH)
Biotic (Actinomyces,
Bacillus,
Pseudomonas)

Latz et al.
(2016)

Rhizoctonia solani Netherlands Sugar beet Proteobacteria,
Firmicutes,
Actinobacteria

Mendes
et al. (2011)

Fusarium sp. Substrate Cucumber Sludge compost:
Sewage sludge (pig
manure), sawdust,
matured sludge
compost

Huang et al.
(2012)

Fusarium sp. Substrate Chrysanthemum Composted sewage
sludge into the Pinus
bark-based substrate

Pinto et al.
(2013)

Fusarium sp. Substrate Tomatoes Sewage sludge and
yard wastes

Cotxarrera
et al. (2002)

Fusarium spp. China Peanut Intercropping of
peanut with
Atractylodes lancea

Li et al.
(2018)

(continued)
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Table 7.1 (continued)

Strain
Country/
source soil Plant Cause Reference

Pythium ultimum Sweden Wheat Permanent soil cover
and a balanced
nutrient

Löbmann
et al. (2016 )

Fusarium
oxysporum

Algeria Palm groves Soil abiotic factors
(i.e., clay addition to
sandy soil)

Amir and
Alabouvette
(1993)

Fusarium
oxysporum

Korea Strawberry Actinobacteria Cha et al.
(2016)

Fusarium
oxysporum

Brasil Common bean Pseudomonadaceae,
Bacillaceae,
Solibacteraceae, and
Cytophagaceae

Mendes
et al. (2018)

Fusarium solani Pakistan Tomatoes PGP rhizobacteria
(Pseudomonas
fluorescens,
Pseudomonas
aeruginosa,
Bradyrhizobium
japonicum)

Siddiqui and
Shaukat
(2002)

Gaeumannomyces
graminis

Chile Wheat Soil microbiome Andrade
et al. (2011)

Gaeumannomyces
graminis

Chile Wheat Endophytic
microbiome

Durán et al.
(2017, 2018)

Gaeumannomyces
graminis

Australia Wheat Stubble retention and
reduced tillage

Donovan
et al. (2006)

Bacteria

Ralstonia
solanacearum

Japan Tomato Soil bacteria Shiomi et al.
(1999)

Xanthomonas
oryzae

India Rice Pseudomonas spp Rangarajan
et al. (2003)

Streptomyces spp USA Potato Lysobacter,
Acidobacteria

Rosenzweig
et al. (2012)

Nematode

Heterodera
avenae

UK Oat Verticillium
chlamydosporium,
Nematophthora
gynophila

Kerry et al.
(1982)

Meloidogyne
javanica

Belgium Mungbean PGP rhizobacteria
(Brevibacillus brevis,
Bacillus subtilis)

Li et al.
(2005)

Meloidogyne
javanica

Pakistan Tomatoes PGP rhizobacteria
(Pseudomonas
fluorescens,
Pseudomonas
aeruginosa,
Bradyrhizobium
japonicum)

Siddiqui and
Shaukat
(2002)
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independence on cultivating those organisms in the laboratory (Foo et al. 2017).
Additionally, with the sequencing of RNA that includes full-length cDNA analyses,
serial analysis of gene expression (SAGE)-based methods, and noncoding RNA
improvement, the next-generation sequencing as “meta-omics’ tools have been
improved widely the progress in research that involved the study of microbiomes,
defined as microbiota, metagenome, and surrounding environment of a microbial
community (Sheth et al. 2016).

Here, we review new research horizon in agriculture to improve plant health by
engineering microbiome from conducive to suppressive soil considering
Gaeumannomyces graminis as a model to propose the next generation to soil-
borne disease biocontrol.

7.2 The Pathogen Causing of Take-All Disease

Take-all is caused by the fungus Gaeumannomyces graminis (Sacc.) Arx et Olivier
var. tritici (Walker) or Ggt. This fungus is an ascomycete belonging to the family
Magnaporthaceae and also affects barley, rye, and related grasses as triticale, but is
best known and is most important for the disease it causes on wheat (Cook 2003).

G. graminis can survive saprophytic on infected or dead root and crown debris
from previous crops through parasitism causing primary infection (Fig. 7.1a, b),
where the pathogen uses these substrata as source of food to infect the next wheat
crop (Hornby 1983). Roots come into contact with the ascospores and dark runner
hyphae of Ggt colonize the roots superficially and then penetrate directly by hyaline
hyphae beneath the hyphopodia into the roots cortex and across the endodermis into
the stele obtaining nutrients, carbon, and energy becoming to the secondary infection
(Fig. 7.1c, d) (Gilligan et al. 1994; Fang 2009; Weller 2015).

The infection starts as a root rot, causing stunting and deficiency of nutrient in the
shoots due to that the mycelia invading causes disrupting water transport and
assimilates translocation due to the colonization of vascular tissues causing charac-
teristic black lesions and runner hyphae continue to grow over the root surface, to
other roots, and upward to the crown and stem bases (Cook 2003; Weller 2015). The
rapid progress of the infection from root to stem basis causes yellowing of lower
leaves, stunting, and premature death of plants (Cook 2003; Weller 2015). In fields
symptoms appear as chlorotic spot due to the presence of symptomatic plants
(Fig. 7.1c).

7.2.1 Control Methods

Strategies based on chemical control of take-all have been inefficient due to that the
control of soil-borne pathogen is depending on the use of soil fumigants of broad-
spectrum gaseous as methyl bromide, chloropicrin, metam sodium which are unac-
ceptable in agriculture (Weller 2015), whereas systemic fungicides as triadimefon
moves very inefficiently or not at all downward into the roots where the early
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protection is needed (Cook 2003). On the other hand, the complexity of the fungal
cycle due to the existence of the primary and secondary infection is related with the
root structure. Thus, Bailey et al. (2004) showed that the seed treatments are
restricted to reduce the infection to the seminal roots by particulate soil inoculum
but secondary infection affects seminal and adventitious root systems and conse-
quently not affects the ability of adventitious roots to pass on the disease. For this
reason, main cultural practice to take-all control is crop rotation with no susceptible
host due to the pathogen is able to survive in crop residue saprophytically as
explained above. Contrary, take-all is also controlled by take-all decline (TAD),
which occurs naturally with wheat monoculture wheat or barley after a severe
outbreak of the disease (Hornby et al. 1998; Weller et al. 2002; Kwak et al. 2012).
This phenomenon has been recently called as host-mediated microbiota engineering
(Rodriguez and Durán 2020).

7.2.2 Biological Control

Biological control of take-all has been poorly studied and the most of studies has
been realized under in vitro conditions. In the last years, studies related with Ggt
biocontrol has been restricted to Pseudomonas fluorescens producers of
2,4-diacetylphloroglucinol (2,4-DAPG) (Mazzola 2002; La Fuente et al. 2004;
Validov et al. 2005; Jamali et al. 2009; Kwak et al. 2009, 2012). However, in natural
soil system Pseudomonas rhizosphere microorganisms comprise only 1–10% of the
total culturable bacteria (Mavrodi et al. 2007) and culturable bacteria represent only
a small portion (1–10%) of total bacteria in the rhizosphere (Nannipieri et al. 2003).
In addition, Pseudomonas strains are highly sensible to desiccation and other
adverse factors, thus the dominance and permanence in soil are a limiting aspect
(Normander et al. 1999; Liu et al. 2009).

Considering that endophytic bacteria have ecological advantage over
rhizobacteria due to plant tissues offer protection against environmental conditions
and they have a stronger association with plants than rhizobacteria (Sturz et al. 1999;
Reiter et al. 2002; Pathak and Keharia 2013). Several reports have been included
endophytic microorganism to be used in agriculture (e.g., soil-borne pathogen
control) (Strobel et al. 1996; Zhang et al. 1999; Strobel and Daisy 2003; Babu
et al. 2013). In this context, Liu et al. (2009) showed that endophytic Bacillus subtilis
can successfully inhibit the development of G. graminis and other phytopathogens
under in vitro and field conditions similar to the treatment with the fungicide
triadimefon. In addition, was able to promote the plant growth of wheat seedlings.
Similarly, Durán et al. (2014) showed that endophytic strains Acinetobacter sp.,
Bacillus sp., and Klebsiella sp. inhibited the Ggt mycelia growth in vitro conditions
(from 30 to 100%).

Due to cereal plants are able to form symbiotic association with arbuscular
mycorrhizal fungi (AMF), Castellanos-Morales et al. (2012) tested the influence of
Glomus mosseae, Glomus intraradices, and Gigaspora rosea against
Gaeumannomyces graminis, demonstrating the influence of AMF on take-all
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incidence despite different colonization rates among Glomus species. In contrast,
Duran et al. (2018) reported no effect of Claroideoglomus claroideum in terms of
root infection on wheat plants inoculated with Ggt. However, mycorrhizal plants
resulted in an increase in plant biomass. Authors attributed this role to endophytic
bacteria (Acinetobacter sp. E6.2 and Bacillus sp. E5) was able to diminish efficiently
the pathogen incidence, confirming the role of these microorganism in order to
promote the plant growth and protect against take-all under greenhouse conditions.

7.3 Soil Suppression Against Take-All Disease

Suppression is termed general suppression when it is based in a general antagonist
effect of the total soil microbial biomass (Mazzola 2002; Weller 2007). In the
general suppression no-specific microorganism or a selected group of
microorganisms is solely responsible for the effect (Cook 2003). These specific
microbes are recently called key species or core microbiome, driving the
microbiome composition and function (Dong et al. 2020). Thus, general suppression
is non-transferrable between soils (Andrade et al. 2011; Kwak and Weller 2013). In
contrast, the so-called specific suppression, which is specific to a particular patho-
genic microorganism and is mediated by specific microorganisms although using
mechanisms similar to those operating in general suppression (Cook 2003; Andrade
et al. 2011). It has been shown that the addition of 1% (w/w) of natural suppressive
soil into sterile suppressive soil inoculated with Ggt is sufficient to transfer the
suppression against take-all disease (Andrade et al. 2011; Chng et al. 2015; Durán
et al. 2017).

7.3.1 Factors Required for Take-All Suppression

According to Weller et al. (2002) three factors are needed to produce take-all
suppression: (1) monoculture of susceptible host, (2) presence of Ggt, and (3) out-
break of take-all (Fig. 7.2). Thus, studies showed that conductive soil where has been
developed the disease and wheat monoculture produces a diminution of disease
although the pathogen is present in soil “suppression” (Garbeva et al. 2004; Andrade
et al. 2011). This phenomenon of take-all decline could be developed during the
traditional agronomic practice of wheat monoculture, where the same crop is
cultivated in the same soil continuously. Regarding the timing, take-all suppression
appeared after 4–6 years of wheat monoculture (Gardener 2004), and even after and
showed that soils with 3–4 years of monoculture under relatively high pathogen
inoculum concentrations (Chng et al. 2015). In fact, early studies by Baker and Cook
(1974) showed that 3 years of successive wheat cropping could be sufficient for the
development of specific suppression.
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7.3.2 Abiotic Factors Involved in Take-All Suppression

Abiotic factors as chemical and physical parameters of soil as pH, organic matter,
and clay content can influence the soil-borne suppression directly affecting the
pathogen, or indirectly through the impact on the soil microbial activity (Mazzola
2002).

7.3.2.1 Soil Chemical Parameters
Physicochemical characteristics such as pH, temperature, chemical composition,
texture, and humidity of a soil can influenceGaeumannomyces graminis suppression
(Whipps 1997). For example, studies shown that G. graminis prefers soil with pH
from 5.5 to 8.5 (Cook 2003; Freeman and Ward 2004). Thus, the pathogen is less
present in soils or rhizosphere soils with less pH, which also can be attributable to the
trace nutrients also can be more available in acid than in alkaline soils (Cook 2003).
This fact was reported previously by Sarniguet et al. (1992), where showed that N
(nitrogen) source is a determinant factor to Gaeumannomyces graminis inhibition.
Thus, NH4 treated soils were more suppressive to take-all disease than NH3 one,
causing more acidic on the rhizosphere and favoring the diseases suppression by soil
microorganisms. Similarly, Durán et al. (2017) showed that rhizosphere microor-
ganism from suppressive Andisol was directly correlated with soil chemistry
mainly P, pH, and Al saturation. However, low knowledge about the influence of
physicochemical soil characteristics on the suppression of take-all disease of wheat
(Andrade et al. 2011).

7.3.2.2 Rainfall
Take-all is most severe when wheat is grown under high rainfall or irrigation
generating a moist ambient, called “Wetland take-all” (Roget and Rovira 1991;
Cook 2003). However, take-all can occur in zones with less than 45 cm of annual
precipitation called “dryland take-all” (Paulitz et al. 2002).

Fig. 7.2 Factors involved in take-all suppression
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However, it is important to consider other abiotic factors that could coexist in
soils. Therefore, criterion is difficult to apply to suppression mediated by abiotic
factors. In fact, studies showed that suppression is more related with soil microbiome
(biotic factors) than abiotic factors due to when soils is sterilized (discarding the
effects of soil microorganisms) (Durán et al. 2017). Thus, soil suppression could
result from biotic and abiotic factors through a diverse and complex set of
mechanisms, the biotic aspects, mainly related to the soil microbiota activity.

7.4 Plant–Microbe–Soil Interactions Involved in Take-All
Suppression

7.4.1 Microbial Rhizosphere Effect on Soil Suppression

The mechanisms implicated in disease suppression by microbial antagonists include
competition for nutrients and colonization sites, antibiosis, synthesis of hydrogen
cyanide (HCN), siderophores production, secretion of cell-wall degrading enzymes,
production of volatile compounds, lowering ethylene, bacteriophages, interference
with the pathogen quorum sensing (quorum quenching), and induction of plant
systemic resistance (ISR) (Bakker et al. 2013; Glick 2015). Thus, microbial rhizo-
sphere may act directly or indirectly through parasitism or antibiosis, amensalism or
competition for resources (Fig. 7.3).

A study realized by Latz et al. (2016) showed that Rhizoctonia solani suppression
in potato plants was mediated by rhizosphere bacteria belong to Actinomyces,
Bacillus, and Pseudomonas genera (Latz et al. 2016). Trivedi et al. (2017) showed
that Fusarium oxysporum suppression could be attributed to multiple soil microbial
genera where Actinobacteria phyla act as biological indicator of soil suppression
against F. oxysporum due to inhibit 25% of pathogen growth when the relative
abundance of Actinobacteria was above 8%, suggesting this microbial phyla as
biological indicator of soil suppression against F. oxysporum. Thus, plants could
repel or attract (recruit) microbes by using exudates exerting a significant effect on
the general health or by managing agronomic practices (Duran et al. 2018; Harkes
et al. 2020). Highlighting that microbial selection should consider the origin of the
microbes, obtaining and culturing of functional core microorganisms and to optimize
the microbial interactions according to their compatibility (Arif et al. 2020).

7.4.2 Antibiosis Influence on Soil Suppression

Antibiosis are commonly the most studied of the mechanisms involved in disease
suppression from microbial rhizosphere species. An antibiotic is a secondary metab-
olite with biocide activity produced by microorganisms to maintain their niche and
territory and to enhance survival prospects in competitive environment (Troppens
et al. 2013). Their production is a normal part of the self-protective arsenals of
multiple microbial species, and consequently these organisms have a great potential
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for soil conditioning (Pereg and McMillan 2015). Among soil microorganisms,
bacteria belonging to genera Streptomyces, Bacillus, and Pseudomonas are particu-
larly prolific producers of secondary metabolites (Troppens et al. 2013). For exam-
ple, it is well known that several groups of antibiotics are involved in the suppression
of fungal phytopathogens by fluorescent Pseudomonas spp. like phenazines,
pyoluteorin, pyrrolnitrin, and the polyketide 2,4-diacetylphloroglucinol (DAPG)
(Yang et al. 2014).

DAPG has been reported as an efficient inhibitor of bacteria, fungi, oomycetes,
and nematodes (Troppens et al. 2013). Indeed, this antibiotic is highly capable to
inhibit efficiently Ggt and other soil-borne pathogens as Rhizoctonia solani
(Garbeva et al. 2004; Yang et al. 2014). Early studies carry out by Baker and
Cook (1974) showed that repeated monoculture of take-all susceptible host favored
the presence of dominant microbial species in the rhizosphere. Later research
revealed that microbial activities in the soil were likely responsible for the onset of
take-all decline (TAD) (Cook 2003; Weller et al. 2002), as it is the case of
populations of 2,4- diacetylphloroglucinol (2,4-DAPG)-producing (Phlþ) Pseudo-
monas fluorescens. Ggt is highly susceptible to the antibiotic 2,4-DAPG, which
accumulates in the rhizosphere in sufficient amounts for disease control when the
bacteria reach a (above a threshold density of 105 CFU g�1 root, Weller et al. 2002;
Weller 2007). Despite 2,4-DAPG is known to induce systemic resistance (Weller
et al. 2012) and the pathogen do not develop tolerance in TAD fields even after
decades of wheat monoculture (Kwak et al. 2009). Furthermore, 2,4-DAPG is
clearly stable and persistent in the rhizosphere (Kwak et al. 2012), studies realized
by Brazelton et al. (2008) reported that 2,4-DAPG altered tomato root morphology
and physiology, causing brown roots and inhibition of primary root growth and
stimulation of root branching. Later, Kwak et al. (2012) showed similar alterations in
wheat roots at final concentration of 10 μg mL�1. Recently, Durán et al. (2017)
tested the influence of 2,4-DAPG-producing bacteria by phlD gene occurrence in
suppressive soils from Chile, but the presence of these microorganism was only
detected in one out of the six suppressive soils.

7.4.3 Plant Defense Against Take-All Disease

Disease occurs when a susceptible plant is infected by a infective pathogen under
environmental conditions that favor disease (Surico 2013). However, plants are able
to induce defense mechanisms against infectious diseases (basal resistance). These
mechanisms can be grouped into pre-existing barriers and post-existing. In the case
of pre-existing mechanism against pathogens is well known the structural defense
mechanisms (i.e., the wax layer and cuticle, epidermal layer, cytoskeleton) and
pre-existing biochemical defense are well known (i.e., phytohormones,
phytoanticipins, anti-microbial compounds (i.e., terpenoids, pyrethrins,
diterpenoids, saponins) (Doughari 2015).

Saponins are glycosylated triterpenoids (triterpenoids with attached sugar groups)
that are present in the cell membranes of many plant species which have deter
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properties and act by disrupting the cell membranes of invading fungal pathogens
(González-Lamothe et al. 2009). In general, cereals and grasses are deficient in
saponins. However oat had been widely described as saponin producer and has been
early implicated in the resistance of oats to Gaeumannomyces graminis var. avenae
(Osbourn et al. 1994). The antifungal activity of avenacin is associated with
complexes formation with sterols present in fungal membrane leading to pore
formation and loss of membrane integrity (Morrissey and Osbourn 1999). The
localization of avenacin is in the epidermal cell layer of oat root tips and in the
emerging lateral root initials, suggesting a role as a chemical barrier (González-
Lamothe et al. 2009). Moreover, roots of plant also may interact via plants by
priming plant defense reactions and rhizodeposits that in turn may select microbial
populations in the rhizosphere and soils can influence the interaction among
microorganisms themselves (Glick 2015). Thus, microbial through several
mechanisms including the suppression of infectious diseases, for example, inducing
systemic resistance in plants (ISR) which has been recognized as the mechanism that
at least partly explains disease suppression (Bakker et al. 2013).

7.4.4 Induced Systemic Resistance (ISR) as the Mechanism
of Disease Suppression

Induced resistance could be triggered by abiotic and biotic (including avirulent
strains). In general, induced resistance is of the systemic type due to defensive
capacity may be produce in non-infected tissues (Van Loon et al. 1998). Induced
systemic resistance (ISR) is a state of enhanced defensive capacity developed by a
plant when appropriately stimulated and induced by a PGPB (Van Loon et al. 1998;
Glick 2015). However, plants also may develop systemic resistance induced by the
pathogen itself is called systemic acquired resistance (SAR). However, induced
resistance is not always expressed systemically and only is located in tissues
primarily involved (Localized acquired resistance, LAR) (Van Loon et al. 1998).
SAR and LAR are similar in terms that could be effective against various types of
pathogens. However, SAR is characterized by an accumulation of salicylic acid
(SA) that also can be stimulated by exogens application of SA, whereas ISR has been
involved with the accumulation of jasmonic acid and ethylene (Glick 2015). There-
fore, SA and JA are major hormonal regulators of the plant immune signaling
network, where SA is typically effective against infection by biotrophic pathogens,
whereas JA is essential for the immune response against necrotrophic pathogens and
herbivorous insects (Pieterse et al. 2012).

During the last decades ISR has been recognized as an effective mode of action
for a range of microbial that acts as biological control agents. Thus, disease suppres-
sion has been evolved with competition for nutrients, antibiosis, and ISR (Bakker
et al. 2013). In this context, several studies showed that Pseudomonas can activate a
plant defense system by ISR in wheat plants affected by Gaeumannomyces graminis
by the production of 2,4-DAPG antibiotic (Kwak and Weller 2013). However, the
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effectivity of Pseudomonas strains as bioinoculant is limited due to their low
capacity of survival on soil.

7.5 Conclusions

Studies related with soil disease suppression are numerous, mainly considering
biotic factors associated with the disease incidence diminution as microbial compo-
sition; however, the mechanisms involved are multiple and complexly
interconnected. In fact, studies of plant–microbe–soil interactions guaranty a better
understanding of these processes to facilitate their successful applications in bio-
technology. Mainly, based in the important niche that offer suppressive soil in terms
of microbial effect against to Gaeumannomyces graminis, considering that this soil
could be lost in the short term due to industrialization and intensive agriculture. The
next-generation sequencing opens new alternatives to plant biocontrol, considering,
for example, the engineering plant microbiome in order to improve the plant health
and food security.
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Improved Practices Through Biological
Means for Sustainable Potato Production 8
Anchal Rana and Prakriti Jhilta

Abstract

Potato (Solanum tuberosum L.) is the most important non-grain food crop in the
world; ranking fourth in terms of total production. It is grown in around
150 countries spread across both temperate and tropical regions at elevations up
to 4000 m. Globally, production of potato amounted to approximately 376.83
metric tons. In India, West Bengal is the largest potato producing state. Potato
holds a great potential as food for ever increasing population. Potential yields of
potato are determined by the characteristics of the crop and various biotic and
abiotic factors. Among biotic factors, pathogens like fungal, bacterial, viral,
insects, and nematodes play a crucial role leading to overall yield loss of
30–40%, thus threatening its food security. In order to increase the potato
production holistic crop protection approach with a range of strategies encourag-
ing natural pest predators, breeding varieties with pest/disease resistance, planting
certified seed potatoes, growing tubers in rotation with other crops, and organic
composting to improve soil quality are evident. Integrated Nutrient Management
(INM) also helps in improvement of quality and quantity of production besides
enhancing the sustainability and health of the soil. Proper use of insecticides has
proven effective when used as an additional tool in integrated pest management
(IPM) practices. Traditional management practices like the use of host-plant
resistance, mechanical, biological, chemical, and cultural means of control are
not fully expolerd. Conservation farming practices also play important role to
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restore soil and enhancing soil health and play important role to combat climate
change issue. The present chapter discusses the importance of improved agro-
nomic practices for sustainable potato production.

Keywords

Solanaceae · Agronomic practice · Pest management · Tuber · PGPR · Sustainable
agriculture

8.1 Introduction

Potato, a member of the nightshade family Solanaceae and order Polemoniales, is an
annual herbaceous dicotyledon as far as its vegetative and flowering habits are
concerned, but it may be regarded as a perennial as far its capacity for reproduction
employing the tubers is considered. Worldwide, potato is the third most important
food crop after rice and wheat (FAO 2011). It is grown in 149 countries from
latitudes of 65�N to 50�S and from altitudes ranging from sea level to 4000 m
(Paul and Ezekiel 2013). It is comprehensively cultivated in China, Russian Federa-
tion, Ukraine, Poland, Ireland, Great Britain, Germany, Netherlands, France, Spain,
South America, India, and the USA (Mukherjee 2017; Wang et al. 2020). The crop
originates from the Peruvian and Bolivian Andes in South America, specifically in
Lake Titicaca Basin on the border between Peru-Bolivia. The crop was introduced in
India in the mid-seventeenth century probably by Portuguese traders or British
missionaries. Potato is one of the principal cash crops of India. The crop covers an
area of about 1.86 million ha with an annual production of 41.46 million tons
(Mt) with average productivity of 23.12 t/ha in India (2014–2015). West Bengal is
the world’s highest per day potato productivity state (300 kg/day) and ranks second
after U.P in terms of area and productivity (32.96 t/ha). Nutritionally, potato is
second to soybean for the amount of protein/ha, with the major storage protein being
patatin, one of the most nutritionally balanced plant proteins known and regarded as
a wholesome food (Liedl et al. 1987). It contains water (75–80%), carbohydrate
(22.6%), starch (14%), sugar (2%), protein (1.6%), fat (0.1%), fiber (0.4%), minerals
(0.6%), vitamins (vitamin C rich 17 mg), and energy (97 kcal) (Mukherjee 2017).
Besides, it is also a good source of vitamin B (B1, B3, and B6) and minerals such as
potassium, phosphorus, and magnesium, and contains folate, pantothenic acid, and
riboflavin. It is also a source of essential amino acids like lysine, leucine, tryptophan,
and isoleucine. Moreover, potato is low in fat. The crop is also a moderate source of
iron, and its high vitamin C content fosters iron absorption. It also contains
antioxidants, which also play a critical role in preventing diseases related to aging,
and dietary fiber ultimately benefits health.

In the emerging global economic order, the development of agricultural crops is
witnessing a rapid transition to the production of agricultural commodities, with
potatoes appearing to be a significant crop, ready to sustain and diversify food
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production in the new millennium. Temperature and unpredictable drought are the
two most important abiotic factors, thus affecting world food securities. In devel-
oped countries, especially in Europe and the Commonwealth of Independent States,
productivity of potato has decreased by 1% per annum over the last 20 years.
However, output in developing countries has expanded at an average rate of 5%
per year (Falloon and Betts 2010; Wadas and Dziugieł 2020). Asian countries,
especially China and India, stoke up this growth. In the recent past, the developing
countries share 52% of global potato output stood surpassing that of the developed
world. This is a great achievement, considering the share of potato in global
production was little more than 20% twenty years ago in the developing countries
(Collier et al. 2008). Globally, production and consumption of potato is steadily
increasing than the global population. Fresh potato consumption, once the pillar of
world potato utilization, is declining in many countries, especially in developed
regions. This is mainly because of the harsh weather condition which alarms the
selling price. Thus, it becomes a critical threat to future food security (Rana et al.
2020; Mukherjee 2002).

Increasing the production of potato in adverse conditions would require innova-
tive technology to supplement conventional methods that are unable to prevent yield
losses. Various agronomic practices not only improve the soil quality but also
enhance the yield of potato. Application of N in two split doses, i.e. half at the
time of planting and rest at the time of earthing up to produce higher yields and
higher N recovery (Du et al. 2020). Equitable use of major and micronutrients plays
an important role in improving the quality of produce besides good yield. Integrated
nutrient management must for a crop like a potato. Moreover, the proper use of
insecticides has proven effective when used as an additional tool in integrated pest
management (IPM) practices. The use of bio-resources such as plant growth-
promoting rhizobacteria (PGPR) and other conservation farming practices also
play an important role to restore soil and enhancing soil health and play an important
role to combat climate change issues.

This chapter focuses on the major factors affecting potato production, various
components for its management like integrated nutrient management (INM),
integrated pest management (IPM), conservation farming, and cultural practices to
improve soil quality that helps to restore degraded soils which leads to enhance its
production and yield. It also describes various management practices for sustainable
production.

8.2 Factors Constraining Potato Production

Many factors affect the productivity of potato. As potato (edible and reproductive
part) is the semi-perishable tuber, there are more chances for disease to accumulate in
each planting season which ultimately affects its yielding potential. Other constraints
such as traditional potato production system, scarce germplasm resources for cultivar

8 Improved Practices Through Biological Means for Sustainable Potato Production 191



development, shortage of high-quality seed potatoes, limited knowledge on posthar-
vest handling of the product, and poor technology transfer systems also hinder its
productivity (Adane et al. 2010). Moreover, storage and transportation technologies
are also affecting potato production, as they are the major constraints for the healthy
development of the potato industry. Several factors are affecting the growth and
production of potato which are listed in Table 8.1.

8.3 Agronomic Management Practices

An agronomic practice alludes to the scientific investigation of soil management and
crop production. It includes the water system and the use of herbicides, pesticides,
and compost. Agronomy stresses staple sustenance crops, for instance, corn, rice,
potato, beans, and wheat, which are made on a far-reaching scale and address the
foundation of our human sustenance supply. Various agronomic practices that help
in the sustainable production of potato presented in Fig. 8.1.

8.3.1 Integrated Nutrient Management (INM)

Integrated nutrient management is agronomic practice for the adjustment and main-
tenance of soil fertility and provides nutrients to the plant at an optimum level for
sustaining crop productivity through optimization of all possible resources of plant
nutrients in an integrated manner. This practice of nutrient management achieved
greater significance in the last few years because of two reasons. First, fertilizer
production in India at the present level is not enough to meet the entire plant nutrient
requirement to meet productivity. Secondly, long-term experiments (LTEs)
conducted in India or elsewhere reveal that neither the organic sources nor the
fertilizers in isolation can achieve sustained production under intensive cropping
(Serderov et al. 2020). The major components of INM are fertilizers, organic
manures, legumes, crop residues, and bio-fertilizers which are explained below.

8.3.1.1 Chemical Fertilizers
Fertilizers contribute to be the most important component of INM. To supply large
amounts of nutrients in intensive cropping with high productivity there is increased
independence on fertilizers. Moreover, their consumption is not only inadequate but
also imbalanced. The N:P2O5: K2O use ratio is quite wide, whereas application of
micronutrients and K, S is usually ignored. The domestic production of fertilizer is
not sufficient to meet the requirements. On the other hand, problems like global price
hike of fertilizers and raw materials would not permit fertilizer import in large
quantities leading to a big gap between fertilizer supply and consumption. While
organics and bio-fertilizers are expected to bridge a part of this gap, the effective use
of fertilizers in narrowing the nutrient supply gap also needs greater emphasis.
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Table 8.1 Various factors affecting potato production

Factors Description

Biological characteristics The biological characteristics of potato are itself a big
constraint. The characteristics like low multiplication rates
of seed tubers, costs related issues for maintaining seed
quality through successive multiplications, and other
technical difficulties, owing to the potato’s susceptibility to
soil and seed-borne insect pests and diseases

Lack of efficient seed systems For regular multiplication and distribution of certified seed
tubers and the rapid deployment of new and improved
varieties many developing countries lack efficient systems.
Factors includes lack of managerial expertise, limited
technical capacity, and inadequate resource allocations to
seed systems

Diseases and insect pests Diseases and insect pests are another major constraint.
New strains of late blight have continued to spread in many
developing countries. Late blight constitutes the most
serious threat to potato production. Second to late blight is
bacterial wilt found particularly in warmer, more tropical
regions also pose severe threat to potato production. The
impact of insect pests varies between regions and seasons
of the year. Major insect pests include aphids, tuber moths,
leaf miners, Colorado potato beetle and Andean potato
weevil

High production costs and lack of
credit

In comparison to other food crops, production of potatoes
is capital-intensive. With limited access to credit and few
means of mitigating the risks, small-scale farmers find it
difficult to compete in potato production. The current
global financial crisis could leave a great number of
farmers with little money and no credit to invest in
production

Price instability Small-scale potato growers are susceptible to abrupt
changes in input and output prices. Year-to-year and
seasonal price changes can affect small growers who lack
the financial resources and resilience of larger producers
and cooperatives

Inefficiency of local markets Potato prices are usually decisive by supply and demand. It
is a crop of low-income farmers and consumers to ride out
episodes of food price inflation. However, its profitability
totally depends on efficient local markets

Limited access to higher value
markets

Rapidly growing processing segment as well as to potato
export markets helps the small-scale potato growers to earn
profit

Inadequate capacity building
initiatives

Programs should be carried out in order to upgrade the
skills of potato growers need to be matched by government
efforts like monitoring and enforce regulations on pesticide
use

Lack of support to farmer
organizations and entrepreneurs

Support for local entrepreneurship and potato farmer
groups is lacking in many developing countries to improve
seed quality and promote variety development. In
Argentina, efforts are being made by public and private
sector to transfer technology for integrated crop
management to its contract growers
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Fertilizer utilization by the crops varies from 30 to 50% in the case of N, 15–20% in
the case of P, and less than 5% in the case of micronutrients. Thus a significant
amount of applied nutrients is lost through various pathways. Increased nutrient use
efficiency should be a prioritized area of research for restoration and improvement of
soil health and minimizing the cost of crop production.

Nitrogen
The amount of nitrogen applied to a potato crop varies from 100–300 kg/ha
depending on the soil characteristics and purpose of the crop. However, excessive
or high nitrogen doses stimulate haulm growth, delay tuber formation, and ultimately
affect tuber quality (low dry matter content, high reducing sugar content, and high
protein and nitrate content). However, a split application might be preferred if there
is a risk of leaching (i.e., heavy watering on light soils) or scorching (application of
large quantities of fertilizer under dry conditions).

Phosphorus
Phosphorus imparts to the early development of the crop and tuberization. It
enhances the crop’s dry matter content and ameliorates the tuber’s storage quality.
Usually, more than 100 kg/ha is applied, while on phosphorus-fixing soils much
higher doses are preferred.

Potassium
Potassium not only boosts yields but also improves tuber quality of potato (size,
starch content, and storability). An ample supply of potassium can also help to
minimize internal blackening and mechanical damage and has been associated with
increased stress tolerance.

Fig. 8.1 Agronomic management practices for sustainable potato production
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Magnesium
Attention should be paid to magnesium requirements, especially when potatoes are
grown on light acid soils. Inadequate application of potassium and nitrogen in the
form of ammonium reduces the uptake of magnesium.

Calcium
Potatoes are tolerant of soil acidity, hydrogen ion concentration of 4.8 leads to crop
failure due to calcium deficiency. Liming may be necessary. Seed potatoes need to
be grown in soils with sufficient calcium. Seed tubers which are calcium deficient are
failed to sprout properly.

Foliar Fertilizers
Plants take nutrients more efficiently through stomata in their leaves as compared to
root. Foliar fertilizers contain both macro and micronutrients. They are absorbed by
the leaves and have an immediate effect on plant growth. They may help to
overcome apparent nutrient deficiencies, especially micronutrients, and support
plant recovery following stress events, such as frost and drought.

8.3.1.2 Organic Manures
Organic manures like FYM, urban compost, crop residues, human excreta, rural
compost, sewage-sludge, press mud, and other agro-industrial wastes have large
nutrient potential. Traditionally FYM and compost have been the most important
manures for maintaining soil fertility and ensuring yield stability. Other organic
sources of nutrients such as non-edible oilcake and wastes from various industries
are also there. Besides, there are several industrial by-products and municipal wastes
with fair nutrient potential. However, these nutrient-carriers have not been properly
evaluated to establish their fertilizer equivalents. Thus, there is an urgent need to
integrate these sources depending on their availability in different crops and crop-
ping systems. The industrial by-products like spent-wash from a distillery, molasses,
press mud, etc., from the sugar industry and wastes from other food processing
industries have good manorial value. Sulphitation press mud (SPM) has a great
potential to supply nutrients and has favorable effects on soil properties. SPM has
assumed great importance as a nutrient supplement in sugarcane-ratoon-wheat and
other intensive cropping systems of the sugarcane growing areas. Sewage-sludge
and municipal solid wastes (MSW) are also important nutrient sources available for
integration with fertilizer inputs, but proper cautions have to be taken to avoid any
potential threat of pathogens and heavy metal load. These nutrient sources have lost
their relative importance over time in crop production as they are bulky in nature
with low nutrient content and short in supply. Although, cost and their limited supply
made it necessary to search for alternative and renewable sources of plant nutrients
leading to major interest in organic recycling. Less than 50% of the manurial
potential of cattle dung is utilized at present, a major proportion is lost as fuel and
droppings in non-agricultural areas. Cattle dung and other farmyard wastes recycled
back to the soil as manure, substantial nutrients are lost due to inadequate methods of
manure preparation and its amount of application. Organic manures not only supply
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macro and micronutrients, but it also help in improving the physical, chemical, and
biological properties of the soils.

8.3.1.3 Legumes
Legumes are considered as soil fertility restorers because of their ability to obtain N
from the atmosphere in symbiosis with rhizobia. Legumes are a major ingredient of
INM when grown especially for fodder or grain in a cropping system, or when
introduced for green manuring. Legumes grown as green manure, forage, or grain
crops improved the productivity of the rice-wheat cropping system (RWCS) and
rejuvenated soil fertility (Yadav et al. 2000).

8.3.1.4 Crop Residues
Crop residues have several competitive uses and are considered as an important
component of INM. However, in North-West India mechanical harvesting is still
practiced and the leftover residue is used in the field as a part of nutrient supply.
Moreover, cereal crop residues are valuable cattle-feed and it can be used to
supplement the fertilizers. Disposal of rice straw has been a great concern in Trans
and Upper Gangetic Plains. In these areas, farmers prefer to burn all these residues in
situ which causes environmental pollution on one hand and loss of potential
nutrients on the other hand. Although, residue recycling in the field helps to build
stable organic matter in the soil and also helps to sustain the yield. Usually, stubbles
varies from 0.5 to 1.5 t/ha in traditional harvesting methods. However, its amount is
much higher in practices like mechanical harvesting. Stubbles produced from coarse
cereals, i.e. sorghum, maize, pearl millet, etc., are difficult to decompose and are
normally collected and burnt during land preparation causing significant loss of plant
nutrients.

8.3.1.5 Bio-Fertilizers
Bio-fertilizers are the materials containing living or latent cells of agriculturally
beneficial microorganisms that play an important role in improving soil fertility and
crop productivity due to their ability to fix atmospheric N, solubilize/mobilize P, and
decompose farm waste resulting in the release of plant nutrients (Giri et al. 2019).
The benefit from these microorganisms depends on their number and efficiency
which, however, is governed by soil and environmental factors. Bacterial cultures,
i.e. Rhizobium, Azospirillum, and Azotobacter have the potential to fix atmospheric
N which in turn escalates N supply to the crops. Bacterial cultures of Pseudomonas
and Bacillus and fungal culture of Aspergillus help in the conversion of insoluble P
into usable forms, hence, improve phosphate availability to the crops. Similarly,
Arbuscular Mycorrhizae (AM) fungi increase uptake of P with larger soil volume.
Rhizobium is the primary symbiotic fixer of N and it is the most well-known bacterial
species. These bacteria lead to the formation of lumps or nodules where the N
fixation takes place by infecting the roots of leguminous plants. The bacterium’s
enzyme is a rich source of N to the host plant to furnish nutrients and energy for the
activities of the bacterium. The Rhizobium-legume association can fix up to
100–300 kg N/ha in one crop season and certain situations leave substantial N for
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the crop. This symbiotic association could meet 80% of the N requirement of the
legume crop. Azotobacter free-living N-fixer imparts positive benefits to the crops
through a small increase in N input from BNF, development, and branching of roots,
production of plant growth hormones, enhancement in the uptake of NO�, NH+, H
PO�, K+, and Fe+, improved water status of the plants, increased nitrate-reductase
activity, and production of antifungal compounds. In irrigated wheat, a significant
response to Azotobacter inoculation was recorded in a large number of on-farm
trials. Azotobacter contribute 20–25 kg N/ha. Azospirillum fixes N by colonizes with
the root mass. Hence, shows positive interaction with applied N in several field crops
with an average response equivalent to 15–20 kg/ha of applied N. Several strains of
P solubilizing bacteria and fungi have been isolated, and inoculation with P
solubilizing microbial cultures is known to increase the dissolution of sparingly
soluble P in the soil. Integrated use of microbial cultures with low-grade rock
phosphate might add 30–35 kg P2O5/ha. Soil inoculation with Pseudomonas striata
showed a residual effect in succeeding maize on alluvial soil of Delhi, besides
increasing grain yield of wheat.

In recent years, K mobilizing bio-fertilizers (KMB) and Zn solubilizing
bio-fertilizers (ZnSB) have been added in order to increase the solubility of K and
Zn in soil, respectively. There is an extensive need to assess bacteria which play
important role in soil solubility (K and Zn). Also, liquid bio-fertilizers have proved
superior over conventional (solid) carrier-based ones. Blue-green algae (BGA) is
also another important source of N to wetland rice. As per the estimates, N fixed by
BGA inoculation is varied from 20–30 kg N ha-1. Various field studies have also
shown that the incorporation of Azolla would allow N applications to be reduced by
at least 30–40 kg/ha (Dwivedi et al. 2004).

8.3.2 Integrated Pest Management (IPM)

Pest problems may vary from field conditions and seasons because of differences in
soil type, cultural practices, cropping history, cultivar, and the nature of surrounding
land. Market choice and market conditions also affect the feasibility of management
because they determine how a crop must be handled and the value of that crop. Four
components are essential to any IPM program: (1) Accurate pest identification,
(2) field monitoring, (3) control action guidelines, and (4) effective management
methods (Fry 1982).

Almost all pest management tools, including pesticides, are effective only against
certain pest species, one must know which pests are present and which are likely to
appear. By monitoring, one can get information to make management decisions.
Monitoring includes keeping records of weather, crop development, and manage-
ment practices as well as incidence and levels of pest infestations. Control action
guidelines indicate when management actions including pesticide applications are
needed to abstain losses due to pests or other stresses.
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8.3.3 Conservation Farming

Conservation farming aims at enhancing natural biological processes both above and
below ground. The major role of conservation farming is (1) Minimization of
mechanical soil disturbances, (2) permanent organic soil cover, (3) diversified crop
rotations. By minimizing soil disturbance, it creates a vertical macro-pore structure
in the soil, which facilitates the infiltration of excess rainwater into the subsoil and
thus improves the aeration of deeper soil layers and further facilitates root
penetration.

8.3.4 Soil Conservation

Soil erosion is a major constraint that continues to threaten the sustainability of both
subsistence and commercial agriculture. Cultivation of potato requires intensive soil
tillage practices throughout the cropping period, which ultimately leads to soil
erosion, degradation, and leaching of nitrates. The use of mulch at planting and
the “notill” land preparation method is recommended to reduce soil degradation,
erosion, and nitrate pollution, and to restore degraded soils aided good potato yields
with less requirement of fertilizer. The mulch helps to protect the soil from erosion in
the first weeks of the crop. Although mulching reduces the risks of soil erosion and
nitrate leaching, it may have some adverse effects (e.g., excessive moisture and
reduced soil temperature leading to retarded plant emergence). Hence, it should not
be a blanket recommendation. The no-tillage potato is grounded into the soil surface
and then covered with a thick layer of mulch, preferably straw, which is fairly stable
and does not rot quickly.

8.4 Cultural Practices

Potato tuber develops entirely underground, its quality, shape, disease, and yield are
usually influenced by factors like moisture content and humus, texture, and temper-
ature of the soil in which it grows. All these factors render soils for potato produc-
tion. Therefore, to cope with the adverse effects which affect potato production, it is
not only desirable but imperative that proper cultural practices involving strict
cognizance of the best methods should be adopted for improving soil conditions.
The various cultural practices which enhance potato production are depicted in
Fig. 8.2.
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8.5 Management Methods

8.5.1 Seed Quality and Certification

Pests can be transmitted in infected seed tubers, including blackleg, bacterial ring
rot, late blight, common scab, potato viruses, Rhizoctonia, powdery scab, root-knot
nematodes, silver scurf, and wilt diseases. To prevent these problems, one must start
with healthy stock (Agios 1997). Techniques like micro-propagation and stem
cutting have been developed to obtain pest-free potato plants for propagation and
production of certified seed tubers. Disease-free stem cuttings or tiny pieces of
meristem tissue are cultured and propagated under sterile conditions to produce
large numbers of disease-free plantlets or mini tubers (Anonymous 2008).

Fig. 8.2 Cultural practices for sustainable potato production
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8.5.2 Biological Control

Any activity of a parasite, predator, or pathogen that keeps a pest population lower
than it would be considered as biological control. One of the first assessments that
should be made in an IPM program is the potential role of natural enemies and
hyper-parasites in controlling pests. Control by natural enemies and hyper-parasites
is inexpensive, effective, self-perpetuating, and not disruptive of natural balances in
the crop ecosystem.

Bacteria combative to Erwinia carotovora are being developed as seed piece
treatments for abbreviating seed piece decay and blackleg. Among rhizobacterial
Agrobacterium radiobacter, Bacillus subtilus, and Pseudomonas spp. are antago-
nistic to potato cyst nematodes (Globodera pallida and G. rostochiensis) though
Pasteuria penetrans attach PCN (Kerry et al. 2003). Larkin (2007) reported that soil-
application of aerated compost tea (ACT) and the combination of ACT with a
mixture of beneficial microorganisms reduced stem canker, black scurf and common
scab on tubers by 18–33% and 20–23% yield increase in barley/ryegrass rotation,
but not in the other rotations. Table 8.2 depicts the effect of organic sources and
chemical fertilizers on growth parameters of potato.

Table 8.2 Effect of organic sources and chemical fertilizers on growth parameters of potato

Organic
source Chemical fertilizer Growth attribute Reference

FYM P and K Potato haulms Sharma
(1986)

Vermicompost 50 per cent RDF Number of leaves per plant in
potato

Patil
(1995)

FYM Inorganic source of
nutrients in the ratio of
1:3

Plant height, number of leaves per
plant, and leaf area per plant

Sood
(2007)

Poultry
manure

Reduced RDF Yield parameters and yield of
potato

Md Islam
et al.
(2013)

FYM NPK Yield of potato Boke
(2014)

Cattle manure NP Growth rate, and leaf area, average
tuber weight, and marketable and
total tuber yield

Masrie
et al.
(2015)

Cattle manure Mineral NP Higher tuber yield Isreal et al.
(2018)
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8.5.3 Resistant Cultivars

Plant breeding is one of the most important tools available for both the production of
the best crop and the management of pests. Pest management is one of the important
factors that must be taken into account while choosing cultivars. Cultivars resistant
or tolerant of the disease can help reduce losses caused by some soil-borne
pathogens and provide long-term, economical protection from conditions that other-
wise could inflict severe losses every season (Table 8.3).

Part of every breeding program is the search for resistance to serious diseases,
disorders, and nematode pests. Resistance to insect pests is being investigated. New
potato breeding selections are assessed for resistance to several viruses, leaf-roll net
necrosis, root-knot nematodes, Verticillium wilt, scab, blackleg, early blight, and
several physiological disorders (Hooker 1983).

8.5.4 Chemical Control with Pesticides

Adequate use of pesticides can not only provide economical protection from pests
but also reduce significant losses. In many situations, they are the only feasible
means of control. Excessive use of pesticides results in crop damage and hazards to
health and the environment. In an IPM, pesticides are used only when field monitor-
ing indicates they are needed to prevent losses (Table 8.4).

Fungicides reduce damage caused by certain foliar pathogens, i.e. late blight,
powdery mildew, and severe early blight. Fungicides usually applied before infec-
tion occurs or when the disease just begins to develop. Soil fumigants might be used
to control nematodes or Verticillium.

8.6 Conclusion

The widely-cultivated potato, S. tuberosum L., is one of the world’s principal food
crops. Over the next four decades, the global agriculture industry faces major
challenges, as projections suggest that the global population will be between 8.0
and 10.4 billion people, with a median estimate of 9.1 billion. Recently, released
studies estimate that worldwide agricultural production will need to grow by 70%
over an approximated 45-year interval (between 2005–2007 and 2050), and by
100% in developing countries. The major challenges in sustainable potato produc-
tion are varying economies of scale, are heterogeneity in soil resources, nutrient
availability, pest resistance, weather constraints, demographic changes, and shifts in
the availability of arable lands. High-resolution geospatial studies can help in the
identification of trends and patterns in local to regional scale commercial production
environment, which can in turn encourage the broader adoption of adaptive man-
agement strategies that not only increase yield but also promote sustainable land use.
Global environmental change (GEC) will lead to elevated temperature in many
years, which will in turn involve manipulation of agronomic practices in order to
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Table 8.3 Biological control of bacterial and fungal disease of potato

Biocontrol agent Effective against Disease Reference

Antagonistic isolate BC8 Pseudomonas solanacearum Bacterial
wilt

Ciampi
et al.
(1989)

Bacillus subtilis BS 107 Erwinia carotovora subsp.
Atroseptica and
Erwinia carotovora subsp.
carotovora

Blackleg
and soft
rot

Sharga
and Lyon
(1998)

Bacillus, Pseudomonas, Rahnella,
and Serratia

Phytophthora infestans (strain
US-8)

Late
blight

Daayf
et al.
(2003)

Bacillus sp. sunhua Streptomyces scabiei Scab Han et al.
(2005)

Biocine S2HA Ralstonia solanacearum Brown
rot

Kabeil
et al.
(2008)

Basidiomycetes R. solanacearum Brown
rot

El-Fallal
and
Moussa
(2008)

Burkholderia cepacia Fusarium sambucinum,
F. oxysporum and
F. culmorum

Potato
dry rot

Recep
et al.
(2009)

Pseudomonas spp. StT2 and StS3 Rhizoctonia solani Potato
black
scurf

Tariq et al.
(2010)

Pseudomonas koreensis Phytophthora infestans Late
blight

Hultberg
et al.
(2010)

Lactic acid bacteria Phytophthora infestans Late
blight

Axel et al.
(2012)

Pseudomonas fluoresces (Pf2),
Bacillus subtilis (Bs3) and
Rahnella aquatilis(Ra39)

Pectobacterium atrosepticum Blackleg Hoda et al.
(2016)

Pseudomonas and Bacillus genera Dickeya sp. and
Pectobacterium sp.

Blackleg Raoul
et al.
(2016)

Rhizobacteria Globoderaro rostochiensis Golden
nematode

Salinas
et al.
(2016)

Brevibacillus formosus strain DSM
9885, and Brevibacillus brevis
strain NBRC 15304

Alternaria alternata Brown
leaf spot

Ahmed
(2017)

Bacillus amyloliquefaciens Ba01 Streptomyces species Potato
common
scab

Lin et al.
(2018)
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Table 8.4 Detailed description of potato diseases (bacterial, fungal, and viral) and their
management

Disease Causative agent Symptoms Management

Bacterial disease

Blackleg Pectobacterium spp. Soft rot of seed pieces
Black to brown
discoloration of the
stem, stunting and
wilting of affected
stems

Cleaning seed
handling, planting, and
cutting equipment is
important

Aerial stem
rot/aerial
blackleg/aerial
soft rot or
bacterial stem
rot

Pectobacterium
carotovorum subsp.
carotovorum (syn.
Erwinia carotovora
subsp. carotovora)
Pectobacterium
atrosepticum and
Dickeyadianthicola
(syn. Erwinia
chrysanthemi)

Water-soaked lesion on
the stem, shrivelled
stems

Use whole tubers, or
allow cut seed pieces to
suberize, or cork over,
before planting
Avoid over irrigation
and fertilization

Soft rot Pectobacterium
carotovorum (subsp.
carotovorum,
odoriferum)
Pectobacterium
atrosepticum,
Dickeyadianthicola
Pseudomonas, Bacillus
and Clostridium

Tuber becomes
infected, foul smelling
odor, non-emergence
of plants, wilting,
browning of tissues,
haulm desiccation and
plant death

Avoid harvest when
temperatures are
>65–75 �F,
particularly when
conditions are wet
Provide protection for
harvested tubers from
sunscald, heating or
desiccation
Avoid bruising during
harvest and handling
Maintenance of soil
calcium level

Ring rot Clavibacter
michiganensis subsp.
sepedonicus

Shortened internodes,
slight discoloration

All tissue cultures
should be tested by
PCR before
propagation

Brown rot Ralstonia
solanacearum

Prominent milky ooze
when an infected lower
stem is placed in water

Plant disease-free seed
in non-infested soil and
crop rotation

Common scab Streptomyces scabies,
S. acidiscabies and
S. turgidiscabies

Initial infections result
in superficial reddish-
brown spots on the
surface of tubers

Maintain high soil
water levels
Avoid planting scabby
seed tubers
Scab-resistant varieties
are useful
Maintain soil pH levels
at 5–5.2

Fungal disease

Alternaria
Brown rot

Alternaria alternata Small, dark round
necrotic lesions, leaves

Cultural practices and
foliar fungicides

(continued)
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Table 8.4 (continued)

Disease Causative agent Symptoms Management

may be affected, drying
up

Provide adequate
fertilization
Fungicides are very
efficient for controlling
brown leaf spot

Early blight Alternaria solani Small, black lesions.
Spots enlarge, and by
the time they are
one-fourth inch in
diameter or larger,
concentric rings in a
bull’s eye pattern can
be seen in the center of
the diseased area

Crop rotation and
destruction of plant
debris and weed hosts
are used to reduce the
sources of inoculum
Rotation, avoid over
irrigation
Fungicide programs are
the most effective
means to control the
disease

Late blight Phytophthora
infestans (Mont.)

This disease damages
leaves, stems, and
tubers. Affected leaves
appear blistered as if
scalded by hot water
and eventually rot and
dry out
Affected stems begin to
blacken from their tips,
and eventually dry out
Affected tubers display
dry brown-colored
spots on their skins and
flesh

Good field drainage
and proper plant
spacing for optimal air
Proper sanitation is
necessary
At planting, seed
treatment fungicides
exist
Deep hilling can be
used to protect tubers
from sporangia
washing off leaves
Avoid excessive
fertilization to prevent
canopy overgrowth
Fungicide application
is considered an
integral part of late
blight management

Powdery
mildew

Erysiphe
cichoracearum

Disease begins with
brown flecks on the
leaves. These flecks can
coalesce into larger,
water-soaked regions
that may appear black
Powdery mildew forms
distinctive white,
powdery patches on
leaves and stems
Leaves, beginning at
the base, yellow then
become necrotic. Left
unchecked, the plant
may die

Elemental sulfur
applied as a dust or
spray is sufficient to
control the disease if
treated before the
pathogen is widespread
If the disease is
widespread, there are
multiple fungicides
labeled for use

(continued)
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improve crop efficiency. Worldwide, various researchers believed locally-to-region-
ally specified sustainable and environmentally responsible potato production
systems will help meet the challenges for long-term and country-driven food security
and poverty alleviation.
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Bacterial Plant Diseases and Their
Management: Conventional Versus Modern
Approaches

9
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Abstract

Annually, significant loss occurs to crops due to bacterial plant pathogens. This
poses a major constrain on global food production. Various factors remain a
hurdle in effective disease management, like the use of disease susceptible
cultivars by the growers and the development of the pathogen by the favorable
prevailing environmental conditions. Emergence of new bacterial plant diseases
is another problem of concern. Due to shortage of arable land, higher yield, stable
and safe food supply remains a major necessity of increasing world population.
To overcome these short comings, devising and implementation of novel treat-
ment options for bacterial diseases of plants is a grand challenge. Another serious
problem is the emergence of the antibiotic resistance to the currently used
antibiotics. Implementation of molecules like antimicrobial peptides and
nanoparticles represent a best option to overcome the problem of antibiotic
resistance. Also understanding bacterial pathosystem is critical for identifying
potential targets in a pathogen. For sustainable and effective disease management
in future, research should be carried to identify potential pathogen targets, new
strategies and novel delivery methods should be explored. In this chapter, we will
summarize some bacterial diseases of cereals, fruits, and vegetables and their
management. We will also discuss some novel approaches as their exploitation
would be effective in disease control.
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9.1 Introduction

Plant pathology refers to the study of plant diseases. Both biotic and abiotic factors
are involved in plant diseases. Biotic component includes microorganisms and
parasitic plants, while environmental factors are included in abiotic components
(Keswani et al. 2019). Bacteria are unicellular microorganisms ranging in size from
1 to 2 μm that can be seen with the aid of microscope. Among microorganisms,
bacteria successively inhabit various plant surfaces and tissues. All plants harbors
microbes either on surfaces or inside their tissues (Vidaver and Lambrecht 2004).
The term epiphyte is used when microbes are present on plant surfaces while
endophytes are microbes living inside plant tissues. Bacteria associated with plant
may possess beneficial or detrimental effect for plant. Both as a pathogen or to
possess beneficial effect for the plant, high number of bacteria are required. Usually
106 CFUs (Colony forming unit) or more than this is required to confer pathogenic
or beneficial effect to a plant (Meena et al. 2002). About 325 years back, individual
bacteria for the first time was visualized by a microscope and about 100 years ago
first bacterial plant pathogen was identified. These bacteria were responsible for
fireblight of pear and apples in New York and Illinois, USA (Burrill 1878; Khan
et al. 2012). When visualized with microscope, bacterial plant pathogens appear in
several morphological forms. Initially these plant pathogens were differentiated from
each other on the basis of morphology. They may be spherical (cocci), rods (bacilli),
spiral shape (spirilla), or have tendency to change their shape or pleomorphic
(Vidaver and Lambrecht 2004).

Worldwide plant pathogenic bacteria are associated with many serious plant
diseases. However they cause less damage in comparison to fungal or viral
pathogens (Kennedy and Alcorn 1980; Rezzonico et al. 2009). In warm blooded
organisms including humans, bacterial pathogens are more dominant than fungi. But
in case of plants, bacterioses are less frequent than mycoses (Egli and Sturm 1981;
Rezzonico et al. 2009). The reduced parasitic nature of bacteria for plants is because
of their morphology. Unlike fungi with a vegetative body structure, bacteria are
unicellular organisms and their division results separation into individual cells. It is
difficult for a single cell to overcome an obstacle such as cell wall. Thus the
unicellular properties of bacterial pathogens make it difficult for them to penetrate
and spread inside the host plant. Invasion of plant tissue by fungal pathogens takes
place by means of their germinal hyphae (Kennedy and Alcorn 1980; Cole and Hoch
2013). Whereas no such structure is present in bacteria which makes it difficult for
them to fix itself to the outer cutinized layers of plants. For bacterial pathogens only
two ways exist for penetration purpose. First one is invasion of plant through
non-cutinized parts such as lesions, root hairs, etc., and the second is its entrance
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through natural openings such as nectarines and stomata, etc. (Egli and Sturm 1981;
Rezzonico et al. 2009).

In order to classify plant diseases, several parameters are taken like infected plant
type, infected organ, disease symptoms, and phytopathogen type. Phytopathogen
type is considered to be more useful criterion for classification of plant diseases as it
identifies the causative agent, complication, and possible control measure for disease
management (Daly 1984; Hotson and Mudgett 2004).

In human and veterinary science, pathologists examine various body fluids and
tissues, etc., to determine the effects and nature of the disease. The job of medical
doctor is to diagnose, treat, and prevent the disease. Plant pathologist do all previ-
ously described work. However they have much to do than that of human and
veterinary pathologists. Most of their studies related to plant pathology do not
include the host alone. Studies on vectors, pathogens survival strategies in soil,
etc., are also an essential part in plant disease research (Bruehl 1991; Hotson and
Mudgett 2004).

In the proceeding section we will discuss some common bacterial diseases of
plants and their possible management.

9.2 Bacterial Diseases of Cereal Plants

9.2.1 Bacterial Leaf Blight of Rice

Rice is an essential staple food consumed in various areas of the world particularly in
Asian countries (Pérez-Montaño et al. 2014). Bacterial leaf blight is the destructive
disease of rice that is present worldwide affecting plant leaf. Xanthomonas oryzae
pathovar oryzae is the causative agent of the disease that cause severe losses in rice
yield (Arshad et al. 2017). The bacterium is aerobic, non-spore forming Gram
negative rod that grows best at 25–30 �C (Ou 1985). The host plant is infected by
the bacterial pathogen at maximum tillering stage. This results in higher yield loss. In
1884 the disease was observed for the first time by the Japanese farmers (Tagami and
Mizukami 1962). Initially water soaked stripes appear on leaf blades that increase in
length and width with the passage of time and may cover the entire leaf blade. On
young lesions, drops of bacterial exudates may be observed. In case of severe
infection, various small circular lesions appear on the glumes with water soaked
margins. Fewer and lighter grains were produced by the infected plant that is of poor
quality (Saha et al. 2015). The disease can be controlled by using conventional and
non-conventional chemicals, via modification of cultural practices, biological con-
trol, and through the use of botanical extracts or natural products (Ou 1985; Jiang
et al. 2009).
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9.2.2 Bacterial Leaf Blight of Wheat

Bacterial leaf blight of wheat is a common worldwide disease caused by the
bacterium Pseudomonas syringae pv. syringae (Young 1992). When plant reaches
the boot stage, the disease appears on the upper leaves. Smaller water soaked lesions
appear which expand with time. Initially necrotic lesions appear which then change
from gray-green to tan white color. In wet weather slimy droplets appear on leaves.
The disease can be controlled by cultural management practices while no biological
control method has been observed for the disease management (McCulloch 1920;
Kazempour et al. 2010).

9.2.3 Bacterial Stalk Rot of Maize

The causative agent of bacterial stalk rot of maize or corn is Erwinia caratovora f.
sp. Zeae (Thind and Payak 1985; Yanan 2006). The disease exists in two forms,
i.e. top rot and basal rot. In case of top rot, the rot develops on upper top parts and
extends downward while in case of basal rot, the disease symptoms develop on
lower basal parts and then extends to upward region. In case of top rot, the tips of
whorl middle leaves are wilted and dried out. Throughout the stalk the decay spreads
and the plant soon droop down. In basal rot, yellowing of the leaves takes place.
Internally the stalk becomes soft and a foul odor is produced because of tissue
disintegration. Finally the stalk dried up into disjointed fibrous tissue as the disease
progresses. No biological control method is available and management of the disease
is aimed at chemical control (Sinha and Prasad 1977; Yanan 2006).

9.2.4 Kernel Blight of Barley

Kernel blight of barley is the bacterial disease of barley crop that exists in two forms,
i.e. spot kernel blight and basal kernel blight (Gross 1991; Braun-Kiewnick et al.
2000). Basal kernel blight is the most common form of the disease. Symptoms of
basal kernel blight include dark brown discoloration of the embryo at the kernel end.
On the other hand, spot blight kernel has well defined spots on the kernel lemma thus
differentiating it from basal kernel blight. Both forms of the disease are caused by
different pathovars of Pseudomonas syringae. Spot kernel blight is caused by
Pseudomonas syringae 554 while the causative agent of basal kernel blight is
Pseudomonas syringae pv syringae. Wet moist conditions favor disease develop-
ment. Use of disease free seed is effective in disease management (Martinez-Miller
1994).
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9.2.5 Bacterial Top and Stalk Rot of Sorghum

The bacterium Erwinia chrysanthemi is the causative agent of top and stalk rot in
sorghum. In this disease the upper four to five leaves in the whorl become dead. This
is the most common symptom of the disease. When the infected plant is spliced
longitudinally, the interior of the stalk appears to be reddish in color and may be
water soaked. No effective control measures are available for disease management.
If the disease is present in considerable amount in the field, the grain sorghum should
not be planted next year (Doggett 1970; Hseu et al. 2008).

9.3 Bacterial Diseases of Fruits

9.3.1 Fire Blight of Apple

Erwinia amylovora is the causative agent of fire blight. In Northern America, the
disease first appeared and then it spread slowly around the world. All trees parts can
be effected by the disease such as shoot tips, flowers, and rootstock crowns (Peil
et al. 2009). Major symptoms of the disease are browning of leaves and black
necrosis of the shoots. Antibiotics are effective in disease management but the
treatment of antibiotic resistant E. amylovora strains is a major problem. Use of
antagonists is an alternative strategy for disease management (Beer et al. 1983; Khan
et al. 2012).

9.3.2 Bacterial Black Spot of Mango

In South Africa the disease was first time described by Doidge in 1909. All aerial
parts of mango plants can be affected by the disease (Fig. 9.1). Route of entrance for
the pathogen is natural openings like stomata, etc., and wounds (Gagnevin and
Pruvost 2001). Most commonly leafs and fruits are affected but in case of severe

Fig. 9.1 Bacterial black spot on mangoes (Source: https://www.intechopen.com/books/
horticultural-crops/mango-diseases-impact-of-fungicides; Reproduced with permission)
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infection branch cankers may occur. On leaves water soaked spots develop which
then raises and turns black. Leaf abscission is the consequence of the severe
infection. In case of fruits water soaked spots develop on lenticels. Premature fruit
drop is the consequence of severe infection in fruit. The causative agent of the
disease is Xanthomonas campestris pv. Mangiferaeindicae (El-Goorani 1987).
Chemical control is an effective disease management strategy (Alizadeh et al. 1997).

9.3.3 Bacterial Citrus Canker

Bacterial citrus canker is one of the devastating diseases of citrus crops and is caused
by Xanthomonas axonopodis pv. citri. The disease severity differs with prevailing
climatic conditions, species, and varieties of citrus. Disease symptoms include
necrotic lesions on various parts of plant like lesions on twigs, leaves, and fruits.
The most important economic loss due to citrus canker occurs when disease
develops on fruit (Gabriel et al. 2000). The main source of inoculums is cankerous
twigs, leaves, and fruits but primarily the pathogen survives on naturally occurring
lesions. Management of the citrus canker is a difficult task but the use of disease
resistant cultivars is effective to minimize the infection (Das 2003).

9.3.4 Citrus Greening

Citrus greening is one of the most devastating vector borne diseases of citrus, caused
by a non-culturable bacterium known as Candidatus. The species of the genus
Candidatus were named according to the origin. In Asia the species of the genus
were named as Candidatus Liberibacter asiaticus, while in Africa the causative
agent responsible for citrus greening was known as Candidatus Liberibacter
africanus (Texeira et al. 2005). The disease is characterized by leaf mottling,
yellowing of shoots, stunted plant growth, malformed fruits, and finally plant
death (Fig. 9.2) (Fujikawa and Iwanami 2012). No cure for the disease exists and
disease management includes some traditional methods like using chemicals to
control insect vector and removal of infected plants or planting material (Alvarez
et al. 2016).

9.3.5 Bacterial Canker of Apricot Trees

Bacterial canker of apricot is caused by Pseudomonas syringae pv. syringae. Char-
acteristic symptoms of the disease include various water soaked small lesions on
young leaves, blossoms, and twigs. As the disease progresses, twig dieback, attach-
ment of dried leaves to trees, blossom blast, trunk cankers, and bark necrosis may
occur (Kotan and Şahin 2002). Application of copper hydroxide is effective in order
to reduce disease symptoms (Wimalajeewa et al. 1991; Kotan and Şahin 2002).
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9.4 Bacterial Diseases of Vegetables

The following is a brief overview of some bacterial diseases of vegetables.

9.4.1 Bacterial Wilt of Tomatoes

In tomatoes bacterial wilt is incited by the pathogen Ralstonia solanacearum.
Bacterial wilt is the most devastating disease in vegetable crops present throughout
the world with a broad host range. Apart from tomatoes, various other vegetables
may also be affected by the same pathogen. Other vegetable host of the pathogen
includes chilli, eggplant, and several solanaceous crops. Severe yield losses occur
due to broad host range of the pathogen (Aslam et al. 2017). Initially terminal leaves
of the infected plant wilts that is then followed by permanent wilt in 2–3 days.
During the initial stage of the infection, the vascular system of the infected plant
becomes light brown in color and in the final stage turns to dark brown. When the
plant becomes completely wilted, the pith and cortex become dark brown near the
soil. When the infected plants are suspended in water, the bacterium will ooze out as
a milky white stream. The pathogen then survives in soil and enters new young
plants via their roots (Khokhar and Hri 2013). Various methods are employed for the
disease control like use of disease free planting material, chemicals, crop sanitation,
and crop rotation. However these methods can be employed alone and have several
drawbacks (Aslam et al. 2017).

Fig. 9.2 Symptoms of citrus greening: (a) Mottled leaves-asymmetrical pattern, (b) effected tree
yellow dragon-die back, (c) tree with yellow shoot and leaves (self-images)
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9.4.2 Bacterial Blackleg and Soft Rot of Potato

Erwinia carotovora (Ec) is responsible for blackleg and soft rot in potatoes
(Fig. 9.3). The bacterium is flagellated Gram negative facultative anaerobic. Potatoes
can be infected by the two subspecies of Erwinia carotovora designated as E. c.
subsp. carotovora (Ecc) and E. c. subsp. atroseptica (Eca). Major cause of black leg
is Eca that results in blackening of stem base when originated from mother tubers.
Aerial stem rot is caused by Ecc (Ali et al. 2012). Soft rot symptoms include wet, soft
tan colored tissues. Initially rot involves tuber surface and then progresses inwardly.
During the early stages of decay the infected tissue are odorless but in the later stages
foul odor is produced upon secondary invasion of infected tissue. Plants with
blackleg usually have stunted growth. At the margins leaflets roll upward. Wilting
of plants take place. An inky black decay is exhibited by the stem of infected plant.
Chemical treatment, use of disease free seeds, and pathogen free tubers may help to
control disease occurrence (Bonde 1950; Czajkowski et al. 2011).

9.4.3 Bacterial Blight of Peas

In peas the pathogen responsible for blight disease is Pseudomonas syringae pv. pisi.
High yield loss occurs due to the presence of the pathogen in the field. Bacterial peas
blight is the seed borne disease as primarily seed is infected and represent the source
of infection. On leaves and stipules water soaked spots develop. In warm weather the
spots are dark brown while black in cool weather (Hollaway et al. 2007). The
pathogen attacks all above ground plant parts. Infected plant pods develop irregular
water soaked lesions (Ali et al. 2015). Use of pathogen free seed, crop rotation, crop
hygiene, and seed treatment with bactericides can effectively control the disease
(Hollaway et al. 2007).

Fig. 9.3 Bacterial soft rot of
potatoes. External view of
tuber with watery lesion filled
with bacterial ooze (Source:
https://www.agric.wa.gov.au/
potatoes/soft-rot-diseases-
potatoes; Reproduced with
permission)

216 N. Ali et al.

https://www.agric.wa.gov.au/potatoes/soft-rot-diseases-potatoes
https://www.agric.wa.gov.au/potatoes/soft-rot-diseases-potatoes
https://www.agric.wa.gov.au/potatoes/soft-rot-diseases-potatoes


9.4.4 Angular Leaf Spot of Cucurbits

This disease has worldwide distribution and is caused by various pathovars of
Pseudomonas syringae but Pseudomonas syringae pv. lachrymans is generally
associated with the disease in cucurbits (Zitter et al. 1996; Newberry et al. 2016;).
Depending on the host and environmental condition the disease symptoms may vary.
Circular necrotic lesions develop initially which may become irregular in shape as
the disease progresses. Leaf blighting results due to lesion coalescence and finally
destruction of leaf canopy occur. In order to control the disease, combination of
chemical and cultural practices is required (Newberry et al. 2016).

9.4.5 Black Rot of Brassica campestris

Worldwide Xanthomonas campestris pv. campestris (Xcc) is responsible for black
rot in brassica plant. Factors conducive for disease development are application of
pathogen infected seeds, use of pathogen susceptible cultivars and weather
conditions. Initial symptoms develop as yellowing of cotyledons and on seedlings,
deformation of first true leaves. After the fall of diseased leaves at low temperature,
plant remains symptomless but infected and on the return of warm conditions
symptoms may reappear. Chlorotic spotting is associated with systemic invasion
of the pathogen (Ignatov et al. 1998; Vicente and Holub 2013).

9.5 Plant Bacterial Pathogens Management; Conventional Vs
Modern Approaches

For plant pathologists, management of bacterial plant diseases remains a grand
challenge. Both traditional and modern practices for plant disease management are
aimed at inoculum reduction as this represent an effective strategy for disease
management. In the following we will briefly discuss both traditional and modern
practices for management of bacterial plant diseases.

9.5.1 Use of Chemicals and Antibiotics

In comparison to fungicides, very few chemicals have been marketed that can be
used against bacterial plant diseases. While using chemicals for plant disease
management, various factors should be considered like effective mode of action,
pathogen susceptibility to specific chemical, and the market potential of the chemical
in use. Major focus of chemical management of plant diseases includes testing of
various available compounds against variety of diseases (Lucas 2020). Introduced in
the 1880s, Cu compounds were proved to be effective in bacterial diseases manage-
ment of plants. These compounds were effective against variety of plant bacterial
pathogens like Xanthomonas spp, Pseudomonas spp, and Erwinia spp (McManus
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et al. 2002). A Fenton like reaction is catalyzed by copper during oxic conditions that
results in lipids peroxidation and damages bacterial proteins (Dupont et al. 2011).
However extensive use of these Cu compounds lead to the emergence of resistance
in pathogens (Cooksey 1990). In several pathovars of Pseudomonas syringae,
resistance against Cu is encoded by copper inducible operon designated as cop
ABCD (Mellano and Cooksey 1988; McManus et al. 2002).

In the US plant agriculture system the use of antimicrobials is very limited. This is
due to various reasons like lack of antibiotic efficacy, environmental concern, and
economics (Levy 2001). Oxytetracycline and Streptomycin are the two registered
antibiotics that are used in plant agriculture. These antibiotics have prophylactic use
that is they will be used on the basis of previous experience or predictive systems.
During blossom time, both streptomycin and oxytetracycline may be used prophy-
lactically in spray form. As a prophylactic treatment these both antibiotics can be
used every 3–4 days (streptomycin) or 4–6 days (oxytetracycline) in the form of
sprays to reduce bacterial disease during blossom. Residues studies related to
streptomycin are limited. Various studies have reported that at the time of harvest,
fruits have no detectable level of streptomycin residues but leaves still have detect-
able level of streptomycin (Maxwell et al. 2020). Concerning streptomycin, the 1992
EPA sheet indicates its usage satisfactory related to ecological effects. To freshwater
invertebrates, honeybees, and birds streptomycin is non-toxic. However slight
toxicity was associated with cold and warm water species of fishes. Oxytetracycline
is reported practically to be non-toxic to honeybees, fish, and to aquatic
invertebrates. As limited data is available on the usage of tetracycline, therefore,
its open application pertaining to environment remains a concern. Streptomycin can
be recommended in the concentration ranges from 50–200 ppm (50–200 μg/mL)
while oxytetracycline can be recommended in the range of 150–200 ppm
(150–200 μg/mL). The recommended concentration depends on the crop type to
be treated and the treatment objective (Vidaver 2002).

A few later after the introduction of streptomycin, antibiotic resistance to this
antibiotic began to appear in the target plant pathogenic bacteria (Klement et al.
1990; Pohronezny et al. 1994). All genetic forms like plasmids, transposons, and
chromosomes, etc., are found to harbor antibiotic resistant genes. In the target
pathogenic bacteria, antibiotic resistance to tetracycline has not been reported but
has been reported in the phylloplane bacteria (Schnabel and Jones 1999). However,
in some regions of the world the use of antibiotics has been discouraged because of
the emergence of antibiotic resistance and the transfer of antibiotic resistant genes to
clinical pathogens (Sundin et al. 2016).

9.5.2 Crop Rotation

Another strategy to control bacterial plant diseases is crop rotation. Disease man-
agement with crop rotation involves growing of non-host plants in the soil until the
pathogen will die or its population is reduced to such a level that is unable to cause a
disease or can cause a minimum damage to host plant (Kumar et al. 2020). For
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successful disease management with crop rotation it is necessary to have knowledge
about duration of pathogen survival in the soil, its mode of transmission and
reintroduction in the field environment, other ways of survival like persistence of
the pathogen between susceptible crops, etc. Those pathogens which can be spread
through several ways like those spread by both soil and wind cannot be managed
with crop rotation and require other means for disease management (Krupinsky et al.
2002).

After discussing conventional methods, we will briefly focus on some modern
approaches of bacterial disease management of plants that can be used as an
alternative, incase if traditional methods are less effective or inefficient for disease
management.

9.5.3 Biological Control

Beneficial microorganisms or their byproducts or plants/animals byproducts are used
for the plant disease suppression. An example of successful disease management
with biological control method is the use of the Agrobacterium radiobacter strain
K84 against crown gall disease caused by Agrobacterium tumefaciens (Kerr 2016).
However in some situations, disease management with biological control is not
effective. Like it is difficult for biocontrol agent to sustain significant population
of antagonists in order to protect host specific tissues. Also some bacterial species
that can serve as biocontrol agents are opportunistic human pathogens, e.g. Pantoea
agglomerans, Burkholderia spp. Therefore biosaftey concern signifies a need for
new biocontrol strains that are safe (Moss et al. 2007). Use of bacteriophages is
another novel strategy to control plant disease. Phages are abundant in nature and
can easily be isolated from host plant or soil. Various factors limit phage application
for disease control like stability in environment and emergence of resistance to
phages in the target pathogens (Jones et al. 2007).

9.5.4 Antimicrobial Peptides (AMPs)

These are small amino acid chains typically 50 or smaller amino acid residues and
are synthesized by various microbes like fungi, oomycetes, and bacteria. These
molecules are cationic in nature and are inserted into cell membrane thus disrupting
it or inhibit various cellular processes like protein or nucleic acid synthesis when
taken by the cells. For disease management AMPs are suitable candidates but for
plant disease management the use of AMPs is still dominated by screening efforts
and remains a work in progress (Breen et al. 2015).
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9.5.5 Plant Host Resistance

As long as for a decade, breeding crops for disease resistance have been desired for
effective disease control. Much of effort has been made to gain knowledge about the
key determinants of bacterial host interaction. The introduction of specific disease
resistant genes in several crops has resulted in positive momentum for disease
control. However this technique is not effective as the effector targets encounter
resistance due to which new pathogen races are evolved so the resistance conferred
by host plant is not durable. Examples of durable resistance are polygenic, which
means that is difficult to be transferred by breeding process (Jones and Dangl 2006).

9.6 Modern Approaches

In the previous section we have discussed bacterial disease management using
chemicals, antibiotics, biological agents, or through breeding disease resistant
plants. In this section we focus on some recent innovative methods that are less
prone to the development of resistance and are environmentally benign.

9.6.1 Type III Secretion System Targeting (T3SS)

For translocation of effector proteins, various plant pathogens like animal pathogens
possess type III secretion system which is a needle like structure. In response to the
secreted effectors host immune response can be inhibited, thus type III secretion
system plays a key role in the pathogenesis mechanism of the pathogens (Stavrinides
et al. 2008). In designing novel strategies for disease management, type III secretion
system could be an effective target. Upon targeting type III secretion system,
pathogenesis of several Gram negative bacterial pathogens can be inhibited.

Plant infection with Erwinia chrysanthemi equipped with T3SS genes results in
the production of two phenolic compounds t-cinnamic acid (TCA) and o-coumaric
acid (OCA). These both compounds are reported as precursor molecules for the
production of plant hormone salicyclic acid (SA) that have a role in plant defense
system (Yang et al. 2008). This finding suggested phenolic compounds as a potential
inhibitor of T3SS. So efforts should be made for the screening of new phenolic
compounds to inhibit T3SS in bacterial pathogens.

9.6.2 Biofilm Targeting

For bacteria biofilm represents an effective source of protection from different kinds
of stresses such as antibiotics, host defense mechanism, and environmental stresses
(Koczan et al. 2009). Developing biofilm inhibitors has become an interesting
research area in order to control infection in both plants and animals. Biofilm
formation comprises three main stages that are attachment, maturation, and
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dispersal. Biofilm inhibitors work by inhibiting any of the stage of biofilm formation.
D-amino acids and indole derivatives are biofilm inhibitors. These were applied to
biofilms, resulting in inhibition of early biofilm formation. So the symptoms caused
by the plant pathogens were reduced and it also enhanced susceptibility of plant
pathogens to chemicals like copper and conventional antibiotics (Kolodkin-Gal et al.
2010).

9.6.3 Nanoparticles

Nanoparticles (NPs) 1–100 nm in range have unique physicochemical properties
because of their smaller size. They possess high reactivity, have large surface to
mass ratio, and unique interactions with different biological systems (Prasad et al.
2016, 2018; Srivastava et al. 2021). These mentioned properties make the NPs
excellent antimicrobials and ideal carriers for other antimicrobials (El-Batal et al.
2020). In plant disease management most NPs are evaluated for fungal and
oomycete related diseases but for bacterial diseases promising results have also
been obtained (Zhang et al. 2017). As antimicrobial NPs may act as photocatalyst
damaging bacterial cell envelope or releasing toxic metal ions. NPs are mostly metal
oxides such as TiO2, CuO, ZnO, and Fe3O4. Reactive oxygen species (ROS) are
generated during photocatalysis in the form of hydroxyl radicals, hydrogen peroxide,
and peroxide. Various cellular components of bacterial cell like proteins, lipids,
and DNA can be damaged by ROS (Kaushal and Wani 2016; Cheng et al. 2020;
Aziz et al. 2014, 2015, 2016, 2019). NPs may have bacteriostatic or bactericidal
effect. In plant disease management, titanium dioxide nanoparticles (TiO2NPs) are
reported to be successfully used against bacterial spot pathogen Xanthomonas
perforans. Ag NPs and ZnO NPs exhibited promising results against Erwinia
amylovora. Nanoparticles may also serve as an efficient delivery system for several
antimicrobials. Carbon nanotubes, hydrogel, liposomes, dentrimers, nano and
microemulsions have been studied as effective drug delivery systems (Kang et al.
2012; Prasad et al. 2017).

Since the 1950s, bactericides and pesticides were sprayed on plants using air blast
sprays. However this technique was found to be less effective due to the loss of the
sprayed material via drift. Beside this only the surface pathogens could be targeted
by these chemicals and was not effective against systemic pathogens. In order to
successfully combat the pathogens, new drugs and pesticides delivery systems are
required that have the potential to target both surface and systemic pathogens
(Bhattacharyya et al. 2016). For example, the incidence of fire blight disease in the
fruit trees can be reduced significantly with endotherapy approaches than using
conventional sprays (Acimovic et al. 2015). So for the effective disease management
new approaches similar to the described one should be developed as this would be
effective in the management of systemic infections.
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9.7 Conclusion and Future Perspectives

A variety of crop types are affected by the phytopathogenic bacteria. Significant
economic losses in agriculture are associated with these pathogens and have a
negative impact on overall economy. These pathogens pose a threat to global food
production. In order to control bacterial diseases of plants, both traditional and
modern methods are employed. Mostly farmers follow traditional methods for
disease management. Most commonly bacterial diseases are treated with antibiotics
and chemical compounds. Although the use of antibiotics and chemicals is effective
in disease management, emergence of antibiotic and chemical resistance is one of the
major problems concerned with their usage. Also, the chemicals and antibiotics are
applied in the form of sprays that can target only the surface pathogens and are not
effective in the management of systemic diseases. In order to overcome the problems
associated with traditional methods, various novel approaches have been introduced.
Use of antimicrobial peptides, biological control, use of disease resistant cultivars of
plants, targeting type III secretion system of pathogens, targeting bacterial biofilm
and innovation in drug delivery system has been proved to be effective against
various pathogens. Application of these novel methods had overcome the problem of
resistance in pathogens. Innovations in delivery system also proved to be effective in
the disease control. Use of nanoparticles both for treatment and as a delivery system
for antibiotics was proved to be effective in many cases of disease management.
Moreover these novel approaches offer a promising scenario for effective disease
management in comparison to old traditional methods. However, all the innovative
strategies that we discussed here are in developmental stages. Therefore growers
continue to rely on traditional methods for disease control.
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A Glimpse of Tuber Crop, Their Diseases
and Control Mechanisms 10
Deepshikha Thakur and Vineet Shyam

Abstract

Edible tubers are a popular food source due to their vital nutrient and high starch
content. These crops are filled with proteins, dietary fiber, minerals such as
calcium and potassium, and a certain amount of vitamins like thiamin,
vitamin B, and riboflavin, thereby making them a good nutrient source. Most
widely used tuber varieties are potato (Solanum tuberosum), sweet potato
(Ipomoea batatas), taro (Colocasia esculenta), arrowroot (Maranta
arundinacea), Indian shot (Canna indica), yam (Dioscorea alata), crosne
(Stachys affinis), artichoke (Cynara cardunculus), cassava (Manihot esculenta),
jicama (Pachyrhizus erosus). These tuber crops are susceptible to attack by
soilborne pathogens that can significantly reduce the yield and quality in the
tuber crops. The pathogens that are specific to tubers can survive in soil years
after years, affecting the crops consecutively season after season. Major soilborne
pathogen groups are fungi, bacteria, viruses, and nematodes. The most familiar
diseases caused by soilborne pathogens are rots that affect belowground tissues
such as Fusarium dry rot caused by Fusarium sambucinum and pink rot caused by
Phytophthora erythroseptica. However, they are also responsible for causing
aboveground diseases such as Verticillium wilt caused by Verticillium dahliae
and charcoal rot caused by Macrophomina phaseoli. A thorough knowledge of
the soilborne diseases is very imperative in order to diagnose and manage the
soilborne diseases of tubers. The control for soilborne diseases in tubers can be
physical, cultural, chemical as well as biological. This chapter will discuss the
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major soilborne pathogens responsible for attacking tubers, their management
and control.

Keywords

Tubers · Pathogens · Diseases · Control methods · Management

10.1 Introduction

Edible tubers are a popular food source, due to their vital nutrient and high starch
content. Along with starch, these crops are also filled with proteins, dietary fiber,
minerals such as calcium and potassium, and a certain amount of vitamins like
thiamin, vitamin B, and riboflavin, making them a good nutrient source. Along with
its ability to produce high amounts of digestible energy, at the same time it provides
income as a cash crop, the major reason for potato being popular with farmers
(Kreuze et al. 2020). Most widely used varieties of tubers are taro (Colocasia
esculenta), arrowroot (Maranta arundinacea), yam (Dioscorea alata), crosne
(Stachys affinis), artichoke (Cynara cardunculus), potato (Solanum tuberosum),
sweet potato (Ipomoea batatas), cassava (Manihot esculenta), jicama (Pachyrhizus
erosus). These tuber crops are susceptible to attack by soilborne pathogens that can
significantly reduce the yield and quality in crops. Major soilborne pathogen groups
responsible for these attacks belong to the fungi, bacteria, viruses, and nematode
groups. These pathogens survive in the soil for many years, affecting the crops
consecutively season after season. The most familiar diseases caused by soilborne
pathogens in tubers are rots that affect belowground tissues, for instance, Fusarium
dry rot caused by Fusarium sambucinum and Pink rot caused by Phytophthora
erythroseptica. However, they are also responsible for aboveground diseases such as
Verticillium wilt caused by Verticillium dahliae and charcoal rot caused by
Macrophomina phaseoli.

Many plant diseases that are caused by soilborne pathogens can be difficult to
predict, detect, and diagnose. These pathogens are further difficult to investigate due
to the complex nature of the soil environment. Thus, the control of the diseases
caused by soilborne pathogens is often very difficult due to the complexity of the
interactions between a pathogen and its host, influenced by biotic and abiotic factors
of the environment. A thorough knowledge of the soilborne diseases is very impera-
tive in order to diagnose and manage the soilborne diseases of tubers. This chapter
will discuss the soilborne pathogens responsible for attacking tubers, their manage-
ment and control.
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10.2 Major Soilborne Pathogen Groups

Soilborne plant pathogens belong to the categories of virus, bacteria, fungi, or
nematodes. The plant pathogenic organisms can be resistant and dormant for very
long periods even without the hosts, thereby making control and treatment even
more problematic.

Fungi are considered as the most significant pathogen group as they are responsi-
ble for majority of the tuber diseases. On the basis of morphological and biological
characteristics, the five main taxonomic classes of plant pathogenic fungi are:
Plasmodiophoromycetes, Zygomycetes, Oomycetes, Ascomycetes, and
Basidiomycetes. Majority of the soilborne fungi producing resilient structures
(melanized mycelium, chlamydospores, oospores, and sclerotia) help them to persist
in soil for long durations, whereas the thin walled mycelium typical of many fungi
survives for only a short time in soil (Koike 2003). Some examples of predominant
soilborne fungi are Sclerotium rolfsii, Rhizoctonia solani, Fusarium sp., Pythium,
Phytophthora, etc. (Veena et al. 2014).

Another major group of soilborne pathogens is bacteria, which are single celled
organisms that have rigid cell walls but lack a membrane bound nucleus. Fewer
diseases are caused by soilborne bacterial pathogens than by fungal pathogens.
Examples of such bacteria are Erwinia, Rhizomonas, Ralstonia, Agrobacterium,
and Streptomyces. Pathogens in the Pseudomonas and Xanthomonas groups usually
persist in the soil for only a short time (Koike 2003).

Viruses are subcellular entities composed of genetic material with the
surrounding protein coat. Plant viruses are ubiquitous in nature and are sheltered
in the soil from where they find a route to infect the plants, thereby causing
significant economic losses to major crops all over the world. Virus disease
symptoms include stunting of the plant, tissue discolorations of foliage and fruit.
Generally, soilborne viruses survive only in the living tissues of the host plants or in
fungal and nematodal vectors that transmit them to plants. Soilborne viruses belong
to Secoviridae, Potyviridae, Ophioviridae, Tombusviridae, or Virgaviridae families
(Alison 2014).

Soilborne plant-parasitic nematodes are tiny, non-segmented roundworms, which
affect crops by reducing plant vigor and growth. They spend most of their lives in
soil, feeding externally either on plant roots or residing inside the roots. In a field
affected by the nematodes, part of the standing crop will be heavily infested, whereas
others will not be very affected, as a result there will be uneven maturation of the
overall crop and quality of the produce will also be lower.Meloidogyne, Heterodera,
Longidorus, Paratrichodorus, etc. are few examples of soilborne nematodes (Lam-
bert and Bekal 2002).
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10.3 Survival and Distribution of Soilborne Pathogens

Soilborne pathogens can be categorized into soil inhabitants, those survive in soil for
relatively longer periods, and soil invaders or soil transients, those survive in the soil
for moderately shorter periods. Soilborne pathogens are capable of surviving on
decaying organic matter as saprobes which under certain favorable conditions turns
into pathogenic form (Veena et al. 2014). Saprophytic pathogens are known to
survive by taking nourishment from plant debris or soil’s organic matter, whereas
few other fungal and nematodal pathogens can survive in the soil for long periods
even without feeding on organic matter. Survival of such pathogens is aided by their
ability to form robust resting structures (cysts, spores, and hyphae), which enable
them to survive long periods without a suitable host, or when environmental
conditions are unfavorable (www.farmbiosecurity.com). The survival ability of
soilborne pathogens partially depends on the biological group to which they belong.
Some bacterial pathogens are long term soil inhabitants. Most of these survive as
saprophytes on the plant debris or roots for limited periods or directly in the soil.
These bacterial pathogen’s cells do not produce resilient endospores and the vegeta-
tive cells are not particularly resilient in adverse environments. Some species survive
by secreting slimy material that dries to form protective layers around the cells,
enabling them to withstand unfavorable conditions. Fungal pathogens survive in soil
as saprophobes feeding on host plant debris or on other types of organic matter,
present in the soil, or as free-living organisms living directly in the soil. Many of
these fungi produce resilient survival structures on organic materials, which are
released into the soil by tillage operations and through decomposition of the infected
material. Survival structures are capable of withstanding extreme temperatures, dry
conditions, and also in the absence of suitable hosts. Environmental factors may
affect the viability of the survival structures, for instance, the sclerotia of some root
infecting pathogens can be sensitive to desiccation. Low soil temperatures can be
detrimental to pathogens that are adapted to warmer conditions.

The soilborne pathogen’s horizontal and vertical distribution relies on a variety of
factors such as production practices and cropping history. On a vertical plane, the
root pathogen inoculum mostly lies within the top 10 in. of the soil profile, which
consists of host roots, tissues, and other organic substrates. Along the horizontal axis
in a field, inoculum distribution is usually amassed in areas where a susceptible crop
has been grown (Veena et al. 2014).

The survival and activity of soilborne pathogens are influenced by numerous
factors such as soil type, soil texture, pH, moisture, temperature, and nutrient levels.
Soils with poor drainage properties are likely to favor the survival of soilborne
pathogens such as Pythium, Phytophthora, and Aphanomyces. Similarly, Fusarium
and Verticillium wilts can also be more severe in wet soils than in dry soils. Only a
few root diseases are favored by drier soils (for example, common scab of potato
caused by Streptomyces scabies (Veena et al. 2014)).
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10.4 Soilborne Diseases of Tubers

Tuber crops are one of the major food crops in the world and it will certainly feed a
big part of the global population in the next years. The economical outlets for these
crops are great; however, numerous diseases either soil- or airborne can cause huge
losses in the production. The occurrence and development of soilborne diseases
depend on very diverse factors affecting either the pathogen or the plant. Potato,
Jerusalem artichoke, yam, sweet potato, Colocasia, arrowroot are some of the
common tubers consumed globally.

10.4.1 Potato

Potato (Solanum tuberosum) is the starchy tuber that is native to America. It is a
popular food source and culinary ingredient all over the world. Around the globe,
approximately 40 soilborne diseases affect the potato tubers, which are the most
economical part of the tuber crop (Oerke et al. 1994). Regrettably, the conditions
which are provocative for the development of potato diseases are occasionally the
same as required for the potato growth, that is, temperature between 10 �C and
25 �C, high humidity, neutral pH, etc. (Fiers et al. 2014). Soilborne diseases
affecting crop development comprise Rhizoctonia canker, black dot, potato early
dying (Verticillium wilt), and numerous nematodes. Soilborne diseases affecting
tuber quality comprise various pathogens such as viruses, bacteria, nematodes, and
fungi (Gudmestad et al. 2007).

Fungal pathogens are probably the most prevalent type of soilborne pathogen.
The fungi belonging to Fusarium species are the plant pathogens causing huge
economical agricultural production damage throughout the globe (Bentley et al.
2006). Symptoms caused by several Fusarium pathogens are cortical decay of
roots, root rot, wilting, yellowing, rosette, and premature death on infected plants.
Dry rot of seed tubers caused by Fusarium can reduce crop establishment by killing
developing potato leading to crop losses up to 25% (Wharton et al. 2006). Other
soilborne fungi affecting potato are also further discussed. One of the most
underestimated diseases is powdery scab of potato, caused by the Spongospora
subterranea (Falloon et al. 2016), in which initially small, light-colored, blister
appears that later becomes large, dark, and open pustules. Another major soilborne
fungi Rhizoctonia solani has otherwise a wide host range and is also responsible for
causing damping-off, stem canker, and black scurf in potato (Fritz 2008). In temper-
ate and high altitude tropical regions, Synchytrium endobioticum wart or black wart
causes considerable yield loss in which galls are produced on several plant parts
(Jeger et al. 1996). Whereas, in arid regions, Erysiphe cichoracearum is responsible
for causing powdery mildew of potato, wherein, the leaves turn black, then die and
drop from the plant. Phytophthora infestans causes most serious fungal disease, i.e.,
late blight. In this, water-soaked lesions on foliage appear that later becomes
necrotic, turning brown or black. Early blight caused by Alternaria solani is
worldwide in distribution and is one of the most important foliage diseases. On the
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leaves and stems, brown, angular, necrotic spots marked internally by a series of
concentric rings form (Vijvera et al. 2020). The soil- and seed-borne disease pink rot
is caused by Phytophthora erythroseptica wilt with stem decay and leaf chlorosis.
Sclerotinia sclerotiorum causes white mold that affects potato mainly in the cool
tropics and temperate zones. Sclerotium rolfsii causes stem rot also known as
southern blight, which is worldwide in occurence in potato, particularly under
hot and moist conditions. Initially, daytime wilting and yellowing result which
progresses to a white mycelium growth on stems, tubers, or soil, often in fan-like
mats. Rosellinia sp. that causes Black rot may cause heavy potato yield losses in
moist soils rich in organic matter. Diseased plants are stunted and wilt. Verticillium
albo-atrum, V. dahliae causing Verticillium wilts may be a serious problem in
tropical and subtropical regions and irrigated deserts where water deficiency may
be severe (Arora and Khurana 2004).

Soilborne bacterial pathogens contribute to the tuber diseases mainly causing
wilts and rots. Although fewer diseases are caused by soilborne bacterial pathogens
than by fungal pathogens. Examples of such pathogenic bacteria are Erwinia,
Rhizomonas, and Streptomyces. Pathogens belonging to the groups of Pseudomonas
and Xanthomonas groups are usually short persisting in the soil. Pseudomonas
solanacearum causes bacterial wilt in potato also known as brown rot which is the
most serious bacterial disease problem of potato in warm regions of the world. In
this, mild yellowing usually accompanies wilting. Grayish white beads exude from
the usually darkened vascular ring of cut stems or tubers. Bacterial soft rot can result
when wound sites of plant roots are infected with bacteria of the Erwinia spp. This
results in a slimy rot that can affect any part of the plant, including heads, curds,
edible roots, stems, and leaves. Blackleg and soft rot blackleg of potato are also
caused by Erwinia spp. These are the widely distributed diseases that are especially
harmful in humid climates. Erwinia carotovora ssp. carotovora usually occurs in
warm climates, E. c. ssp. atroseptica in cool climates, and E. chrysanthemi only in
hot climates. Bacterial ring rot is caused by Clavibacter michiganensis ssp.
Sepedonicus, in potato which is a recurring disease problem in temperate regions.
It affects the lower leaves causing appearance of pale-yellow color between major
veins, further followed by plant death. Another common bacterial defect of tuber that
affects the quality of potato is Scab, that is caused by Streptomyces scabies. Several
types of lesions develop that can be superficial or reticular, deep or pitted or
protuberant (Arora and Khurana 2004; Göre 2017).

Virus diseases in potatoes can often be diagnosed by mosaic patterns on leaves,
stunting of the plant, leaf malformations, and tuber malformations. Several common
viral diseases of potatoes are further discussed. PLRV, i.e., potato leafroll virus is the
most important potato virus and is common in all countries that can cause yield
losses in highly susceptible cultivars up to 90%. Primary symptoms caused by
current season aphid-transmitted infection are rolling of upper leaves, especially of
leaflet bases. Late infections may not cause symptoms. Potato viruses Y (PVY) is the
second most important potato virus that can cause yield loss of up to 80%. It is
perpetuated through infected tubers and transmitted by aphids in a nonpersistent
manner (Kumar and Jeevalatha 2014). Rugosity, bunching, twisting of leaves,
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downward turning of leaflet margins, stunting, necrosis of leaflet veins, necrotic
spotting, leaf necrosis, and stem streak are typical. Mosaics virus symptoms may be
caused in potato leaves by several different viruses (PVX, PVS, PVM, also PVY and
PVA), singly or in combination, that may cause yield losses above 10%, with the
extent varying according to strain and potato cultivar (Kreuze et al. 2020). Trans-
mission is through infected tubers and by contact (not by aphids) and normally
causes mosaic. Potato mop-top virus (PMTV) occurs in areas with cool, damp
conditions that favor the spread of its fungus vector, Spongospora subterranea.
Symptoms consist of rings on the surface, sometimes brown and necrotic, extending
as arcs into the tuber flesh. The importance of Calico and Aucuba disease virus
(AMV, PAMV, TRSV, PBRSV, TBRV), which usually occur under cool
conditions, depends on the causal virus and the cultivar. Symptoms of Alfalfa
mosaic (AMV), potato aucuba mosaic (PAMV), tobacco ringspot (TRSV), potato
black ringspot (PBRSV), and tomato black ring (TBRV) consist of bright yellow
markings on leaves as spots, blotches, flecking, and/or yellowing around veins
(Kumar and Jeevalatha 2014). Potato yellow vein disease is apparently caused by
a virus transmitted by the whitefly Trialeurodes vaporariorum. Soon after infection,
bright yellowing of minor veins (tertiary) is evident and as disease progresses,
secondary veins and leaf lamina become yellow, usually leaving primary veins
green (Kreuze et al. 2020).

Several species of nematodes can also cause economic damage to tubers. Nema-
tode injury varies among species, but can include galls on roots and tubers (root-
knot), necrosis of roots (root-lesion), or a subtle stubby-appearance (stubby-root)
(www.farmbiosecurity.com). Nematode lesions further increase the chances of
infection attack by soilborne bacteria and fungi. Globodera rostochiensis (potato
cyst nematode, PCN) infects Solanaceae, such as potato and eggplant. Cyst
nematodes Globodera pallida and G. rostochiensis are serious diseases that also
increase the incidence of infection by bacterial and Verticillium wilt. Root-knot
nematodesMeloidogyne spp. Polyphagous attacks increase incidence of infection by
bacterial wilt, Verticillium, and other pathogens. In warm climates, nematode attacks
are even more prevalent. Weak top growth and small, chlorotic leaves that wilt
quickly in warm weather are typical. Depending upon the severity of the damage, the
infected roots show knots or galls of different sizes. False root-knot nematodes
Nacobbus aberrans cause severe damage under conditions of heavy infestation.
Infested plants are weak, strings of galls in a beadlike fashion are typical of infected
roots (Inserra et al. 2004). Root-lesion nematodes, Pratylenchus penetrans, and no
fewer than ten other related species are found in temperate climates. Root-lesion
nematodes are migratory endoparasites. High populations cause brown necrotic
lesions in the cortical root tissue. Infected tubers show purple-brown pimples,
pustules, or wartlike protuberances that lower their market value (Table 10.1).
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10.4.2 Jerusalem Artichoke

Jerusalem artichoke (Helianthus tuberosus), also is known by other names such as
earth apple, sunroot, sunchoke, or topinambour. It is a species of sunflower native to
eastern North America. Powdery mildew (due to Erysiphe chicorianum f. sp.
helianthi) has been reported from Bulgaria. Common diseases of sunflowers

Table 10.1 Major microbial pathogens of potato

Bacteria Fungi Viruses Nematodes

Streptomyces ipomoea,
Ralstonia solanacearum,
Streptomyces scabies,
Erwinia carotovora ssp.,
Pseudomonas
solanacearum,
Pectobacterium
atrosepticum, Dickeya sp,
P. carotovorum,
Streptomyces scabies,
Clavibacter michiganensis,
Pseudomonas syringae,
Erwinia chrysanthemi,
Sphaceloma batatas

Phytophthora
infestans,
Sclerotium
rolfsii,
Rosellinia sp.,
Spongospora
subterranean,
Rhizoctonia
solani,
Verticillium
albo-atrum,
Phoma exigua
var. foveata,
Fusarium sp.,
Synchytrium
endobioticum,
Phytophthora
infestans,
Phytophthora
erythroseptica,
Sclerotinia
sclerotiorum,
Sclerotium
rolfsii,
Alternaria
solani,
Fusarium spp.,
Macrophomina
phaseolina,
Phoma foveata,
Phytophthora
infestans,
Rhizoctonia
solani,
Spongospora
subterranea,
Synchytrium
endobioticum,
Erysiphe
cichoracearum,
Verticillium
spp.

PLRV, potato leafroll
virus,
Potato virus Y,
PVNn potato virus,
PVA potato virus A,
Mosaics virus (PVX,
PVS, PVM),
Andean potato mottle
virus (APMV),
Andean potato latent
virus (APLV),
AMPV
Sweet potato virus
disease (SPVD),
Sweet potato feathery
mottle virus
(SPFMV),
Yam mosaic
potyvirus

Globodera
rostochiensis,
Globodera pallida.
Meloidogyne
chitwoodi,
Nacobbus
aberrans,
Pratylenchus
penetrans,
Pratylenchus spp,
Meloidogyne spp.
Scutellonema
bradys,
Pratylenchus
coffeae,
Meloidogyne spp.
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(Helianthus annuus) such as downy mildew, septoria leaf spot, rust, and sclerotinia
wilt are regarded as potential problems. The tubers are susceptible to the develop-
ment of rots during storage. Fungi Botrytis cinerea, Rhizopus stolonifer, and
Sclerotinio sclerotiorum are reported to be fairly common; the last two can cause
severe losses even when the tubers are stored at low temperatures. In addition, the
tubers are sometimes infected by a fusarium rot, probably caused by Fusarium
acuminatum. Sclerotinia wilt and stalk and tuber rot have been reported on
Jerusalem artichoke, that infection produces basal cankers, root rot, tuber rot, and
wilt symptoms (Mordue and Holliday 1976). Downy mildew caused by Plasmopara
halstedii affects the mature foliage of Jerusalem artichoke. Powdery mildew appears
as a powdery white growth on the surface of the stems and leaves (McCarter and
Kays 1984). Rust caused by Puccinia helianthi Schwein has been a serious disease of
Jerusalem artichoke in the Southeastern United States. The first symptom of rust
usually noted is the production of uredinial pustules on the foliage and, occasionally,
on the stem (Zimmer and Rehder 1976). Bacteria Pseudomonas syringae causes
Apical chlorosis. The disease can reduce plant stands by as much as 50%. Newly
emerged shoots exhibit a yellowing of the growing tips (apical chlorosis) which can
spread downward over most of the shoot (Gulya et al. 1982). Jerusalem artichoke
can grow well even when root-knot nematodes are present (http://www.
missouribotanicalgarden.org).

10.4.3 Yams

Yams are the plant species in the genus Dioscorea (family Dioscoreaceae) cultivated
for the consumption of their starchy tubers. Dioscorea alata (white yam), Dioscorea
bulbifera (potato yam), Dioscorea cayenensis (yellow yam), Dioscorea esculenta
(Asiatic yam), and Dioscorea batatas (Chinese yam) are some of the yams that are
grown for their edible tubers (Bridge 1982; Mohamed and Mantel 1976). Fungal
disease that attacks yams is Anthracnose (Scorch) caused by Colletotrichum
gloeosporioides (Arunachalam et al. 2011). The disease causes small, dark brown
spots, or black lesions on leaves which may be surrounded by a chlorotic halo, leaf
necrosis, dieback of stem, withered leaves, and scorched appearance. During storage
of the yam tubers, severe losses are caused by rotting due to soilborne fungi
Botryodiplodia theobromae, Aspergillus spp., Rosellinia bunodes, Lasiodiplodia
sp., Fusarium oxysporum, F. solani, and other Fusarium sp. (Bridge 1982).

Virus diseases have been reported world-wide in Yams and can cause up to 40%
loss in yield. Most are of the mosaic type causing leaf mottling, and most are serious
only when the infection occurs early and is severe, leading to stunting and sometimes
causing the production of numerous basal shoots, giving the plant a bushy appear-
ance. Yam mosaic disease caused by Yam mosaic potyvirus has the common
symptoms of infected leaves show yellow and green patterns (called mosaics)
between the veins or may show vein banding (narrow green strips bordering the
veins). In the severity of the disease, is the leaves show shoe-string symptom (long,
thin and strap shape). Transmission of virus is through aphids and tubers/setts
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Several species of nematodes also attack yams. The yam nematode, Scutellonema
bradys, is widely distributed in both Old and NewWorld tropics and causes “dry rot”
of the tubers. Pratylenchus coffeae, causing rather similar lesions, has been reported
to attack yams in Puerto Rico, Jamaica, and the Solomon Islands, while the root-knot
nematodes,Meloidogyne spp. of worldwide distribution, sometimes attack this crop.
Various species of Dioscorea, Dioscorea alata, Dioscorea esculenta also attacks the
yams. Dry rot disease caused by yam nematode, Scutellonema bradys shows dry rot
of 1–2 cm on the infected tubers. Initially this dry rot is of cream and light-yellow
lesions appear just below the outer skin without any external symptom. With
progress in disease lesion spreads deeper (maximum up to 2 cm). At later stage the
rot becomes light and dark brown to black in color and tubers may show external
cracks. Entry of fungus through these wounds causes further decay of tubers in
storage. There is no aboveground symptom with yam nematode infestation. Root-
knot nematode Meloidogyne incognita infects the yams and the infected plants are
stunted with poor growth. The leaves turn yellow in color (Inserra et al. 2004).
Tubers and feeder roots are galled. Tubers are deformed and develop abnormal
rootlets called crazy roots.

10.4.4 Sweet Potato

Sweet potato (Ipomoea batatas) is an herbaceous perennial in the family
Convolvulaceae grown for its edible storage roots. Sweet potatoes are subject to a
number of diseases caused by soilborne pathogens both in the field and in storage.

Out of wide range of fungal diseases affecting the crop stand, several that are of
importance are: Stem rot (due to Fusarium oxysporum f. baratas) can destroy 10–50
per cent of the crop of susceptible cultivars and has been reported to kill 99 per cent
of infected plants in certain circumstances. Black rot (caused by Ceratocystis
fimbriata) can develop in stored tubers as well as affecting the plants in the field.
Scurf rot or soil stain (caused by Monilochaetes infuscans) is widespread and
produces a brown or black discoloration on the surface of the tubers, which consid-
erably reduces their market value. Footrot (due to Plenodomus destruens) frequently
affects plants raised from transplants and infected plants often produce no tubers
although they make reasonable vine growth. Other field diseases of sweet potatoes
(and their causal organisms) are root rot (Phymatotrichopsis omnivora), mottle
necrosis (Pythium spp.), phyllosticta leaf blight (Phyllosticta batatas), septoria leaf
spot (Septoria bataticola), and white rust (Albugo ipomoeae-panduratae). Other
storage rots affecting sweet potatoes (and their causal organisms) are Erwinia
chrysanthemi, black rot (Ceratocystis fimbriata), surface rot (Fusarium oxysporum),
dry rot (Diaporthe phaseolorum var. batatatis), charcoal rot (Macrophomina
phaseolina), and Java black rot (Botryodiplodia theobromae), which is often a
serious problem in the tropics (optimum growth temperature is about 28 �C).
Alternaria leaf spot and leaf and stem blight caused by Alternaria spp. cause
brown lesions on leaves with concentric rings resembling a target. Black rot caused
by Ceratocystis fimbriata causes stunted plants, wilting plants, yellowing plants,
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dropping leaves, plant death, circular brown-black patches of rot on tubers. Fusar-
ium solani causes stem rot in which base of stems is swollen and distorted; deep,
dark rot extending deep into tuber and forming elliptical cavities; growth of white
mold (Steinsbauer and Kushman 1971).

Among bacteria, Erwinia chrysanthemi affects the sweet potato, causing bacterial
soft rot. Brown to black water-soaked lesions on stems and petioles expand rapidly
and cause large areas of soft rot on the stem; stem may collapse causing several vines
to wilt; entire plant may die; storage roots may develop areas of soft rot which is
initially colorless, but eventually turns brown with a black margin. In bacterial wilt
caused by Ralstonia solanacearum, new sprouts wilt and have water-soaked bases
which turn yellow-brown to dark brown in color; vascular system of the sprouts is
discolored brown; Leaf and stem scab caused by Sphaceloma batatas causes small
brown lesions on leaf veins which become corky in texture and cause veins to shrink
which in turn causes leaves to curl; lesions on stem are slightly raised and have
purple to brown centers with light brown margins; scabby lesions form on stems
when lesions coalesce. Streptomyces ipomoea causes poor growth of plants due to
the production of several phytotoxic secondary metabolites (Bignell et al. 2013).

Virus diseases include those producing internal cork and russet crack in roots,
feathery mottle, mosaic, chlorotic spotting and banding in foliage, and little leaf and
witches broom. Transmission is usually by aphids, including Myzus persicae, Aphis
gossypii, whitefly (Bemisia tabaci), and others or by the use of infected planting
material (Terry 1982). Sweet potato chlorotic stunt virus (SPCSV) and sweet potato
feathery mottle virus (SPFMV) causes a disease complex that includes Sweet potato
virus disease (SPVD), Sweet potato feathery mottle virus (SPFMV) and Sweet
potato chlorotic stunt virus (SPCSV) (Gutiérrez et al. 2007). The symptoms are
severe stunting of infected plants, stunting, distorted and chlorotic mottle, or vein
clearing of the leaves. It is confirmed that SPCSV enhances the accumulation of
SPFMV. The symptoms caused by SPCSV alone are negligible. Whereas symptoms
caused by SPFMV are localized, mild, and often asymptomatic and will not cause
significant damage to the plant. Common symptom includes appearance of feathery,
purple patterns on the leaves. Some of the nematodes are also reported as affecting
the crop. Meloidogyne spp. causes considerable losses, while the reniform
nematodes Rotylenchus reniformis also cause severe damage in some areas
(Gutiérrez et al. 2007).

10.4.5 Colocasia esculenta

Colocasia esculenta (Taro, elephant ear, or cocoyam) is an emergent, perennial,
aquatic, and semi-aquatic herbaceous species of the Araceae family, native to Asia.
As a root vegetable, plant is grown primarily for its edible corms. Nowadays,
C. esculenta is considered the fifth most consumed root vegetable worldwide.
Taro is also used as an ornamental plant. Fungal and oomyceteous plant pathogens
of taro have been reported to cause losses in taro fields. Taro leaf blight disease,
caused by Phytophthora colocasiae, foliar oomyceteous diseases agent, is a major
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limiting factor in taro production worldwide (Brooks 2008). One of the major fungi
that can be associated with taro root rots is black rot (Ceratocystis fimbriata) causing
rot of storage corms of taro worldwide (Harrington et al. 2011). Root rot of taro may
also be caused by any one or a combination of several common soilborne
microorganisms such as Phytophthora citricola, Phytophthora nicotianae, Pythium
spp., Fusarium oxysporum, Fusarium solani, Sclerotium rolfsii, and Rhizoctonia
sp. (Ooka 1994). The relative importance of these pathogens and their effect on yield
vary among countries or disease conditions. Pythium root and corm rots are probably
the most widely distributed disease of taro (Ooka 1994). Pythium carolinianum is
mostly associated with wetland taro rather than dryland taro. In wetland situations,
while P. carolinianum is known to infect taro under favorable conditions, it is a less
aggressive pathogen than other species such as Pythium myriotylum (Liloqula 1993)
that are more commonly associated with corm rot. Pythium root rots usually develop
into corm rots where the interior of the corm is progressively transformed into a foul
smelling soft mass (Jackson and Gerlach 1985). Spread occurs via zoospores that are
carried in irrigation water and are attracted to chemical exudates from the root tips
(Jackson and Gerlach 1985). Pythium species can also be transferred to new areas on
infected vegetative planting material (Sibel et al. 2014).

10.4.6 Arrowroot

Arrowroot also known asMaranta arundinacea L. is not normally subject to serious
attacks by pests or diseases. In parts of the Caribbean, particularly in wet districts,
arrowroot sometimes suffers from a rot caused by Rosellinia bunodes. Two leaf
blights, caused by Rhizoctonia solani and Pellicularia filamentosa, are reported to
infect arrowroot in India. A condition known as “cigar roots,” in which the rhizomes
become elongated and very fibrous, has also been reported from the Caribbean but is
thought to be due to nutritional deficiencies (Maiti et al. 1980). Banded leaf blight
caused by fungus Thanatephorus cucumeris shows a chlorotic band of the leaves
with ultimate browning and rotting (Reddy 2015). A vascular wilt disease of
arrowroot was reported in Brazil in 1962 that shows the presence of whitish small
dots and narrow streaks. Control methods include rouging, controlling aphids,
planting healthy planting material, and controlling weed (Reddy 2015).

10.5 Control of Soilborne Pathogens

An effective control method against the pathogens is essential to ensure good
production and yield stability. A number of methods such as chemical, physical,
cultural, and biological techniques have been developed for the control of plant
disease by soilborne pathogens (Singleton et al. 1992). Although there is no general
perfect method to be used in all instances of soilborne pathogens control, but
different methods (Fig. 10.1) can be suitable in different situations, as discussed
below.
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10.5.1 Physical Methods and Cultural Control Practices

Due to the negative effects of the chemical methods, there is growing interest in
physical methods and cultural practices for disease control for the management of
soilborne pathogens. Physical and cultural methods of control include heating the
soil or propagation material, irradiation, crop rotation, fallow, flooding, deep
plowing, flaming, soil solarization, adjusting planting date, irrigation, fertilization,
compost, weed control, herbicide application, sanitation, tillage, and others (Jaacov
2000).

10.5.1.1 Crop Rotation
The use of crop rotations in the farming system allows time for the soil microbiota to
displace, weaken, or destroy the propagules of soilborne pathogens of any one crop
while another, usually unrelated crop is growing. In general, soilborne plant
pathogens multiply in the presence of their preferred host plant(s) and decline
when the host plant is absent. Most of these pathogens could survive in the soil in
the absence of the host plant if it were not for the combined action of competition,
antibiosis, and predation/parasitism imposed by the associated soil microbiota
(Veena et al. 2014). Oat-potato, annual ryegrass-potato, or clover-potato crop
sequences have been found to reduce both Rhizoctonia solani inoculum levels in
soil and suppress subsequent disease development in a potato crop (Johnston et al.
1994). Barley and clover demonstrated reductions in Rhizoctonia canker and black
scurf through the first couple of rotation cycles, after which these diseases increased
to levels comparable with continuous potato (Larkin et al. 2010). Full-season
rotation crops (barley, ryegrass, canola, and rapeseed) in two to three-year rotations
with potato were reported to significantly reduce Rhizoctonia outbreak in potato
(15–50%) (Larkin et al. 2012). Wiggins and Kinkel (2005) reported that cropping
sequences involving potato had an intense effect on soil microbial community but
crop rotation was ineffective in controlling potato scab disease.

Physical and cultural 
control
•Crop rotation 
•Soil amendments
•Soil Solarization
•Fertilizer application
•Soil drainage 
•Tillage practices

Chemical Control
• Pesticides
• Fungicides
• Nematicides
• Bactericides

Biological 
Control
• Biological agents 
• Plant extracts 

Fig. 10.1 Effective control methods and strategies against soilborne pathogens
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10.5.1.2 Soil Amendments
Plants and their products like organic amendments, compost, crop residues, green
manures, fish meal, blood meal, biochar, chitosan-based products, etc. can signifi-
cantly decrease the incidence of soilborne diseases (Bailey and Lazarovits 2003).
Application of organic amendments like sawdust, straw, oil cake, etc., can success-
fully cope with the diseases caused by pathogens such as Pythium, Phytophthora,
Verticillium, Macrophomina, Phymatotrichum, and Aphanomyces and plant-
parasitic nematodes (Corato 2020; Rosskopf et al. 2020). The application of
amendments to adjust the pH of the soil can be beneficial. The application of lime
(2500 kg/ha) reduces the clubroot of cabbage by increasing soil pH to 8.5 (Utkhede
and Guptha 1996). Similarly, the application of sulfur (900 kg/ha) to soil brings the
soil pH to 5.2 and reduces the incidence of common scab of potato caused by
Streptomyces scabies (Davis et al. 1974). Many herb plants contain essential oils,
including terpenes, as well as phenols, alcohols, organic acids, and other compounds
with potentially biocidal activity (Paret et al. 2010). Application of castor cake and
neem leaves helps to reduce the foot rot of wheat (Utkhede and Guptha 1996).
Incorporation of de-caffeinated waste and water hyacinth in management of root-
knot nematode in carrot has been reported by Davis and Das (1998). Although
organic amendments such as composts may be useful for the management of
soilborne diseases, they are not widely implemented due to concerns about potential
side-effects (non-selective activity, cost effectiveness, and scale practicality)
(Yulianti et al. 2006; Colla et al. 2012). Compost dwelling microorganisms produce
some chemical compounds (e.g., siderophores, tannins, phenols) which are antago-
nistic to various soilborne pathogens and also produce plant growth hormones. The
use of composted softwood and hardwood barks gave reproducible control of
Pythium ultimum in lettuce, R. solani in cucumber, radish, and bedding plants
under greenhouse conditions (Stephens and Stebbins 1985). In regard to soilborne
pathogens, another organic amendment, i.e., biochar’s suppressive capability has
been reported for the following species: F. oxysporum f. sp. asparagi, F. oxysporum
f. sp. radicis-lycopersici, Fusarium proliferatum, Pythium aphanidermatum,
Phytophthora cactorum, Phytophthora cinnamomi, and R. solani (Elmer and
Pignatello 2011; Jaiswal et al. 2014). Conn and Lazarovits (1999) revealed that
the application of fresh chicken manure was highly effective in reducing the
incidence of potato scab, Verticillium wilt, and parasitic nematodes.

10.5.1.3 Soil Solarization
Soil solarization or solar heating is the pre-planting method and a good way of
controlling soilborne pathogens (Panth et al. 2020). The aim of soil solarization is to
harness solar energy to raise the temperature of moistened soil which can result in the
control of soilborne pathogens, especially Fusarium species. Soil solarization is a
useful practice which is able to reduce soil pathogen populations which is achieved
by covering the soil with plastic films. Actually, light plastic films (LPFs) are
nowadays widely used especially in open and greenhouse vegetable crop
cultivations in some countries as they are able to raise soil temperature more than
20 �C above air temperature (Gonzalez et al. 1993; Kumar and Sharma 2005). In
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general, solarization appears to be an effective practice able to control nematodes,
even though it may cause stress on the soil microbial biomass. In addition, it is
demonstrated that the organic amendments exert a protective role keeping soil
microbial biomass and enzymatic activities protected from the detrimental effect of
heating. In a study by Kumar and Sharma (2005), soil disinfestations were carried
out in warm climate, through soil solarization method for the relative control of
Fusarium pathogens. In this method, infested soil was thoroughly plowed, irrigated
deeply for better heat transmission into the soil. Afterwards, the moistened soil was
covered with transparent polyethylene sheet to raise soil temperatures to a high range
(more than 10 �C above air temperature). The edges of the sheets were buried to
ensure the plastic is held in place. The plastics were left on the soil for 6 weeks
during the hottest part of the summer. The method came out to be a successful
practice to control soilborne fungi, as well as Fusarium species. In another study, the
count of Fusarium oxysporum in the upper 15 cm of a naturally infested soil was also
reported to be reduced by soil solarization (Gonzalez et al. 1993). During the
9 months following treatment, the F. oxysporum population stabilized at a low
level in soil solarized for 2 months, but fluctuated in soil solarized for 1 month.
The amount of Fusarium wilt on plants was also revealed to be generally low after
soil solarization treatment. The sub-lethal doses of increased temperatures due to soil
solarization also render the pathogen propagules further susceptible to attack of
biological control agents.

10.5.1.4 Fertilizer Application
Nutrient manipulation through fertilization or modification of the soil environment
to influence nutrient availability is an important cultural control for plant disease and
an integral component of production agriculture. Fertilization decreases soilborne
diseases by maximizing the inherent disease resistance of plants, by facilitating
disease escape through increased nutrient availability or stimulated plant growth
and by altering the external environment to influence the survival, germination, and
penetration of pathogens. It is clear that the severity of most diseases can be
decreased and the chemical, biological, or genetic control of many plant pathogens
enhanced by proper fertilization. Breeding nutrient-efficient or disease-tolerant crops
and establishing cultivar requirements should further improve production efficiency
(Huber 1990). Application of ammonium bicarbonate reduces the viability of scle-
rotial bodies of S. rolfsii (Punja and Grogan 1982). Application of phosphatic
fertilizers also influences the host resistance by increasing the production of
phytoalexins (Gottstein and Kuc 1989). Management of Pythium and Phytophthora
by application of phosphoric acid has also been reported (Asha et al. 2018).

10.5.1.5 Soil Drainage
Good soil drainage depends on the management of irrigation in order to minimize
the dispersal of soilborne pathogens through water. This irrigation and drainage
management is capable to monitor disease incidence by avoiding the soilborne
pathogens to other areas. When diseases occur, timely removal of dead or infected
plants can reduce the potential for inoculum build-up. Good soil drainage practices
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are known to decrease the number and activities of certain oomycetes pathogens
(e.g., Pythium) and nematodes. Irrigation also helps to reduce the soilborne disease
charcoal rot caused by M. phaseolina (Kendig 2000).

10.5.1.6 Tillage Practices
Tillage practices refer to the soil preparation carried out between the harvest and
following sowing/cultivation operation. Soil preparation before sowing aids in
reducing pathogen population by two main methods that is either through burial of
inoculum deep into the soil or drying of the inoculum when exposed in the top
layers. In a study by Singh (2001), when the sub-soiling was done preceding the
planting of root rot susceptible and tolerant cultivars of green pea, in the soil infested
with F. Solani f. sp. and Pythium ultimum, sub-soiling was reported to increase the
yield of green pea.

Along with the all of the above-mentioned cultural practices, some other practices
are also used such as roguing (useful particularly for the control of viruses), planting
only high quality seed free from pathogens, adequate but not excessive irrigation and
fertilization, incorporation of green manure crops (sudangrass, sesame, rapeseed,
white mustard, or perennial ryegrass). Simple measures such as the painting of the
cut surfaces with limewash or Bordeaux mixture or coating with wood ash can
control Yam rotting due to fungi Botryodiplodia theobromae, Aspergillus spp.,
Rosellinia bunodes, Lasiodiplodia sp., Fusarium oxysporum, F. solani, and other
Fusarium spp. (Bridge 1982). Rotting during storage may be minimized by treating
cut or bruised surfaces of the harvested tubers in the same manner (Bridge 1982;
Twumasi and Moses 2014).

10.5.2 Chemical Control

Chemical control is the most reliable when it comes to the choice of farmers as the
alternatives for chemical control against soilborne pathogens are not adequately
effective for controlling the current disease incidence. Eventually, farmers turn to
one or more of the known chemical alternatives such as methyl bromide for
fumigation of soil (Labrada 2008). Although most chemical pesticides are used to
protect plants from infection or to eradicate a pathogen that has already infected a
plant, there are some chemical treatments, which aim at eradicating or greatly
reducing the inoculum even before it comes in contact with the plant. Fungicides
can be applied to the soil as dusts, liquid drenches, or granules in order to control
damping-off, seedling blights, crown and root rots, and other plant diseases. In
irrigated fields the fungicide is sometimes applied through irrigation water, particu-
larly in sprinkler irrigation. Metalaxyl, diazoben, pentachloronitrobenzene (PCNB),
captan, and chloroneb are the fungicides used for soil and seed treatments. Soil
fumigation with methane sodium is reported to control powdery scab caused by
Spongospora subterranean.

Most soil treatments, however, are aimed at controlling nematodes, and the
materials used are volatile gases or produce volatile gases (fumigants) that penetrate
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the soil throughout (fumigate). Some nematicides, however, are not volatile but,
instead, dissolve in soil water and are then distributed through the soil. Among
alternative chemicals, only dazomet has been registered as a broad-spectrum soil
fumigant in most countries, including Serbia. Products that effectively reduce
soilborne pathogens of some crops by soil and plant applications are fungicides in
the dicarboximide, benzimidazole, and triazole chemical groups (Vatchev and
Maneva 2012). Azoxystrobin fungicides are widely used to control R. solani
(Sundravadana et al. 2007). An effective disease measure against vascular pathogens
could also be the application of imidazoles, benzimidazoles, and triazoles either to
soil or to plants (Everts et al. 2014). Fungicides based on cyprodinil and fludioxonil
are recommended against S. sclerotiorum (Benigni and Bompeix 2010).
Propamocarb-hydrochloride, fosetyl-Al, metalaxyl, and azoxystrobin are fungicides
that are commonly used to control Pythium spp. and Phytophthora spp. on pepper
(Rekanović et al. 2011). For yams, sanitation by removal of crop debris and
fungicide treatment: maneb, benomyl, benomyl + propineb, zineb, and mancozeb
have all been reported to give reasonably good results in disease control (Thompson
et al. 1977).

However, it is very important to emphasize that long term use of pesticides has a
negative influence on microbial growth and activity, leading to reduced soil fertility
and productivity (Wang et al. 2006). The decrease in number of nitrogen fixing,
phosphorus-solubilizing microorganisms, and inactivation of soil enzymes is
observed in pesticide-contaminated soils (Antonious 2003). Similarly, many studies
have shown that pesticides reduce the activities of soil enzymes that are key
indicators of soil health.

10.5.3 Biological Control

Biological control of pathogens, i.e., the total or partial destruction of pathogen
populations by other organisms, occurs routinely in nature. In an attempt to reduce
the use of pesticides, there is an increasing interest in introducing biological agents
and putting to use plant compounds as natural commercial products for managing
soilborne pathogens (Cook 1993). Although there are number of bottlenecks in the
usage of biocontrol such as formulation and delivery, variability in performance, and
problems with poor efficacy under optimum conditions for disease development, but
simultaneously there are many benefits associated with them. Various mechanisms
are involved in the biological control of fungal pathogens. These mechanisms
include: the production of secondary metabolites (antibiotics, siderophores, hydro-
lytic enzymes, volatile extracellular metabolites, hydrogen cyanide), parasitism,
competition for nutrients, promotion of plant growth and, finally, induced resistance
within the plants (Moeinzadeh et al. 2010). Unpredictable performance coupled with
this extreme variability represents one of the greatest obstacles to the implementation
of biological disease control practices in agriculture (Nelson 2004). Researchers
have increased their efforts to take advantage of such natural biological antagonisms
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and to develop strategies by which biological control can be used effectively against
several plant diseases.

Numerous studies have shown suppression of disease incidence in different crops
after supplementing soils with fungal or bacterial antagonists. It is important to point
out that bioagents can reduce harmful effects of some pathogens below a certain
threshold with no substantial changes in the soil microbiological balance (Neshev
2008). It has been indicated that several established biocontrol agents, including
strains from the genera Bacillus, Pseudomonas, Sphingomonas, Stenotrophomonas,
and Serratia, can suppress vascular or soilborne fungal pathogens (Bhattacharjee
and Dey 2014). Fungi belonging to the genus Trichoderma and bacteria such as
Pseudomonas spp., or Bacillus subtilis, on the one hand are the promising biocontrol
agents due to their unique antimicrobial activities, including the production of
antibiotics and toxins to compete with pathogenic organisms and, on the other
hand, they stimulate plant growth (Mukry et al. 2010). B. subtilis, Trichoderma
harzianum, and T. virens have been reported as biocontrol agents against soilborne
potato diseases (Brewer and Larkin 2005).

Plant extracts and especially the volatile essential oils from medicinal plants have
been reported to possess antimicrobial activity against a variety of plant pathogens
and pests (Kalemba and Kunicka 2003). Essential oils and their components are
gaining in interest because of their relatively safe status, their wide acceptance by
consumers, and their exploitation for potential multi-purpose use (Jobling 2000).
Oregano, fennel, and laurel oils demonstrated antimicrobial activity against soil-
borne fungi of bean under laboratory conditions (Turkolmez and Soylu 2014). In
addition, cinnamon, thyme, basil, and fennel essential oils showed fungicidal effects
on Pythium sp., F. oxysporum f. sp. lycopersici, F. oxysporum f. sp. pisi, Verticillium
albo-atrum, and Rhizoctonia sp. (Tanović et al. 2013). Strong activity was also
recorded for lavender oil when tested against F. oxysporum at the dosage of 60 μL oil
(Kadoglidou et al. 2011).

Considerable research has been directed toward biological seed treatments for
control of a variety of soilborne plant diseases. Biological seed treatments have
proven to be effective, in many cases, as fungicide seed treatments for the control of
several soilborne plant pathogens including the major genera Pythium, Rhizoctonia,
Fusarium, Gaeumannomyces, Phytophthora, Verticillium, and Thielaviopsis
(Whipps 1987).

10.6 Suppressive Soils

Some of the soils known as conducive soils are known to exaggerate the severity of
the diseases caused by soilborne pathogens, such as Fusarium oxysporum (the cause
of vascular wilts), Gaeumannomyces graminis (the cause of take-all of wheat),
Phytophthora cinnamomi (the cause of root rots of many fruit and forest trees),
Pythium spp. (a cause of damping-off), and Heterodera avenae (the oat cyst nema-
tode), whereas on the other hand, in suppressive soils they develop much less and
cause much milder diseases. The mechanisms by which soils are suppressive to
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different pathogens are not always clear but may involve biotic and/or abiotic factors
and may vary with the pathogen. In most cases, however, it appears that they operate
primarily by the presence in such soils of one or several microorganisms antagonistic
to the pathogen. Such antagonists, through the antibiotics they produce, through lytic
enzymes, through competition for food, or through direct parasitizing of the patho-
gen, do not allow the pathogen to reach high enough populations to cause severe
disease. Numerous kinds of antagonistic microorganisms have been found to
increase in suppressive soils; most commonly, however, pathogen and disease
suppression has been shown to be caused by fungi, such as Trichoderma, Penicil-
lium, and Sporidesmium, or by bacteria of the genera Pseudomonas, Bacillus, and
Streptomyces. If the suppressive soil is mixed with conducive soil it reduces the
disease incidence by introducing the antagonistic microorganisms against the patho-
gen. For example, soil amended with soil containing a strain of a Streptomyces
species antagonistic to Streptomyces scabies, the cause of potato scab, resulted in
potato tubers significantly free from potato scab. Suppressive, virgin soil has been
used, for example, to control Phytophthora root rot of papaya by planting papaya
seedlings in suppressive soil placed in holes in the orchard soil, which was infested
with the root rot Phytophthora palmivora (George 2005).

10.7 Conclusion

Tubers are the significant crop of the global food platter which certainly feeds a large
part of the world’s population and will continue to do so in the subsequent years. But
then tubers are highly susceptible to soilborne pathogens such as bacteria, viruses,
fungi, and nematodes. Soilborne pathogens are responsible for causing severe
damages to the tubers, the economically most important part of the plant. The
occurrence and development of soil-borne diseases depend on very diverse factors
affecting either the pathogen or the plant. A better understanding of disease etiology
collaborated with choosing good control methods such as physical or cultural
methods, chemical methods, and biological methods will help in the disease sup-
pression and occurrence, resulting in the healthy and increased tuber yield.
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Soil Borne Fungal Diseases and Their
Control in Below Ground Crops 11
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Abstract

Soil docks a variety of diseases impacting crop health and yield potential of
several agricultural crops. Fungal pathogens are in the forefront responsible for
number of wilts, rots, rot and blight diseases through the accumulation of the
mycotoxin into edible parts which also affect human health as well on consump-
tion. Fungal pathogens spread from plant to plant making diseases very difficult
to manage with highly heterogeneous incidence. Practices dealing with adequate
knowledge about their dissemination and survival, environmental conditions and
culture practices, detailed information about host resistance and susceptibility can
lead to effective control of these soil borne fungal pathogens. In recent years,
studies based on plant–microbe interaction have led to exploitation of various
breeding and biocontrol strategies to develop crop resistant against various fungal
diseases. Thus, the detailed study on mechanisms such as survival, dissemination
of soilborne pathogens; effect of environmental conditions role of cultural
practices, host resistance and susceptibility screwed up with biological
interactions will play a major role in disease management in soil matrix.
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11.1 Introduction

Soilborne diseases are caused by pathogens that prevail in the soil matrix and its
residues serving as reservoir of inoculums for the pathogens. Fungal pathogens can
either survive in soil for shorter durations (soil transients) or possess the ability to
survive for longer durations (soil inhabitants) as well. Also there are some who live
on dead and decaying matter (saprobes) and can turn into pathogenic form under
suitable congenial conditions. Certain conditions can also modify these pathogens to
remain in non-pathogenic form in the soil (Singh 2001). Many factors including
production practices, cropping history, etc. influence the horizontal and vertical
distribution of these fungal pathogens. Vertical distribution deals with the preva-
lence of fungal inoculum in the top layer of soil where host roots, tissues and other
organic matter are present on the other hand horizontal distribution is where the
susceptible crop is grown (Barhoom and Sharon 2007). Based on morphological and
biological features, plant based fungal pathogens are divided into five main taxas,
namely Basidiomycetes, Ascomycetes, Plasmodiophoromycetes, Oomycetes and
Zygomycetes. Apart from this there is one more separate class of asexually produc-
ing spores, Fungi imperfecti, which are the spores produced by some species of
Ascomycetes and Basidiomycetes. Most crucial soil borne Fungi imperfecti are
Verticillium, Fusarium, Rhizoctonia, etc. (Butler 1918). Major soil borne
Plasmodiophoromycetes are the Spongospora subterranean which is the causal
agent of powdery scab of potato. Similarly, Pythium, Phytophthora, Aphanomyces
and Bremia are major Oomycetes. Ascomycetes include fungal pathogenic agents
like Sclerotinia and Monosporascus. The major reason behind these fungal
pathogens’ prolonged survival in the soil is that they produce resilient stable
structures like chlamydospores, sclerotia, oospores, mycelium, etc. (Taro 1929).

A majority of crop losses are encountered due to fungal pathogens, tuber and root
crops being the topmost affected one. Reason behind the major losses of tuber crops
is that they are rich in starch with high soil moisture (60–90%) content favouring the
growth and spread of the fungal pathogens (Fig. 11.1). Following cereal crops, tuber
crops are the most cultivated one rich in nutrition and high energy source along with
other health benefits such as possessing antimicrobial, antioxidative,
hypoglycaemic, immunomodulatory activities, etc. (Thankappan and Nair 1990).
Although tuber crops such as potato, cassava, sweetpotato, yam, taro, aroids, etc.
belong to different botanical families but are clubbed together as all of them produce
underground food. Root and tuber crops are vegetatively propagated crops including
stem cuttings (cassava), stolons or cornhead (cocoyam and taro), tubers (potato and
yam) and vine cuttings (sweet potato). They store starch either in rhizomes, tubers,
roots, stems and corms. Based on that potato and yam come under tuber category,
cassava and sweet potato in storage roots, taro and cocoyams originate from corms,
underground stems and swollen hypocotyls and arrow roots from edible rhizome
(Chandrasekara and Kumar 2016). It is important to detect the attack of fungal
pathogens at an early stage because most of the initial attacks of soil pathogens are
hidden in the soil and are only visible until the above ground parts are affected and
show symptoms like wilting, chlorosis, stunting and gradually death. These
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pathogens have wide host range including weeds and can survive for longer duration
in soil without a crop host as well (Utkhede and Guptha 1996). Moreover their
microscopic nature, nonspecific infection symptoms and inappropriate diagnostic
methods make it a difficult task to control them. Agriculture soil being the most
exploited one due to fungal pathogens possess the major concerns regarding eradi-
cation and control of the soil borne fungal pathogens (Freeman et al. 1998). Practices
dealing with adequate knowledge about their dissemination and survival, environ-
mental conditions and culture practices, detailed information about host resistance
and susceptibility can lead to effective control of these soil borne fungal pathogens.

soil texture

nutrient
supply pH

factors favouring the
activity of soil borne 

fungal pathogens
soil type soil drainage

moisture temperature

Fig. 11.1 Factors favouring the activity of soil borne fungal pathogens

11 Soil Borne Fungal Diseases and Their Control in Below Ground Crops 253



11.2 Fungal Diseases of Major Tuber Crops

Tubers such as potato, sweet potato, yam, taro and cassava are the most economi-
cally important crops prone to soil borne fungal diseases leading to severe crop
damage and yield loss. Table 11.1 enlists the major fungal disease of these crops and
their symptoms along with their causal organisms.

11.2.1 Potato

Potato ranks fourth among the most important food crops after maize, wheat and rice
and ranks third in terms of consumption after wheat and rice (Ezekiel et al. 2013).
Potato production is limited by various biotic and abiotic diseases. Where abiotic
stress deals with zinc deficiency, high temperature, pH, salinity, etc., high starch and
soil moisture content favours the growth and spread of soil borne fungal pathogens
(Saeed et al. 2020). In some cases low moisture can lead to wilting in potato. Among
other biotic pests (viruses, bacteria, nematodes, etc.) fungal pathogens possess the
serious threat to the potato cultivation (Abbas et al. 2013). Late blight, leaf roll and
ring rot are the major destructive fungal diseases of potato causing s yield losses out
of which late blight is the most severe one which is discussed as follows.

11.2.1.1 Late Blight
Late blight of potato is the major fungal disease that is worldwide in its distribution.
Potatoes grown in hilly areas are more prone to late blight as high temperature and
drought are unfavourable for the fungal growth. Prolonged cool and humid environ-
ment can act as indicator also for the occurrence of the disease as well. Late blight
can cause severe damage to potato crop by reducing tuber size and weight thereby
lowering the yield and in severe cases there is complete loss of the crop as well (Fry
and Goodwin 1997).

11.2.1.2 Causal Organism
Late blight is caused by Phytophthora infestans having aseptate and branched
mycelium. Overwintering of mycelium takes place in infected tubers and also the
hyphae are both intercellular and intracellular.

11.2.1.3 Symptoms
The upper part of the plant is infected first where purple to black lesions appear on
the tips and margins of leaflets, petiole, and stem. With increase in fungal growth, the
lesions spread to whole leaf surface. The first attacking zone of the fungus is leaf and
gradually spread towards other parts and if not controlled, then foliage destruction
occurs along with curling of leaves. A characteristic odour may be omitted. After the
top infection, tubers get infected leading to brownish discolouration of skin
(Andrivon 1996).
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Table 11.1 The major fungal disease of tuber crops and their symptoms along with their causal
organisms

Disease
name

Major
tuber
crops
affected Causal organism Symptoms

Leaf spot Sweet
potato

Phomopsis ipomoea
batatas

Newly emerged shoots from the
infected plants collapse suddenly
including circular spots and brown
lesions

Taro Phyllosticta
colocasiophila

Cassava Cercospora henningsii,
Cercospora caribaea

Yam Sclerotium rolfsii

Alternaria
brown spot

Potato Alternaria alternata Small, dark and round necrotic lesions
Black pits on the surface of tuber

Late blight Potato Phytophthora infestans Water soaked irregular lesions appear
on young leaves
Dark brown or black lesions on stem
surface

Taro Phytophthora
colocasiae

Dry rot Potato F. coeruleum,
F. eumartii,
F. oxysporum and
F. sulphureum

Brown, dry and powdery rot but in
later stages can turn watery
Brown patches on tuber surface

Taro Fusarium solani

Yam Botryodiplodia
theobromae

Early blight Potato Alternaria solani Dark brown spots resembling bull’s
eye

Pink rot Potato Phytophthora
erythroseptica

Off white texture of infected tubers
vinegar like smell watery fluid
excretion

Gangrene Potato Phoma exigua Appearance of thumb marks and large
cavity lines on infected tubers

Powdery
scab

Potato Spongospora
subterranea

Appearance of under skin spots and
deformed growth of infected tubers

Sweet
potato

Elsinoe batatas,
Sphaceloma batatas

Wilting Potato Fusarium oxysporum Yellowing and dullness of leaves and
followed by wilting and death of vineSweet

potato
Verticillium alboatrum

Charcoal rot Potato Macrophomina
phaseolina,

Lower surface of stem appears dark
like a black leg

Taro Ceratocystis fimbriata

Stem canker Potato Rhizoctonia solani, Appearance of brown cankers on
underground stemSweet

potato
Ceratocystis fimbriata

Wart disease Potato Synchytrium
endobioticum

Appearance of rough warty outgrowths
or protuberences on stolon, leaf and
stem

Silver scurf Potato Helminthosporium
solani

Shrunken tubers with silver sheen on it

(continued)
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Table 11.1 (continued)

Disease
name

Major
tuber
crops
affected Causal organism Symptoms

Skin spot Potato Polysecytalum
pustulans

Appearance of light brown lens on
underground parts

Watery
wound rot

Potato Pythium ultimum and
P. debaryanum

Black and yellow lines on the tubers

Chlorotic
leaf
distortion

Sweet
potato

Fusarium lateritium White waxy mucilaginous layer on
young leaves spread first which then
pass on to stem and veins later

White rust Sweet
potato

Albugo ipomoea
panduratae

Presence of chlorotic and yellowish
blotches

Scurf Sweet
potato

Monilochaetes
infuscans

Light brown spots on roots

Alternariosis Sweet
potato

Alternaria bataticola Brown lesions on the leaves and black
lesions on petioles and stem

Cassava ash
disease

Cassava Oidium manihotis Appearance of white mycelium over
leaf surface

Anthracnose
(wither tip)

Cassava Glomerella manihotis
Colletotrichum
manihotis

Pale brown shallow depression bearing
spots on normal green tissue

Yam Colletotrichum
gloeosporioides

Elephant
foot yam
disease

Yam C. siamense Pale to tan spots on leaves

Soft rot Yam Rhizopus spp.
Rhizoctonia solani
S. Rolsii

Fungus ramify the tissue which turn
brown and then become soft

Violet root
rot

Sweet
potato

Helicobasidium mompa Plants become chlorotic and violet
colouration of roots appear along with
strong alcoholic smell

Collar rot Sweet
potato
and yam

Sclerotium rolfsii Sudden wilting of sprouts, followed by
rotting and finally death of crop

Rhizopus rot Taro Rhizopus stolonifer Appearance of white to cream colour
rot with yeasty smell

Black rot Taro Ceratocystis fimbriata Charcoal black rot with banana like
odour to it

Spongy
black rot

Taro Botryodiplodia
theobromae

Cremish to grey spots gradually
turning dark

Pythium rot Taro Pythium
aphanidermatum

Stunted plants with curled leaves along
with yellowish spots

Stem rot Cassava Glomerella cingulata
Botryodiplodia spp.

Infected stem pieces show brown
discolouration

Root rot Cassava Phytophthora spp.
Sclerotium rolfsii

Swollen roots damage
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11.2.1.4 Disease Cycle
Primary source of infection are the infected tubers where fungal pathogen
overwinters as dormant mycelium. During planting, the resting oospores that are
in ample amount in infected tubers, germinate and usually end in terminal sporan-
gium (Fig. 11.2). This sporangium further divides into zoospores which infect the
healthy sprouts. Formation of sporangia requires an optimum temperature range of
about 18–22 �C with 91% relative humidity. During warm conditions only direct
germination occurs where no zoospores are formed and sporangium functions as
conidium and directly puts an infection thread whereas lower temperature favours
indirect germination via zoospores. The infection is dry until the onset of secondary
infection from soft rot (Andrivon 1996).

11.2.1.5 Management of Lateblight
Few management strategies to control late blight prevalence in potato crop are listed
as follows

• Field inspection of tubers.
• Selection of disease free seed tuber for planting.
• Efficient cold storage is necessary.
• Use of suitable fungicides such as Perenox, Fytolan, Blitox-50, Dithane Z-78,

Dithane M 22, etc.
• Growing disease resistant varieties.
• Proper sanitation.
• Dusting foliage with copper-lime dust.

11.2.2 Sweet Potato

Sweet potato (Ipomoea batatas) belonging to convolvulaceae family is an herba-
ceous perennial crop produced for its edible storage roots. Its enlarged roots are

infected plant

resting oospores germinate

germtube elongation

sporangium

zoospores

infection

Fig. 11.2 Disease cycle of
Phytophthora infestans
causing late blight in potato
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called tubers acting as energy source for the plant (Krochmal et al. 2020). Tubers
vary in shape of varied colours (yellow, brown, purple, etc.) and harvested after one
growing season (Senthilkumar and Yeh 2012). Although sweet potato contribute to
highest yield among the important food crops even in adverse conditions, but still are
affected by many biotic and abiotic pests. Insect and viruses are the leading pests of
sweet potato, but fungal pathogens also cause serious damage (Hegde et al. 2012).
Fungal attack tends to reduce yield by lowering the transport of nutrients to storage
roots and reduced photosynthetic area. Many fungal pathogens attack sweet potato,
black rot being the serious one which is discussed below.

11.2.2.1 Black Rot of Sweet Potato
Out of all the fungal diseases of the sweet potato, black rot of sweet potato is the
most destructive one and is found wherever the sweet potato is grown. It is prevalent
in tropics and sub-tropics along with temperate regions. China and Japan contribute
to the major black rot affected areas (Thankappan and Nair 1990).

Causal Organism Ceratocystis fimbriata

11.2.2.2 Symptoms
• The primary symptom of black rot is the yellowing of leaves followed by its

browning and gradually the foliage withers and plant die.
• Sprouts tend to wilt first before turning yellow.
• An early symptom on sweet potato fruit includes slightly sunken and dark brown

spots. The rot can spread to the inner part of sweet potato fruit which can lead to
destruction of whole root.

• Sunken lesions and cankers may also be visible on underground stem.

Disease Spread Through water, wind, soil, by insects, humans, contaminated tools,
etc. Also the fungus enters through wounds

Disease Cycle Ascospores and aleurioconidia are the most common survival units
due to their thick walls and can survive in soil for longer durations. Infection is
mainly through wounds, natural or manmade and fungus enters through it further
causing disease as depicted in Fig. 11.3.

11.2.2.3 Management Strategies
• Crop rotation.
• Planting of disease free seeds.
• Treatment with fungicides such as thiabendizole, Fludioxonil, dicloran, etc.
• Field sanitation.
• Dry storage is necessary.
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11.2.3 Taro

Ancient crop belonging to family Araceae is grown in tropics and subtropics. This
crop is believed to be of Indian and Malaysian origin. Taro also known as “potato of
tropics” or “elephant ear” is an herbaceous perennial plant with leaves resembling a
huge “elephant ear” (Bowers 1967). The heart shaped leaves across long petioles
emerge from an tuberous rootstock called as “corm”. Small tubers or “cormels” are
sometimes produced from the sides of main corm. Taro is famous for its edible corm
and ornamental properties (Garcia and MonlIor 1971).

Taro is susceptible to many fungal pathogens but do not face severe yield loss
except for Phytophthora blight, corm rot and Pythium rot which causes major growth
and production loss (Rashmi et al. 2018). Pythium rot as discussed below is the most
adverse one and is found wherever taro is grown.

11.2.3.1 Pythium Rot
Pythium rot of taro contributes to the most widely distributed fungal disease
probably from the time the crop was introduced. It is the soil borne fungal pathogen
attacking roots and underground parts (Carpenter 1919).

Causal Organism Pythium spp.

11.2.3.2 Symptoms
• Outer older leaves dry up.
• If not controlled timely, then the disease spread and young leaves are compara-

tively shorter.
• Roots may or may not be present in infected plants.
• Decline in growth.

C. fimbriata

Fruiting bodies (mycelium, conidia, aleuroconidia, ascospores)

Produce specific odour to attract insects

Transmitted to non-infected plants through wounds

Infection

Fig. 11.3 Disease cycle of
C. fimbriata causing black rot
of sweet potato
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11.2.3.3 Disease Cycle
It has a wide host range and during unfavourable conditions, Pythium produces
oospores that are resistant spores that prevail in soil for longer duration until
favourable conditions appear (Fig. 11.4). Waterlogged soil is suitable habitat for
Pythium to grow and spread (Goyal et al. 1974; Bergquist 1972).

11.2.3.4 Management Strategies
• Site selection.
• Fungicides application, e.g. Metalaxyl.
• Use of resistant varieties such as Pula Sama Sama, Talo vale, Pute Mu, etc.
• Field sanitation.

11.2.4 Cassava

Cassava is the largest producing staple crop of Africa, Asia and Latin America. In
Asia and Latin America, cassava is exploited for raw material in industries and
animal feed whereas in Africa, it is the major staple food crop (Chanie and Walelign
2020). It is considered as the cheapest source of starch thereby being the most
dependable source of food in African countries. The major advantage of growing
cassava is that, it can sustain well in poor soils as well, as compared to other tuber
crops such as yam, potato, sweet potato, etc. (Blagbrough et al. 2010). But still there
exist some factors that limit the cassava production as well; diseases and pests being
the major constraints. Bud necrosis, anthracnose, leaf spots and root rot diseases

overwintering oospores

sporangium

zoospores encyst

germtube elongation and infection
germination of oospores

plant infection

infected plant

Fig. 11.4 Disease cycle of Pythium spp. causing pythium rot of taro
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cause serious damage by fungal pathogens to cassava yield and out of these
anthracnose being the most destructive one (Zinsou et al. 2017). Hence, it needs to
be managed effectively to satisfy industrial, domestic and food security
requirements.

11.2.4.1 Cassava Anthracnose Disease (CAD)
Cassava Anthracnose disease (CAD) is economically important disease of cassava
which has also attained epidemics in the regions with high rainfall and humidity.
Due to high consuming rate of this crop especially in tropical regions, CAD gained a
lot of attention for its investigation and eradication (Sharma and kulshrestha 2015).

Causal Organism Colletotrichum gloeosporioides.

11.2.4.2 Symptoms
1. Cankers on branches, fruits, leaf spots and stem.
2. Appearance of minute sunken spots on leaves, petioles and stolons.
3. If not controlled, fruiting bodies bearing spores appear on these spots.
4. Stem deformation.

Disease Cycle The fungus produces acervuli which are black fungal fruiting bodies
containing conidia (Fig. 11.5). Conidia are responsible for causing infection into the
host plant thereby leading to appearance of cocentric rings of conidial masses around
lesions that appear on stolons and petioles (Alahakoon et al. 1994).

11.2.4.3 Management Strategies
• Crop rotation.
• Chemical control.
• Fungicide control such as use of copper fungicides.
• Use of resistant cultivars, such as TME 30001, 30,211,91/00313,91/00684.
• Proper drainage of soil.

11.2.5 Yam

Yam is herbaceous perennial or annual plant with trailing vines. The name (yam) is
given to various species of genus Dioscorea including Dioscorea cayenensis (yellow
yam), Dioscorea alata (white yam), Dioscorea esculenta (Asiatic yam), Dioscorea
bulbifera (potato yam), Dioscorea batatas (Chinese yam), etc.

These are grown for their edible tubers that extend from stolons from a central
corm (specie specific). Leaves are oval containing petioles of the same length or even
longer and tubers are either cylindrical or curved of brown, pink or black skin colour
(Liu et al. 2007).

Yam is rich in carbohydrate content and serve as the major staple crop of tropics
and Nigeria being the largest producer of yam, still its yield and quality is affected by
diseases and pests to a greater extent. Yam plants are prone to infection right from
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the seedling stage to harvesting and even after that (Amusa et al. 2003; Okigbo 2005;
Ezekiel et al. 2013). Fungal pathogens being the major destructive causal organism
affect the growth and productivity of yam a lot. Collar rot has a devastating effect on
the yam production and hence require utmost attention and curative measures to
inhibit its occurrence and spread.

11.2.5.1 Collar Rot of Yam
Yam being designated as ‘king of tubers’ is prone to major fungal diseases known as
‘collar rot’. This disease affects yam quantitatively as well as qualitatively hence
need to be studied well (Palo 1932).

Causal Organism Sclerotium rolfsii.

11.2.5.2 Symptoms
• Deep cracks appear near collar region.
• White mycelium growth appears on the infected area.
• Roots get shredded.
• Brown to black colouration appear on the skin.
• Eventually if disease not controlled, plants rot.

11.2.5.3 Disease Cycle
Figure 11.6 depicts the disease cycle of Sclerotium rolfsii, where sporulation takes
place when the fungus attains favourable conditions for its germination and produces
thread like visible structures. The spores are transmitted through wind, water,
insects, mechanical tools, etc. and infect the crop.

Germination of spores on plant surface

Appressoria (infection structures)

Penetration to host tissue

Thick hyphae produced (1° hyphae)

Secondary hyphae

Lesions bearing fungal spores appear on leaves

Biotrophic phase

Necrotic phase

Dispersal of spores 
through insects, air, 
water splashes, 
tools etc

Fig. 11.5 Disease cycle of Colletotrichum gloeosporioides causing Cassava Anthracnose disease
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11.2.5.4 Management Practices
• Selection of disease free seed tuber for planting.
• Efficient cold storage is necessary.
• Chemical control.
• Fungicide control such as use of copper fungicides.
• Proper soil sanitation is mandatory.

11.3 General Management Practices to Control Soil Borne
Fungal Pathogens

Although it is very difficult to completely eradicate the soil borne fungal pathogens
but by employing these cultural, physical and chemical methods, one can prevent the
epidemic to certain extent (Fig. 11.7).

11.3.1 Cultural Strategies

It is the integrated method for improving the quality and quantity of the crop by
efficient farming techniques along with reducing the occurrence of harmful
pathogens. It deals with altering the environmental conditions, making it
unfavourable for the growth of pathogens (Islam 2001). Efficient execution of the
cultural practices leads to good soil health as well as lowers the disease incidence
rate. Practices like crop rotation, mulching and fallowing helps to reduce the amount
of pathogens prevailing in the soil. Similarly proper sanitation control plays a crucial
role in controlling the spread of fungal pathogen. Safe disposal of diseased plant by
either removing the diseased parts or burning them is necessary (Neshev 2008). Also
fungal pathogens spread rapidly in moist environment hence proper care should be

infect new plant

Sclerotia germinates

Produces thick thread like structures

Infect the host plant (stem and roots)

Spores form

Spores transmitted through, Wind, water 
etc

During unfavourable conditions, spores 
remain dormant in soil, plant debris etc

Fig. 11.6 Disease cycle of Sclerotia rolfsii causing Collar Rot of Yam
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taken while irrigation. One must avoid overhead irrigation and drainage facilities
should be proper.

11.3.2 Physical Control

It deals with the soil solarization as well as disinfecting the soil using steam and
raised temperature. In soil solarization process, plastic sheet is wrapped over soil
surface for few weeks to entrap the solar energy that lad to increase in soil tempera-
ture and create dry environment which is unfavourable for the growth of fungal
pathogens. Similarly disinfecting soil using hot water or passing steam through it
creates unsuitable conditions for the pathogens to sustain in the soil (Gullino et al.
2003).

11.3.3 Chemical Control

Fungal pathogens can also be controlled using chemicals or fungicides. Fungicides
such as Prochloraz, Propiconazole, Thiabendazole, Carbendazim, Benomyl,
Thiophante, fuberidazole, etc. are mostly used for their eradication. Although
exploiting these chemicals for fungal control is comparatively fast process but are
not reliable as spraying these fungicides can harm the beneficial population of
microorganisms as well and can also deteriorate the soil quality as well (Weller
et al. 2002).

Management strategies

cultural physical chemical biological

• Weed control

• Irrigation

• Crop rotation

• Mulching

• Fallowing

• Proper sanitation

• Plant spacing

• Soil solarisation

• Disinfection of 
soil

• Prochloraz

• Propionazole

• Thiabendazole

• Carbendazim

• Benomyl

• Thiophante

• fuberidazole

• PGPRs

• Bacillus spp.

• Parnibacillu 
s

• Exploitation 
of F. 
oxysporum 
as 
Biological

Fig. 11.7 Traditional management strategies for controlling fungal pathogens
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11.3.4 Biological Control

Biological control strategy has emerged as an efficient tool nowadays as compared to
other methods for the control and eradication of the soil borne fungal pathogens.
This method employs the use of biological organisms to control the spread of
pathogens. Organisms such as PGPRs (Plant growth promoting rhizobacterium),
Bacillus spp. Paenibacillus, non-pathogenic strain of F. oxysporum, etc. can be used
for the management of the spread of fungal pathogens. These biological agents can
either act as competitors for nutrient uptake, can secrete antifungal compounds,
suppressors, harmful peptides, etc. thereby resisting the growth of fungal pathogens
in the soil (Choudhary and Johri 2009; Jetiyanon and Kloepper 2002; Lugtenberg
and Kamilova 2009).

11.4 Strategies for Development of Fungal Resistant Crops

Fungal pathogen affects the yield and quality of tuber crops to a greater extent. Their
management is very important as to get rid of the considerable amount of loss they
do to the crop plants (MacLean et al. 1993). Apart from the physical, chemical,
cultural and biological management strategies (discussed above) which are tempo-
rary control, breeding techniques have led to the generation of fungal resistant crops
as well. But the major constraint in applying breeding strategies is that it is suitable
only in sexually compatible species and secondly is time consuming also (Islam
2006). It requires years of trials to develop a fungal resistant variety. To overcome
these hurdles, genetic engineering comes into play where the disease resistant genes
can be incorporated from one species to another within a limited time span.

11.5 Approaches for Fungal Resistant Transgenic Plant
Production

Following transgenic approaches are being exploited for the generation of fungal
resistant transgenic crops (Islam 2006):

• Expression of proteins that enhance the structural defence mechanism of plants
naturally, e.g. Lignin and peroxidises.

• R gene (resistant gene) expression in response to interaction with the avirulence
(Avr) gene.

• Overexpression of pathogenesis-related (PR proteins) and phytoalexins which
resist the growth of fungal pathogens.

• Managing the plant defence signal transduction by expression of the signalling
molecules such as elicitors, salicylic acid, hydrogen peroxide, etc.

• Oxalic acid, lipase and polygalacturonase expression for the neutralization of the
components of fungal pathogen.
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• Strategies such as RNAi, lysosome and RNase are also exploited for the produc-
tion of fungal resistant crops (Table 11.2).

11.6 Conclusions

Soil borne fungal pathogens possess the ability to sustain in soil for longer duration
due to which underground stem and tuber crops are more prone to the diseases as
compared to other crop plants. Their initial attack and symptoms are difficult to
analyse until the above ground parts show signs like wilting, chlorosis, rot, etc. Both
quality and quantity of the tuber crops are affected by the fungal attack also
accumulation of the mycotoxin into edible parts can affect human health as well
on consumption. Although traditional management practices such as physical,
chemical, biological and cultural strategies can help in reducing the onset and
prevalence of fungal pathogens but still face many lacunas. In recent years, studies
based on plant–pathogen interaction have led to exploitation of various breeding and
genetic engineering strategies to develop fungal resistant transgenic crops but
progress with respect to tuber crops is still lacking. Transgenic approaches should
be utilized more in tuber crops so as to enhance the global tuber crop production by
lowering the fungal disease incidence and their complete eradication.
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Plant Growth Promoting Rhizobacteria
for Crop Health in Wheat-Maize Cropping
Systems in Northwest Himalayas

12

Gaurav Sood and Rajesh Kaushal

Abstract

Advent of the green revolution initially raised the production in agriculture sector
but the non-judicial and indiscriminate use of synthetic inputs lead to deteriora-
tion of soil health due to imbalance of nutrients coupled with decreased use
efficiency is a matter of great concern which compelled the scientists to look for
alternate with low cost, non-bulky renewable inputs for sustainable crop produc-
tion without deterioration of soil health. Plant growth promoting rhizobacteria
(PGPR) are group of rhizobacteria, i.e. Pseudomonas, Azospirillum, Azotobacter,
Bacillus, Enterobacter and Serratia, etc. that produces metabolites those can
promote growth and produce induced systemic resistance against various
phytopathogens. The possible mechanisms of plant growth promotion and dis-
ease resistance have been well documented in other crops but still needed to be
explored in North Western Himalayan region, especially for cereal crops. Indige-
nous PGPR isolated from different agro-climatic zones of Himachal Pradesh for
wheat and maize and were molecularly identified as Serratia sp. and Bacillus
subtilis for wheat and Bacillus subtilis for maize. The conjoint application of
Serratia sp. and Bacillus subtilis in wheat and Bacillus subtilis in maize along
with 80% recommended doses of fertilizers registered increase to the tune of
about 9% increase in grain and 9% straw yield in wheat and 11% increase in corn
and 17% straw yield in maize.
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12.1 Introduction

Incessant application of chemical fertilizers for achieving high crop yield in the last
few years lead to high productivity of the crops with advent of green revolution in
the initial few years. Accessibility and high prices of these chemical fertilizers limit
crop production in India especially in the North West Himalayan region where
maximum protein requirement of the people is met through cereal crops, chiefly
wheat and maize, which requires large quantity of nitrogen and phosphorus in
comparison to other essential nutrient elements. Chief macronutrients playing active
function in different metabolic activities and phenology of crop plants are nitrogen
and phosphorous (Khan et al. 2013), however, non-judicial and indiscriminate use of
synthetic inputs lead to deterioration of soil health due to imbalance of nutrients
coupled with decreased use efficiency is of great concern which compelled the
scientists to look for alternate with low cost, non-bulky renewable inputs for
sustainable crop production.

Biofertilizers/PGPR are well documented as a vital module of INM (integrated
plant nutrient management) for sustenance of agriculture and hold a great assurance
not only for improving crop yield but also maintain soil health for present and
coming generations (Giri et al. 2019). Plant growth promoting rhizobacteria (PGPR),
which colonizes the rhizospheric region of the crops in response to various plant
flavonoids, thereby in return rhizobacteria produce metabolites those can enhance
plant growth and produce ISR (induced systemic resistance) combating different
phytopathogens (Kour et al. 2020). PGPR generally consist strains of genera such as
Paenibacillus, Azospirillum, Acetobacter, Actinoplanes, Azotobacter, Alcaligenes,
Enterobacter, Serratia, Bacillus, Rhizobium, Erwinia, Pseudomonas, Burkholderia
and Flavobacterium, etc. (Prasad et al. 2015).

The plant growth promoting rhizobacteria (PGPR) augment plant growth either
directly by release of plant growth regulators such as auxin, ethylene, cytokinins and
by increasing the availability and plant uptake of some nutrients, especially fixed
nitrogen, phosphate and iron in the rhizospheric region or indirectly, through
induction of host defense mechanisms against various phytopathogens infecting
the crops (Glick 1995). PGPR releases a variety of antifungal secondary metabolites
e.g. siderophore, 2, 4-diacetylphloroglucinol, pyoluteorin, pyrrolnitrin, ammonia,
hydrogen cyanide, phenazines and lytic enzymes (proteases and chitinases), etc. to
check phytopathogens poliferation (Loon et al. 1998).

Availability of the major macronutrients at soil–root interface considerably
affects the productivity and growth of crops, which is affected by a wide range of
factors including soil physico-chemical properties, species and genotype of plant and
various interactions at soil–root interface which include soil macro and
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microorganism communities and environmental conditions, i.e. biotic and abiotic
factors (Marschner et al. 2011). Among these, drought is a major abiotic factor that is
hampering crop growth and productivity in today’s world. On the one hand, plants
possess natural protection systems that protect them from a variety of stresses, but
they also interact with a variety of soil microorganisms that can alleviate the stress
symptoms (Hammad and Ali 2014; Manoj et al. 2020). Microbial communities are
able to build up a variety of actions that are most vital in maintaining biological
equilibrium and sustainability in soil particularly under stress conditions (Kavamura
et al. 2013).

PGPR are bio-resources which perhaps considered as a novel and potential means
for providing considerable profit to the agriculture. The application of PGPR is
progressively escalating in agriculture and offers an efficient way to supplement
chemical inputs.

12.2 PGPR as Root Colonizers

The rhizosphere term was first given by Hiltner in 1904 and is considered as a thin
region of soil contiguous with the root that is under the influence of root system and
is dominated by microorganisms. As compared to the bulk soil, rhizospheric region
is affluent in nutrients, attributable to the accretion of different organic compounds
as a result of root exudation, secretion and rhizodeposition. These organic
compounds are used as a source of energy and carbon due to which microbial action
is chiefly acute in the rhizosphere. The rhizosphere is therefore habitat to a group of
bacteria associated with roots, generally referred to as rhizobacteria. Such beneficial
bacteria that have positive effect on the plant growth by direct/indirect mechanisms
(Fig. 12.1) are referred as plant growth promoting rhizobacteria (PGPR). Bacterial
diversity associated with the rhizosphere of wheat and maize was studied during
2013–2016 from different agro-climatic zones of Himachal Pradesh falling in North
Western Himalayan region (Sood et al. 2018a, b). A total of 127 isolates from wheat
and 65 from maize rhizosphere were isolated and screened for various PGP (Plant
growth promoting), viz. phosphate solubilization, siderophore production, growth
on N-free medium, auxin production, ACC-deaminase production and antagonism
against Fusarium graminearum, Claviceps purpurea and Alternaria triticina in case
of wheat and Fusarium oxysporum and Rhizoctonia solani in maize (Fig. 12.2). On
the basis of prominent PGP activities ten isolates from wheat and ten isolates from
maize rhizosphere were studied for their efficacy to act as biofertilizer, biostimulant
and bioprotectant (Table 12.1).

The extent of propinquity among the PGPR and host plant can differ based on
where and how they colonizes the crop plant. The complexity of associations is at
two levels, i.e. (1) Epiphytic and (2) Endophytic.
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(a) (b) 

(c) (d) 

(e) 

(g) 

(f) 

Fig. 12.2 Multifarious plant growth promoting activities of bacterial isolates: (a) Siderophore
production (b) P-Solubilization (c) Ammonia production (d) IAA production (e) Growth on
Nitrogen Free Medium (f) HCN Production (g) Antifungal activities against C. purpurea and A.
triticina
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12.2.1 Epiphytic Region

The rhizosphere/epiphytic region of soil is the region of soil that is under the
influence of pant roots in association with root exudates that act as nutrient source
for the bacterial communities, owing to their high population in this region. In
numbers, the rhizosphere microbes are ten to hundred times more than those of the
soil. Their composition would, however, depend upon the amount and type of the
nutrients in the rhizosphere. The overall metabolic activity of the microorganisms in
the rhizosphere is several times more than in the soil farther away from the
rhizospheric region. In turn, the microorganisms that colonize the rhizosphere
profoundly affect root and plant biology in relation to nutrition, development, health.
Root surface colonization is influenced by numerous factors, i.e. biotic (genetic
potential of the host plant and bacteria that colonizes it) or abiotic (growth substrate,
soil moisture, temperature and soil pH). A total of eight (B2, UNS3, HAR3, BIS2,
MAS1, CHS1, KIS2 and LSR1) isolates out of ten from wheat rhizosphere were
epiphytic in origin and all the ten (B1N1, J2, J4, M3, R6, NRG, DHK, MAT1,
MAT2 and KAN) isolates from maize were epiphytic in origin (Sood et al. 2018a, b)
(Table 12.1).

12.2.2 Endophytic Region

Endophytes are group of bacteria/fungi that are found inside the plant roots, forming
close associations with them, without causing any perceptible symptoms of disease.
They show complex associations with their hosts which may be mutualism or
antagonism. Plants firmly limit the endophytic growth of microorganisms and use
different mechanisms to slowly adapt to their living environment inside the host
plant. To maintain a stable symbiotic, endophytes produce a number of compounds
that alleviates plant growth and assist them to acclimatize better to different environ-
mental conditions (Compant et al. 2005). Commonly found endophytes, generally
belongs to genera Rhizobium, Bradyrhizobium, Sinorhizobium, Azorhizobium,
Mesorhizobium and Allorhizobium, collectively called as rhizobia, family
Rhizobiaceae invade plant roots system and form root nodules (Wang et al. 2006).
Endophytic associations in microbial communities are supposed to be result of
colonization activity which is initiated in the root zone but they may initiate from
different sources, viz. phyllosphere, atmosphere and spermosphere (Sturz et al.
2000). Out of ten isolates from wheat rhizosphere two (SIR1 and SHR1) were
endophytic in origin and none of the endophytic isolates showed prominent PGP
activities, so not selected for further studies (Sood et al. 2018a, b) (Table 12.1).

Joshi and Bhatt (2011) studied the root colonized bacterial diversity in wheat and
selected 133 different bacterial isolates based on phenotypic and physiological
characteristics. They found that 44 per cent were Bacillus sp. and 24 per cent belong
to Pseudomonas sp. They further reported that Shannon-Wiener Index of microbial
diversity was ranged from 1.75 to 1.59.
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Cavaglieri et al. (2009) studied the influence of plant growth stages on the
population size of culturable bacteria and fungi associated with rhizoplane and
endo-rhizosphere of maize grown in field and reported that plant development did
not have influence on total culturable microflora density but it selectively influenced
some bacterial and fungal groups present in the rhizosphere. However, the microbial
community structure changed markedly over time. Overall, the endophytic and
rhizosphere microbial community is of dynamic structure and is influenced by biotic
and abiotic factors, with the plant itself constituting one of the major influencing
factors (Hallmann et al. 1997).

12.3 PGPR as Biofertilizers

Biofertilizers are microbial inoculants containing live preparations of microbial
cells, which can convert the unavailable form of major macronutrients (N, P& K)
to available form by using different biological processes that are readily absorbed by
the plants (Hegde et al. 1999; Vessey 2003; Gou et al. 2020; Pagnani et al. 2020). In
recent few decades, they have emerged as a vital module of the INM system and hold
a great promise to alleviate crop yields by augmenting soil with nutrients. Some
PGPR possesses both biofertilizer and biocontrol properties, which make them better
candidate to act as plant growth regulators and at the same time protecting them from
different phytopathogens, e.g. strains of Burkholderia cepacia have been revealed to
have biocontrol characteristics against Fusarium sp. and can also enhance maize
yield by sequestering iron from soil (Bevivino et al. 1998).

Enormous amount of chemical fertilizers are now a days used to replenish soil N
and P, resulting in high costs and posed the problems of environmental pollution.
Most of P applied from chemical fertilizers turns into insoluble compounds and is
not absorbed by plants. Therefore N2-fixing and P-solubilizing bacteria can combat
this problem by increasing the accessibility of N and P to the crop plants and are key
players in sustaining agro-ecosystems health.

12.3.1 PGPR as Nitrogen Fixer

Nitrogen is the most important element on which growth and productivity of plants
depends. Even it is so much abundant (78.09%) in atmosphere, yet it cannot be
utilized by plants. Plants can utilize Nitrogen in its most oxidized form; the nitrates
or the most reduced form, i.e. ammonia. The indiscriminate use of nitrogenous
fertilizers amounts to depletion of non-renewable fossil fuels used in fertilizer
production. Annually nitrogen that is fixed biologically accounts for about 175 mil-
lion tones of which around 79% accounts the amount fixed by terrestrial plants.
Fixation of nitrogen biologically/biological nitrogen fixation (BNF) is an economi-
cally sound way to limit the use of nitrogen fertilizers, thus improving soil health and
fertility (Bagyaraj 2011).
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In nature, diazotrophy is restricted to some prokaryotes and archaebacteria only.
Under natural conditions nitrogen can be fixed as free living or in association with
higher or lower organisms. Under free living conditions, organisms can fix nitrogen
under aerobic, microaerophilic and anaerobic conditions. Free living nitrogen fixers
grow in soil or in rhizosphere and never enter plant roots. Though there are a number
of nitrogen fixing bacteria reported in literature, the most important genera includes
Azotobacter, Azospirillum, Burkholderia, Gluconacetobacter and Pseudomonas,
etc. (Bashan and De-Bashan 2010). Another important group being free living
cyanobacteria, which can fix nitrogen in both under aerobic and anaerobic
conditions. Cyanobacteria aerobically fix nitrogen in specialized cells known as
heterocysts which have anaerobic environment or by temporal separation of nitro-
genase from oxygen during dark as seen in unicellular cyanobacteria such as
Gloeothece. Some cyanobacteria are symbiotic diazotrophs like Anabaena azollae
and A. cicadae. Symbiotic N2 fixation refers to the organisms that form symbiotic
relationship with different parts (root, stem and leaf) of plants. However, the process
of symbiotic N2 fixation is limited only to legume plants and various trees and shrubs
that form actinorrhizal roots with Frankia. The most familiar example of symbiotic
nitrogen fixation is the close association between legumes and rhizobial bacteria
(Rhizobium, Mesorhizobium, Sinorhizobium and Bradyrhizobium) infecting three
major botanical sub-families Papilionodeae, Ceasalpinioideae and Mimosoideae.
Among leguminosae, the largest number of plants are in Papilionoideae sub-family.
Apart from legumes, the roots of some plants belonging to different non-leguminous
angiosperms like Alnus, Myrica, Casuarina, Discaria are nodulated by Frankia
sp. All the ten isolates each from wheat and maize rhizosphere showed growth on
Jensen’s medium, there by fixing the atmospheric nitrogen (Fig. 12.2) and made it
available for the crop plant (Sood et al. 2018a, b). Endophytic diazotrophs of rice,
maize and sugarcane are Azotobacter diazotrophicus, Herbaspirillum seropedicae,
Azoarcus sp., Enterobacter asburiae and some strains of Burkholderia sp. which
serve as nitrogen fixers when other available sources of nitrogen are absent or at low
levels (Hurek et al. 2002).

12.3.2 PGPR as P-Solubilizers

After nitrogen phosphorous is the second most commonly limiting macronutrient
that is affecting the plant growth. It is a vital element of the cellular activities of the
living organisms. Satirically, soils have big reserves of total P, but very little amount
of this is available for plants growth (Khan et al. 2010). The availability of phosphate
for biological processes will depend not only on the quantity of phosphorous in soil
but also on its availability, which in turn is made available by series of chemical
reactions and biological interactions present in the soil. The different forms of
phosphorous can be usually classified as soil solution P, insoluble organic and
inorganic P and plants can only absorb P in two soluble forms, the monobasic and
diabasic ions (Pandey and Maheshwari 2007).
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PSB (Phosphate solubilizing bacteria) are widespread in the rhizospheric region
and production of organic acids (malic, glyoxylic, fumaric, tartaric, oxalic and citric
acid, etc.) and phosphatases enzymes by them facilitates the transformation of
unavailable forms of P to plant available ones. The organic acids produced by the
microorganisms convert insoluble phosphate and amount of soluble phosphate
produced depends upon the strength and kind of the acid released. In addition to
organic acids, inorganic acids (nitric and sulphuric acids) are also formed by
Nitrosomonas and Thiobacillus sp. as a result of oxidation of nitrogenous and
inorganic sulphur complexes, which reacts with calcium phosphate present in soil
and make them available. The conversion of P into available form by the activity of
microorganisms in the rhizosphere is the key mode of action implicated by PGPR
(Bhattacharyya and Jha 2012). Diverse genera like Bacillus, Beijerinckia, Pseudo-
monas, Serratia, Azospirillum, Flavobacterium, Erwinia, Azotobacter,
Burkholderia, Microbacterium, Enterobacter and Rhizobium are well considered
as major PSB (Mehnaz and Lazarovits 2006). All the ten isolates each from wheat
and maize rhizosphere solubilized tricalcium phosphate (Fig. 12.2) in the
Pikovskaya’s agar medium, act as phosphate solubilizers in wheat and maize
(Sood et al. 2018a, b).

12.3.3 PGPR as Biostimulater

Phytohormones also known as PGRs (plant growth regulators) are well recognized
as they have regulatory role in development and growth of plants. Plant growth
regulators are organic substances altering the physiological processes of plants at
extremely low quantities. As the concentration of hormonal signals is decisive for
the regulation of various physiological processes in plants, local changes of phyto-
hormone levels can alter growth patterns in plants. The phytohormones formed by
PGPR generally include indole acetic acid, gibberellins, cytokinins and abcissic
acid, etc. which vest morphological alterations in the plants. Indole-3-acetic acid is a
phytohormone which is known to be involved in root initiation, cell division and cell
enlargement, usually produced by PGPR (Salisbury 1994). The, IAA producers
morphologically alters the roots of plant by increasing its growth and length, as a
result of which plants are able to access more mineral elements from soil because of
improved surface area. Cytokinins enhance cell divisions, enlargement and tissue
expansion in certain plant parts (Salisbury 1994). Gibberellin alters morphology of
plant tissues, mainly stem tissue. Evidence of gibberellic acid (GA) production by
PGPR is scarce, however, production of four alternate forms of GA by Bacillus
pumilus and Bacillus licheniformis were reported by Esitken et al. (2006). Another
plant hormone ethylene (ET) is gaseous in nature among the all produced by PGPR.
It is also known as the ripening hormone in addition to its recognition as ‘wounding
hormone’, as ethylene promotes adventitious root and root hair formation, stimulates
germination and breaks dormancy of seeds, however, if its concentration remains
high during germination root elongation is inhibited. It is proposed that many PGPR
augment plant growth by lowering the concentration of ethylene by producing 1-
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aminocyclopropane-1- carboxylate (ACC) deaminase, which hydrolysis ACC, the
immediate precursor of ET and by products released as a result (ammonia &
α-ketobutyrate) can act as nitrogen and carbon source (Glick et al. 1998). All the
ten isolates from wheat rhizosphere produced Indole-3-acetic acid (IAA) ranging
from 19.33 to 31.70 μg/mL, similarly in maize IAA was produced in range of
20.33–29.00 μg/ml by all the isolates (Fig. 12.2). ACC-deaminase production was
shown by five isolates (B2, HAR3, BIS2, MAS1 and SIR1) in wheat and only four
isolates (J4, M3, R6 and KAN) did not showed ACC production in maize (Sood
et al. 2018a, b).

12.4 PGPR as Biocontrol Agents

Biocontrol/biological control is the reduction in the disease severity of a pathogen by
using one or more living organisms. PGPR are native to the rhizospheric region and
actively controls phytopathogens. Biocontrol efficacy of PGPR is shown against a
variety of pathogens (bacterial, fungal and nematodes, etc.) (Reddy 2014).
Although, significant control of phytopathogens has been verified by PGPR under
laboratory and greenhouse conditions, results under field conditions still needed to
be duly verified for further recommendations. The modes of action are struggle for
substrates, niche exclusion production of inhibitory antibiotics, parasitism and
induced systemic resistance (Bloemberg and Lugtenberg 2001). Only two isolates
(CHS1and KIS2) did not show any biocontrol activity against F. graminearum, five
(UNS3, MAS1, SHR1, KIS2 and LSR3), four (MAS1, CHS1, SHR1 and LSR1)
isolates against C. purpurea and A. triticina in wheat. Whereas, in maize all the
isolates exhibited biocontrol activity against F. oxysporum and R. solani except J2
isolate (Table 12.2 and Fig. 12.2).

Following are the antagonistic activities mediated by the microorganisms:

12.4.1 Antibiotics and Lytic Enzymes

Antibiotics are the suppressive substances released by the living organisms in very
low concentrations that may interfere with the biological processes of the pathogens
or may kill them. Most antibiotics belong to the class of nitrogen containing
heterocycles such as phenazines and pyrrolnitrin. The most dominant example is
agrocin 84 released by A. radiobacter to control infection caused by A. tumefaciens.
Some biocontrol bacteria releases potent extracellular lytic enzymes like β-1,
3 glucanases, cellulases, lipases, chitinases and proteases capable of dissolving
fungal cell walls of various fungal pathogens such as Botrytis cinerea, Phytophthora
sp., Pythium ultimum, Fusarium oxysporum and Sclerotium rolfsii (Frankowski et al.
2001). Maximum lytic enzyme activity was exhibited by B2 and SIR1 isolates in
case of wheat, however, B1N1 and DHK were found to show maximum activities in
maize (Table 12.2).
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12.4.2 Siderophores

Availability of iron is extremely limiting in the rhizosphere and is considered as most
important nutrient required for the growth of almost all living organisms.
Siderophores are produced by the rhizospheric microorganisms to survive in such
environments by secreting iron binding ligands having high affinity for the Fe (iron)
from the microenvironment in the rhizosphere. Iron chelating molecules are
hydroxymates (ferrioxamine B), catecholates (enterobactin) and carboxylates
(rhizobactin) which are transported actively because of their high molecular weight
(600–1500 Da) (Das et al. 2007). The siderophore molecules secreted by these
organisms effectively bind most of the Fe3+(ferric ion) and once inside the microbial
cell it is reduced to ferrous (Fe2+) form and thus sequestering iron and as a result
preventing any fungal pathogens in the immediate vicinity from proliferating
because of lack of Fe (Kloepper et al. 1980). PGPR possessing biocontrol activity
effectively out-compete fungal pathogens for available iron and on the other hand,
the plant growth is not generally compromised by the sequestration of iron in
rhizosphere caused by the siderophores produced by PGPR, because mostly plants
can grow at much lower concentrations of iron than most microorganisms (Sullivan
and Gara 1992). All the bacterial isolates of wheat showed siderophore production
ranging from 29 to 65% SPE (Siderophore production efficiency) in liquid CAS
assay, whereas isolates of maize showed 5–14 mm zone on CAS (Chrome-Azurol-S)
plate assay (Sood et al. 2018a, b).

12.4.3 Competition for Niche and Nutrients

Root and seeds of plants release exudates for which beneficial rhizobacteria and
pathogens compete and are responsible for small degree of biocontrol activity
introduced by bacteria. Majority of bacteria colonized in rhizosphere act as a partial
sink for nutrient elements and thus reduced amount of carbon and nitrogen is
accessible to stimulate germination of fungal spores. Fluorescent pseudomonas are
extensively studied for rapid scavenging of nutrients, are nutritionally versatile and
commonly found in the rhizosphere. Niche exclusion is an important mechanism
shown by PGPR to antagonize the harmful rhizomicrobes by secreting the products
inhibiting their growth.

12.4.4 Induced Systemic Resistance

Interaction of PGPR with plant roots can result in providing resistance to plants
against some pathogenic bacteria, viruses and fungi, phenomenon is known as
induced systemic resistance (ISR). ISR is a type of hypersensitive response, whereas
SAR is very much similar to the inherent immunity of the host plants. ISR is
systemic resistance that is naturally present in the plant but gets enhanced when
come in vicinity of PGPR. It depends on ethylene and jasmonate signaling and is
independent of salicylic acid therefore no pathogenesis related proteins are released.
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ISR is plant specific, i.e. host specificity shown by rhizobacteria in activating
resistance response and dependent on the genotype of the plant, thus conferring
resistance against phytopathogens infecting them.

12.5 PGPR as Modulator of Abiotic Stress

In today‘s climate change scenarios, crops are exposed more frequently to episodes of
abiotic stresses such as drought, salinity, elevated temperature, submergence and
nutrient deficiencies, limiting crop production. Drought is considered as the one of
the main obstacle hampering the crop growth and productivity in today’s world, which
is the result of global climate change events and is estimated to have reduced cereal
productivity by 9–10% (Lesk et al. 2016). Over 50% of the cultivable lands by 2050 are
going to face devastating drought consequences on plant growth (Vinocur and Altman
2005). Plant and water relationships were affected by drought stress at both cellular and
whole plant levels, resulting in various physiological complex processes and phenotyp-
ical responses in plant. Oxidative stress is generated within sub-cellular compartments
due to alleviated levels of reactive oxygen species (ROS). ROS consist of superoxide
radical (O2

�), hydrogen peroxide (H2O2), and the hydroxyl radical (OH), all of these
affect building components of the cell (lipids, proteins, carbohydrates, nucleic acids,
etc.) and causes cell demise (Mittler 2002). Therefore, there is an increased interest
among the scientists in finding solutions to drought associated problems and its impacts
on food security. Particularly, there is an utmost need to redress different solutions,
which will improve drought tolerance in crop plants, so as to satisfy the food require-
ment with the limited water resources in today’s world (Mancosu et al. 2015).

Crop productivity can be increased by inoculating plants with PGPR facing
drought stress (Ngumbi and Kloepper 2016). PGPR mitigates drought stress effects
by altering some processes at both physiological and biochemical (alteration in
phytohormone levels, antioxidant enzyme activities (peroxidase, catalase and super-
oxide dismutase) and increase of several organic solutes like amino acids, sugars,
etc.) levels. Moreover, heat-shock proteins, dehydrins and volatile organic
compounds which are produced under extreme conditions also plays key role in
attaining drought tolerance (Kaushal and Wani 2016; Mishra et al. 2017).

The endogenous bacterial endophyte SIR2 (Bacillus subtilis) of wheat and
rhizospheric isolate B1N1 (Bacillus subtilis) of maize possessing ACC
(1-aminocyclopropanre-1-carboxylate) deaminase activity was evaluated at four
water regimes: (1) Uninoculated control (100% field capacity (FC)), (2) 80% field
capacity (FC), (3) 60% field capacity (FC), (4) 40% field capacity (FC) in combina-
tion for 45 days, starting 15 days after sowing to the maturity by Sood (2016). The
results revealed maximum significant increase in root length (14.72%), shoot length
(1.23%), root biomass (66.67%), shoot biomass (33.04%), relative water content
(1.85%), total chlorophyll content (19.35%) and total amino acid content (20.00%)
in the treatments receiving SIR2 inoculation as compared to uninoculated control
(100% field capacity) in wheat and similar increase in root length (15.41%), shoot
length (21.8%), root biomass (60.9%), shoot biomass (65.45%), relative water
content (3.0%), total chlorophyll content (18.51%) and total amino acid content
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(9.52%) was observed in the treatments receiving B1N1 inoculation in maize as
compared to uninoculated control (100% field capacity) in maize. Furthermore,
wheat plants receiving SIR2 (Bacillus subtilis) inoculation and inoculation of
B1N1 (Bacillus subtilis) in maize, subjected to 40% FC soil moisture showed
significant increase in the antioxidant enzyme activity, i.e. superoxide dismutase
(32.7 U/g fresh weight), peroxidase (2.20 U/g fresh weight) and catalase (13.60 U/g
fresh weight) in wheat and in maize, i.e. superoxide dismutase (25.6 U/g fresh
weight), peroxidase (1.70 U/g fresh weight) and catalase (26.4 U/g fresh weight)
as compared to uninoculated ones.

12.6 PGPR and Chemical Fertilizers for Enhancing Crop Yield,
Quantity, Soil Health and Microbiological Properties

Microbial inoculants/Biofertilizers are carrier based ready to use live microbial
formulations, which on application to compost pits, soil and plants helps in mobili-
zation of various nutrients by using direct or indirect mechanisms. Although role of
plant growth promoting rhizobacteria for enhancing the plant growth already been
discussed in this chapter, however, alone use of bacterial formulations may not meet
the full nutrient requirements of the plants, so conjoint application of biofertilizers
along with the chemical fertilizers can be used for enhancing crop yield and
sustaining soil health besides saving vast amount of chemical fertilizers. A 2-year
study was conducted by Sood et al. (2018a, b) to test the effects of combined
application of indigenous plant growth promoting rhizobacteria (PGPR) and chemi-
cal fertilizers on productivity of wheat and maize and soil properties. Ten morpho-
logically distinct indigenous PGPR isolates from wheat and maize rhizosphere were
evaluated at Solan, Himachal Pradesh, India. Three PGPR isolates (B2, SIR1 and
BIS2) of wheat and B1N1, MAT1 and DHK isolates of maize, showing maximum
PGP traits were screened at different doses of nitrogen (N) and phosphorus (P) (80%,
60% and 40% of recommended fertilizer dose, RFD) under net-house conditions
during first year. Two isolates, B2 (Serratia sp.), SIR1 (Bacillus subtilis) of wheat
and B1N1 (Bacillus subtilis), MAT1 (Bacillus amyloliquefaciens) isolates of maize
along with the optimum NP dose (i.e. 80% RFD) were selected for field experimen-
tation, which was performed over two consecutive years. Combined application of
80% RDF of NP with PGPR (B2) significantly increased wheat yield by 9.4%,
number of tillers per plant by 28.03%, grain number per spike by 19.61%, 1000-
grain weight by 10.5% and biomass by 9.2% relative to the uninoculated control
with 100% RFD. Similarly, in maize conjoint application of 80% recommended
doses of NP with PGPR (B1N1) recorded an increase of 12.9% for plant height,
(21.4%) number of cobs per plant, (16.61%) cob length, (16.51%) 1000 seed weight,
(11.7%) grain yield and (17.9%) straw yield over uninoculated control. Soil
properties in the terms of available N, P and potassium, microbial biomass carbon,
soil enzyme activities and population of phosphate-solubilizing bacteria in the wheat
and maize crop were significantly increased by the combined application of bacterial
inoculants (B2 and B1N1) with 80% RFD of NP in both years over the uninoculated
control (Fig. 12.3).
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T1 
Control (100% NPK)

T2 
(B2+ 80% NP)

T3 
(SIR1+ 80% NP)

T1
Control (100% NPK)

T2 
(B1N1+ 80% NP)

T3
(MAT1 +80% NP)

Fig. 12.3 Effect of PGPR isolates and chemical fertilizers on growth and yield of wheat and maize
under field conditions
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12.7 Conclusion

This chapter highlights the role of PGPR’s (plant growth promoting rhizobacteria)
isolated from different agro-climatic zones of Himachal Pradesh in enhancing the
productivity of cereal crops (wheat-maize cropping system) in northwest Himalayas.
The isolated bacteria showed significant increase in crop productivity, nutrient
uptake and improved soil physico-chemical properties in wheat-maize cropping
system and thus, may act as a source of biofertilizers, biostimulants and
bioprotectants. Knowledge of such interactions can give direction as to which
microbes might be selected for sustainably increasing the crop yield without ham-
pering the soil health and environment. PGPR offers an attractive way to reduce the
use of chemical inputs, pesticides and other supplements for cultivation of cereal
crops. It is essential to keep on exploring the rhizosphere of different agricultural,
horticultural and forestry plants for environmentally friendly and sustainable
production.

References

Bagyaraj DJ (2011) Microbial biotechnology for sustainable agriculture. In: Horticulture & for-
estry. New India Publication Agency, New Delhi

Bashan Y, De-Bashan LE (2010) How the plant growth promoting bacterium Azospirillum
promotes plant growth—a critical assessment. Adv Agron 108:77–136

Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L (1998) Characterization
of a free-living maize rhizosphere population of Burkholderia cepacia: effect of seed treatment
on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27:225–237

Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in
agriculture. World J Microbiol Biotechnol 28:1327–1350

Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol
by rhizobacteria. Curr Opin Plant Biol 4:43–350

Cavaglieri L, Orlando J, Etcheverry M (2009) Rhizosphere microbial community structure at
different maize plant growth stages and root locations. Microbiol Res 164:391–399

Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting
bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects.
Appl Environ Microbiol 71(9):4951–4959

Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores:
structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial
Siderophores, vol 12. Springer-Verlag, Berlin Heidelberg, pp 1–42

Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth
promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic
110:324–327

Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of
two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176(6):421–426

Giri B, Prasad R, Wu Q-S, Varma A (2019) Biofertilizers for sustainable agriculture and environ-
ment. Springer International Publishing. ISBN 978–3–030-18932-7. https://www.springer.com/
gp/book/9783030189327

Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol
41:109–117

Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by
plant growth-promoting bacteria. J Theor Biol 190:63–68

12 Plant Growth Promoting Rhizobacteria for Crop Health in Wheat-Maize Cropping. . . 285

https://www.springer.com/gp/book/9783030189327
https://www.springer.com/gp/book/9783030189327


Gou J, Suo S, Shao K, Zhao Q, Yao D, Li H, Zhang J, Rensing C (2020) Biofertilizers with
beneficial rhizobacteria improved plant growth and yield in chili (Capsicum annuum L.). World
J Microbiol Biotechnol 36:86. https://doi.org/10.1007/s11274-020-02863-w

Hallmann J, Hallmann QA, Mahafee WE, Kloepper JW (1997) Bacterial endophytes in agricultural
crops. Can J Microbiol 43:895–914

Hammad S, Ali O (2014) Physiological and biochemical studies on drought tolerance of wheat
plants by application of amino acids and yeast extract. Ann Agric Sci 59:133–145

Hegde DM, Dwived BS, Sudhakara SN (1999) Biofertilizers for cereal production in India—a
review. Indian J Agric Sci 69:73–83

Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute
fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242

Joshi P, Bhatt AB (2011) Diversity and function of plant growth promoting rhizobacteria associated
with wheat rhizosphere in north Himalayan region. Int J Environ Sci 1:1135–1143

Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to
ameliorate crop production in drylands. Ann Microbiol 66:35–42

Kavamura VN, Santos SN, Silva JL, Parma MM, Avila LA, Visconti A, Zucchi TD, Taketani RG,
Andreote FD, Melo IS (2013) Screening of Brazilian cacti rhizobacteria for plant growth
promotion under drought. Microbiol Res 168:183–191

Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate
solubilizing fungi—current perspective. Arch Agron Soil Sci 56:73–98

Khan MA, Sajid M, Hussain ZAR, Wahid F, Bibi S (2013) How nitrogen and phosphorus influence
the phenology of okra. Pak J Bot 45:479–482

Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores
produced by plant growth-promoting rhizobacteria. Nature 286:885–886

Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK
(2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and
environmental sustainability. Biocatal Agric Biotechnol 23:101487

Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop
production. Nature 529:84–87

Loon V, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria.
Annu Rev Phytopathol 36:453–483

Mancosu N, Snyder RL, Kyriakakis G, Spano D (2015) Water scarcity and future challenges for
food production. Watermark 7:975–992

Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M
(2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy
metals through plant growth promoting rhizobacteria: a review. J Environ Manage 254:109779

Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and
plants govern iron and phosphorus acquisition along the root axismodel and research methods.
Soil Biol Biochem 43:883–894

Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida,
Gluconacetobacterazotocaptans, and Azospirillum lipoferum on corn plant growth under green-
house conditions. Microb Ecol 51(3):326–335

Mishra IG, Sapre S, Kachare S, Tiwari S (2017) Molecular diversity of 1-aminocyclopropane-1-
carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere.
Plant and Soil 414:213–227

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects.

Appl Soil Ecol 105:109–125
Pagnani G, Galieni A, Stagnari F, Pellegrini M, Del Gallo M, Pisante M (2020) Open field

inoculation with PGPR as a strategy to manage fertilization of ancient Triticum genotypes.
Biol Fertil Soils 56:111–124

Pandey P, Maheshwari DK (2007) Two sp. microbial consortium for growth promotion of Cajanus
Cajan. Curr Sci 92:1137–1142

286 G. Sood and R. Kaushal

https://doi.org/10.1007/s11274-020-02863-w


Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In:
Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria
(PGPR) and medicinal plants. Springer International Publishing Switzerland, pp 247–260

Reddy P (2014) Plant growth promoting Rhizobacteria for horticultural crop protection. Springer,
New Delhi, pp 35–36

Salisbury FB (1994) The role of plant hormones. In: Wilkinson RE (ed) Plant–environment
interactions. Marcel Dekker, New York, pp 39–81

Sood G (2016) Effect of plant growth promoting rhizobacteria and chemical fertilizers on crop
productivity and soil properties in wheat- maize cropping system under rainfed conditions. Ph.
D. thesis, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan

Sood G, Kaushal R, Chauhan A, Gupta S (2018a) Effect of conjoint application of indigenous
PGPR’s and chemical fertilizers on productivity of maize (Zea mays L.) under mid hills of
Himachal Pradesh. J Plant Nutr 41:297–303

Sood G, Kaushal R, Chauhan A, Gupta S (2018b) Indigenous plant growth–promoting
Rhizobacteria and chemical fertilizers: impact on wheat (TriticumaestivumL.) productivity
and soil properties in North Western Himalayan region. Crop Pasture Sci 69:460–468

Sturz AV, Cristie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustain-
able systems of crop production. Crit Rev Plant Sci 19:1–30

Sullivan DJ, Gara FO (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of
plant root pathogens. Microbiol Rev 5:662–676

Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil
255:571–586

Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress:
achievements and limitations. Curr Opin Biotechnol l16:123–132

Wang LL, Wang ET, Liu J, Li Y, Chen WX (2006) Endophytic occupation of root nodules and
roots of Melilotusdentatus by Agrobacterium tumefaciens. Microb Ecol l52:436–443

12 Plant Growth Promoting Rhizobacteria for Crop Health in Wheat-Maize Cropping. . . 287



Plant–Microbe Interactions: Promoting
Biocontrol of Phytopathogens of Cereal
Grains
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Abstract

Cereal grains were the first agricultural attempts by early man, and are particularly
important to humans because of their role as staple food crops worldwide. Given
the nutritional and economic importance of grains, microbial diseases are a real
danger to global food security. Several methods are implied to control diseases of
cereal crops such as cultural practices, chemical control, using resistant varieties
and biological control. Due to negative impact of chemical management of
phytopathogens on soil ecosystems emerging interest on nontoxic microbial
formulations has shown some promise, and despite being relatively recent
approach there are some bacterial biocontrol products that are available against
such diseases. In order to develop sustainable farming approaches such as
biofertilizers and biopesticides, the study of host plants and associated microbial
interactions in the rhizosphere plays an important role. Growth promotion and
productivity of crop plants being important globally, it is central to know what
type of microorganisms are present and what functions they are performing in the
rhizosphere. In this chapter, we have discussed soil borne fungal and bacterial
pathogens of cereal crops along with management of various phytopathogens via
plant–microbe interactions.
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13.1 Introduction

The active release of organic compounds from plant roots serves as nutrient and
energy source for colonization and growth of active microbial population in the
rhizosphere. Thus, rhizosphere is a warfield for many microflora including
saprotrophs, biotrophs, and several other plant pathogenic microorganisms that
may cause disease in the susceptible host plants. These beneficial and deleterious
microbial populations continuously interact with each other as well as with host
plant for their survival in the rhizosphere (Fig. 13.1). Study of these plant–microbe
and microbe–microbe interactions is crucial since plant health is majorly dependent
on the outcome of these interactions (Prasad et al. 2015; Sharma and Minakshi 2017;
Rana et al. 2020). Plants get diseased when attacked by pathogenic microorganisms
and flourish well when colonized by beneficial growth-promoting microorganisms.

Fig. 13.1 Biocontrol mediated suppression of plant pathogens
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In last few decades practices for manipulation of rhizosphere microflora are evident
where population of beneficial growth-promoting microorganisms is increased those
specially target disease causing microorganisms and suppress their growth. This
approach to inhibit plant pathogens by employing antagonistic microflora is known
as biological control, is being actively harnessed in several plant disease manage-
ment practices (Sharma et al. 2015).

Interest in biocontrol of plant diseases has increased in past few decades due to
high cost and negative environmental concerns associated with chemical protectants.
The key to achieve successful biocontrol is the apt understanding of host–microbe
interaction, environment, and screening effective antagonists with reproducible
biocontrol (Deacon 1994). Successful biocontrol of many plant diseases under
in vitro and in planta conditions has led to the commercialization of many biocontrol
agents in the market-place (Whipps and Davies 2000). The commercialization of
biocontrol agent requires the effective and reproducible biocontrol potential under
variable environmental conditions and study of interactions between biocontrol
agent, host plant with its indigenous microbial population and environment (Agrios
1997).

Several positive and negative interactions exist between plants and
microorganisms in the rhizosphere; these include mutualism, commensalism, neu-
tralism, competition, antagonism, parasitism, and predation (Chisholm et al. 2006).
Mutualism is a type of interaction where both the interacting partners get benefitted.
A mycorrhizal fungus is a type of obligatory mutualistic interaction between host
plant and fungi. This interaction involves both physical and biochemical contact
between partners and also contribute to biocontrol by improving the plant nutrition
and by stimulating host defense response. Protocooperation is also a form of
mutualistic interaction which is non-obligatory. Commensalism is a type of positive
interaction where one organism gets benefit from other and other is neither benefitted
or harmed (Hulme-Beaman et al. 2016). The interaction where one biological
community has no effect on the other is called neutralism (Berg et al. 2006).
However, antagonism, on the other hand, is a negative interaction between two
organisms in which either one or both the partners are negatively inhibited. Compe-
tition often results in poor growth or complete eradication of the susceptible and
weak population (Ryder and Talbot 2015). Competition is regarded as one of the
important mechanisms of biocontrol where non-pathogenic biocontrol agents com-
pete with plant pathogens for nutrients and space. Parasitism is also a negative
biological interaction in which two organisms co-exist in such a way that the smaller
partner (parasite) gets benefited and larger partner (the host) is harmed (Tzortzakakis
et al. 2003). However, the parasite does not kill the host as its survival is dependent
upon host survival. One more interesting interaction that leads to biological control
of plant diseases is the interaction between host plant and avirulent pathogen. The
exposure to avirulent strain of pathogen stimulates host defense response even
against the virulent strain of pathogen (Agrios 1997). A varying degree of biological
control is achieved under these plant–microbe interactions and an effective biocon-
trol is achieved by manipulating positive interactions between microbes and plant
host or by manipulating negative interactions between antagonistic microbes,
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pathogens, and host plant. To that end, the objectives of this chapter are to present an
advanced survey of the nature and practice of biological control as it is applied to the
suppression of plant diseases. In this chapter, different aspects of biological control
of cereal pathogens including interactions among biocontrol agents and cereal
pathogens, modes of action, genetically modified cereals, and future development
will be discussed.

13.2 Root Exudates-Chemical Mediators of Plant–Microbe
Interactions

Roots support plant growth by absorbing mineral nutrients and making them avail-
able to the plants. Besides this, roots also maintain rhizosphere structure and
dynamics by secreting certain organic compounds in the rhizosphere zone called
root exudates. Rhizosphere is thus a physiologically active zone under the influence
of plant roots where these exudates secreted are utilized as nutrients by
microorganisms those in turn affect the plants either positively or negatively
(Kamilova et al. 2006; Kumar et al. 2007a, b; Naik et al. 2020; Shrivastava et al.
2014). Root exudates are chiefly photosynthetically derived carbon compounds the
product of and act as secondary metabolites (Chaparro et al. 2013). A wide range of
distinct organic compounds are exuded by plant roots those determine the microbial
diversity in the rhizosphere, they include water, sugars, nitrogen compounds, muci-
lage, waxes, and other secondary metabolites (Nardi et al. 2000; Kour et al. 2020). It
is a well-known fact that root exudates serve as nutrient source for soil microbes
especially those mineralizing organic matter and providing mineral elements to the
plants. So, if diverse plant community is present above ground, diverse microbial
population will be present in the rhizosphere.

Plant root exudates can be grouped into two categories; first are the low molecular
weight compounds such as monosaccharides, phenolics, amino acids, hormones, and
other miscellaneous secondary metabolites. Exudates falling in the second group are
high molecular weight compounds such as proteins and polysaccharides (Sharma
and Minakshi 2017). The composition and concentration of exudates depends upon
host plant, age, plant variety, soil physical and chemical properties, and environ-
mental conditions (Uren 2000). These differences create a specific rhizobacterial
community structure around specific host plant.

Many of the root exudate compounds have been known as the mediators of plant–
microbe interactions such as release of flavonoids by legume roots starts nodulation
process by activating nod genes of Rhizobium meliloti. These exudates are also
responsible for root colonization by arbuscular mycorrhizal fungi (Becard et al.
1995). Roots are also known to exude certain compounds such as phytoalexins
and other phenolics that are involved in plant defense against pathogens (Flores et al.
1999). Phytoalexins are released in response to the pathogen attack. However, a vast
array of root exudates compounds are known with their functions still, a large
chemodiversity of rhizodeposits is unexplored which can be exploited for searching
new compounds and antimicrobials. A few years ago, a root exudate of hairy roots of
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sweet basil called rosmarinic acid was identified that was elicited by cell wall extract
of Phytophthora cinnamomi (Bais et al. 2006). Doornbos et al. (2012) have also
reported the role of root exudates compounds in plant defenses; these findings have
suggested the importance of root exudates in defending the plants against pathogenic
microbes.

13.3 Diseases of Cereal Crops and Interactions Involved
in Biological Disease Control

Cereal grains are grown in large quantities and are primary source of food and
energy worldwide than any other type of crops and therefore known as staple crops.
Green revolution has lead to increase in the cereal crop productivity worldwide to
feed ever-growing human population which has led to more and more dependence
on chemical based inputs in crop cultivation. But cereal crops are attacked by a vast
range of pathogens leading to severe crop losses worldwide which was estimated to
be ranging between 20 and 40% of global agricultural productivity (Oerke 2006).
Root infecting pathogens of cereals are either soilborne or seed-borne. The sign and
severity of these diseases caused by phytopathogens greatly depends upon climatic
conditions. Research findings show that Gaeumannomyces graminis var. tritici
causing take-all disease of wheat, Rhizoctonia spp. causing root rot of wheat,
Fusarium culmorum and Bipolaris sorokiniana causing seedling disease in barley
and wheat, Ustilago tritici and U. nuda causing loose smut in wheat and barley,
Exserohilum turcicum causing leaf blight and Puccinia spp. causing rusts in cereal
crops are most common and widespread (Knudsen et al. 1995; Johnsson et al. 1998;
Yang et al. 2014; Sartori et al. 2017). Besides this mycotoxin contamination is
another big challenge during post-harvest practices, which makes the cereal grains
unsuitable as human and animal feed. A large amount (approximately 30–40%) of
cereal grains get contaminated with mycotoxins producing fungi worldwide (Kumar
et al. 2007a, b). Aflatoxins, Fumonisins, Patulins, and Ochratoxin are the most
common and important mycotoxins (Suleiman and Kurt 2015). The fungi associated
with cereal contamination and mycotoxin production are Aspergillus flavus,
A. parasiticus, A. ochraceus, Penicillium, Fusarium moniliforme, etc. (Suleiman
and Kurt 2015).

Significant amount of chemical protectants are used worldwide to control
diseases of cereal crops. One of the alternatives for controlling pathogens of cereal
crops is microbial biocontrol. Reports on search for microbes that could control
cereal diseases are numerous and have highlighted the role of various antagonist–
pathogen interactions in combating these pathogens. The interactions may involve
production of inhibitory compounds such as antibiotics those suppress the pathogen
growth. In maize, growth-promoting and antifungal compounds-producing bacteria
have been shown to have inhibitory effects on southern leaf blight disease caused by
the fungus Cochliobolus heterostrophus (Huang et al. 2010; Ye et al. 2012). In
another study by Yang et al. (2014), an antagonistic strain of Pseudomonas
fluorescens HC1-07 isolated from the wheat phyllosphere inhibited the soilborne
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pathogen Gaeumannomyces graminis var. tritici causing take-all disease in wheat.
The strain HC1-07 also suppressed root rot of wheat caused by Rhizoctonia solani.
Production of a cyclic lipopeptide (CLP) antibiotic in the rhizosphere was reported to
be its mechanism of biocontrol. Although bicontrol abilities of antagonistic fungi
against various cereal pathogens have been well recognized, commercial fungal
biocontrol agents to replace chemical fungicides are yet limited. Research on
biocontrol of plant pathogens by antagonistic fungi has been primarily associated
with Trichoderma so far. This has led to the use of T. harzianum C82-93 strain as a
biocontrol agent against diseases caused by Fusarium, Botrytis cinerea, Sclerotinia,
Cladosporium, and Alternaria. A fungal biocontrol agent “Trichoderminas” was
produced on commercial scale that contained the strain T. viride M10. In contrast to
fungi, research on bacteria as biocontrol agents for cereal pathogens has proved to be
more promising, and there are some bacterial biocontrol agents available for use
against these pathogens. The examples include Mycostop, Cedomon, and Cerall
currently registered as biopesticides in agriculture market. While Mycostop contains
antagonistic Streptomyces and is used on vegetable crops, ornamental plants, and
rarely on cereals, Cedomon and Cerall, on the other hand, are designed for seed
dressing of cereals and contain Pseudomonas chlororaphis MA342 for combating
seed-borne diseases. Despite the fact that commercial biocontrol agents are available
for cereal crop protection, indigenous microflora are still considered more suitable
for local application. This is because, the native microorganisms are well adapted to
the crop rhizosphere in that area and their antagonistic potential will not get hindered
by unfavorable climatic conditions (Khan et al. 2010; Khan 2013).

13.4 Interactions Between Biocontrol Agents and Fungal
Pathogens

Fungi that invade cereals are categorized into two groups (1) field fungi which
incorporate species of Alternaria, Cladosporium, Fusarium, andHelminthosporium;
and (2) storage fungi which include species of Aspergillus and Penicillium. Natural/
biological control of such kind of parasitic pathogens has been viewed as a reason-
able elective technique to chemical control (Burge 1988). All through their lifecycle,
plants and pathogens interact with a wide assortment of organisms and these
interactions can fundamentally influence plant wellbeing in different ways. Diverse
methods of activities of biocontrol-active microorganisms in controlling fungal
phytopathogen infections include direct (mycoparasitism), blended way (anti-toxin
production, secretion of lytic enzymes), and indirect (induction of host defense
system against pathogen) (Ownley et al. 2008). Some of most generally discovered
biocontrol soil microorganisms incorporate different types of fungal species
(Trichoderma, Coniothyrium, Pythium spp.) and bacteria (Pseudomonas and Bacil-
lus) consequently securing plants and lessening disease incidence occurrence in a
wide range of soil types. These highly interacting microorganisms have been broadly
studied and live cell formulations of these are economically showcased fundamen-
tally as biopesticides/biofertilizers and soil alterations.
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Cases of economically accessible biocontrol organisms and their mode of
activities:

13.4.1 Interactions Between Biocontrol Fungi
and Mycophytopathogens

Interactions between biocontrol fungi and fungal plant pathogens keep on being the
focal point of numerous scientists. Several interactions between biocontrol fungi and
fungal pathogens have been enlisted in Table 13.1. There is an assortment of
biocontrol fungal species, but Trichoderma species plainly dominate, simply
because of its ease of cultivation and wide host range (Whipps and Lumsden
2001). Non-pathogenic species of Pythium, Rhizoctonia, Phialophora,
Gaeumannomyces graminis var. graminis have likewise been accounted for as
biocontrol of cereal pathogens. Trichoderma species have been examined widely
in the previous years and are marketed worldwide as biofungicides, phytostimulants,
and natural soil alterations for number of horticultural, ornamental, and other crops
(Lorito et al. 2010).

Some examples of the methods of activity found in the rhizosphere during
interactions amongst mycophytopathogens and fungal biocontrol agents are given
beneath:

13.4.1.1 Competition
Competition for supplements and space are imperative elements for biocontrol of
soilborne pathogens. This is entrenched for non-pathogenic strains of Fusarium
oxysporum controlling pathogenic F. oxysporum on an assortment of crops (Eparvier
and Alabouvette 1994), hypovirulent or non-pathogenic strains of Rhizoctonia
species to control pathogenic species of R. solani (Herr 1995) and various other
fungal species of Phialophora, Gaeumannomyces graminis var. graminis (Kirk and
Deacon 1987; Shivanna et al. 1996). Production of lytic enzymes could be ascribed
to rhizosphere competence in Trichoderma harzianum that prompts enhanced bio-
control efficiency against immense soil fungal pathogens (Ahmad and Baker 1987).
T. harzianum can possibly diminish levels of fusarium head blight of wheat by
lessening perithecial and ascospore generation of Gibberella zeae on wheat straw
(Inch and Gilbert 2007). In another example, sterile red fungus competes for
thiamine could be a significant mechanism of controlling Gaeumannomyces
graminis var. tritici in wheat rhizosphere (Shankar et al. 1994).

13.4.1.2 Parasitism
The fundamental biocontrol system that numerous fungal biocontrol species uses
indirect confrontation with phytopathogenic fungi is parasitism (Vinale et al. 2008).
Vujanovic and Goh (2009) reported mycoparasite (Sphaerodes mycoparasitica) of
Fusarium graminearum, the causative agent of cereals head blight. Mechanism of
parasitism depends on recognition followed by binding and lastly enzymatic disrup-
tion of cell wall of host fungi or its propagules. Among fungi, the species of
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Table 13.1 Examples of interactions between biocontrol agents and fungal diseases of cereals

Host
plant Pathogen Biocontrol agent Reference

Fungal-fungal pathogen interactions

Barley Bipolaris sorokiniana Idriella bolleyi Duczek (1997)

Fusarium culmorum Pythium
mycoparasiticum
P. Acanthophoron
P. oligandrum
P. Periplocum

Davanlou et al. (1999)

Maize Fusarium graminearum
Pythium arrhenomanes
P. ultimum

Trichoderma virens
GL-3

Mao et al. (1997)

Macrophomina phaseolina T. viride Bagyaraj (2011)

Wheat Ustilago segetum
Gaeumannomyces gramminis
var. tritici

T. Koningii
Phialophora sp. I-52

Bagyaraj (2011)

Pyrenophora tritici-repentis
Pseudocercosporella
herpotrichoides

T. harzianum T-22
T. Harzianum,
F. culmorum

Mathre et al. (1998)
Da luz et al. (1998)
Hinton and Parry
(2008)

Bacterial-fungal pathogen interactions

Wheat Alternaria tritici Bacillus subtilis,
Serratia marcescens

Sood et al. (2018a)

Yang et al. (2014)

Gaeumannomyces graminis var.
tritici., Tilletia caries

Pseudomonas
fluorescens

Reiss and Jorgensen
(2017); Jorgensen and
Matzen (2017)

Rhizoctonia solani
Puccinia striiformis, Blumeria
graminis, Rhizoctonia solani;
G. graminis var. tritici

Bacillus subtilis Huang and Wong
(1998), Sood et al.
(2018a)

Fusarium graminearum,
Cleviceps purpurea

Burkholderia cepacia
A3R
B. subtilis
Serratia marcescens

Maize Fusarium spp.
Fusarium oxysporum
Rhizoctonia solani

B. cepacia PHQM 100
Bacillus subtilis

Hebber et al. (1998)
Sood et al. (2018b)

Barley Drechslera graminea, D. teres,
U. hordei

Pseudomonas
chlororaphis MA342

Johnsson et al. (1998)

Oats D. avenae
Ustilago avenae

Rice R. solani, Pyricularia grisea P. fluorescens VO61 Vidhyasekaran and
Muthamilan (1999)

Bipolaris oryzae, Sclerotium
oryzae Cattaneo

Pseudomonas sp.,
P. aeruginosa,
Bacillus sp., B. subtilis

Vasudevan et al.
(2002)
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Trichoderma, Gliocladium and Pythium are known mycoparasites (Elad 1995).
Chitinolytic and glucanolytic enzymes are especially valuable for biocontrol
applications in light of their capacity to efficiently dissolve fungal hyphae.
Trichoderma composed of set of genes encoding for variety of lytic enzymes and
hence showed antifungal activity towards expansive fungal pathogens of grains (i.e.,
species of Rhizoctonia, Fusarium, Alternaria, Ustilago, Venturia, and
Colletotrichum, as well as lower fungus species of Pythium and Phytophthora
whose cell wall lacks chitin).

13.4.1.3 Antibiosis
Secondary metabolites production by certain fungal species for biocontrol is one of
the chief phenomenons. Antibiotics, volatile compounds, isocyanide derivatives,
water soluble compounds (heptelidic acid or koningic acid) are the examples of
metabolites having antagonistic potential against phytopathogenic fungi. The fungal
antibiotics, gliovirin and gliotoxin produced by different strains of Trichoderma
virens (Bisset 1991) as well as chaetomin and gliotoxin by the soil-inhabiting
biocontrol fungi, Chaetomium globosum and Gliocladium virens, respectively, are
important for biocontrol of cereal pathogens. Along with antibiotics, production of
some volatile compounds such as 6-n-pentyl-2H-pyran-2-one (6-PAP) by
Trichoderma species has inhibitory potential against Botrytis cinerea, Fusarium
sp., Phytophthora megasperma, Rhizoctonia solani, and Armillaria mellea (Tarus
et al. 2003).

13.4.1.4 Induced Resistance
Induced resistance is perceived as an imperative method of biocontrol in vegetative
tissues (Kloepper et al. 1992). Resistance may be induced locally or may be
systemic. Induction of ISR (induced systemic resistance) by certain rhizospheric
microorganisms prevents plant from foliar and soil borne pathogens infection
(Paulitz and Matta 2002). ISR is attributed to an assortment of non-pathogenic
microorganisms that can control multiple pathogens such as saprophytes, plant
growth-promoting and avirulent races of pathogens. The root-colonizing fungus
Piriformospora indica (phylum Basidiomycota) was discovered in the Indian Thar
desert (Verma et al. 1998; Prasad et al. 2005, 2013, 2015). This non-pathogenic
fungus protects barley from infections by root and leaf pathogens, thereby offering a
model system for “systemic” resistance in cereals. The elicitors responsible for
inducing resistance are not known in detail. Xylanase from Trichoderma
sp. inoculated in plant tissues induced K+, H +, and Ca 2+channeling, PR protein
synthesis, ethylene biosynthesis, and glycosylation and fatty acylation of
phytosterols hence, provided ISR (Bailey and Lumsden 1998). In another study,
T. harzianum acts as an effective antagonist against Septoria leaf blotch by causing a
biochemical induced response in wheat plants (Cordo et al. 2007).
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13.4.2 Interactions Between Biocontrol Bacteria
and Mycophtyopathogens

Other than parasitic biocontrol agents, bacterial species have additionally assumed
an imperative part in suppressing growth of mycophytopathogens and the volume of
writing around there keeps on expanding at a fast rate, encouraged by their growth,
easy handling, and aggressive colonization of the rhizosphere. A few cases of the
distinctive sorts of bacteria and fungal pathogen interactions analyzed in the rhizo-
sphere in recent years are given in Table 13.1. In spite of the fact that a range of
various bacterial genera and species have been contemplated, but the mind-boggling
number of papers have included the utilization of Pseudomonas and Bacillus species
as biocontrol agents (Kushwaha et al. 2020). Obviously, Pseudomonas and Bacillus
species must have activity, yet it makes one wonder with regard to the highlights that
make these genera so powerful and the choice of many workers. The key features of
Pseudomonas and Bacillus are their rapid growth, easy to modify genetically, and
can metabolize variety of organic compounds hence culture easily in complex
medium, therefore, making them amenable to experimentation. But, in addition,
they are common rhizosphere organisms and must be adapted to life in the rhizo-
sphere to a large extent (De Weger et al. 1995; Marilley and Aragno 1999). Having
appropriate ecological rhizosphere competence may be a key feature for reproduc-
ible biological control activity in the rhizosphere. A couple of cases of the modes of
activity required for bacterial biocontrol of contagious pathogens in the rhizosphere
are given below.

13.4.2.1 Production of Inhibitory Allelochemicals
A primary mechanism of pathogen inhibition is the production of inhibitory second-
ary metabolites such as antibiotics and lytic enzymes as well as other factors such as
siderophore production and microbial cyanide (Fravel 1988; O’Sullivan and O’Gara
1992; Kumar et al. 2020). Fluorescent pseudomonads are known to produce number
of metabolites, such as phenazine-1-carboxylicacid (PCA),
2,4-diacetylphloroglucinol (DAPG), pyoluteorin, pyrrolnitrin, and oomycin
A. Among these, DAPG has been implicated as the mechanism involved in the
biological control of some of the most important crop diseases, such as the root rot of
wheat caused by Fusarium oxysporum f. sp. graminis (Garagulya et al. 1974) and the
“take-all” of wheat caused by Gaeumannomyces graminis tritici (Keel et al. 1992).

Different strains of Bacillus and Pseudomonas can synthesize lipopeptide-type
compounds, which have been considered for their biocontrol activity against
phytopathogens (Leclere et al. 2005; Chen et al. 2009). Lipopeptides (fengycin,
surfactin, and iturin) belong to a group of microbial-based peptides that enable the
plant activation of defense mechanism (Ongena et al. 2005; Chen et al. 2009). Gond
et al. (2015) reported antifungal lipopeptide production by Bacillus subtilis that
upregulated the expression of pathogenesis related proteins thereby induced plant
defense system against fungal pathogens. In another study, cyclic lipopeptide pro-
ducing strain Pseudomonas fluorescens HC1-07 was able to control wheat root
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diseases of Gaeumannomyces graminis var. tritici. and Rhizoctonia solani (Yang
et al. 2014).

Lytic enzymes such as Chitinase and β-1, 3-glucanase suppress
mycophytopathogens by degrading chitin and β-1, 3-glucan, major constituents of
many fungal cell walls. Chitinase produced by S. plymuthica, Serratia marcescens,
Paenibacillus sp., and Streptomyces sp. as found to be inhibitory against Botrytis
cinerea, Sclerotium rolfsii, Fusarium oxysporum f. sp. cucumerinum (Barka et al.
2002). Similarly, expression of β-1, 3-glucanase from Trichoderma atroviride
reduced disease incidence of Sclerospora graminicola causing downy mildew in
pearl millet (O'Kennedy et al. 2011).

13.4.2.2 Induced Resistance
Certain biocontrol agents show indirect mode of antagonism by increasing level of
basal resistance to several pathogens simultaneously, which is of advantage to
survive in pathogen prone ecosystem of rhizosphere (Van Loon and Glick 2004).
Induction of disease resistance is regulated by a network of signaling channels. The
initial components of this network involve various plant signal metabolites—ethyl-
ene (ET), nitric oxide (NO), jasmonic acid (JA), and salicylic acid. Most work has
concentrated on the induced systemic resistance provided by rhizosphere colonizing
non-pathogenic strains of Bacillus and Pseudomonas. Specific ISR induction
depends upon type of pathogen, host plant, and strain for biocontrol used. Rais
et al. (2017) accessed Bacillus spp., for ISR in rice against Pyricularia oryzae, the
outcomes demonstrated that treatment with Bacillus sp. upgraded antioxidant
defense activities in infected rice that leads to oxidative damage to P. oryzae
hence, suppressing disease incidence in crop. Whereas, in another study induction
of systemic resistance by Pseudomonas fluorescens WCS374r was based upon
pseudobactin mediated priming for salicylic acid against rice blast pathogen
Magnaporthe oryzae (De Vleesschauwer et al. 2008).

13.5 Interactions Between Biocontrol Agents and Bacterial
Pathogens

The utilization of biocontrol organisms against bacterial pathogens of cereals
remains to be investigated in detail. However, earlier work has been documented
for suppression of bacterial blight using antagonistic strains of Bacillus and Pseudo-
monas (Vasudevan et al. 2002). Xanthomonas sp. causing bacterial blight and
bacterial leaf streak/brown stripe caused by pathogenic species of Pseudomonas
are the most severe disease of cereals. Kumar et al. (2017) reported Bacillus subtilis
for its biocontrol efficiency against rice blast (Magnaporthe oryzae), sheath blight
(Rhizoctonia solani), and bacterial leaf blight (Xanthomonas oryzae).Moreover, the
phylloplane microorganisms, namely Erwinia herbicola, Aspergillus sp, Streptomy-
ces sp., Pseudomonas fluorescens and Trichoderma harzianum, etc., suppressed
bacterial growth and reduced bacterial blight incidence significantly (Manmeet and
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Thind 2002). Some examples of biocontrol of bacterial diseases examined in
rhizosphere of cereal grains are given in Table 13.2.

As described earlier, antibiosis or competition for nutrients and space are the main
mechanisms for biocontrol in the rhizosphere. Native strains of Pseudomonas
fluorescens and Erwinia herbicola colonizing roots of rice, pearl millet, and citrus
reduced development of bacterial blight hence, proved inhibitory to bacterial blight
pathogen (Gnanamanickam et al. 1999). While, inhibitory secondary metabolite
production by Pseudomonas aeruginosa controlled the growth of Xanthomonas
oryzae causing leaf blight of rice. Hence, the bacterial antagonists proved to have
double advantage of faster growth rate and higher competence in rhizosphere.
Several other metabolites or factors are also responsible for antagonism rather than
competition. Unnamalai and Gnanamanickam (1984) reported siderophore mediated
inhibition of X. Campestris pv. citri by Pseudomonas rather than competition for
space or nutrients. Similarly, antibiotic (DAPG) production by P. fluorescens
suppressed growth of bacterial blight pathogen Xanthomonas oryzae pv. oryzae
(XOO) in rice (Velysamy et al. 2005). Biological control has more potential to
suppress growth of phytopathogen than chemical treatment which was proved in a
study conducted by Jayalakshmi et al. (2010) who found combination of seed
treatment and soil application with P. fluorescens gives the minimum disease
incidence of bacterial leaf blight with maximum yield in comparison with the
chemical treatment.

Table 13.2 Examples of biocontrol agents for nematodes and bacterial pathogens of cereals

Pathogen Biocontrol agent Reference

Bacteria Xanthomonas
oryzae

Bacillus sp.,
Pseudomonas aeruginosa BRp3

Bagyaraj (2011)
Yasmin et al. (2017)
Kakar et al. (2013)

Pseudomonas
fuscovaginae
Erwinia
carotovora

B. amyloliquefaciens Bk7
Pseudomonas fluorescens

Bagyaraj (2011)

Nematodes Root knot
nematodes
(Meloidogyne
spp.
M. incognita
M. javanica
M. hapla)

Trichoderma harzianum,
Verticillium chlamydosporium,
Bacillus sp., Azotobacter sp.,
Pasteuria sp.

Sahebani and Hadavi
(2008); Bagyaraj (2011)

Cereal root
eelworm
(Heterodera
avenae)
(Heterodera
filipjevi)

Trichoderma longibrachiatum T6,
Achromobacter xylosoxidans,
Bacillus cereus

Zhang et al. (2016, 2017)
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13.6 Interactions Between Biocontrol Agents and Nematodes

Plant parasitic nematodes persisting in the soil attack several crop plants and reduce
their growth and yield. Nematode control measures may either be corrective or
preventive but the biological control has both these possibilities. Biological nema-
tode control in relation to crop production system is a subject of considerable current
interest, because of a perceived urgency to develop and adopt safe, economic, and
efficient method for managing nematode pests.

Cereal crops are central food source globally and hence nematodes parasitizing
cereals including cyst (Heterodera avenae) and root knot (Meloidogyne
graminicola) are of worldwide concern. Certain biocontrol agents applied to
nematicidal infections of cereal crops are listed in Table 13.2. Heterodera avenae
can easily parasitize wheat, barley, and oats (Al-Hazmi et al. 1994) while wheat-rice
crop rotation areas are more prone to Meloidogyne graminicola infection. Although
several methods have been used like chemical control, use of pest resistant trans-
genic varieties, but crop rotation has been the most effective method to control
nematodes but if limited choice of crop rotation and occurrence of diverse pathogens
then, other methodologies are required (Riley and Qi 2015). Use of chemicals is also
considered economically as well as environmentally unsatisfactory (Bontempo et al.
2014), so advancement of microbial antagonists for nematodes may be one of only a
handful few remaining choices (Riley et al. 2010).

Biological control of nematodes includes the use of predaceous or parasitic
organisms and the dominating are bacteria and fungi. Variety of microorganisms
has been explored as potential biocontrol agents for cereal cyst and root knot
nematodes (Siddiqui and Mahmood 1996, 1999). Some fungal species, including
Verticillium chlamydosporium, Paecilomyces lilacinus (Khan et al. 2006), and
Trichoderma longibrachiatum (Zhang et al. 2014), Fusarium sp. and Gliocladium
virens have been found to have strong parasitic and lethal effects on cereal
nematodes. Similarly, some bacteria have been shown to offer potential as biocontrol
agents. Pasteuria spp. was shown to prevent juveniles from invading wheat roots by
parasitizing H. avenae (Davies et al. 1990). Application of Bacillus subtilis and
Bacillus megaterium caused significant mortality of H. avenae juveniles (Gokte and
Swarup 1988) and M. graminicola (Padgham and Sikora 2007), respectively.

13.7 Mycorrhizae as Biocontrol Agent

Enhanced growth of plants because of AM fungal inoculation is well documented.
Most of the studies on AM fungi–root pathogens interaction suggest that AM fungi
decreased or mitigated the disease severity (Brimmer and Boland 2003; Mukerji
et al. 2002). AM fungi have been well documented for disease reduction of various
fungal (Phytophthora parasitica, Gaeumannomyces graminis var. tritici, Fusarium
oxysporum); bacterial pathogens (Pseudomonas syringae and Ralstonia
solanacearum) as well as nematodes (Tylenchulus semipenetrans, T. vulgaris,
Meloidogyne arenaria, Radopholus similis). Direct and indirect mechanisms are
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involved in AMF mediated biological control. Direct mechanisms involve mainly
competition for space and nutrients, on contrary plant mediated effects come under
indirect mechanisms including ISR, alteration in root exudates that results in altered
rhizosphere interactions. Khaosaad et al. (2007) reported systemic reduction of root
damage caused by Gaeumannomyces graminis var. tritici in mycorrhizal colonized
roots of barley and disease reduction was correlated with complex interactions
among AMF, pathogens, and plant (Harrier and Watson 2004). The interaction
between AMF and diverse rhizobacteria has also been well documented (Nemec
1994). Such interactions may have detrimental, neutral, or beneficial effects on
bacterial pathogens (Filion et al. 1999). Soybean roots having mutualistic symbiosis
with Glomus mosseae suppressed the growth of P. syringae in soybean rhizosphere
(Shalaby and Hanna 1998), thereby preventing pathogen infection in plant. The role
of AMF in lessening detrimental effects of root infection by numerous parasitic
nematodes in plants is likewise all around perceived (Jothi and Sundarababu 2002;
Shreenivasa et al. 2007). Most of the AM fungi and nematode interaction studies
have been made with sedentary endoparasites, especially with the root knot nema-
tode belonging to genus Meloidogyne in multiple horticultural crops.

13.8 Genetically Modified Cereals

As explained earlier, certain rhizo-microorganisms inhibit the growth of
phytopathogens via production of antimicrobial compounds. With the emergence
of genetic engineering, genes encoding to such products can be isolated and trans-
ferred to desired plant hence, forming GMOs. A GMO that uses a gene from a
microbial antagonist is a bio-based method for disease and pest control. There is
minimal success data of genetically modified cereal crops in comparison to other
economic crop. Because, this required large investment of money as well as time to
form a stable transgenic due to requirement of techniques and issues with respect to
worthiness of GM grains. Certain examples of pathogen resistant verities of cereal
crop have been explained below:

13.8.1 Pest Resistant Varieties of GM Cereals

Cereals and various other crops have been engineered genetically to become resis-
tant against lepidopteran and coleopteran species by forming toxic proteins from
Bacillus thuringiensis (Bt). Bt toxins are of interest of several researchers because of
its specificity for insects and no effect on predators or beneficial insects (Mendelsohn
et al. 2003; Christou 2005). Among cereals, the most well-known transgene for pest
control available today includes transgenic maize that expresses Bt genes (CryIA(b),
CryIa(c) or Cry9C.

Rice is one of the important cereal crops that serve as staple food for more than
half of the world’s population. Stem borers infesting rice crop results in yield losses
(Pathak and Khan 1994). Bt genes Cry1A, Cry1Ab and Cry1Ac and Cry1Ab/Ac
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fusion gene that have been successfully transferred and expressed in different rice
varieties, viz., KMD1, KMD2 (Shu et al. 2000; Ye et al. 2001), Minghui 63, IR64,
Pusa Basmati-1, Karnal Local (Khanna and Raina 2002) showed resistance against
striped stem borer, yellow stem borer, and leaf folder under field conditions, resulted
in yield advantage.

13.8.2 Disease Resistant Varieties of GM Cereals

Fungal, bacterial, and viral diseases of cereals are well acknowledged. Bio-based
transgenic plants development is one of the alternative ecofriendly approaches to
develop resistance and increasing crop yield of cereals.

Fusarium graminearum is one of the major pathogens of wheat causing Fusarium
Head Blight (FHB). Polygalacturonases (PGs) secretion during early fungal infec-
tion is the cause of various fungal diseases, and plants should have evolved to restrict
pectin degradation during fungal infection. Polygalacturonase-inhibiting proteins
(PGIPs) production could restrict pectin degradation by mycopathogens. Keeping
this in view, expression of PvPGIP2 in transgenic wheat significantly reduced the
symptoms of F. graminearum (Ferrari et al. 2012). The bovine lactoferrin gene is
known to have a wide spectrum of antimicrobials gene. In a study, expression of
bovine lactoferrin cDNA induced in wheat and Barley plants increased the resistance
against head blight (Han et al. 2012).

Blast (Magnaporthe grisea), bacterial leaf blight (Xanthomonas oryzae
pv. oryzae), and sheath blight (Rhizoctonia solani) are serious constraints for high
productivity of rice. Chitinase or 1, 3-glucanase lytic enzymes of fungal cell wall are
of great consideration to suppress fungal pathogens. Genes encoding these enzymes
have been broadly used in creation of transgenic rice (Fujikawa et al. 2012).
Transgenic rice plants that expressed chitinase gene, ChiC from Streptomyces
griseus showed significant resistance against Magnaporthe grisea over
non-transgenic rice. In other study, puroindoline genes PinA and PinB from wheat
when expressed in rice, the disease incidence of M. grisea and R. solani was
significantly reduced (Krishnamurthy et al. 2001). Induction of disease resistance
in its broadest sense implies biological control of pathogens and pests by earlier
activation of genetically modified plant defense systems. In example, insertion of
AtNPR1 in transgenic rice induced the expression of PR1b, PR5, PR10, and PBZ1
genes encoding salicylic acid thus responsible for acquired systemic resistance
against M. grisea and Xanthomonas oryzae pv. oryzae (Quilis et al. 2008). Further-
more, manipulation in jasmonic acid biosynthesis pathway via expression of
OsAOS2 (pathogen inducible gene) in rice that encodes enzyme allene oxide
synthase which is involved in JA biosynthetic pathway results in accumulation of
JA leading to higher expression of pathogenesis related genes thus increased resis-
tance to M. grisea infection (Mei et al. 2006).

Despite of huge efforts devoted and achievement accomplished in rising disease
and pest resistant transgenics in cereal crops, no commercial discharge has been
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reported until this point. This technology is disputable, has varying perceptions of
acceptance, and is limited by government controls around the world.

13.9 Conclusions and Future Prospects

For growth of agricultural production has led several new challenges, making further
growth possible only if these challenges are met appropriately and timely. Increase
in crop productivity using the modern farming techniques is possible but the
environmental issues arising due to excessive use of chemical fertilizers and
pesticides are required to be addressed. So, the biological control can be alternate
system, which may play an important role in achieving the goal of agriculture. BCAs
introduced as inoculants or amendments, as well as active ingredients directly
derived from natural origins and having a low impact on the environment and
non-target organisms. With the growing interest in reducing chemical inputs,
companies involved in the manufacturing and marketing of BCAs should experience
continued growth. New, more effective, and stable formulations also will need to be
developed.

Much has been learned from the biological control research conducted over the
past years. But, in addition to learning the lessons of the past, biocontrol researchers
need to look forward to define new and different questions, the answers to which will
help facilitate new biocontrol technologies and applications. Currently, fundamental
advances in computing, molecular biology, analytical chemistry, and statistics have
led to new research aimed at characterizing the structure and functions of biocontrol
agents, pathogens, and host plants at the molecular, cellular, organismal, and
ecological levels. Growers are interested in reducing dependence on chemical inputs,
so biological controls (defined in the narrow sense) can be expected to play an
important role in Integrated Pest Management (IPM) systems.

Most pathogens will be susceptible to one or more biocontrol strategies, but
practical implementation on a commercial scale has been constrained by a number of
factors. Cost, convenience, efficacy, and reliability of biological controls are impor-
tant considerations, but only in relation to the alternative disease control strategies.
Cultural practices (e.g., good sanitation, soil preparation, and water management)
and host resistance can go a long way towards controlling many diseases, so
biocontrol should be applied only when such agronomic practices are insufficient
for effective disease control. In general, though, regulatory and cultural concerns
about the health and safety of specific classes of pesticides are the primary economic
drivers promoting the adoption of biological control strategies in urban and rural
landscapes. Soil borne and post-harvest diseases have been controlled effectively by
biological control agents that act as bioprotectants (i.e., preventing infections).
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Role of Indigenous Microbes for the Control
of Major Fungal Pathogens of Turmeric 14
Meenakshi Dhiman, Vibha Singh, and Rajesh Kaushal

Abstract

Curcuma longa commonly known as turmeric is a rhizotomous herb of family
Zingiberaceae common to Indian subcontinent and Middle Eastern countries. The
rhizome is commonly used as spices and traditional medicine in Indian
households even since the ancient times. Turmeric is a rich source of phenolic
compounds, curcuminoids, and sesquiterpenoids. Leaf spot incited by
Colletotrichum capsici is one of the most serious foliar diseases of turmeric and
becoming a major limiting factor for production and quality of turmeric which
causes 15–60% losses in India. Use of antagonistic microbes to manage the
diseases replaces the chemicals and protects the environment from toxic hazards.
Plant growth promoting rhizobacteria from organic sources of nutrients, viz.
Panchagavya, Jeevamarit, and organic soil are known to show their antagonistic
activity on the mycelial growth of fungal pathogens. Biofertilization and
bioprotectant characters of PGPR have paved the way for their use at commercial
level to supplement chemical fertilizers for enhanced production. This chapter
summarizes the sustainable farming approaches such as biofertilizers and
biopesticides where the study of host plants and associated microbial interactions
in the rhizosphere plays an important role.
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14.1 Introduction

The prosperity of life in any form mainly depends upon the soil quality and fertility
because healthy soil leads to a healthy agriculture system and food security. The
microorganism present in the soil plays an important role in the plant growth
promotion and maintains health and fertility of soil by natural means. There is a
positive correlation between the beneficial microorganism and higher quality of soil,
lower disease incidence, better plant growth, higher nutrient contents, soil pH, and
enzyme activities (Wang et al. 2017). With the sudden rise in world’s population, the
requirement of quality food with good agricultural yield has increased accordingly
and therefor to meet the required use of chemical fertilizers has also increased. The
continuous use of chemical fertilizers and pesticides in the agricultural fields leads to
the degradation of soil quality and fertility, thus the development of sustainable
agriculture decreasing day by day (Bhardwaj et al. 2018). Most of the crop loss
occurs due to disease incidence caused by the soilborne pathogen. The pathogen
which leads to crop destruction may be bacterial or fungal. To prevent the disease
incident the chemical fungicidal and bactericidal spray are given to the plant to
overcome the loss. The chemical spray ultimately leads to the degradation of human
health as well as soil health and their continuous use may degrade the fertility of soil
and also disturb the ecosystem.

Turmeric being a high value crop and to overcome their losses due to disease
incident by fungal and bacterial pathogens, scientists have shifted their attention
toward preparation of efficient biocontrol agents which maintain the plant health and
fertility of soil for sustainable agriculture. Turmeric (Curcuma longa L) is a herba-
ceous rhizomatous perennial plant belonging to ginger family (Zingiberaceae). It is
native to the Indian Subcontinent and Southeast Asia. It requires the temperature
ranges between 20 and 30 �C (68 and 86 �F) and a significant amount of annual
rainfall in the range of 1200–1500 to thrive. The yellow color of turmeric is due to
the presence of three main curcuminoids, namely curcumin, demethoxycurcumin,
and bis-demethoxycurcumin (Chainani-Wu 2003). The curcumin melts at a temper-
ature of about 184.2 �C. Curcumin is soluble only in ethanol, acetone, and insoluble
in water (Joe et al. 2004). Turmeric powder contains pepper-like flavor, warm, bitter,
and earthy like aroma. The rhizomes of turmeric are boiled in water for about
30–45 min and then dried in hot ovens, after which they are ground into a deep-
orange-yellow powder commonly used as a coloring and flavoring agent in many
Asian cuisines, especially for curries, as well as for dyeing, potential as medicine and
beauty aid (Luthra et al. 2001; Selvan and Manojkumar 2003). Curcumin is an
efficient antioxidant and most bioactive component of turmeric laden with anti-
platelet, lowering cholesterol, anti-inflammatory, antifungal, and antibacterial
properties (Peter 2000).
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14.2 Nutritional Composition of Turmeric (Curcuma longa)
and Its Antimicrobial Properties

Turmeric being a rhizomatous medicinal plant belongs to Zingiberaceae family
(Chattopadhyan et al. 2004). The antimicrobial properties of turmeric are due to
the presence of curcumin fraction. The curcumin possesses vitamins or vitamin
precursor which produces beta-carotene, vitamin C, and essential oil. Turmeric
(Curcuma longa L.) is one of the most important and ancient spices of India,
contains about 69.49 carbohydrate, 6.30 protein, 5.10 oil, and 3.50% mineral and
other important elements in dry turmeric (Swain et al. 2007). The essential oil and
curcumin are important components of turmeric whose content ranges up to 5%. The
leaves of turmeric also act as great source of vitamins and minerals (Chattopadhyan
et al. 2004). Turmeric is a good source of minerals like iron, calcium, potassium,
manganese, copper, zinc, and magnesium. Nutritive value of turmeric (Curcuma
longa) has been presented in Table 14.1.

14.3 Health Benefits and Medicinal Use of Turmeric

• It is used for its anti-inflammatory (painkiller), anti-tumor, carminative, anti-
flatulent, and antimicrobial.

• It possesses essential oils such as turmerone, zingiberene, cineole, and p-cymene
which have health benefits.

• Being a richest source of antioxidant, dietary fiber, and does not contain any
cholesterol leads to control on “bad cholesterol” or LDL levels.

Table 14.1: Nutritive value of turmeric (Curcuma longa), per 100 g

Principle
Nutrient
value

Percentage of
RDA Vitamins

Nutrient
value

Percentage of
RDA

Energy 354 kcal 17% Folates 39 μg 10%

Carbohydrates 64.9 g 50% Niacin 5.140 mg 32%

Protein 7.83 g 14% Pyridoxine 1.80 mg 138%

Total fat 9.88 g 33% Riboflavin 0.233 mg 18%

Cholesterol 0 mg 0% Vitamin A 0 IU 0%

Dietary fiber 21 g 52.5% Vitamin C 25.9 mg 43%

Minerals Vitamin E 3.10 mg 21%

Calcium 183 mg 18% Vitamin K 13.4 μg 11%

Copper 603 μg 67% Electrolytes

Iron 41.42 mg 517% Sodium 38 mg 2.5%

Magnesium 193 mg 48% Potassium 2525 mg 54%

Manganese 7.83 mg 340%

Phosphorus 268 mg 38%

Zinc 4.35 mg 39.5%
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• It contains essential vitamins like pyridoxine (vitamin B6), choline, niacin,
riboflavin, etc. Pyridoxine is generally used to cure the sideroblastic anemia,
homocystinuria, and radiation sickness. Niacin which acts as essential vitamin
prevents “pellagra” or dermatitis.

• The good level of vitamin C is present in the fresh root which helps to increase
immunity against infectious agents in the body and eradicate harmful free oxygen
radicals.

According to Recommended Daily Allowance (RDA) percent, 100 g of turmeric
gives 138% of pyridoxine (vitamin B-6), niacin 32%, dietary fiber 53%, vitamin C
43%, vitamin E is 21%, potassium is 54%, iron is 517%, manganese about 340%,
and 40% of zinc and contains no cholesterol.

14.4 Culinary Uses

The turmeric powder is traditionally documented as “Indian saffron” because of its
deep yellow-orange color and plays an important role in food preservation by natural
means, food colorant, and flavor base since the earliest period. It is used to maintain
the shelf life of raw materials such as fish, chicken, and meat by application of its
paste.

• It is used in the preparation of masala curry powder for kitchen use by mixing the
dried roots with other spices such as curry leaves, peppers, etc. to enhance the
taste of food.

• It plays a significant role in the preparations of salad dressings, soups, canned
beverages, dairy products, baked products, yellow cakes, ice cream, yogurt,
orange juice, biscuits, popcorn color, sweets, etc.

• It is used as popular drink in Okinawan population and many Asian countries by
the name of Turmeric-tea.

14.5 Major Fungal Pathogens and Deficiencies Symptoms
of Turmeric

Turmeric is severely affected by soilborne and as foliar diseases. Rhizome rot takes a
heavy toll in majority of turmeric growing areas. Among foliar diseases, leaf blotch
and leaf spot caused by Colletotrichum gloeosporioides and Colletotrichum capsici
are important, respectively. Numerous insignificant diseases have also been reported
on the crop. Future studies on crop loss assessment due to these diseases, their
epidemiology under different cropping systems and the role of biocontrol agents as
well as organic amendments in disease suppression need a thorough investigation to
develop appropriate disease management strategies for enhanced productivity.

The major disease as under the following subheads:
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14.5.1 Rhizome Rot

The golden spice (Turmeric) is majorly affected by diseases like rhizome rot caused
by Pythium aphanidermatum (Rathaiah 1982). Rhizome rot is soilborne and occurs
during June to September, during the storage losses are about to the extent of
50–80%. The crop is cultivated in all the regions of India. Due to the regular incident
of disease many farmers gave up its cultivation. Pythium is a severe pathogen of
several vegetables, fruits, grasses, rhizomes, and ornamental crops in several parts of
the world (Hendrix and Campbell 1973; Plants-Niterink and Vander 1981; Rathiah
1987; Nageshwar Rao 1994). Chenniappan et al. (2020) identify fungi associated
with rhizome rot disease. They isolated a total of 51 fungal isolates from symptom-
atic rhizomes out of which 11 fungal isolates could cause disease symptoms with
�30% disease severity. Fusarium solani was the major pathogen followed by
Rhizoctonia solani, Schizophyllum commune,Macrophomina phaseolina, Fusarium
graminearum, and Fusarium verticillioides identified by molecular analysis.

14.5.1.1 Disease Symptoms

Source from: (Rakesh, 2010)

1. Disease begins at the collar region of the pseudostem and increases upwards and
downwards.

2. In the initial stage, the center part of the leaves remains green, while the borders
turn yellow and later, the yellowing spreads to all leaves and followed by
drooping, withering, and drying of pseudostems.

14.5.1.2 Survival and Spread
• The fungus survives in two ways: (a) in diseased rhizomes kept for sowing and

(b) the resting structures like chlamydospores and oospores.
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14.5.1.3 Favorable Conditions for Proliferation of Fungus
• Younger sprouts are the most vulnerable to the pathogen. Nematode infestation

aggravates rhizome rot disease.
• The temperature higher than 30 � C, high soil moisture, and waterlogged

conditions in the field favoring the disease.

14.5.2 Leaf Spot

Leaf spot caused by Colletotrichum capsici in rainy season under humid condition.
The symptoms are usually seen in the kharif and pre-Rabi season and cause major
damage by reducing rhizome size and weight, the losses may extent up to 52%
(Ramakrishnan 1954).

Disease is soilborne and occurs on the leaves from July to October months.

Source from: agritech.tnau.ac.in

14.5.2.1 Disease Symptoms
• The irregular spot of various sizes with white, brown, or gray in the center appears

on the upper surface of the young leaves.

14.5.2.2 Survival and Spread
• Disease spreads through rain splashes during irregular showers. The incidence is

severe in turmeric under exposed conditions.

14.5.2.3 Favorable Conditions
• High soil moisture, temperature (25 C), and leaf wetness are congenial for the

spread of pathogen.
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14.5.3 Leaf Blotch

Leaf blotch in turmeric is caused by Colletotrichum gloeosporioides. The disease
leads to great loss of rhizome yield. It is very difficult to control the pathogen once
appears as pathogen spreads very fast for disease development. Therefore, it is
precarious to wait for the first disease symptom to initiate spray applications.
Colletotrichum leaf spot (CLS) can be managed by prophylactic sprays of efficient
fungicides. Nowadays various biocontrol agents are available which can control the
disease by natural means.

14.5.3.1 Disease Symptoms

Source from: (Gourav potdar, 2006)

• A small, oval, rectangular, or irregular brown spots appear on either side of the
leaves which turns dirty yellow or dark brown.

14.5.3.2 Survival and Spread
• Pathogen is soil as well as seedborne and survives in the infected plant debris.

14.5.3.3 Favorable Conditions
• High soil moisture, temperature (25 �C), and leaf wetness are congenial conditions

for its spread.

14.6 Major Bacterial Diseases in Turmeric

14.6.1 Bacterial Wilt

Disease caused by Ralstonia solanacearum and is a major pathogen found all over
India. It causes major damage to crop and leads to decrease in the yield of crop in the
country.
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14.6.1.1 Disease Symptoms
• Characteristic symptoms are rapid wilting and death of the entire plant without

any yellowing or spotting of leaves.
• Grayish slimy ooze comes out on pressing the stem and in later stages extensive

hollowing of the stem.

14.6.1.2 Favorable Conditions
• The pathogen is destructive in moist soils at high soil temperatures above 24 � C.

14.7 Management of Diseases by Biocontrol Agents

Since the use of chemical fungicide causes an adverse effect on the health of human,
environment, and soil there is an urgent need to develop biocontrol agents for
protection of plant with good quality food, feed, and fiber. Numerous eco-friendly
approaches are available to control or eradicate the plant disease caused by various
pathogens. For good quality yield and prevention of crop from disease, the growers
and farmer mainly depend upon the chemical fertilizers and pesticides which reduce
the fertility of soil. The continuous use of chemical fertilizer and pesticide in the
agricultural fields decreases the fertility of soil and causes ill effect on the human as
well as environment health so strict regulation should be implemented on the use of
chemical fertilizer and pesticides. Therefore, researchers of pest management have
focused their attention to develop an effective biocontrol agent alternative to the
synthetic fertilizers and pesticides. Since numerous biocontrol agents are available in
the market but their adoption by the people and farmer will require some interactions
with scientist or entrepreneur.

14.7.1 Definitions

The term biocontrol has been defined accordingly in different fields of biology like
entomology and plant pathology. According to entomologist, biocontrol is defined
as the use of live predatory insects, nematodes, or microbial agents to suppress the
growth of pathogens. According to plant pathologist, it may be defined as the use of
efficient microbial agents to suppress diseases. The microorganism which suppresses
the growth of harmful pest or pathogen is referred as biocontrol agent (BCA).

14.8 Mechanism of Action of Biological Control

In nature a variety of interactions exist for biological control of pathogens in
different ways. Microorganism has some direct or indirect interactions which help
to control the growth of pathogens (Odum 1953), Fig. 14.1. Throughout their
lifecycle, plants and pathogens interact with a wide variety of organisms which
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significantly affect plant health in various ways. The types of interactions are given
under the following:

1. Mutualism
2. Protocooperation
3. Commensalism
4. Neutralism
5. Competition
6. Amensalism
7. Parasitism
8. Predation

14.8.1 Mutualism

It is an association between two or more species where both species receive benefits.
Sometimes, it is an obligatory lifelong interaction involving close physical and
biochemical contact. For example, bacteria in the genus Rhizobium can reproduce
either in the soil or, to a much greater degree, through their mutualistic association

Action of Biocontrol

Direct Mechanism Indirect Mechanism

It involves direct killing of 
pathogens

Exclusion of pathogens by 
activity and product of 

biocontrol agents

Antibiosis Parasitism Competition Induced systemic 
resistance

Fig. 14.1 Mechanism of action of biological control agents
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with legume plants. These types of mutualism can contribute to biological control,
by fortifying the plant with improved nutrition and/or by stimulating host defenses.

14.8.2 Protocooperation

It is a form of mutualism, but the organisms involved do not depend exclusively on
each other for survival, BCAs can be considered facultative mutualists involved in
protocooperation, because survival rarely depends on any specific host and disease
suppression will vary depending on the prevailing environmental conditions.

14.8.3 Commensalism

It is a symbiotic interaction between two living organisms, where one organism
benefits and the other is neither harmed nor benefited, most plant-associated
microbes are assumed to be commensals with regard to the host plant, because
their presence, individually or in total, rarely results in negative consequences to the
plant.

14.8.4 Neutralism

It describes the biological interactions when the population density of one species
has absolutely no effect whatsoever on the other biological control, an inability to
associate the population dynamics of pathogen with that of another organism would
indicate neutralism, In contrast, antagonism between organisms results in a negative
outcome for one or both.

14.8.5 Competition

It occurs within and between species, results in decreased growth, activity of the
interacting organisms. Biocontrol can occur when non-pathogens compete with
pathogens for nutrients in and around the host plant.

14.8.6 Parasitism

It is a type of association, one organism, usually the physically smaller of the two
(called the parasite) benefits and the other (called the host) is harmed to some
measurable extent. The activities of various hyperparasites, i.e., those agents that
parasitize plant pathogens, can result in biocontrol.

The hyperparasitism is an interaction in which specific biocontrol agent directly
attacks and kills the pathogen or its propagules. The biocontrol agents (BCAs)

322 M. Dhiman et al.



express various mechanisms which results from direct antagonism results from
physical contact or by an elevated-level of selectivity for the pathogen to exert
suppressive effect Table 14.2.

14.9 Antibiotic-Mediated Suppression

Antibiotics are the substance produced by microorganism that can be toxic and kill
other microorganisms at low concentrations. The majorities of microorganisms
secrete and produce one or more antibiotic compounds. In some case, antibiotics
compound produced by various microorganisms suppress the targeted pathogen
which causes disease in vitro and/or in situ. For effective biocontrol agents, sufficient
quantity of antibiotics should be produced in adequate amount to control the
pathogens. In situ antibiotics formed by numerous biocontrol agents have been
deliberate (Thomashow et al. 2002); however, it is difficult to measure the quantities
because of very small amount produced by microorganisms. In some cases, the
production of antibiotic by biocontrol bacteria has been conformed and one or more
genes responsible for antibiotic production have been altered. For example, strain of
Bacillus cereus UW85 is recognized to produce zwittermycin (Silo-Suh et al. 1994)
and kanosamine (Milner et al. 1996). The aptitude of biocontrol agent to produce
multiple antibiotics helps to suppress various microbial competitors such as plant
pathogens. In recent times, genetically engineered strain Pseudomonas putida
WCS358r is able to produce phenazine and DAPG showed superior capacities to
inhibit plant diseases of wheat grown in field (Glandorf et al. 2001; Bakker et al.
2003). Some of the antibiotics produced by the biocontrol agents are given in
Table 14.3.

Table 14.2 Types of interspecies antagonisms leading to biological control of plant pathogens

Type Mechanism Examples

Direct
antagonism

Hyperparasitism/
predation

Ampelomyces quisqualisLysobacter
enzymogenesPasteuria penetransTrichoderma
virens

Mixed-path
antagonism

Antibiotics and lytic
enzymes

2,4-diacetylphloroglucinolPhenazinescyclic
lipopeptides, chitinasesGlucanases, proteases

By-products produced
by microorganism

Ammoniahydrogen cyanide
Carbon dioxide

Indirect
antagonism

Competition Exudates/leachates consumptionSiderophore
scavengingphysical niche occupation

Induction of host
resistance

Contact with fungal cell wallsdetection of pathogen-
associated
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14.10 Lytic Enzymes and Other Byproducts of Microbial Life

Numerous microorganisms produce a wide variety of metabolites which inhibit the
growth and activities of plant pathogen. Lytic enzymes are proteinous identity and
have capacity to hydrolyze various polymeric compounds such as cellulose, hemi-
cellulose, chitin, proteins, and DNA produced by various microorganisms. Various
microorganisms secrete these enzymes directly and suppress the activities of plant
pathogen. For example, chitinase expression controls the Sclerotium rolfsii caused
by Serratia marcescens (Ordentlich et al. 1988) and α β 1,3-glucanase showed
biocontrol behavior of Lysobacter enzymogenes strain C3 (Palumbo et al. 2005).
However, microorganism which illustrates the effect of colonizing and inhibits plant
pathogens can be classified as biocontrol agents. Some efficient microorganisms
such as Lysobacter and Myxobacteria are recognized to produce abundant quantity
of lytic enzymes and exhibit positive response for suppression of fungal plant
pathogens (Kobayashi and Yuen 2005; Bull et al. 2002). Moreover, several products
of lytic enzyme activity help in disease suppression by indirect way,
e.g. oligosaccharides produced from cell wall of fungal are recognized to be effective
inducers of plant host defenses system.

The contribution of the above compounds for disease suppression mainly
depends upon fertility status of soil because healthy soil serves as a good source
for diverse microorganisms and colonizes rhizosphere. Conversely, the activities can
be altered for better suppression of disease. For example, disease control in post-
harvest practices, the addition of chitosan can excite microbial deprivation of
pathogens, similar in case of hyperparasite (Benhamou 2004). Chitosan is a polymer
of beta-1,4-glucosamine generally non-toxic and biodegradable in nature produced

Table 14.3 Antibiotics produced by BCAs

Antibiotic Source Target pathogen Disease References

Xanthobaccin
A

Lysobacter
sp. strain SB-K88

Aphanomycescochlioides Damping
off

Islam et al.
(2005)

Gliotoxin Trichodermavirens Rhizoctonia solani Root rots Wilhite et al.
(2001)

Iturin A B. subtilis QST713 Botrytis cinerea and
R. solani

Damping
off

Paulitz and
Belanger
(2001),
Kloepper
et al. (2004)

Mycosubtilin B. subtilis
BBG100

Pythiumaphanidermatum Damping
off

Leclere et al.
(2005)

Pyoluteorin,
pyrrolnitrin

P. fluorescens Pf-5 Pythium ultimum and
R. solani

Damping
off

Howell and
Stipanovic
(1980)

Zwittermicin
A

Bacillus cereus
UW85

Phytophthora
medicaginis and
P. aphanidermatum

Damping
off

Smith et al.
(1993)
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by alkaline deacylation from chitin. The application of chitosan can inhibit the
growth of Fusarium oxysporum cause root rot disease in various plants (Lafontaine
and Benhamou 1996). Chitosan exhibited antifungal, antibacterial and antiviral
properties and have been extensively used in agriculture system. It is mainly used
to control the disease or to reduce their spread, to chelate minerals and nutrient and
enhance plant innate defense system. It induce host defense response which includes
lignification, ion flux varaition, cytoplasmic acidification, memebrane depolymeri-
zation, chitinase and glucanase activation, phytoalaxin biosynthesis, jasmonic acid
biosynthesis and expression of defense related genes (Nishizawa et al. 1999).

14.10.1 HCN Production

Other byproducts such as HCN produced by microorganism also may involve in
pathogen suppression. Efficient microorganisms produce hydrogen cyanide (HCN)
which efficiently acts on cytochrome oxidase pathway and blocks the pathway and
even picomolar concentration is highly toxic to all aerobic microorganisms. Certain
fluorescent pseudomonads produce HCN which greatly involved in the inhibition of
root pathogens. Howell et al. (1980) concluded that an Enterobacter cloaca
produces volatile substances such as ammonia which were involved in the suppres-
sion of Pythium ultimum. So it is clear that microorganism produces various
compounds which inhibit the plant pathogens and helps in disease management
with eco-friendly way.

14.11 Commercial Biocontrol Agents

On the basis of different fungal and bacterial antagonists a large number of commer-
cial products have been registered both at national and international levels. These
commercial products such as Bioguard, Ecofit, Biocon, F-Stop contain Trichoderma
sp. as active ingredient and other products such as Mycostop and Rhizoplus subilex,
etc. involve Bacillus species as active ingredient. Disease suppression by biological
control involves competition, mycoparasitism, antibiosis, cell wall degradation and
induced resistance, plant growth promotion, and capacity of rhizospheric coloniza-
tion. Till date most efficient biocontrol agent Pseudomonas putida strain WCS358r
is studied and genetically engineered to produce Phenazine and 2, 4-diacetyl-
phloroglucinol (DAPG) to suppress diseases in field crops. Agrobacterium
radiobacter strain K 84 was the initial bacteria registered with the United States
Environmental Protection Agency (EPA) for the crown gall disease control in 1979.
After that Trichoderma harzianum ATCC 20476 fungus was registered with the
EPA to inhibit the pathogen which causes disease in plants. At present, EPA is
registered with 14 bacteria and 12 fungi to control the plant diseases caused by
various pathogens (Fravel 2005).
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14.12 Induction of Host Resistance

Plants respond to a diversity of chemical stimuli produced by soil- and plant-
associated microbes. Two pathways are generally involved in the host resistance,
first pathway termed as systemic acquired resistance (SAR) is mainly regulated by
salicylic acid (SA), produced during the pathogen infection and leads to the release
of pathogenesis-related (PR) proteins, Table 14.4. These PR proteins contain diverse
enzymes which may act directly to degrade invading cells and support cell wall
boundaries to defend against infections. A second pathway involves the induced
systemic resistance (ISR), which is regulated by jasmonic acid (JA) and ethylene,
which are produced during applications of some nonpathogenic rhizobacteria. The
defense pathway of SA and JA dependent can mutually act as antagonistic and
pathogens may take advantage of this to defeat the SAR. For example, pathogenic
strains of Pseudomonas syringae produce coronatine, which is similar to JA, to
overcome the SA-mediated pathway (He et al. 2004).

Numerous microbial strains colonizing the roots have been recognized as poten-
tial agents of host plant defense mechanism. The effective Pseudomonas and
Trichoderma strains are biocontrol agents that positively encourage host plant
defenses (Haasa and Defago 2005; Harman et al. 2004). Nowadays applications of
plant growth promoting rhizobacteria (PGPR) are useful in controlling different
pathogens which cause plant diseases such as angular leaf spot (Pseudomonas
syringae), anthracnose (Colletotrichum lagenarium), and bacterial wilt (Erwinia
tracheiphila). On inoculation PGPR may produce number of chemical substances,
like siderophore, salicylic acid, lipopolysaccharides, and other volatile substances
(Van Loon et al. 1998; Ongena et al. 2004; Ryu et al. 2003).

Table 14.4 Bacterial determinants and types of host resistance induced by biocontrol agents

Bacterial strain
Plant
species

Bacterial
determinant Type References

CHA0 Tobacco Siderophore SAR Maurhofer et al.
(1994)

WCS374 Radish Lipopolysaccharide ISR Leeman et al. (1995)

Pseudomonas putida
strains

Arabidopsis Lipopolysaccharide ISR Meziane et al.
(2005)

WCS 358 Arabidopsis Lipopolysaccharide ISR Meziane et al.
(2005)

BTP1 Bean Z,3-hexenal ISR Ongena et al. (2004)

Serratia marcescens
90–166

Cucumber Siderophore ISR Press et al. (2001)
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14.13 PGPR as Biocontrol Agent in Turmeric

Plant growth promoting rhizobacteria may be defined as the bacteria that inhabit
roots or rhizospheric soil and enhance the crops yield by various direct and indirect
mechanisms. The efficient PGPR inoculants used for commercialization should have
at least one mechanism such as improved nutrient acquisition (termed biofertilizers),
suppression of plant disease (termed bioprotectants), and phytohormone production
(termed biostimulants) (Kumar et al. 2014).

Plant growth promoting rhizobacteria (PGPR) grant promise for establishing
eco-friendly environment with sustainable agriculture systems and is a well-known
substitute against the harsh chemicals because of their broad effect on the plant
growth promotion by direct and indirect way (Prasad et al. 2015). Indirect mecha-
nism involves the plant growth promotion through the suppression of disease which
involves antibiosis, induced systemic resistance (ISR), high affinity siderophore
production, and production of lytic enzymes. In addition, the present day
bio-products used for commercial formulations should have increased shelf life
and broad spectrum of action with reliable performance under field conditions at a
faster rate and could pave the way for commercialization of the technology (Lucy
et al. 2004). Actinomycetes as biocontrol agent were screened by Laid et al. (2016)
against Fusarium culmorum responsible for several cereal diseases. Four isolates,
namely D2, D5, D8, and AST1 were tested to determine PGPR effect and biocontrol
characters of bread wheat (Triticum aestivum L.). They showed that these isolates
had a significant effect on seed germination and seedling growth. Islam et al. (2016)
studied the ability of PGPR to suppress Phytophthora crown rot in cucumber. A total
of 66 isolates were isolated, out of which 10 were selected on the basis of their plant
growth promoting attributes and antagonism of phytopathogens. Treated cucumber
seeds with these isolates significantly suppressed Phytophthora crown rot caused by
Phytophthora capsici. Paramanandham et al. (2017) isolated Pseudomonas
aeruginosa isolates from the rhizosphere soil and evaluated for the growth promo-
tion traits, germination percentage, shoot and root length, and disease resistance in
tomato (Solanum lycopersicum L.). The selected isolates showed significant
improvement in growth of plants and successfully suppressed disease severity of
Fusarium oxysporum and Alternaria solani in pot experiments. Biocontrol of rhi-
zome rot caused by Pythium aphanidermatum is one of the major destructing
pathogen in India studied by Nandini et al. (2018), they isolated microorganism
from rhizomes of healthy turmeric plants. Among 154 endophytic isolates 12 bacte-
rial isolates, 16 fungal isolates, and four actinomycetes showed inhibition to Pythium
aphanidermatum in vitro. The result showed that among the isolated endophytes,
Pseudomonas exhibited maximum inhibition against the test pathogen. Vinayarani
and Prakash (2018) isolated plant growth promoting rhizobacteria from turmeric
(Curcuma longa L.). They selected a total of 50 bacterial isolates and further
screened for antagonistic activity against Pythium aphanidermatum and Rhizoctonia
solani causing rhizome rot and leaf blight diseases in turmeric. Results revealed that
only five isolates of PGPR showed more than 70% suppression of test pathogens.
The rhizome inoculation followed by soil application of B. cereus showed lowest
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percent disease incidence of rhizome rot and leaf blight, 16.4% and 15.5%, respec-
tively. Similarly, P. aeruginosa recorded 17.5% of rhizome rot and 17.7% of leaf
blight. Thus, these isolates can be exploited as efficient biocontrol agent for
suppressing rhizome rot and leaf blight diseases in turmeric. Vitorino et al. (2020)
studied the biocontrol effect of BA48R strain of Enterobacter sp. and BA88R strain
of Bacillus cereus against the Sclerotinia sclerotiorum and they found that plants
treated with the BA48R strain of Enterobacter sp., and in particular, those treated
with the BA88R strain of Bacillus cereus presented the best results in terms of
systemic resistance induction and suppression of S. sclerotiorum. The BA48R
bacterial strain and BA88R strain have enormous prospective for development of
more sustainable agricultural processes.

14.14 Management of Turmeric Disease Using Eco-Friendly
Biocontrol Consortia

Consortium is a culture which contains two or more effective microorganisms
commonly occurring in nature. Important group of microorganism selected for
biocontrol consortia are: N2-fixers, P solubilizers, photosynthetic microorganisms,
lactic acid bacteria, yeasts, plant growth promoting rhizobacteria, various fungi and
actinomycetes. Within the consortium, every microorganism has its individual
positive function into nutrient cycling which occurs in nature, plant protection
against various fungal and bacterial pathogens, enrichment of soil fertility and
health.

The consortial application of Trichoderma viride and Pseudomonas fluorescens
@ 4 g kg�1 of seed and 2.5 kg ha�1 on the soil as basal and top dressing at 150 days
after planting was found effective against rhizome rot caused by Pythium
aphanidermatum in turmeric. It is the destructive disease causing huge loss and
reduces yield and quality of rhizomes. Microorganisms which show antagonistic
activity against various pathogens are alternative of the chemicals and protect the
environment from toxic hazards (Muthulakshmi and Saveetha 2009).

14.14.1 Biofertilizers as Biocontrol in Turmeric

The term biofertilizer may be defined as the preparation that possesses beneficial
living microorganisms, when applied to seeds, plant surfaces, or soil, colonize the
rhizosphere or the interior of the plant and increase the growth by supplying the
accessibility of primary nutrients to the host plant (Vessey 2003; Giri et al. 2019).
Primary nutrients added in the soil by biofertilizers through the natural mechanism of
nitrogen fixation, phosphate solubilization enhance plant growth by synthesis of
growth-promoting substances. Biofertilizers can be likely to reduce the use of
synthetic fertilizers and pesticides. The microorganisms present in biofertilizers
sustain the soil’s normal nutrient cycle and help in manufacturing of soil organic
matter from decomposition of organic waste. Biofertilizers promote the plants
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growth as well as enhance the sustainability and the health of the soil. Thus, the use
of microorganism and their byproducts are enormously beneficial in elevating soil
fertility and enhancing plant growth by providing the organic nutrients. Hence, the
use of biofertilizers maintains the fertility of soil in eco-friendly manner for longer
period and acts as alternative way of chemicals in the field which are harmful to the
living soil. Since a long time Rhizobium, Azotobacter, Azospirillum, and blue green
algae (BGA) as a biofertilizer are available and widely used to enhance the yield and
control the disease in various crops, Table 14.5. For leguminous crops Rhizobium is
used as biofertilizer. The biofertilizers are eco-friendly, cost–effective, and easily
accessible organic agro-input. Biofertilizer like Azotobacter can be used in crops like
wheat, maize, mustard, cotton, potato, and other vegetable crops. Azospirillum
biofertilizers are used mainly for sorghum, millets, maize, sugarcane, and wheat.
For paddy crop blue green algae inoculations are used which generally belongs to a
cyanobacteria genus, Nostoc, Anabaena, Tolypothrix, or Aulosira, fix atmospheric
nitrogen both under upland and low-land conditions. Anabaena associated with
water fern Azolla helps in nitrogen fixation in paddy field up to 60 kg/ha/season
and also boosts the soil by means of organic matter (Malboobi et al. 2009).

Trichoderma act as biocontrol agent in natural way to control the soilborne
disease in plant. It is a free-living fungus, highly interactive in root and soil. It
reduces pathogen development, survival or infections by different mechanisms like
competition, antibiosis, mycoparasitism, hyphal interactions, and enzyme secretion.

Table 14.5 Groups of biofertilizers

S. no. Groups Examples

N2 fixing biofertilizers

1. Free-living Azotobacter, Beijerinckia, clostridium, Klebsiella, anabaena,
Nostoc

2. Symbiotic Rhizobium, Frankia, Anabaena azollae

3. Associative
symbiotic

Azospirillum

P solubilizing biofertilizers

1. Bacteria Bacillus megaterium var. phosphaticum, Bacillus subtilis,
Bacillus circulans, Pseudomonas striata

2. Fungi Penicillium sp, aspergillus awamori

P mobilizing biofertilizers

1. Arbuscular
mycorrhiza

Glomus sp., Gigaspora sp., Acaulospora sp., Scutellospora sp.,
and Sclerocystis sp.

2. Ericoid
mycorrhizae

Pezizella ericae

3. Orchid mycorrhiza Rhizoctonia solani

Biofertilizers for micro-nutrients

1. Silicate and zinc
solubilizers

Bacillus sp.

Plant growth promoting Rhizobacteria

1. Pseudomonas Pseudomonas fluorescens
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Recommended dose of Trichoderma application is 6–10 g of Trichoderma powder/
Kg for management of disease before the seed sowing. For efficient biocontrol
preparation 1 kg of Trichoderma formulation is mixed with 100 kg of farmyard
manure and covers it by polythene for 7 days. It is commonly used for the turmeric
crop to control disease (Rakesh 2010).

Mycorrhizal fungi protect the plants from disease by covering the roots of plant,
forming a fungal mat, provides physical barrier to pathogen, releases antagonistic
chemicals, escalating plants nutrient-uptake ability, and creates a direct competition
with pathogen (Panth et al. 2020; Prasad et al. 2017).

14.14.2 Disease Management by Organic Inputs

Nowadays organic agriculture is finding position in the majority of development and
these organic inputs contain efficient microorganism which act as biofertilizers and
biocontrol agent for disease management in various crops. Liquid formulations that
are used in organic agriculture like panchagavya, beejamrit, and jeevamrit are the
fermented products which are obtained from the cow and used as plant growth
promoter by the farmers. These organic inputs are the richest sources of valuable
microflora which stimulate the plant growth and leads to high-quality yield of
agricultural crops (Devakumar et al. 2011). Although interest has been increased
in the organic farming by using the organic inputs such as panchagavya, beejamrit,
jeevamrit, and other liquid organic formations in the field because these are cost-
effective and eco-friendly in nature and increase the fertility of soil. Devakumar et al.
(2008) and Sreenivasa et al. (2010) also reported the occurrence of numerous useful
microorganisms, viz. nitrogen fixers, phosphorus solubilizers, actinomycetes, and
fungi in jeevamrit and beejamrit. The microorganism present in panchagavya acts as
biofertilizer and biopesticides which played significant role in providing resistance
to pests and diseases, resulting in increased overall yields (Tharmaraj et al. 2011;
Sireesha 2013). Panchagavya has resulted in positive impact on development and
productivity of crops as reported by Somasundaram et al. (1997). There is an urgent
need to build up a feasible and well-suited package of nutrient management through
efficient microorganism in organic resources for various crops to overcome the
problem of degrading fertility of soil by chemical fertilizer and pesticide (Kannaiyan
2000). Punitha et al. (2010) studied that Panchagavya, the blend of cow’s five
products, prepared by aerobic fermentation method showed great diversity of micro-
organism such as Bacillus, Pseudomonas, Lactobacillus, and Azotobacter and fungi
Aspergillus and Yeast (Saccharomyces cerevisiae). The microbes present in
Panchagavya secrete enzymes and plant growth hormones which favor plant growth
and control the disease incidence in various crops. Organic manures prepared from
compost, organic wastes, and peats have been anticipated to manage soilborne
diseases. Various fungal pathogens like Rhizoctonia solani, Thielaviopsis basicola,
Fusarium, Phytophthora, Pythium, and Sclerotium can be effectively managed by
the organic inputs. Besides improving the soil structure these organic inputs also
increase water holding capacity and also nourish other beneficial microorganisms
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which lead to suppression in harmful soilborne pathogens. The activity of these
beneficial microorganisms in the soil leads the competition, which control
the destructive soilborne pathogens. The utilization of biofertilizers is one of the
important components of integrated nutrient management, as they are cost-effective
and renewable source of plant nutrients to supplement the chemical fertilizers for
sustainable agriculture. Numerous microorganisms and their involvement with crop
plants are being exploited in the manufacturing of biofertilizers. These
microorganisms can be classified in diverse traditions on the basis of their nature
and function.

14.15 Conclusion

Soilborne pathogen generally causes huge loss of crop up to 70% in India during
cropping season. Numerous fungicides have significant effect in disease manage-
ment but their continuous use and adverse side effects have shifted the attention
toward biological control which acts as efficient alternative method of disease
management. Recently, in the agriculture system application with biological control
agents (BCAs) as biofertilizers has gained recognition as a means to minimize or
eradicate the utilization of chemical pesticides. Biological control by using the
PGPR and biofertilizers represents the best approach for extended sustainability
and efficient executive of soilborne diseases against various soilborne pathogens.
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Abstract

Plant pathogens are an emerging threat to global food security leading to severe
losses of economically important food crops. Rice, catering 40% of global
population, faces tremendous yield and economic losses due to pathogen
incidences. Today, agriculture practices are more bound to the use of chemical
pesticides and fertilizers for disease management and improved crop yields. Thus,
the crop protection product sector is becoming a fast developing industry in order
to compel with the growing population and need to minimize crop damage. This
entails the usage of chemicals for crop protection in a judicious manner within the
national, confined regulatory framework. However, the application of high doses
of chemical pesticides and fertilisers in intensive farming practices negatively
affects both human health and natural ecosystems. Hence, there is the urgent
demand for the use of safer, environmentally sound and sustainable alternative
technologies for profitable crop production. Therefore, the present chapter fosters
majorly on the different biological and molecular approaches for disease
management.
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15.1 Introduction

The human population, over the past 50 years, has almost doubled and it is estimated
to increase across 9 billion by 2050. Henceforth, to feed this increasing population,
the global food security has raised many challenges for increased agricultural
productions, particularly of cereals like wheat, rice and maize (FAO 2017). There
are many factors which contribute to the unequal distribution of food around the
world, including socio-economic factors, widening urbanization and agricultural
marginalization.

Crop losses due to various biotic and abiotic factors have become a serious issue
in the present agricultural scenario. They include primary and secondary losses
occurring both during the production cycle (pre-harvest) and/or during the storage
(post-harvest). Whether pests or diseases, the crop losses are devastatingly increas-
ing with short/long-term consequences on agricultural productivity (Savary et al.
2012). There are approx. 10–30% crop losses due to plant diseases in the field,
directly affecting farmers’ livelihood and global food production (Cerda et al. 2017).

Biotic stresses (pests and diseases), comprise viruses, fungi, bacteria, weeds,
insects and other pests, raise a major issue of concern from fields to markets in the
developing world (Boyd et al. 2013). This focuses attention on the urgent need to
understand plant–pathogen interactions more distinctly and how this finds applica-
tion in moulding the agricultural strategies. Losses due to pathogenic incidence also
affect the population dynamics and ecosystem nutrient cycling. Plant pathogens are
either necrotrophs (kill their hosts), biotrophs (require live hosts for nutrients) or
hemibiotrophs (initially biotrophs with necrotrophic mode at later stages of disease)
on the basis of their mode of nutrition (Laluk and Mengiste 2010). Various fungal
and bacterial diseases such as downy and powdery mildew by Puccinia striiformis,
wilt disease by Fusarium species, bacterial blight and canker by Xanthomonas spp.,
bacterial wilts by Pseudomonas spp. in crops like rice, wheat, cotton, cucurbits,
grape, chickpea, tomato, potato, etc. are among the most common incidences. There
are also losses due to viruses (local lesions, stunting, chlorosis), soil insect pests
(feeding damage, oviposition damage, vectors of plant diseases) and nematodes
(nutrient deficiency), which adversely affect shallow rooted crops and vegetables
(Thind 2015; Gimenez et al. 2018). These biotic factors, often termed as microbiome
constituted of plant associated different organisms like viruses, fungi, oomycetes,
bacteria, protozoa and archaea may be of phyllosphere, endosphere and rhizosphere
types (del Carmen Orozco-Mosqueda et al. 2018; Kim and Lee 2020). These plant
microbiomes being the integral part of plant are valuable for plants as they are
involved in the alteration of plant physiology, defense, growth and development
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(Prasad et al. 2015; Berg et al. 2016; Santoyo et al. 2017; del Carmen Orozco-
Mosqueda et al. 2018; Singh et al. 2019).

Different abiotic stresses such as salinity and temperature affect the growth rate
and reproduction of bacterial pathogens like Ralstonia solanacearum (tomato),
Acidovorax avenae (cucurbits) and Burkholderia glumae (rice) (Pandey et al.
2017). Abiotic stress also leads to susceptibility of host plants to pathogenic
organisms and insects. Therefore, it has been estimated that multiple stresses
together can cause 65–87% approximate reduction to plant productivity depending
on the crop (Pandey et al. 2017).

Rice, cultivated throughout the world, is the staple food crop serving about 70%
of the population in India, China, East-Asia, South East Asia, Africa and Latin
America. Worldwide, it occupies ~161 million ha arable land, with the annual
production of about 678.7 million tons (FAO 2009). Almost 90% of world’s rice
is grown (143 million ha) and produced (612 million tons of paddy) in Asia (FAO
2009). India is the second largest producer of rice in the world after China, as rice
occupies the central position in Indian agriculture with 24% of gross cropped area.
But its production is constrained by many factors, including pests and diseases, in
the agro-ecological zones of tropical and subtropical areas, especially in Asia. About
52% of the global rice production is hampered due to damage caused by rice disease
epidemics which not only affect crop yield but also cause menace to global food
security; also the disease management becomes unaffordable (Shrivastava et al.
2010; Yang et al. 2020). Losses to rice production thus open new prospects to
elucidate the role of plant microbiome in rice during the onset and development of
plant diseases through the interaction between microbiome and invading pathogens.
This projects the aim of this chapter to gather and discuss different approaches
including traditional (cultural), biological and molecular techniques for management
of plant diseases in Oryza sativa, i.e. rice. The chapter will focus on different fungal
and bacterial rice diseases and their severity, hampering its growth and production. It
will provide a brief overview of important perspectives for management of emerging
rice diseases, resulting in improved crop resistance and productivity.

15.2 Major Rice Diseases

The worldwide annual losses led by various rice diseases have been estimated to be
about 10–15%, thus alarming the nation for its judicious management. Plant
pathogens may be fungal, bacterial and viral or nematodes and diseases caused by
them damage plant parts above or below the ground. In particular, fungal diseases
such as rice blast (Magnaporthe grisea), brown spot (Bipolaris oryzae), stem rot
(Sclerotium oryzae), sheath blight (Rhizoctonia solani), sheath rot (Sarocladium
oryzae); bacterial diseases such as bacterial blight (Xanthomonas oryzae
pv. oryzae); and viral disease (rice tungro virus) are the major rice limiting factors
hampering its production (Kumar et al. 2017). Among them, rice blast is the most
widespread in Uttar Pradesh, India; with many epidemics which have occurred in
various parts of the world, resulting in yield losses of 50 to 90% of the expected
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harvest (Agrios 2005). Xanthomonas oryzae devastatingly affects all the varieties of
basmati rice in tropical Asia and therefore its production is severely affected in India
(Joseph et al. 2004). Among various rice diseases, major yield losses are caused by
brown spot, leaf blast, bacterial blight, sheath blight and tungro virus. The most
devastating rice diseases which often cause huge economic losses are enlisted below.

15.2.1 Sheath Rot

Sheath rot, a seed-borne disease is among the major fungal disease, which causes
havoc to rice production in India. Causal pathogens include fungi and bacteria both
but fungi are the major pathogens causing sheath rot, mainly Sarocladium oryzae
and Fusarium sp. (Fusarium fujikuroi) complex. Other fungal pathogens include
Gibberella fujikuroi complex, Fusarium graminearum, Fusarium oxysporum com-
plex, Cochliobolus lunatus, Gaeumannomyces graminis, Sclerotium oryzae, Rhizoc-
tonia oryzae. Bacterial pathogen is Pseudomonas fuscovaginae, Pseudomonas
syringae, Pseudomonas sp., Pantoea ananatis, Burkholderia glumae, Acidovorax
oryzae (Bigirimana et al. 2015). The pathogen enters through stomata or wounds,
caused by mites and insects or other pathogens (Pearce et al. 2001). The disease
symptoms appear as sheath discoloration, greyish brown lesions resulting in partial
emergence of young panicles, reduced tillering and yield. Disease severity prevails
in warm and humid climate mainly during rainy season with temperature 20–30 �C
and relative humidity 65–85% favourable for pathogen proliferation (Velásquez
et al. 2018). The disease spans over all the rice-growing countries, viz. India, Sri
Lanka, Bangladesh, China, Indonesia, Malaysia, Nepal, Pakistan, Japan, Saudi
Arabia, Thailand, Vietnam, Gambia, Kenya, Madagascar, Nigeria, Tanzania,
Mexico, USA, Argentina, Brazil and Australia.

15.2.2 Brown Spot

Among various rice diseases caused by fungal pathogens, brown spot is also a major
production constraint in all rice-growing areas especially under semi-dry conditions.
Causal pathogen is both the asexual stage (Bipolaris oryzae, Breda de Haan) and the
sexual stage that is Cochliobolus miyabeanus Drechsler ex Dastur. It is known since
twentieth century from the occurrence of ‘Great Bengal Famine’ (1942–1943) by the
fungus Bipolaris oryzae (Sunder et al. 2014). The initiation of disease symptoms
appear as brown spots on leaves and glumes resulting in fungal growth and sporula-
tion, which are carried to the grains and when spores germinate the seeds get
shrivelled and discoloured (called as ‘pecky grain’ or ‘kernel spotting’), the plants
become stunted. The diseased nursery and the affected field appear to be burnt or
scorched due to seedling death (Harish et al. 2008). The disease has worldwide
distribution in the rice-growing countries (Asia, America and Africa). In India,
brown spot of rice is endemic to all the southern (Andhra Pradesh, Kerala, Tamil
Nadu and Karnataka), and eastern states of India; most prevalent in rainfed lowlands
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and uplands, and in abnormal or poor soil conditions. Almost 6–90% of yield losses
have been found during disease spread of brown spot in Asia (Mew and Gonzales
2002).

15.2.3 Blast

Rice blast, being a devastating fungal disease, is deterrent to increased production of
rice and leads to huge yield losses to the farmers. It is caused by fungal pathogen
Pyricularia oryzae with the asexual stateMagnaporthe oryzae (Asibi et al. 2019). It
affects the plant at every growth stage and disease appears as white to grey-green
lesions on leaf; panicles and nodes followed by collar region necrosis. Leaves and
panicles are the major plant parts affected by pathogen attack, causing leaf and neck
blast thereby reducing the photosynthetic rate and yield (Agbowuro et al. 2020).
There are reports of about 5–70% grain yield losses by rice blast in Kashmir (Bhat
et al. 2013); about 25–45% in Rajasthan (Maheshwari and Sharma 2013).

15.2.4 False Smut

False smut, earlier considered as minor disease, has now shown its increased
incidences in rice-growing areas of world like India, China and the USA (Jecmen
and TeBeest 2015; Fan et al. 2016). Fungal pathogen Villosiclava virens (anamorph:
Ustilaginoidea virens) is the causal organism of rice false smut. The pathogen infects
rice flowers and transforms them into balls called ‘smut ball’ which appears orange
while older ones are olive-green to brown to greenish-black. Due to increased
growth of pathogen, these balls burst and release chlamydospores. The smut balls
produce two mycotoxins: ustiloxin and ustilaginoidin which contaminate rice grains
and become highly toxic to humans and animals (Wang et al. 2019).

15.2.5 Kernel Smut

Kernel smut or black smut in rice is caused by fungal pathogen Tilletia horrida
(Synonym: Tilletia barclayana) and was first reported from Japan in 1896. Its black
powdery spores can survive for more than 1 year in soil and up to 3 years in seed
after infection. (Carris et al. 2006; Chen et al. 2016). Presently, its occurrence is in
Asia, Australia, America (North, South, Central), Europe and Africa. In China and
Pakistan, about 80–100% of disease incidences majorly occur in rice fields of hybrid
seed production (Biswas 2003; Carris et al. 2006). In India, the disease is endemic in
Gujarat, Uttar Pradesh, Haryana, Punjab, Madhya Pradesh, West Bengal, Andhra
Pradesh, Orissa, Tamil Nadu and Assam.
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15.2.6 Sheath Blight

Sheath blight, one of the lethal diseases of rice, leads to huge quality and production
losses (25–50%) worldwide. Symptoms appear as elliptical or oval water-soaked
lesions in the infected sheaths caused by Rhizoctonia solani (fungus). The disease
advances during hot and humid climate, from milking to tillering stage, even at
stages of panicle emergence resulting in partially filled discoloured grains with
brown to black spots leading to yield losses (Singh et al. 2016; Datta and Vurukonda
2017; Srivastava et al. 2016). Being a necrotroph, the pathogen is calamitous
because it forms ‘sclerotia’ (infecting bodies) which remain quiescent in soil for
almost 1–3 years; has high genetic diversity and wide host range (Tsiboe et al. 2017).
The disease spreads from plant to plant and field to field through floating sclerotia
and mycelia disseminated by irrigation water (Singh et al. 2016). Disease spans over
the temperate and tropical rice-growing areas and is prevalent in China, Germany,
Formosa, India, Indonesia, Iran, Korea, Malaysia, Africa, Bangladesh, Brazil,
Burma, Colombia, Nigeria, Philippines, Russia, Sri Lanka, Thailand and the USA
(Singh et al. 2016). In India, it occurs in Punjab, Bihar, Haryana, Chhattisgarh, Uttar
Pradesh, Uttarakhand, West Bengal, Andhra Pradesh, Jammu and Kashmir, Tamil
Nadu, Karnataka, Kerala, Madhya Pradesh, Assam.

15.2.7 Sheath Spot

Rhizoctonia oryzae Ryker & Gooch causes sheath spot of rice. The pathogen was
first identified by Ryker and Gooch (1938) as the causal agent of sheath spot. The
pathogen dispersal was first reported by Hashioka and Makino (1969) in Taiwan,
West Africa, Japan, Cambodia, Brazil, Thailand and the USA. The pathogen has also
been reported in subtropical and tropical rice-growing regions due to favourable low
temperature climates.

Disease symptoms appear as oval, spot-type lesions which are bleached or straw
coloured in the centre surrounded by a reddish-brown border. The spot initiates from
the lower leaf sheath above the waterline and reaches the upper stem as a result of
secondary infection by basidiospores (Lanoiselet et al. 2007).

15.2.8 Stem Rot

Among various diseases, stem rot of rice has also raised innumerable difficulties for
rice growers in India. It is caused by Sclerotium oryzae firstly reported from Italy and
named as S. oryzae Catt. (Cattaneo 1876). Sclerotia initiate primary infection in rice
stem at the waterline and symptom appears as black lesions on the leaf sheath (Singh
et al. 2002; Pramesh et al. 2017). The culm of infected plants becomes discoloured to
black and rotten resulting in the dehydration, wilting and drooping of leaves (Gopika
et al. 2016).

340 V. Bist et al.



Evidences of rice stem rot in India have been reported from Manipur, Karnataka
and Andhra Pradesh. There are reports of 10–80% grain yield losses due to stem rot
in various parts of the world (Gopika et al. 2016).

15.2.9 Bacterial Blight

Bacterial blight is among the important and oldest rice diseases known to cause yield
losses. It is caused by the bacterial pathogen Xanthomonas oryzae and its incidences
were first reported from Japan in 1884 (Saha et al. 2015). The pathogen mainly
infects the vascular tissue—xylem; where it proliferates and propagates in the plant.
The infection results in tannish-grey to white or yellow lesions on leaf blades at
tillering stage of crop growth resulting in plant death on progression of disease. The
disease flourishes during warm and humid temperatures of 25–30 �C especially in
wetlands with these prevailing conditions (Sharma et al. 2017). Worldwide, the
disease is reported to occur in parts of Africa, Asia, the USA, whereas in India the
disease causes crop loss in Bihar, Haryana, Kerala, Punjab and Uttar Pradesh.

15.3 Rice Pathogen Interaction

The major difference between plants and animals is that plants are immovable from
its location. When attacked by a pathogen they rely on the immune system to identify
the pathogen and respond against the same (Dangl and Jones 2001; Ausubel 2005;
Chisholm et al. 2006).

15.3.1 Attack

The usual mechanism by which pathogen enters into plant is adhering of spores on
plant surface and entry through stomatal pore. Their attacks on plant are based on
their life cycle in host plants, viz. Biotrophs, necrotrophs and hemibiotrophs (Zhou
2016; Doehlemann and Hemetsberger 2013). The spore germinates by appropriate
chemical signalling and forms a germ tube that migrates towards the favourable sites
for causing infection through formation of an appressorium, which penetrate the
cuticle and cell wall layers. Later on, the penetration peg forms a specialized
structure known as haustoria, which is responsible for nutrient uptake and also is a
prime site for the effector secretion (Horbach et al. 2011). So, the foremost step for
any pathogen attack on the host plant is to release apoplastic effectors like toxins,
cell wall-degrading enzymes (CWDEs), and various cysteine-rich proteins that
makes plant cell/tissue suitable for pathogen invasion (Gupta et al. 2015). Apoplastic
effectors like CWDEs and toxins are more important for necrotrophs and less
important for biotrophs and hemibiotrophs (Cantu et al. 2008).
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15.3.2 Early Response and Defense

The very first level of defense provided by cuticle and cell wall that acts as a physical
barrier is often not enough to prevent pathogen entry into the plant system. The entry
of pathogen leads to activation of next level of defense response, i.e. innate immu-
nity which provides resistance against the invading pathogen (Boller and Felix
2009). Plant innate immunity is stimulated by root microbiota with the induction
of systemic resistance against potential pathogens. It is triggered via microbe-
associated molecular patterns (MAMPs), which are the general elicitors recognized
by pattern recognition receptors (PRRs). This recognition leads to MAMP-triggered
immunity (MTI) (Jones and Dangl 2006; Boller and Felix 2009; Pel and Pieterse
2013). The common MAMPs include bacterial flagellin derived small peptide
( flg22), elongation-factor Tu peptide (elf18) (Felix and Boller 2003; Zipfel 2009;
Trdá et al. 2014, eicosapolyenoic acids (Savchenko et al. 2010), rhamnolipids
(Varnier et al. 2009; Sanchez et al. 2012), lipopolysaccharides (Newman et al.
2002; Erbs and Newman 2012), β-glucans (Klarzynski et al. 2000), peptidoglycans
(Willmann et al. 2011), etc. When MTI is supressed by pathogen then effector-
triggered immunity (ETI) comes in action which is activated by perception of
specific effectors [avirulence (Avr) proteins] within the infected tissues, which
weaken the host cellular processes, damage cytoskeletal machinery, block transla-
tion and suppress the immune response (Pel and Pieterse 2013; Liu et al. 2013). The
ETI is stronger than MTI due to generation of oxidative burst like ROS (Reactive
oxygen species), NO (Nitric Oxide) that can trigger the hypersensitive response
(HR), which is the major element of plant disease resistance leading to cell death.
The HR usually deprives the pathogen from food supply and restricts them to the
initial infection site showing antimicrobial effects (Delaunois et al. 2014). ROS and
NO also have role in signalling and cell wall strengthening by oxidative cross-
linking polymers (Delaunois et al. 2014). However, HR does not have the ability to
protect the plant from necrotrophic pathogen. Phytohormones, chiefly salicylic acid
(SA), jasmonic acid (JA) and ethylene (ET) play role in signal transduction during
plant defense responses (Robert-Seilaniantz et al. 2011). Different defense enzymes
which use ascorbate and glutathione as electron donors are well known for their role
in H2O2 detoxification in plants (Chandrashekar and Umesha 2012). Interaction of
plant with the necrotrophs and biotrophs results in the modulation of jasmonic acid
(JA)/ethylene and salicylic acid (SA) dependent response, respectively (Zhou 2016;
Glazebrook 2005). SA induced plant resistance to a wide spectrum of pathogens
results in activation of systemic acquired resistance (SAR). Some artificial
chemicals, viz. probenazole and benzothiadiazole are also known to induce SAR
(Iwai et al. 2007). After exogenous SA applications, different defense responses
(ROS production, PR genes expression and disease resistance) get induced against a
wide range of biotrophic and hemibiotrophic fungal, bacterial, viral pathogens as
well as phloem-feeding insects (Andersen et al. 2018; Park et al. 2007).
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15.3.3 Effect of Environment and Co-Infection on Host–Pathogen
Interaction

Usually, plant involves multiple microbes in a host pathogen system that may be
pathogenic as well as non-pathogenic. The environment where the interaction occurs
plays an important role in the pathogenicity as the environment–host–pathogen is
always in tripartite interaction. Environment can have profound effects on host’s
growth, physiological state, immune signalling and abiotic stress response as well as
pathogen’s survival, germination and virulence property (Kaushal and Wani 2016).
The variable environment can render the host being fully susceptible to fully
resistant as well as pathogen fully virulent to non-virulent or weakly pathogenic
(Velásquez et al. 2018). These environmental factors include both abiotic and biotic
factors.

Among biotic factors, microorganisms from the co-infection systems affect the
pathogenicity in three ways, viz. competition, cooperation and coexistence. In
competition, pathogens devise strategies like toxin production and development of
physical barriers in order to remove competitors from resource dense site (Al-Naimi
et al. 2005). In cooperation pathogens beneficially interact each other by the
exchange of materials in form of biochemical signals essential for survival
(Mordecai et al. 2016), while, in coexistence the pathogens reside through niche
specialization site. These interactions may be detrimental as well as beneficial for the
plant defense system depending on its microbiome (Abdullah et al. 2017).

In the era of climate change, three factors, viz. CO2 concentration, temperature
and water availability are predicted to affect the crops most likely. The effect of
increased CO2 concentration increases the disease severity of rice blast and sheath
blight in rice plants (Kobayashi et al. 2006). The most favourable temperature for
Xanthomonas oryzae in daytime is 35 �C and night-time 27 �C to colonize rice, thus
increase in temperature below and above optimum level alters the pathogenicity
potential. Xa7, a rice disease resistance protein against Xanthomonas oryzae, is more
effective at higher temperatures than at lower temperatures, contrary to most R
proteins (Webb et al. 2010). The devastating pathogen of rice Magnaporthe oryzae
infection requires water availability, i.e. at least 5 h of leaf wetness (the duration in
which the leaf has water on its surface) for the infection to occur (Magarey et al.
2005). Environmental conditions like drought worsen the condition even more by
causing aggressive infections and more visible symptoms in rice. Plants respond to
attacks by activating different defense responses which involve accumulation of
defense enzymes, inhibitors and different antibiotics which help in preventing
infection. Plant–pathogen interactions are governed by complex network of molec-
ular and cytological processes determining the final outcome ranging between
susceptibility and resistance. In M. oryzae, successful colonization and further
pathogen reproduction in the host plants have been demonstrated to be governed
by a novel pathogenicity gene DES,1 which regulates counter-defense against host
basal resistance (Chi et al. 2009).

Rice endophytic microbiome shows varied diversity and composition depending
on growth stage, environmental factors and genotype (Walitang et al. 2018; Qin et al.
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2019). The tremendous potential of its microbial communities is known to raise
protection against pathogens. Different microbes like Bacillus, Pantoea,
Achromobacter, Trichoderma, and Streptomyces have been reported for their antag-
onistic behaviour against Rhizoctonia solani, Xanthomonas oryzae, Magnaporthe
oryzae (De Costa et al. 2006; Harsonowati et al. 2017; Kim and Lee 2020). Studies
using multi-omics and DGGE techniques showed dominance of archaea and bacteria
in rhizosphere of rice when compared to bulk soil of similar diversity (Breidenbach
et al. 2016). Spence et al. (2014) have reported that the rhizospheric abundance of
beneficial microbes like Pseudomonas spp. limits the pathogens through their
hormonal signalling.

15.3.4 Plant Defense Response

The delicate relationship between plant and pathogen is governed by the apoplastic
interaction of the secreted proteins and other metabolites, derived from both
organisms (Gupta et al. 2015). Plants have developed a complex and multi-layered
immune system while co-evolving with pathogens, resulting in a plant–pathogen
interaction which is either incompatible (disease resistance/tolerance) or compatible
(pathogen infection and disease), governed by their genetic makeups. Protein–
protein interaction map of Rhizoctonia solani has been constructed to provide
insights into the potential pathogenic mechanisms of the fungus (Lei et al. 2014).
Through cytological evidences, Araujo et al. (2016) reported higher number of
necrotic epidermal cells in the compatible interactions due to unlimited fungal
growth within the leaf tissues in contrast to the limited growth in the incompatible
interaction, probably due to a defense response (Araujo et al. 2016). During compat-
ible and incompatible interactions of rice blast, the fungus modulation of
metabolites, viz. alanine, malate, glutamine, proline, cinnamate and an unknown
sugar has also been reported, with a potential of biochemical changes during plant–
pathogen interactions (Jones et al. 2011). Plant associated microbes (bacteria or
fungi) also regulate hormonal balance involving the secretion of secondary
metabolites (Manganiello et al. 2018; Pascale et al. 2020) thus modulating the
plant hormonal signalling as defense mechanism. Phytohormones like indole acetic
acid (IAA), salicylic acid (SA), cytokinins, gibberellins, jasmonic acid
(JA) generally effectuate the microbial aggregation thus altering the plant immunity
(Patkar and Naqvi 2017; Stringlis et al. 2018; Pascale et al. 2020). Involvement of
some rare sugars like turanose as defense inducer has also been reported (Srivastava
et al. 2016). The ability of a pathogen to invade and infect plants depends upon the
effectors playing role in the suppression of plant immune responses. In reaction, the
plant resistance against a pathogen depends upon its potential to recognize it as
non-self and induce an immune response to limit its growth (Kumar and Verma
2013). After detection of microorganism, the complex interactions involve activa-
tion of a set of genes via recognition of elicitor molecules released which include
carbohydrate polymers, lipids, glycopeptides and glycoproteins (Thakur and Sohal
2013). It also results in biochemical and physiological changes in plants, such as cell
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wall lignification, suberization and callose deposition via production of phenolic
compounds, phytoalexins and pathogenesis-related (PR) proteins, which subse-
quently prevent invasions. Plant diseases also put detrimental effects to endophytic
microbial diversity as reported in case of clubroot disease (causal agent,
Plasmodiophora brassicae) in cruciferous plants (Breidenbach et al. 2016). Many
findings report the pathogenic resistance of endophytes such as Bacillus, Streptomy-
ces and Azospirillum against Rhizoctonia solani, Fusarium oxysporum,
Magnaporthe grisea, etc. via production of nutrients, allelochemicals and
phytohormones thus invigorating induced systemic resistance in rice. Yang et al.
(2020) have revealed the increased diversity of endophytic microbial community
during bacterial blast disease in rice signifying the disease resistance related to shift
in diversity and structural composition.

Protection of rice against Xanthomonas oryzae (Xoo) by Xa21 gene induces
downstream defense mechanisms, viz. expression of PR (pathogen related) genes
and hypersensitive reaction (programmed cell death) (Peng et al. 2015). A variety of
plant defense mechanisms are known to manage the oxidative burst in both compat-
ible and incompatible interactions. Understanding molecular mechanisms of disease
resistance with different approaches led to the development of new tools for breeding
of improved resistance against different rice pathogens. Assays with marker assisted
breeding techniques signify the near-isogenic resistant line (NIL) Pusa Basmati-1
(PB1), carrying rice blast resistance gene Pi9, thus inducing resistance mediated by
activation of kinases, WRKY, MYB, and ERF transcription factors, JA-ET
hormones, chitinases, glycosyl hydrolases and lipid biosynthesis (Jain et al. 2017).
Though plants have developed a complex defense system to fight with the
pathogens, however their co-evolution or incapable potency of the defense system
leads to disease development in plants.

15.4 Urge and Approaches for Disease Management

Plant health is of utmost global importance to achieve agricultural sustainability.
Therefore, the major concern in the coming years is to increase rice productivity in
order to sustain the hiking population. Currently, the emerging crop protection
strategies involve genetic improvement of plants to impart resistance against pests
and pathogens. Still in areas of high disease pressure, new crop varieties with single
sources of genetic resistance cannot combat pathogen attack. Indiscriminate use of
herbicides and pesticides has also been found as ineffective and unsafe for use
(Jallow et al. 2017). The demand is urgent for safer and more sustainable methods
of crop management.

Primarily, the overall strategy for crop disease management might involve three
components: reduction of the initial inocula, alleviation of the infection rate and
minimisation of the duration of the epidemic. Each component employs the tradi-
tional principles of disease control: (1) Avoidance: a method which prevents the
disease by selecting a time of the year or a site where the disease causing inoculum is
less/absent or where the environment is unfavourable for its spread, (2) Exclusion—a
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method which prevents the introduction of inoculums, (3) Eradication—a method
which destroys or makes the inoculum (or its source) inactive, (4) Protection—a
method which prevent infection using a toxicant to infection, (5) Resistance—a
method which use the resistant/tolerant cultivars of infection and (6) Therapy—a
method of curing plants which are already infected. These principles signify the goal
of zero disease; however, they work to manage the disease rather than achieving its
elimination or control. Therefore, rather than neglecting these principles, they must
be made appropriate to be used as different strategies based on epidemiological
principles (Nutter 2007).

Plant pathogens, since many years, have been controlled mainly by the use of
chemical methods (pesticides; Fig. 15.1). However, the insurgence of resistance in
the pathogen or pest populations towards these chemicals has raised many concerns
in the agriculture system.

Moreover, the application of chemical pesticides has caused serious hazards to
human health and surrounding environment. In view of the above circumstances and
problems there is an urgent need/demand to switch towards the use of environment
friendly approaches for plant disease control. In the following paragraphs some
non-chemical approaches, and how they can be applied for management of many
diseases affecting rice crops, are discussed.

15.4.1 Soil Solarisation

Soil solarisation, a non-chemical technique has also been introduced in agriculture to
reduce the use of agro-chemicals (pesticides) and to manage soil-borne inocula of
pathogenic fungi, bacteria, nematodes, soil-borne pathogens, certain insects and
weeds (Chandrakumar et al. 2002). It does not release any harmful chemicals to

Fig. 15.1 Different classes of pesticides used in India (Source: Industry reports, Analysis by Tata
Strategic)
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the soil and is a safe, effective and eco-friendly technique resulting in physical,
chemical and biological changes, specifically in the top 10 cm soil (Bacha et al.
2007). Solarisation causes many biological changes in treated soil such as the
destruction of several mesophilic microorganisms. Following solarisation the sur-
viving microorganisms remain higher in number than pathogens. They include
bacteria belonging to Bacillus and Pseudomonas spp., fungi such as Trichoderma
and some free-living nematodes. The treatment effectively maintains the biological
equilibrium in soil and thus prevents recolonization of pests and pathogens
(Stapleton and DeVay 1995). Some of the successfully managed soil-borne fungal
and bacterial pathogens by solarisation include: Rhizoctonia spp., Fusarium spp.,
Sclerotinia spp., Macrophomina spp., Phytophthora spp., Verticillium spp.,
Agrobacterium tumefaciens, Clavibacter michiganensis, Pythium spp. and Strepto-
myces scabies (Chellemi and Mirusso 2006; Gelsomino et al. 2006). Devi and
Chhetry (2013) have employed soil solarization in Manipur, and their findings
showed its efficiency in managing pigeon pea wilt (caused by Fusarium udum
Butler), when compared other treatments like organic manures (FYM or poultry),
or intercropping with maize.

15.4.2 Nutrients Management

Plant nutrients are the chemical elements essential for plant health and play critical
role in plant growth and development. Based on their requirement, they are
categorized as: macro (required in large quantities) and micronutrients (required in
small quantities). These nutrients not only affect the growth and development of crop
plants but also influence microbial growth and play important role in disease control
(Agrios 2005). There are many factors, which affect the nutrient availability to
plants, therefore, it is important to manage through fertilizers in different amounts
and forms or via change in the soil environment, as immobilization of nutrients in the
rhizosphere and their translocation from root to shoot may cause nutrient deficiency
and increasing its susceptibility towards disease like Fusarium oxysporum
f. vasinfectum can increase P content in leaves, but decreases N, K, Ca and
Mg. Some most common examples of interaction between nutrients and plant
diseases include Streptomyces scab (potato), Verticillium wilt, take-all (wheat),
stalk rot (corn), clubroot (crucifers). Ahmad et al. (2012) reported the application
of NPK against urdbean leaf crinkle virus (ULCV) to be most effective showing 65%
of reduced disease severity. Other examples to elucidate the role of nitrogen,
phosphorous and potassium include:

15.4.2.1 Nitrogen (N)
Increased application of N elevates the severity of disease caused by obligate
pathogens Puccinia graminis and Erysiphe graminis, whereas it reduces the disease
severity of facultative pathogens due to higher application of N, e.g. Alternaria,
Fusarium and Xanthomonas spp. (Hoffland et al. 2000).
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Besides the rate, type of N source and NH4+:NO3� ratio is also a key factor to
develop disease in plants (Celar 2003; Harrison and Shaw 2001). Higher NO3�

concentration decreases the disease in case of Fusarium oxysporum, Botrytis
cinerea, Rhizoctonia solani and Pythium spp. Likewise, higher concentration of
NH4+ decreases the disease in Pyricularia, Thielaviopsis basicola, Sclerotium rolfsii
and Gibberella zeae (Agrios 2005; Vidhyasekaran 2004).

15.4.2.2 Phosphorous (P)
Phosphate application aid in reduction of bacterial leaf blight (rice), downy mildew,
blue mould, leaf curl virus disease (tobacco), pod and stem blight (soybean), yellow
dwarf virus disease (barley), brown stripe disease (sugarcane) and blast disease (rice)
(Reuveni et al. 2000; Dordas 2008). However, other studies showed adverse effect of
application of P causing disease severity.

15.4.2.3 Potassium (K)
Potassium finds its application in various cellular processes and acts as enzyme
activator, aid in protein synthesis, stomatal opening and exchange of CO2 in leaves
(Kumar et al. 2020). Optimum application has been found to be effective in
obstructing disease occurrence of bacterial leaf blight, sheath blight, stem rot and
seedling rot caused by Rhizoctonia solani (Sharma and Duveiller 2004; Sharma et al.
2005). Application of K also aid in decreased severity of helminthosporium leaf
blight and consequently improves the grain yield of wheat (Sharma and Duveiller
2004; Sharma et al. 2005).

Other macronutrients, viz. calcium, sulphur and manganese are secondary source
of macronutrients that have least information about their role to provide resistant
against pathogen.

Like macronutrients, micronutrients also regulate plant metabolism by affecting
their phenolics and lignin content. Deficient plants are more susceptible by acting as
feeding substrate due to leakage of reducing sugars and amino acids outside the plant
cell. For example, Oidium spp. infects the zinc deficient plants as mentioned by Li
et al. (2016); boron deficient wheat plants are more susceptible to fungal attack than
boron sufficient plants as mentioned by Dordas (2008).

15.4.3 Biological Approaches

Worldwide awareness on the hazards associated with the synthesis and use of agro-
chemicals and their wide scale application on crops have imposed strict regulations
which preclude large scale application of pesticides. However, the recurring
episodes of pests and pathogens attacks on crops compromise cereal yields. There-
fore, the more reliable eco-friendly and sustainable methods are being exploited for
management and control of crop diseases. Biological approaches are better than
chemical pesticides as they offer a wider range of activity with less incidence of
resistance development in pathogens. Biological methods rely on the use of
biopesticides that suppress pathogen attack and invasion on host plants.
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Biopesticides or biological pesticides are mass-produced, biologically active natural
compounds derived from living microorganisms and plants useful to control plant
pests and pathogens. These include (1) bio-control agents, (2) plant and microbe
based natural substances (biochemical pesticides) and (3) plant-incorporated
protectants; PIPs (genetically modified plants) as discussed subsequently under
different headings:

15.4.3.1 Bio-Control Agents and their Importance in Plant Disease
Management

Bio-control agents (BCAs) are live microorganisms which are antagonistic to
pathogens without causing any adverse effects on host plants. Bio-control relies on
the use of BCA and/or their formulations to suppress target pathogens in soil and on
plant surface. Bio-control agents establish themselves in soil, and plant phytosphere
to continuously produce bioactive compounds. These active molecules are in direct
contact (close proximity) to the target pathogens, therefore, needed in very limited
quantities and often have better efficacy. Microbial interactions with rhizospheric
micro-flora and plant roots promote plant growth and improve plant nutrition by
releasing insoluble nutrients in an available form. Increased plant nutrition enhances
their overall resistance against pathogens and various stress factors (Paulitz and
Bélanger 2001).

Plant microbiome has also been the critical factor during plant defense against
pathogens. It is the diversity level which determines the pathogenic resistance by
microbial community which undergoes shift in microbiome (Trivedi et al. 2012; van
Elsas et al. 2012; Podolich et al. 2015; Singh et al. 2019). Mosses own distinctive
microbial diversity and their ecology make them potent antagonists (Opelt et al.
2007; Bragina et al. 2015); medicinal plants are another unique example of biodi-
versity being the rich source of secondary metabolites altering plant microbiome
(Köberl et al. 2013); endemic plants have been reported for their antagonistic nature
and biodiversity by Zachow et al. (2014); and seed endophytes have been reported
among the novel bio-control agents by Berg et al. (2017). These microbiome shifts,
although unexplored completely, have been presumed to have direct and indirect
interactions with invading pathogen and plant, respectively, thus priming the plant
immunity (Berg 2009; Berg et al. 2017).

Microorganisms produce plant hormone-like compounds including auxin,
gibberellins, cytokinins, etc. thereby stimulating plant growth; and enzymes
involved in degradation of ethylene precursors leading to increased plant growth
especially under stress conditions (Lugtenberg and Kamilova 2009; Prasad et al.
2015; Kaushal and Wani 2016). Bio-control agents are less specific towards
non-target species and their mode of action is usually different from those of
conventional pesticides which suppress resistance development in the pathogens
(Table 15.2). They have a wide action spectrum to provide protection and reduce
disease incidence in crops. Bio-control agents with antagonistic effects on major rice
pathogens are well studied and some BCAs useful in management of rice diseases
are given in Table 15.1.
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Table 15.1 List of commercially available bio-control agents in the management of plant
pathogens

Commercial formulations of bacterial and fungal antagonists for pathogen control and disease
management

Trade name
Bio-control
agent Manufacturer

Target disease/
organism

Method of
application

Bacterial Antagonists

Gallex and
Galtrol

Agrobacterium
radiobacter K84

AgBioChem,
Inc.

A. tumefaciens Emulsion spray

Norbac 84C New
BioProducts,
Corvalis, OR

A. tumefaciens Root and stem
cutting dip or slurry

Nagol A. radiobacter
K1026

Bio-Care A. tumefaciens Emulsion spray

Nogall,
Diegall

A. radiobacter Bio-Care
Technology
Pvt. Ltd.,
Australia

A. tumefaciens Root dip

Epic Bacillus subtilis Gustafson,
USA
Dallas, TX

Rhizoctonia
solani,
Fusarium spp.,
Alternaria,
Aspergillus
spp.

Added to slurry,
mix with chemical
fungicides for seed
treatment

GB34 B. subtilis GB34 Gustafson,
USA

Rhizoctonia,
Fusarium,
Pythium,
Phytophthora

Drenching during
sowing and
transplanting

Kodiac,
companion

B. subtilis GB03 Growth
Products, USA

Rhizoctonia,
Aspergillus

Drenching during
sowing and
transplanting

System 3 Helena
Chemicals Co.,
Memphis TN

Seedling
pathogens

Seed treatment

Rhizo-Plus B. subtilis
FZB24

KFZB
Biotechnik
GmBH
Germany

R. solani,
Fusarium spp.
Alternaria
spp.,
Sclerotinia,
Streptomyces
scabies

Seed treatment, soil
drenching, root dip
application

Deny Burkholderia
cepacia

Stine Microbial
Products

Rhizoctonia,
Fusarium and
Pythium

Seed treatment,
aqueous suspension
for drip irrigation

Intercept Pseudomonas
cepacia

Soil
Technologies
Fairfield, IA

R. solani,
Fusarium spp.
Pythium spp.

Seed treatment,
foliar spray, soil
application

Biosave-100
Biosave-

P. syringae
ESC-10

EcoScience
Corp, Orlando
Florida

Botrytis
cinerea,
Penicillium

Pellets post-harvest
to fruits as drench
dip or spray

(continued)
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Table 15.1 (continued)

Commercial formulations of bacterial and fungal antagonists for pathogen control and disease
management

Trade name
Bio-control
agent Manufacturer

Target disease/
organism

Method of
application

1000
Biosave-110

P. syringae
ESC-11

spp.,
Mucor
piriformis,
Geotrichum
candidum

Frostban,
Blightban
A506

P. fluorescens
strain A506

Plant Health
Technologies

Fire blight,
frost damage,
bunch rot

Spray at flowering
and fruiting

Bio-jet, spot
less

P. aureofaciens
strain TX-1

Eco Soil
Systems

Pythium,
R. solani

Overhead irrigation

Fungal Antagonists

AQ 10 Ampelomyces
quisqualis M-10

Ecogen, USA Powdery
mildew

Spray

Contans Coniothyrium
minitans

Prophyta
Biologischer
Pflanzenschultz

Sclerotinia
sclerotiorum
and S. minitans

Spray

Biofox C Fusarium
oxysporum
(non-pathogenic)

SIAPA,
Bologna, Italy

F. oxysporum,
F. moniliforme

Seed treatment or
soil incorporation

GiloGard
more recent
SoilGard

Gliocladium
virens GL-21

Thermo
Trilogy,
Columbia, MD

Damping off,
root rot
pathogens,
R. Solani,
Pythium spp.

Granules
incorporated in soil

Prima stop
soil guard

G. catenulatum
JI446

Kemira Agro
Oy, Finland

Soil-borne
pathogens

Seed treatment,
foliar spray, soil
application

Bioact or
Paecil

Paecilomyces
lilacinus

Technological
Innovation
Corporation Pvt
Ltd

Various
nematodes

Drenching

Mycostop Streptomycine
griseoviridis
K61

Kemira Agro
Oy, Finland

Soil-borne
pathogens

Drenching,
spraying or through
irrigation

Bio-Fungus Trichoderma sp. De Cuester,
Belgium

Sclerotinia,
Phytophthora,
R. solani,
Pythium spp.,
Fusarium,
Verticillium

Seed treatment,
foliar spray, soil
application

Monitor SD Trichoderma sp. M/s Agriland
Biotech Pvt
Ltd., Baroda,
India

Soil-borne
plant
pathogens

Seed dressing

Monitor WP Soil application

(continued)
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Bio-control agents Trichoderma viride and Pseudomonas fluorescence are also
useful in bio-priming, seed coating and seedling root dip to control pathogens (Gad
et al. 2014; Ananthi et al. 2017). Trichoderma and Pseudomonas application has
several beneficial effects which ultimately improve plant health through increased
root and plant growth (Chandra Nayaka et al. 2009; Moeinzadeh et al. 2010). Gad
et al. (2014) found inhibition of the rice fungal pathogen R. oryzae-sativa along with
significant improvement in growth parameters in presence of P. aeruginosa. An
isolate of Ulocladium oudemansii inhibits the growth of B. cinerea responsible for
botrytis bunch rot in grapes. Its formulation has been developed and commercialized
under trade name BOTRY-Zen® in New Zealand (Reglinski et al. 2010; Wurms

Table 15.1 (continued)

Commercial formulations of bacterial and fungal antagonists for pathogen control and disease
management

Trade name
Bio-control
agent Manufacturer

Target disease/
organism

Method of
application

Trichodex Trichoderma
harzianum T-39

BioWorks, Inc.,
USA

B. cinerea Spray

Root Shield
or
BioTrek
T-22G

T. harzianum
T-22 G

BioWorks, Inc.,
USA

Soil-borne
pathogens

Granules mixed
with soil or potting
medium, powder
mixed with water
and added as soil
drench

Root Pro T. harzianum Mycontrol Ltd.,
Israel

R. solani,
Fusarium spp.
Alternaria
spp.,
Sclerotium
rolfsii

Mix with growing
media at the time of
seedling and
transplanting

Trichoderma
2000

Trichoderma sp. Mycontrol Ltd.,
Israel

Soil-borne
pathogens

Seed treatment,
tuber or seed
dressing, soil
drenching

Trieco T. viride Ecosense Labs
Pvt. Ltd.,
Mumbai, India

Soil-borne
pathogens

Seed treatment,
tuber or seed
dressing, soil
drenching

T34
Bio-control

T. asperellum
T-34

Fargro Ltd.,
Littlehamptom,
West Sussex,
UK

F. oxysporum
f.sp. dianthi

Drenching during
sowing and
transplanting, root
dip of cuttings

Binab T T. harzianum
and
T. polysporum

Bio-innovation
AB, Sweden
Henry
Doubleday
Research
Association UK

Wilt, take all,
root rot

Spray, mixing with
potting substrate, as
paste painting on
tree wound
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et al. 2011). Likewise several bacterial and fungal BCAs useful in the management
of various plant pathogens are commercially available. Some BCAs of commercial
importance with their trade names are given in Table 15.1.

15.4.3.2 Mechanisms of Action
Bio-control agents deploy several direct and indirect mechanisms to suppress patho-
gen growth and their activity in the rhizosphere. Direct bio-control mechanisms are
parasitism, production of antibiotics and antimicrobial compounds, lytic enzymes
(like β-1,3-glucanase and chitinases) and unwanted waste products (like ammonia
carbon dioxide and HCN). Direct antagonism requires physical contact between the

Table 15.2 PGPR showing bio-control activity against the plant pathogens

PGPR Crop Disease Target Pathogens References

Streptomyces sp.
KH-614

Rice Blast Pyricularia oryzae Rhee (2003)

S. vinaceusdrappus Rice Blast Curvularia oryzae,
Pyricularia oryzae,
Bipolaris oryzae,
Fusarium oxysporum

Ningthoujam
et al. (2009)

S. aurantiogriseus
VSMGT1014

Various Sheath blight Rhizoctonia solani Harikrishnan
et al. (2014)

Pseudomonas
fluorescens

Various Many Many (broad
spectrum)

David et al.
(2018)

Bacillus
amyloliquefaciens

Rice Sheath blight M. oryzae and
R. solani, and
F. graminearum and
Bot. cinerea

Kakar et al.
(2018)

Bacillus
amyloliquefaciens

Rice Rice blast Magnaporthe oryzae Amruta et al.
(2018)

Pseudomonas
aeruginosa BRp3

Rice Leaf blight Xanthomonas oryzae
pv. oryzae (Xoo)

Yasmin et al.
(2017)

Bacillus sp. Maize Seed aflatoxin
production

Aspergillus flavus Chalivendra
et al. (2018)

Bacillus subtilis Many Rice blast and
others

Magnaporthe oryzae Taguchi et al.
(2003)

Bacillus cereus,
Brevibacterium
Laterosporus,
Pseudomonas
fluorescens,
Serratia
marcescens

Sorghum Root rot Pythium ultimum Idris et al.
(2008)

S. spororaveus
RDS28

Various Collar or root rot,
stalk rot, leaf
spots, and grey
mould rot or
botrytis blight

Rhizoctonia solani,
Fusarium solani,
Fusarium
verticillioides,
Alternaria alternata,
Botrytis cinerea

Khair (2011)
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Table 15.3 List of antimicrobial compounds produced by major BCAs effective against specific
plant pathogens

Antimicrobial
compounds

Bio-
control
agent Target pathogen/disease

Pseudomonads

Acetylphloroglucinols
(2,4-diacetylphloroglucinol)

Pseudomonas
fluorescens
P. aurantiaca

Pythium ultimum/damping off
Gaeumannomyces graminis var.
Tritici/Take all
Thielaviopsis basicola
Fusarium oxysporum

Oomycin A P. fluorescens Pythium ultimum

Phenazine-1-carboxylic
acid

P. fluorescens
P. aureofaciens

Gaeumannomyces graminis var.
Tritici/Take all

Phenazine-1-carboxamide P. chlororaphis Fusarium oxysporum f. sp. radicis-
lycopersici

Pyocyanin P. aeruginosa Septoria tritici

Anthranilate P. aeruginosa Fusarium oxysporumf. sp. ciceris
Pythium splendens

Pyoluteorin P. fluorescens Pythium ultimum/damping off
Rhizoctonia solani damping off

Pyrrolnitrin P. fluorescens
P. cepacia
P. fluorescens

Rhizoctonia solani
Aphanomyces cochlioides
Pyrenophora tritici-repentis

Pyoverdin P. fluorescens
P.putida

Pythium ultimum
Fusarium oxysporum

Pyochelin P. aeruginosa Pythium splendens

Cyclic lipopeptides
(e.g. Viscosinamide)

P. fluorescens
(Burkholderia
cepacia)

Rhizoctonia solani
Pythium ultimum

Hydrogen cyanide
Ammonia

P. fluorescens
Enterobacter spp.

Thielaviopsis basicola

Bacillus sp.

Bacillomycin D Bacillus subtilis
AU195

Aspergillus flavus/aflatoxin
contamination

Bacillomycin,
Fengycin

Bacillus
amyloliquefaciens
FZB42

Fusarium oxysporum/wilt

Fengicin B. subtilis
B. amyloliquefaciens

Podosphaera fusca
Botrytis cinerea
Fusarium graminearum
Sclerotinia sclerotiorum

Plipastatin B. cereus
B. thuringiensis

Iturin B. amyloliquefaciens,
B. subtilis
B. megaterium

Rhizoctonia solani
Pythium aphanidermatum
Podosphaera fusca
Xanthomonas oryzae pv. Oryzae

(continued)
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Table 15.3 (continued)

Antimicrobial
compounds

Bio-
control
agent Target pathogen/disease

Bacillaene Bacillus
amyloliquefaciens
B. subtilis

Erwinia amylovora
E. caratovora

Difficidin E. amylovora
Pectobacterium carotovorum
Xanthomonas oryzae

Macrolactins

Mycosubtilin Bacillus subtilis Fusarium oxysporum
Botrytis cinerea
Pythium aphanidermatum/damping off
Pichia pastoris

Marihysin A Bacillus marinus Alternaria solani
F. oxysporum
F. graminearum
Verticillium albo-atrum
Sclerotium sp.
Penicillium sp.
Rhizoctonia solani
Colletotrichum sp.

Surfactin B. coagulans
B. subtilis
B. polyfermenticus
B. megaterium
B. amyloliquefaciens
B. pumilus
B. licheniformis

R. solani
Helminthosporium maydis
F. oxysporium
Botrytis cinereapers
Gibberella saubinetii
Colletotrichum gossypii
C. capsici
Physalospora piricola
Sclerotinia sclerotiorum

Polypeptin Bacillus circulans
Paenibacillus
ehimensis

Fusarium oxysporum
F. graminearum
F. moniliforme
Rhizoctonia solani
Colletotrichum lini

Polymyxin Paenibacillus
polymyxa

Erwinia amylovora
Pectobacterium carotovorum

Pyrrolnitrin pseudane Burkholderia cepacia Rhizoctonia solani and Pyricularia
oryzae/damping off and Rice blast

Zwittermicin A Bacillus cereus
UW85

Phytophthora medicaginis and P.
aphanidermatum/damping off

Others

Agrocin- 84 Agrobacterium
radiobacter

A. tumefaciens/crown gall

Gliotoxin Trichoderma virens Rhizoctonia solani/root rot

Xanthobaccin A Lysobacter sp. strain
K88

Aphanomyces cochlioides/damping off

Herbicolin Pantoea agglomerans
C9–1

Erwinia amylovora/fire blight

(continued)

15 Microbiome Role in Control of Sustenance of Rice Health and Production 355



pathogen and BCAs like in case of hyper-parasitism shown by obligate parasites of a
plant pathogen. Indirect mechanisms of bio-control agents feature surface coloniza-
tion and competition for space and nutrients (Labuschagne et al. 2010; Martínez-
Viveros et al. 2010; Piromyou et al. 2011; Shafi et al. 2017), production and
secretion of several antimicrobial compounds and stimulation of plant host defense
pathways by induced systemic resistance (ISR) as shown in Fig. 15.2.

Some BCAs use two or more methods at a time so that lines between biological
control mechanisms usually appear blurred. The common mechanisms of biological
control of a wide range of pathogens are:

15.4.3.3 Production of Antibiotics, Lytic Enzymes and By-Products
of Microbial Life

Bio-control agents release antimicrobial compounds such as antibiotics, lytic
enzymes, secondary metabolites and unwanted waste products which directly act
upon pathogens to suppress their growth and the diseases they cause. Some common
antimicrobial compounds produced by BCAs effective against specific plant
pathogens are given in Table 15.3.

Genome study of B. amyloliquefaciens shows presence of several genes
associated with antimicrobial peptides and cyclic lipopeptides such as bacilysin,
bacillibactin, macrolactin, bacillaene, fengycin, difficidin, non-ribosomal peptide
synthetase, bacyllomicin, lantibiotic subtilin and plipastatin with inhibitory effects
on different pathogens (Kakar et al. 2018). Some bio-control strains inhibit
pathogens with the production of multiple antibiotics, like Bacillus cereus strain
UW85 has been found to produce both zwittermycin and kanosamine. Some BCAs
like Pseudomonas putida strain WCS358r have been genetically engineered to
produce both phenazine and 2,4-diacetyl-phloroglucinol to improve its capacity of
disease suppression in plants. Some BCAs secrete lytic enzymes and other microbial
by-products which interfere with pathogen growth and/or activities. Lytic enzymes
hydrolyse polymeric compounds, including chitin, proteins, cellulose and
hemicelluloses which are important components of cell wall which directly restrict
the infectious activities of plant pathogens. Other microbial by-products such as
hydrogen cyanide (HCN) also contribute to pathogen suppression, by blocking the
cytochrome oxidase pathway and show high toxicity for all aerobic microorganisms

Table 15.3 (continued)

Antimicrobial
compounds

Bio-
control
agent Target pathogen/disease

Fusaricidin Paenibacillus
polymyxa

Fusarium oxysporum
Phytophthora sp.
Aspergillus sp.

Trichoderma

Gliotoxin Trichoderma virens Rhizoctonia solani/root rot
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Table 15.5 Antimicrobial nano-particles and carbon nano-materials in management of plant
pathogens

Nano-particles (NPs)/
nano-materials Comments

Target pathogens/
diseases Reference

Biosynthesized silver-
NPs

• Extracellular
biosynthesis of silver
nano-particles (Ag-NPs)
using culture supernatant
of an agriculturally
important bacterium,
Serratia sp. BHU-S4
• Spherical and
crystalline bsAgNPs with
size range of�10 to 20 nm
exhibit strong antifungal
activity by inhibition of
conidial germination
• Ag-NP increase
lignification in plant
vascular tissues forming a
physical barrier that
provides disease resistance
to plants against pathogen
attack
• Bio-fabricated Ag-NPs
are effective in the
management of spot
blotch disease in wheat

Bipolaris
sorokiniana/the
spot blotch
disease in wheat

Mishra et al.
(2014)

Cu-chitosan NP • Antifungal
Cu-chitosan NPs are most
effective at 0.1%
concentration in in vitro
condition
• At the same
concentration,
Cu-chitosan NPs show
maximum inhibition in
rate of spore germination
of A. alternata and
mycelial growth inhibition
of M. phaseolina
• Chitosan and
Cu-chitosan NPs with
increased stability in
aqueous solution have
tremendous potential for
field screening towards
crop protection

Alternaria
alternata
Macrophomina
phaseolina
Rhizoctonia
solani

Saharan et al.
(2013)

Colloidal silver NPs • Spherical and colloidal
Ag-NPs size <20 nm
synthesized by reduction
of silver nitrate solutions

Colletotrichum
gloesporioides/
anthracnose in a

Aguilar-
Méndez et al.
(2011)

(continued)

360 V. Bist et al.



Table 15.5 (continued)

Nano-particles (NPs)/
nano-materials Comments

Target pathogens/
diseases Reference

with glucose in the
presence of gelatin as the
capping agent
• Gelatin interacts with
NPs through the amide
and hydroxyl group that
prevents agglomeration of
Ag-NPs
• Dose-dependent
antifungal activity to
reduce the growth of
C. gloesporioides

wide range of
fruits

Biosynthesized Ag-NPs • Extracellular
biosynthesis of silver
nano-particles (AgNPs)
using cell free culture
supernatant of Bacillus
sp. strain GP-23
• The biosynthesized
silver nano-particles with
spherical shape in the
range of 7–21 nm exhibit
antifungal activity towards
Fusarium oxysporum

Fusarium
oxysporum

Gopinath and
Velusamy
(2013)

Myco-silver NP • Ag-NPs of different
morphological shapes
(spherical, cylindrical,
agglomerated) with an
average size of 2–50 nm.
Synthesized from fungal
endophyte of Solanum
nigrum
• Myco-Ag-NP exhibit
broad-spectrum antifungal
activity against wide range
of fungal phyto-pathogens
by inhibiting the radial
growth

Fusarium
graminearum,
Fusarium udum,
Rhizoctonia
solani
Aspergillus niger

Akther and
Hemalatha
(2019)

Silver NP • Ag-NP with an average
size of 4–8 nm interfere
with microbial absorption
retarded fungal growth in a
dose-dependent manner;
• Antifungal Ag-NP
inhibit conidial
germination and cause
damage to the surface of
the fungal hyphae that
cause release of internal
cellular materials resulting
in shrinkage of the hyphae

Raffaelea sp./oak
wilt

Kim et al.
(2009)

(continued)
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Table 15.5 (continued)

Nano-particles (NPs)/
nano-materials Comments

Target pathogens/
diseases Reference

Silica- silver NPs • Chemically
synthesized silica-silver
NPs with particle size
1–5 nm
• Show antifungal
activity against
phytopathogenic fungi at
lower concentrations with
varied degrees while
beneficial and or plant
pathogenic bacteria are not
affected at such low
concentrations

Pythium ultimum
Magnaporthe
grisea
Colletotrichum
gloeosporioides
Botrytis cinerea
Rhizoctonia
solani

Park et al.
(2006)

Several carbon nano-
materials (NMs)
(single-walled and multi-
wall carbon nano-tubes,
graphene oxide, reduced
graphene oxide, fullerene
and activated carbon)

• Carbon NMs show
different degrees of
antifungal activity (single
wall carbon nano-tubes
with strongest activity,
followed by multi-wall
carbon nano-tubes,
graphene oxide and
reduced graphene oxide)
• Inhibit plant
pathogenic fungi by
targeting the fungal spores
in three steps (1) surface
deposition, (2) inhibit
water uptake and
(3) induce plasmolysis

Fusarium
graminearum
F. poae

Wang et al.
(2014a, b)

Graphene oxide • Highly efficient in
inactivating the bacteria
• Produce considerable
changes in the cell
membranes caused by the
extremely sharp edges of
graphene oxide and
generation of reactive
oxygen species which are
fatal for bacteria

Xanthomonas
oryzae pv. oryzae

Chen et al.
(2013)

Several nano-particles
(multi-walled carbon
nano-tubes, fullerene, and
reduced graphene oxide,
copper oxide (CuO), ferric
oxide (Fe2O3), and
titanium oxides (TiO2)
NPs)

• Show various degrees
of inhibition against
Botrytis cinerea
• Antifungal NPs useful
to prevent B. cinerea
infections in plants during
the growth and post-
harvest protection of rose
and other flowers

Botrytis cinerea Hao et al.
(2017)

(continued)
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Table 15.5 (continued)

Nano-particles (NPs)/
nano-materials Comments

Target pathogens/
diseases Reference

Reduced grapheme oxide • Sharp edged nano-
sheets of reduced graphene
oxide
• Antifungal activity by
inhibiting the mycelial
growth of the fungi

Aspergillus niger
A. oryzae
Fusarium
oxysporum

Sawangphruk
et al. (2012)

Nano-silica and ZnO NP • Effective against
Cercospora beticola
• Useful as alternatives
fungicides in controlling
the leaf spot of sugar-beet

Cercospora
beticola/leaf spot
on sugar beet

Derbalah et al.
(2013)

Zinc sulphate NP • Nano dimensional zinc
sulphate particles (size
100 nm) act as a photo
catalyst to control and
destroy plant pathogenic
bacteria
• Exhibit antimicrobial
activity with formation of
inhibition zones and
extended lag phase in
growth curve of bacterial
cultures in the in-vitro
conditions

Xanthomonas
campestris,
X. malvacearum
Pseudomonas
solanacearum
P. syringae

Indhumathy
and Mala
(2013)

ZnO NPs • Synthetic ZnO NP
suspensions with particle
size of 70 � 15 nm
• ZnO NPs influence
cellular functions in B.
cinerea which cause
formation of unusual
bulges on the surface of
hyphae. The structural
deformities in fungal
hyphae inhibit the growth
of B. cinerea
• NPs distort and
damage the conidia and
prevent the development
of conidiophores and
formation of conidia in
P. expansum which
eventually led to the death
of fungal hyphae

B. cinerea
Penicillium
expansum

He et al.
(2011)

Sulphur NPs • Small sized particles of
�35 nm are very effective
in preventing the fungal
growth
• Fungicidal effect is

Fusarium solani/
early blight and
Fusarium wilt
diseases
Venturia

Rao and Paria
(2013)

(continued)
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even at its picomolar concentrations (Sahu et al. 2018). P. fluorescens CHA0
produces HCN to suppress black rot of tobacco caused by Thielaviopsis basicola.

15.4.3.4 Competition for Space and Nutrients
BCAs rapidly proliferate and form intimate associations with plant surfaces. They
prevent pathogen establishment and provide protection to infection sites from
pathogen attack. Besides, BCAs produce metabolites that suppress pathogen growth.
Soil-borne fungal pathogens are more susceptible to competition due to their infec-
tion spread through mycelial contact (species of Fusarium and Pythium).

Iron (Fe) is a co-factor in many cellular enzymes, and a structural and functional
component of haeme or non-haeme proteins, cytochromes and iron sulphur clusters
(Fe/S) located in cell membranes needed during electron transport that is essential to
generate energy for the growth of microbes. BCAs produce low molecular weight
(500–1000 Da) iron-chelating ligands called siderophores that bind with ferric iron
with high affinity to form tight and stable complexes that reduce availability and
prevent Fe3+ uptake by pathogenic bacteria and fungi from the soil

Table 15.5 (continued)

Nano-particles (NPs)/
nano-materials Comments

Target pathogens/
diseases Reference

mainly because of the
deposition of Sulphur NPs
on the cell wall and
subsequent damage of the
cell wall

inaequalis/apple
scab disease

Nano-sulphur • Spherical Sulphur NPs
with an average particle
size in the range of
50–80 nm are more
efficacious than its
elemental form
• Nanosulphur is a
potent fungicide against
food-borne fungal
pathogen Aspergillus
Niger

Aspergillus niger Choudhury
et al. (2010)

Biosynthesized Ag-NPs • Reduction of silver
nitrate using Acalypha
indica leaf extract as
reducing agents
• Biosynthesized silver
nano-particles of size
35 nm inhibit the growth
of several plant pathogenic
fungi

Alternaria
alternata,
Sclerotinia
sclerotiorum,
Macrophomina
phaseolina,
Rhizoctonia
solani,
Botrytis cinerea
Curvularia lunata

Krishnaraj
et al. (2012)
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micro-environment. Based on structural moieties, siderophores are either
catecholates produced only by bacteria or hydroxymates produced by both yeasts
and bacteria (Saraf et al. 2014). Siderophore producing microbial antagonists com-
pete with pathogens for iron resulting in impediment to their growth, spore germi-
nation and pathogenesis (Das et al. 2007). Kloepper et al. (1980) were the first to
demonstrate siderophore production as the bio-control mechanism against Erwinia
carotovora by plant growth promoting bacteria Pseudomonas fluorescens. Microbial
antagonists like fluorescent Pseudomonas spp. produce siderophores such as
pyocyanin, pyoluteorin, pyrrolnitrin, pyoverdin, pyochelin to inhibit wide range of
fungal pathogens (Table 15.3). Siderophore producing Pseudomonas sp. enhances
activity of plant defense enzymes to provide disease resistance against bacterial leaf
blight in rice plants (Yasmin et al. 2016). Similar to bacterial antagonists some
yeasts, e.g. Metschnikowia pulcherrima and M. fructicola produce siderophore
pulcherrimin, with the potential to inhibit mycelial growth and conidial germination
of pathogen B. cinerea, A. alternata and Penicillium expansum. Likewise,
Rhodotorula glutinis produce rhodotorulic acid, a dihydroxamate-containing
siderophore to prevent growth of P. expansum.

15.4.3.5 Hyper-Parasitism
Hyper-parasitism is a parasitic interaction where parasites are themselves infected
by other parasites. They belong to four major classes: obligate bacterial pathogens,
predators, hypoviruses, and facultative parasites. For example, Pasteuria penetrans,

Biocontrol 
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Beneficial changes 
in microbial 

biodiversity/Niche 
Overlapping, 

Competition for 
nutrients, etc.

Enhanced Root Development

Pathogen
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Pathogen 
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Inhibited

ISR (Induced 
Systemic 

Resistance)
Competition JA/ET

Fig. 15.2 Mechanism of bio-control agents for enhanced productivity in rice
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an obligate bacterial pathogen is known to attack root-knot nematodes.
Hypovirulence is a phenomenon, where hyperparasites infect pathogens to limit
both the severity and transmission of diseases. A classical example is the mycovirus
CHV1 that infects and reduces pathogen growth rate and disease-producing capacity
of Cryphonectria parasitica, a fungus causing chestnut blight. Fungi such as
Acremonium alternatum, Acrodontium crateriforme, Ampelomyces quisqualis,
Cladosporium oxysporum and Gliocladium virens are some of the myco-parasites
of plant pathogens. Myco-parasites attack fungal sclerotia (e.g. Coniothyrium
minitans) while others target living hyphae (e.g. Pythium oligandrum). Myco-
hyperparasites, e.g. Paecilomyces lilacinus and Dactylella oviparasitica have been
reported for their attack on plant-pathogenic nematodes at different stages of their
life cycles. Hyperparasites like Trichoderma spp. exhibit predatory behaviour in
nutrient limited conditions. They destroy cell walls of many different pathogenic
fungi and penetrate to obtain nutrition.

15.4.3.6 Induced Systemic Resistance
BCAs produce potential elicitors of plant defense mechanisms and enhance resis-
tance against subsequent infection by pathogens. They cause physiological and
biochemical changes in plants, such as activation of defense-related antioxidant
enzymes such as chalcone synthase, phenylalanine ammonia lyase, peroxidase,
superoxide dismutase; cell wall degradative enzymes like chitinase,
β-1,3-glucanase and synthesis of antimicrobial compounds to secure plants against
an extensive range of fungal, bacterial and viral pathogens (Rais et al. 2017).
Bio-control agents induce accumulation of pathogenesis-related proteins phenolics,
callose, lignin and phytoalexins, which cause lysis of pathogen invading cells and
reinforce cell wall structure or induce localized cell death to resist infections. Host
resistance can be induced locally and/or systemically depending on the type, source
and amount of stimuli. Several plant-growth-promoting rhizobacteria (PGPR) such
as Pseudomonas sp. and Trichoderma sp. show strong induction of plant host
defense majorly in two forms, viz. Induced systemic resistance (ISR) and Systemic
acquired resistance (SAR) (Fig. 15.3); significantly involved in controlling patho-
genic diseases like anthracnose (Colletotrichum lagenarium), angular leaf spot
(Pseudomonas syringae pv. lachrymans) and bacterial wilt (Erwinia tracheiphila).
This elevated plant defense is activated by beneficial root microbiome genera, such
as Bacillus, Pseudomonas, Trichoderma, etc., which elicit effective cellular
responses to resist pathogen attacks (Pascale et al. 2020). Bacillus amyloliquefaciens
enhances the immune response in rice against sheath blight caused by Rhizoctonia
solani and Bacillus spp. elicit ISR against Pyricularia oryzae infection by
modulating various physiological, metabolic and molecular functions in rice
(Srivastava et al. 2016; Rais et al. 2017). PGPR mediated ISR resembles pathogen
induced SAR which enables the plant to acquire resistance not only against the
inducing pathogen but also to broad range of other pathogens (Hammerschmidt
2009; Yi et al. 2013). This resistance characteristic response finds biotechnological
application for management of pathogenic diseases in crops under field conditions.

366 V. Bist et al.



Sometimes two or more bio-control agents with antagonistic activity against same
or different pathogens or with different inhibitory potential show increased consis-
tency which is also useful for better performance in plant disease control.
Combinations of bio-control agents have a broad spectrum of activity, with
increased efficacy and reliability that better help in pathogen control (Chaudhry
et al. 2012). Microbial consortium comprising of antagonistic bacteria Pseudomonas
aeruginosa, Bacillus cereus and Bacillus amyloliquefaciens and one fungi
Trichoderma citrinoviride with bio-control attributes such as ammonia, siderophore,
cell wall-degrading enzymes (like β-1,3 glucanase, chitinase and cellulase) produc-
tion are more effective against phyto-pathogens like Macrophomina phaseolina and
Sclerotinia sclerotiorum (Thakkar and Saraf 2015. Combination of B. firmus and
P. aeruginosa is more effective against control of both sheath and bacterial leaf
blight diseases in rice (Suryadi et al. 2013). Combined applications of P. fluorescens
and T. viride reduce the sheath blight incidence caused by Rhizoctonia solani Kühn
and increase grain yield in rice (Mathivanan et al. 2005). Combinations of
bio-control agents like Pseudomonas aeruginosa, Burkholderia sp. and Bacillus
sp. are used together to inhibit leaf curl virus and leaf curl disease incidence in
cotton plants (Ramzan et al. 2016).
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PR Proteins
Defensive
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Fig. 15.3 ISR and SAR induced during plant–PGPR–pathogen interaction
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Fourteen microbial pesticide and 478 products based on their formulations are
registered in India since 2009. Out of these, 184 products comprise Trichoderma
viride, T. harzianum and Pseudomonas fluorescens and 18 products of Bacillus
thuringiensis var. kurstaki, 62 products belong to Beauveria bassiana, 51 products
of Verticillium lecanii, 13 products of Metarhizium anisopliae, 18 products belong
to nuclear polyhedrosis virus (NPV) of Helicoverpa armigera, and three products of
NPV of Spodoptera litura, which are registered for the management of plant
pathogens and insect pests. The microbial pesticides based on BCAs are target
specific, release no harmful residues and require very less investment in the large
scale production. BCAs and their microbial formulation are easily available which
can be used repeatedly without any harmful effects on human and animal health and
environment. Their broad host-range mechanisms to compete for nutrients and
space, direct antagonism for plant pathogen and host plant immunization make
BCAs superior over chemical pesticides and other available phytosanitary products.
Moreover, combinatorial effect of bio-control agents both on plant growth-
promotion and pathogen inhibition offers an advantage to serve the role of a
bio-pesticide as well as a bio-fertilizer.

15.4.3.7 Constrains in Application of Bio-Control Agents
The commercialization of BCAs and development of microbial pesticides are strictly
regulated which prevent a large number of microbial antagonists elsewhere reported
as effective against pathogens, from application in plant systems under natural
conditions. Microbial pesticides and their formulations are registered before they
are released as product in the market (Chattopadhyay et al. 2017; Mishra et al. 2018).
The microbial registration process is lengthy involving strenuous exercise to fulfil
the terms and guidelines of Central Insecticides Board in India. Besides laboratory
generated data assessment of several features of BCAs, such as their establishment
and survival, dispersal, genetic stability and horizontal gene transfer, effects on the
resident microbiota and fauna, availability and applicability of safe and an effective
containment system and post-release field monitoring are needed. In most of the
cases it is mandatory to determine the environmental impacts of BCAs and include
these with the bio-safety data and the laboratory predictions as a part of an applica-
tion for registration and commercial development of not only genetically modified
BCAs but also the natural microbial antagonists. To obtain this data on microbial
antagonists lengthy experimental procedures are needed which often require well-
designed and sophisticated ecological monitoring experimental set-ups over a large
scale that need initial investments which being time taking, seem impractical in
many situations (Bonaterra et al. 2012; Chattopadhyay et al. 2017). The data
generated needs to be validated in living systems through successive field trials in
many different conditions. Sometimes it is not possible to get the required data in the
lack of sophisticated techniques and experimentation facilities as a result only few
BCAs get registered for use as microbial pesticides and many microbial strains with
promising antagonistic activity are left. The bio-safety testing of any BCA needs
specific analysis at strain level and analysis of the autochthonous microbial popula-
tion to estimate the qualitative and quantitative alterations in the microbial
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community structure caused by the release of BCAs. The methods related with the
analysis of BCA at strain level are not available in many BCAs and microbial
diversity assessments with complex molecular methods are difficult to perform in
many environments. This also limits the application of microbiome engineering
which acts as the biomarker of modified plant microbial community with its impli-
cation in biological control, as the registration of potent strains is long-term process.
Before filing application for registration of any BCAs it is necessary to determine the
pathogenicity, virulence, allergenicity of microbe. Also, the generation of toxico-
logical data against mammals and eco-toxicity data for non-targets (fishes, birds,
earthworms, honeybees and silkworm) is mandatory. In the race of commercializa-
tion, the data with technical formulation of every strain has to be generated. It is also
requisite to generate safety data against natural enemies along with bio-efficacy and
phyto-toxicity data of formulation on the target crops. Besides, these effects of
microbial antagonists need to be evaluated for the clinical opportunistic infections
on non-target organisms and/or effects of certain secondary metabolites of concern
to guarantee safety to consumers and handlers of the microbial pesticides. For these
long-term experiments are performed in mammals and toxicological data thus
generated is complicated.

The effective biological control with microbial pesticides is only possible when
BCAs are very active and possess features such as high initial cell numbers,
increased rhizosphere competence for earlier establishment with production of
more antimicrobial/inhibitory compounds. These provide with an additional com-
petitive advantage and are a prerequisite for effective action against the pest or
pathogen. The microbial antagonists need to adapt to the fluctuating environmental
conditions and be able to survive and grow in the natural conditions to get desirable
control on pathogens and prevent disease spread in plants. However, microbial
pesticides being living entities are influenced by various biotic and abiotic factors
and often show variable efficacy in the natural systems. Their highly specific nature
against the target diseases and pathogens sometimes requires multiple microbial
pesticides to be used at a time to manage different pests and pathogens. Some BCAs
have specific and complex requirements for their growth and activity against
pathogens which need to be provided to enhance the growth of BCAs to ensure
better performance against pathogens in nature. The bio-safety testing for some well-
known BCA species such as Burkholderia cepacia, Pseudomonas putida, Pantoea
agglomerans and Aureobasidium pullulans shows them as opportunistic human
pathogenic strains which prevent their application on crops. The limitations and
bio-safety issues associated with BCAs restrict the use of microbial pesticides in
plant disease management. The current share of the BCAs is very poor occupying
about 4% of the total pesticide market share in India. Immediate actions are needed
to overcome these limitations to increase the popularity and safe delivery of BCAs to
the agricultural systems.
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15.4.4 Biochemical Pesticides

The environmental and toxicological risks associated with intensive use of synthetic
chemical pesticides have generated interest in search of alternative chemical sources
useful in safe management of plant pests and pathogens. Biochemical pesticides
include plant-derived chemicals (botanicals), antibiotics and other microbe and
animal-based products. These biochemicals being natural, less toxic and easily
bio-degradable are exploited as an eco-chemical and bio-rational approach in crop
protection from pests and pathogens and to produce food safe for human consump-
tion. Different plant and microbe based biochemicals of importance in pest and
phyto-pathogen management are discussed separately.

15.4.4.1 Plant-Based Products (Botanicals)
Plants naturally produce a wide array of complex organic compounds that are not
directly linked with plant growth and development but rather provide strength and
protection to plants against biological stress conditions, such as wound and pest/
pathogen attack and invasion. These plant extracts (botanicals) have antimicrobial
properties and are toxic to several phyto-pathogens which are exploited as
biopesticides and bio-fungicides (Mizubuti et al. 2007; Castillo-Sánchez et al.
2015; Chengala and Singh 2017). Some plant extracts with inhibitory action on
major plant pest and phyto-pathogens are given in Table 15.4. The bioactive
components in plant extracts are developed into products which are useful in the
management of plant diseases. One such example is Plant Tonic 9 (EOX-SOV)
which inhibits the mycelial growth and conidial germination of pathogenic fungi.
Plant Tonic 9 is more effective than fungicide propiconazole against M. Oryzae and
causes increased accumulation of phenolic compounds and defense enzymes (per-
oxidase and polyphenol oxidase) in rice plants infected with pathogen (Abed-
Ashtiani et al. 2018). Likewise, Achook, Neem Azal T/Z, Neem gold and Tricure
with azadirachtin as the active ingredient are more effective in control of blast
disease in rice than conventional pesticides carbendazim and ediphenphos (Pandey
2018). A plant oil-based formulation NP2 effective against fungal pathogens respon-
sible for powdery mildew and botrytis bunch rot is commercialized in New Zealand
(Wurms et al. 2011). However, bioactive ingredients in some botanicals are volatile
and get rapidly degraded that reduce their efficiency under field conditions. There-
fore, controlled release of liquid and solid formulation of plant-based extracts
increases the stability and shelf life of unstable components (Borges et al. 2018).
Some plant extract and or their active component based formulations are developed
as given in Table 15.4. Hybrid formulations (plant extract + chemical) are often more
efficacious in crop protection, thereby reduce the amount of chemicals which are
otherwise needed thus safer for the environment. One such formulation recently
developed is Regev™ EC (STK, Petah Tikva, Israel) (Reuveni 2019). It contains
difenoconazole and tea tree extract in 1:2 ratio and provides protection against fungal
pathogens responsible for diseases powdery mildews (caused by fungi in the order
Erysiphales), apple scab (Venturia inaequalis), Black Sigatoka in banana
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(Mycosphaerella fijiensis), and also against species of Alternaria, Cercospora,
Botrytis, Rhizoctonia, Pyricularia, Helminthosporium and Sclerotium.

15.4.4.2 Microbe and Animal-Based Products
Chitosan, derived from deacetylation of chitin is known to suppress Fusarium
oxysporum f. sp. radicis-lycopersici (soil borne) that causes root rot in tomato. It
also shows antifungal activity against B. cinerea. A chitosan-based product
ARMOUR-Zen® has been commercialized in New Zealand to control botrytis
bunch rot in wine grapes and postharvest grey mould of table grapes (Romanazzi
et al. 2009; Reglinski et al. 2010; Calvo-Garrido et al. 2013). Although its exact
mechanism of action still needs to be explored, it has been observed that chitosan
treatment increases pathogenic resistance. Chitosan is bio-compatible and stable in
water which is safely used as a carrier to improve the shelf life and antimicrobial
activity of plant extracts. A study shows that chitosan capsules containing essential
oil from Citrus bergamia and Citrus aurantium strongly inhibit Aspergillus flavus
growth and prevent decay of dates during storage in lab conditions (Aloui et al.
2014). Likewise chitosan–cinnamon beads with both antifungal and nematicidal
properties were obtained by mixing chitosan with cinnamon powder and cinnamon
extract. The chitosan–cinnamon beads in-vitro inhibit mycelial growth of fungus
Rhizoctonia solani and prevent egg hatching with juvenile mortality of nematode
Meloidogyne incognita (Seo et al. 2014). Unlike conventional chemical pesticides
(Fig. 15.1) biochemical pesticides and their formulations are more specific to target
pathogens, have low persistence time and release no residual toxic end products after
degradation. The plant and microbe based biochemicals and their residues are less
harmful and relatively safe, which, can be applied at times close to crop harvest and
also in post-harvest management. The widespread use of biopesticides makes it
possible to produce food with no or minimal pesticide residues if any. This is helpful
to satisfy consumer desires for more natural, healthy and safe food.

15.4.5 Nano-Pesticides

Nano-pesticides are used to describe any pesticide and/or bio-pesticide formulation
that includes entities of size in the nanometre scale (1 nm ¼ 10�9 m) ranging from
100 nm to 400 nm. The nano-based pesticides and/or antimicrobial formulations
have novel properties associated with the small size. The nano-scale formulations are
self-regulatory that allow only the required amount to be delivered into the plant
tissue or plant part which is attacked by disease or pest. Nano-pesticides have large
surface-area-to-volume which allows fungicides or pesticides to act on a wider area
of the infected plant. It reduces the amount of fungicides and pesticides otherwise
needed to get the desired outcome thereby minimizing the risk of toxic pesticidal
residues in soil, water resources and crops (Prasad et al. 2014, 2017).

Several plant protection chemicals are available in the market as nano-
formulations such as nano-emulsions, nano-encapsulations, nano-suspensions
which are applied as foliar spray and soil spray. Nano-suspensions consist of poorly
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water-soluble pesticide nano-particles (NPs) dispersed in water. Formulations
containing pesticide NPs of 100–250 nm are more soluble in water. Nano-emulsions
are either water or oil-based formulations and contain uniform suspensions of
pesticide or herbicide NPs of size 200–400 nm. Nano-emulsions exhibit greater
stability with increased surface coating on leaves and uptake through plant cell walls.
Nano-pesticides represent the next-generation to traditional pesticides, and offer
benefits such as high efficacy, durability and fewer doses of active ingredients.
Nano-formulations of the pesticides are prepared in a simple cost-effective manner
which appear safe and environment friendly. Nano-emulsions of a large number of
pesticides are commercially available as ‘Banner MAXX™’, ‘Primo MAXX®

’,
Subdue MAXX™ ‘Cruise MAXX® Beans’ and ‘ApronMaxx® RTA®

’. Banner
MAXX™ is a systemic fungicide which offers broad-spectrum potential for disease
control in turf and ornamental plants. Banner MAXX enters the plant through stem
surface or root and prevents fungal growth by inhibiting sterol biosynthesis. Primo
MAXX®, a cyclopropyl derivative of cyclo-hexenone, is a plant growth regulator
that imparts resistance to plant against abiotic as well as biotic stresses.
ApronMaxx® RTA® is a seed treatment fungicide that reduces the threat of
seed-borne and soil-borne diseases, and protects crop (http://www.syngenta-us.
com/seed-treatment/apron-maxx-rta). Syngenta’s Karate® ZEON is a quick release
micro-capsulated insecticide containing an active compound of lambda-cyhalothrin
which is released on contact with leaves to provide control against insect pests on
barley, wheat, cotton and other field crops (https://www.syngenta.com.au/product/
crop-protection/insecticide/karate-zeon).

15.4.6 Antimicrobial Nano-Particles (NPs)

Like pesticides nano-particles, several metals, metal oxides, metalloids, non-metals
and carbon compounds possess many bactericidal and fungicidal properties and are
being nanotized. These NPs are more useful in the control of plant pathogens. Metal
NPs exert inhibitory effect on microbes which are generally lethal for plant
pathogens. The metals such as silver (Ag) and copper (Cu) directly exert their
toxic effect on pathogens while (Ali et al. 2020) others indirectly act by altering
the host nutritional status and activating defense mechanisms in the host plant. Toxic
ions such as Zn2+, Ag+ released from metal NPs bind to various sulphur-containing
proteins and enzymes which accumulate in cell and prevent their proper functioning.
They interrupt electron transport, cause membrane potential collapse, generate
reactive oxygen species (ROS) and cause ROS-mediated cellular damage that
destroy nucleic acid which leads to cell death (Aziz et al. 2014, 2015, 2016,
2019). Unlike pesticides, metal NPs simultaneously use more than one mechanism
to fight more effectively against different plant pathogens. Some nano-materials with
antimicrobial potential commonly used in plant pathogen control are discussed
below.
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15.4.7 Silver Nano-Particles

Silver (Ag) is widely known to possess antimicrobial activity against numerous
pathogens and is generally non-toxic to humans. Silver nano-particles (Ag-NPs) and
other silver containing nano-structures are one of the most commonly used inorganic
nano-materials in plant pathology (Ali et al. 2020). Ag-NPs have large surface-area-
to-volume ratio which enables their increased contact with microbes and their
permeability into microbial cells making them more effective against pathogens
(Aziz et al. 2014, 2015, 2016). As a result, antimicrobial formulations containing
Ag-NPs are needed in small amounts to get desirable control on the growth of
pathogens. The antifungal activity increases with the increasing Ag-NPs concentra-
tion, for example, excellent inhibition is observed under in-vitro conditions at 15 mg
concentration of Ag-NPs against pathogenic fungi, namely Alternaria alternata,
Sclerotinia sclerotiorum, Macrophomina phaseolina, Rhizoctonia solani, Botrytis
cinerea and Curvularia lunata (Table 15.5). Silver NPs adhered to graphene oxide
(AgNP-graphene oxide composites) are more stable that effectively decrease cell
viability of pathogenic bacteria Xanthomonas perforans causing bacterial spot on
tomato in both culture and green house conditions (Ocsoy et al. 2013).

The Ag-NPs also improve the efficiency of synthetic antifungal agents, like
fluconazole against Phoma glomerata, P. herbarum, F. semitectum, Trichoderma
sp. and Candida albicans. In-vitro tests reveal that Ag-NPs differently inhibit the
hyphal growth and sclerotium germination of fungal phyto-pathogens, namely
Rhizoctonia solani, Sclerotinia sclerotiorum and S. minor in a dose-dependent
manner with maximum inhibition on hyphal growth of R. solani, followed by
S. sclerotiorum and S. minor (Min et al. 2009). Even the low concentrations of
Ag-NPs can inhibit sclerotium germination of S. sclerotiorum effectively. The nano-
Ag liquid inhibits Sclerotium cepivorum that causes the white rot of the green onion
(Jung et al. 2010). Fusarium culmorum spores treated with Ag-NPs show deeply
decreased mycelial growth with reduction in the number of germinating fragments
and sprout length from the spores (Kasprowicz et al. 2010). It is believed that
metallic Ag ions released from NPs interact with the sulphydryl groups that cripple
the enzymes needed during aerobic respiration in fungi and bacteria, which prevent
cellular metabolic processes resulting in the death of susceptible microorganisms.
Metallic Ag alters membrane permeability with the cell consequences of detachment
of plasma membrane from cell wall. Beside these many other ways are possible by
which Ag-NPs exert the inhibitory effect against specific microbial targets. The
various antimicrobial mechanisms and the detrimental effect of Ag on microbial
cellular processes make Ag-NPs as important tools to destroy and prevent growth of
a wide range both bacterial and fungal pathogens.

15.4.8 Copper Nano-Particles

Copper (Cu) is an active ingredient in many agro-chemicals (fungicides and or
bactericides) commonly employed to prevent fungal or bacterial infections and
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control plant diseases. These compounds typically contain micron-sized metallic
copper as hydrophobic copper hydroxide and copper oxide (CuO) particles, which,
usually aggregate in aqueous medium that decreases their antimicrobial activity. The
nano-particles of Cu and CuO with small size and high surface area have higher
antibacterial and antifungal activity. The Cu-based NPs deliver Cu to target
pathogens and plants at higher rate without any deleterious effect on plants
(El-Abeid et al. 2020). Study shows that foliar spray of CuO NPs prevents Fusarium
and Verticillium wilt and enhances growth of tomato and egg plants grown in disease
infested soil and soilless medium more than bulk equivalents, or their sulphate salts
(Elmer and White 2016). Synthetic copper based NPs such as CuO, Cu2O and
Cu/Cu2O nano-composites of different morphology are more effective in control
of Phytophthora infestans and prevent its infection on the tomato leaves than
commercial Cu-based products (Giannousi et al. 2013). Small sized chemically
synthesized Cu-NPs coated with cetyltrimethylammonium bromide show significant
antifungal activity against fungal pathogens, namely Fusarium oxysporum,
Curvularia lunata, Alternaria alternata and Phoma destructive (Kanhed et al.
2014). These Cu-NPs show more activity than broad-spectrum fungicide bavistin
against pathogenic fungi. The nanotized copper compounds dissociate to release Cu
particles which act upon the pathogenic fungi. Nanotized forms of Cu compounds
like Cu3 (PO4)2�3H2O nano-sheets rapidly breakup in natural conditions and release
Cu particles that increases their antifungal character (Borgatta et al. 2018).

Silica nano-composites consist of Cu and/or CuO NPs embedded in hydrophilic
silica gel matrix that reduces particle–particle interaction and aggregation. Sol–gel
silica is hydrophilic and negatively charged, thus serves like a weak chelator of
copper ions and increases its availability. Copper nano-composites such as core-shell
copper, multivalent copper and fixed quaternary ammonium copper are effective
bactericides more active against Xanthomonas perforans causing bacterial spot on
tomato (Strayer-Scherer et al. 2018). Study shows that these copper nano-composites
are more effective than metallic micron-sized copper and reduce bacterial spot
disease severity using 80% less metallic copper as compared to copper-mancozeb
in the field conditions. Cu-based nano-scale materials with inhibitory effects on wide
range of fungal and bacterial pathogens prevent their growth that helps in plant
disease control.

Metals and their oxides have inhibitory effect on broad range of both fungal and
bacterial pathogens. Also, their nanotized forms are needed in very small amounts
which are generally non-toxic for human and plant health. These NPs thus offer a
sustainable and effective strategy in the crop disease management.

15.4.9 Carbon Nano-Materials

Carbon is the most abundant element naturally found in larger amounts in many
easily available sources. The allotropic character of carbon allows formation of
nano-materials with several different morphologies and structure. Different carbon
nano-materials, namely carbon nano-tubes (single-walled and multi-walled),
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graphene oxide (oxidized and reduced) and fullerenes have shown to restrict growth
of pathogens such as Xanthomonas, Aspergillus spp., Botrytis cinerea and Fusarium
spp as given in Table 15.5. Carbon-nano-materials (CNM) tightly contact with
fungal spores forming CNM-spore aggregates which effectively suppress germina-
tion of spores. Their sharp edges and coating on microbial surface damage the cell
wall and produce oxidative stress (ROS) that inhibit pathogen growth. Numerous
antibacterial carbon nano-tubes dispersed in solution act as sharp and fast moving
‘Nano-darts’ that constantly attack on the pathogenic bacteria, disrupting their cell
integrity and causing the cell death (Liu et al. 2009). Foliar spray of metal oxide
(Fe2O3 or TiO2) NPs and carbon- nano-materials (multi-wall carbon nano-tubes or
fullerene) promote plant growth and resistance against Turnip mosaic virus infection
in tobacco (Hao et al. 2018). The carbon nano-materials and their use in plant disease
suppression are relatively new and very little is known about the environmental fate
of these materials. However, their antimicrobial properties and inhibitory effect on
wider range of pathogens make CNMs important tools in plant disease control and
protection from phyto-pathogens.

15.4.10 Green Nanotechnology in Plant Disease Management

Various microbial species aggregate inorganic materials either within or outside their
cells to form nano-particles (NPs). Green nanotechnology is based on the use of
microorganisms and/or plant extracts for the synthesis of nano-particles. Biological
biosynthesis of many NPs such as gold, silver, gold–silver alloy, selenium, platinum,
palladium, silica, zirconia, magnetite and uraninite by bacteria, actinomycetes, fungi,
yeasts and viruses have been reported earlier (Prasad 2014; Prasad et al. 2016, 2018).
Many of these biosynthesized NPs act as potent antimicrobial agents which find
application in crop pest and pathogen management. Several fungal species,
e.g. Fusarium sps., Aspergillus sps., Verticillium sp., Penicillium sp. and
Trichoderma sp. are promising resources in NP fabrication, often termed as myco-
nano-particles. Mycelia-free water extracts of Amylomyces rouxii strain, KSU-09
isolated from date palm roots suspended in silver nitrate, facilitate production of
stable, predominantly monodispersed and spherical Ag-NPs (Musarrat et al. 2010).
These myco-AgNPs exhibit antimicrobial activity against many bacterial pathogens
like Shigella dysenteriae type I, Staphylococcus aureus, Citrobacter sp.,
Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans
and fungal pathogen Fusarium oxysporum. Nano-pesticides and antimicrobial NPs
provide green alternatives with safe applications on wide range of crops in fields and
also during storage to prevent post-harvest pest and pathogen attack (Bhattacharyya
et al. 2016). However, the toxicity of nano-particles and nano-pesticide carriers, and
their biological effects on plant health need to be addressed before their application
in agriculture.
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15.5 Plant-Incorporated Protectants (Genetically Modified
Plants)

Considering the demand to devise new strategies for the development of new
resistant plant varieties against infectious diseases, several advancements have
been made through molecular approaches. These approaches mainly involve:
(1) gene introduction for detoxification of microbial compounds (fungal pathogenic-
ity factors), (2) gene expression, producing antifungal proteins and other antimicro-
bial products, (3) gene editing and gene silencing approaches.

15.5.1 Transgenic Approaches

Hydrolytic enzymes responsible for the degradation of fungal cell wall have been
widely used in transgenic plants for the stimulation of gene overexpression (Shin
et al. 2008). Introduction of chitinase genes for production of transgenic plants,
imparting disease resistance has been reported by Melchers and Stuiver (2000).
Many transgenics have been produced using these enzymes (alone/synergy) which
include rice, tomato, carrot and tobacco enhancing fungal resistance in plants. There
are also reports of introducing enzyme such as the RC24 chitinase gene of rice into
wheat that showed resistance against Puccinia graminis f. sp. tritici (Huang et al.
2013). Likewise, the chitinase class-I gene (RCH10) of rice, when introduced in
lilium, showed elevated resistance against infection by Botrytis cinerea (de Cáceres
González et al. 2015). Chitinase gene (chiA) from Serratia marcescens was the first
gene incorporated in plants to develop disease resistance against Alternaria longipes
and Rhizoctonia solani (Kamble et al. 2016). Another chitinase gene chit42 from
Trichoderma harzianum, with 400 fold increased chitinase activity, after
incorporation in potato showed absolute resistance against Alternaria alternata,
Alternaria solani, Botrytis cinerea and R. solani and Sclerotinia sclerotiorum
(Zhang et al. 2016).

15.5.2 Genome Editing

Gene editing technologies (GET), being a versatile approach, play a crucial role in
the plant immunity. Progress proceeds by altering the genotype and phenotype of
organisms by introducing specific changes in the DNA sequence of a target gene
(crop/specific plant species) via insertion, deletion, modification and replacement
(Zhang et al. 2017; Van Eck 2020). In such technologies, site specific endonuclease
system enables targeted genome modifications through DNA double-stranded
breaks (Khandagale and Nadaf 2016). Similar four different systems have been
used which include clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9), zinc-finger nucleases
(ZNFs), transcription activator-like effector nucleases (TALENs) and
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meganucleases (Osakabe et al. 2010; Baltes et al. 2015; Zaidi et al. 2016; Mushtaq
et al. 2018).

CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-
associated proteins) is an indispensable tool for basic plant research and crop
improvement (Sarma et al. 2021). It has been a promising approach against plant
viruses as many bacteria possess antiviral defense machinery. This system requires
an RNA-guided nuclease (often a Cas protein), which cleaves at specific target sites
governed by base complementarity between CRISPR RNA and target DNA/RNA
(Wu et al. 2014). Some examples include RNA-guided endonuclease Cas9 from
Streptococcus pyogenes (SpCas9), RNA-guided RNases Cas13a from Leptotrichia
shahii (LshCas13a) or Leptotrichia wadei (LwaCas13a) (Abudayyeh et al. 2017;
Cox et al. 2017) and Cas9 from Francisella novicida (FnCas9) (Price et al. 2015).
Ilardi and Tavazza (2015) have proposed gene editing as a potent tool against Plum
pox virus.

The CRISPR/Cas9 technology has opened a new opportunity in the fields of
functional genomics and crop improvement (disease resistant) by either stacking of
resistant (R) gene(s) or disruption/deletion of susceptible (S) genes (Li et al. 2020).
This method is now extensively used to modify the plant immunity at different levels
in several crops. It is achieved by alteration in (1) susceptible genes (S-genes),
(2) resistance genes (R-genes), (3) genes regulating the interaction between effector
and target and (4) genes regulating plant hormone balance (Andolfo et al. 2016).

By using genome editing on mildew-resistance locus O (MLO) of wheat through
TALEN- and CRISPR/Cas9, powdery mildew disease-resistant genotypes have
been developed for wheat (Wang et al. 2014a, b). Similarly, CRISPR/Cas9 was
used to modify pathogenicity gene Avr4/6 in Phytophthora sojae, an oomycete
pathogen of soybean (Fang and Tyler 2016). It has also been used in developing
plant resistance to bacterial leaf blight caused by X. oryzae pv. oryzae (Li et al.
2012). Wang and colleagues have used CRISPR/Cas9 technology to develop
mutagenized rice lines with enhanced blast resistance (Wang et al. 2016). Similarly,
Jiang et al. (2013) have evaluated disruption of susceptibility genes OsSWEET11
and OsSWEET14 using CRISPR/Cas9 against rice bacterial blight. Recently, Ma
et al. (2017) used CRISPR/Cas9 to knockout rice OsSEC3A gene and showed that
absence of OsSEC3A gene provide improved defense response and resistance
against fungal pathogen M. oryzae.

15.5.3 Gene Silencing

RNA interference (RNAi), a method of gene silencing, involves the blocking of a
gene function (Younis et al. 2014). The term RNA interference (RNAi) was first
coined in Caenorhabditis elegans, however, originally known to occur in plants and
fungi (Hannon 2002; Nawal et al. 2016). It is a post-transcriptional sequence-
selective technique which regulates a gene expression by destroying the
corresponding mRNA, suppressing its translation, with chromatin remodelling.
RNAi is not used to knock out some gene expression but it is only a way to suppress
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its effect by the binding of small RNA fragments to messenger RNA thus causing
cleavage thereby reducing the expression.

RNAi, due to its specific mode of action, opens new avenues to control pests and
diseases, introducing novel plant traits by gene silencing to increase crop yields. It
may have a wide host range and involves the gene expression silencing of both
specific endogenous genes and those of pathogens as well, thus assisting in crop
protection. It is therefore used to turn off genes with a specific mode of action
compared to other strategies such as the use of chemicals. Using this approach many
resistant plant varieties have been developed against root-knot nematodes, corn
rootworm and cotton bollworm. Many new crops have been developed using
RNAi such as nicotine-free tobacco, decaffeinated coffee, nutrient fortified maize,
etc. (Tang et al. 2007).

Host-Delivered RNAi (HD-RNAi), also known as Host-induced gene silencing
(HIGS) produces double-stranded RNA molecules which target pathogen genes
present in host by cleaving it into short interfering RNA molecules (siRNAs).
These siRNAs get utilized by pathogens resulting in induced RNAi causing patho-
gen gene silencing (Fairbairn et al. 2007). HD-RNAi has shown significant results
against some fungal diseases (Tiwari et al. 2017) such as barley powdery mildew
caused by Blumeria graminis (Nowara et al. 2010), wheat stripe rust fungus by
Puccinia striiformis (Yin et al. 2011). Yin et al. (2011) reported Barley stripe mosaic
virus (BSMV)-induced gene silencing against Puccinia striiformis f. sp. Tritici (Pst)
genes to screen RNAi targets for rust diseases. Control of the devastating disease of
wheat scab has also been reported to control by this technique (Koch et al. 2013).
Synthetic siRNAs are known to downregulate the key fungal genes involved in toxin
production in Aspergillus and Fusarium spp., using a hairpin RNAi approach in
plants to control mycotoxigenic fungi (Abdel-Hadi et al. 2011). Virus-induced gene
silencing (VIGS) is another versatile tool for triggering RNAi silencing (Purkayastha
and Dasgupta 2009). Ding et al. (2006) have developed a brome mosaic virus
(BMV)-induced RNA interference (RNAi) system for rice VIGS work, which is
easy to operate and produce designed siRNA against internal rice target genes.

15.6 Biopesticides: A Feasible Alternative

Nowadays, biopesticides are gaining importance for disease management, as they
are economic, feasible and eco-friendly substitutes to chemical pesticides
(Bhattacharyya et al. 2016; Samada and Tambunan 2020; Kesho 2020). They may
allow sustainable control of severe pathogens by their non-toxic mode of action.
Biopesticides are classified in three categories: plant-incorporated protectants,
microbial pesticides and biochemical pesticides (Senthil-Nathan 2015). Plant-
incorporated protectant (PIP) are biopesticides expressed in genetically modified
crops which induce plants to produce a pesticide on its own (Parker and Sander
2017). The Cry proteins from the bacterium B. thuringiensis (Bt) were the first-
generation insecticidal PIP expressed in genetically modified (GM) crops (Clark
et al. 2005). Numerous lines of Cry gene-expressing rice have been shown to confer
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resistance to lepidopterous pests (Cohen et al. 2008). Other than Cry protein, a new
class of PIP-based GM crops has been developed expressing double-stranded RNA
(dsRNA), based on RNAi (Parker and Sander 2017). Plant-incorporated protectant
GM crops are mostly used in Americas, Asia, Australia, whereas their use is still
restricted in Europe (ISAAA 2016). In search for new biomolecules and efficient
biopesticides, recombinant DNA technology has been used to develop biopesticides
with the use of novel fusion proteins in order to improve their efficacies. This
technology involves the fusion of a toxin (non-toxic to higher animals) with a carrier
protein making it toxic for insect pests if consumed orally (Fitches et al. 2004). A
fusion gene/protein constructed of DI and DII domains of Bt Cry1Ac and lectin from
garlic allowed the development of rice varieties resistant to different groups of insect
pests such as yellow stem borer, leaf folder and brown plant hopper (Boddupally
et al. 2018).

Another fusion protein, super-Blad, consists of the blad gene, an active ingredient
of biological fungicides and peptides with a potential as antibacterial agents. It was
constructed in Lupinus albus as a broad-spectrum antifungal tool against both plant
and human pathogens (Monteiro et al. 2015; Pinheiro et al. 2017). Recently, its mode
of action was determined to be a multi-site fungicide which disturbs cell homeostasis
and leads to microbial cell death (Pinheiro et al. 2017). Therefore, the fusion protein
can be developed as recombinant protein in microbial systems, which can facilitate
its industrial and commercial formulations.

Microbial pesticides comprise biological agents (bacteria, fungi and viruses) with
a capability to control different pathogens. They are applied in a manner similar to
chemical pesticides, but they work in an eco-friendly way as discussed earlier. On
the other hand, biochemical pesticides are generally synthetic materials that either
inactivate or kill the pest. These are naturally occurring substances including
pheromones, plant extracts and fatty acids. They interfere with growth or mating
and sometimes attract insect pests to trap (Senthil-Nathan 2015). Use of
biopesticides in agriculture has its own advantages. They are inherently less harmful
and eco-friendly, perform effectively in small concentrations, are more specific
towards their targets, naturally decompose in the environment without any deleteri-
ous impact.

15.7 Conclusion and Future Perspective

Plant diseases pose a severe risk to global agricultural production and economy. In
the past farmers shifted worldwide towards the use of chemical fertilizers to over-
come many plant protection issues. Excessive and continuous usage of agro-
chemicals on-farm resulted in human health hazards, environmental pollution and
reduced agricultural production. There have been many cases of intoxication of
farmers, rural workers and their families reported to occur during pesticide applica-
tion on-farm, and of poisoning of these synthetic chemicals on human health as well.
Due to these challenges the need roused to devise eco-friendly strategies for disease
management. Numerous researches have been done to develop GM crops which
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have potential to prevent themselves against pathogens but their usage is restricted to
some countries only, due to opposition by public opinions and government issues.
These technologies should also be introduced in developing countries in order to
minimize the knowledge gap between researcher and farmers. Other than GM crops,
common and feasible practices such as those involving bio-control agents are also of
immense importance. Approaches to increase their popularity among farmers
through awareness programs, under different government schemes, are deeply
needed. The drawback of quality production should also be taken care for usage of
bio-control agents to achieve a sustainable crop production. The development of
molecular-based novel technologies should not be confined only to laboratories, as
there is a need for awareness among common people to bring these tools at the field
level.
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Host Plant Resistance: An Eco-Friendly
Approach for Crop Disease Management 16
Anju Pathania, Lakhmir Singh, and Prem Nath Sharma

Abstract

The climate change and ever-increasing population has stressed the plant
scientists to devise economically viable, ecologically safe and socially acceptable
agricultural practices that can keep the menace of plant disease losses under
economic threshold levels. In the recent past, the philosophy of crop protection
has shifted from the use of environmentally unsafe chemical pesticides to the
eco-friendly approaches. The conventional methods of plant disease management
like cultural practices, biological control, chemical control, and natural resistance
are still in practice, but are not adequate to control many destructive diseases. The
sustenance of disease resistant varieties under variable eco-systems remained a
challenge to the breeders due to the fast-evolving nature of many plant pathogens
resulting in the breakdown of the R-genes. This emphasized the plant breeders to
have a wide range of genetic options to diversify the resistance traits having
potential to reduce the pressure of pest evolution. Hence the approaches for the
genetic improvement of crops are expanded from simple selection to the genome
editing. The recombinant DNA technology and genetic transformation techniques
offered unique opportunities to transfer resistance genes beyond crop plant gene
pools. The effective strategies for engineering disease resistance include exploi-
tation of genes related to pathogenesis-related protein (PR proteins), upregulation
of plant structural defense mechanism, disarming host susceptibility genes and to
express proteins or antimicrobial compounds that are harmful to the pathogens.
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The RNA-mediated gene silencing is another approach to switch off specific
genes by inserting double-stranded RNA and has been successfully exploited in
disease management especially the viral pathogens. With the advent of genome
editing technologies, now it is possible to edit crop genome by editing the
sequences of a specific gene instead of complete gene deletion and it can be
exploited to modify the genes associated with plant immunity. To achieve the
targets of developing eco-friendly and durable pathogen management, there is a
need to design strategies that can complement conventional and modern
techniques.

Keywords

Genome editing · Host · Hybridization · Molecular breeding · Resistance · RNAi
transgenic

16.1 Introduction

Production of food grains has been increased significantly after our independence
along with population and technology. Further, increase in population and industri-
alization has led to climate change which resulted in the emergence of several new
pests and diseases. Despite of several advances in disease management strategies,
global food security is threatened due to multitude of pests and pathogens causing
30% production losses annually. According to FAO estimates, annually 20–40% of
global crop production are lost to pests and plant diseases cost the global economy
around $220 billion every year (Anonymous 2019). To increase the production of
food grains to feed ever growing population, heavy use of chemical fertilizers and
pesticides along with high yielding varieties, was practiced. But their injudicious use
resulted in the emergence of pesticide resistant population of various insect-pests
and pathogens, besides polluting our natural resources and causing many health
hazards. Moreover, the chemical control of plant diseases is beyond the reach of
resource poor farmers of developing countries. So, the efforts of plant scientists were
directed towards other alternative methods for the management of various plant
diseases which were responsible for huge pre- and post-harvest losses. The
eco-friendly and sustainable conventional practices for controlling diseases include
the development of resistant varieties, application of cultural practices and biological
control agents. These conventional methods are still in practice but are not adequate
to control many destructive diseases. Biological control measures have received
considerable attention, but their effective application is limited due to quality,
problem of supply, and complex soil-pathogen-environment interactions under
field conditions (Thakur 2007). Exploiting host plant resistance is important for
sustainable crop production which is the need of the hour as it reduces the environ-
mental damage by reducing the application of agrochemicals. Disease management
through host plant resistance is based on simple and easily transferable seed-based
technology that does not cost additional amount to the farmers, although it is a time
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consuming and exhaustive exercise for researchers. Disease resistant varieties have
been developed by implementing various conventional and modern plant breeding
approaches. The sound knowledge of biology and epidemiology of the disease,
host–pathogen interaction, effective and rapid screening techniques to identify
resistant sources, exploitation of identified resistance sources to develop
agronomically desirable lines, evaluation of their agroecological adaptation and
yield potential are major steps involved in developing a disease resistant cultivar
(Thakur 2007). The major limitations of conventional breeding approaches are slow
transfer of desirable traits to develop superior genotypes and the linkage drag which
results into the transfer of some undesirable traits along with desirable ones into an
otherwise superior variety (Sanghera et al. 2011). Also, the time required for the
transfer of desired gene depends on the donor of desired gene as well as evolutionary
relationship between the donor and recipient plant. It is easy to transfer desired traits
from donors belonging to primary gene pool of the crop. Secondary and tertiary gene
pools are the reservoirs of several important biotic stress resistance traits, but it is
difficult to transfer resistance genes from a donor belonging to secondary and tertiary
gene pools and may take appreciably long time to transfer the genes due to pre- and
post-fertilization barriers (Jauhar 2006). During natural host–pathogen interaction
some pathogens evolved to parasitize large number of hosts while others remained
specific to certain hosts and developed races that are specific to the varieties within a
host crop. The resistance in plants is categorized as monogenic, oligogenic, poly-
genic, systemically acquired resistance, and post-transcriptional gene silencing. In
most of the crop plants major resistance genes based on classical gene-for-gene
concept have been exploited in conventional breeding programmes that have rapidly
been accompanied by resistance break down. Polygenic resistance is no doubt a
durable resistance but its exploitation is limited due to complex inheritance. The
constant struggle between host and pathogen resulted in the evolution of new races
of pathogens and the disease resistant varieties having major genes become obsolete
after 7–8 years or even early because these genes can be defeated by a single loss of
function mutation in corresponding avirulence (Avr) gene. For example, in the
recent past emergence of super virulent wheat stem rust race Ug99 threatened the
wheat breeder’s worldwide (Singh et al. 2011). Plant scientists employed different
strategies to enhance the durability of resistance using conventional methods, but
due to evolution of super races of pathogens and frequent break down of resistance
with the passage of time, there is continuous challenge for breeders to develop new
varieties in short time span to protect the crops from new pathogens. It is expected
that world population will exceed nine billion by 2050 and to feed the whole
population 70% more grain production is required (Anonymous 2017). The great
challenge of global food security directed the plant scientists to develop and use
modern biotechnological approaches to speed up the process of varietal development
with resistance to biotic and abiotic stresses. Molecular marker assisted selection,
back cross breeding and gene pyramiding have been exploited by the breeders for
development of durable disease resistant varieties in short time span with greater
efficiency against many diseases. Due to recent advancements in sequencing
techniques, the genome sequences of many crops are available and for generation
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of new variations specific DNA sequences in the genomes can be targeted. Molecu-
lar biology of disease resistance has deciphered the role of various proteins
(PR proteins), phytoalexins, hydrolytic enzymes, and antimicrobial compounds in
host plant defense mechanism. These defense responses are genetically
programmed, and activated only upon invasion of a plant by the pathogen (Somssich
and Hahlbrock 1998). The understanding of genetically controlled defense responses
and the genetic basis of products (enzymes or proteins) being produced during
defense actions has opened new vistas of research on plant diseases at molecular
level. Availability of genome sequences of many crop plants and knowledge of
disease development at molecular level enables genome editing techniques to
modify the target gene sequences to develop disease resistant varieties (Andolfo
et al. 2016). This book chapter will elaborate the various breeding methods to exploit
resistance genes for the management of various crop diseases with special reference
to cereal crops. In addition, the reader will be provided with an insight into various
aspects of plant defense response and host resistance.

16.2 Defense Mechanisms in Plants Against Diseases

In nature, plants are continuously challenged by different pathogens where few of
them are successful in getting entry into a host. The plants have developed a variety
of constitutive and inducible defense systems for protection from different biotic
factors. Constitutive defense system of plants comprises of multiple preformed
barriers such as waxy cuticles, cell walls, and bark as host surface barriers. Induced
defense include the production of toxic chemicals, pathogen degrading enzymes,
anti-nutritional effects and deliberate cell suicide (Freeman and Beattie 2008). Plants
oftenly do not produce toxic compounds or defense-related proteins until pathogens
are detected due to metabolic cost associated with production and maintenance of
these compounds (Saskia and Jorunn 2011).

The first line of defense in plants present on their surface comprises of several
characters that act as barriers to pathogen penetration and are required to be breached
to enter the host. If the pathogen succeeds in penetration; it encounters pre-existing
internal structural barriers. Plants either possess or liberate chemicals, which inter-
fere with pathogen activities performed during the process of pathogenesis, thereby
preventing or interfering with infection. Plants surface cells also contain variable
amounts of hydrolytic enzymes such as glucanases and chitinases, which may cause
breakdown of pathogen cell wall components.

The first step in infection process is the cell-to-cell communication between host
and pathogens. The plant species or varieties may not be infected by pathogen if their
surface cells lack specific recognition factors like oligosaccharides, polysaccharides,
and glycoproteins. If the pathogen does not recognize the plant as one of its hosts it
may not adhere to the host surface or it may not produce infectious substances such
as enzymes or structures like appressoria, haustoria, etc. In many host–parasite
interactions, the pathogen produces host specific toxins, which are responsible for
symptoms and disease development. Many facultative saprophytes and most of the
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obligate parasites are host specific and sometimes so specialized that they can grow
and reproduce only on certain varieties having essential nutrients and growth factors
required for the establishment of parasitic relationship with the host. The activation
or induction of defense mechanism may be both specific and non-specific type.
Several structural changes are known to be induced by a range of biotic or abiotic
elicitors. These dynamic defense mechanisms prevent further colonization or spread
of pathogen. The active defense in plants involves cellular defense that rely upon
preformed surveillance systems encoded by resistance genes. The receptor-proteins
are strategically located in cell membrane to detect the pathogen factors. The ability
of plant to mount an active defense response is again under genomic control.

Primarily, defense systems of plants can be categorized into two classes, basal
defense (pattern triggered immunity, PTI) and specific defense systems (effector-
triggered immunity, ETI). In general, PTI is quantitative in nature and ETI is
qualitative in nature (Kou and Wang 2010; Zhang and Wang 2013). The basal
defense system is the first line of preformed and inducible defense system, also
known as innate immunity (Jones and Dangl 2006; Freeman and Beattie 2008;
Wally and Punja 2010) which protects the plants from the pathogens (Freeman
and Beattie 2008). It provides immunity at the beginning of infection and triggered
when plant recognized the microbe-associated molecular patterns (MAMPs) using
host pattern recognized receptors (PRRs). This defense system is much effective
against necrotrophic pathogens. If basal defense system is failed, then plants respond
with hypersensitive response (HR), specific defense system (Freeman and Beattie
2008). This specific defense mechanism operates effectively against biotrophs and
hemibiotrophs and in this response plant limits the access of water and nutrients to
the pathogen by sacrificing few cells at the infection site, i.e. programmed cell death.
It is triggered in the presence of disease-causing effector molecules. The plant tissues
become highly resistant to broad range of pathogens when HR is triggered. This is
known as systemic acquired resistance (Freeman and Beattie 2008; Nelson et al.
2017) a whole plant resistance response occurred following a localized exposure to a
pathogen. It involves communication with the rest of the plant using the hormones
jasmonate, ethylene, abscisic acid, and the accumulation of endogenous salicylic
acid (Shah 2009). If the gaseous hormones are released from the injured tissue, it is
possible for neighbouring plants to take part in the resistance response as well. Plant
resistance is entirely dependent on a network of signalling pathways involving
innate immunity and a class of resistance genes (Dangl and Jones 2001; Ausubel
2005; Chisholm et al. 2006).

The basal defense system or innate immunity is a generalized barrier which does
not discriminate between pathogens, unlike the specific defense system which is
mediated by a highly specific set of genes called resistance (R) genes. Several studies
have proven that expression of defense response (DR) genes like Chitinases and
Phenyl alanine ammonia-lyase (PAL) can directly correlate with host resistance
(Chassot et al. 2007; Tonnessen et al. 2015).
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16.3 Host Plant Resistance and Resistance Hypothesis

In nature, only few plant pathogenic microbes are able to cause diseases in plants in
spite of large number on the earth. Plants have developed different mechanisms to
combat various pathogenic microbes resulting tolerance to different pathogens. We
know each and every trait in organisms is controlled by genes, like wise resistance
against different pathogenic microbes is also controlled by different genes present in
the organism. There are two types of resistance reported in the plants for various
biotic stresses, vertical and horizontal resistance controlled by major and minor
genes, respectively, in the crop plants. Vertical resistance is race specific resistance,
whereas horizontal resistance is race non-specific resistance. Due to complex inheri-
tance of horizontal resistance, genes controlling vertical resistance are exploited in
many crops by developing disease resistant varieties. The resistance controlled by
major genes break down frequently by loss of function mutation in single gene. So,
in order to develop disease resistant varieties with durable resistance, horizontal or
quantitative resistance is of importance. Durability of quantitative resistance may be
due to number of genes involved in controlling the trait (Vanderplank 1982). Singh
et al. (2008) reported that even 4–5 minor genes can control the wheat rust caused by
new raceUg99 to negligible level under high disease pressure. Apart from number of
genes involved, other mechanism includes selection coefficient against individual
gene controlling horizontal resistance will be less as compared to those for major
resistance genes. Further, interactions between host, pathogen, and environment
could also play an important role for genes with small effects (Kulkarni and Chopra
1982). Researchers sometimes quantify horizontal resistance via different
components of resistance like latent period (time taken from pathogen invasion to
development of disease symptoms), infection efficiency and sporulation, etc. which
are highly correlated (Parlevliet 1979; Parlevliet 1989) and there are evidences of
pleiotropic control of genes involved in HR (Parlevliet 1986; Wang et al. 1994).
Development of near isogenic lines of barley containing different combinations of
three QTL (Richardson et al. 2006) provided strong evidence for pleiotropic control
of latent period, infection efficiency, lesion size, and pustule density (a surrogate for
sporulation) for stripe rust of barley.

The classical work of Flor (1971) on genetics of interaction between flax and flax
rust (Melampsora lini) resulted in substantial understanding of gene- for- gene
hypothesis. According to this hypothesis, plant contains single dominant gene
resistance gene (R gene) that specifically recognize the complementary avirulence
gene in pathogen. This interaction results in defense gene expression,
i.e. hypersensitive response (HR) and inhibition of pathogen growth, means resistant
reaction (Fig. 16.1). On contrary, if host plants do not contain the R-gene, the
pathogen will be able to infect the host even though it contains Avr gene
(Fig. 16.2). This hypothesis was followed by multiple cases of R-Avr interactions,
i.e., a single NLR gene recognizes its counterpart Avr effector and imparts resistance
to the pathogen (Jones and Dangl 2006; Bernoux et al. 2011). This gene-for-gene
system occurs frequently in biotrophic pathosystems like rusts, smuts, powdery
mildews, and downy mildews of cereals. This type of direct interaction has been

400 A. Pathania et al.



reported in the case of the rice blast resistance protein Pi54 and its counterpart
Avirulence protein, Avr Pi54 (Ray et al. 2016). The resistance of this system is race
specific and also gets easily break down by new races of pathogens. It has become
evident that many Avr proteins contribute to pathogen virulence on plants lacking
the cognate R-gene. However, for a number of R-Avr combinations, physical
interactions have not been observed, and perception is thought to be indirect.

During last three decades tremendous advancement has been observed in the field
of agriculture both in terms of technology and plant genomic resources that has led to
the understanding of host–pathogen interaction phenomenon and the defense
mechanisms operating in various biotic stress responses. The knowledge about the
genetics of resistance and its implications in breeding for resistance varieties has
given boost to the agriculture sector to develop varieties that possess resistance to
both biotic and abiotic stresses. In the current scenario, the development of resistant
varieties involves the use of both conventional and modern innovative approaches
for exploiting host plant resistance.

Fig. 16.1 Host–pathogen interaction as per gene-for-gene hypothesis
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16.4 Conventional Breeding Approaches for Exploiting Host
Plant Resistance

Resistance breeding has been exploited to protect crop plants from various biotic and
abiotic stresses that hamper the crop production. The constant search for resistance
genes in diverse sources and their incorporation into elite susceptible varieties and
deployment over time and space has protected important crops from deadly diseases,
for example, wheat from rust and potato from late blight. The techniques employed
in disease resistance breeding includes introduction of disease resistant varieties,
hybridization, back cross breeding, multiline breeding, gene pyramiding by intro-
gression of disease resistance genes and their deployment through gene rotation. A
brief account of each of the conventional strategies is given hereunder:

16.4.1 Introduction of Disease Resistant Varieties

Plant introduction is the simplest and easiest breeding method to develop new
varieties with desirable traits. This method is used when desired traits (resistance
gene) are not available in the indigenous germplasm. In this method, the exotic
material procured from outside state or country resources is first screened for
required traits both under controlled and multi-locations for its suitability and
stability in the target environments, then released for cultivation. The plant introduc-
tion may be primary or secondary. When introduced/exotic genotypes are released
for cultivation in a country where it was not grown before without any alteration in
its genetic composition, then it is called primary introduction. This type of introduc-
tion is common in the developing countries where well developed breeding
programme for the target crop do not exist. For example, spring wheat varieties
Sonora 64 and Lerma Rojo 64A introduced from Mexico, having broad spectrum of
rust resistance apart from other desirable traits were released for commercial culti-
vation in India in 1965 (Singh 2015). While the secondary introduction is more
common in developed countries which have well-defined breeding programmes and
the introduced genetic stocks/germplasm are used for selection, hybridization or in
other breeding programmes. For example, Kalyan Sona and Sonalika wheat varieties
developed from the segregating materials introduced from CIMMYT, Mexico and
were resistant to rust (Singh 2015).

Though, plant introduction is the quick method to resolve the problem of certain
areas where all local varieties become susceptible to the pathogen strains, it also
serves as source of resistance breeding programme. For example, African pearl
millet (P. americanum) introductions have been used for developing Downy mildew
resistant male sterile lines (Tift 23A cytoplasm) for use in hybrid pearl millet
production. This is an important development in the hybrid pearl millet programmes
since the original male sterile lines Tift 23A and 23D2A were extremely susceptible
to downy mildew. Limitations in sharing germplasm globally due to the enforcement
of various laws of exporting/importing countries limits the use of this method in
disease resistance breeding programmes. However, with the advent of WTO treaty,
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such problems have been solved to greater extent in the member countries. There has
been frequent exchange of genetic material during the past few decades that has
helped the exploitation of diverse resistance sources in developing resistant varieties.
Sharma et al. (1999) reported that exotic common bean accessions procured from
CIAT Columbia were resistant to majority of races of bean anthracnose pathogen
(Colletotrichum lindemuthianum L.) prevalent in north western Himalayan region.
Similarly, Thippeswamy et al. (2016) also found resistance in many rice genotypes
procured from International Rice Research Institute (IRRI) against local races of
blast fungus prevalent in south India. However, the introduction of Co475 variety of
sugarcane in Mumbai has defeated the red rot disease but brought leaf rust and whip
smut diseases in the country.

16.4.2 Selection

The present day cultivated plants are derived from wild weedy species through the
process of domestication by prehistoric man. After domestication, crop species are
exposed to both natural as well as artificial selection. Artificial selection is practiced
by farmers in ancient time for selecting plants for different traits as per their needs by
exploiting natural variability present in the crop species. For developing disease
resistant varieties, this method is better than plant introduction and has more chances
of success in getting disease resistant plants. Sometimes segregating materials of
different crops were also introduced in the country to further develop useful varieties
after selection. The selection is carried out under natural and artificial epiphytotic
conditions. To ensure the resistant character of a plant, large population of crop
plants which were found resistant under natural epiphytotic conditions may be
exposed to the attack of pathogens under artificial conditions and the non-infected
plants may be chosen which may be released as new variety after proper evaluation
for agronomic traits and agroecological adaptation. The varieties developed through
either mass selection or pure line selection in self-pollinated crops, whereas in cross-
pollinated crops, mass selection, recurrent selection, recurrent selection for GCA,
recurrent selection for SCA, and reciprocal recurrent selections are used for devel-
oping varieties. For example, rust resistant Kanred variety of wheat was developed
by pure line method of selection (Allen 1921). Kufri Red, a potato selection from
Darjeeling Red Round is a disease resistant variety. The resistance in such plants will
occur in nature by mutation. Sugandh of Bihar is a selection from Basmati rice of
Orissa tolerant to bacterial leaf blight. Suvarnamodan rice of Kerala is a pure line of
ARC 11775 and is highly tolerant to blast. For example, Kalyan Sona wheat
(T. aestivum) resistant to brown rust (leaf rust) developed through selection. The
limitation of this method is that genotypes with different traits must present in the
crop species for the selection of plants with desirable traits and variability cannot be
generated by using this method.
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16.4.3 Hybridization for Exploiting Host Plant Resistance

16.4.3.1 Combination Breeding
Combination breeding means developing new crop varieties by combining the
economic traits of two or more varieties through hybridization. This method
involves intervarietal, interspecific, and intergeneric hybridization. In combination
breeding, intervarietal hybridization is the most common method to be followed due
to fertility barriers and various chromosomal abnormalities in case of interspecific
and intergeneric hybridization which require the help of biotechnological tools to
generate successful F1 generation. This method involves two steps, the first step
involves the development of breeding populations segregating for traits of agro-
nomic interest (resistance and high yield) by selecting two or more parents with
desirable traits that complement each other. The strengths of one parent have the
capacity to supplement the weaknesses of another parent. Here, generally two or
more parents are crossed with each other to develop segregating populations through
sexual recombination. The second step involves the selection of the individual plants
containing the target/desired traits amongst the progenies developed from a given
cross combination. In this method, selections are made in F2 generation for superior
genetic traits including disease resistance. By continued selfing, selections are made
through F3 to F5 or F6 generations either by using pedigree selection (Fig. 16.3) or

Fig. 16.3 Generalized scheme of pedigree selection for developing variety
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bulk method or their modifications and the best variety is selected. There are many
examples of varieties developed through this strategy that possess durable and high
level of resistance. However, there are chances of linkage drag and resistance may
not last long as it takes 10–12 years or more to develop disease resistant cultivar by
these methods and by that time pathogen develops the ability to infect resistant plant
due to evolution of new races/strains. Interspecific cotton rust resistant hybrids were
developed by exploiting rust resistance genes from Gossypium anomalum and
Gossypium arboreum by transferring these genes into G. hirsutum (Anjum et al.
2015).

16.4.3.2 Back Cross Breeding for Introgression of Disease
Resistance Genes

It is well known fact that improved modern varieties of different crops are less
tolerant to different stresses as compared to their wild relatives or local landraces due
to the loss of useful genes during the process of evolution and selection for higher
yield (Reif et al. 2005). Many wild species or wild relatives of crop plants and
germplasm belonging to secondary and tertiary gene pool are considered as impor-
tant sources of certain desirable traits including disease resistance. But apart from
desirable traits, these wild species or relatives have a number of traits which are
important for their survival but not desirable as per our needs, also inherit during
hybridization. So, to avoid introgression of undesirable traits, the back cross breed-
ing method is used that has advantage of introducing only single trait (for example,
disease resistance gene) from wild weedy sp./donor into the cultivated elite suscep-
tible variety. This method was first proposed by Harlan and Pope (1922). Now-a-
days this method is employed in improvement of both self and cross-pollinated crops
for transferring a single simply inherited character like disease, frost or drought
resistance, and earliness from an undesirable variety to a good commercial variety.
The desirable variety is called as recurrent or recipient parent and it is crossed to
otherwise an undesirable variety but containing trait of interest, called as donor or
non-recurring parent (called donor because the desirable genes are transferred). The
F1 progeny obtained is again backcrossed to recurrent parent repeatedly and after
5–6 generations of back crossing, more than 99% genome of recurrent parent is
recovered along with traits of interest (disease resistance gene) from donor parent
(Fig. 16.4). Examples are the transfer of leaf rust resistance (Lr9 gene) to Triticum
aestivum from Aegilops umbellulata and powdery mildew resistance (Pm12 gene)
from Ae. speltoides by using backcross method of breeding. Back cross method is
generally used to improve one or two traits/defects of cultivated variety without
altering other traits of the variety. However, many undesirable traits are also
incorporated due to linkage drag which is very difficult to remove even after several
generations of back crossing (Young and Tanksley 1989). But in spite of this
drawback, several varieties have been developed using this method in many crops
(Hussain 2015).
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16.4.4 Multiline Breeding

This breeding strategy is utilized to enhance the durability of resistance to diseases
by deploying different resistance genes against same disease in the form of varietal
mixture (Keneni et al. 2012; Mundt 2014; Sattari et al. 2014). The varieties devel-
oped are basically mixture of different lines of same crops developed through either
back cross breeding or combination breeding. These lines are mostly near isogenic
lines (NILs) which have the same genetic composition except for disease resistance
genes. These are morphologically similar with each other for all agronomic and
phenological traits but may differ genetically (Keneni et al. 2012). These lines are
bulked together to form elite variety called multiline variety containing separate
resistance genes. There are several examples in cereals where multiline varieties
have improved resistance against different diseases as compared to individual
component isolines (Gill et al. 1980; Wilson et al. 2001). If new races of the
pathogen are identified at a later stage, additional isolines resistant to the newly
arisen races may be constituted and incorporated. It has been reported since long that
rusts and mildews of cereals are controlled through dilution of inoculums in
multilines (Chin and Wolfe 1984; Wolfe 1985) and local reduction of intrinsic

Fig. 16.4 Generalized backcross breeding scheme for transferring disease resistant dominant gene
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rates of disease increase (Browning and Frey 1969; Mundt and Browning 1985).
Multiline variety appears to be a useful approach to control diseases like rusts where
new races are continuously produced. The first multiline variety in wheat, “Miramar
60” was developed and released in Columbia to combat the attack of yellow rust.
“Miramar 63” and “Miramar 65” were resistant to stem rust and stripe rust. In India,
three multiline varieties KSML3, MLKS11, and KML7406 have been released in
wheat (T. aestivum). Kalyan Sona, one of the most popular varieties in the late
sixties, was used as the recurrent parent to produce these varieties. Variety ‘KSML
3’ consists of eight lines having rust resistance genes from Robin, Ghanate, Kl,
Rend, Gabato, Blue Brid, Tobari, etc. Multiline ‘MLKS 11’ is also a mixture of eight
lines; the resistance is derived from E 6254, E 6056, E 5868, Frecor, HS 19, E 4894,
etc. The third variety, KML 7406 has nine lines deriving rust resistance from
different sources. Similarly, Sonalika lines MLSKA9, MLSKA11, and MLSKA
12 resistant to brown and yellow rust were developed in India. It is quite convincing
and logical that a resistance gene will last long in a mixture than in pure stand of crop
owing to reduced exposure to the pathogen and slow evolution of new races of
pathogen. This method is quite effective against rust and powdery mildew diseases
in small grain crops. In rice also several multiline varieties with improved resistance
to rice blast has been developed by rice breeders (Ishizaki et al. 2005; Sattari et al.
2014). Major limitation in the development of multiline variety is to find out the
correct combination of different lines and low quality produce due to mixture of
lines.

16.4.5 Resistance Gene Pyramiding

Although varieties having single major gene for resistance can protect the variety
from pathogen but large-scale use of that variety results in resistance breakdown due
to its exposure to diverse pathogen populations. Since the development of an
improved variety takes around 10–12 years and the breakdown of resistance by a
given pathogen strains emphasized the necessity of developing multigene varieties
that possess more than one R-gene. Watson and Singh (1952) proposed the concept
of multigene varieties to minimize the frequent break down of resistance. The
pyramiding of R-genes from diverse resistance donors into a single elite susceptible
genotype offer long-term resistance against pathogens and has turned into an
important technique to develop broad spectrum disease resistance cultivars. In this
method, resistance genes from different sources (local landraces, wild spp., wild
relatives, and genetic resources belonging to secondary and tertiary gene pools of
crop) have been transferred either by hybridization or by backcross breeding
(Fig. 16.5). Resistance gene pyramids are expected to considerably extend the
durability of resistance because of the low probability for the pathogen to assemble
multiple, rare virulence genes by mutation and/or recombination (Pearson et al.
1983). But bringing together two effective major genes in an agronomically suc-
cessful cultivar is difficult through conventional approaches (Hogenboon 1993). In
wheat, varieties with stem and leaf rust resistance has been developed using this
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method (Green and Campbell 1979; McIntosh and Brown 1997; Samborski 1985;
Schafer and Roelfs 1985). The gene pyramids in wheat have kept stem rust of wheat
under control since 1950s till 1990s when emergence of new race of stem rust Ug99
in Uganda threatened the durability of resistance genes. This has indicated that
resistance due to gene pyramids is also not permanent. It has been reported that
certain combination of resistance genes will be more durable as compared to others
and identification of most durable combination can be done by evaluating the fitness
effect of individual gene (Leach et al. 2001; Fabre et al. 2009; Janzac et al. 2009;
Khatabi et al. 2013).

16.4.6 Gene Rotation

This is another method which is exploited to increase the durability of single disease
resistance gene in a variety. Gene rotation is a strategy which involves the deploy-
ment of resistance gene against a particular race of pathogen and after the appearance
of new races of pathogen, it is replaced with another resistant gene and then again,
the reuse of original resistance gene when the frequency of new race is sufficiently
reduced over the period of time (Crill 1977; Mehrotra 2000). We can also call it as
varietal rotation. However, the use of this approach requires constant survey and
surveillance of new virulences of the pathogen in a given area over time. Gene
rotation schemes have been implemented against rice blast (Crill et al. 1981) and rice
tungro disease (Manwan et al. 1985; Sama et al. 1991). This approach was used to

Fig. 16.5 Gene pyramiding through conventional hybridization to enhance durability for disease
resistance (R1, R2, R3, R4, R5, R6 are six different disease resistant genes combined from six
different parents)

16 Host Plant Resistance: An Eco-Friendly Approach for Crop Disease Management 409



control stem rust of wheat in Australia between 1938 and 1950. Gene rotation would
be effective only in areas of intensive agricultural production where plant
pathologists maintain adequate and intensive disease surveys in cooperation with
plant breeders to gather information on disease intensity and pathogen populations
(Harahap and Silitonga 1988).

16.5 Innovative Approaches for Exploiting Host Plant
Resistance

Although traditional breeding approaches are still used in disease resistance breed-
ing, but several limitations of these approaches have led plant scientists to develop
end explore new innovative approaches to overcome the short comings of conven-
tional breeding techniques. Conventional breeding methods take long time to
develop new varieties, or gene transfer, more labour intensive, undesirable traits
transferred together with the valuable resistance genes, frequent break down of
resistance due to pathogenic variability, and emergence of new pathogen races.
Use of multiline varieties has biggest disadvantage of finding out the correct
combination of different lines and threat of development of super race of pathogen.
The quality of the produce is also limitation in multiline varieties; hence this strategy
can be exploited only in the countries where quality of produce is not the priority.
Similarly, it is difficult to combine more than two genes in a variety and identifica-
tion of desirable gene combinations through conventional breeding methods. Fur-
ther, it is difficult to develop resistance varieties through traditional methods for
diseases where resistance is controlled by many genes due to complex nature of
horizontal resistance.

The process of co-evolution of host and pests evolved strategies to avoid the
defense mechanism of each other (Seidl and Thomma 2017). The meager informa-
tion about resistance mechanism through conventional methods necessitates the use
of various innovative and efficient approaches against various fungi, bacteria, and
viruses causing deadly diseases in crop plants. Over the past few decades, advances
in molecular genetics, gene mapping, precision in plant selection using molecular
markers, identification of genome sequences of different crop plants, genetic engi-
neering, and gene transfer technologies resulted in development of several biotic
stress resistant varieties in less time. Pyramiding of desirable genes can also be done
using these approaches. Genetic engineering or transgenic approach directly
modifies the qualitative and quantitative traits by inserting desirable genes of
unrelated organisms into plant cell asexually, thus allow access to an unlimited
gene pool without the constraints of sexual compatibility. Gene silencing technology
is extensively exploited in the development of disease resistant varieties especially
against viruses. With the invention of genome editing tools, modification in target
gene sequences is possible without affecting other agronomic traits and these
modified genes can be further exploited in the development of various biotic stress
resistant varieties. So, various innovative approaches are used to develop disease
resistant varieties to overcome the problems associated with traditional breeding

410 A. Pathania et al.



strategies. Innovative approaches used in exploitation of host plant resistance are
discussed below:

16.5.1 Mutagenesis

Mutations are ultimate source of variation. When resistance sources are not available
in germplasm, one of the strategies to create variation is mutagenesis in which
mutations are induced in crop plants and then rare mutants having resistance genes
for specific biotic stress are selected. Mutations may occur spontaneously in nature
or may be induced using various mutagens. For inducing mutation, various physical
and chemical mutagens are used. Physical mutagens include x-rays, gamma-rays,
and UV radiations whereas chemical mutagens include EMS (Ethyl methane
sulphonate), MMS (Methyl methane sulphonate), colchicine, etc. are used for
inducing mutation. Mutations at molecular level resulted due to alterations in
DNA sequences by causing transition and transversions. The main drawback of
mutation breeding is that mutations are random, lethal, and recessive in nature. For
example, in wheat NP836, Sharbati Sonora, Pusa lerma varieties were developed
through induced mutation and NP-11 by spontaneous mutation. Many rice blast
resistant lines have been developed using mutation breeding method (Miah et al.
2013).

Nowadays classical mutagenesis is used in functional genomics to identify the
functions of the genes controlling different traits. In this technique, mutations are
induced to create mutants and genes controlling a particular trait are identified by
analysing the mutants. Map based cloning is used to detect the sequences of the gene
responsible for the changed phenotype. Although, this is time consuming and
labour-intensive method but it has been successfully used for cloning of several
genes in different crop species (Krattinger et al. 2009). With the advancement in
genome sequencing techniques, reverse genetics approach has replaced the forward
genetics approach to detect the functions of the genes. In this approach, first the
sequence of gene with unknown function is altered and then analysed for the
associated change in the phenotype. Nowadays, biological mutagens like
transposable elements and T-DNA insertion mutagenesis have been widely used
by researchers in plant functional genomics (Alonso and Ecker 2006). Targeting
Induced Local Lesions IN Genomes (TILLING) is one of the reverse genetics
strategies introduced in 2000 and it takes the advantage of classical mutagenesis,
sequence availability, and high-throughput screening for nucleotide polymorphisms
in a targeted sequence. It combines the high frequency of mutations induced by
traditional mutagenesis with sensitive techniques for discovering single nucleotide
mutations. This technique can be applied to any plant species, regardless of its
genome size, ploidy level or method of propagation which are difficult targets for
insertional mutagenesis. Another advantage of TILLING is that insertional muta-
genesis results mostly gene knock outs whereas chemical mutagens used in
TILLING generate a series of alleles such as gain of function and hypomorphic
alleles in addition to loss of function alleles, thus provides a range of phenotypes
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(Alonso and Ecker 2006). Further, transformation is required in RNAi technology
and insertional mutagenesis using transposon tagging or T DNA, but not required in
TILLING, so TILLING has become a valuable alternative approach to transgenic
technology in crop breeding. There are many examples where site directed muta-
genesis is exploited in disease resistance breeding. In resistance conferring R-genes,
leucine-rich repeats (LRRs) are present and a mutation in the RPS5 gene of
Arabidopsis showed interaction of the LRR region with other plant proteins. The
resultant mutant rps5–1 resulted in the replacement of lysine with glutamate amino
acid in the LRR region and this altered plant response against downy mildew and
bacteria (Warren et al. 1998; Huang et al. 2010; Zhu et al. 2013; Wang et al. 2014).
Chujo et al. (2014) reported that phosphomimic based mutation in one of the rice
WRKY transcriptional factors (TFs) conferred resistance against rice blast disease.
In rice, Les (Spl) mutants activate SAR against rice blast caused by Magnaporthe
grisea fungus (Yin et al. 2000; Zeng et al. 2004). In maize, the Rp1 based Lesmutant
provided resistance against Puccinia sorghi rust pathogen and Cercospora zeae-
maydis causing grey leaf spot disease (Hu et al. 1996; Johal 2007). So, it can be
concluded that mutagenesis not only used to create genetic variation for biotic stress
resistance but also helps in understanding the resistance mechanism in crop plants.
Mutagenesis combined with molecular genetics has ability to cope up with genetic
erosion of crop plants.

16.5.2 Somaclonal Variations in Disease Resistance Breeding

Somaclonal variations (SVs) are genetic or epigenetic changes induced in plant cell
and tissue cultures. Induction of somaclonal variations is an alternate approach to
conventional breeding and transgenic approaches to introduce desirable genetic
variability in the gene pool (Anil et al. 2018). Somaclonal variations that occur
spontaneously in culture induce changes in a range of plant characters. However, the
probability of improving a key agronomic trait such as disease resistance can be
cumbersome when left to chance alone. The efficiency of developing disease
resistant somaclonal variants is better when an appropriate in vitro selection pressure
is imposed. Selection agents that have been applied include pathogen elicitors,
pathogen culture filtrate, and purified pathotoxins. This method of somaclonal
variant selection has been successful in enhancing disease resistance in several
crops. For example, fusaric acid is used to selectHelminthosporium sativum resistant
plants in Hordeum vulgare, culture filtrates for selection of Helminthosporium
oryzae resistant plants in rice, deoxynivalenol for Fusarium graminearum resistant
plants in wheat and phytotoxin is used to select Colletotrichum falcatum resistant
sugarcane plants (Jalaja et al. 2006). The somaclonal variant approach is based on
changes resulting from internal mutations and thus does not face acceptability issues
nor pose any known biosafety concerns. Callus cultures can be used to recover
somatic mutants because the in vitro culturing encourages the division of individual
cell and regeneration of whole plant. Somaclonal variants can be somatically or
genetically stable. The genetically stable variations can be termed mutations.
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However, because of the possibility of reversible epigenetic variations this area
broadly uses the term ‘variations’ instead of ‘mutations’ (Meins 1983). Genetically
stable somaclonal variations are due to point mutations, variations in chromosome
number and structure, recombinations, DNA methylation, deletions and
transpositions in nuclear, mitochondrial or chloroplast genomes (Lee and Phillips
1988; Phillips et al. 1990). Somaclonal variants generated from wheat varieties
displayed improved resistance to spot blotch disease and enhanced resistance over
the source varieties HUW-206 and HUW-234 (Arun et al. 2003). A high yielding
somaclonal variant of sugarcane (var. Co 671), Co 94,012, released as Phule Savitri
in Maharashtra (Jalaja et al. 2006), has better sucrose content and resistance to red rot
and smut diseases. Although, selection for disease resistance in cell cultures is a
simple process, however, regeneration of plantlets from somaclonal variant calli is
usually difficult. Multiple subculturing, prolonged exposures to auxins and selection
pressure may result loss of regeneration potential of cells, so to avoid this, large
number of somaclonal variants are developed to select a few with desirable traits
amongst them.

16.5.3 Somatic Hybridization

Sexual hybridization in higher plants is a valuable tool for the conventional breeding
to improve cultivated crops. It involves the artificial cross fertilization between the
genetically dissimilar individuals to combine several desirable traits present in
different varieties into one single variety. Unfortunately, conventional hybridization
is limited to only very closely related species. Sexual hybridization is a total failure
for distantly related plant species as well as sexually incompatible plants. Therefore,
protoplast culture has developed as a potential biotechnological system for transfer-
ring genetic information between widely different plant species. It would also
provide the basis for a technology to overcome the limitation of conventional sexual
hybridization. Thus, protoplast culture is a most suitable mode for somatic
hybridization bypassing sexual incompatibility barriers.

Somatic hybridization or protoplast fusion involves isolation of protoplasts,
fusion of protoplast obtained from different species to produce heterokaryons, cell
wall regeneration by fused product, fusion of nuclei, division of hybrid cells and
their subsequent growth, identification, selection of hybrid cells, induction of organ-
ogenesis in callus tissue derived from hybrid cells and finally raising of mature plants
from regenerated shoots. So, the in vitro fusion of plant protoplasts derived either
from somatic cell of the same plant or from two genetically different plants is called
somatic hybridization. O. sativa (AA type chromosomes) is readily hybridized with
common AA type wild rice, but not with non-AA types (such as O. officinalis of CC
type and O. meyeriana of GG type). In the latter cases, conventional crossing
methods have failed to generate fertile hybrids. However, this problem can be
overcome by subsequent embryo-rescue of hybrids (Jena and Khush 1990). Because
the non-AA type wild rice generally possess desirable traits not found in cultivated
rice or closely related wild rice species, it is important to develop techniques to
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generate hybrid plants between O. sativa and non-AA types of wild rice species. The
ability to produce and fuse rice protoplasts has allowed the generation of interspecies
hybrid clones between the wild rice and O. sativa (Hayashi et al. 1988) as well as
intergeneric hybrid clones between rice and Panicum maximum (Zhang et al. 1999),
rice and Hordeum vulgare L. (Kisaka et al. 1998), and rice and Porteresia coarctata
(Jelodar et al. 1999). Bacterial blight (BB) resistance gene(s) for rice was (were)
introduced into a cultivated japonica rice variety Oryza sativa (cv. 8411), via
somatic hybridization using the wild rice Oryza meyeriana as the donor of the
resistance gene(s) (Yan et al. 2004). Tiwari et al. (2010, 2011) have developed
different interspecific, somatic hybrids of potato such as hybrids of Solanum
pinnatisectum + S. tuberosum having resistance for late blight disease and on the
other hand hybrids of S. etuberosum + S. tuberosum having resistance for potato
virus Y. These somatic hybrids were confirmed through molecular (RAPD & SSR
markers) and phenotypic assessments.

16.5.4 Polyploidy Breeding

Polyploids are organisms with multiple sets of chromosomes in excess of the diploid
number (Acquaah 2007; Chen 2010; Comai 2005; Ramsey and Schemske 1998).
Polyploidy is common in nature and provides a major mechanism for adaptation and
speciation. Polyploidy is a major force in the evolution of both wild and cultivated
plants. Approximately 50–70% of angiosperms, which include many crop plants,
have undergone polyploidy during their evolutionary process (Chen et al. 2007).
Polyploids may be classified based on their chromosomal composition into either
euploids or aneuploids. Euploids constitute the majority of polyploids. Euploids are
polyploids with multiples copies of the complete set of chromosomes specific to a
species. Depending on the composition of the genome, euploids can be further
classified into either autopolyploids or allopolyploids. Tetraploidy is the most
common class of euploids (Comai 2005). Autopolyploids are also referred to as
autoploids, contain multiple copies of the basic set (x) of chromosomes of the same
genome (Acquaah 2007; Chen 2010). Autoploids occur in nature through union of
unreduced gametes and can be artificially induced (Chen 2010). Allopolyploids also
called alloploids are a combination of genomes from different species (Acquaah
2007). They result from hybridization of two or more genomes followed by chro-
mosome doubling or by the fusion of unreduced gametes between species (Acquaah
2007; Chen 2010; Jones et al. 2008; Ramsey and Schemske 1998). Economically
important natural alloploid crops include strawberry, wheat, oat, upland cotton,
oilseed rape, blueberry, and mustard (Acquaah 2007; Chen 2010). An example of
a man-made interspecies allopolyploid hybrid is triticale. It is derived from crossing
two cereals, hexaploid bread wheat (T. aestivum) and rye (Secale cereale). Triticale
was developed to combine good qualities of wheat including high yield and grain
quality with the hardiness (disease and stress tolerance) of rye (Acquaah 2007; Chen
2010). Aneuploids are polyploids that contain either an addition or subtraction of
one or more specific chromosome(s) to the total number of chromosomes that
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usually make up the ploidy of a species (Acquaah 2007; Ramsey and Schemske
1998). Aneuploids result from the formation of univalents and multivalents during
meiosis of euploids (Acquaah 2007). For example, several studies have found that
30–40% of progeny derived from autotetraploid maize are aneuploids (Comai 2005).
Aneuploidy has been applied in breeding to develop disease resistant plants through
the addition of an extra chromosome into the progeny genome. For example, first
perennial wheat cultivar, Montana-2 (MT-2) was developed by crossing durum
wheat (Triticum turgidum L. var. durum) and Thinopyrum intermedium at Montana
State University in Bozeman, MT, USA in 1987 (Lammer et al. 2004; Schulz-
Schaeffer and Haller 1987). Lines selected from segregating generations of crosses
between octoploid wheat–Thinopyrum intermedium hybrids and durum wheat–
Thinopyrum intermedium were resistant to cereal cyst nematodes, Puccinia
striiformis Westend f. sp. tritici and Blumeria graminis f.sp. tritici. In addition to
perennial growth habit, wheat–Thinopyrum intermedium partial amphiploids, pos-
sess multiple resistances to other pests and pathogens including wheat streak mosaic
virus and its vector, the wheat curl mite (Aceria tosichella Keifer), barley yellow
dwarf virus, eyespot (caused by Oculimacula yallundae (Wallwork & Spooner)
Crous & W. Gams and Oculimacula acuformis (Boerema, R. Pieters & Hamers),
and the cereal cyst nematode (Heterodera spp.) (Sun 1981; Li and Wang 2009; Li
et al. 2012). Many of the desirable traits like perennial growth habits and resistance
to various biotic and abiotic stresses from Thinopyrum spp. have been used to
develop wheat cultivars by introgression breeding (Lei et al. 2018).

16.5.5 Molecular Breeding Approach

The term molecular breeding is used to describe the several modern plant breeding
strategies involving molecular biology such as Marker Assisted Selection (MAS),
Marker Assisted Backcrossing Breeding (MABB), Marker Assisted Recurrent
Selection (MARS), and Genomic Selection (GS). With advances in gene tagging,
mapping, isolation, and cloning techniques, several disease resistance genes have
been identified, tagged, mapped, isolated, and transferred into different genetic
backgrounds to develop disease resistant varieties. Different approaches are
elaborated under the following heads:

16.5.5.1 Marker Assisted Selection
Traditional breeding methods for developing disease resistance varieties mostly
depend upon the phenotypic symptoms of disease which are strongly influenced
by the environmental conditions. Marker assisted selection used for identification of
resistant plants in the absence of pathogen and it is not influenced by the environ-
mental conditions. Marker assisted selection provides the opportunity to increase the
efficiency of selection by using markers tightly linked to the trait of interest at
seedling stage with less cost and more precision and even in the absence of pathogen.
DNA or molecular markers are not influenced by the environment, making the
selection process accurate and efficient. Marker Assisted Selection (MAS) is a
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selection scheme which involves an indirect selection of a genotype carrying
desirable genes through linked marker(s). It allows scoring for the presence or
absence of a desired plant phenotype indirectly based on DNA banding pattern of
linked markers on a gel or autoradiogram depending on the marker system. The
rationale is that the banding pattern revealing parental origin of the bands in
segregants at a given marker locus which indicates the presence or absence of a
specific chromosomal segment carrying the desired allele.

With the help of molecular markers breeder can efficiently select plants during
early segregating generations like in F2 and F3 generations, hence help in discarding
majority of unwanted plants during initial stages of breeding programme (Fig. 16.6).
Another advantage of marker assisted selection is that germplasm can be screened
for various disease resistance genes simultaneously and linkage of these markers to
target alleles. Various hybridization based, PCR based, and DNA sequence based
molecular markers like RFLP, RAPD, AFLP, SSR, ISSR, VNTR, and SNPs linked
to disease resistance genes have been utilized by plant breeders to select disease
resistance plants. Marker assisted selection is very useful in host–pathogen interac-
tion where resistance and avirulence genes interacted as per gene-for-gene concept
(Petit-Houdenot and Fudal 2017). In some cases, disease resistance is controlled by
more than one gene, making its inheritance complex. Such traits are called quantita-
tive traits and the regions in the genome where genes of a specific trait are located are
termed as quantitative trait loci (QTLs). Molecular markers are also effective in

Fig. 16.6 Molecular marker assisted selection in developing variety
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identifying quantitative trait loci (Langridge et al. 2001) and by QTL mapping
various QTLs linked to disease resistance genes have been discovered by plant
breeders which helped in the efficient selection of desirable plants (Hussain et al.
2012). RFLP and RAPD markers helped to locate the shs gene linked to head smut
resistance in sorghum (Oh et al. 1994). QTLs linked to Fusarium head blight (Yang
et al. 2005), foliar disease (Chu et al. 2008), and leaf rust resistance (Huang et al.
2003) have been mapped in wheat. QTL mapping has helped in identifying QTLs
linked with yellow, leaf and stem rust resistance in wheat (Chu et al. 2009; Prins
et al. 2011). Several molecular marker systems are used to map major genes and
QTLs for disease resistance in different crops are reviewed by different workers
(Miedaner and Korzun 2012; Pathania et al. 2016; Singh et al. 2018). Examples in
which MAS has been successfully applied to practical breeding are the wheat rust
resistance genes Lr34 and Yr36, the eyespot resistance gene Pch1, the recessive
resistance genes rym4/rym5 to barley yellow mosaic viruses, mlo to barley powdery
mildew, and two QTL for resistance to Fusarium head blight in wheat (Fhb1 and
Qfhs.ifa-5A) (Miedaner and Korzun 2012). There are certain limitations of MAS that
selection is done for only the gene(s) of trait(s) for which markers are linked, but
total dependency on MAS can excludes other genes and thus use of parents that do
not show DNA polymorphism when used in MAS whereas, in phenotypic selection
different genetic options for a desired genotype can be selected (Blair et al. 2007)
and reproducibility of different marker systems in different genetic backgrounds also
limited the use of MAS. The limited application of MAS for QTLs is due to more
influence of environment on QTLs, non-transferability of marker-QTL associations
across different breeding populations, non-availability of QTLs with major effect on
target traits and difficulties is QTL detection and mapping. The major disadvantage
of applying MAS at early generations is the cost of genotyping a larger number of
plants. Although markers can be used at any stage during a typical plant breeding
programme, MAS is a great advantage in early generations because plants with
undesirable gene combinations can be eliminated. This allows breeders to focus
attention on a lesser number of high-priority lines in subsequent generations. There
are several instances when phenotypic screening can be strategically combined with
MAS. In the first instance, ‘combined MAS’ may have advantages over phenotypic
screening or MAS alone in order to maximize genetic gain (Bohar et al. 2020). This
approach could be adopted when additional QTLs controlling a trait remain uniden-
tified or when a large number of QTLs need to be manipulated. In India, the first
product of MAS in crop breeding included the bajra hybrid HHB-67 with resistance
to downy mildew disease caused by Sclerospora graminicola, released by
ICRISAT, Hyderabad. Likewise, MAS has been applied to develop different resis-
tant varieties in many crops (Ragimekula et al. 2013; Singh et al. 2013).

16.5.5.2 Marker Assisted Back Crossing
MAS is successfully used in introgression of disease resistance genes by backcross
breeding also called as Marker assisted backcross breeding (MABB) to reduce the
time taken in transferring the gene of interest. Conventional back cross breeding
method used to transfer disease resistance genes from resistance sources took
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8–10 years to develop the resistant varieties. Using molecular markers in back cross
breeding programme reduced the time required for transfer the resistance gene. In
marker assisted back crossing programme generally molecular markers are used to
select plants carrying target gene which is tightly linked to the flanking markers
called foreground selection and to recover the genome of recurrent parent through
background selection. This will help in reducing number of generations from six to
two or three to recover the genome of recurrent parent through conventional
backcross breeding programme. MABB was used to transfer bacterial blight resis-
tance gene in rice (Chen et al. 2001), leaf rust resistance gene in barley (van Berloo
et al. 2001), and yellow rust resistance gene Yr15 in wheat (Randhawa et al. 2009).

16.5.5.3 Molecular Markers Assisted Pyramiding of Resistance Gene
Gene pyramiding is basically combining more than one gene for a trait from different
parents into a single line or variety by back cross breeding to generate durable
resistance. Through conventional back cross breeding, it will take long time to
develop a disease resistant variety and also due to linkage drag many undesirable
genes along with targeted one are also transferred into new genetic background
which may further delay the varietal development programme. The selection for
more than one different gene for a specific virulent race is also difficult phenotypi-
cally through conventional breeding methods. By using MAS, pyramiding of differ-
ent resistance genes in single genetic background can be done in less time and
selection for target genes with the help of markers will overcome the difficulty of
selection of different genes as observed in conventional combination or backcross
breeding programmes. With the help of molecular markers, the genes of interest can
be selected in F2 generation. It is difficult to identify two genes for the same traits
through conventional methods and sometimes one gene mask the effect of other
gene, so in that situation marker assisted selection will help in selecting plants
containing more than one gene for trait of interest. Three highly effective alien
genes for leaf rust resistance, Lr24, Lr28, and Lr9 were selected for pyramiding in
the background of a susceptible but well adapted bread wheat variety HD2329
conferring high degree of seedling and adult plant resistance (Charpe et al. 2012).
The use of molecular markers confirmed the presence of the linked genes resistance
genes, Lr24, Lr28, and Lr9 in the three rust resistant near isogenic lines (NILs) of
HD2329 and the application of molecular markers facilitated identification of indi-
vidual plants in three-way cross (HD2329 + Lr24 � HD2329 + Lr28) � HD
2329 + Lr9, F1 and F2 generations possessing the targeted genes and finally, one
bulked progeny in F8 generation was identified carrying the desired resistance genes,
Lr24, Lr28, and Lr9 in homozygous condition in the background of HD2329. Many
wheat lines carrying T. timopheevii-derived linked gene Sr36/Pm6 in the back-
ground of many commercial Indian bread wheat cultivars were developed by
employing simple back cross technique assisted by MAS using the donor line
‘Cook*6/C 80–1’ an Australian cultivar which carried Sr36/Pm6 and in addition
Lr19/Sr25. Some genes have masking effects, for example, Xa21, which confers
resistance to many races of bacterial blight. It is difficult to distinguish between
plants having Xa21 alone and those having Xa21 and other recessive genes through
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conventional methods. Marker assisted selection allows the identification of plants
contain multiple genes. The resistance genes xa5, xa13, and Xa21 have been
pyramided into an indica rice cultivar (PR106) using MAS that expressed strong
resistance to BB races of India (Singh et al. 2001). Successful marker assisted
pyramiding of disease resistance genes has already been reported in wheat with
respect to three leaf rust genes Lr13, Lr34, and Lr37 (Kloppers and Pretorious 1997)
and three powdery mildew genes Pm2, Pm4a, and Pm21 (Liu et al. 2000).

MABB coupled with phenotypic selection for agronomic, grain, and cooking-
quality traits has been used to incorporate bacterial blight resistance genes xa13 and
Xa21 into ‘Pusa Basmati 1’. One improved line was released as ‘Improved Pusa
Basmati 1’ for commercial cultivation in 2007 (Gopalakrishnan et al. 2008). A three-
gene pyramided line, RPBio-226 (IET 19,046), containing bacterial blight resistance
genes Xa21, xa13, and xa5, developed through marker assisted breeding named
‘Improved Samba Mahsuri’, was released for commercial cultivation (Sundaram
et al. 2008). Shanti et al. (2010) introgressed bacterial blight resistance genes Xa4,
xa13, xa5, and Xa21 into the parental lines KMR3, PRR78, IR58025B, Pusa 6B of
hybrid rice and the popular cv. Mahsuri by MABB. Likewise, a number of resistance
genes have been introgressed into many elite rice varieties across the world
(Ragimekula et al. 2013).

Molecular marker assisted pyramiding of major genes governing resistance to
turcicum leaf blight and Polysora rust in elite five Indian maize lines, viz., CM137,
CM138, CM139, CM140, and CM212 has been achieved at Indian Agricultural
Research Institute (Prasanna et al. 2010). Turcicum leaf blight resistant genes, i.e.,
Htn1and Ht2 along with a QTL (RppQ) for Polysora rust from four resistant donors,
viz., NAI 147, SKV 21, NAI 112, and SKV18 were pyramided together by
generating seven different backcross populations.

16.5.5.4 Marker Assisted Recurrent Selection (MARS)
Phenotypic recurrent selection involves cycles of selection, evaluation, and recom-
bination that aims at increasing the frequency of favourable allele within the
population commonly in cross-pollinated crops. In Marker Assisted Recurrent
Selection (MARS), markers associated with trait of interest are first identified and
selection is based on several genomic regions involved in the expression of complex
traits to assemble the most superior genotype within a population (Ribaut et al.
2010). MARS may prove to be one of the most important strategies in the molecular
breeding programme as this can be used for multiple QTLs controlling the expres-
sion of a complex trait (Knoch et al. 2020) which is a limitation in case of Marker
Assisted Selection (MAS) and Marker Assisted Backcross Breeding (MABB)
(Gokidi et al. 2016). Marker Assisted Recurrent Selection (MARS) consists of
four main steps, training population development, QTL analysis and selection,
recombination, and fixed lines development. The training population is genotyped
using genetic markers and evaluated for phenotype in field trials. QTL analysis
correlates phenotypic variance to genotypic variance and also identifies potential
genomic regions involved in quantitative traits. After QTL identification in progeny
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from training population, selected progenies are allowed to intermate and finally
recombinants obtained are selfed to get homozygosity in the breeding population.

The procedure of MARS involves estimation of marker effects from genotyping
of F2 or F3 population and phenotyping of F2 or F3 derived F4 or F5 progenies,
followed by two to three recombination cycles based on presence of marker alleles
for small effect QTLs (Eathington et al. 2007). In the first step of MARS, finger-
printing of the progeny from a given breeding population derived from biparental
cross with specific molecular markers is performed. This means that the QTLs are
identified in the 200–300 or more than 300 progenies from F3 population with the
help of specific molecular markers to enable the calculation of a genotypic value for
each progeny. In the second step, about 200–300 progenies from the F3 derived
population, i.e., F3:4 or F3:5 are evaluated at different locations in multilocation trails
to get phenotyping data. Based on the genotyping followed by phenotyping data,
few plants are selected and allowed for controlled pollinations or intermating for two
or three cycles. Subsequently, the recombined lines (F3 or F3:4) produced by two or
three cycles of recombination or intermating among the selected plants are selfed for
2 or 3 years and are then subjected to a final phenotypic screening at multilocation
trials to select the best lines to release as varieties (Fig. 16.7) (Eathington et al. 2007;
Gazal et al. 2015).

Fig. 16.7 Basic steps in molecular markers assisted recurrent selection
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16.5.6 Genomic Selection (GS)

Marker assisted selection is suitable for selecting traits controlled by major genes,
but it has limited applications for selecting traits such as yield and related traits
which are controlled by many genes with small effects. In such situation, genomic
selection which incorporates genome-wide markers for selection of all traits’ loci is
reliable selection approach. As the genetic architecture of resistance shifts from
single major R-genes to a diffused architecture of many minor genes, the best
approach for molecular breeding will shift from marker assisted selection to genomic
selection. Genomic selection (GS) is a form of marker-based selection, which was
defined by Meuwissen (2007) as the simultaneous selection for many (tens or
hundreds or thousands) markers, which cover the entire genome in a dense manner
so that all genes are expected to be in linkage disequilibrium with at least some of the
markers. In GS genotypic data (genetic markers) across the whole genome are used
to predict complex traits with accuracy sufficient to allow selection on that prediction
alone. Selection of desirable individuals is based on genomic estimated breeding
value (GEBV) (Nakaya and Isobe 2012), which is a predicted breeding value
calculated using different methods based on genome-wide dense DNA markers
(Meuwissen et al. 2001). Several statistical approaches have been proposed for the
prediction of genomic estimated breeding values (EBVs), such as best linear unbi-
ased prediction (BLUP) and a Bayesian framework. GS does not involve significant
testing and identifying a subset of markers associated with the trait (Meuwissen et al.
2001). In other words, QTL mapping with populations derived from specific crosses
can be avoided in GS. However, it does first need to develop GS models, i.e. the
formulae for GEBV prediction (Nakaya and Isobe 2012). In this process, phenotypes
and genome-wide genotypes are investigated in the population called training
population (a subset of a population) to predict significant relationships between
phenotypes and genotypes using statistical approaches. Subsequently, GEBVs are
used for the selection of desirable individuals in the breeding phase, instead of the
genotypes of markers used in traditional MAS (Fig. 16.8). For accuracy of GEBV
and GS, genome-wide genotype data is necessary and require high marker density in
which all quantitative trait loci (QTLs) are in linkage disequilibrium with at least one
marker. In genomic selection, selection is based on two separate populations, a
training population and a breeding population. Training population is related to
breeding population and is used for estimation of parameters of the genomic
selection model. This population is genotyped for a large number of markers
covering whole genome, and precisely phenotyped for the target trait(s) in replicated
trials. The genotypic and phenotypic data is analysed with the help of suitable GS
model to estimate the effects of individual marker on the target trait. These estimates
of marker effects are used to compute the genomic estimated breeding values
(GEBVs) of all the plants in breeding population. The marker genotypes of plants
are used to calculate GEBVs, which is the sum of the effects of all marker alleles
present in a given plant. The selection in breeding population is based on GEBVs,
and there is no phenotypic evaluation of this population (Meuwissen et al. 2001).
Genomic selection plays important role in crop improvement programmes including
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disease resistance breeding. For example, genomic best linear unbiased prediction
(GBLUP) and Bayesian regression methods are used to predict rust resistance in
206 landraces of wheat (Daetwyler et al. 2014). In maize genome-wide selection is
used to identify lines with resistance to Stenocarpella maydis causing ear rot in
maize.

16.5.7 Association Mapping in Disease Resistance Breeding

Association mapping is also known as linkage disequilibrium mapping. It is a
method of mapping QTLs that take advantage of linkage disequilibrium to link
phenotypes to genotypes. The diverse lines from natural populations or germplasm
collections are used and markers linked to gene controlling the target traits are
discovered. Association studies are based on the assumption that a marker locus is
closely linked to the target trait so that some markers alleles would be travelling
along with the target trait through many generations during recombination
(Rodriguez-Murillo and Greenberg 2008). Association mapping is of two types,
genome-wide association mapping search whole genome for genetic variation. A

Fig. 16.8 Generalized scheme of genomic selection for desirable traits
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large number of markers are tested for association with various complex traits and it
does not need any prior information about the candidate gene. Second type is
candidate gene association mapping which dissect out the genetic control of com-
plex traits based on available results from genetic, biochemical or physiology studies
(Mackay 2001). Wang et al. (2012) used GWAS for identifying genetic factors to
control head smut disease in maize. Genome-wide association mapping has been
used by Juliana et al. (2018) to identify the candidate genes linked to leaf rust, stripe
rust, and tan spot resistance in wheat.

16.5.8 Genetic Engineering in Resistant Breeding

With advances in the understanding of genetically controlled defense responses and
genetic basis of products being produced during defense response opened new
horizons of molecular research on plant diseases. Molecular mapping of disease
resistance genes, their cloning and generation of transgenic lines using genetic
engineering methods are very promising approaches. The most important contribu-
tion of genetic engineering in varietal development is through gene isolation and
transformation technology using transgenic resistance against disease pathogens.
When resistance genes are not found in a particular species or even in its wild
relatives and land races, resistance cannot be introgressed through conventional
hybridization. In this situation, genes of resistance are introduced from unrelated
species through recombinant DNA technology to overcome the genetic barriers.
Foreign genes are transferred to crop plants using different transformation tools like
gene gun or particle bombardment, electroporation, floral dip (direct transformation
methods), and Agrobacterium mediated transformation (in direct transformation
methods). Cisgenic plants, on the other hand, have inserted gene(s) from the same
species; however, as the inserted gene is a recombinant DNA they are also consid-
ered as GMOs (Genetically modified organisms). Transgenic technology aimed at
engineering for the expression of many antifungal genes including pathogenesis-
related (PR) proteins, phytoalexins, hydrolytic enzymes, antimicrobial peptides, and
resistance (R) genes. The expression of these antifungal genes was successfully
incorporated into plants via, transgenic technology contributing to significant resis-
tance against fungal pathogens. For disease resistance, candidate genes involved in
plant–microbe interaction should reduce the virulence traits of the pathogens, e.g.,
pathogen cell wall degrading enzymes and toxins. Such genes are introduced to
plants that enhance the production of plant defense molecules and confer resistance
to plants against different diseases (Strange 2005). In rice transgenic having NH1
gene, an NPR1 gene orthologue, provided resistance against Xanthomonas oryzae pv
oryzae causing bacterial leaf blight disease in rice (Chern et al. 2005). Various genes
involved in pathogenesis and plant immunity have been dissected and used for
developing durable disease resistant crops through transgenic approaches like
over-expression/gene complementation tests, Small RNA (microRNA), RNA inter-
ference (RNAi), CRISPR/Cas systems (Gurr and Rushton 2005a, b; Singh et al.
2016). A broader and in depth understanding of plant resistance along with
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transcriptomics, proteomics, metabolomic, and protein interaction studies have led
to the identification of several candidate genes from plants, bacteria, viruses, and
fungi that potentially can enhance resistance. These candidate genes can be consti-
tutively over expressed, induced to express under biotic threat, tissue-specifically
expressed, knocked out or silenced by RNAi to obtain the desired resistance trait.
Plant molecular biology and biotechnology techniques have taken a rapid progress in
the identification and cloning of genes involved in plant defense responses. In the
following sections, various transgenic approaches being used for the development of
disease resistance in different crops are explained:

16.5.8.1 Pathogenesis-Related Proteins (PR Proteins)
Pathogenesis-related proteins (PR) are a set of pathogen-induced proteins called as
stress proteins. Genes encoding for PR proteins provide a promising source of
resistance against fungal pathogens. PR proteins are activated during hypersensitive
response (HR) and systemically acquired resistance (SAR). PR proteins are grouped
into 17 protein families PR-1 to PR-17 (Sels et al. 2008; Balconi et al. 2012) based
on their structure, amino acid compositions, and biochemical responses. PR-1 and
PR-5 (thaumatin-like proteins and osmotins) are termed as permatins as they target
the membrane. Osmotin or thoumatin protein has in vitro antifungal activity against
Sclerotinia, Rhizoctonia, Botrytis, and Fusarium (Woloshuk et al. 1991). PR-2
(b � 1,3-glucanases), PR-3, PR-4, PR-8, and PR-11 (chitinases) target the pathogen
cell wall (Wally and Punja 2010; Honee 1999), PR-6 proteins (proteinase inhibitors)
may target nematodes, whereas the PR-7 protein (an endoproteinase) may be
involved in microbial cell wall dissolution (Jordá et al. 2000). The PR-9 family
may enhance resistance to multiple pathogens by catalysing lignifications which
helps in cell wall reinforcement (Passardi et al. 2004). PR-10 family has weak
ribonuclease activity therefore may target pathogen RNA or play a role in defense
against viruses (Park et al. 2004), PR-12 (defensins), PR-13 (thionins), and PR-14
(lipid transfer proteins) predicts antibacterial and antifungal activities (Epple et al.
1997), PR-15 (oxalate oxidases), and PR-16 (oxalate oxidase-like proteins) generate
hydrogen peroxide and are toxic to pathogens and pests (Hu et al. 2003). PR-17
(uncharacterized) was detected in infected tobacco, wheat, and barley (Christensen
et al. 2002). Pathogenesis-related (PR) genes could increase the level of pre-existing
barriers. Naturally occurring PR proteins are constitutively expressed at low levels
and are induced to high levels challenged by pathogens or application of either
salicylic acid or jasmonic acid (Ferreira et al. 2007). Over-expressing thaumatin-like
protein (TLP) in a rice line showed an enhanced level of Sheath blight resistance
compared to the control plants (Rajesh et al. 2016).

16.5.8.2 Hydrolytic Enzymes in Host
Cell wall of fungal pathogens is made up of chitin and glucan molecules which can
be degraded using chitinase and glucanase enzymes produced as a result of fungal
infection. These enzymes cause degradation of fungal cell walls by breaking chitin
and glucan molecules. In transgenic plants this phenomenon is utilized by inducing
overexpression of genes encoding hydrolytic enzymes (Shin et al. 2008). Chitinases
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and glucanases belonging to group of PR proteins and over-expression of these PR
proteins in plants are assumed to cause lysis of fungal hyphae and inhibit the fungal
growth. These enzymes are expressed in both resistant and susceptible tissues, their
role in non-transgenic plant resistance are difficult to prove. These enzymes are also
activated by stress (Punja and Zhang 1993). Transgenic plants introduced with genes
for chitinase production have been evaluated in vivo exhibited reduced fungal
infection leading to disease resistance (Grison et al. 1996). The synergic effect of
chitinase and glucanase prevented the development of many fungal pathogens (Van
den Elzen et al. 1993; Zhu et al. 1994) and hence transgenic expression of more than
one hydrolytic enzyme in combination can provide broader resistance as compared
to expression of a single enzyme (Lamb et al. 1992; Evans and Greenland 1998;
Melchers and Stuiver 2000). Varying levels of resistance towards powdery mildew
were observed in transgenic wheat lines carrying a barley chitinase or a barley β-1,
3-glucanase (Bieri et al. 2003). Chenault et al. (2005) expressed a rice chitinase and
an alfalfa glucanase in transgenic peanut and observed enhanced resistance against
Sclerotinia blight in the transgenic plants. Expression of barley oxalate oxidase in
transgenic peanut also enhanced resistance to Sclerotinia minor (Livingstone et al.
2005). Transgenic peanut expressing a tobacco chitinase gene was shown to possess
enhanced resistance to the late leaf spot caused by Phaeoisariopsis personata
(Rohini and Rao 2001; Anuradha et al. 2008). Transgenic wheat expressing the
Arabidopsis NPR1 gene, a gene that regulates defense responses, was shown to
exhibit a high level of resistance to fusarium head blight in greenhouse evaluations
(Makandar et al. 2006). Three genes, ech42, nag70, and gluc78, encoding hydrolytic
enzymes, from a biocontrol fungus Trichoderma atroviride were introduced in rice.
Gluc78-overexpressing transgenic plants showed enhanced resistance to
Magnaporthe grisea, while transgenic plants over-expressing the ech42 gene
encoding for an endochitinase, increased resistance to R. solani, resulting in 62%
reduction in sheath blight disease index (Liu et al. 2004; Shah et al. 2009). Plant
scientists have discovered a chitinase gene from an antifungal biocontrol fungus
species (Trichoderma viride), which infers transgenic resistance to rice against
sheath blight pathogen. Shao et al. (2008) introduced a harpin encoding gene hrf1,
derived from X. oryzae pv. oryzae, into rice and generated transgenic rice lines with
overexpression of the hrf1 gene. Disease assays revealed that the hrf1
overexpressing transgenic rice plants were highly resistant to all major M. grisea
races. Rice RC24 chitinase gene was introduced into wheat to confer resistance
against Puccinia graminis f. sp. tritici (Huang et al. 2013). Transgenic expression of
Rice chitinase class-Ӏ gene (RCH10) in lilium increased its resistance against infec-
tion of Botrytis cinerea (de Cáceres et al. 2015). Richa et al. (2017) also developed
transgenic rice plants harbouring novel chitinase gene (LOC_Os11g47510) through
genetic transformation resulting in higher resistance against sheath blight (ShB)
disease.

16.5.8.3 Inhibition of Cell Wall Degrading Enzymes in Pathogens
Plant pathogens are categorized as biotrophs, hemibiotrophs, or necrotrophs
depending upon their mode of infection and nutrient uptake (Laluk and Mengiste
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2010). Necrotrophic and hemibiotrophic pathogens produce large quantity of cell
wall degrading enzymes to kill host cells for nutrients or to invade the host cell.
Sometimes bacteria also cause the degradation of host cell wall during infection
process to acquire nutrients. There is direct relationship between disease severity and
degree of damage to cell wall and its components. The main components of plant cell
wall comprised of cellulose, hemicelluloses, pectin, lignin, and other structural
proteins. Peroxidase and laccases enzymes of fungal pathogens stimulate the degra-
dation of lignin. Hydrolases such as cellulase and hemicellulase secreted by both
fungal and bacterial pathogens hydrolysed glycoside bonds of cellulose and
hemicelluloses (Kubicek et al. 2014). During host–pathogen interaction, there is
significant multiplication of genes coding cell wall degrading enzymes in fungi and
such genes are present as gene clusters in fungal genomes. Most of the fungi cause
differential infection on monocot and dicot plants. Genes encoding pectin lyase
enzyme are more in number in the genome of fungi which are pathogenic for dicots.
The mode of infection of pathogens also regulated the differential expression of cell
wall degrading enzymes. The expression of cell wall degrading enzymes was
upregulated in hemibiotrophic pathogens, whereas the expression of pectinases
and xylanases was upregulated in necrotrophs during infection and colonization of
host plants (Fernández-Acero et al. 2010; Zhao et al. 2013). Since biotrophic
pathogens depend upon living cells of host for nutrition comparatively a smaller
number of genes encoding cell wall degrading enzymes are reported in the genomes
of these pathogens (Zhao et al. 2013) whereas the mechanism of pathogenicity of
necrotrophic and hemibiotrophic pathogens can be exploited through genetic engi-
neering by developing engineered plants to inhibit the plant cell wall degrading
ability of the pathogens. The polygalacturonases are another group of fungal and
bacterial enzymes which degrade polygalacturonan constituent of pectin. Transgenic
plants overexpressing the genes encoding for polygalacturonase inhibitory proteins
have shown remarkable reduction in disease symptoms caused by B. cinerea and
Bipolaris sorokiniana and disease symptoms were restored upon antisense suppres-
sion of these genes (Wally and Punja 2010). The cassette comprising the constitutive
promoter of maize ubiquitin gene Ubi1 and the bean Pvpgip2 gene was used to
transform durum and bread wheat and the modified wheat showed a significant
reduction in foliar spot blotch symptoms caused by the fungal pathogen
B. sorokiniana (Ferrari et al. 2012).

16.5.8.4 Phytoalexins
Phytoalexins are low molecular weight secondary metabolites possessing antimicro-
bial resistance against many fungal and bacterial pathogens. Phytoalexins are pro-
duced as a result of pathogen’s attack or mechanical injury. The phytoalexin
accumulation is a part of host defense mechanism and is less toxic than chemical
fungicides. The elicitors molecules signal plants to synthesize phytoalexins during
host–pathogen interaction. These elicitors are high molecular weight substances
which are the constituents of fungal cell wall and are released by host plant enzymes.
Most of these elicitors are non-specific and induce phytoalexin accumulation
irrespective of plant cultivars. Many phytoalexins have been characterized in
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different plant families, for example, terpenoids in Solanaceae family, oflavonoids
in Leguminosae family. Diterpenoid phytoalexins are produced by the plants of
Poaceae family. Corn plants produce diterpenoid phytoalexin when infected with
pathogens such as Aspergillus flavus, Aspergillus sojae, Cochliobolus
heterostrophus, Colletotrichum sublineolum, Fusarium graminearum, Ostrinia
nubilalis, Rhizopus microspores, and Ustilago maydis. The speed of accumulation
of phytoalexins is associated with resistance in plants to diseases, though genetic
information of their synthesis is found in the susceptible and resistant plants (Singh
and Chandrawat 2017). Phytoalexins have been expressed transgenically to provide
resistance against many fungal pathogens (Leckband and Lorz 1998). The synthesis
of phytoalexins undergoes a complex biochemical pathway (Dixon et al. 1996)
including shikimic acid pathway. To achieve genetic manipulation of these pathways
in order to suppress or enhance phytoalexin production is quite difficult. Similarly,
as in the case of hydrolytic enzymes, it has always been difficult to precisely explain
the involvement of phytoalexins in enhancing disease resistance against many fungal
pathogens.

16.5.8.5 R-Genes Mediated Resistance
The development of disease resistant varieties is an alternative approach for the use
of pesticides or other chemical control methods, which minimizes the bad effect of
chemicals on social animals and environment. For the development of resistant
varieties, the nature of R-genes and corresponding Avr genes, detailed knowledge
of disease resistance, its types and of the different breeding methods is must. The
plant immune system is known to activate itself in response to invading pathogen
due to the recognition of pathogen-associated molecular patterns or microbe-
associated molecular patterns (PAMPs/MAMPs) by corresponding resistance (R)
genes (Liu et al. 2007). At molecular level, the Flor’s gene-for-gene concept served
as a base to demonstrate and understand the mechanism of host–pathogen
interactions, which stated that ‘For each resistant gene in a host there is a
corresponding gene of avirulence in pathogen conferring resistance and vice versa’.

In plants, circulating antibody system is absent therefore to fight or to maintain
constant vigilance against invading pathogens they are known to express large arrays
of R-genes. Most of the R-genes have conserved motifs/domains such as nucleotide-
blinding site (NBS), leucine-rich repeat (LRR), interleukin-1 receptor (TIR), a
coiled-coil (CC), leucine zipper (LZ), transmembrane domain (TM), and protein
kinase domain (PK). The majority of R-genes encodes for proteins having at least
three domains, viz., a C-terminal leucine-rich repeat (LRR) domain, a central
nucleotide binding site (NBS) domain, and an N-terminal domain that either
contains homology to cytosolic domains of the Drosophila Toll or animal
interleukin-1 receptors (TIR) or a potential coiled-coil (CC) domain (TIR-NBS-
LRR or CC-NBS-LRR).

Based on the organization of amino acid motif and membrane spanning domains,
plant disease resistance genes are divided into eight groups, viz., NBS-LRR-TIR (N,
L6, RPP5), NBS-LRR-CC (I2, RPS2, RPM1), LRR-TrD (Cf-9, Cf-4, Cf-2), LRR-
TrD-Kinase (Xa-21), TrD-CC (RPW8), TIR-NBS-LRR-NLS-WRKY (RRS1R),
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LRR-TrD-PEST-EC (Ve1, Ve2), and enzymatic R-genes (Pto, RPG1, Hm1)
(Gururani et al. 2012). And out of these, the NBS-LRR genes represent the largest
class of R-genes, which encodes for proteins with variable N-terminal domains.
R-genes recognizes Avr gene products and trigger multiple responses like produc-
tion of reactive oxygen species, accumulation of various inhibitory metabolites,
salicylic acid (which leads to systemically acquired resistance—SAR), induction
of PR proteins, etc. which at the end results in hypersensitive response or
programmed cell death (Ryals et al. 1996; Kombrink and Schmelzer 2001).

With the advancements in genetic engineering, numerous R-genes were discov-
ered and cloned against several pathogens and their discovery has proved as a
breakthrough in plant protection. The first Avr gene was cloned by Staskawicz
et al. (1984) from Pseudomonas syringae. Thereafter, so many R-genes were
identified conferring excellent amount of resistance against many fungal pathogens
(Dixon et al. 1996). The first R-gene Hm1 was cloned from maize which encodes for
NADPH dependent reductase to inhibit a toxin produced by Cochliobolus carbonum
(Johal and Briggs 1992). The continuous selection pressure in avr genes of fungal
pathogens and sequence diversification had overcome R-gene mediated host resis-
tance in a many of the newly engineered crops (Fawke et al. 2015; Kumari et al.
2017) and despite of various advantages, it may confers threat to the plant by
evolving an alternate Avr gene affecting overall fitness of the plant (Collinge et al.
2008). To triumph over failure of engineered varieties, gene stacking methods like
gene pyramiding for combing two or more genes are being used. The utilization of
R-genes for biotic and abiotic stress management may serve as an excellent alterna-
tive of chemical control methods and could be exploited effectively in near future to
meet the demands of growing world by protecting plants.

16.5.8.6 S-Gene Mediated Resistance/Concept of Loss of Susceptibility
Leading to Resistance

The molecular interaction between microbial effectors and host factors either leads
to susceptibility or resistance in plants and by going through this molecular intricacy
of plant–pathogen interaction, the development of disease-free crops is possible.
Jones and Dangl (2006) explained the various steps involved in plant–pathogen
interaction and also describe how both of them evolve in response to each other.
Various host (fatty acids of plant cuticle, galacturonan molecules of host pectin,
phenolic compounds such as strigol, isoflavones, amino acids, and sugars) and
pathogen components (activation of the cutinases and pectin lyases, etc.) are
reported to be involved in recognition process. Although, it is still unclear how
both of them recognize each other, i.e., the nature of early event is not known
(Agrios 2005). Targeting or altering host components which otherwise favour its
susceptibility/predisposition towards invading pathogen will provide comprehensive
and durable resistance. In host plants, there exist preformed passive barriers, i.e.,
structural characteristics that act as physical barriers and biochemical reactions that
take place in the cells and tissues of the plant to induced defense reactions (Agrios
2005). Similarly, on the other side, pathogens either with the help of mechanical
forces exerted on host tissues or chemical weapons infects host. As discussed in
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earlier section, both host and pathogen survive over considerable periods of time to
maintain dynamic equilibrium of resistance and virulence. From long back, most of
the studies were based on R-genes and their role in plant protection but in 2002, a
gene coding for a susceptibility factor, i.e., PMR6 was discovered, for promoting
growth of powdery mildews. Nowadays, the research is moving towards the exploi-
tation of plant susceptibility genes (S-genes) for durable and broad spectrum resis-
tance. The concept of loss of susceptibility (LOS) is in limelight from last few years
and it is generally considered to be as recessively inherited resistance. The loss of
susceptibility (LOS) is also known as recessively inherited resistance and can be
utilized by effectively exploiting genes responsible for susceptibility in plants
(Hückelhoven et al. 2013). Plant pathogens exploit plant’s susceptibility (S) genes
to cause disease and disruption of these S-genes may lead to the incompatible
reaction between both of the interacting partners, thereby provide broad spectrum
and durable disease resistance (Zaidi et al. 2018). These susceptibility genes
(S-genes) code for effector targets that function as negative defense regulators or
susceptibility factor and these S-genes are dominant genes which when mutilated
will lead to recessive resistance. The importance of susceptibility genes in develop-
ing resistant crops was first elucidated by Eckardt (2002). In Arabidopsis-powdery
mildew interaction, some mutants were found which do not support normal growth
of Erysiphe cichoracearum and was reported to be because of PMR6 which encodes
for a pectate lyase—like protein with a novel C-terminal domain. A mutation in
PMR6 alters the composition of the plant cell wall and it was also reported that,
pmr6-mediated resistance does not require the activation of well-defined defense-
related pathways (Vogel et al. 2002). S-gene mediated resistance approach has
limited application in developing resistant crops as these genes are also involved
in other important processes of plants and silencing of these genes will be lethal for
plants.

16.5.8.7 Manipulation of Interactions Between Defense-Related
Signalling Molecules

In nature, changes in the host resistance appear to be continually balanced by shift in
virulence of the pathogen (Longdon et al. 2015). Detailed knowledge about how
pathogens attack plants and how plants respond/defend against invading pathogen
will help in developing broad spectrum disease resistant crops. In response to
pathogenic invaders, plants activate different defense mechanisms. Jones and
Dangl (2006) explained in detail about two interconnected branches of plant immu-
nity, i.e., PTI (pathogen-associated molecular pattern (PAMP)-triggered immunity),
and ETI (effector-triggered immunity). PTI is initiated by the recognition of molec-
ular signs of many pathogens which further leads to the activation of downstream
mitogen-activated protein (MAP) kinase cascades and defense genes, whereas ETI is
because of plant disease resistance proteins (product of major R-genes) which
actually recognizes directly or indirectly pathogen-derived effectors. Systemic
defense responses also called as systemic acquired resistance (SAR) are activated
by these PTI and ETI responses of plants. The cross-talk between different signalling
molecules involved in defense-related pathways leads to the production of plant
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hormones like salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Other
hormones such as abscisic acid, gibberellin, cytokinin, and brassinosteroid have also
been emerged as modulators of plant immunity (Denancé et al. 2013). Recent
advances in plant defense signalling research open doors in the development of
new varieties which are genetically engineered. Development of new chemicals
which mimic the action of various signalling compounds involved in biosynthetic
pathways through genetic engineering provides useful tools for the development of
new strategies for crop protection. However, the activation of a plant defense
response is not specific to a particular pathogen, it helps in developing resistant
crops against number of pathogens. Due to the expression of cloned transgenes
which encodes for signalling mimickers induce the activation of a complete arsenal
of defense-related components. MAPK (Mitogen Associated Protein kinase)
components, certain transcription factors (TFs) and non-pathogenesis-related protein
1 (NPR1), all can be utilized in the development of disease resistant crops. Nowa-
days, transcriptional reprogramming is also gaining importance because of
conserved regions present in transcription factors. There are several TFs such as
ethylene response factor (ERF), WRKY, Myb, TGA-bZIP, Whirly, NAC, and
TGA2 have been reported to be involved in plant defense against biotic factors
and these can be used in the manipulation strategy with the aim to get resistant
varieties (Eulgem 2005; Ryu et al. 2006; Naoumkina et al. 2008; Alves et al. 2013).
The WRKY transcription factors and MYB transcription factors are among the most
studied TFs during the last decade and in addition to these TFs containing a basic
leucine zipper domain (bZIP) also gaining importance. A bZIP domain is among the
largest families of transcription factors in plants and in plants, these factors regulate
genes in response to abiotic stress, seed maturation, flower development, and
pathogen defense. The role of bZIP TFs in plant growth and its defense against
various factors has been studied in many crops and nearly about 127 bZIPs are
known in Arabidopsis, 70 in cotton, 266 in soybean, 47 in tobacco, 70 in tomato,
140 in rice, 102 in wheat, and 218 in maize (Ali et al. 2016). Another group of
transcription factors, i.e., Whirly proteins, also contributes to defense against invad-
ing pathogens. In arabidopsis and potato, orthologs of Whirly proteins are reported
to act as TFs which regulates the expression of defense-related genes (Desveaux
et al. 2005).

NPR1 is considered as the positive regulator of SA mediated immune responses
in plants, i.e., induces long-lasting immune response called systemic acquired
resistance (SAR) similar to the adaptive immunity of animals (Silva et al. 2018).
NPR1 is a receptor of salicylic acid (SA) which modulates multiple immune
responses in plants especially activation of induced and systemic acquired resistance
(SAR). Although, AtNPR1 homologs were first discovered in Arabidopsis, but has
been successfully isolated and utilized in many agriculturally important crops. Ali
and associates (2017) developed BjNPR1 transgenic lines which showed enhanced
resistance to Alternaria brassicae and Erysiphe cruciferarum. In these genetically
engineered lines, there is delay in symptoms and reduced disease severity as
compared to non-transgenic plants. According to them, the overexpression of
NPR1 in Brassica juncea actually confers broad spectrum resistance to fungal
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pathogens (Ali et al. 2017). Although, its overexpression enhances disease resistance
but, it also resulted in yield losses. Therefore, it is important to study in detail the
physiological and molecular mechanisms involved in resistance elicitation.

16.5.8.8 RNAi Technology
The origins of RNA silencing are that of an ancient mechanism that directly defends
host cells against foreign nucleic acids, including viruses and active transposable
elements. This defense is stimulated by double-stranded RNA (dsRNA), a signature
molecule derived from amplification of invasive nucleic acids, which is processed by
the host into small RNAs (sRNAs) that are 20–24 nucleotides (nt) in size. These
sRNAs are then used to guide the silencing of the viral or transposable element RNA
or DNA through transcriptional gene silencing (TGS) and post-transcriptional gene
silencing (PTGS), respectively (Peragine et al. 2004). Host-induced gene silencing
(HIGS) is a highly conserved process that targets messenger RNA (mRNA) tran-
script and degrades it in all eukaryotes to silence the gene (Kamthan et al. 2015).
Because the regulation occurs at a transcriptional level, the process in plants is also
called post-transcriptional gene silencing. This RNA silencing process is called
quelling in fungi (Duan et al. 2012). RNA-mediated gene silencing involved in
switching off the expression of specific genes of fungi responsible for pathogenicity
and is an advanced approach for enhancing resistance against fungi (Sanghera et al.
2009). Plant pathogenic fungi develop direct connections with their host plants via a
specialized structure known as haustorium which act as an interface for signal
exchange as well as nutrient uptake (Panstruga 2003). It allows fungi to uptake
dsRNA’s or siRNA’s during nutrient uptake from targeted host plant to activate
RNA-mediated gene silencing. Gene silencing by introduction of dsRNA has been
successfully employed against many fungal pathogens including Magnaporthe
oryzae, Neurospora crassa, Venturia inaequalis, and Aspergillus nidulans
(Kadotani et al. 2003; Fitzgerald et al. 2004; Goldoni et al. 2004; Hammond and
Keller 2005). Nakayashiki et al. (2005) silenced mpg1 gene and polyketide synthase
genes. Mpg1 gene is a hydrophobin gene which triggers the development of appres-
sorium, hence plays an important role in pathogenicity (Talbot et al. 1996) and these
genes were successfully silenced by p-Silent-1 based vectors in up to 90%
transformants. This concept of RNA-mediated gene silencing was observed in
case of barley powdery mildew caused by Blumeria graminis (Nowara et al. 2010).

RNAi plays critical roles in developmental regulation, stress response, and host
defense against transposons and viruses. The natural defensive aspect of this
approach is scientifically exploited to develop disease resistant crops. In this
approach, a siRNA is produced inside the plant and it moves into the pathogen to
silence pathogenesis-related genes (Govindarajulu et al. 2015). RNAi technology
works as (1) the entry of double-stranded RNA which may be an introduced
transgene or a viral intruder, triggers the RNAi pathway of cells which results in
the production of enzyme Dicer, (2) Dicer cleaves the dsRNA into short, 20–25
basepairs long fragments called small interfering RNA (siRNA), (3) an RNA
induced silencing complex (RISC) which distinguishes between the two strands of
small interfering RNA as sense or antisense. The sense strand which has exactly the
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same sequences as the target gene, (4) the antisense strands are incorporated to the
RISC which are used as guide to target messenger RNAs (mRNA) in a sequence
specific manner, (5) messenger RNAs (mRNA), which codes for amino acids are
cleaved by RISC (Sherman et al. 2015 Fig. 16.9). The activated RISC can repeatedly
cause mRNA degradation, thus inhibiting protein synthesis (Fire et al. 1998; Meister
and Tuschl 2004; Borges and Martienssen 2015; Wagh et al. 2016). The target genes
of pathogens are expressed and dsRNA is generated using the plant machinery. This
dsRNA is used as a precursor for generating smaller RNA fragments complementary
to the genes expressed distantly in the pathogen (Nowara et al. 2010). Due to the
presence of variations in precursor RNA for the generation of siRNA, a diverse
targeting approach has been designed for gene silencing which include sense/
antisense RNA, small/long hairpin RNA, and artificial miRNA precursor (Duan
et al. 2012).

RNAi can provide broad spectrum resistance against highly variable pathogens
like viruses and also with this technology it would be possible to target multiple
genes for silencing by using a thoroughly-designed single transformation construct.

Development of host-induced RNAi system has also been reported in wheat stripe
rust fungus (Puccinia striiformis f.sp. tritici) where gene fragments from the rust
fungi Puccinia striiformis f.sp. tritici or P. graminis f.sp. tritici were delivered to
plant cells through Barley stripe mosaic virus system and some reduced the expres-
sion of the corresponding genes in the rust fungus. This is associated with fungal
gene expression patterns (Yin et al. 2011). Another example is the RNAi—mediated
enhanced resistance to Xanthomonas oryzae, the leaf blight bacterium due to
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successful knockdown of a rice homolog of OsSSI2 (Jiang et al. 2009). Transgenic
rice lines carrying a hybrid RNAi construct targeting two pathogen genes MAP
kinases RPMK1–1 and RPMK1–2 increased sheath blight resistance compared to
the control lines (Tiwari et al. 2017). VIGS (Virus Induced Gene Silencing) is an
important tool for triggering RNAi silencing with the use of viral vectors like BMV
(Brome mosaic virus). VIGS acts as an efficient and rapid tool for assigning gene
function in plants. Using BMV-HIGS, Zhu et al. (2017) reported that MoABC1,
MoMAC1, and MoPMK1 genes of M. oryzae were responsible for disease
development.

16.5.9 Genome Editing Technologies

Genome editing is the beginning of new era to make precise changes in the genomic
DNA by site-specific mutagenesis. Basically, in all genome editing techniques,
sequence specific nucleases are used for the recognition of specific DNA sequences
and these nucleases produced breaks in both the strand of DNA at targeted sites.
Cellular DNA repair mechanism is of two types, nonhomologous end joining and
homologous recombination (Voytas and Gao 2014). Non-homologous end joining is
most common way of DNA repair but it resulted into insertion or deletion mutations
due to errors. Double-stranded DNA breaks were supposed to be repaired by
homologous recombination in the presence of donor DNA template resulting into
specific base changes or replacement of genes. The field of functional genomics has
been revolutionized with the advent of genome editing technologies in which
engineered nucleases including zinc finger nucleases (ZFNs), transcription activator
like effector nucleases (TALENs), and clustered regularly interspaced short palin-
dromic repeats (CRISPER)/CRISPER-associated protein 9 (Cas9) are used for gene
editing (Han et al. 2020). Use of such nucleases offer opportunity for site directed
mutagenesis without possible effects of background mutations in crop plants as in
case of random mutagenesis (Pabo et al. 2001; Boch et al. 2009; Moscou and
Bogdanove 2009; Qin et al. 2020). First generation genome editing tools like
ZFNs and TALENs are expensive and time consuming as they require protein
engineering. CRISPR/Cas9 genome editing involves the use of the same CAS9
with different guide RNAs for targeting multiple sites in the genome (Jaganathan
et al. 2018). In this method the transgene construct can be eliminated through
successive crossing to generate plants with desired mutated nucleotides without
transgene. CRISPR targets the endogenous genes which is not possible using
RNAi technology where gene regulation is governed by endogenous micro RNAs
(miRNAs). Any displacement in miRNAs from exogenous miRNAs (miRNAs) can
lead to hypomorphic mutations and off-target phenotypes (Khan et al. 2009).
CRISPER technology is further advanced to include options for various genetic
alterations like making precise modifications, generating knockouts, multiplex
genome engineering, activation, and repression of target genes (Arora and Narula
2017). Wang et al. (2014) introduced mutations using site-specific endonucleases in
homeoalleles encoding mildew resistance locus (MLO) proteins of hexaploid bread
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wheat. Some examples include the resistance against rice bacterial blight disease by
targeting OsSWEET13 gene (Zhou et al. 2015), the resistance against rice blast
disease by targeting OsERF922 gene in rice (Wang et al. 2016). The stacking up
of multiple nucleases as one transgene by CRISPR/Cas9 system also leads to the
targeted cleavage of multiple infections by viruses (Iqbal et al. 2016). Protospacer
adjacent motif dependent cleavage of target system is a major bottle neck of using
CRISPER/Cas9 system. However, many CRISPER/Cas systems with different
protospacer adjacent motif specificity have been identified (Wrighton 2018) and
further, RNA targeting CRISPR/Cas systems have also extended the applicability of
CRISPER toolbox (Yin and Qiu 2019).

Molecular information about target gene and known host genome sequences are
prerequisite for successful genome editing. With the advent of next generation
sequencing platforms, full genomes sequences of an increasing number of plants
species have been available. Further, molecular and genetic studies about innate
plant immunity revealed increasing numbers of candidate genes for the management
of pest and diseases. Host susceptibility genes which regulate plant disease resis-
tance negatively are good targets for genome editing.

Ethylene responsive factors (ERFs) of the APETELA2/ERF (AP2/ERF) super-
family play important role in rice adaptation to various biotic and abiotic stresses
(Mizoi et al. 2012). The expression of OsERF922 is induced by rice blast pathogen
Magnaporthe oryzae. Knockdown of OsERF922 by RNAi leads to increased resis-
tance to M. oryzae, indicating that OsERF922 is a negative regulator of rice blast
resistance (Liu et al. 2012). Targeted modification of OsERF922 using CRISPR/
Cas9 generated rice Oserf922 knockout mutants (Wang et al. 2016). These mutants
showed enhanced resistance to rice blast without affecting other major agronomic
traits. Therefore, the targeted knockout of negative regulators or/and susceptibility
genes via genome editing represents a powerful approach for plant disease resistance
breeding. Presently, majority of disease resistant crops against various pathogens
except viral pathogens have been developed using genome editing by targeted
mutagenesis of susceptibility genes. The functional conservation of S-genes across
plant species is exploited to generate desired S-gene mutants in most of plants for
breeding without species barriers. Mutations in S-genes resulted adverse effects on
plant growth as these S-genes are involved in plant growth and development which
may limit its applicability.

Many times, R-genes are used for transferring disease resistance from wild
species to cultivated elite varieties have single nucleotide variations. Newly devel-
oped base editors are used to generate specific base changes in cultivated improved
varieties and recently synthetic immune receptors has open new horizons for breed-
ing crops resistant to phylogenetically divergent pathogens (Giannakopoulou et al.
2015).

Disease resistance breeding is not limited to gene replacement or gene dispersion,
but also gene regulation through genome editing. For example, in rice japonica rice
plants carrying Xa3 gene exhibited enhanced resistance spectrum as compared to
indica rice plants due to increased expression of Xa3 in japonica rice (Cao et al.
2007). Similarly, Hm2 gene in maize provides dosage dependent resistance against
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leaf spot and ear mould disease (Chintamanani et al. 2008). In contrast, dose of
GhLMMD gene in cotton regulates programmed cell death and immunity and
downregulation of this gene resulted in resistance to Verticillium dehliae infection
(Chai et al. 2017). Multiple disease resistance plants have been obtained using
CRISPR/Cas9 technology. Recently, developed CRISPR activation (CRISPRa) or
CRISPR interference (CRISPRi) approaches can regulate target genes specifically
and allow multiple gene regulation. These approaches can be used for breeding crops
with broad spectrum resistance in future. Further, mRNA translation of target genes
having upstream open reading frames can be modified by genome editing (Zhang
et al. 2018).

16.6 Conclusion and Future Prospects

It has been a long journey of crop improvement from conventional practices to the
novel strategies of plant genetic engineering for developing disease resistant crop
plants. The various options available worldwide to control the spread of diseases are
by various crop cultural and management interventions, breeding of resistant
cultivars of crops, and by application of agrochemicals at the time of disease
occurrence. Even after the adoption of various agricultural practices and
agrochemicals, every year plant diseases account approximately 12% yield loss at
the field level, to which is added 9–20% during post-harvest stages (Agrios 2005).
Durable pest and disease resistance achieved so far by traditional breeding and
chemical practices have been undergone through many scientific challenges and
modifications till now. These conventional approaches are successful in controlling
only some diseases and to overcome the limitations of conventional breeding
approaches, new innovative approaches have been exploited to develop disease
resistant varieties like mutation breeding, somaclonal variants, TILLING, MAS for
disease resistance genes, marker assisted disease resistance gene pyramiding and
genetic engineering (Fig. 16.10). These approaches also have certain limitations in
applicability and used under specific situations. With the advent of next generation
sequencing techniques, isolation and cloning of genes and transformation technol-
ogy, genetic engineering technology has been most widely and successfully
implemented in enhancing resistance against numerous fungal diseases. Designing
tools to deliver genes directly into the tissue and in a stress-specific manner without
disturbing the normal metabolic cycle of crops is an important aspect of genetic
engineering (Gurr and Rushton 2005a, b). Genetic engineering for genes related to
defense including PR proteins, hydrolytic enzymes, antimicrobial peptides, and
phytoalexins have provided significant amount of resistance against fungal diseases.
The combined expression of all defense-related genes have served as a remarkable
source of resistance. Another approach includes RNA silencing ‘switching off’ of
the expression of specific genes by introducing double-stranded RNA’s is gaining
huge importance since last decade. Although many fungal genes encoding for
pathogenicity factors have been sequenced successfully but the application of
RNA silencing against fungal pathogens is still limited. Transgenic technology
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integrated with classical breeding has revolutionized agricultural research and
opened new vistas of research to enhance resistance and productivity of economi-
cally important agricultural crops. Although a large number of genetically
engineered crops against different plant pathogens have been developed but majority
of genetically engineered plants are confined to the laboratory. They have not
undergone field trials and some genetically modified crops that have cleared field
test are not available for cultivation because of biosafety concerns. To encourage the
development of more GM crops, issue related to acceptance of these should be
resolved and emphasis should be given on agronomically important crops. The field
of RNAi is moving at an impressive pace and generating exciting results associated
with RNAi, transgene silencing and transposon mobilization. This technology can be
considered an eco-friendly, biosafe and ever green technology as it eliminates even
certain risks associated with development of transgenic plants. The scopes are
further widened with the advent of genome editing tools like CRISPR—Cas9
(Sander and Joung 2014) and new digital phenotyping technologies (phenomics),
to develop a more sustainable crop production in scenario of changing climate.
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