
Semi-Slant ξ⊥-, Hemi-Slant
ξ⊥-Riemannian Submersions and Quasi
Hemi-Slant Submanifolds

Mehmet Akif Akyol and Rajendra Prasad

2010 AMS Mathematics Subject Classification 53C15, 53C40, 53C50

1 Introduction

A differentiable map π : (M, gM) −→ (N , gN ) between Riemannian manifolds
(M, gM) and (N , gN ) is called a Riemannian submersion if π∗ is onto and it sat-
isfies

gN (π∗X1, π∗X2) = gM(X1, X2) (1.1)

for X1, X2 vector fields tangent to M , where π∗ denotes the derivative map. The
study of Riemannian submersions were studied by O’Neill [1] and Gray [2] see also
[3]. Riemannian submersions have several applications in mathematical physics.
Indeed, Riemannian submersions have their applications in the Yang–Mills the-
ory [42, 43], Kaluza–Klein theory [44, 45], supergravity and superstring theories
[46, 47] and more. Later, such submersions according to the conditions on the
map π : (M, gM) −→ (N , gN ), we have the following submersions: Riemannian
submersions [4], almost Hermitian submersions [5], invariant submersions [6–8],
anti-invariant submersions [7–13], lagrangian submersions [14, 15], semi-invariant
submersions [16, 17], slant submersions [18–22], semi-slant submersions [23–26],
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quaternionic submersions [27, 28], hemi-slant submersions [29, 30], pointwise slant
submersions [31, 32], etc. In [33], Lee defined anti-invariant ξ⊥-Riemannian sub-
mersions from almost contact metric manifolds and studied the geometry of such
maps.

As a generalization of anti-invariant ξ⊥-Riemannian submersions, Akyol et al. in
[34] defined the notion of semi-invariant ξ⊥-Riemannian submersions from almost
contact metric manifolds and investigated the geometry of such maps. In 2017,
Mehmet et al. [35], as a generalization of anti-invariant ξ⊥-Riemannian submersions,
semi-invariant ξ⊥-Riemannian submersions and slant Riemannian submersions,
defined and studied semi-slant ξ⊥-Riemannian submersions from Sasakian mani-
folds onto Riemannian manifolds. Very recently Ramazan Sari and Mehmet Akif
Akyol [36] also introduced and studied Hemi-slant ξ⊥-submersions and obtained
interesting results. On the other hand, in 1996, using Chen’s notion on slant sub-
manifold, Lotta [37] introduced the notion of slant submanifold in almost contact
metric manifold which was further generalized as semi-slant, hemi-slant and bi-slant
submanifolds. Motivated from these studies, Rajendra Prasad et al. introduced and
studied quasi hemi-slant submanifolds of cosymplectic manifolds.

The aim of this chapter is to discuss briefly some results of semi-slant ξ⊥-
submersions [35], hemi-slant ξ⊥-submersions [36] and quasi hemi-slant subman-
ifolds [38].

2 Riemannian Submersions

Let (M, gM) and (N , gN ) be two Riemannian manifolds. A Riemannian submersion
π : M −→ N is a map of M onto N satisfying the following axioms:

(i) π has maximal rank, and
(ii) The differential π∗ preserves the lenghts of horizontal vectors, that is π∗ is a

linear isometry.

The geometry of Riemannian submersion is characterized by O’Neill’s tensors T
and A defined as follows:

T (E1, E2) = H∇M

VE1
VE2 + V∇M

VE1
HE2 (2.1)

and
A(E1, E2) = H∇M

HE1
VE2 + V∇M

HE1
HE2 (2.2)

for any E1, E2 ∈ �(M), where ∇M
is the Levi-Civita connection on gM . Note that

we denote the projection morphisms on the vertical distribution and the horizontal
distribution by V and H , respectively. One can easily see that T is vertical, TE1 =
TVE1 and A is horizontal, AE1 = AHE1 . We also note that

TUV = TVU and AXY = −AY X = 1

2
V[X,Y ],
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for X,Y ∈ �((kerπ∗)⊥) and U, V ∈ �(kerπ∗).
On the other hand, from (2.1) and (2.2), we obtain

∇M

V W = TVW + ∇̂VW ; (2.3)

∇M

V X = TV X + H(∇M

V X); (2.4)

∇M

X V = V(∇M

X V ) + AXV ; (2.5)

∇M

X Y = AXY + H(∇M

X Y ), (2.6)

for any X,Y ∈ �((kerπ∗)⊥) and V,W ∈ �(kerπ∗). Moreover, if X is basic, then
H(∇M

V X) = AXV . It is easy to see that for U, V ∈ �(kerπ∗), TUV coincides with
the fibres as the second fundamental form andAXY reflecting the complete integra-
bility of the horizontal distribution.
A vector field on M is called vertical if it is always tangent to fibres. A vector field
on M is called horizontal if it is always orthogonal to fibres. A vector field Z on
M is called basic if Z is horizontal and π -related to a vector field Z̄ on N , i.e.,
π∗Z p = Z̄π∗(p) for all p ∈ M .

Lemma 2.1 (see [1, 3]) Let π : M −→ N be a Riemannian submersion. If X and
Y basic vector fields on M, then we get:

(i) gM(X,Y ) = gN (X̄ , Ȳ ) ◦ π,

(ii) H[X,Y ] is a basic and π∗H[X,Y ] = [X̄ , Ȳ ] ◦ π;
(iii) H(∇M

X Y ) is a basic, π -related to (∇ N

X̄
Ȳ ), where∇M

and∇ N
are the Levi-Civita

connection on M and N ;
(iv) [X, V ] ∈ �(kerπ∗) is vertical, for any V ∈ �(kerπ∗).

Let (M, gM) and (N , gN ) be Riemannian manifolds and π : M −→ N is a dif-
ferentiable map. Then the second fundamental form of π is given by

(∇π∗)(X,Y ) = ∇π

Xπ∗Y − π∗(∇XY ) (2.7)

for X,Y ∈ �(T M), where ∇π

is the pull back connection and ∇ is the Levi-Civita
connections of the metrics gM and gN .

Finally, let (M, gM) be a (2m + 1)-dimensional Riemannian manifold and T M
denote the tangent bundle of M. Then M is called an almost contact metric manifold
if there exists a tensor ϕ of type (1, 1) and global vector field ξ and η is a 1-form of
ξ , then we have

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1 (2.8)

ϕξ = 0, ηoϕ = 0 and gM(ϕX, ϕY ) = gM(X,Y ) − η(X)η(Y ), (2.9)

where X,Y are any vector fields on M. In this case, (ϕ, ξ, η, gM ) is called the almost
contact metric structure of M. The almost contact metric manifold (M, ϕ, ξ, η, gM )
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is called a contact metric manifold if

�(X,Y ) = dη(X,Y )

for any X,Y ∈ �(T M),where� is a 2-form inM definedby�(X,Y ) = gM(X, ϕY ).

The 2-form � is called the fundamental 2-form of M. A contact metric structure of
M is said to be normal if

[ϕ, ϕ] + 2dη ⊗ ξ = 0,

where [ϕ, ϕ] is Nijenhuis tensor of ϕ. Any normal contact metric manifold is called
a Sasakian manifold. Moreover, if M is Sasakian [39, 40], then we have

(∇M

X ϕ)Y = gM(X,Y )ξ − η(Y )X and ∇M

X ξ = −ϕX, (2.10)

where ∇M
is the connection of Levi-Civita covariant differentiation.

3 Semi-slant ξ⊥-Riemannian Submersions

In 2017, Mehmet et al. [35], as a generalization of anti-invariant ξ⊥-Riemannian
submersions, semi-invariant ξ⊥-Riemannian submersions and slant Riemannian sub-
mersions, defined and studied semi-slant ξ⊥-Riemannian submersions fromSasakian
manifolds onto Riemannian manifolds. In this Sect. 3, we will discuss some results
of this paper briefly.

Definition 3.1 Let (M, ϕ, ξ, η, gM ) be a Sasakian manifold and (N , gN ) be a Rie-
mannianmanifold. Suppose that there exists aRiemannian submersionπ : M −→ N
such that ξ is normal to kerπ∗. Then π : M −→ N is called semi-slant ξ⊥-
Riemannian submersion if there is a distribution D1 ⊆ ker π∗ such that

kerπ∗ = D1 ⊕ D2, ϕ(D1) = D1, (3.1)

and the angle θ = θ(U ) between ϕU and the space (D2)p is constant for nonzero
U ∈ (D2)p and p ∈ M , where D2 is the orthogonal complement of D1 in kerπ∗. As
it is, the angle θ is called the semi-slant angle of the submersion.

Now, let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ). Then, forU ∈ �(ker π∗), we
put

U = PU + QU (3.2)

where PU ∈ �(D1) and QU ∈ �(D2). For Z ∈ �(T M), we have

Z = VZ + HZ (3.3)
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where VZ ∈ �(kerπ∗) and HZ ∈ �((kerπ∗)⊥). For V ∈ �(kerπ∗), we get

ϕV = φV + ωV (3.4)

where φV and ωV are vertical and horizontal components of ϕV, respectively.
Similarly, for any X ∈ �((kerπ∗)⊥), we have

ϕX = BX + CX (3.5)

where BX (resp. CX ) is the vertical part (resp. horizontal part) of ϕX. Then the
horizontal distribution (kerπ∗)⊥ is decomposed as

(ker π∗)⊥ = ωD2 ⊕ μ, (3.6)

here μ is the orthogonal complementary distribution of ωD2 and it is both invariant
distribution of (kerπ∗)⊥ with respect to ϕ and contains ξ. By (2.9), (3.4) and (3.5),
we have

gM(φU1, V1) = −gM(U1, φV1) (3.7)

and

gM(ωU1, X) = −gM(U1,BX) (3.8)

for U1, V1 ∈ �(ker π∗) and X ∈ �((ker π∗)⊥). From (3.4), (3.5) and (3.6), we have

Lemma 3.2 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ). Then we obtain:

(a) φD1 = D1, (b) ωD1 = 0,

(c) φD2 ⊂ D2, (d) B(kerπ∗)⊥ = D2,

(e) TU1ξ = φU1, ( f ) ∇̂U1ξ = −ωU1,

for U1 ∈ �(ker π∗) and ξ ∈ �((kerπ∗)⊥).

Using (3.4), (3.5) and the fact that ϕ2 = −I + η ⊗ ξ, we have

Lemma 3.3 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ). Then we get

(i) φ2 + Bω = −id, (i i) C2 + ωB = −id,

(i i i) ωφ + Cω = 0, (iv) BC + φB = 0,

where I is the identity operator on the space of π.
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Let (M, ϕ, ξ, η, gM ) be a Sasakian manifold and (N , gN ) be a Riemannian mani-
fold. Let π : (M, ϕ, ξ, η, gM ) −→ (N , gN ) be a semi-slant ξ⊥-Riemannian submer-
sion.Wenowexamine how the Sasakian structure onM effects the tensor fieldsT and
A of a semi-slant ξ⊥-Riemannian submersion π : (M, ϕ, ξ, η, gM ) −→ (N , gN ).

Lemma 3.4 Let (M, ϕ, ξ, η, gM ) be a Sasakian manifold and (N , gN ) a Rieman-
nianmanifold. Letπ : (M, ϕ, ξ, η, gM ) −→ (N , gN )bea semi-slant ξ⊥-Riemannian
submersion. Then we have

BTUV + φ∇̂UV = ∇̂UφV + TUωV, (3.9)

gM(U, V )ξ + CTUV + ω∇̂UV = TUφV + H∇M

UωV, (3.10)

φTU X + B∇M

U X − η(X)U = ∇̂UBX + TUCX, (3.11)

ωTU X + C∇M

U X = TUBX + H∇M

UCX, (3.12)

gM(X,Y )ξ − ωAXY + CH∇M

X Y = AXBY + ∇M

XCY + η(Y )X, (3.13)

φAXY + BH∇M

X Y = V∇M

XBY + AXCY, (3.14)

for all X,Y ∈ �((ker π∗)⊥) and U, V ∈ �(ker π∗).

Proof Given U, V ∈ �(kerπ∗), by virtue of (2.10) and (3.4), we have

gM(U, V )ξ − η(V )U = ∇M

UφV + ∇M

UωV − ϕ∇M

U V .

Making use of (2.3), (2.4), (3.4) and (3.5), we have

gM(U, V )ξ = TUφV + ∇̂UφV + TUωV + H∇M

UωV

− BTUV − CTUV − φ∇̂UV − ω∇̂UV . (3.15)

Comparing horizontal and vertical parts, we get (3.9) and (3.10). The other assertions
can be obtained in a similar method. �

Theorem 3.5 Letπ : (M, ϕ, ξ, η, gM ) −→ (N , gN )bea semi-slant ξ⊥-Riemannian
submersion from a Sasakian manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold
(N , gN ). Then we have

φ2W = − cos2 θW, W ∈ �(D2), (3.16)

where θ denotes the semi-slant angle of D2.

Lemma 3.6 Let π : (M, ϕ, ξ, η, gM ) −→ (N , gN ) be a semi-slant ξ⊥-Riemannian
submersion from a Sasakian manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold
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(N , gN ) with a semi-slant angle θ. Then we have

gM(φW1, φW2) = cos2 θgM(W1,W2), (3.17)

gM(ωW1, ωW2) = sin2 θgM(W1,W2), (3.18)

for any W1,W2 ∈ �(D2).

3.1 Integrable and Parallel Distributions

In this section, we will discuss integrability conditions of the distributions involved
in the definition of a semi-slant ξ⊥-Riemannian submersion. First, we have

Theorem 3.7 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then:

(i) D1 is integrable ⇔ (∇π∗)(U, ϕV ) − (∇π∗)(V, ϕU ) /∈ �(π∗μ)

(ii) D2 is integrable ⇔ gN (π∗ωW, (∇π∗)(Z , ϕU )) + gN (π∗ωZ , (∇π∗)(W, ϕU )) = gM (φW, ∇̂ZϕU )

+ gM (φZ , ∇̂WϕU )

for U, V ∈ �(D1) and Z ,W ∈ �(D2).

Proof ForU, V ∈ �(D1) and X ∈ �((kerπ∗)⊥), since [U, V ] ∈ �(kerπ∗), we have
gM([U, V ], X) = 0. Thus, D1 is integrable ⇔ gM([U, V ], Z) = 0 for Z ∈ �(D2).

Since M is a Sasakian manifold, by (2.9) and (2.10), we have

gM(∇M

U V, Z) = gM(∇M

UϕV − gM(U, V )ξ − η(V )U, ϕZ)

= gM(∇M

UϕV, ϕZ). (3.19)

Using (3.4) in (3.19), we get

gM ([U, V ], Z) = −gM (∇M

U V, ϕφZ) + gM (H∇M

U ϕV, wZ) − gM (∇M

V U, ϕφZ) − gM (H∇M

V ϕU, wZ).

Now, by using (2.7) and (3.16), we get

gM([U, V ], Z) = cos2 θgM(∇M

U V, Z) − gN ((∇π∗)(U, ϕV ) + ∇π
Uπ∗ϕV, π∗wZ)

− cos2 θgM(∇M

V U, Z) + gN ((∇π∗)(V, ϕU ) + ∇π
Vπ∗ϕU, π∗wZ).

Thus, we have

(sin2 θ)gM([U, V ], Z) = −gN ((∇π∗)(U, ϕV ) − (∇π∗)(V, ϕU ), π∗wZ),

�



308 M. A. Akyol and R. Prasad

which completes the proof.
Now for the geometry of leaves of D1, we have

Theorem 3.8 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the distribution D1 is parallel if and only if

gN ((∇π∗)(U, ϕV ), π∗ωZ) = gM(TUωφZ , V ) (3.20)

and

−gN ((∇π∗)(U, ϕV ), π∗CX) = gM(V, ∇̂UφBX + TUωBX) + gM(V, ϕU )η(X)

(3.21)

for U, V ∈ �(D1), Z ∈ �(D2) and X ∈ �((ker π∗)⊥).

Proof Making use of (3.19), (3.4) and (2.3), forU, V ∈ �(D1) and Z ∈ �(D2), we
have

gM(∇M

U V, Z) = −gM(∇M

U V, φ2Z) − gM(∇M

U V, ωφZ) + gM(H∇M

UϕV, ωZ).

By virtue of (2.7) and (3.16), we get

gM (∇M

U V, Z) = cos2 θgM (∇M

U V, Z) − gM (TUV, wφZ) + gN ((∇π∗)(U, ϕV ), π∗(wZ))

or

sin2 θgM(∇M

U V, Z) = −gM(TUwφZ , V ) + gN ((∇π∗)(U, ϕV ), π∗(wZ)),

which gives (3.20). On the other hand, from (2.9) and (2.10), we have

gM(∇M

U V, X) = gM(∇M

UϕV, ϕX) + gM(V, ϕU )η(X)

for U, V ∈ �(D1) and X ∈ �((ker π∗)⊥). By using (3.5), we obtain

gM (∇M

U V, X) = gM (V, ∇M

U φBX) + gM (V, ∇M

U ωBX) + gM (CX,H∇M

U ϕV ) + gM (V, ϕU )η(X).

Taking into account of (2.3), we write

gM(∇M

U V, X) = gM(V,TUφBX + ∇̂UφBX) + gM(V,TUωBX + H∇M

UωBX)

− gN (π∗(CX), π∗(H∇M

UϕV )) + gM(V, ϕU )η(X)

hence,
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gM(∇M

U V, X) = gM(V, ∇̂UφBX) + gM(V,TUωBX) + gN ((∇π∗)(U, ϕV ), π∗CX)

+ gM(V, ϕU )η(X).

which gives (3.21). This completes the assertion. �

Similarly for D2, we have:

Theorem 3.9 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the distribution D2 is parallel if and only if

gN (π∗ωW, (∇π∗)(Z , ϕU )) = gM(φW, ∇̂ZϕU ) (3.22)

and

gN ((∇π∗)(Z , ωW ), π∗(X)) − gN ((∇π∗)(Z , ωφW ), π∗(X)) = gM (TZωW,BX) + gM (W, ϕZ)η(X)

(3.23)

for any Z ,W ∈ �(D2),U ∈ �(D1) and X ∈ �((kerπ∗)⊥).

Theorem 3.10 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the distribution (ker π∗)⊥ is integrable if and only if

gN ((∇π∗)(Y, φV ), π∗(X)) + gN ((∇π∗)(X, φV ), π∗(X)) = gM (φV,V(∇M

X BY + ∇M

Y BX))

(3.24)

and

gN ((∇π∗)(X,CY ) − (∇π∗)(Y,CX), π∗ωW ) = gM (AXBY + AYBX, ωW )

+ η(Y )gM (X, ωW ) − η(X)gM (Y, ωW )

(3.25)

for X,Y ∈ �((kerπ∗)⊥), V ∈ �(D1) and W ∈ �(D2).

Proof Using (3.19), (2.9) and (2.10), we have for X,Y ∈ �((ker π∗)⊥) and V ∈
�(D1).

gM([X,Y ], V ) = gM(∇M

X ϕY, ϕV ) − gM(∇M

Y ϕX, ϕV ).

Now, by using (3.5), we obtain

gM ([X, Y ], V ) = −gM (BY, ∇M

X ϕV ) − gM (CY,∇M

X ϕV ) + gM (BX, ∇M

Y ϕV ) + gM (CX,∇M

Y ϕV ).

By using (2.5) and taking into account of the property of the map, we have
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gM([X,Y ], V ) = gM(ϕV,AYBX + V∇M

XBY ) − gN (π∗(CY ), π∗(∇M

X ϕV ))

− gM(ϕV,AXBY + V∇M

Y BX) − gN (π∗(CX), π∗(∇M

Y ϕV )).

Thus, we have

gM([X,Y ], V ) = gM(ϕV,V(∇M

XBY − ∇M

Y BX)) + gN (π∗(CY ), (∇π∗)(X, ϕV ))

− gN (π∗(CX), (∇π∗)(Y, ϕV )),

which gives (3.24). In a similar way, by virtue of (3.19), (2.9) and (2.10), we have
for X,Y ∈ �((ker π∗)⊥) and W ∈ �(D2),

gM([X,Y ],W ) = gM(ϕ∇M

X Y, φW ) + gM(ϕ∇M

X Y, ωW ) + η(Y )gM(X, ωW )

− gM(ϕ∇M

Y X, φW ) − gM(ϕ∇M

Y X, ωW ) − η(X)gM(Y, ωW ).

By virtue of (3.5) and (3.6), we have

gM ([X, Y ],W ) = −gM (∇M

X Y, φ2W ) − gM (∇M

X Y, ωφW ) + gM (∇M

X BY, ωW ) + gM (∇M

X CY, ωW )

− gM (∇M

Y X, φ2W ) − gM (∇M

Y X, ωφW ) + gM (∇M

Y BX, ωW ) + gM (∇M

Y CX, ωW )

+ η(Y )gM (X, ωW ) − η(X)gM (Y, ωW ).

Now, by using (3.16) and the property of the map, we get

gM ([X, Y ],W ) = cos2 θgM ([X, Y ],W ) + gN ((∇π∗)(X, Y ), ωφW ) + gM (AXBY, ωW )

− gN ((∇π∗)(X,CY ), π∗ωW ) − gN ((∇π∗)(Y, X), ωφW ) + gM (AYBX, ωW )

+ gN ((∇π∗)(Y,CX), π∗ωW ) + η(Y )gM (X, ωW ) − η(X)gM (Y, ωW ).

Thus, we have

sin2 θgM ([X, Y ],W ) = gN ((∇π∗)(Y,CX) − (∇π∗)(X,CY ), π∗ωW ) + gM (AXBY + AYBX, ωW )

+ η(Y )gM (X, ωW ) − η(X)gM (Y, ωW ),

which gives (3.25). This completes the proof. �

For the geometry of leaves (ker π∗)⊥, we have

Theorem 3.11 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the distribution (ker π∗)⊥ is parallel if and only if

gM(V,V∇M

X φBY + AXωBY ) = gN (π∗(CY ), (∇π∗)(X, ϕV )) (3.26)

and
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gM(AXωW,BY ) + η(Y )gM(X, ωW ) = gN ((∇π∗)(X,Y ), π∗ωφW )

− gN ((∇π∗)(X,CY ), π∗ωW ), (3.27)

for X,Y ∈ �((ker π∗)⊥), V ∈ �(D1) and W ∈ �(D2).

Theorem 3.12 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the distribution (kerπ∗) is parallel if and only if

gM (ωV,TUBX) + gM (V, φU )η(X) = gN ((∇π∗)(U,CX), π∗ωV ) − gN ((∇π∗)(U, X), π∗ωφV )

(3.28)

for any U ∈ �(D1), V ∈ �(D2) and X ∈ �((kerπ∗)⊥).

By virtue of Theorems 3.8, 3.9 and 3.11, we have the following theorem;

Theorem 3.13 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the total space M is a locally product manifold of the leaves of D1,
D2 and (kerπ∗)⊥, i.e., M = MD1 × MD2 × M (kerπ∗)⊥ , if and only if

gN ((∇π∗)(U, ϕV ), π∗ωZ) = gM(TUωφZ , V ),

−gN ((∇π∗)(U, ϕV ), π∗CX) = gM(V, ∇̂UφBX + TUωBX) + gM(V, ϕU )η(X),

gN (π∗ωW, (∇π∗)(Z , ϕU )) = gM(φW, ∇̂ZϕU ),

gN ((∇π∗)(Z , ωW ), π∗(X)) − gN ((∇π∗)(Z , ωφW ), π∗(X))

= gM(TZωW,BX)

+ gM(W, ϕZ)η(X)

and

gM(V,V∇M

X φBY + AXωBY ) = gN (π∗(CY ), (∇π∗)(X, ϕV )),

gM(AXωW,BY ) + η(Y )gM(X, ωW ) = gN ((∇π∗)(X,Y ), π∗ωφW )

− gN ((∇π∗)(X,CY ), π∗ωW )

for X,Y ∈ �((ker π∗)⊥), U, V ∈ �(D1) and Z ,W ∈ �(D2).

From Theorems 3.11 to 3.12, we have the following theorem;
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Theorem 3.14 Let π : (M, ϕ, ξ, η, gM ) −→ (N , gN ) be a semi-slant ξ⊥-
Riemannian submersion from a Sasakian manifold (M, ϕ, ξ, η, gM ) onto a Rie-
mannian manifold (N , gN ) with a semi-slant angle θ. Then the total space M
is a locally (usual) product manifold of the leaves of kerπ∗ and (kerπ∗)⊥, i.e.,
M = Mkerπ∗ × M (kerπ∗)⊥ , if and only if

gM(V,V∇M

X φBY + AXωBY ) = gN (π∗(CY ), (∇π∗)(X, ϕV )),

gM(AXωW,BY ) + η(Y )gM(X, ωW ) = gN ((∇π∗)(X,Y ), π∗ωφW )

− gN ((∇π∗)(X,CY ), π∗ωW )

and

gM(ωV,TUBX) + gM(V, φU )η(X) = gN ((∇π∗)(U,CX), π∗ωV )

− gN ((∇π∗)(U, X), π∗ωφV )

for X,Y ∈ �((ker π∗)⊥),U, V ∈ �(D1) and W ∈ �(D2).

3.2 Totally Geodesic Semi-Slant ξ⊥-Submersions

Recall that a differential map π between two Riemannian manifolds is called totally
geodesic if ∇π∗ = 0 [41]. Then we have

Theorem 3.15 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then π is a totally geodesic map if

−∇π
Xπ∗Z2 = π∗(C(H∇M

X ωZ1 − AXφZ1 + AXBZ2 + H∇M

XCZ2) (3.29)

+ ω(AXωZ1 − V∇M

X φZ1 + V∇M

XBZ2 + AXCZ2)

− η(Z2)CX − η(X)η(Z2) − gM(Y,CX)ξ)

for any X ∈ �((kerπ∗)⊥) and Z = Z1 + Z2 ∈ �(T M), where Z1 ∈ �(kerπ∗) and
Z2 ∈ �((kerπ∗)⊥).

Proof Making use of (2.5), (2.9) and (2.10), we have

∇M

X Z = ϕ(∇M

X ϕ)Z − ϕ∇M

X ϕZ + η(∇M

X Z)ξ

for any Z ∈ �((kerπ∗)⊥) and X ∈ �(T M). Now, from (2.7), we have
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(∇π∗)(X, Z) = ∇π
Xπ∗Z + π∗(ϕ∇M

X ϕZ − ϕ(∇M

X ϕ)Z − η(∇M

X Z)ξ)

= ∇π
Xπ∗Z + π∗(ϕ(∇M

X ϕZ1 + ∇M

X ϕZ2) − η(Z)ϕX − η(∇M

X Z)ξ).

Or,

(∇π∗)(X, Z) = ∇π
Xπ∗Z2 + π∗(BAXφZ1 + CAXφZ1 + φV∇M

X φZ1 + ωV∇M

X φZ1

+ φAXωZ1 + ωAXωZ1 + BH∇M

X ωZ1 + CH∇M

X ωZ1

+ BAXBZ2 + CAXBZ2 + φV∇M

XBZ2 + ωV∇M

XBZ2

+ φAXCZ2 + ωAXCZ2 + BH∇M

XCZ2 + CH∇M

XCZ2

− η(Z2)ϕX − η(X)η(Z2) − gM(Z2,CX)ξ)

for any Z = Z1 + Z2 ∈ �(T M), where Z1 ∈ �(kerπ∗) and Z2 ∈ �((kerπ∗)⊥).

(∇π∗)(X, Z) = ∇π
Xπ∗Z2 + π∗(C(AXφZ1 + H∇M

X ωZ1 + AXBZ2 + H∇M

XCZ2)

+ ω(V∇M

X φZ1 + AXωZ1 + V∇M

XBZ2 + AXCZ2)

− η(Z2)CX − η(X)η(Z2) − gM(Z2,CX)ξ),

which gives (3.29). This completes the assertion. �

Theorem 3.16 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then π is a totally geodesic map if and only if

(i) gM(∇̂U1ϕV1,BZ) = gM(TU1CZ , ϕV1) − gM(V1, φU1)η(Z),

(ii) (gN (∇π∗(U2, ωφV2)) + gN (∇π∗(U2, ωV2))), π∗Z = gM (TU2ωV2,BZ) + gM (V2, φU2)η(Z)

(iii) gN (∇π∗(U,CX), π∗CY ) − gN (∇π∗(U, ωBX), π∗Y ) = gM (TUφBX, Y ) − gM (TUCX,BY )

+η(X)gM (QU, ϕY )−η(Y )[Uη(X)+gM (X, ωU )]
for any U1, V1 ∈ �(D1), U2, V2 ∈ �(D2), U ∈ �(kerπ∗) and X,Y, Z ∈ �

((kerπ∗)⊥).

Theorem 3.17 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then π is a totally geodesic map if and only if

(i) C(TUφV + ∇M

UωV ) + ω(∇̂UφV + TUωV ) + gM(PV, φU )ξ = 0.
(ii) C(AXφU + H∇M

X ωU ) + ω(AXωU + V∇M

X φU ) + gM(QU,BX)ξ = 0.
(iii) C(TU1φV1 + H∇M

U1
φV1) + ω(TU1ωV1 + V∇M

U1
φV1) = 0,

for U1 ∈ �(D1), V1 ∈ �(D2), U, V ∈ �(kerπ∗) and X ∈ �((kerπ∗)⊥).
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3.3 Some Examples

Example 3.18 Every invariant submersion from a Sasakian manifold to a Rieman-
nian manifold is a semi-slant ξ⊥-Riemannian submersion with D2 = {0} and θ = 0.

Example 3.19 Every slant Riemannian submersion from a Sasakian manifold to a
Riemannian manifold is a semi-slant ξ⊥-Riemannian submersion with D1 = {0}.

Now, we construct some non-trivial examples of semi-slant ξ⊥-Riemannian sub-
mersion from a Sasakianmanifold. Let (R2n+1, g, ϕ, ξ, η) denote themanifoldR2n+1

with its usual Sasakian structure given by

ϕ(

n∑

i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂z
) =

n∑

i=1

(Yi
∂

∂xi
− Xi

∂

∂yi
)

g = η ⊗ η + 1

4

n∑

i=1

(dxi ⊗ dxi + dyi ⊗ dyi ),

η = 1

2
(dz −

n∑

i=1

yidxi ), ξ = 2
∂

∂z
,

where (x1, ..., xn, y1, ..., yn, z) are the Cartesian coordinates. Throughout this
section, we will use this notation.

Example 3.20 Let F be a submersion defined by

F : R
9 −→ R

5

(x1, x2, x3, x4, y1, y2, y3, y4, z) ( x1+x2√
2

,
y1+y2√

2
, sinαx3 − cosαx4, y4, z)

with α ∈ (0, π
2 ). Then it follows that

ker F∗ = span{Z1 = ∂

∂x1
− ∂

∂x2
, Z2 = ∂

∂y1
− ∂

∂y2
,

Z3 = − cosα
∂

∂x3
− sin α

∂

∂x4
, Z4 = ∂

∂y3
}

and

(ker F∗)⊥ = span{H1 = ∂

∂x1
+ ∂

∂x2
, H2 = ∂

∂y1
+ ∂

∂y2
, H3 = sin α

∂

∂x3
− cosα

∂

∂x4
,

H4 = ∂

∂y4
, H5 = ∂

∂z
= ξ}.

Hence, we have ϕZ1 = −Z2, ϕZ2 = Z1. Thus, it follows that D1 = span{Z1, Z2}
and D2 = span{Z3, Z4} is a slant distribution with slant angle θ = α. Thus, F is
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a semi-slant submersion with semi-slant angle θ. Also, by direct computations, we
obtain

gN (F∗H1, F∗H1) = gM(H1, H1), gN (F∗H2, F∗H2) = gM(H2, H2),

gN (F∗H3, F∗H3) = gM (H3, H3), gN (F∗H4, F∗H4) = gM (H4, H4), gN (F∗ξ, F∗ξ) = gM (ξ, ξ)

where gM and gN denote the standard metrics (inner products) of R9 and R
5. Thus,

F is a semi-slant ξ⊥-Riemannian submersion.

Example 3.21 Let F be a submersion defined by

F : R
7 −→ R

3

(x1, x2, x3, y1, y2, y3, z) (
x2−y3√

2
, y2, z).

Then the submersion F is a semi-slant ξ⊥-Riemannian submersion such that D1 =
span( ∂

∂x1
, ∂

∂y1
) and D2 = span( ∂

∂x2
+ ∂

∂y3
, ∂

∂x3
) with semi-slant angle α = π

4 .

Example 3.22 Let F be a submersion defined by

F : R
9 −→ R

3

(x1, x2, x3, x4, y1, y2, y3, y4, z) (sinαx3 − cosαx4, y4, z)

with α ∈ (0, π
2 ). Then the submersion F is a semi-slant ξ⊥-Riemannian submersion

such that D1 = span( ∂
∂x1

, ∂
∂x2

, ∂
∂y1

, ∂
∂y2

) and D2 = span(− cosα ∂
∂x3

− sin α ∂
∂x4

, ∂
∂y3

)

with semi-slant angle θ = α.

Example 3.23 Let F be a submersion defined by

F : R
13 −→ R

7

(x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, y6, z) ( x1−x2√
2

,
y1−y2√

2
, x3+x4√

2
,
y3+y4√

2
,
x5−x6√

2
, y5, z).

Then the submersion F is a semi-slant ξ⊥-Riemannian submersion such that D1 =
span( ∂

∂x1
+ ∂

∂x2
, ∂

∂y1
+ ∂

∂y2
, ∂

∂x3
− ∂

∂x2
, ∂

∂y3
− ∂

∂y4
) andD2 = span( ∂

∂x5
+ ∂

∂x6
, ∂

∂y6
)with

semi-slant angle α = π
4 .

4 Hemi-Slant ξ⊥-Riemannian Submersions

Very recently Ramazan SarıandMehmet Akif Akyol [36] also introduced and studied
hemi-slant ξ⊥-submersions and obtained interesting results. In this Sect. 4, our aim
is to discuss briefly some results of this paper.
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Definition 4.1 Let (M, ϕ, ξ, η, gM ) be a Sasakian manifold and (N , gN ) be a Rie-
mannianmanifold. Suppose that there exists aRiemannian submersionφ : M −→ N
such that ξ is normal to kerφ∗. Then φ is called a hemi-slant ξ⊥-Riemannian sub-
mersion if the vertical distribution kerφ∗ of φ admits two orthogonal complementary
distributionsD⊥ andDθ such thatD⊥ is anti-invariant andDθ is slant, i.e., we have

ker φ∗ = D⊥ ⊕ Dθ .

In this case, the angle θ is called the slant angle of the hemi-slant ξ⊥-Riemannian
submersion.

If θ �= 0, π
2 then we say that the submersion is proper hemi-slant ξ⊥-Riemannian

submersion. Now, we are going to give some proper examples in order to guaran-
tee the existence of hemi-slant ξ⊥-Riemannian submersions in Sasakian manifolds
and demonstrate that the method presented in this paper is effective. Note that,
(R2n+1, ϕ, η, ξ, gR2n+1) will denote the manifold R

2n+1 with its usual contact struc-
ture given by

η = 1

2
(dz −

n∑

i=1

yidxi ), ξ = 2
∂

∂z
,

g = η ⊗ η + 1

4

n∑

i=1

(dxi ⊗ dxi + dyi ⊗ dyi ),

ϕ(

n∑

i=1

(Xi∂x
i + Yi∂y

i ) + Z∂z) =
n∑

i=1

(Yi∂x
i − Xi∂y

i )

where (x1, .., xn, y1, ..., yn, z) denotes the Cartesian coordinates on R
2n+1.

Example 4.2 Every anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold onto a Riemannian manifold is a hemi-slant ξ⊥-Riemannian submersion
withDθ = {0}.
Example 4.3 Every slant ξ⊥-Riemannian submersion from a Sasakian manifold
onto a Riemannian manifold is a hemi-slant ξ⊥-Riemannian submersion withD⊥ =
{0}.
Example 4.4 Let φ be a submersion defined by

φ : (R9, gR9) → (R5, gR5)

(x1, x2, x3, x4, y1, y2, y3, y4, z) (
x1+y2√

2
,
x2+y1√

2
, sin γ x3 − cos γ x4, y4, z)

with γ ∈ (0, π
2 ). Then it follows that

ker φ∗ = Sp{V1 = −∂x1 + ∂y2, V2 = −∂x2 + ∂y1, V3 = − cos γ ∂x3 − sin γ ∂x4,

V4 = ∂y3}
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and

(ker φ∗)⊥ = Sp{W1 = ∂x1 + ∂y2,W2 = ∂x2 + ∂y1,W3 = sin γ ∂x3 − cos γ ∂x4,

W4 = ∂y4,W5 = ∂z}

hence we have ϕV1 = W2, ϕV2 = W1. Thus, it follows that D⊥ = sp{V1, V2} and
Dθ = sp{V3, V4} is a slant distribution with slant angle θ = γ. Thus, φ is a slant
ξ⊥-submersion. Also by direct computations, we have

gR9(Wi ,Wi ) = gR5(ϕWi , ϕWi ), i = 1, ..., 5

which show that φ is a slant ξ⊥-Riemannian submersion.

Example 4.5 Let F be a submersion defined by

F : (R9, gR9) −→ (R5, gR5)

(x1, ..., y1, ..., z) (
x1+y2√

2
,
x2+y1√

2
, x3+x4√

2
,
y3+y4√

2
, z).

The submersion F is hemi-slant ξ⊥-Riemannian submersion such that D⊥ =
span{∂x1 − ∂y2, ∂x2 − ∂y1} andDθ = span{∂x3 + ∂x4, ∂y3 + ∂y4}withhemi-slant
angle θ = 0.

Example 4.6 Let π be a submersion defined by

π : (R7, gR7) −→ (R4, gR4)

(x1, ..., y1, ..., z) ( x1+x2√
2

, sin γ x3 − cos γ y4, cosβx4 − sin βy3, z).

The submersion π is a hemi-slant ξ⊥-Riemannian submersion such that D⊥ =
span{∂x1 − ∂x2} and Dθ = span{cos γ ∂x3 − sin γ ∂y4, sin β∂x4 − cosβ∂y3} with
hemi-slant angle θ = α + β.

Let φ be a hemi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ). Then, forU ∈ �(kerφ∗), we
put

U = PU + QU

where PU ∈ �(D⊥) and QU ∈ �(Dθ ). For Z ∈ �(T M), we have

Z = VZ + HZ

where VZ ∈ �(kerφ∗) and HZ ∈ �(kerφ∗)⊥.
We denote the complementary distribution to ϕD⊥ in (kerφ∗)⊥ by μ. Then we

have
(kerφ∗)⊥ = ϕD⊥ ⊕ μ,

where ϕ(μ) ⊂ μ. Hence μ contains ξ. For V ∈ �(kerφ∗), we write
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ϕV = ρV + ωV (4.1)

where ρV and ωV are vertical (resp. horizontal) components of ϕV , respectively.
Also, for X ∈ �((kerφ∗)⊥), we have

ϕX = BX + CX, (4.2)

where BX and CX are vertical (resp. horizontal) components of ϕX , respectively.
Then the horizontal distribution (kerφ∗)⊥ is decomposed as

(kerφ∗)⊥ = ϕD⊥ ⊕ μ,

here μ is the orthogonal complementary distribution of D⊥ and it is both invariant
distribution of (kerφ∗)⊥ with respect to ϕ and contains ξ. Then by using (2.3), (2.4),
(4.1) and (4.2), we get

(∇M

V ρ)W = BTVW − TVωW (4.3)

(∇M

V ω)W = CTVW − TVρW (4.4)

for V,W ∈ �(kerφ∗), where

(∇M

V ρ)W = ∇̂VρW − ρ∇̂VW

and
(∇M

V ω)W = H∇M

V ωW − ω∇̂VW.

Lemma 4.7 Let φ : M → N be a hemi-slant ξ⊥-Riemannian submersion from a
Sasakian manifold (M, ϕ, η, ξ, gM ) onto a Riemannian manifold (N , gN ). Then we
have

ρ2W = cos2 θW, W ∈ �(Dθ ), (4.5)

where θ denotes the hemi-slant angle of kerφ∗.

Lemma 4.8 Let φ : M → N be a hemi-slant ξ⊥-Riemannian submersion from a
Sasakian manifold (M, ϕ, η, ξ, gM ) onto a Riemannian manifold (N , gN ). Then we
have

gM(ρU, ρV ) = cos2 θgM(U, V ) (4.6)

gM(ωU, ωV ) = sin2 θgM(U, V ) (4.7)

for all U, V ∈ �(kerφ∗).
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4.1 Integrable and Parallel Distributions

Theorem 4.9 Let φ be a hemi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then the distributionD⊥ is integrable if and only if we have

gM(TUϕV − TVϕU, ρZ) = gN ((∇φ∗)(V, ϕU ) − (∇φ∗)(U, ϕV ), φ∗(ωZ))

for any U, V ∈ �(D⊥) and Z ∈ �(Dθ ).

Proof For U, V ∈ �(T M), by using (2.9) and (2.10), we have

gM(∇M
U V, Z) = gM(∇M

U ϕV, ϕZ). (4.8)

For U, V ∈ �(D⊥), Z ∈ �(Dθ ), using (2.9 ) and (4.8), we have

gM([U, V ], Z) = gM(∇M
U ϕV, ϕZ) − gM(∇M

V ϕU, ϕZ).

On the other hand, we get

gM([U, V ], Z) = gM(TUϕV − TVϕU, ρZ) + gM(H(∇M
U ϕV ) − H(∇M

V ϕU ), wZ).

Or,

gM([U, V ], Z) = gM(TUϕV − TVϕU, ρZ)

+ gN (φ∗(∇M
U ϕV ) − φ∗(∇M

V ϕU ), φ∗(ωZ))

which proves assertion. �

Theorem 4.10 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then the distributionDθ is integrable if and only if we have

gN ((∇φ∗)(Z , ωW ) − (∇φ∗)(W, ωZ), ϕU ) = gM(TZωρW − TWwρZ ,U )

for any Z ,W ∈ �(Dθ ) and U ∈ �(D⊥).

Proof For Z ,W ∈ �(Dθ ) and U ∈ �(D⊥), using (2.9) and (4.8) we have

gM([Z ,W ],U ) = gM(∇M
Z ϕW, ϕU ) − gM(∇M

W ϕZ , ϕU ).

Therefore, by using (4.1), we get
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gM([Z ,W ],U ) = −gM(∇M
Z ρ2W,U ) − gM(∇M

Z ωρW,U )

+gM(∇M
Z ωW, ϕU ) + gM(∇M

W ρ2Z ,U )

+gM(∇M
W ωρZ ,U ) − gM(∇M

W ωZ , ϕU ).

Now, by virtue of (3.16), we obtain

gM([Z ,W ],U ) = cos2 θgM([Z ,W ],U ) − gM(∇M
Z ωρW,U )

+gM(∇M
Z ωW, ϕU ) + gM(∇M

W ωρZ ,U )

−gM(∇M
W ωZ , ϕU ).

Then we have

sin2 θgM([Z ,W ],U ) = gM(∇M
W ωρZ − ∇M

Z ωρW,U )

+ gM(∇M
Z ωW − ∇M

W ωZ , ϕU ).

On the other hand, we have

sin2 θgM([Z ,W ],U ) = gM(TWωρZ − TZωρW,U )

+gM(H(∇M
Z ωW ) − H(∇M

W ωZ), ϕU )

= gM(TWωρZ − TZωρW,U )

+gN (φ∗(∇M
Z ωW ) − φ∗(∇M

W ωZ), ϕU )

which proves assertion. �

Theorem 4.11 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then the distribution D⊥ is parallel if and only if

gM(φ∗(∇UV ), φ∗(ωρZ)) = gM(ϕ∇UV, ωZ)

and
gM(∇̂UρV + TUωV, BX) = −gM(TUρV + H(∇UωV ),CX)

for any U, V ∈ �(D⊥), Z ∈ �(Dθ ), X ∈ �((ker φ∗)⊥).

Proof For U, V ∈ �(D⊥), Z ∈ �(Dθ ) using (2.9), we get

gM(∇UV, Z) = gM(ϕ∇UV, ϕZ) + η(∇UV )η(Z)

= gM(ϕ∇UV, ϕZ).

Or,
gM(∇UV, Z) = −gM(∇UV, ρ2Z + ωρZ + ϕωZ).
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Then one obtains

sin2 θgM(∇UV, Z) = −gM(H(∇UV ), ωρZ) + gM(ϕ∇UV, ωZ).

By property of φ, we get

sin2 θgM(∇UV, Z) = −gN (φ∗(∇UV ), φ∗(ωρZ)) + gM(ϕ∇UV, ωZ).

On the other hand, for U, V ∈ �(D⊥), X ∈ �((ker φ∗)⊥), we have

gM(∇UV, X) = gM(∇UϕV, ϕX).

Now, by virtue of (2.3) and (4.1), we obtain

gM(∇UV, X) = gM(TUρV,CX) + gM(∇̂ρV, BX)

+ gM(TUωV, BX) + gM(H(∇UωV ),CX)

which completes the proof. �

Theorem 4.12 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then the distribution Dθ is parallel if and only if

gN (φ∗(ωW ), (∇φ∗)(Z , ϕU )) = gM(ρW,TZϕU )

and

gN ((∇φ∗)(∇ZωρW ), φ∗(X)) − gN ((∇φ∗)(∇ZωW ), φ∗(CX))

= −gM(TZωW, BX) + gM(ωW, Z)η(X).

for all Z ,W ∈ �(Dθ ), U ∈ �(D⊥), X ∈ �((ker φ∗)⊥).

Theorem 4.13 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then D⊥ defines a totally geodesic foliation on M if and only if

gN ((∇φ∗)(U, ϕV ), φ∗(ωZ)) = −gM(TUV, ωρZ)

and
gM(TUϕV, BX) = gN ((∇φ∗)(U, ϕV ), φ∗(CX))

for any U, V ∈ �(D⊥), Z ∈ �(Dθ ), X ∈ �((ker φ∗)⊥).

Proof For U, V ∈ �(D⊥), Z ∈ �(Dθ ), from (2.9), (2.3), (2.4), (4.1) to (4.5), we
have
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gM(∇UV, Z) = cos2 θgM(∇UV, Z) − gM(TUV, ωρZ) + gM(H(∇UϕV ), wZ).

Or,

sin2 θgM(∇UV, Z) = −gM(TUV, wρZ) − gN (φ∗(∇UϕV ), φ∗(ωZ)).

On the other hand, for X ∈ �((ker φ∗)⊥), we have

gM(∇UV, X) = gM(TUϕV, BX) + gM(H(∇UϕV ),CX).

Or,

gM(∇UV, X) = gM(TUϕV, BX) − gN (φ∗(∇UϕV ), φ∗(CX)).

This completes the proof. �

Theorem 4.14 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then Dθ defines a totally geodesic foliation on M if and only if

gN ((∇φ∗)(Z , ωW ), φ∗(ϕU )) = −gM(TZωρW,U )

and

gN ((∇φ∗)(Z , ωρW ), φ∗(X)) + gN ((∇φ∗)(Z , ωW ), φ∗(CX)) = gM(TZωW, BX)

for any Z ,W ∈ �(Dθ ),U ∈ �(D⊥), X ∈ �((ker φ∗)⊥).

4.2 Hemi-Slant ξ⊥-Riemannian Submersions on Sasakian
Space Forms

Aplane section in the tangent spaceTpM at p ∈ M is called aϕ-section if it is spanned
by a vector X orthogonal to ξ and ϕX . The sectional curvature of ϕ-section is called
ϕ-sectional curvature. A Sasakian manifold with constant ϕ-sectional curvature c is
a Sasakian space form. The Riemannian curvature tensor of a Sasakian space form
is given by
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RM(X,Y, Z ,W ) = c + 3

4
{gM(Y, Z)gM (X,W ) − gM(X, Z)gM(Y,W )}

+ c − 1

4
{gM(Y,W )η(X)η(Z) − gM(X,W )η(Y )η(Z)

+ gM(X, Z)η(Y )η(W ) − gM(Y, Z)η(X)η(W )

+ gM(ϕY, Z)gM (ϕX,W ) − gM(ϕX, Z)gM (ϕY,W )

− 2gM(ϕX,Y )gM (ϕZ ,W )} (4.9)

for any X,Y, Z ,W ∈ �(T M) [39].

Theorem 4.15 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then we have

R̂(U, V,W, S) = c + 3

4
{gM(V, S)gM(U,W ) − gM(U, S)gM(V,W )} (4.10)

+ gM(TVW,TU S) − gN (TUW,TV S)

and

K̂ (U, V ) = c + 3

4
{gM(U, V )2 − 1} + gM(TVU,TUV ) − gM(TUU,TV V )

(4.11)
for all U, V, S,W ∈ �(D⊥).

Proof For anyU, V, S,W ∈ �(D⊥) by using (4.9),ϕU ∈ �((ker φ∗)⊥) andη(U ) =
0, then we have

RM(U, V, S,W ) = c + 3

4
{gM(V, S)gM(U,W ) − gM(U, S)gM(V,W )}. (4.12)

Hence, we have

R̂(U, V,W, S) = c + 3

4
{gM(V, S)gM (U,W ) − gM(U, S)gM(V,W )}

+ gM(TVW,TU S) − gM(TUW,TV S)

which completes the proof. �

Corollary 4.16 Let φ be a hemi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (Mm, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ and m ≥ 3. IfD⊥ is totally geodesic, then M is flat if and only if c = −3.

Theorem 4.17 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . IfD⊥ is totally geodesic, then
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τ̂⊥ = c + 3

2
q(1 − 2q)

where τ̂⊥ is the scaler curvature.

Proof We have

Ŝ⊥(U, V ) =
2q∑

i=1

R̂(Ei ,U, V, Ei )

where {E1, ..., E2q} is ortonormal basis on �(D⊥) and U, V ∈ �(D⊥). Thus, one
obtains

Ŝ⊥(U, V ) =
2q∑

i=1

{c + 3

4
{gM(U, Ei )gM(Ei , V ) − gM(Ei , Ei )gM(U, V )}}.

Or,

Ŝ⊥(U, V ) = c + 3

4
(1 − 2q)gM(U, V ). (4.13)

By taking U = V = Ek, k = 1, ..., 2q, we get the result. �

Corollary 4.18 Let φ be a hemi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . IfD⊥ is totally geodesic distribution, thenD⊥ is Einstein.

Theorem 4.19 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then we have

R̂(K , L , P,W ) = c + 3

4
{gM(L , P)gM(K ,W ) − gM(K , P)gM(L ,W )}

+ c − 1

4
{gM(ϕL , P)gM(ϕK ,W )

− gM(ϕK , P)gM(ϕL ,W ) − 2gM(ϕK , L)gM(ϕP,W )}
+ gM(TL P,TKW ) − gM(TK P,TLW ) (4.14)

and

K̂ (K , L) = c + 3

4
{gM(L , K )gM(K , L) − gM(K , K )gM(L , L)}

− 3
c − 1

4
gM(ϕK , L) + gM(TLK , TK L) − gM(TK K ,TL L) (4.15)

for all K , L , P, N ∈ �(Dθ ).
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Theorem 4.20 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . IfDθ is totally geodesic, then we have

k̂θ = p
(c + 3)(2p − 1) + 3(c − 1) cos2 θ

2
.

Proof For any K , L ∈ �(Dθ ), using (4.14), we derive

Ŝθ (K , L) = c + 3

4
(2p − 1)gM(K , L) + 3

c − 1

4
cos2 θgM(K , L) (4.16)

where {E1, ..., E2p} is orthonormal basis on �(Dθ ). From the above equation, we
obtain the proof. �

Corollary 4.21 Let φ be a hemi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . IfDθ is totally geodesic distribution, thenDθ is Einstein.

5 Quasi Hemi-slant Submanifolds of Cosymplectic
Manifolds

In this Sect. 5, we will finally discuss some results of quasi hemi-slant submanifolds
introduced and studied by Rajendra Prasad et al. [38]. First, we have

Definition 5.1 A submanifold M of an almost contact metric manifold M is called
a quasi hemi-slant submanifold if there exist distributions D, Dθ and D⊥ such that
(i) T M admits the orthogonal direct decomposition as

T M = D ⊕ Dθ ⊕ D⊥⊕ < ξ > .

(ii) The distribution D is φ invariant, i.e., φD = D.
(iii) For any nonzero vector field X ∈ (Dθ )p, p ∈ M, the angle θ between J X and
(Dθ )p is constant and independent of the choice of point p and X in (Dθ )p.

(iv) The distribution D⊥ is φ anti-invariant, i.e., φD⊥ ⊆ T⊥M .

In this case, we call θ the quasi hemi-slant angle of M . Suppose the dimension of
distributions D, Dθ and D⊥ are n1, n2 and n3, respectively. Then we can easily see
the following particular cases:
(i) If n1 = 0, then M is a hemi-slant submanifold.
(ii) If n2 = 0; then M is a semi-invariant submanifold.
(iii) If n3 = 0, then M is a semi-slant submanifold.
We say that a quasi hemi-slant submanifold M is proper if D �= {0}, D⊥ �= {0} and
θ �= 0, π

2 .
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This means that the notion of quasi hemi-slant submanifold is a generalization of
invariant, anti-invariant, semi-invariant, slant, hemi-slant, semi-slant submanifolds.
Let M be a quasi hemi-slant submanifold of an almost contact metric manifold M .
We denote the projections of X ∈ �(T M) on the distributions D, Dθ and D⊥ by P ,
Q and R, respectively. Then we can write for any X ∈ �(T M)

X = PX + QX + RX + η (X) ξ. (5.1)

Now we put
φX = T X + N X, (5.2)

where T X and N X are tangential and normal components of φX on M . Using (5.1)
and (5.2), we obtain

φX = T PX + N PX + T QX + NQX + T RX + N RX.

Since φD = D and φD⊥ ⊆ T⊥M , we have N PX = 0 and T RX = 0. Therefore,
we get

φX = T PX + T QX + NQX + N RX. (5.3)

Then for any X ∈ �(T M), it is easy to see that

T X = T PX + T QX

and
N X = NQX + N RX.

For any V ∈ �(T⊥M), we can put

φV = tV + nV

where tV and nV are the tangential and normal componenets of φV on M ,
respectively.

Analmost contactmetricmanifold is called a cosymplecticmanifold if (∇̂Xφ)Y =
0, ∇̂Xξ = 0 ∀ X, Y ∈ �(T M̂), where ∇̂ represents the Levi-Civita connection of
(M̂, g).
The covariant derivative of φ is defined as

(∇̂Xφ)Y = ∇̂XφY − φ∇̂XY.

If M̂ is a cosymplectic manifold, then we have

φ∇̂XY = ∇̂XφY.
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Let M be a Riemannian manifold isometrically immersed in M̂ and the induced
Riemannian metric on M is denoted by the same symbol g throughout this paper.
Let A and h denote the shape operator and second fundamental form, respectively,
of submanifolds of M into M̂ . The Gauss and Weingarten formulas are given by

∇̂XY = ∇XY + h(X,Y )

and
∇̂XV = −AV X + ∇⊥

X V

for any vector fields X, Y ∈ �(T M) and V on �(T⊥M), where ∇ is the induced
connection on M and ∇⊥ represents the connection on the normal bundle T⊥M of
M and AV is the shape operator of M with respect to normal vector V ∈ �(T⊥M).

Moreover, AV and the second fundamental form h : T M ⊗ T M −→ T⊥M of M
into M̂ are related by

g(h(X,Y ), V ) = g(AV X,Y ),

for any vector fields X,Y ∈ �(T M) and V on �(T⊥M).

5.1 Integrability of Distributions

Theorem 5.2 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M . Then the invariant distribution D is integrable if and only if

g(∇XTY − ∇Y T X, T QZ) = g(h(Y, T X) − h(X, TY ), NQZ + N RZ)

for any X, Y ∈ �(D) and Z ∈ �(Dθ ⊕ D⊥).

Proof For a cosymplectic manifold, we have

∇Xξ = 0 ∀ X ∈ �(D). (5.4)

If Y ∈ �(D), then g(Y, ξ) = 0. Thus, one gets

g(∇XY, ξ) + g(Y,∇Xξ) = 0. (5.5)

Now, g([X,Y ], ξ) = g(∇XY, ξ) − g(∇Y X, ξ) = 0.
Also, we have

g([X,Y ], Z) = g(∇XφY, φZ) − g(∇YφX, φZ) = g(∇XTY

−∇Y T X, T QZ) + g(h(X, TY ) − h(Y, T X), NQZ + N RZ)

which completes the proof. �
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Similarly, we have

Theorem 5.3 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold (M, g, φ). Then the slant distribution Dθ is integrable if and only if

g(ANW Z − ANZW, T PX) = g(ANTW Z − ANT ZW, X)

+g(∇⊥
Z NW − ∇⊥

W N Z , N RX)

for any Z , W ∈ �(Dθ ) and X ∈ �(D ⊕ D⊥).

Theorem 5.4 Let M be a quasi hemi-slant submanifold of a cosymplectic manifold
M . Then the anti-invariant distribution D⊥ is integrable if and only if

g(T ([Z ,W ]), T X) = g(∇⊥
W N Z − ∇⊥

Z NW, NQX)

for any Z ,W ∈ �(D⊥) and X ∈ �(D ⊕ Dθ ).

5.2 Totally Geodesic Foliations

Theorem 5.5 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M . Then M is totally geodesic if and only if

g(h(X, PY ) + cos2 θh(X, QY ),U ) = g(∇⊥
X NT QY,U )

+g(ANQY X + ANRY X, tU ) − g(∇⊥
X NY, nU )

for any X,Y ∈ �(T M) and U ∈ �(T⊥M).

Proof For any X, Y ∈ �(T M), U ∈ �
(
T⊥M

)
, we have

g(∇XY,U ) = g(∇X PY,U ) + g(∇X QY,U ) + g(∇X RY,U )

= g(∇XφPY, φU ) + g(∇XT QY, φU ) + g(∇X NQY, φU )

+g(∇XφRY, φU ).

g(∇XY,U ) = g(h(X, PY ) + cos2 θh(X, QY ),U ) − g(∇⊥
X NT QY,U )

−g(ANQY X + ANRY X, tU ) + g(∇⊥
X NY, nU )

which completes the proof. �

Similarly, we have

Theorem 5.6 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M . Then anti-invariant distribution D⊥ defines totally geodesic foliation
if and only if
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g(AφY X, T PZ + t QZ) = g(∇⊥
X φY , nQZ), g(AφY X, tV ) = g(∇⊥

X φY, nV )

for any X, Y ∈ �(D⊥), Z ∈ �(D ⊕ Dθ ) and V ∈ �
(
T⊥M

)
.

Theorem 5.7 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M . Then the slant distribution Dθ defines a totally geodesic foliation on
M if and only if

g(∇⊥
X NY, N RZ) = g(ANY X, T PZ) − g(ANTY X, Z), and

g(ANY X, tV ) = g(∇⊥
X NY, nV ) − g(∇⊥

X NTY, V )

for any X,Y ∈ �(Dθ ), Z ∈ �(D ⊕ D⊥) and V ∈ �
(
T⊥M

)
.

5.3 Examples

Now we discuss few examples from [38]

Example 5.8 Let us consider a 15-dimensional differentiable manifold

M = {(xi , yi,z) = (x1, x2, ..., x7, y1, y2, ..., y7, z) ∈ R15}.

And choose the vector fields

Ei = ∂

∂yi
, E7+i = ∂

∂xi
, E15 = ξ = ∂

∂z
, for i = 1, 2, ..., 7.

Let g be a Riemannian metric defined by

g = (dx1)
2 + (dx2)

2 + · · · + (dx7)
2 + (dy1)

2 + (dy2)
2 + · · · + (dy7)

2 + (dz)2.

We define (1, 1)-tensor field φ as

φ

(
∂

∂xi

)
= ∂

∂yi
, φ

(
∂

∂y j

)
= − ∂

∂x j
, φ

(
∂

∂z

)
= 0 ∀ i, j = 1, 2, ..., 7.

Thus, (M, φ, ξ, η, g) is an almost contact metric manifold. Also, we can easily show
that (M, φ, ξ, η, g) is a cosymplectic manifold of dimension 15.

Let M be a submanifold of M defined by

f (u, v, w, r, s, t, q) =
(
u, w, 0,

s√
2
, 0,

t√
2
, 0, v, r cos θ, r sin θ, 0,

s√
2
, 0,

t√
2
, q

)
,

where 0 < θ < π
2 . Now the tangent bundle of M is spanned by the set {Z1, Z2, Z3,

Z4, Z5, Z6, Z7}, where
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Z1 = ∂

∂x1
, Z2 = ∂

∂y1
, Z3 = ∂

∂x2
,

Z4 = cos θ
∂

∂y2
+ sin θ

∂

∂y3
, Z5 = 1√

2

(
∂

∂x4
+ ∂

∂y5

)
,

Z6 = 1√
2

(
∂

∂x6
+ ∂

∂y7

)
, Z7 = ∂

∂z
.

Thus, we have

φZ1 = ∂

∂y1
, φZ2 = − ∂

∂x1
, φZ3 = ∂

∂y2
,

φZ4 = −
(
cos θ

∂

∂x2
+ sin θ

∂

∂x3

)
, φZ5 = 1√

2

(
∂

∂y4
− ∂

∂x5

)
,

φZ6 = 1√
2

(
∂

∂y6
− ∂

∂x7

)
, φZ7 = 0.

Now, let the distributions D = span{Z1, Z2}, Dθ = span{Z3, Z4}, D⊥ = span
{Z5, Z6}. And D is invariant, Dθ is slant with slant angle θ and D⊥ is anti-invariant.
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14. Taştan, H.M.: Lagrangian submersions. Hacet. J. Math. Stat. 43(6), 993–1000 (2014)
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