Semi-Slant &£ -, Hemi-Slant ®

Check for

& 1 .Riemannian Submersions and Quasi
Hemi-Slant Submanifolds

Mehmet Akif Akyol and Rajendra Prasad

2010 AMS Mathematics Subject Classification 53C15, 53C40, 53C50

1 Introduction

A differentiable map m : (M, gy) — (N, gy) between Riemannian manifolds
(M, gp) and (N, gy) is called a Riemannian submersion if 7, is onto and it sat-
isfies

gn (X1, T X2) = gy (X1, X2) (L.1)

for X1, X, vector fields tangent to M, where m, denotes the derivative map. The
study of Riemannian submersions were studied by O’Neill [1] and Gray [2] see also
[3]. Riemannian submersions have several applications in mathematical physics.
Indeed, Riemannian submersions have their applications in the Yang—Mills the-
ory [42, 43], Kaluza—Klein theory [44, 45], supergravity and superstring theories
[46, 47] and more. Later, such submersions according to the conditions on the
map 7 : (M, gy) —> (N, gn), we have the following submersions: Riemannian
submersions [4], almost Hermitian submersions [5], invariant submersions [6—8],
anti-invariant submersions [7—13], lagrangian submersions [14, 15], semi-invariant
submersions [16, 17], slant submersions [18-22], semi-slant submersions [23-26],
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quaternionic submersions [27, 28], hemi-slant submersions [29, 30], pointwise slant
submersions [31, 32], etc. In [33], Lee defined anti-invariant £*--Riemannian sub-
mersions from almost contact metric manifolds and studied the geometry of such
maps.

As a generalization of anti-invariant £---Riemannian submersions, Akyol et al. in
[34] defined the notion of semi-invariant £--Riemannian submersions from almost
contact metric manifolds and investigated the geometry of such maps. In 2017,
Mehmet et al. [35], as a generalization of anti-invariant & L _Riemannian submersions,
semi-invariant & 1 _Riemannian submersions and slant Riemannian submersions,
defined and studied semi-slant £--Riemannian submersions from Sasakian mani-
folds onto Riemannian manifolds. Very recently Ramazan Sari and Mehmet Akif
Akyol [36] also introduced and studied Hemi-slant £-submersions and obtained
interesting results. On the other hand, in 1996, using Chen’s notion on slant sub-
manifold, Lotta [37] introduced the notion of slant submanifold in almost contact
metric manifold which was further generalized as semi-slant, hemi-slant and bi-slant
submanifolds. Motivated from these studies, Rajendra Prasad et al. introduced and
studied quasi hemi-slant submanifolds of cosymplectic manifolds.

The aim of this chapter is to discuss briefly some results of semi-slant &+-
submersions [35], hemi-slant & L _submersions [36] and quasi hemi-slant subman-
ifolds [38].

2 Riemannian Submersions

Let (M, gy) and (N, gn) be two Riemannian manifolds. A Riemannian submersion
m: M — N isamap of M onto N satisfying the following axioms:

(i) 7 has maximal rank, and
(ii) The differential m, preserves the lenghts of horizontal vectors, that is m, is a
linear isometry.

The geometry of Riemannian submersion is characterized by O’Neill’s tensors 7~
and A defined as follows:
T(Ey, Ez) = HVupp VEs + VVa,, HE> 2.1

and
A(E), Es) = HV g VEs +VVyy HE> 22)

for any E|, E, € I'(M), where V" is the Levi-Civita connection on gu - Note that
we denote the projection morphisms on the vertical distribution and the horizontal
distribution by V and H, respectively. One can easily see that 7~ is vertical, T, =
Tk, and A is horizontal, Ar, = Aqg,. We also note that

1
TuV =TvU and AxY = —AyX = VIX, Y],
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for X, Y € T'((kerm,)Y) and U, V € T'(kerm,).
On the other hand, from (2.1) and (2.2), we obtain

VoW =Ty W + VyW; (2.3)
M M

VVX = Tvx + ?{(VV X); (24)

VeV =V(Vy V) +AxV; (2.5)
M M

VyY = AxY + H(VyY), (2.6)

for any X, Y € [ ((kerm,)t) and V, W e T'(kerm,). Moreover, if X is basic, then
W(V:,d X) = AxV. Itis easy to see that for U, V € I'(kerm,), Ty V coincides with
the fibres as the second fundamental form and AxY reflecting the complete integra-
bility of the horizontal distribution.

A vector field on M is called vertical if it is always tangent to fibres. A vector field
on M is called horizontal if it is always orthogonal to fibres. A vector field Z on
M is called basic if Z is horizontal and 7-related to a vector field Z on N, i.e.,
7.Zy = Zn,(p forall p e M.

Lemma 2.1 (see [1, 3]) Let m : M —> N be a Riemannian submersion. If X and
Y basic vector fields on M, then we get:

(i) gu(X,Y) =gn(X,Y)om, L
(ii) H[X,Y]isabasicand m,H[X,Y]=[X,Y]om;
(iii) W(V)AZ Y) is a basic, w-related to (V; Y), where V" and V" are the Levi-Civita
connection on M and N
(iv) [X, V] e T'(kerm,) is vertical, for any V € I (kerm,).

Let (M, gy) and (N, gy) be Riemannian manifolds and 7 : M — N is a dif-
ferentiable map. Then the second fundamental form of 7 is given by

(VI)(X,Y) = Vym,Y — 1,(VxY) 2.7)

for X, Y € D(T M), where V" is the pull back connection and V is the Levi-Civita
connections of the metrics gy, and gy .

Finally, let (M, gp) be a (2m + 1)-dimensional Riemannian manifold and 7 M
denote the tangent bundle of M. Then M is called an almost contact metric manifold
if there exists a tensor ¢ of type (1, 1) and global vector field & and 5 is a 1-form of
&, then we have

’=-1+n1®E& nE) =1 (2.8)
9E =0, nop =0 and gy (X, pY) = gu(X,Y) — n(X)n(Y), (2.9)

where X, Y are any vector fields on M. In this case, (¢, &, 1, gyr) is called the almost
contact metric structure of M. The almost contact metric manifold (M, ¢, &, n, gu)
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is called a contact metric manifold if
O(X,Y)=dn(X,Y)

forany X, Y € I'(T M), where @ is a2-formin M definedby ®(X, Y) = gy (X, ¢Y).
The 2-form @ is called the fundamental 2-form of M. A contact metric structure of
M is said to be normal if

[p, ] +2dn®& =0,

where [, ¢] is Nijenhuis tensor of ¢. Any normal contact metric manifold is called
a Sasakian manifold. Moreover, if M is Sasakian [39, 40], then we have

(Vy@)Y = gy(X, Y)E —n(Y)X and Vyé = —¢X, (2.10)

where V' is the connection of Levi-Civita covariant differentiation.

3 Semi-slant £1-Riemannian Submersions

In 2017, Mehmet et al. [35], as a generalization of anti-invariant & L_Riemannian
submersions, semi-invariant £ --Riemannian submersions and slant Riemannian sub-
mersions, defined and studied semi-slant £ --Riemannian submersions from Sasakian
manifolds onto Riemannian manifolds. In this Sect. 3, we will discuss some results
of this paper briefly.

Definition 3.1 Let (M, ¢, &, n, g)r) be a Sasakian manifold and (N, gy) be a Rie-
mannian manifold. Suppose that there exists a Riemannian submersionw : M — N
such that & is normal to kerm,. Then # : M — N is called semi-slant &*-
Riemannian submersion if there is a distribution D; C ker m, such that

kerm, = Dy @ D>, ¢(Dy) = Dy, (3.1

and the angle 6 = 0(U) between ¢U and the space (D), is constant for nonzero
U € (Dy), and p € M, where D; is the orthogonal complement of Dy in ker,. As
it is, the angle 6 is called the semi-slant angle of the submersion.

Now, let  be a semi-slant & L _Riemannian submersion from a Sasakian manifold
(M, ¢, &, 1, gpr) onto a Riemannian manifold (&, gy). Then, for U € I' (ker ), we
put

U=PU+QU (3.2)

where PU € I'(D;) and QU € I'(D,). For Z € T'(T M), we have

Z=VZ+HZ (3.3)
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where VZ e I'(kerm,) and HZ € T'((kerm,)t). For V e I'(kerm,), we get
oV =¢V + oV (3.4)

where ¢V and oV are vertical and horizontal components of ¢V, respectively.
Similarly, for any X e I'((kerm,)"), we have

¢X = BX +CX (3.5)

where B8X (resp. CX) is the vertical part (resp. horizontal part) of ¢ X. Then the
horizontal distribution (ker )™ is decomposed as

(ker 1) = 0Dy @ p, (3.6)

here u is the orthogonal complementary distribution of wD, and it is both invariant
distribution of (kerm,)® with respect to ¢ and contains £. By (2.9), (3.4) and (3.5),
we have

gu(@U1, V1) = —gu (U1, 9 V1) (3.7)
and
gu (Ui, X) = —gu (Ui, BX) (3.8)

for U;, V, € I'(ker ) and X e I'((ker ) 1). From (3.4), (3.5) and (3.6), we have

Lemma 3.2 Let w be a semi-slant £E*-Riemannian submersion from a Sasakian
manifold (M, ¢, &, 11, gu) onto a Riemannian manifold (N, gn). Then we obtain:

(@ ¢Dy = D;, (b) oD =0,
(c) $D> C Dy, (d) Blkerm,)™ = Ds,
() Tu,& =pUi, (f) V& = -l
for Uy e T'(ker,) and & € T'((kerm,)™b).
Using (3.4), (3.5) and the fact that 9> = —I 4+ n ® £, we have

Lemma 3.3 Let w be a semi-slant £E*-Riemannian submersion from a Sasakian
manifold (M, ¢, &, 1, gy ) onto a Riemannian manifold (N, gn). Then we get

(i) ¢*+ Bw = —id, (i) C*+wB = —id,
(iii) wp+Cw =0, (iv) BC+ ¢pB =0,

where I is the identity operator on the space of .
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Let (M, ¢, &, 11, gpr) be a Sasakian manifold and (N, gy) be a Riemannian mani-
fold. Letm : (M, ¢, &,n, gu) —> (NN, gn) be a semi-slant £1-Riemannian submer-
sion. We now examine how the Sasakian structure on M effects the tensor fields 7~ and
A of a semi-slant £--Riemannian submersion  : (M, ¢, &, n, gu) —> (N, gn).

Lemma 3.4 Let (M, ¢, &, 1, gy) be a Sasakian manifold and (N, gy) a Rieman-
nian manifold. Letw : (M, ¢, &, 1, gu) —> (N, gn) be a semi-slant € --Riemannian
submersion. Then we have

BTyV 4+ ¢VyV = VyoV + TyoV, (3.9)

gu (U, V)E+CTuV +oVyV =Ty¢V + HV, oV, (3.10)
¢TuX + BV X — n(X)U = VyBX + TyCX, (3.11)

wTuX +CVy X = TyBX + HV, CX, (3.12)

g (X, Y)E — 0AxY + CHVy Y = AxBY + Vy4CY + n(V)X, (3.13)
PAxY + BHVyY = VVyBY + AxCY, (3.14)

forall X,Y e I' ((ker 7)Y and U,V e T (ker ,).
Proof Given U,V € I'(kerm,), by virtue of (2.10) and (3.4), we have

gu (U, V)E —n(V)U = V¢V + VoV — eV V.
Making use of (2.3), (2.4), (3.4) and (3.5), we have

gu(U. V)E = TygV + VgV + TyoV + HV oV
— BTV —CTyV — dVyV —oVy V. (3.15)

Comparing horizontal and vertical parts, we get (3.9) and (3.10). The other assertions
can be obtained in a similar method. (]

Theorem 3.5 Letmw : (M, ¢, &, 1, 9gu) — (N, gn) be a semi-slant E*--Riemannian
submersion from a Sasakian manifold (M, ¢, &, n, gy) onto a Riemannian manifold
(N, gn). Then we have

O*W = —cos’OW, W eT(D,), (3.16)

where 6 denotes the semi-slant angle of D.

Lemma 3.6 Letw : (M, p,&,1n,9u) — (N, gn) be a semi-slant &1-Riemannian
submersion from a Sasakian manifold (M, ¢, &, 1, gi) onto a Riemannian manifold
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(N, gn) with a semi-slant angle 6. Then we have

gu(pWi, pWa) = cos® O gu (Wi, Wa), (3.17)
gu (Wi, oWs) = sin® 0 gy (Wi, Wa), (3.18)

for any Wi, W, € T'(D»).

3.1 Integrable and Parallel Distributions
In this section, we will discuss integrability conditions of the distributions involved
in the definition of a semi-slant £1-Riemannian submersion. First, we have

Theorem 3.7 Let w be a semi-slant £*-Riemannian submersion from a Sasakian

manifold (M, ¢, &, n, gu) onto a Riemannian manifold (N, gn) with a semi-slant
angle 6. Then:

(i) D isintegrable & (Vm,)(U, V) — (V) (V, oU) ¢ T (. 1t)
(ii) D, is integrable < gy (moW, (VT)(Z, pU)) + gy (M Z, (V) (W, U)) = gu (9 W, VzoU)

+gm(DZ, VweU)
forU,V e '(Dy) and Z, W € T'(D3).

Proof ForU,V e I'(D;) and X € I'((kerm,)%),since [U, V] € T'(kerm,), we have

gu (LU, V], X) = 0. Thus, D, is integrable < gy ([U, V], Z) = 0 for Z € I'(Dy).
Since M is a Sasakian manifold, by (2.9) and (2.10), we have

g (Vy V. Z) = gu(VyeV — gu(U, V)§ — n(V)U, 9Z)
= gM(VZsoV, ©0Z). (3.19)
Using (3.4) in (3.19), we get
g (U, V1. 2) = —gu (V) V.9 Z) + gy (HV 9V, wZ) — gy (Vy U, 9$Z) — gu(HVy oU, wZ).
Now, by using (2.7) and (3.16), we get
gu([U, V1, Z) = cos? 99M(Vg V,Z) = gn(Vr) (U, V) + VimeV, mawZ)
—c0s? 0y (Vy U, Z) + gy (V) (V. oU) + VimoU, mawZ).

Thus, we have

(sin* 0)gu (U, V1, Z) = =gy (V) (U, 9V) — (Vr)(V, 9U), maw Z),



308 M. A. Akyol and R. Prasad

which completes the proof.
Now for the geometry of leaves of D;, we have

Theorem 3.8 Let w be a semi-slant £*-Riemannian submersion from a Sasakian
manifold (M, ¢, &, n, gy) onto a Riemannian manifold (N, gn) with a semi-slant
angle 6. Then the distribution D is parallel if and only if

gn (Vi) (U, V), mewZ) = gu(TywdpZ, V) (3.20)

and

—gn (V) (U, V), 1.CX) = gu(V, VydBX + TywBX) + gu(V, pU)n(X)
(3.21)

forU,V eT(Dy), Z € T'(D,) and X € I'((ker w,)b).

Proof Making use of (3.19), (3.4) and (2.3), for U, V € I'(D;) and Z € I'(D,), we
have

g (VyV, Z) = —gu(VyV, ¢’ Z) — gu(Vy V. 0$Z) + gy (HV 59V, 0Z).
By virtue of (2.7) and (3.16), we get
gu(Vy V. Z) = cos? 0gu (Y V. Z) = gu (Ty V. wdZ) + gy (V) (U, @V), w0, (wZ))
or
sin g (Vyy V. Z) = —gu(Tyw Z, V) + gy (V) (U, V), 7 (wZ)),
which gives (3.20). On the other hand, from (2.9) and (2.10), we have
g (Vg V. X) = gu(Vyo V., 0X) + gu (V. pU)n(X)
for U,V e I'(D) and X € I'((ker mr,)*). By using (3.5), we obtain
(V) V. X) = gy (V. Vg §BX) + gy (V. Vi 0BX) + gy (CX. HV[] oV) + gy (V. U (X).
Taking into account of (2.3), we write

g (Vp V. X) = gu(V, TydBX + Vy¢BX) + gy (V, TywBX + HV, 0BX)
— gn (T (CX), T (HV o V) + g (V, 9U)n(X)

hence,
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g (VpV, X) = gu(V, VudpBX) + gu(V, TywBX) + gy (V) (U, pV), 7,CX)
+gu(V, pU)n(X).

which gives (3.21). This completes the assertion. (]
Similarly for D,, we have:

Theorem 3.9 Let 7w be a semi-slant £*+-Riemannian submersion from a Sasakian
manifold (M, ¢, &, n, gu) onto a Riemannian manifold (N, gy) with a semi-slant
angle 6. Then the distribution D, is parallel if and only if

gy (oW, (VI)(Z, 9U)) = gu (W, V29U) (3.22)
and

N (VI )(Z, 0W), 1(X)) — gn (VT)(Z, 0¢ W), 12(X)) = gy (Tz0W, BX) + gy (W, WZ()Sn(z);))

forany Z,W € T'(D»), U € T'(D)) and X € T ((kerm,)™").

Theorem 3.10 Let 7w be a semi-slant £*-Riemannian submersion from a Sasakian
manifold (M, ¢, &, n, gy) onto a Riemannian manifold (N, gy) with a semi-slant
angle 0. Then the distribution (ker m,)" is integrable if and only if

IN (VI (Y, V), 7. (X)) + gy (V) (X, V), 7 (X)) = gu (@V, V(Vy BY + Vy BX))
(3.24)

and
gN (V) (X, CY) — (Vm,)(Y, CX), mewW) = gy (AxBY + Ay BX, oW)
+n1(Mgu (X, W) = n(X)gu (Y, oW)
(3.25)

for X, Y e T'((kerm,)t),V e T(Dy) and W € T'(D,).

Proof Using (3.19), (2.9) and (2.10), we have for X,Y e I'((ker w,)*) and V €
I'(Dy).

M M
gu([X, Y], V) = gu(VyeY, V) — gu(Vy X, @V).
Now, by using (3.5), we obtain
M M M M
IM (X, YL V) =—gu(BY,Vx ¢V) — gu(CY, Vx ¢V) + gy (BX, Vy ¢V) + gy (CX, Vy ¢V).

By using (2.5) and taking into account of the property of the map, we have
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g (X, Y1, V) = gu(@V, AyBX + VVy BY) — gy (1.(CY), 7. (Vy o V)
— gu(@V, AxBY + VVy BX) — gy (1.(CX), 7.(Vy 9 V).

Thus, we have

gu([X, Y1, V) = gu(eV, V(Vx BY — Vy BX)) + gn (r.(CY), (V) (X, V)
— gn (T (CX), (V) (Y, V),

which gives (3.24). In a similar way, by virtue of (3.19), (2.9) and (2.10), we have
for X, Y e T'((ker r,)*) and W € I'(D,),

g (X, Y1, W) = gy (@Vy Y, ¢W) + g (@Vy Y, W) + n(¥) gy (X, W)
— gu(@Vy X, dW) — gy (9Vy X, @W) — n(X) gy (Y, oW).
By virtue of (3.5) and (3.6), we have

M M M M
g (X, YL W) = =gy (Vx Y. *W) — gy (Vy Y. 00 W) + gy (Vx BY, oW) + gy (Vc CY. 0W)

M ) M M M
—gmM(Vy X, " W) — gy (Vy X, 09W) + gy (Vy BX, 0oW) + gy (Vy CX, oW)
+n(Vgm (X, oW) = n(X)gp (Y, oW).

Now, by using (3.16) and the property of the map, we get

gm (X, Y1, W) = cos” Ogu ([X, Y1, W) + gy (VT) (X, ¥), 0p W) + gy (Ax BY, W)
— gn (V) (X, CY), mewW) — gy (V) (Y, X), 0p W) + gu (Ay BX, W)
+ g (V) (Y, CX), mewW) + n(YV)gm (X, oW) — n(X)gu (Y, oW).

Thus, we have

sin? Ogm ([X, Y], W) = gy (V) (Y, CX) — (V) (X, CY), mxwW) + gy (Ax BY + Ay BX, oW)
+n(¥)gm (X, oW) —n(X)gm (Y, oW),

which gives (3.25). This completes the proof. ([

For the geometry of leaves (ker ,.)*, we have

Theorem 3.11 Let  be a semi-slant £*-Riemannian submersion from a Sasakian
manifold (M, ¢, &, n, gy) onto a Riemannian manifold (N, gn) with a semi-slant
angle 0. Then the distribution (ker m,)* is parallel if and only if

gu (V. VVy¢BY + AxwBY) = gy (m.(CY), (VI,)(X, 9V)) (3.26)

and
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gy (AxoW, BY) +n(Y)gu (X, oW) = gn (V) (X, Y), mewp W)
— gv((Vr,) (X, CY), m.@W),  (3.27)

for X, Y e T'((kerm,)b), V e (D)) and W € T'(D,).

Theorem 3.12 Let  be a semi-slant £+ -Riemannian submersion from a Sasakian
manifold (M, ¢, &, n, gy) onto a Riemannian manifold (N, gn) with a semi-slant
angle 6. Then the distribution (kerm,) is parallel if and only if

gm @V, TyBX) + gu (V, pUIN(X) = gn (V) (U, CX), V) — gy (V) (U, X), ﬂ*agvz)g)

forany U € I'(D;), V € ['(D,) and X € I'((kerm,)™b).
By virtue of Theorems 3.8, 3.9 and 3.11, we have the following theorem:;

Theorem 3.13 Let v be a semi-slant £+ -Riemannian submersion from a Sasakian
manifold (M, ¢, &, n, gu) onto a Riemannian manifold (N, gy) with a semi-slant
angle 6. Then the total space M is a locally product manifold of the leaves of Dy,
D and (kerm,)™, i.e, M = Mp, x Mp, X M gerz,t, if and only if

gNn (V) (U, oV), mwZ) = gu(TywpZ, V),
—gn (V) (U, 9V), 1CX) = gu(V, VupBX + TywBX) + gu(V, pU)n(X),

gy (oW, (VI)(Z, 9U)) = gu(9W, VzoU),

IN((VI)(Z, W), 1.(X))  — gn(VT)(Z, 0p W), 1,.(X))
= gu(Tz0W, BX)
+gu(W, 9 Z)n(X)

and

g (V. VVy$BY + AxwBY) = gy(m.(CY), (VI.)(X, 9V),

gu (AxoW, BY) + n(Y)gu (X, oW) = gy (V) (X, Y), mewpW)
—gnv (V) (X, CY), W)

for X, Y e T'((kerm,)*), U,V e (D)) and Z, W € T'(D,).

From Theorems 3.11 to 3.12, we have the following theorem;
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Theorem 3.14 Let 7 : (M, ¢p,&,1n,9u) — (N,gy) be a semi-slant gl
Riemannian submersion from a Sasakian manifold (M, ¢, &,n, gy) onto a Rie-
mannian manifold (N, gy) with a semi-slant angle 6. Then the total space M
is a locally (usual) product manifold of the leaves of kerm, and (kerm,)*, ie.,
M= Mkern* X M(kerrr,k)iv lfal’ld Only lf

gu(V. VVy¢BY + AxwBY) = gy(1.(CY). (VT,)(X. 9V)),

gu(AxoW, BY) +n(Y)gu(X, oW) = gn (V) (X, Y), m.0p W)
- gn(Vm) (X, CY), moW)

and

@V, TuBX) + gu(V, pUIn(X) = gy (V) (U, CX), Te0V)

for X, Y e T'((kerm,)*), U,V € T'(D;) and W € T'(D,).

3.2 Totally Geodesic Semi-Slant £+-Submersions

Recall that a differential map 7 between two Riemannian manifolds is called totally
geodesic if Vmr, = 0 [41]. Then we have

Theorem 3.15 Let 7t be a semi-slant £*-Riemannian submersion from a Sasakian
manifold (M, ¢, &, n, gu) onto a Riemannian manifold (N, gy) with a semi-slant
angle 6. Then 1 is a totally geodesic map if

—Vin,Zy = T (C(HVywZ) — AxpZ) + AxBZy + HVyCZ,)  (3.29)
+ w(AxwZ) — VVy¢Z) + VVy BZ, + AxCZ,)
= n(Z2)CX —n(X)n(Zz) — gu(Y,CX)§)

forany X € T'((kerm)Y) and Z = Z1 + Z, € T (T M), where Z, € T'(kerm,) and
Z, € T'((kermy)™b).

Proof Making use of (2.5), (2.9) and (2.10), we have
VyZ = ¢(Vy@)Z — 9Vy9Z +n(Vy )&

for any Z € I'((kerm,)*) and X € I'(T M). Now, from (2.7), we have
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(V) (X, Z) = Vin,Z + m(@Vy9Z — (Ve @) Z — n(Vy Z)E)
= VimZ + 7@V 9 Zi + Vy9Zo) — 1(Z)pX — 1(Vy 2)§).

Or,

(VA)(X, Z) = Vin,Zs + m(BAxPZ) + CAxPZ1 + ¢VVydZi + 0VVydZ,
+ QAx0Z) + 0AxwZ) + BHVy0Z) + CHVy0Z,
+ BAxBZy + CAxBZy + ¢VVy BZ, + 0 VVy BZ,
+ ¢AxCZy + wAxCZy + BHVyCZy + CHV 4 CZ,
—n(Z)eX — n(X)n(Z2) — gu(Z2, CX)§)

forany Z =7, + Z, e I'(TM), where Z, € I"'(kerm,) and Z; € [ ((kermy)™b).

(V) (X, Z) = Vin,Zr + 7. (C(AxpZ, + HV ywZi + AxBZ, + HVyCZ,)
+ 0(VVydZ) + AxwZ) + VVyBZ, + AxCZ,)
—n(Z2)CX — n(X)n(Z2) — gu(Z2, CX)§),

which gives (3.29). This completes the assertion. (]

Theorem 3.16 Let 7t be a semi-slant £*-Riemannian submersion from a Sasakian
manifold (M, ¢, &, n, gu) onto a Riemannian manifold (N, gy) with a semi-slant
angle 6. Then 1 is a totally geodesic map if and only if

(i) gu(Vu,oV1,BZ) = gu(Tu,CZ, V1) — gu(V1, oU)n(2),
(ii) gy (Vs (Uz, wpV2)) + gy (Vi (U, ©V2))), 0 Z = gt (T, 0Va, BZ) + gy (Va, pU2)1(Z)
(1ii) gy (V7 (U,CX), mCY) — gn (V7 (U, 0BX), 7,.Y) = gu (Tu¢pBX. Y) — gy (TuCX, BY)
+1(X)gm (QU, oY) =1 (U n(X Hgm (X, 0U)]
for any U, Vyel'(Dy), Uy, V,el'(Dy), UeTl(kern,) and X,Y,ZeT
((kerm)™b).

Theorem 3.17 Let 7w be a semi-slant £*-Riemannian submersion from a Sasakian
manifold (M, ¢, &, n, gi) onto a Riemannian manifold (N, gn) with a semi-slant
angle 6. Then 1 is a totally geodesic map if and only if

(i) CTupV + VyoV) +o(VypV + TyoV) + gu(PV, pU)E = 0.
(ii) C(AxPU +HVyoU) + o(AxoU + VVypU) + gu(QU, BX)E = 0.
(iii) C(Tv,¢Vi +HVy, ¢V1) + o (Ty,0Vi + VVy ¢V)) =0,

forUy e '(Dy), Vi e '(Dy), U,V € I'(kerm,) and X € [ ((kerm)™b).
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3.3 Some Examples

Example 3.18 Every invariant submersion from a Sasakian manifold to a Rieman-
nian manifold is a semi-slant £--Riemannian submersion with D, = {0} and 6 = 0.

Example 3.19 Every slant Riemannian submersion from a Sasakian manifold to a
Riemannian manifold is a semi-slant £--Riemannian submersion with D; = {0}.

Now, we construct some non-trivial examples of semi-slant £ --Riemannian sub-
mersion from a Sasakian manifold. Let (R*'*!, ¢, ¢, &, ) denote the manifold R>"+!
with its usual Sasakian structure given by

" 9 9 9 " 9 9
Xi—+Y—)+Z—)= Yi— — X, —
(p(;( ax’ + ay! )+ 82) lgl:( ax! 8yl)

| R . . ,
g=77®77+ZZ(dx’®dx’+dy’®dy’),

i=1
Lo =Yy, =2
= - — X N = -,
7 2 i:1y 9z

where (x!, ..., x", yl, ..., ¥",z) are the Cartesian coordinates. Throughout this
section, we will use this notation.

Example 3.20 Let F be a submersion defined by

F: R’ — R>
(X1, X2, X3, X4, Y1, Y2, V3, V4, 2) (F 5% “5 s sinaxs — cosaxa, ya, 2)

with a € (0, Z). Then it follows that

kerF. {(Zz —_— _8 _3 _8
erF, = span = - , = - ,
* =8P PToxT T ax2 77 oyl 9y?
0
Z3 = —cosH— — Sina—, Zy = —
. ox3 axt 8y3}
and
(kerF)l—v an{H —i—i—i H —i—i—— H —sinai—cosoz—
W) TAPATE = G T T xR T gyl Ty TGS ax*’
d ad
Hy=—, Hs= — =&}.
a= gy =4 &}

Hence, we have ¢ Z, = —Z;, ¢Z, = Z;. Thus, it follows that D| = span{Z,, Z,}
and D, = span{Zs, Z4} is a slant distribution with slant angle 6 = «. Thus, F is
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a semi-slant submersion with semi-slant angle 6. Also, by direct computations, we
obtain

gy (FuHy, FLHy) = gy (Hy, Hy), gn(F Ho, FoHy) = gy (Ha, Hy),
gN(FeH3, FxH3) = gy (H3, H3), gn(FiHy, FxHy) = gy (Hs, Hy), gy (Fi€, F.6) = gu(§,8)

where gy and gy denote the standard metrics (inner products) of R? and R?. Thus,
F is a semi-slant £ "-Riemannian submersion.

Example 3.21 Let F be a submersion defined by

F: Y — R3
X2—)3

(x1, X2, X3, Y1, Y2, ¥3, 2) (=% 7 L Y2, 2).

Then the submersion F is a semi-slant £--Riemannian submersion such that D; =
span(%, %) and D, = span(% + % &) with semi-slant angle o = 7.

Example 3.22 Let F be a submersion defined by

F : R® — R3
(X1, X2, X3, X4, Y1, Y2, Y3, Y4, 2) (sinax; — cosaxy, y4, 2)

with @ € (0, £). Then the submersion F is a semi-slant £ --Riemannian submersion
_ 0 9 0 _ a _ 3
such that D| = span(axl o TRl e 8}2) and D, = span(—coso - smam, 8}%)

with semi-slant angle 6 = «.

Example 3.23 Let F be a submersion defined by

F: R — R’
X1—X2 Y1—Y2 X3+X4 Y3+y4 Xs5—X¢

(X1, X2, X3, X4, X5, X5 Y1, Y25 V3, Y4: V5, Y65 2) AT A A A A YD)

Then the submersion F' is a semi-slant El-Riemannian submersion such that D; =
3 9 0 9 2 _ 9 0 _ 3
span(a—xl + T + T 05 9n’ Oy E)andDz spcm(axS 9x6’ 8yﬁ)w1th

semi-slant angle & = 7.

4 Hemi-Slant £1-Riemannian Submersions

Very recently Ramazan Sariand Mehmet Akif Akyol [36] also introduced and studied
hemi-slant £+-submersions and obtained interesting results. In this Sect. 4, our aim
is to discuss briefly some results of this paper.
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Definition 4.1 Let (M, ¢, &, n, gpr) be a Sasakian manifold and (N, gy) be a Rie-
mannian manifold. Suppose that there exists a Riemannian submersion¢ : M — N
such that & is normal to ker¢,. Then ¢ is called a hemi-slant £--Riemannian sub-
mersion if the vertical distribution ker ¢, of ¢ admits two orthogonal complementary
distributions 9, and 9, such that 9 is anti-invariant and Dy is slant, i.e., we have

ker¢* ZZ)L @Dg

In this case, the angle @ is called the slant angle of the hemi-slant £-Riemannian
submersion.

If 6 # 0, 5 then we say that the submersion is proper hemi-slant £+-Riemannian
submersion. Now, we are going to give some proper examples in order to guaran-
tee the existence of hemi-slant £--Riemannian submersions in Sasakian manifolds
and demonstrate that the method presented in this paper is effective. Note that,
(R¥*1 @, n, &, granr1) will denote the manifold R*'*! with its usual contact struc-
ture given by
a

1 n . )
—_—d—§ idx"y, £ =2—,
n 2(1 iZIy x'), & a2

IR . . .
g=77®77+ZZ(dx’®dx’+dy’®dy’),

i=1

n n
e _(Xidx' + Yidy') + Zd2) = ) (Vidx' — X;9y")
=l i—1
where (x1, .., Xn, Y1, ..., Yu, 2) denotes the Cartesian coordinates on R>"+!,

Example 4.2 Every anti-invariant £*-Riemannian submersion from a Sasakian
manifold onto a Riemannian manifold is a hemi-slant £--Riemannian submersion
with Dy = {0}.

Example 4.3 Every slant £--Riemannian submersion from a Sasakian manifold
onto a Riemannian manifold is a hemi-slant £ - -Riemannian submersion with D, =

{0}.
Example 4.4 Let ¢ be a submersion defined by
¢ (R, ggo) - (R, gps)

X1ty xo+ty :
(1, X2, X3, X4, Y1, 2. ¥3, ¥4, 2)  (F52, F2E siny s — cos yxy, ya, 2)

with y € (0, Z). Then it follows that

ker ¢, = Sp{V; = —0x1 + dy,, Vo = —0xs + 9y, V3 = —cos ydx3 — sin ydxy,
Vi = 0y3}
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and

(ker q)*)J‘ = Sp{W; = 0x; + 0y,, W, = dx; + 0y, W3 = sin ydx3 — cos y dx4,
Wy = 0y4, Ws = 9z}
hence we have ¢V, = W,, ¢V, = W;. Thus, it follows that D, = sp{V;, V»} and

Dy = sp{V3, V4} is a slant distribution with slant angle & = y. Thus, ¢ is a slant
&1 -submersion. Also by direct computations, we have

gro (Wi, Wi) = grs (Wi, W), i=1,..5

which show that ¢ is a slant £1-Riemannian submersion.
Example 4.5 Let F be a submersion defined by
F (Rg, gr°) — (RS, grs)

Xityr Xodyi xztxa y3tys
X1y eeey g seey ) 3 ) ’ .
( 1 Y1 Z) ( 2 2 NG 2 Z)

The submersion F is hemi-slant £*-Riemannian submersion such that D, =
span{dx; — 0y, 0xp — dy;}and Dy = span{dxs + dx4, dy3 + 9y4} withhemi-slant
angle 6 = 0.

Example 4.6 Let 7 be a submersion defined by

T R7, gr7) —> (R*, gr+)

(15 e Y1505 2) (x'jixz , $in yx3 — COS Y y4, €08 Bxs — sin By3, 2).

The submersion 7 is a hemi-slant £*-Riemannian submersion such that D, =
span{dx; — 0x,} and Dy = spanfcos ydx3 — sin y dy4, sin fdx4 — cos fdy3} with
hemi-slant angle 6 = o + .

Let ¢ be a hemi-slant £--Riemannian submersion from a Sasakian manifold
(M, ¢, &, 11, gpr) onto a Riemannian manifold (N, gy). Then, for U € T"(kerg,), we
put

U=PU+QU

where PU € I'(D,) and QU € I'(Dy). For Z € I'(T M), we have
Z=VZ+HZ
where VZ e I'(ker¢,) and HZ € T (ker¢,)™*.
We denote the complementary distribution to D, in (ker¢,)* by 1. Then we
have

(kergp)™ = 9D ® 1,

where () C . Hence u contains &. For V € I'(ker¢,), we write
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eV =pV +oV 4.1)

where pV and wV are vertical (resp. horizontal) components of ¢V, respectively.
Also, for X € I'((ker¢,)'), we have

¢X = BX +CX, 4.2)

where X and CX are vertical (resp. horizontal) components of ¢ X, respectively.
Then the horizontal distribution (ker¢,)* is decomposed as

(kergp)™ = 9D ® 1,

here p is the orthogonal complementary distribution of O, and it is both invariant
distribution of (ker¢,)* with respect to ¢ and contains £. Then by using (2.3), (2.4),
(4.1) and (4.2), we get

(Vyp)W = BTy W — TywW (4.3)

(Vyo)W =CTyW — Ty pW (4.4)
for V, W € I' (ker¢,), where
(Vy o)W = VypW — pVy W

and . . .
(Vyo)W = HV, oW — oVyW.

Lemma 4.7 Let ¢ : M — N be a hemi-slant £*-Riemannian submersion from a
Sasakian manifold (M, ¢, n, &, gy) onto a Riemannian manifold (N, gn). Then we
have

p°W = cos?OW, W e I'(Dy), (4.5)

where 6 denotes the hemi-slant angle of ker ¢,.

Lemma 4.8 Let ¢ : M — N be a hemi-slant £*-Riemannian submersion from a
Sasakian manifold (M, ¢, n, &, gy) onto a Riemannian manifold (N, gn). Then we
have

gu(pU, pV) = cos* Oy (U, V) (4.6)

gy (U, @V) = sin?0gy (U, V) (4.7)

forall U,V e I'(keroy).
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4.1 Integrable and Parallel Distributions

Theorem 4.9 Let ¢ be a hemi-slant £ -Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, gy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 6. Then the distribution D, is integrable if and only if we have

guTueV —TveU, pZ) = gn(V.)(V, oU) — (Vo) (U, V), ¢ (wZ))
forany U,V e T'(Dy) and Z € T'(Dy).

Proof For U,V € I'(T M), by using (2.9) and (2.10), we have
gV V. 2) = gu (Vi @V. ¢ 2). (4.8)
ForU,V e I'(D1), Z € T'(Dy), using (2.9 ) and (4.8), we have
gu(U. V1. 2) = gu(Vi/ V. 9Z) — gu(Vy'9U. ¢ Z).
On the other hand, we get
gu (U, V1. 2) = gu(TueV = TyeU. pZ) + gu(H(V(f V) — H(VypU), wZ).
Or,

gu((U, V], Z) = gu(TueV —TveU, pZ)
+ gn (@ (Vi @V) — (Vi 9U), i (0Z))

which proves assertion. ]
Theorem 4.10 Let ¢ be a hemi-slant £+ Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, gy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 0. Then the distribution Dy is integrable if and only if we have

N (VP INZ, oW) — (V@) (W, 0Z), oU) = gu(Tz0pW — TwwpZ, U)
forany Z, W € T'(Dy) and U € T' (D).
Proof For Z, W € I'(Dy) and U € T'(D,), using (2.9) and (4.8) we have

gm(Z, W1, U) = gu (V7 oW, oU) = gu (Vi 9 Z, pU).

Therefore, by using (4.1), we get
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g (Z, W], U) = —gu (VY 0*W, U) — gu (V¥ wpW, U)
+9u (VY oW, oU) + gu(Vy p°Z, U)
+9u(VypopZ, U) — gu(VywZ, oU).

Now, by virtue of (3.16), we obtain

gu((Z, W1, U) = cos>Ogu ((Z, W1, U) — gu(VHwpW, U)
+9u (VY oW, oU) + gu(ViyopZ, U)
—gu(VioZ, pU).

Then we have

sin 09y ([Z, W1, U) = gu(VijwpZ — V) wpW, U)
+ gu (VY oW — Vi oZ, pU).

On the other hand, we have

sin0gy ([Z, W1, U) = gy TwwpZ — TzopW, U)
+gu(HVY oW) — H(Vi0Z), oU)

=gu(TwwpZ — T zw0pW, U)
+9n (@ (V) oW) — ¢.(Vi0Z), 9U)

which proves assertion. ]

Theorem 4.11 Let ¢ be a hemi-slant £+ Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, gy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 6. Then the distribution D is parallel if and only if

In (@« (Vu V), pu(wp2)) = gu(pVyV, wZ)

and
gu(VypV +TywV, BX) = —guTupV + H(VywV), CX)

forany U,V e T(D}), Z € T'(Dy), X € I'((ker ¢p,)™b).
Proof For U,V € T'(D,), Z € I'(Dy) using (2.9), we get
gu(VuV, Z) = gu(@VyV,9Z) + n(Vy VIn(Z)

=gu(eVuyV,9Z).

g (VuV,Z) = —gu(VyV, p*Z + wpZ + pwZ).
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Then one obtains
sin 09y (Vo V, Z) = —gu(H(Vu V), 00Z) + gu (@ VoV, 02).
By property of ¢, we get
sin’ 09y (VuV, Z) = —gn (@.(Vu V), $u(@p2)) + gu(9Vu V, 02).
On the other hand, for U, V € T'(D,), X € I'((ker ¢,)"), we have
gu(VuV, X) = gu(VyeV, ¢X).
Now, by virtue of (2.3) and (4.1), we obtain

g (VuV, X) = gu(TupV,CX) + gu(VpV, BX)
+ gy TyowV,BX) 4+ gy (H(VywV), CX)

which completes the proof. (]

Theorem 4.12 Let ¢ be a hemi-slant £+ Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, gu) onto Riemannian manifold (N, gy) with a hemi-slant
angle 6. Then the distribution Dy is parallel if and only if

IN (D (W), (Vo )(Z, 9U)) = gu(pW, TzoU)

and

IN(V@.)(Vzwp W), (X)) — gn (V@) (VzoW), §.(CX))
= —gu(TzoW, BX) + gu (oW, Z)n(X).

forall Z, W e T'(Dy), U e (D), X € I'((ker ¢,) ™).

Theorem 4.13 Let ¢ be a hemi-slant £+ Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, guy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 6. Then D defines a totally geodesic foliation on M if and only if

gN((Vo) (U, V), ¢ (0Z)) = —gu(TuV, wpZ)

and
gu(TueV, BX) = gn(Vo,) (U, 9V), $.(CX))

forany U,V e (D)), Z € T'(Dy), X € I'((ker ¢,)).

Proof For U,V € T'(D}), Z € T'(Dy), from (2.9), (2.3), (2.4), (4.1) to (4.5), we
have
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gu(VuV,Z) = cos’ 09y (VuV, Z) — gu(TuV, 0pZ) + gu(H(VyeV), wZ).
Or,
sin® Ogu (Vo V. Z) = —gu(Tu V. wpZ) — gy (@ (VueV). ¢ (w2)).
On the other hand, for X € I"((ker ¢,)1), we have

au(VuV, X) = gu(TueV, BX) + gu(H(VyeV), CX).

gu(VuV, X) = gu(TueV. BX) — gn(¢(VueV), ¢.(CX)).
This completes the proof. (]

Theorem 4.14 Let ¢ be a hemi-slant £+ Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, gy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 6. Then Dy defines a totally geodesic foliation on M if and only if

IN((VP)(Z, wW), . (@U)) = —gu(TzwpW, U)

and

IN((VIN(Z, wpW), ¢.(X)) + gn(VII(Z, W), ¢.(CX)) = gu(Tz0W, BX)

forany Z,W € T'(Dy), U € I'(D}), X € I'((ker ¢,)b).

4.2 Hemi-Slant £+-Riemannian Submersions on Sasakian
Space Forms

A plane section in the tangent space 7, M at p € M is called a p-section ifitis spanned
by a vector X orthogonal to £ and ¢ X. The sectional curvature of ¢-section is called
@-sectional curvature. A Sasakian manifold with constant ¢-sectional curvature c is
a Sasakian space form. The Riemannian curvature tensor of a Sasakian space form
is given by
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M c+3

-1
+ CT{gM(Y, Win(Xm(Z) — gu (X, Win(¥Y)n(2)
+ gu (X, Z)n(¥)n(W) — gu (Y, Z)n(X)n(W)
+ 9m (@Y, ZD)gu (X, W) — gu (9 X, Z)gu(eY, W)
—29m(eX, Y)gu(ewZ, W)} 4.9)
forany X, Y, Z, W € I'(TM) [39].

Theorem 4.15 Let ¢ be a hemi-slant £+ Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, gy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 6. Then we have

~ 3
RWU,V.W,S) = %{QM(Va gu U, W) = gu WU, Hgu(V, W)} (4.10)

+gu(TvW,TuyS) —gn(TuW,TvS)

and

~ c+3
KW, v) = ——{gu, VY =1} + gu(TvU, Ty V) — gu(TyU, TvV)
4.11)
forallU,V,S, W e (D).

Proof ForanyU,V,S, W € I'(D,)byusing (4.9), U € I'((ker ¢ )N andn(U) =
0, then we have
M c+3

Hence, we have

~ c+3
RWU,V,W,S) = T{QM(V, Sgu U, W) —gu (U, S)gu(V, W)}
+gu(TvW,.TuS) —gu(TuW,TvS)

which completes the proof. (]

Corollary 4.16 Let ¢ be a hemi-slant £*-Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, gu) onto Riemannian manifold (N, gy) with a hemi-slant
angle 8 and m > 3. If D, is totally geodesic, then M is flat if and only if c = —3.

Theorem 4.17 Let ¢ be a hemi-slant £+ Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, gy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 0. If D, is totally geodesic, then
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~ c+3
L=

q(l —2q)

where T\ is the scaler curvature.

Proof We have
2q

SLU, V)= R(E,U,V,E)

i=1

where {E, ..., Ey,;} is ortonormal basis on I'(Dy) and U, V € I'(D_). Thus, one
obtains

2q
— 3
LW, V) = S gn U, Engu (B, V) — g (Er, EDgu(U, V).

i=1 4
Or,
_~ c+3
S.(U,V) = T(l —29)gu (U, V). (4.13)
BytakingU =V = E;, k =1, ..., 2q, we get the result. [

Corollary 4.18 Let ¢ be a hemi-slant £--Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, gy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 0. If D, is totally geodesic distribution, then D is Einstein.

Theorem 4.19 Let ¢ be a hemi-slant £+ Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, guy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 0. Then we have

~ 3
ROK. L, P W) = = (gu(L, Pyg(K, W) = g (K, Phgu (L, W)

c—1
+ T{gM(wL, Pgu (K, W)
— gu@K, P)gu(9L, W) — 294 (9K, L)gu(¢p P, W)}
+9u TP, TkW) —gu(TxP,TLW) (4.14)
and

- 3
R(K. 1) = “ g (L, Kgu (K. L) — gu (K. K)gu (L, L))

c—1
- 3TQM(§0Kv L)+ gu(TLK, Tk L) — gu(Tx K, T L)  (4.15)

forall K,L, P, N € T'(Dy).
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Theorem 4.20 Let ¢ be a hemi-slant £+ Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, guy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 0. If Dy is totally geodesic, then we have

(c+3)2p—1)+3(c—1)cos*d

759217 )

Proof For any K, L € I'(Dy), using (4.14), we derive

-~ c+3 c—1 2

Se(K, L) = T(2P — Dgm(K, L) +3 cos“Ogm (K, L) (4.16)
where {E1, ..., E5,} is orthonormal basis on I'(Dy). From the above equation, we
obtain the proof. (]

Corollary 4.21 Let ¢ be a hemi-slant £--Riemannian submersion from a Sasakian
manifold (M, ¢, n, &, gy) onto Riemannian manifold (N, gy) with a hemi-slant
angle 0. If Dy is totally geodesic distribution, then Dy is Einstein.

5 Quasi Hemi-slant Submanifolds of Cosymplectic
Manifolds

In this Sect. 5, we will finally discuss some results of quasi hemi-slant submanifolds
introduced and studied by Rajendra Prasad et al. [38]. First, we have

Definition 5.1 A submanifold M of an almost contact metric manifold M is called
a quasi hemi-slant submanifold if there exist distributions D, D? and D+ such that
(i) T M admits the orthogonal direct decomposition as

TM=DoD°®dD'® <& >.

(ii) The distribution D is ¢ invariant, i.e., ¢ D = D.

(iii) For any nonzero vector field X € (D% p» P € M, the angle 0 between J X and
(D% p 1s constant and independent of the choice of point p and X in (D% -

(iv) The distribution D+ is ¢ anti-invariant, i.e., D+ € T+ M.

In this case, we call 6 the quasi hemi-slant angle of M. Suppose the dimension of
distributions D, D and D are n;, ny and ns, respectively. Then we can easily see
the following particular cases:

(i) If ny = 0, then M is a hemi-slant submanifold.

(ii) If n, = 0; then M is a semi-invariant submanifold.

(>iii) If n3 = 0, then M is a semi-slant submanifold.

We say that a quasi hemi-slant submanifold M is proper if D # {0}, D+ # {0} and
6 #0, 7.
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This means that the notion of quasi hemi-slant submanifold is a generalization of
invariant, anti-invariant, semi-invariant, slant, hemi-slant, semi-slant submanifolds.
Let M be a quasi hemi-slant submanifold of an almost contact metric manifold M.
We denote the projections of X € I'(T M) on the distributions D, D and D+ by P,
Q and R, respectively. Then we can write for any X € I'(T M)

X =PX+ 0X+RX +n(X)E. (5.1)

Now we put
X =TX+NX, (5.2)

where T X and N X are tangential and normal components of ¢ X on M. Using (5.1)
and (5.2), we obtain

¢X =TPX+NPX+TQX+NQOX+TRX+ NRX.
Since ¢ D = D and ¢ D+ € T+M, we have NPX = 0 and TRX = 0. Therefore,
we get
X =TPX+TQOX+NQOX + NRX. (5.3)
Then for any X € I'(T M), it is easy to see that
TX=TPX+TQOX

and
NX=NQX + NRX.

For any V e I'(T+ M), we can put
¢V =tV +nV

where 1V and nV are the tangential and normal componenets of ¢V on M,
respectively.

Analmost contact metric manifold s called a cosymplectic manifold if (Vx¢)Y =
0, ng =0VX,YeTl (TM ), where v represents the Levi-Civita connection of

(M, g).
The covariant derivative of ¢ is defined as

(Vx$)Y = VxgY — ¢VxY.
IfMisa cosymplectic manifold, then we have

dVyY = VxoY.
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Let M be a Riemannian manifold isometrically immersed in M and the induced
Riemannian metric on M is denoted by the same symbol g throughout this paper.
Let A and & denote the shape operator and second fundamental form, respectively,
of submanifolds of M into M. The Gauss and Weingarten formulas are given by

VyY = Vx¥ +h(X,Y)

and
VxV = —AyX + ViV
for any vector fields X, ¥ € I'(TM) and V on I'(T+M), where V is the induced
connection on M and V+ represents the connection on the normal bundle 7+ M of
M and Ay is the shape operator of M with respect to normal vector V € T'(T+M).
Moreover, Ay and the second fundamental form 7 : TM  TM —> T+ M of M
into M are related by
g(h(X,Y), V) = g(AvX, Y),

for any vector fields X, Y € I'(TM) and V on L(T+M).

5.1 Integrability of Distributions

Theorem 3.2 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M. Then the invariant distribution D is integrable if and only if

g(VxTY —VWTX,TQZ) = g(h(Y, TX) — h(X,TY), NQZ + NRZ)

forany X,Y e T (D) and Z € T'(D? @ D4).

Proof For a cosymplectic manifold, we have
VxéE =0V X el'(D). (5.4)
IfY € I'(D), then g(Y, &) = 0. Thus, one gets
g(VxY,§) +g(¥, Vx§) = 0. (5.5)

Now, g([X, Y], &) = g(VxY, &) — g(VyX, &) = 0.
Also, we have

91X, Y1, Z2) = g(Vx9Y, ¢Z) — g(VypX, ¢pZ) = g(VxTY
—VWTX, TQZ)+gh(X,TY)—h(Y, TX), NQZ+ NRZ)

which completes the proof. O
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Similarly, we have

Theorem 5.3 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold (M, g, ¢). Then the slant distribution D? is integrable if and only if

9JANwZ — AnzW,TPX) = g(AntwZ — AnTzW, X)
+9(VZNW — ViNZ, NRX)

forany Z, W e I'(D%) and X € T'(D @ D).

Theorem 5.4 Let M be a quasi hemi-slant submanifold of a cosymplectic manifold
M. Then the anti-invariant distribution D= is integrable if and only if

g(T(Z, W), TX) =g(VixNZ —V;NW,NQX)

forany Z, W e T (DY) and X € T'(D & D?).

5.2 Totally Geodesic Foliations

Theorem 5.5 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M. Then M is totally geodesic if and only if

g(h(X, PY) + cos’ Oh(X, QY),U) = g(Vx NT QY, U)
+9(Anor X + Angy X, 1U) — g(Vx NY, nU)
forany X, Y e (TM) and U € T(T+M).
Proof Forany X, Y e '(TM), U el (TLM), we have
g(VxY,U) = g(Vx PY,U) + g(VxQY,U) + g(VxRY, U)

= g(Vx¢PY, ¢pU) + g(VxT QY,¢U) + g(VxN QY, ¢U)
+9(Vx$RY, ¢U).

g(VxY,U) = g(h(X, PY) + cos’> Oh(X, QY), U) — g(VxNT QY, U)
—g(Anoy X + Anry X, tU) + g(V¥NY, nU)

which completes the proof. (]

Similarly, we have

Theorem 56 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M. Then anti-invariant distribution D defines totally geodesic foliation
if and only if
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g(Apyy X, TPZ +10Z) = g(Vx¢Y,nQZ), g(AsyX,tV)=g(Vxo¥,nV)

forany X, Y e T(D*), Ze (D@ D) and V € T (T*+M).

Theorem 5.7 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M. Then the slant distribution D’ defines a totally geodesic foliation on
M if and only if

g(V¥NY,NRZ) = g(AyyX.TPZ) — g(AyryX, Z), and
g(AnyX,tV) = g(Vx NY,nV) — g(VxNTY, V)

forany X,Y e (D), Ze (D& D) andV €T (T+*M).

5.3 Examples

Now we discuss few examples from [38]
Example 5.8 Let us consider a 15-dimensional differentiable manifold
M = {(xi, yi.2) = (X1, X2, e X7, Y1, Y2, s 7. 2) € RV}

And choose the vector fields

E 9 E 9 E & 9 fori =1, 2 7
Pi=—, Pi=—, =f&=—, fori=1,2,..7.
By, T+ ox 15 92

Let g be a Riemannian metric defined by
9= (dx))’ + (dx2)* + - + (dx)’ + (dy)? + (dy2)’ + - + (dy7)* + (d2)*.

We define (1, 1)-tensor field ¢ as

0] ad ad ad d
¢ a = T ¢ P = —5 > ¢ _0 Vl J —1 2
Bx,- 8yl‘ 8yj 3)(]' 32

Thusiﬁ, ¢, &, n, g) is an almost contact metric manifold. Also, we can easily show
that (M, ¢,&,n,g)isa cosym[iectic manifold of dimension 15.
Let M be a submanifold of M defined by

f(u,v,w,r,s,t,q):(u w, 0, 0,v,rcosf,rsinb, 0, ,q)
7 f WA

where 0 < 0 < % Now the tangent bundle of M is spanned by the set {Z;, Z,, Z3,
Zy, Zs, Zg, Z7}, where



330 M. A. Akyol and R. Prasad

Z, = 9 Zr = 9 Z3 = 9
1_8x19 2_8y19 3—ax21

Z cosf 9 + sin 6 9 Z ! ( 9 + 9 )
= _ 1 e - — | — — ),
! oy ay3 ’ V2 \dxs  dys

Z_1<a+a> 40
6_ﬁ axg  ay; ) 7T 8z

Thus, we have

0 d
Z = —, Z = ——, = —,
$Z o $Z, ox, ®Zs s
¢z 0 9 + siné 9 Oz ! 9 9
=—|(cosf— +sinf— |, =—(—-—1),
4 8x2 3)63 > ﬁ 8y4 8x5

ozee (Y sz o
6_«/5 dye  0x7)’ T

Now, let the distributions D = span{Z, Z,}, D’ = span{Zs, Z,}, D' = span
{Zs, Zs}. And D is invariant, D? is slant with slant angle 6 and D is anti-invariant.
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