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Preface

An almost Hermitian manifold is an almost complex manifold (M, J ) equipped with
a Riemannian metric g which satisfies g(J X, JY ) = g(X,Y ) for vector fields X,Y
tangent to M . By a submanifold of an almost Hermitian manifold (M, gM , J ), we
mean the image of an isometric immersion

φ : (N , gN ) → (M, gM , J )

from a Riemannian manifold (N , gN ) into (M, gM , J ).
Dual to the notion of isometric immersions, there exists the notion of Rieman-

nian submersions introduced by B. O’Neill in [11]. By definition, a Riemannian
submersion is a surjective map

π : (M, gM) → (B, gB)

from a Riemannian manifold (M, gM) onto another Riemannian manifold (B, gB)

which preserves the scalar products of vectors normal to fibers.
Based on the action of the almost complex structure J on the tangent bundle

of a submanifold, there are three important classes of submanifolds of an almost
Hermitian manifold (M, gM , J ), namely the classes of complex, totally real and
slant submanifolds.

In terms of the almost complex structure J , a submanifold N of an almost
complex manifold (M, g, J ) is called a complex submanifold (respectively, totally
real submanifold) if

J (TpN ) ⊆ TpN (respectively, J (TpN ) ⊆ T⊥
p N ) (1)

for any point p ∈ N , where T⊥
p N denotes the normal space of N in M at p.

v
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For a unit tangent vector X ∈ TpN of a submanifold N in an almost Hermitian
manifold (M, gM , J ) at a point p ∈ N , the angle θ(X) between J X and TpN is
called the Wirtinger angle of X .

In 1990, a more general class of submanifolds than complex and totally real
submanifolds was introduced in [5] as follows.

Definition 1 A submanifold N of an almost Hermitian manifold (M, g, J ) is called
a slant submanifold if the Wirtinger angle θ(X) is independent of the choice of the
unit vector X ∈ TpN and of p ∈ N . In this case, the constant θ is called the slant
angle. A slant submanifold with slant angle θ is said to be θ -slant.

It follows from the definitions that complex submanifolds and totally real subman-
ifolds are nothing but θ -slant submanifolds with slant angle θ = 0 and θ = π

2 ,
respectively. From J -action points of view, slant submanifolds are the simplest and
themost natural submanifolds of an almost Hermitianmanifold. In [7, 10], the notion
of pointwise slant submanifolds of an almost Hermitian manifold was defined as a
generalization of slant submanifolds.

The first results on slant submanifolds were collected in the book [6]. Since then
the study of slant submanifolds and of slant submersions has been attracting more
and more researchers and a lot of interesting results have been achieved during the
past 30 years.

A Riemannian (2n + 1)-manifold (M2n+1, g) is called an almost contact metric
manifold (cf. [1]) if there exist a (1, 1) tensor field ϕ, a vector field ξ (called the
structure vector field), and a 1-form η on M2n+1 such that

η(ξ) = 1, ϕ2(X) = −X + η(X)ξ, ϕξ = 0, η ◦ ϕ = 0,

g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ)

for any vector fields X,Y tangent to M2n+1. An almost contact metric structure is
called a contact metric structure if it satisfies

dη(X,Y ) = g(X, ϕY ).

A contact metric structure is called normal if it satisfies

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X,

where ∇ is the Levi-Civita connection of g. A manifold M endowed with a normal
contact metric structure is called a Sasakian manifold. A Sasakian manifold with
constant ϕ-sectional curvature is called a Sasakian space form.

The study of slant submanifolds was extended by A. Lotta [8] in 1996 to contact
slant submanifolds in almost contact geometry as follows. Let N be a submanifold
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of an almost contact metric manifold (M2n+1, ϕ, ξ, η, g). Then N is called contact
slant if the Wirtinger angle θ(X) between φX and TpN is a global constant, so that
it is independent of the choice of the point p ∈ N and the vector X ∈ TpN such
that X and ξp are linearly independent. In particular, for θ = 0 and θ = π

2 , the
θ -slant submanifolds of (M2n+1, ϕ, ξ, η, g) are called invariant and anti-invariant
submanifolds, respectively.

In [8], A. Lotta proved that ifM2n+1 is a contactmetricmanifold, then the structure
vector field ξ is tangent to every non-anti-invariant slant submanifold. After Lotta’s
work there are a lot of works done on contact slant submanifolds.

Dual to slant submanifolds, B. Sahin introduced in [12] the notion of slant submer-
sions. Roughly speaking, a Riemannian submersion from an almost Hermitian mani-
fold (M, gM , J ) onto a Riemannian manifold (B, gB) is called a slant submersion if
its vertical distribution is a slant distribution.

Similar to Sahin’s work on slant submersions from almost Hermitian manifolds
onto Riemannian manifolds, I. K. Erken and C. Murathan defined and studied in [9]
slant submersions from Sasakian manifolds onto Riemannian manifolds. Cabrerizo
et al. studied in [2, 3] slant, semi-slant, hemi-slant, and bi-slant submanifolds in
contact slant geometry. Further, as a generalization of slant submanifolds and semi-
slant submanifolds, K. S. Park [4] defined the notion of pointwise slant submanifolds
and pointwise semi-slant submanifolds of an almost contact metric manifold.

Given the huge amount of work on contact slant submanifolds and submersions
published since the appearance of the last monograph [6], the editors thought it is
appropriate to invite a number of specialists to contribute one or more papers to
illustrate the state of the art in the theory of contact slant geometry with focuses
on contact slant submanifolds and contact slant submersions and many colleagues
answered our call. The editors express their gratitude to all the contributors.

The editors hope that the readers will find this book both a good introduction
and a useful reference of contact slant geometry to perform their research more
successfully and creatively.

East Lansing, Michigan, USA
New Delhi, India
Abha, Saudi Arabia

Bang-Yen Chen
Mohammad Hasan Shahid

Falleh Al-Solamy
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General Properties of Slant Submanifolds
in Contact Metric Manifolds

A. Lotta

2000 AMS Mathematics Subject Classification: 53B25 · 53C25 · 53D15

1 Slant Submanifolds of Almost Contact Manifolds

B. Y. Chen’s concept of a slant submanifold can be translated into the context of
contact metric geometry in a very natural fashion. In this chapter, we shall discuss
the basic facts concerning this variant of the theory.

Our standard reference for contact geometry is Blair’s book [2], to which we refer
the reader for the terminology, the notation and the relevant facts.

Let M be an almost contact metric manifold with structure (ϕ, ξ, η, g). By a slant
submanifold of M , we shall mean an immersed submanifold N such that for any
x ∈ N and for any tangent vector X ∈ Tx N , linearly independent on ξ , the angle
between ϕX and Tx N is a constant θ ∈ [0, π

2 ], called the slant angle of N in M .
Like in complex geometry, when the ambient manifold is a contact metric mani-

fold, for θ = π
2 one recovers the notion of anti-invariant submanifold. For θ = 0, this

class coincides with that of invariant submanifolds, i.e. those for which each tangent
space of the submanifold is invariant under ϕ. We remark that it is known that such a
submanifold must be tangent to the Reeb vector field ξ (see [2, Sect. 8.1], p. 152).We
shall see below that this property also holds in the larger class of non-anti-invariant
slant submanifolds.

We shall denote by ∇̄ the Levi-Civita connection of the ambient manifold, by ∇
the corresponding connection relative to the metric induced on a submanifold, while
the second fundamental form will be denoted by α.

A. Lotta (B)
Dipartimento di Matematica, Università di Bari Aldo Moro,
Via E. Orabona 4, 70125 BARI, Italy
e-mail: antonio.lotta@uniba.it
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2 A. Lotta

We shall also denote the kernel of η by D, which is a distribution on M of rank
dim(M) − 1. Using the same notation as in the complex case, for every tangent
vector X ∈ T N we write

ϕX = PX + FX

where PX is tangent and FX is normal to the submanifold. Then P : T N → T N
is a skew-symmetric (1, 1) tensor field on N with respect to the induced metric. We
shall also denote by Q the symmetric operator P2.

We begin by discussing the following basic result showing that the class of non-
anti-invariant slant submanifolds of a given almost contact metric manifold splits
into two sub-classes, characterized by the position of the characteristic vector field
ξ with respect to the submanifold (cf. [11]).

Theorem 1.1 Let N be an immersed slant submanifold of the almost contact metric
manifold M with structure tensors (ϕ, ξ, η, g). Let n = dim(N ). Assume that N is
not anti-invariant. Then

n is odd ⇐⇒ ξ is tangent to N

n is even ⇐⇒ ξ is normal to N .

Proof For every point x ∈ N , the orthogonal complement E ⊂ Tx N of Ker(Qx )

is even dimensional. Observe that if X ∈ Ker(Qx ), then ϕX is normal to N . By
definition of a slant submanifold, this forces that X be a scalar multiple of ξx , because
we are assuming that the slant angle θ �= π

2 . Thus, we have proved that

Ker(Qx ) ⊂ Rξx .

Now, if n is odd, then Ker(Qx ) �= {0} for every x ∈ N , which yields that ξ is
everywhere tangent to N . If n is even, we must have Ker(Qx ) = {0} for all x ∈ N .
Fix x and consider an eigenspace H of Qx relative to the eigenvalue λ. By definition
of the slant angle, for every non-null X ∈ H we have

cos θ = ||PX ||
||ϕX || = √−λ

||X ||
||ϕX || . (1)

On the other hand, since dim(H) ≥ 2, H contains some non-null X ∈ H belong-
ing to Dx , for which ||ϕX || = ||X ||. Substituting in (1) yields λ = − cos2 θ . We have
thus showed that Qx = − cos2 θ Id and moreover, coming back again to (1) we have
that ||ϕX || = ||X || for every X ∈ Tx N , which implies that Tx N ⊂ Dx . We conclude
that ξ is everywhere orthogonal to N . �

We remark that the assumption that N is not anti-invariant in the above result is
essential. A significant example is provided by a well-known result of Blair, who
classified the contact metric manifolds of dimension at least five, whose curvature
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tensor annihilates ξ (i.e. R(X,Y )ξ = 0 for every vector fields X , Y ). The simply
connected, complete ones are the Riemannian products

M = R
n+1 × S

n(4), n > 1

where Sn(4) denotes a sphere endowed with a standard metric of constant sectional
curvature 4. See [2], Theorem 7.5. Then, it turns out that both the standard immer-
sions of Rn+1 and of Sn(4) are anti-invariant in M . Moreover, for the first one ξ

is everywhere tangent, while for the second one ξ is always normal, so that let-
ting n > 1 vary, we provide a series of counterexamples to the equivalences in
Theorem 1.1.

For a submanifold N tangent to ξ , as a further application of formula (1) the
following characterization is readily verified, involving the symmetric tensor Q and
the normal bundle valued 1-form F : T N → T N⊥ (see [3]).

Theorem 1.2 Let N be a submanifold of an almost contact metric manifold M.
Assume that ξ is tangent to N. Then the following are equivalent:

(a) N is slant in M with slant angle θ ;
(b) Q = − cos2 θ(I − η ⊗ ξ);
(c) For every unit vector tangent to N and orthogonal to ξ , one has

||PX || = cos θ;

d) For every unit vector tangent to N and orthogonal to ξ , one has

||FX || = sin θ.

We remark that, in the general context of almost contact metric manifolds, one can
provide simple examples showing that both possibilities regarding the position of ξ

with respect to a slant submanifold can occur. Namely, given any almost Hermitian
manifold (M, J, go), the product M × R carries a standard almost contact metric
structure (ϕ, ξ, η, g), where

ϕ(X, a
d

dt
) = (J X, 0), ξ = (0,

d

dt
), η = dt,

g being the product metric of go and the standard metric on the real line.
Now, given any θ -slant submanifold N of M , it is not difficult to verify that

N × {0} and N × R are both θ -slant in M × R (cf. [11]). More generally, the same
is true if instead of the product metric one considers a warped product metric g on
M × I , where I ⊂ R is an open interval, namely g = λ2π∗

1 go + π∗
2 dt ⊗ dt , where

λ : I → R is a smooth positive function andπ1 : M × I → M andπ2 : M × I → I
are the canonical projections (see [6]).
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Explicit examples of slant submanifolds (most of them in the Sasakian space form
R

5) are exhibited in [3]. Other examples and some general results concerning slant
submanifolds of some particular classes of almost contact metric manifolds can be
found in the recent papers [6, 7] by de Candia and Falcitelli.

We report here the following fact concerning even dimensional submanifolds (it
is proved in [7] for the class of C5 ⊕ C12-almost contact metric manifolds according
to the Chinea-Gonzalez classification scheme [5]).

Theorem 1.3 Let (M, ϕ, ξ, η, g) an almost contact metric manifold and assume
that ϕ is η-parallel, i.e.

g((∇̄Xϕ)Y, Z) = 0

for every X,Y, Z vector fields orthogonal to ξ .
Let N be an even dimensional θ -slant submanifold of M, θ �= π

2 . Then M induces
on N an almost Kähler structure (J, g) where J = sec θ P.

Proof We know that ξ is normal to N . Moreover, Q = − cos2 θ Id. Hence, J =
sec θ P is an almost complex structure on N , which is Hermitian with respect to the
induced metric. Moreover, by the η-parallelism of ϕ, for every X,Y, Z vector fields
tangent to N we get

g(∇̄X PY, Z) + g(∇̄X FY, Z) − g(ϕ∇XY, Z) − g(ϕα(X,Y ), Z) = 0,

yielding
g((∇X P)Y, Z) = g(AFY X, Z) − g(AFZ X,Y ).

It follows that
SX,Y,Zg((∇X J )Y, Z) = 0,

whereS is a cyclic sum, and this ensures that the almost Hermitian structure (J, g)
is almost Kähler. �

2 Slant Submanifolds of Contact Metric Manifolds

From now on, we shall consider the case when the ambient manifold is a contact
metric manifold.

Theorem 2.1 Let (M, ϕ, ξ, η, g) be a contact metric manifold. Every non-anti-
invariant slant submanifold N of M is tangent to ξ . Moreover, the restriction of
η to N is again a contact form and N inherits canonically a contact metric structure
(ϕ̄, ξ̄ , η̄, ḡ), where

ϕ̄ := sec θ P, ξ̄ := sec θξ, η̄ := cos θ η, ḡ := cos2 θ g. (2)
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Proof If ξ were normal to N , from the formula

∇̄Xξ = −ϕX − ϕhX, h := 1

2
Lξϕ (3)

which is valid in the ambient manifold (cf. [2, Lemma 6.2]), for every X and Y vector
fields tangent to N we would have

g(Aξ X,Y ) = g(ϕX,Y ) + g(ϕhX,Y ),

Aξ being the Weingarten operator in the direction of ξ . But since ϕh and Aξ are
both symmetric operators, this would imply g(ϕX,Y ) = 0 identically, yielding that
N is anti-invariant against the assumption. Hence according to Theorem 1.1, ξ must
be tangent to N . Concerning the last statement, denoting by the same symbols the
restrictions of η, ξ and g to the submanifold, setting ϕ̄ := sec θ P , it is easy to check
that (ϕ̄, ξ, η, g) is an almost contact metric structure satisfying

dη = cos θ	̄,

where 	̄ is its fundamental 2-form, i.e. it is a cos θ -homothetic contact metric struc-
ture on N . This implies the last claims. �

The next proposition provides a formula linking the operator h of the ambient
manifold and the analogous operator h̄ relative to the induced contactmetric structure.

Proposition 2.2 Let N be a θ -slant, non-anti-invariant submanifold of a contact
metricmanifold (M, ϕ, ξ, η, g). Then for every X,Y vectors tangent to N andorthog-
onal to ξ , we have

g(hX,Y ) = cos2 θg(h̄X,Y ) − sin2 θg(X,Y ) − g(α(X, ξ), FY ).

In particular,
g(α(X, ξ), FY ) = g(α(Y, ξ), FX)

holds with the same assumption on X,Y .

Proof We shall use (3) and the analogous formula for the induced contact metric
structure (2) on N . Observing that the Levi-Civita connections of g|N and ḡ coincide,
we have



6 A. Lotta

g(hX,Y ) = g(ϕ∇̄Xξ,Y ) − g(X,Y ) =
= −g(α(X, ξ), FY ) − g(∇Xξ, PY ) − g(X,Y ) =
= −g(α(X, ξ), FY ) − cos θg(∇X ξ̄ , PY ) − g(X,Y ) =
= −g(α(X, ξ), FY ) + cos θg((ϕ̄ + ϕ̄h̄)X, PY ) − g(X,Y ) =
= −g(α(X, ξ), FY ) + g(PX, PY ) + g(Ph̄X, PY ) − g(X,Y ) =
= −g(α(X, ξ), FY ) + cos2 θg(h̄X,Y ) − sin2 θg(X,Y ),

where to deduce the last equality we used (c) in Theorem 1.2. The last claim follows
since h and h̄ are both symmetric operators. �

As another application of Theorem 1.2, we prove a result concerning contact
totally umbilical submanifolds. Recall that a submanifold, tangent to ξ , of a contact
metric manifold, is said to be contact totally umbilical provided the second funda-
mental form satisfies (cf. e.g. [15])

α(X,Y ) = {g(X,Y ) − η(X)η(Y )}H + η(X)α(Y, ξ) + η(Y )α(X, ξ). (4)

Here, H is the mean curvature normal vector field. If in addition H = 0, one
speaks of a contact totally geodesic submanifold.

Given a proper slant submanifold, we shall consider the orthogonal splitting

T N⊥ = F(T N ) ⊕ E = F(D̄) ⊕ E

of the normal bundle, where D̄ denotes the induced contact distribution on the slant
submanifold. Of course, this is meaningful because Fx : D̄x → Tx N⊥ is injective
for each point of the submanifold.

Theorem 2.3 Let (M, ϕ, ξ, η, g) be a contact metric manifold of dimension 2m + 1,
whose almost CR structure (D, ϕ|D) is integrable, i.e. M is a strongly pseudoconvex
CR manifold. Let N be a contact totally umbilical proper slant submanifold of M.

Then N is contact totally geodesic provided dim(N ) = m + 1 or DX H ∈ 
(E)

for every vector field tangent to N and orthogonal to ξ .

Proof First of all, we recall that for contact metric manifolds, the integrability con-
dition for (D, ϕ|D) is equivalent to ϕ being η-parallel; indeed, one has the following
formula for the covariant derivative of ϕ:

(∇̄Xϕ)Y = g(X + hX,Y )ξ − η(Y )(X + hX);

see [2, Theorem 6.7]. This implies that for every X,Y vector fields tangent to N
and orthogonal to ξ (i.e. sections of D̄), the vector field (∇̄Xϕ)Y is tangent to N .
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Using this, by a standard computation similar to the case of submanifolds of Kähler
manifolds, one can derive the following formula for the covariant derivative of F ,
with the same assumption on the vector fields X,Y :

(∇X F)Y = f α(X,Y ) − α(X, PY ). (5)

Here, as usual, for every normal vector field ν to N , we set

ϕν = tν + f ν

with tν tangent resp. f ν normal to N .
Now, assuming (4), (5) yields, for any local unit vector field X tangent to N and

orthogonal to ξ :

(∇PX F)X = −g(PX, PX)H = − cos2 θ H. (6)

Observe now that the left-hand side of this equation is orthogonal to FX ; indeed,
by the condition (c) in Theorem 1.2 we have, for every Z ,W tangent to N and
orthogonal to ξ :

g(FZ , FW ) = sin2 θg(Z ,W );

using this, we get, assuming ||X || = 1:

g((∇PX F)X, FX) = g(DPX FX, FX) − g(F∇PX X, FX) =
= − sin2 θg(∇PX X, X) = 0.

As a consequence, we obtain from (6) that

g(H, FX) = 0

for every X orthogonal to ξ and tangent to N , showing that H ∈ 
E . If dim(N ) =
m + 1, this suffices to prove the result, since in this case the subbundle E is trivial,
because N has codimension m. Now assume that DX H ∈ 
(E) for all sections of
D̄. Taking the inner product of both sides of (6) with H , one gets

− cos2 θg(H, H) = g(DPX FX, H) − g(F(∇PX X), H) = −g(FX, DPX H) = 0

due to our assumption. �

In [8], a similar result has been proved byGupta in the casewhereM is aKenmotsu
manifold.

Corollary 2.4 Let M be a Sasakian space form with ϕ-sectional curvature c. Then
every totally contact umbilical proper slant submanifold N of M is totally contact
geodesic, provided dim(N ) > 3 or c = 1.
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Proof In this case, we shall verify that actually DX H = 0 for every X orthogonal
to ξ . This can be proved by using the Codazzi equation. Indeed, observe first that for
every X,Y, Z tangent to N and orthogonal to ξ :

α(∇XY, Z) = {g(∇XY, Z) − η(∇XY )η(Z)}H = g(∇XY, Z)H

hence the Codazzi equation reads

g(Y, Z)DX H − g(X, Z)DY H = (R̄(X,Y )Z)⊥

where R̄ is the curvature tensor of M . Using the explicit expression of R̄
(cf. [2, Theorem 7.19]), we thus obtain

g(Y, Z)DX H − g(X, Z)DY H = c − 1

4
{g(Z , PY )FX − g(Z , PX)FY + 2g(X, PY )FZ}.

Choosing now Y = Z of length one and orthogonal to X yields

DX H = 3

4
(c − 1)g(X, PY )FY.

Hence, the claim follows in the case c = 1. If c �= 1, assuming dim(N ) > 3 we
can choose Y so that Y is also orthogonal to PX , and the same formula yields
DX H = 0. �

3 The K -contact Case

In this section, we consider submanifolds of K -contact metric manifolds, i.e. contact
metric manifolds whose Reeb vector field ξ is Killing. This is equivalent to requiring
that the tensor field h in (3) vanishes. This class contains in particular the class of
Sasakian manifolds.

We shall discuss the following characterization of slant submanifolds purely in
terms of curvature (cf. [11]).

Theorem 3.1 Let N be a submanifold of a K -contact metric manifold M with struc-
ture (ϕ, ξ, η, g). Assume that N is tangent to ξ . Fix θ ∈ [0, π

2 ]; then the following
conditions are equivalent:

(a) N is slant with slant angle θ ;
(b) For every x ∈ N the sectional curvature, with respect to the induced metric, of

every 2-plane containing ξx equals cos2 θ .

Moreover, every non-anti-invariant slant submanifold of M is itself a K -contact
metric manifold with respect to the induced contact metric structure.
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Proof For every x ∈ N , any 2-plane containing ξx is spanned by ξx and some unit
vector X orthogonal to ξ ; the corresponding sectional curvature K (X, ξ) is related
to the sectional curvature K̄ (X, ξ) of the same 2-plane computed in the ambient
manifold M by the Gauss equation:

K (X, ξ) = K̄ (X, ξ) + g(α(X, X), α(ξx , ξx )) − ||α(X, ξx )||2.

Now, M being a K -contact metric manifold, it is known that K̄ (X, ξ) = 1; more-
over, we also have α(ξ, ξ) = 0, because ∇̄ξ ξ = 0. Hence, the above formula can be
rewritten as

K (X, ξ) = 1 − ||α(X, ξx )||2.

On the other hand, remembering (3), in this case we have

α(X, ξx ) = −FX.

In conclusion:
K (X, ξ) = 1 − ||FX ||2.

Now the equivalence of (a) and (b) is clear taking into account the characterization
of slant submanifolds provided by Theorem 1.2. Finally, concerning the last claim,
observe that (3) also yields

∇Xξ = −PX

for every vector field tangent to N , which implies that the restriction of ξ to N is
again a Killing vector field, since P is skew-symmetric (alternatively, one can infer
that the flow of ξ on N consists of local isometries). Hence, assuming that N is slant,
the same is true for the Reeb vector field ξ̄ of the induced contact metric structure,
which is thus K -contact. �

Corollary 3.2 Any torus admits no slant, non-anti-invariant, isometric immersions
into any K -contact metric manifold.

This is due to the fact that a torus cannot carry a K -contact metric structure [14].
Next,we consider regular K -contactmanifolds. Recall that a contactmanifold (M, η)

is called regular provided the Reeb vector field is, i.e. it determines a regular 1-
dimensional foliation on M , so that the space B = M/ξ of maximal integral curves
of ξ is a manifold. When M carries a K -contact metric g associated with η, then
being Lξϕ = Lξg = 0, g induces in a natural way a metric g′ on M/ξ and ϕ also
descends to an almost complex structure J .

Denoting by π : M → B the canonical projection, it turns out by construction
that π is a Riemannian submersion with Ker(dπ)x = Rξx for every x ∈ N , and

dπ ◦ ϕ = J ◦ dπ
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(see also [13]). Moreover, it is proved by Ogiue in [12] that (B, J, g′) is an almost
Kähler manifold. If M is Sasakian, then B is Kähler.

A remarkable case is when M = M(c) is a simply connected, complete Sasakian
space form; then B is either a flat Euclidean space Cm (when c = −3), a complex
hyperbolic space CHm with negative constant holomorphic sectional curvature (c <

−3), or a complex projective spaceCPm with positive constant holomorphic sectional
curvature (c > −3) (see [2] or [9] for details).

The following result relates slant submanifolds of M with slant submanifolds of
B. In particular, it provides a natural way to produce examples of slant submanifolds
of the Sasakian space forms, by “lifting up” slant submanifolds of the corresponding
complex space form. Another approach for constructing examples in this context has
been developed by Cabrerizo, Carriazo, L. M. Fernandez and M. Fernandez in [4],
who established a general existence and uniqueness result for slant immersions in
Sasakian space forms, along the lines of the corresponding result of Chen-Vrancken
for complex space forms.

Theorem 3.3 Let M be a regular K -contact manifold canonically fibering onto the
almost Kähler manifold B, with projection π : M → B. Fix θ ∈ [0, π

2 ). Then

(a) If S is an embedded θ -slant submanifold of B, then π−1(B) is a θ -slant subman-
ifold of M.

(b) If N is a compact θ -slant submanifold of M, then π(N ) is a θ -slant submanifold
of B.

Proof (a) Since π is a surjective submersion, it is known that N = π−1(S) is an
embedded submanifold of M , having the same codimension as S. Clearly, N is
tangent to ξ , because at each point x ∈ N the tangent space Tx N is (dπ)−1

x (Tπ(x)S).
Moreover, observe that for every normal vector ν ∈ Tx N⊥, we have that (dπ)x (ν)

is normal to S, because for every X ∈ Tx N orthogonal to ξ , from g(ν, X) = 0 it
follows g′((dπ)xν, (dπ)x X) = 0, π being a Riemannian submersion.

Now, let X be a unit vector tangent to Tx N and orthogonal to ξ . Then from

ϕX = PX + FX

we get
J (dπ)x X = (dπ)x (PX) + (dπ)x F X

where (dπ)x (PX) is tangent and (dπ)x F X is orthogonal to S, yielding

||PX || = ||(dπ)x (PX)|| = cos θ

where the last equality holds because S is θ -slant.
(b) Since N is tangent to ξ , and π is a submersion satisfying Ker(dπx ) = Rξx ,

for every x ∈ M , we have that the restriction of dπ to Tx N has rank dim(N ) − 1.
Hence, π : N → B is a smooth map of constant rank; N being compact, it is known
that its image π(N ) is a submanifold of B (cf. [1, Theorem 3.5.18]). The verification



General Properties of Slant Submanifolds in Contact Metric Manifolds 11

that S = π(N ) is θ -slant is based on the same argument used in the proof of (a),
taking into account that at each point π(x) of S we have Tπ(x)S = (dπ)x (Tx N ). �

Observe that, under the assumption of (b), one deduces that N is also a regular
contactmanifold. This provides a generalization of a result byHarada [10] concerning
invariant submanifolds of regular Sasakian manifolds.

Corollary 3.4 For every m ≥ 2, the Sasakian space formR
2m+1 of ϕ-sectional cur-

vature −3 admits no compact proper slant submanifold.

This holds since R
2m+1 fibers onto the flat complex Euclidean space C

m , and
Chen-Tazawa’s non-compactness result for slant submanifolds of Cm applies.
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1 Introduction

In 1969, Tano [104] proved that the automorphism group of a connected almost
contact Riemannian manifold M of dimension (2n + 1) is of maximum dimension
(n + 1)2, and the maximum is attained only in the case when M reduces to one of
the following spaces: a homogeneous Sasaki manifold (or an ε-deformation of one)
with constant φ-holomorphic sectional curvature, a global Riemannian product of a
line or a circle with a complex space form, and a warped product of the complex
space with the real line. In 1972, Kenmotsu [55] investigated the properties of this
warped product and characterized it by tensor equations, giving rise to one of the
newest chapters of contact geometry, nowadays calledKenmotsu geometry.Although
neglected for a long time, these manifolds have attracted the attention of a large
number of geometers in the last three decades, proving to be a valuable chapter of
the contact geometry (see [89] and the references therein, as well as the recent articles
[1, 16, 26, 41, 44, 47, 82, 92, 105, 110, 111, 114]).

The aim of this work is to present a survey on the geometry of Kenmotsu sub-
manifolds, focusing on the curvature properties of slant submanifolds in pointwise
Kenmotsu space forms. The present paper is organized as follows.
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In Sect. 2, one recalls some basic facts concerning the geometry of manifolds
equipped with almost contact structures and their submanifolds. Section3 is devoted
to the presentation of the definition and some basic properties of Kenmotsu spaces.
The aim of Sect. 4 is to overview the main classes of submanifolds investigated in
Kenmotsu geometry.

Recall now that one of the basic problems in submanifold theory is to find simple
relationships between the main extrinsic invariants and the main intrinsic invariants
of submanifolds. In a seminal paper published in 1993, Chen [30] proved some sharp
inequalities involving such invariants of a Riemannian submanifold. The notions and
techniques developed in this article have turnedout to be very useful, giving rise to one
of the most important research topics in submanifolds geometry: theory of Chen’s
invariants and inequalities. Later, B. Y. Chen’s inequalities have been extensively
studied by many authors for different kinds of submanifolds in several ambient
spaces. In Sect. 5, we present some Chen-like inequalities for slant submanifolds in
a Kenmotsu space form.

Section6 is devoted to the investigation of the δ-Casorati curvatures of slant sub-
manifolds in Kenmotsu space forms. It is well known that the notion of Casorati
curvature has been defined in the geometry of submanifolds as the normalized square
of the length of the second fundamental form of the submanifold [39]. Obviously,
the Casorati curvature is an extrinsic invariant. This concept, originally introduced
by Casorati in 1890 for surfaces in a Euclidean 3-dimensional space [27], was pre-
ferred by the author over the classical Gaussian curvature because it seems to cor-
respond better with the common intuition of curvature [106]. Notice that recently,
Brubaker and Suceavă [21] obtained sufficient conditions for a smooth hypersurface
in Euclidean ambient space to be convex, in terms of Casorati curvatures and mean
curvature. On the other hand, Kowalczyk [60] gave a geometrical interpretation of
the Casorati curvature of a Riemannian submanifold, as well as a characterization
of normally flat submanifolds in Euclidean spaces in terms of a relation between the
Casorati curvatures and the normal curvatures of the submanifold. The first basic
inequalities involving the Casorati curvatures were proved for submanifolds in real
space forms by Decu, Haesen and Verstraelen [38, 39]. Later, these inequalities were
generalized to other classes of submanifolds and ambient spaces [2, 6, 8, 10, 15, 40,
46, 53, 54, 62, 65, 69, 70, 76, 96–98, 102, 112, 115, 118–120].

In Sect. 7, we discuss the generalized Wintgen inequality, also referred to in the
literature as the DDVV inequality or the DDVV conjecture. This famous inequality
has been conjectured in [43] and solved in affirmative in [45, 74]. The aim of this
section is to provide the counterpart of this inequality in Kenmotsu geometry. We
point out that the study of Wintgen-like inequalities was recently started in a more
general setting, namely for submanifolds in statistical manifolds [12, 13, 20, 81].
Notice that Bansal, Uddin and Shahid [16] proved theDDVV inequality for statistical
submanifolds of Kenmotsu statistical manifolds of constant φ-sectional curvature.
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2 Preliminaries

Let (M̄m, ḡ) be aRiemannianmanifold of dimensionm and suppose (Mn, g) is a Rie-
mannian submanifold of M̄m having dimension n. In the following, wewill denote by
K (π) the sectional curvature of a 2-plane section π ⊂ Tp M, p ∈ M . If {e1, . . . , en}
and {en+1, . . . , em} are orthonormal bases of Tp M and T ⊥

p M (respectively), then it
is known that the scalar curvature is defined by

τ (p) =
∑

1≤i< j≤n

K (ei ∧ e j )

and the normalized scalar curvature is given by

ρ = 2τ

n(n − 1)
.

Let us denote by ∇̄ the Levi-Civita connection of the metric ḡ and suppose ∇
denotes the covariant differentiation induced on M . Then the Gauss-Weingarten
formulae are

∇̄X Y = ∇X Y + h(X, Y ),∀X, Y ∈ �(T M)

and
∇̄X N = −AN X + ∇⊥

X N ,∀X ∈ �(T M),∀N ∈ �(T M⊥)

where h denotes the second fundamental form of the submanifold M , ∇⊥ is the
metric connection in the normal bundle and AN denotes the shape operator of the
submanifold M with respect to the normal vector field N .

Let us recall that a point p of the submanifold M is called totally geodesic if h
vanishes at p. Moreover, the submanifold M is said to be totally geodesic if all points
of M are totally geodesic points.

On the other hand, we recall Gauss’ equation that relates the curvature tensor
fields R̄ and R of the connections ∇̄ and ∇, respectively:

R̄(X, Y, Z , W ) = R(X, Y, Z , W ) + ḡ(h(X, W ), h(Y, Z))

−ḡ(h(X, Z), h(Y, W )), (1)

for all vector fields X, Y, Z , W on M .
Let H be the mean curvature vector of the submanifold M defined by

H(p) = 1

n

n∑

i=1

h(ei , ei ).

Then the squared mean curvature ‖H‖2 is given by
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‖H‖2 = 1

n2

m∑

α=n+1

(
n∑

i=1

hα
i i

)2

,

where
hα

i j = g(h(ei , e j ), eα), i, j ∈ {1, . . . , n}, α ∈ {n + 1, . . . , m}.

On the other hand, the squared norm of the second fundamental form h over the
dimension of the submanifold M is an extrinsic geometric invariant known as the
Casorati curvature of M . Therefore, this invariant is defined by

C = 1

n

m∑

α=n+1

n∑

i, j=1

(
hα

i j

)2
.

One can also define the Casorati operator of M as a (1, 1)-tensor field given by
[51]

AC =
m∑

α=n+1

A2
eα

,

where Aeα
denotes the shape operator of the submanifold M with respect to eα,

α = n + 1, . . . , m. It is easy to see that C and AC are linked by

C = 1

n
TrAC .

If L ⊂ Tp M is a subspace of dimension s, with s ≥ 2, and {e1, . . . , es} is an
orthonormal basis of L , then the scalar curvature τ (L) of L is defined by

τ (L) =
∑

1≤α<β≤s

K (eα ∧ eβ).

3 Kenmotsu Manifolds

An almost contact metric manifold is a quintuple (M̄,φ, ξ, η, ḡ) consisting in a
Riemannian manifold (M̄, ḡ) of dimension (2n + 1) equipped with a (1, 1)-tensor
field φ, a vector field ξ and a 1-form η satisfying the compatibility conditions [19]

η(ξ) = 1, φ2 = −I + η ⊗ ξ, φξ = η ◦ φ = 0

ḡ(φX,φY ) = ḡ(X, Y ) − η(X)η(Y ) (2)

η(X) = ḡ(X, ξ)



Curvature Inequalities for Slant Submanifolds in Pointwise Kenmotsu Space Forms 17

for all X, Y ∈ �(T M̄). Moreover, if the Levi-Civita connection ∇̄ of the metric ḡ
satisfies (∇̄Xφ

)
(Y ) = ḡ(φX, Y )ξ − η(Y )φX, ∇̄Xξ = X − η(X)ξ (3)

then (M̄,φ, ξ, η, ḡ) is said to be a Kenmotsu manifold [89].
As remarkable examples of Kenmotsu manifolds, we have the following.

i. The hyperbolic spaceH2n+1 = {(x1, . . . , x2n+1) ∈ R
2n+1|x1 > 0} equippedwith

the almost contact structure (φ, ξ, η, g) constructed by Chinea and Gonzales in
[34] is a Kenmotsu manifold.

ii. The product manifold of a Kähler manifold with a Kenmotsu manifold can
be equipped with a Kenmotsu structure [108]. In particular, it follows that the
product manifolds Pn

C × H
2n+1,Dn × H

2n+1 andCn × H
2n+1 can be endowed

with Kenmotsu structures.
iii. A special class of orientable hypersurfaces of Kähler manifolds admits natural

Kenmotsu structures. These submanifolds are called natural Kenmotsu hyper-
surfaces. For details, see [89, Example 2.1.18].

Recall that a Kenmotsu manifold (M̄,φ, ξ, η, ḡ) with dimension 2n + 1 ≥ 5 is
called a pointwise Kenmotsu space form, if the φ-sectional curvature of any φ-
holomorphic plane {X,φX}, where X ∈ Tp M̄ , depends only on the point p ∈ M̄ ,
being independently on the φ-holomorphic plane at p. A connected Kenmotsu point-
wise space form whose φ-sectional curvature does not depend on the point is said
to be a Kenmotsu space form. It is known that a Kenmotsu manifold has constant
φ-sectional curvature c at a point if and only if the curvature tensor R̄ is given by
[89]

R̄(X, Y )Z = c − 3

4
{ḡ(Y, Z)X − ḡ(X, Z)Y } + c + 1

4
{η(X)η(Z)Y

− η(Y )η(Z)X + η(Y )ḡ(X, Z)ξ − η(X)ḡ(Y, Z)ξ (4)

− ḡ(φX, Z)φY + ḡ(φY, Z)φX + 2ḡ(X,φY )φZ}.

The (pointwise) Kenmotsu space forms are denoted by M̄(c). It is important to
point out that any Kenmotsu space form M̄(c) has constant sectional curvature equal
to c = −1 (see [55, Theorem 13]). As an example of Kenmotsu space form, we
have the warped product M̄ = R × f C

n , where f (t) = exp t . For details, see [63,
Example 1].

Regarding the topology ofKenmotsumanifolds, we recall the following important
result, that is, a consequence of the Green theorem and of the fact that divξ = 2n.

Theorem 3.1 ([55]) Any Kenmotsu manifold is non-compact.

The local characterization of Kenmotsu manifolds is the following.

Theorem 3.2 ([55]) Let (M̄,φ, ξ, η, ḡ) be a Kenmotsu manifold. Then any point of
M̄ has a neighborhood isometric to the warped product I × f V , where I = (−ε, ε)
is an open interval of R, V is a Kählerian manifold and f (t) = c exp t , c > 0.
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For other general properties concerning the geometry and topology of Kenmotsu
manifolds, see [18, 42, 57, 88, 103] and [89, Chap. 2].

4 Submanifolds of Kenmotsu Manifolds

4.1 Invariant and Anti-Invariant Submanifolds

If (M, g) is a Riemannian submanifold of a Kenmotsu manifold (M̄,φ, ξ, η, ḡ), then
we have the following decomposition for any vector field X tangent to M :

φX = P X + F X, (5)

where P X and F X represent the tangential and the normal components of φX ,
respectively. If the dimension of the submanifold M is (m + 1), then one can define

||P||2 =
m+1∑

i, j=1

g(ei , Pe j )
2, (6)

where {e1, e2, . . . , em+1} is a local orthonormal frame of M . Notice that the squared
norm of the endomorphism P of T M defined above does not depend on the chosen
orthonormal frame. We also point out that F is a normal bundle-valued 1-form on
the tangent bundle T M .

On the other hand, for any vector field V normal to M , we have the following
decomposition:

φV = tV + f V, (7)

where tV and f V denote the tangential and the normal component of φV , respec-
tively.

ARiemannian submanifold M of aKenmotsumanifold M̄ is said to be an invariant
submanifold [58] if F ≡ 0. On the other hand, if P ≡ 0, then the submanifold M is
called anti-invariant [93]. These classes of submanifolds were investigated from two
perspectives, accordingly as the structure vector field ξ is tangent or normal to the
submanifold M . We recall next some results from [58].

Theorem 4.1 ([58]) Let (M̄,φ, ξ, η, ḡ) be a Kenmotsu manifold and N be a sub-
manifold of M̄ tangent to ξ. Then

i. N is an invariant submanifold iff t is parallel.
ii. N is an anti-invariant submanifold iff P is parallel.

iii. N is a totally geodesic submanifold iff the second fundamental form h of the
submanifold is parallel.
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Theorem 4.2 ([58]) Let M̄(c) be a (pointwise) Kenmotsu space form, and N be a
submanifold of M̄(c) tangent to the structure vector field of M̄(c). Suppose that t
and f are parallel. Then N is also a (pointwise) Kenmotsu space form.

Several curvature properties and geometric inequalities involving intrinsic and
extrinsic invariants of invariant and anti-invariant submanifolds of (pointwise) Ken-
motsu space forms tangent and normal to the structure vector field ξ can be found in
[11, 56, 84, 107].

4.2 Contact Semi-Invariant and Normal Semi-Invariant
Submanifolds

In 1983, Papaghiuc [86] investigated the concept of semi-invariant submanifold in
Kenmotsu geometry, introducing two kinds of such submanifolds: contact semi-
invariant submanifolds and normal semi-invariant submanifolds. A submanifold N
of a Kenmotsu manifold (M̄,φ, ξ, η, ḡ) is called contact semi-invariant if its tangent
bundle splits orthogonally into smooth distributionsD ⊕ D⊥ ⊕ 〈ξ〉 such that φmaps
D (resp.D⊥) into itself (resp. into the normal bundle of N ). Notice thatD is usually
called the invariant distribution of the submanifold N , while D⊥ is said to be the
anti-invariant distribution of the submanifold N .

In [86], the author investigated the integrability of certain subbundles of the tan-
gent bundle of a contact semi-invariant submanifold of aKenmotsumanifold, proving
the following result.

Theorem 4.3 ([86]) Let (M̄,φ, ξ, η, ḡ) be a Kenmotsu manifold and (N , g) be a
contact semi-invariant submanifold of M̄. Then

i. D⊥, D⊥ ⊕ 〈ξ〉 and D ⊕ D⊥ are integrable distributions.
ii. D and D ⊕ 〈ξ〉 are integrable distributions iff the second fundamental form h

satisfies
h(X,φY ) = h(φX, Y ), ∀X, Y ∈ �(D).

Moreover, Sinha and Srivastava [99] derived two criteria for a submanifold of a
Kenmotsu space form to be contact semi-invariant, while Papaghiuc [86] obtained
some natural conditions that imply the constancy of sectional curvature for a contact
semi-invariant submanifold of a pointwise Kenmotsu space form.

The concept of normal semi-invariant submanifold of a Kenmotsu manifold
(M̄,φ, ξ, η, ḡ) was defined in [86] by considering that the structure vector field
ξ is normal to the submanifold and imposing also the condition that the tangent bun-
dle splits orthogonally as D ⊕ D⊥, where D is an invariant distribution and D⊥ is
an anti-invariant distribution. In particular if D = 0 (resp. D⊥ = 0), then the sub-
manifold is said to be normal anti-invariant (resp. normal invariant). Papaghiuc [86]
investigated the integrability of both distributions involved in the definition of a
normal semi-invariant submanifold, proving the following result.
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Theorem 4.4 ([86]) Let (M̄,φ, ξ, η, ḡ) be a Kenmotsu manifold and (N , g) be a
normal semi-invariant submanifold of M̄. Then

i. D⊥ is integrable.
ii. D is integrable iff the second fundamental form h satisfies

h(X,φY ) − h(φX, Y ) = 2g(φX, Y )ξ, ∀X, Y ∈ �(D).

In 1991, Kobayashi [59] investigated normal semi-invariant submanifolds of codi-
mension 2 obtaining conditions under which such submanifolds are space forms or
locally symmetric spaces. Several interesting results on the geometry of contact
and normal semi-invariant submanifolds of Kenmotsu manifolds were obtained in
[58, 78, 91, 113]. Notice that Kobayashi [58] obtained some characterizations of
semi-invariant products of Kenmotsu space forms and recalled the following very
interesting result concerning the Betti numbers of even order of compact contact
semi-invariant submanifolds.

Theorem 4.5 ([89]) Let (M̄,φ, ξ, η, ḡ) be a Kenmotsu manifold and (N , g) be an
n-dimensional compact contact semi-invariant submanifold of M̄. Suppose that D
is integrable and D⊥ is minimal. Then b2k(N ) ≥ 1, for k = 1, . . . , n.

We also want to point out that Matsumoto, Mihai and Shahid introduced in 1998
a new class of submanifolds of Kenmotsu manifolds, called generalized contact CR-
submanifolds, as a natural generalization of contact semi-invariant submanifolds,
obtaining several curvature properties [77].

4.3 Slant Submanifolds

The notion of slant submanifoldswas originally introduced in 1990 in complex geom-
etry by Chen [29] as a very natural generalization of totally real and holomorphic
submanifolds. In 1996, Lotta [73] extends this notion in almost contact geometry.
Recall that a submanifold N of a Kenmotsu manifold (M̄,φ, ξ, η, g), tangent to the
structure vector field ξ, is called slant if for each non-zero vector X p ∈ Tp N − {ξp},
the angle θ(X) between the vector φX and the tangent space Tp N , called the slant
angle, does not depend on the choice of p ∈ N and X p ∈ Tp N − {ξp}. Obviously,
an invariant submanifold is a slant submanifold with θ = 0 and an anti-invariant sub-
manifold is a slant submanifold with θ = π

2 . A slant submanifold with 0 < θ < π
2

is said to be a proper slant submanifold. Notice that a slant submanifold with slant
angle θ �= π

2 has odd dimension (see [73, Theorem 3.3]).
We remark that using (5), one can obtain the characterization of slant submanifolds

by the existence of a constant λ ∈ [0, 1] such that [23]

P2 = −λ(I d − η ⊗ ξ).
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Therefore,wederive that a submanifold N of aKenmotsumanifold (M̄,φ, ξ, η, g),
tangent to the structure vector field ξ, is a slant submanifold iffφ2 and P2 are collinear
operators on N . Next, we denote by D the orthogonal distribution to ξ in T N and
we put Q = P2. It is easy to check that the endomorphism Q is self-adjoint.

In 2004, Gupta, Haider and Shahid [49] give the following interesting character-
ization of slant submanifolds of Kenmotsu manifolds.

Theorem 4.6 ([49]) Let (M̄,φ, ξ, η, ḡ) be a Kenmotsu manifold and N be a sub-
manifold of M̄ tangent to the structure vector field ξ. Then N is a slant submanifold
iff:

(a) The endomorphism Q|D has only one eigenvalue at each point of N .
(b) There exists a function λ : N → [0, 1] such that

(∇X Q)Y = λ(g(X, Y )ξ − 2η(X)η(Y )ξ + η(Y )X),

for all vector fields X, Y on N.

Moreover, λ = cos2 θ, where θ is the slant angle of N .

Later, Gupta and Pandey [50] give an intrinsic characterization of slant immer-
sions of Kenmotsu manifolds in terms of slant angle and sectional curvature of an
arbitrary plane section containing structure vector field ξ. They also provide a large
class of examples of slant submanifolds in Kenmotsu ambient spaces. Another char-
acterization of slant submanifolds of a Kenmotsu manifold with Killing structure
tensor field was obtained in [83]. Recently, Uddin, Ahsan and Yaakub [109] clas-
sified totally umbilical slant submanifolds of a Kenmotsu manifold, proving that
a totally umbilical slant submanifold N of a Kenmotsu manifold (M̄,φ, ξ, η, ḡ) is
either invariant or anti-invariant or dim N = 1 or the mean curvature vector H of
N lies in the invariant normal subbundle. The notion of slant submanifold was later
generalized to the concept of bi-slant submanifold (see, e.g., [3]). It is important to
note that bi-slant submanifolds in almost contact geometry naturally englobe not only
slant submanifolds, but also semi-slant submanifolds [22], hemi-slant submanifolds
[25] and also semi-invariant submanifolds (also known as contact CR-submanifolds)
[17]. For definitions, basic properties and examples of such submanifolds, the readers
are referred to [3, 22, 117]. We only recall here the definition of bi-slant subman-
ifolds. A submanifold N of Kenmotsu manifold (M̄,φ, ξ, η, ḡ) is called bi-slant if
there exist two orthogonal distributions D1 and D2 on N , such that
(i) T N = D1 ⊕ D2 ⊕ ξ;
(ii) J D1 ⊥ D2 and J D2 ⊥ D1;
(iii) Di is a slant distribution with slant angle θi , for i = 1, 2.

Moreover, a bi-slant submanifold is said to be proper if d1d2 �= 0 and θ1, θ2 �=
0, π

2 .
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5 B. Y. Chen Inequalities for Slant Submanifolds
in (Pointwise) Kenmotsu Space Forms

We start this section by recalling some basic notions originally introduced by B. Y.
Chen (see [33]).

Let N be an n-dimensional Riemannian manifold. If we denote by K (π) the
sectional curvature of a plane sectionπ ⊂ Tp N , p ∈ N , and by τ the scalar curvature,
then Chen’s first invariant is defined by

δN (p) = τ (p) − (infK )(p), (8)

where
(infK )(p) = inf{K (π)|π ⊂ Tp N , dimπ = 2}. (9)

Suppose next that L is an r -dimensional subspace of Tp N , with r ≥ 2, and we
denote by τ (L) the scalar curvature of L . For a given integer k ≥ 0, wewill denote by
S(n, k) the set of all k-tuples (n1, . . . , nk) of integers > 1 satisfying the conditions

n1 < n, n1 + · · · + nk ≤ n. (10)

For a fixed n, we will denote by S(n) the set of all unordered k-tuples with k ≥ 0.
For each k-tuples (n1, . . . , nk) ∈ S(n), Chen defined a new Riemannian invariant
δ(n1, . . . , nk) by

δ(n1, . . . , nk)(p) = τ (p) − S(n1, . . . , nk)(p), (11)

where
S(n1, . . . , nk)(p) = inf{τ (L1) + · · · + τ (Lk)}, (12)

L1, . . . , Lk running over all k mutually orthogonal subspaces of Tp N such that
dimL j = n j , j ∈ {1, . . . , k}.

Also, we denote by d(n1, . . . , nk) and b(n1, . . . , nk) the real constants given by

d(n1, . . . , nk) =
n2(n + k − 1 −

k∑

j=1

n j )

2(n + k −
k∑

j=1

n j )

and

b(n1, . . . , nk) =
n(n − 1) −

k∑

j=1

n j (n j − 1))

2
.
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If L is a k-dimensional subspace of Tp N , p ∈ N and X ∈ L is a unit vector, then
we can take an orthonormal basis {e1, . . . , ek} of L with e1 = X and we can define
the Ricci curvature of L at X , usually denoted by RicL(X) and also called a k-Ricci
curvature, by

RicL(X) =
k∑

j=2

K (X ∧ e j ). (13)

For a fixed integer k, 2 ≤ k ≤ n, B. Y. Chen has introduced a new Riemannian
invariant, denoted as �k , by

�k(p) = 1

k − 1
inf{RicL(X)|L , X}, p ∈ M, (14)

where L runs over all k-plane sections in Tp M and X runs over all unit vectors in L .
We would like to point out now that in the Kenmotsu setting, one can define some

modified Chen’s invariants as follows. Let (M̄,φ, ξ, η, ḡ) be a Kenmotsu manifold
and N be a submanifold of M̄ tangent to the structure vector field ξ. Then one of
Chen’s invariants for the submanifold N is defined as

δ′
N (p) = τ (p) − infK (π),

where π ranges over all plane sections in Tp N invariant by the endomorphism P (see
(5)). Likewise, for any set of integers n1, . . . , nk greater than 1 for which condition
(10) is satisfied, one defines

δ′(n1, . . . , nk)(p) = τ (p) − inf{τ (L1) + · · · + τ (Lk)}(p),

where L1, . . . , Lk run over all sets of k mutually orthogonal subspaces of Tp N
invariant by P , such that dimL j = n j , j ∈ {1, . . . , k}, and τ (L j ) denotes the scalar
curvature along the n j -dimensional plane section L j .

Next, if we denote by D the orthogonal distribution to ξ in T N , we have the
orthogonal direct decomposition T N = D ⊕ ξ, and we can consider

δD
N (p) = τ (p) − infD K (π),

where π ranges over all plane sections in Dp.
Now, it is clear that δD

N ≤ δN . In 2004, Gupta, Ahmad and Haider [48] obtained
the following inequality involving the invariant δD

N and the squared mean curvature
for a 3-dimensional slant submanifold N of a 5-dimensional (pointwise) Kenmotsu
space form.

Theorem 5.1 ([48]) Let M̄(c) be a 5-dimensional (pointwise) Kenmotsu space form
and N be a 3-dimensional slant submanifold of M̄(c). Then the following inequality
holds:
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δN ≤ 9

4
||H ||2 − 2.

Moreover, the equality case in the above inequality holds iff N is a minimal
submanifold.

Later, Pandey, Gupta and Sharfuddin [85] generalized the above theorem to the
case of higher dimensions for the modified invariant δ′

N .

Theorem 5.2 ([85]) Let M̄(c) be a (2m + 1)-dimensional (pointwise) Kenmotsu
space form and N be an (m + 1)-dimensional proper slant submanifold of M̄(c)
with slant angle θ. Then the following inequality holds:

δ′
N ≤ (m + 1)2(m − 1)

2m
||H ||2 + (m + 1)(m − 2)(c − 3)

8

+3(c + 1)(m − 2)

8
cos2 θ − m. (15)

Moreover, the equality holds at a point p ∈ N iff there exist an orthonormal
basis {e1, . . . , em, em+1 = ξ} of the tangent space Tp N and an orthonormal basis
{em+2, . . . , e2m+1} of the normal space T ⊥

p N such that the shape operators Ar ≡ Aer ,
r ∈ {m + 2, . . . , 2m + 1}, take the following forms:

Am+2 =

⎛

⎜⎜⎜⎜⎜⎝

a 0 0 ... 0
0 b 0 ... 0
0 0 a + b ... 0
...

...
...

. . .
...

0 0 0 ... a + b

⎞

⎟⎟⎟⎟⎟⎠
(16)

and

Ar =

⎛

⎜⎜⎜⎜⎜⎝

ar br 0 ... 0
ar −br 0 ... 0
0 0 0 ... 0
...

...
...

. . .
...

0 0 0 ... 0

,

⎞

⎟⎟⎟⎟⎟⎠
, r = m + 3, . . . , 2m + 1, (17)

where a, b, ar , br , r = m + 3, . . . , 2m + 1, are real functions on N.

Notice that similar inequalities were proved by Costache [35, 36]. We only recall
the following result stated in [36].

Theorem 5.3 ([36]) If N is an (n + 1)-dimensional non-anti-invariant θ-slant sub-
manifold of a (2m + 1)-dimensional (pointwise) Kenmotsu space form M̄(c), then
the following inequality is satisfied:
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δ′(n1, . . . , nk) ≤ d(n1, . . . , nk)||H ||2 + b(n1, . . . , nk)
c − 3

4

+c + 1

8

⎡

⎣3

⎛

⎝n −
k∑

j=1

n j

⎞

⎠ cos2θ − 2n

⎤

⎦ ,

for any k-tuple (n1, . . . , nk) ∈ S(n).
Moreover, the equality in the above inequality holds at p ∈ N if and only

if there exist an orthonormal basis {e1, . . . , en+1} of Tp N and an orthonormal
basis {en+2, . . . , e2m+1} of T ⊥

p N such that the shape operators Ar ≡ Aer , r ∈
{n + 2, . . . , 2m + 1}, take the following forms:

An+2 =

⎛

⎜⎜⎜⎜⎜⎝

a1 0 0 ... 0
0 a2 0 ... 0
0 0 a3 ... 0
...

...
...

. . .
...

0 0 0 ... an

⎞

⎟⎟⎟⎟⎟⎠

and

Ar =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Br
1 ... 0 0 ... 0
...

. . .
...

...
. . .

...

0 . . . Br
k 0 ... 0

0 . . . 0 0 ... 0
...

. . .
...

...
. . .

...

0 . . . 0 0 ... 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r ∈ {n + 3, . . . , 2m + 1},

where a1, . . . , an satisfy

a1 + · · · + an1 = · · · = an1+···nk−1+1 + · · · + an1+···nk = an1+···nk+1 = · · · = an

and each Br
j is a symmetric n j × n j submatrix satisfying

Trace Br
1 = · · · = Trace Br

k = 0.

Notice that an improved Chen inequality for some special slant submanifolds
in Kenmotsu space forms, as well as an inequality for the scalar curvature of such
submanifolds, were derived in [37].

Recall now that B. Y. Chen established in [31] a relationship between the sectional
curvature and the shape operator for submanifolds in a real space form. He also gave
in [32] a relationship between the shape operator and the k-Ricci curvature for a
submanifold of arbitrary codimension. Similar relations for slant submanifolds of a
Kenmotsu space form were established in [68].
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Theorem 5.4 ([68]) Let M̄(c) be a (2n + 1)-dimensional (pointwise) Kenmotsu
space form and N be an (n + 1)-dimensional θ-slant submanifold of M̄(c). Suppose
that at a point p ∈ N there exists a number b > c−3

4 + (3n cos2 θ−2n)(c+1)
4n(n+1) such that the

sectional curvature K ≥ b at p. Then the shape operator AH at the mean curvature
vector satisfies

AH >
n

n + 1

[
b − c − 3

4
− (3n cos2 θ − 2n)(c + 1)

4n(n + 1)

]
In,

at p, where In denotes the identity map identified with

(
In 0
0 0

)
.

Theorem 5.5 ([68]) Let M̄(c) be a (2n + 1)-dimensional (pointwise) Kenmotsu
space form and N be an (n + 1)-dimensional θ-slant submanifold of M̄(c). Then,
for any integer k, 2 ≤ k ≤ n + 1, and any point p ∈ N, we have

i. If �k(p) �= c−3
4 + (3n cos2 θ−2n)(c+1)

4n(n+1) , then the shape operator at the mean curva-
ture vector satisfies

AH >
n

n + 1

[
�k(p) − c − 3

4
− (3n cos2 θ − 2n)(c + 1)

4n(n + 1)

]
In,

at p, where In denotes the identity map identified with

(
In 0
0 0

)
.

ii. If �k(p) = c−3
4 + (3n cos2 θ−2n)(c+1)

4n(n+1) , then AH > 0 at p.
iii. A unit vector X ∈ Tp M satisfies

AH X = n

n + 1

[
�k(p) − c − 3

4
− (3n cos2 θ − 2n)(c + 1)

4n(n + 1)

]
X

if and only if

�k(p) = c − 3

4
+ (3n cos2 θ − 2n)(c + 1)

4n(n + 1)

and X ∈ Np, where Np is the relative null space of the submanifold N at the
point p ∈ N defined by Np = {Z ∈ Tp N |h(Z , Y ) = 0,∀Y ∈ Tp M}.

6 Inequalities for Casorati Curvatures of Slant
Submanifolds in (Pointwise) Kenmotsu Space Forms

Suppose (M̄, ḡ) is an m-dimensional Riemannian manifold and let (M, g) be an n-
dimensional Riemannian submanifold of M̄ . If L ⊂ Tp M is a subspace of dimension
s, with s ≥ 2, and {e1, . . . , es} is an orthonormal basis of L , then one can define the
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Casorati curvature C(L) of L by [38]

C(L) = 1

s

m∑

α=n+1

s∑

i, j=1

(
hα

i j

)2
.

With the help of C(L), one can define the notions of normalized δ-Casorati cur-
vatures δc(n − 1) and δ̂c(n − 1) of the n-dimensional submanifold M by [38]

[δc(n − 1)]p = 1

2
Cp + n + 1

2n
inf{C(L)|L a hyperplane of Tp M}

and [̂
δc(n − 1)

]
p

= 2Cp − 2n − 1

2n
sup{C(L)|L a hyperplane of Tp M}.

Analogously, for any positive number r �= n2 − n, one can define the concepts of
generalized normalized δ-Casorati curvatures δC(r; n − 1) and δ̂C(r; n − 1) by [39]

[
δC (r; n − 1)

]
p = rCp + (n − 1)(n + r)(n2 − n − r)

rn
inf{C(L)|L a hyperplane of Tp M},

if 0 < r < n2 − n, and

[̂
δC (r; n − 1)

]
p = rCp − (n − 1)(n + r)(r − n2 + n)

rn
sup{C(L)|L a hyperplane of Tp M},

if r > n2 − n.
It can be easily checked that δC(r; n − 1) and δ̂C(r; n − 1) generalize the notions

of normalized δ-Casorati curvatures δc(n − 1) and δ̂c(n − 1) (see [67, 87]). In fact,
we have that

[δc(n − 1)]p = 1

n(n − 1)

[
δC

(
n(n − 1)

2
; n − 1

)]

p

(18)

and [̂
δc(n − 1)

]
p = 1

n(n − 1)

[̂
δC (2n(n − 1); n − 1)

]
p . (19)

The first inequalities involving the Casorati curvatures were obtained for sub-
manifolds in real space forms by Decu, Haesen and Verstraelen [38, 39] and further
extended in other ambient spaces by many authors (see, e.g., [5, 7, 14, 24, 61, 64,
66, 71, 94, 95, 100, 101]). In Kenmotsu geometry, some basic inequalities involving
the extrinsic Casorati curvatures were proved in [63, 72].



28 G.-E. Vîlcu

Theorem 6.1 ([72]) Let M be an (m + 1)-dimensional submanifold of a (2n + 1)-
dimensional (pointwise) Kenmotsu space form M̄(c) such that the structure vector
field ξ is tangent to M. Then

(i) The generalized normalized δ-Casorati curvature δC(r; m) satisfies

δC(r; m) ≥ m(m + 1)

(
ρ − c − 3

4

)
+ m(c + 1)

2
− 3(c + 1)

4
||P||2 (20)

for any real number r such that 0 < r < m(m + 1).
(ii) The generalized normalized δ-Casorati curvature δ̂C(r; m) satisfies

δ̂C(r; m) ≥ m(m + 1)

(
ρ − c − 3

4

)
+ m(c + 1)

2
− 3(c + 1)

4
||P||2 (21)

for any real number r > m(m + 1).

Moreover, the equality cases of (20) and (21) hold identically at a point p ∈ M
if and only if p is a totally geodesic point.

Due to the fact that for an (m + 1)-dimensional slant submanifold with slant angle
θ we have

||P||2 = m cos2 θ, (22)

the above theorem implies the following result.

Corollary 6.2 ([72]) Let M be an (m + 1)-dimensional θ-slant submanifold of a
(2n + 1)-dimensional (pointwise) Kenmotsu space form M̄(c). Then

(i) The generalized normalized δ-Casorati curvature δC(r; m) satisfies

δC(r; m) ≥ m(m + 1)

(
ρ − c − 3

4

)
+ m(c + 1)

2
− 3m(c + 1)

4
cos2 θ (23)

for any real number r such that 0 < r < m(m + 1).
(ii) The generalized normalized δ-Casorati curvature δ̂C(r; m) satisfies

δ̂C(r; m) ≥ m(m + 1)

(
ρ − c − 3

4

)
+ m(c + 1)

2
− 3m(c + 1)

4
cos2 θ (24)

for any real number r > m(m + 1).

Moreover, the equality cases of (23) and (24) hold identically at a point p ∈ M
if and only if p is a totally geodesic point.

Using (18) and (19) in the above Corollary, we derive the following.

Theorem 6.3 ([63]) Let M be an (m + 1)-dimensional θ-slant submanifold of a
(2n + 1)-dimensional (pointwise) Kenmotsu space form M̄(c). Then
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(i) The normalized δ-Casorati curvature δC(m) satisfies

δC(m) ≥ ρ + c + 1

2(m + 1)
− c − 3

4
− 3(c + 1)

4(m + 1)
cos2 θ. (25)

(ii) The normalized δ-Casorati curvature δ̂C(m) satisfies

δ̂C(m) ≥ ρ + c + 1

2(m + 1)
− c − 3

4
− 3(c + 1)

4(m + 1)
cos2 θ. (26)

Moreover, the equality cases of (25) and (26) hold identically at a point p ∈ M
if and only if p is a totally geodesic point.

For examples of submanifolds satisfying the equality cases in the above inequal-
ities, see [63, 72]. Such submanifolds are called Casorati ideal submanifolds [112].
We only recall here the following simple example. Consider the Kenmotsu space
form M̄ = R × f C2 and a 3-dimensional submanifold of M̄ defined by the immer-
sion x : R3 → R5, given by

x(t, u, v) = (t, u cos θ, u sin θ, v, 0),

where θ ∈ (0,π/2). Then M = Im x is a totally geodesic θ-slant submanifold of M̄ ,
attaining equality in the inequalities (23), (24), (25) and (26) at all points.

Notice that the statistical counterpart of Theorem 6.1 was recently obtained in
[41].

7 Generalized Wintgen Inequalities for Submanifolds
in (Pointwise) Kenmotsu Space Forms

The generalized Wintgen inequality, also known as the normal scalar conjecture or
the DDVV conjecture, was first formulated by De Smet, Dillen, Verstraelen and
Vrancken for submanifolds in real space forms [43]. This conjecture, proven inde-
pendently by Lu [74], and Ge and Tang [45], states that an isometric immersion
f : N → M̄(c) into a real space form M̄(c) satisfies

ρ ≤ ‖H‖2 − ρ⊥ + c,

where ρ denotes the normalized scalar curvature and ρ⊥ represents the normalized
normal scalar curvature. Recall that if N is a submanifold of dimension n in a
Riemannian manifold (M̄, ḡ) of dimension m, {e1, . . . , en} is a tangent orthonormal
frame and {ξ1, . . . , ξ2m−n} is a normal orthonormal frame on N , then normalized
scalar curvature is given by
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ρ = 2

n(n − 1)

∑

1≤i< j≤n

K (ei ∧ e j ) (27)

and the normalized normal scalar curvature is defined as

ρ⊥ = 2τ⊥

n(n − 1)
= 2

n(n − 1)

√ ∑

1≤i< j≤n

∑

1≤r<s≤2m−n

(R⊥(ei , e j , ξr , ξs))2, (28)

where R⊥ denotes the normal curvature tensor on N .
In recent years, there has been an increasing interest in DDVV-type inequalities,

the classical generalized Wintgen inequality being extended to many other ambient
space forms [9, 16, 75, 79, 80, 90]. Recently, such inequalities were proved for
different kinds of submanifolds in generalized Sasakian space forms [4]. Recall that
a generalizedSasakian space form M̄( f1, f2, f3) is an almost contactmetricmanifold
(M̄,φ, ξ, η, ḡ) with Riemannian curvature tensor satisfying

R(X, Y )Z = f1{g(Y, Z)X − g(X, Z)Y }
+ f2{g(X,φZ)φY − g(Y,φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ

−g(Y, Z)η(X)ξ}, (29)

for all vector fields X, Y, Z on M̄ , where f1, f2, f3 are differentiable functions on M̄ .
Notice that Kenmotsu space forms are just generalized Sasakian space forms with
f1 = c−3

4 and f2 = f3 = c+1
4 .

A Riemannian manifold N of an almost contact metric manifold (M̄,φ, ξ, η, ḡ)

is said to be a C-totally real submanifold of M̄ if ξ is a normal vector field on M̄ .
Consequently, it follows easily that φ maps Tp N into Tp N⊥, for all p ∈ N . We also
recall that aC-totally real submanifold N of M̄ is said to be aLegendrian submanifold
if dim N = dim M̄−1

2 .
The DDVV inequality for a Legendrian submanifold in a generalized Sasakian

space form has been stated in [4] as follows.

Theorem 7.1 ([4]) Let N be a Legendrian submanifold of a (2n + 1)-dimensional
generalized Sasakian space form M̄( f1, f2, f3). Then

(ρ⊥)2 ≤ (‖H‖2 − ρ + f1
)2 + 2

n(n − 1)
f 22

+ 4 f2
n(n − 1)

(
ρ − f1

)
(30)

and the equality holds at a point p ∈ N if and only if the shape operator A of N in
M̄( f1, f2, f3) with respect to some suitable orthonormal bases {e1, . . . , en} of Tp N
and {ξ1, . . . , ξn+1} of T ⊥

p N takes the following forms:
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Aξ1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

γ1 ν 0 . . . 0
ν γ1 0 . . . 0
0 0 γ1 . . . 0
...

...
...

. . .
...

0 0 0 . . . γ1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

Aξ2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

γ2 + ν 0 0 . . . 0
0 γ2 − ν 0 . . . 0
0 0 γ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . γ2

⎞

⎟⎟⎟⎟⎟⎟⎠
,

Aξ3 =

⎛

⎜⎜⎜⎜⎜⎜⎝

γ3 0 0 . . . 0
0 γ3 0 . . . 0
0 0 γ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . γ3

⎞

⎟⎟⎟⎟⎟⎟⎠
, Aξ4 = · · · = Aξn+1 = 0,

where γ1, γ2, γ3 and ν are real functions on N.

Recall now that those submanifolds attaining equality pointwise in a general-
ized Wintgen inequality are called Wintgen ideal submanifolds [52]. We point out
that recently, Xie, Li, Ma and Wang classified the Wintgen ideal submanifolds into
three classes: the reducible ones, the irreducible minimal ones in space forms (up to
Möbius transformations) and the generic (irreducible) ones [116]. For examples of
Wintgen Legendrian ideal submanifolds, see [80]. As a corollary of the above theo-
rem, we derive the generalized Wintgen inequality for Legendrian submanifolds in
(pointwise) Kenmotsu space forms.

Corollary 7.2 ([4]) Let N be a Legendrian submanifold of a (2n + 1)-dimensional
(pointwise) Kenmotsu space form M̄(c). Then

(ρ⊥)2 ≤
(

‖H‖2 − ρ + c − 3

4

)2

+ (c + 1)2

8n(n − 1)

+ c + 1

n(n − 1)

(
ρ − c − 3

4

)
(31)
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and the equality holds at a point p ∈ N if and only if the shape operator takes the
forms as in Theorem 7.1 with respect to some suitable tangent and normal orthonor-
mal bases.

On the other hand, the generalized Wintgen-type inequality for proper bi-slant
submanifolds in generalized Sasakian space form was stated as follows.

Theorem 7.3 ([4]) Let N be a proper bi-slant submanifold of dimension n in a
generalized Sasakian space form M̄( f1, f2, f3) of dimension (2m + 1), with slant
angles θ1, θ2 and dim Di = di , i = 1, 2. Then

ρN ≤ ‖H‖2 − ρ + f1

+ 3 f2
n(n − 1)

(d1cos2θ1 + d2cos2θ2) − 2

n
f3. (32)

As an immediate consequence of the above Theorem, we obtain the following
result.

Corollary 7.4 ([4]) Let N be a proper bi-slant submanifold of dimension n in a
(pointwise) Kenmotsu space form M̄(c) of dimension (2m + 1), with slant angles
θ1, θ2 and dim Di = di , i = 1, 2. Then

ρN ≤ ‖H‖2 − ρ + c − 3

4

+ 3(c + 1)

4n(n − 1)
(d1cos2θ1 + d2cos2θ2) − c + 1

2n
. (33)

From the above corollary, we derive the generalized Wintgen-type inequality for
proper slant submanifolds in (pointwise) Kenmotsu space forms.

Corollary 7.5 Let N be a proper slant submanifold of dimension n in a (pointwise)
Kenmotsu space form M̄(c) of dimension (2m + 1), with slant angle θ. Then

ρN ≤ ‖H‖2 − ρ + c − 3

4
+ 3(c + 1)

4n
cos2θ − c + 1

2n
. (34)
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Ed. Univ. Bucureşti, Bucharest (2011)

47. Ghosh, A., Patra, D.S.: Certain almost Kenmotsu metrics satisfying the Miao-Tam equation.
Publ. Math. Debrecen 93(1–2), 107–123 (2018)

48. Gupta, R.S., Ahmad, I., Haider, S.M.K.: B.Y. Chen’s inequality and its application to slant
immersions into Kenmostu manifolds. Kyungpook Math. J. 44(1), 101–110 (2004)

49. Gupta, R.S., Haider, S.M.K., Shahid,M.H.: Slant submanifolds of a Kenmotsumanifold. Rad.
Mat. 12(2), 205–214 (2004)

50. Gupta, R.S., Pandey, P.K.: Structure on a slant submanifold of a Kenmotsu manifold, Differ.
Geom. Dyn. Syst. 10, 139–147 (2008)

51. Haesen, S.,Kowalczyk,D.,Verstraelen,L.:On the extrinsic principal directions ofRiemannian
submanifolds. Note Mat. 29(2), 41–53 (2009)

52. Haesen, S., Verstraelen, L.: Natural intrinsic geometrical symmetries. Symmetry Integr.
Geom.: Methods Appl. 5, 15 (2009), paper 086



Curvature Inequalities for Slant Submanifolds in Pointwise Kenmotsu Space Forms 35

53. He, G., Liu, H., Zhang, L.: Optimal inequalities for the Casorati curvatures of submanifolds in
generalized space forms endowed with semi-symmetric non-metric connections. Symmetry
8(113), 10 (2016)

54. Hui, S.K., Mandal, P., Alkhaldi, A., Pal, T.: Certain inequalities for the Casorati curvatures of
submanifolds of generalized (κ,μ)-space forms. Asian-Eur. J. Math. (2020), in press; https://
doi.org/10.1142/S1793557120500400

55. Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. 2(24),
93–103 (1972)

56. Kim, Y.-M., Pak, J.S.: On the Ricci curvature of submanifolds in the warped product L × f F .
J. Korean Math. Soc. 39(5), 693–708 (2002)

57. Kirichenko, V.F.: On the geometry of Kenmotsu manifolds. Dokl. Akad. Nauk 380(5), 585–
587 (2001)

58. Kobayashi, M.: Semi-invariant submanifolds of a certain class of almost contact manifolds.
Tensor (N.S.) 43(1), 28–36 (1986)

59. Kobayashi, M.: Contact normal submanifolds and contact generic normal submanifolds in
Kenmotsu manifolds. Rev. Mat. Univ. Complut. Madrid 4(1), 73–95 (1991)

60. Kowalczyk, D.: Casorati curvatures. Bull. Transilv. Univ. Braşov Ser. III 1(50), 209–213
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Some Basic Inequalities on Slant
Submanifolds in Space Forms

Adela Mihai and Ion Mihai

1 Introduction

In Differential Geometry, Kähler and Sasaki manifolds and their submanifolds are
probably the most studied geometric objects, because of their interesting properties.
In particular, the behavior of submanifolds in complex space forms and Sasakian
space forms was investigated by many geometers.

Slant submanifolds of an almost Hermitian manifold, endowed with (almost)
complex structures J , were defined by B.-Y. Chen in [7] and they represent a
generalization of complex and totally real submanifolds. More precisely, if, for any
nonzero vector X tangent to the submanifold N at a point p ∈ N , the angle θ(X)

between J X and the tangent space TpN is constant (independent of the choice of
p ∈ N and X ∈ TpN ), then N is said to be a slant submanifold. Complex and totally
real submanifolds are characterized by θ = 0 and θ = π

2 , respectively. Examples
and properties of slant submanifolds were first discussed in [8], and afterward the
subject was developed in different ambient spaces. There are also generalizations
or other particular cases of slant submanifolds, as purely real submanifolds, bi-slant
submanifolds, etc.

Another branch of the modern theory of submanifolds involves inequalities relat-
ing the intrinsic and extrinsic invariants. B.-Y. Chen has an important contribution
in this respect by introducing the δ-invariants (also called Chen invariants), which
are different in nature from the classical intrinsic invariants (see [15]), giving new
answers to the famous Nash’s embedding theorem.
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This chapter is a survey of certain papers on the geometry of slant submanifolds
in complex and Sasakian space forms published after the B.-Y. Chen’s book [8]. It
is divided into two sections, each of them containing all necessary definitions and
formulae. They put together results (most of them obtained by the authors and their
coworkers) on Euler inequality, Chen-Ricci inequality, shape operator, generalized
Wintgen inequality for submanifolds in complex and Sasakian space forms, respec-
tively (see also [34]). Moreover, Sect. 2 contains a classification of quasi-minimal
slant surfaces in C2

1. Most of the theorems are proved, for the rest we gave complete
references.

2 Slant Submanifolds in Complex Space Forms

Let M̃ be an n-dimensional complex manifold and J its canonical almost complex
structure. We denote by �(T M̃) the set of sections of the tangent bundle T M̃ .

A Hermitian metric on M̃ is a Riemannian metric g invariant by J , that is,

g(J X, JY ) = g(X,Y ), ∀X,Y ∈ �(T M̃).

A complex manifold M̃ endowed with a Hermitian metric g is called a Hermitian
manifold.

We recall that each complex manifold admits a Hermitian metric.
Any Hermitian metric g on the complexmanifold M̃ determines a non-degenerate

2-form ω(X,Y ) = g(J X,Y ), X,Y ∈ �(T M̃), called the fundamental (Kähler) 2-
form.

Definition.AHermitianmanifold is said to be aKählermanifold if the fundamental
2-form ω is closed.

It is known that on a Kähler manifold the almost complex structure J is parallel
with respect to the Levi-Civita connection ∇̃ (∇̃ J = 0).

A Kähler manifold M̃ is said to be a complex space form if the holomorphic
sectional curvature function is constant for all holomorphic plane sections π in Tp M̃
and all points p ∈ M̃ .

A complex space formwith constant holomorphic sectional curvature c is denoted
by M̃(c).

The curvature tensor R̃ of a complex space form M̃(c) is given by

R̃(X,Y, Z ,W ) = c

4
[g(X, Z)g(Y,W ) − g(X,W )g(Y, Z)−

−g(J X,W )g(JY, Z) + g(J X, Z)g(JY,W ) + 2g(X, JY )g(Z , JW )],

for any vector fields X,Y, Z ,W on M̃(c).

Each complex space form is an Einstein space.
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Examples:

1. The complex Euclidean space Cn endowed with the Euclidean metric is a flat
complex space form (c = 0).

2. The complex projective space Pn(C) endowed with the Fubini-Study metric
has positive constant holomorphic sectional curvature (c = 4).

3. The complex unit disk Dn endowed with the Bergman metric has negative
constant holomorphic sectional curvature (c = −4).

According to the behavior of the tangent spaces of a submanifold M under the
action of the complex structure of the ambient Kähler manifold M̃ , we distinguish
two basic classes of submanifolds:

(a) Complex submanifolds (the complex structure preserves all tangent spaces of
the submanifold: J (TpM) = TpM , for any p ∈ M).

(b) Totally real submanifolds (the complex structure transforms all tangent spaces
into the normal spaces of the submanifold: J (TpM) ⊂ T⊥

p M , for any p ∈ M). In

particular, if dim M = dimC M̃ , the submanifold M is called Lagrangian.
Afterward, interesting generalizations of the above classes of submanifolds were

introduced: slant submanifolds, purely real submanifolds, CR-submanifolds, etc.

Definition. [8] A slant submanifold is a submanifold M of a Kähler manifold
(M̃, J, g) such that, for any nonzero vector X in TpM , the angle θ(X) between J X
and the tangent space TpM is a constant (which is independent of the choice of the
point p ∈ M and the choice of the tangent vector X in the tangent plane TpM).

It is obvious that complex submanifolds and totally real submanifolds are special
classes of slant submanifolds.

A slant submanifold is called proper if it is neither a complex submanifold nor a
totally real submanifold.

Examples of slant submanifolds are given in the above book of Chen [8] and in
another chapter of this book [44], respectively.

For any vector field X tangent to a submanifoldM in a Kähler manifold (M̃, J, g),
one decomposes J X = PX + FX , where PX and FX are the tangential and normal
components of J X , respectively.

A proper slant submanifold is said to be Kählerian slant if the canonical endo-
morphism P is parallel (∇P = 0), where ∇ is the Levi-Civita connection on M .

A Kählerian slant submanifold is a Kähler manifold with respect to the induced
metric and the almost complex structure J̃ = (sec θ)J, where θ is the slant angle.

Let M be an n-dimensional Kählerian slant submanifold in an n-dimensional
Kähler manifold M̃ , p ∈ M and {e1, . . . , en} an orthonormal basis of TpM . If we put
e∗
i = 1

sin θ
Fei , i = 1, . . . , n, then {e∗

1, . . . , e
∗
n} is an orthonormal basis of T⊥

p M . The
coefficientshki j = g(h(ei , e j ), e∗

k )of the second fundamental formhave the symmetry

property: hki j = hijk = h j
ki , for all i, j, k = 1, . . . , n.
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A submanifoldM of a Kähler manifold is called a purely real submanifold if every
eigenvalue of Q = P2 lies in (−1, 0], or equivalently, FX �= 0, for any nonzero
vector X tangent to M .

Thus, by definition, the class of purely real submanifolds contains both slant
submanifolds and totally real submanifolds (in particular Lagrangian submanifolds).

2.1 Euler Inequality

For surfaces M of the Euclidean space E3, the (classical) Euler inequality

G ≤ ‖H‖2

is fulfilled,whereG is the (intrinsic)Gauss curvature ofM and ‖H‖2 is the (extrinsic)
squared mean curvature of M .

Furthermore, G = ‖H‖2 everywhere on M if and only if M is totally umbilical
(the second fundamental form h satisfies h(X,Y ) = g(X,Y )H , for any vector fields
X and Y ), or still, by a theorem of Meusnier, if and only if M is (a part of) a plane
E
2 or it is (a part of) a round sphere S2 in E3.
In [10], B.-Y. Chen generalized the Euler inequality for any dimensional

submanifolds M in real space forms M̃(c).
Let M be an n-dimensional submanifold (n ≥ 2) of an m-dimensional real space

form M̃(c). One denotes as usual by K the sectional curvature on M . Let p ∈ M
and {e1, . . . , en} an orthonormal basis of TpM .

The scalar curvature at p is defined by

τ (p) =
∑

1≤i< j≤n

K (ei ∧ e j );

denote by ρ = 2τ
n(n−1) the normalized scalar curvature.

The generalized Euler inequality states (see [10])

ρ ≤ ‖H‖2 + c.

Moreover, the equality holds identically if and only if M is a totally umbilical
submanifold.

B.-Y.Chen [17] proved the following sharp estimate of the squaredmean curvature
in terms of the scalar curvature for Kählerian slant submanifolds in complex space
forms.

Theorem 2.1.1 Let M be an n-dimensional (n ≥ 2) Kählerian slant submanifold
of an n-dimensional complex space form M̃(4c) of constant holomorphic sectional
curvature 4c. Then
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‖H‖2 ≥ 2(n + 2)

n2(n − 1)
τ − n + 2

n

(
1 + 3

cos2 θ

n − 1

)
c, (2.1.1)

where θ is the slant angle of M.

In particular, for Lagrangian submanifolds, one derives:

Corollary 2.1.2 Let M be a Lagrangian submanifold of an n-dimensional (n ≥ 2)
complex space form M̃(4c) of constant holomorphic sectional curvature 4c. Then

‖H‖2 ≥ 2(n + 2)

n2(n − 1)
τ − n + 2

n
c. (2.1.2)

The inequality (2.1.2) was first obtained in [11].
On the other hand, it is known that any proper slant surface is Kählerian slant.

Thus, the previous theorem implies the following:

Corollary 2.1.3 Let M be a proper slant surface in a complex space form M̃(4c)
of complex dimension 2. Then the squared mean curvature ‖H‖2 and the Gaussian
curvature G of M satisfy

‖H‖2 ≥ 2[G − (1 + 3 cos2 θ)c], (2.1.3)

at each point p ∈ M, where θ is the slant angle of the slant surface.

The above inequality was obtained by B.-Y. Chen in [13] and, recently, as a
corollary of a result from [18].

Theorem 2.1.4 Let M be a purely real surface in a complex space form M̃(4c) of
complex dimension 2. Then

‖H‖2 ≥ 2[G − ‖∇α‖2 − (1 + 3 cos2 θ)c] + 4g(∇α, Jh(e1, e2)) cscα,

with respect to any orthonormal frame {e1, e2} satisfying g(∇α, e2) = 0 (α is the
Wirtinger angle (cosα = g(Je1, e2)), and ∇α is the gradient of α).

The first author generalized Theorem 2.1.1 for purely real submanifolds with P
parallel with respect to the Levi-Civita connection, ∇P = 0. Such submanifolds are
a generalization of Kählerian slant submanifolds.

Theorem 2.1.5 ([33]) Let M be a purely real n-dimensional (n ≥ 2) submanifold
with ∇P = 0 of an n-dimensional complex space form M̃(4c) of constant holomor-
phic sectional curvature 4c. Then

‖H‖2 ≥ 2(n + 2)

n2(n − 1)
τ − n + 2

n

[
1 + 3

‖P‖2
n(n − 1)

]
c. (2.1.4)
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Proof Let p ∈ M and {e1, e2, . . . , en} an orthonormal basis of the tangent space
TpM such that all e j ’s are eigenvectors of P2. An orthonormal basis {e∗

1, e
∗
2, . . . , e

∗
n}

of the normal space T⊥
p M is defined by e∗

i = Fei
‖Fei‖ , i = 1, n.

For a purely real submanifold with ∇P = 0 one has

AFXY = AFY X, ∀X,Y ∈ �(T M),

or equivalently,
hki j = h j

ik = hik j ,

where A means the shape operator and hki j = g(h(ei , e j ), e∗
k ), i, j, k = 1, . . . , n.

From the Gauss equation, it follows that

2τ = n2 ‖H‖2 − ‖h‖2 + c[n(n − 1) + 3 ‖P‖2].

By the definition, the squared mean curvature is given by

n2 ‖H‖2 =
∑

i

⎡

⎣
∑

j

(hij j )
2 + 2

∑

j<k

hij j h
i
kk

⎤

⎦ .

We derive

τ = n(n − 1) + 3 ‖P‖2
2

c +
∑

i

∑

j<k

hij j h
i
kk −

∑

i �= j

(hij j )
2 − 3

∑

i< j<k

(hki j )
2.

If we denote m = n+2
n−1 , we get

n2 ‖H‖2 − m[2τ − n(n − 1)c − 3 ‖P‖2 c] =

=
∑

i

(hiii )
2 + (1 + 2m)

∑

i �= j

(hij j )
2 + 6m

∑

i< j<k

(hki j )
2 − 2(m − 1)

∑

i

∑

j<k

hij j h
i
kk =

=
∑

i

(hiii )
2 + 6m

∑

i< j<k

(hki j )
2 + (m − 1)

∑

i

∑

j<k

(hij j − hikk)
2+

+[1 + 2m − (n − 2)(m − 1)]
∑

i �= j

(hij j )
2 − 2(m − 1)

∑

i �= j

hiii h
i
j j =

= 6m
∑

i< j<k

(hki j )
2 + (m − 1)

∑

i �= j,k

∑

j<k

(hij j − hikk)
2+

+ 1

n − 1

∑

i �= j

[hiii − (n − 1)(m − 1)hij j ]2 ≥ 0.
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It follows that

n2 ‖H‖2 − m[2τ − n(n − 1)c − 3 ‖P‖2 c] ≥ 0,

equivalent to

n2 ‖H‖2 − n + 2

n − 1
[2τ − n(n − 1)c − 3 ‖P‖2 c] ≥ 0,

which is, in fact, the inequality to prove.

2.2 Chen-Ricci Inequality

Let (M, g) be an n-dimensional submanifold of a Riemannian manifold M̃ . For any
p ∈ M and any unit tangent vector X ∈ TpM , we consider an orthonormal basis
{e1 = X, e2, . . . , en} ⊂ TpM . The Ricci curvature of X is defined by

Ric(X) =
n∑

i=2

K (X ∧ ei ).

One denotes by ker h p = {X ∈ TpM | h(X,Y ) = 0,∀Y ∈ TpM}.
In [14], B.-Y. Chen obtained a sharp inequality between the Ricci curvature and

the squared mean curvature for any Riemannian submanifold of dimension n in a
real space form M̃(c) of constant sectional curvature c:

Ric(X) ≤ (n − 1)c + n2

4
‖H‖2 . (2.2.1)

This relation is known as theChen-Ricci inequality. For Lagrangian submanifolds
in a complex space form M̃(4c) the same inequality holds (see [16]).

In [32], K.Matsumoto and the present authors extended the Chen-Ricci inequality
for arbitrary submanifolds in complex space forms.

Theorem 2.2.1 ([32]) Let M be an n-dimensional submanifold of a complex m-
dimensional complex space form M̃(4c). Then:
(i) For each unit vector X ∈ TpM we have

Ric(X) ≤ (n − 1)c + n2

4
‖H‖2 + 3c ‖PX‖2 ,

where J is the standard almost complex structure on M̃(4c) and PX is the tangential
component of J X.
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(ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case if and
only if X ∈ ker h p.
(iii) The equality case holds identically for all unit tangent vectors at p if and only
if p is a totally geodesic point or n = 2 and p is a totally umbilical point.

For the particular case of θ-slant submanifolds, we derive:

Corollary 2.2.2 ([32]) Let M be an n-dimensional θ-slant submanifold of a complex
space form M̃(4c). Then:
(i) For each unit vector X ∈ TpM we have

Ric(X) ≤ (n − 1)c + n2

4
‖H‖2 + 3c cos2 θ.

(ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case if and
only if X ∈ ker h p.

(iii) The equality case holds identically for all unit tangent vectors at p if and only
if p is a totally geodesic point or n = 2 and p is a totally umbilical point.

We recall that a point p ∈ M is called a H-umbilical point if the second funda-
mental form is given by

h(e1, e1) = λe∗
1, h(e2, e2) = · · · = h(en, en) = μe∗

1, h(ei , e j ) = 0 (2 ≤ i < j ≤ n),

where {e1, . . . , en} and {e∗
1, . . . , e

∗
n} are orthonormal bases in TpM and T⊥

p M , λ,μ ∈
R.

Also, the Chen-Ricci inequality was improved later for Lagrangian submanifolds.

Theorem 2.2.3 ([25]) Let M be a Lagrangian submanifold of dimension n ≥ 2 in
a complex space form M̃(4c) of constant holomorphic sectional curvature 4c and X
a unit tangent vector in TpM, p ∈ M. Then, we have

Ric(X) ≤ (n − 1)
(
c + n

4
‖H‖2

)
.

The equality sign holds for any unit tangent vector at p if and only if either:
(i) p is a totally geodesic point, or
(ii) n = 2 and p is an H-umbilical point with λ = 3μ.

In the same paper [25], the author determined Lagrangian submanifolds in com-
plex space forms which satisfy identically the equality case.

The Whitney 2-sphere inC2 is a nontrivial example of a Lagrangian submanifold
which satisfies the equality case of the improved Chen-Ricci inequality identically.

The first author and I.N. Rădulescu extended the Theorem 2.2.3 to Kählerian slant
submanifolds in complex space forms, by applying the two algebraic lemmas from
[25].
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Lemma 1 Let f1(x1, x2, . . . , xn) be a function on R
n defined by:

f1(x1, x2, . . . , xn) = x1

n∑

j=2

x j −
n∑

j=2

x2j .

If x1 + x2 + · · · + xn = 2na, then we have

f1(x1, x2, . . . , xn) ≤ n − 1

4n
(x1 + x2 + · · · + xn)

2 ,

with the equality sign holding if and only if 1
n+1 x1 = x2 = · · · = xn = a.

Lemma 2 Let f2(x1, x2, . . . , xn) be a function on R
n defined by:

f2(x1, x2, . . . , xn) = x1

n∑

j=2

x j − x21 .

If x1 + x2 + · · · + xn = 4a, then we have

f2(x1, x2, . . . , xn) ≤ 1

8
(x1 + x2 + · · · + xn)

2 ,

with the equality sign holding if and only if x1 = a and x2 + · · · + xn = 3a.

The improved Chen-Ricci inequality for Kählerian slant submanifolds is given in
the following theorem.

Theorem 2.2.4 ([35]) Let M be an n-dimensional Kählerian θ-slant submanifold
in a complex n-dimensional complex space form M̃(4c) of constant holomorphic
sectional curvature 4c. Then for any unit tangent vector X to M, we have

Ric(X) ≤ (n − 1)
(
c + n

4
‖H‖2

)
+ 3c cos2 θ. (2.2.2)

The equality sign of (2.2.2) holds identically if and only if either
(i) c = 0 and M is totally geodesic, or
(ii) n = 2, c < 0 and M is a slant H-umbilical surface with λ = 3μ.

Proof Let p ∈ M and X a unit vector in TpM ; one considers the orthonormal bases
{e1 = X, e2, . . . , en} ⊂ TpM and

{
e∗
1 = Fe1

sin θ
, . . . , e∗

n = Fen
sin θ

}
⊂ T⊥

p M.
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Nowwe put in the equation of Gauss X = Z = e1 and Y = W = e j , for j = 2, .., n.
Then Gauss equation gives

R̃(e1, e j , e1, e j ) = R(e1, e j , e1, e j ) − g(h(e1, e1), h(e j , e j )) + g(h(e1, e j ), h(e1, e j )),

or, equivalently,

R̃(e1, e j , e1, e j ) = R(e1, e j , e1, e j ) −
n∑

r=1

(hr11h
r
j j − (hr1 j )

2), ∀ j ∈ {2, . . . , n}.

Since the Riemannian curvature tensor of M is expressed by

R̃(X,Y, Z ,W ) = c[g(X, Z)g(Y,W ) − g(X,W )g(Y, Z)+

+g(J X, Z)g(JY,W ) − g(J X,W )g(JY, Z) + 2g(J X,Y )g(J Z ,W )],

we find
R̃(e1, e j , e1, e j ) = c[1 + 3g2(Je1, e j )]. (2.2.3)

By summing after j ∈ {2, . . . , n}, we get

(n − 1 + 3 ‖PX‖2)c = Ric(X) −
n∑

r=1

n∑

j=2

[
hr11h

r
j j − (hr1 j )

2
]
,

or,

(n − 1 + 3 cos2 θ)c = Ric(X) −
n∑

r=1

n∑

j=2

[
hr11h

r
j j − (hr1 j )

2
]
.

It follows that

Ric(X) − (n − 1 + 3 cos2 θ)c =
n∑

r=1

n∑

j=2

[
hr11h

r
j j − (hr1 j )

2
] ≤ (2.2.4)

≤
n∑

r=1

n∑

j=2

hr11h
r
j j −

n∑

j=2

(h11 j )
2 −

n∑

j=2

(h j
1 j )

2.

Because M is a Kählerian slant submanifold, one has h11 j = h j
11 and h j

1 j = h1j j ,
and then

Ric(X) − (n − 1 + 3 cos2 θ)c ≤
n∑

r=1

n∑

j=2

hr11h
r
j j −

n∑

j=2

(h j
11)

2 −
n∑

j=2

(h1j j )
2.

(2.2.5)
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Now we put

f1(h
1
11, h

1
22, . . . , h

1
nn) = h111

n∑

j=2

h1j j −
n∑

j=2

(h1j j )
2

and

fr (h
r
11, h

r
22, . . . , h

r
nn) = hr11

n∑

j=2

hrj j − (hr11)
2, ∀r ∈ {2, . . . , n}.

Denote by Hr = g(H, e∗
r ), r = 1, . . . , n. Since nH 1 = h111 + h122 + · · · + h1nn, we

obtain by using Lemma 1 that

f1(h
1
11, h

1
22, . . . , h

1
nn) ≤ n − 1

4n
(nH 1)2 = n(n − 1)

4
(H 1)2. (2.2.6)

By Lemma 2 for 2 ≤ r ≤ n, we get

fr (h
r
11, h

r
22, . . . , h

r
nn) ≤ 1

8
(nHr )2 = n2

8
(Hr )2 ≤ n(n − 1)

4
(Hr )2. (2.2.7)

From (2.2.5)–(2.2.7), we obtain

Ric(X) − (n − 1 + 3 cos2 θ)c ≤ n(n − 1)

4

n∑

r=1

(Hr )2 = n(n − 1)

4
‖H‖2 .

Thus, we have

Ric(X) ≤ (n − 1 + 3 cos2 θ)c + n(n − 1)

4
‖H‖2 ,

which implies (2.2.2).

We will study the equality case. For n ≥ 3, we choose Fe1 parallel to H . Then
we obtain Hr = 0, for r ≥ 2. Thus, by Lemma 2, we get

h11 j = h j
11 = nH j

4
= 0, ∀ j ≥ 2,

and

h1jk = 0, ∀ j, k ≥ 2, j �= k.

From Lemma 1, we have h111 = (n + 1)a and h1j j = a, ∀ j ≥ 2, with a = H 1

2 .

In (2.2.4), we computed Ric(X) = Ric(e1). Similarly, by computing Ric(e2) and
using the equality, we get
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hr2 j = h2jr = 0, ∀r �= 2, j �= 2, r �= j.

Then we obtain
h211
n + 1

= h222 = · · · = h2nn = H 2

2
= 0.

The argument is also true for matrices
(
hrjk
)
because the equality holds for all unit

tangent vectors; so, h22 j = h j
22 = H j

2 = 0, ∀ j ≥ 3.
The matrix

(
h2jk
)
(respectively, the matrix

(
hrjk
)
) has only two possible nonzero

entries h212 = h221 = h122 = H 1

2 (respectively, hr1r = hrr1 = h1rr = H 1

2 , for all r ≥ 3).
For X = Z = e2 and Y = W = e j , j = 2, . . . , n, in the Gauss equation, we get

R̃(e2, e j , e2, e j ) = R(e2, e j , e2, e j ) −
(
H 1

2

)2

,∀ j ≥ 3.

If we consider X = Z = e2 and Y = W = e1 in the Gauss equation, we get

R̃(e2, e1, e2, e1) = R(e2, e1, e2, e1) − (n + 1)

(
H 1

2

)2

+
(
H 1

2

)2

.

From the last two relations, we derive

Ric(e2) − (n − 1 + 3 cos2 θ)c = 2(n − 1)

(
H 1

2

)2

.

On the other hand, the equality case of (2.2.2) implies that

Ric(e2) − (n − 1 + 3 cos2 θ)c = n(n − 1)

4
‖H‖2 = n(n − 1)

(
H 1

2

)2

.

Since n �= 1, 2, from the last 2 equations we get H 1 = 0. Thus,
(
hrjk
)
are all

zero; then M is a totally geodesic submanifold in M̃(4c) and consequently M is a
curvature-invariant submanifold of M̃(4c). When c �= 0, a result of Chen and Ogiue
[21] implies that M is either a complex submanifold or a Lagrangian submanifold
of M̃(4c), which is a contradiction, because M is a non-proper θ-slant submanifold.
Then, we obtain either

(1) c = 0 and M is totally geodesic, or
(2) n = 2.
If (1) holds, we find (i) of the theorem.
In the second case, for n = 2, by a result of Chen [13] it is known that for M a

proper slant surface in a complex 2-dimensional complex space form M̃(4c) which
satisfies identically the equality case of (2.2.2), either M is totally geodesic or c < 0.
If M is not totally geodesic, we get
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h(e1, e1) = λe∗
1, h(e2, e2) = μe∗

1, h(e1, e2) = μe∗
2,

with λ = 3μ = 3H 1

2 ; then M is H -umbilical, i.e., the case (ii).

Because a proper slant surface is Kählerian slant (see [8]), we rediscovered the
following result.

Theorem 2.2.5 ([13]) If M is a proper slant surface in a complex space form
M̃(4c) of complex dimension 2, then the squared mean curvature and the Gaussian
curvature of M satisfy:

‖H‖2 ≥ 2[G − (1 + 3 cos2 θ)c]

at each point p ∈ M, where θ is the slant angle of the slant surface.

A nontrivial example of a slant surface satisfying the equality case identically is
given in the same paper [35].

2.3 Shape Operator AH

B.-Y. Chen established a relationship between the sectional curvature function K
and the shape operator for submanifolds in real space forms [10]. We obtained a
similar inequality for a slant submanifold M into an m-dimensional complex space
form M̃(c) of constant holomorphic sectional curvature c (see [31]).

Theorem 2.3.1 ([31]) Let x : M → M̃(c) be an isometric immersion of an n-
dimensional θ-slant submanifold into an m-dimensional complex space form M̃(c)
of constant holomorphic sectional curvature c ≥ 0. If there exists a point p ∈ M and
a number b > c

4 (1 + 3
n−1 cos

2 θ) such that K ≥ b at p, then the shape operator at
the mean curvature vector satisfies

AH >
n − 1

n

[
b − c

4
− 3

c

4(n − 1)
cos2 θ

]
In, (2.3.1)

where In is the identity map.

Proof Let p ∈ M and a number b > c
4 (1 + 3

n−1 cos
2 θ) such that K ≥ b at p. We

choose an orthonormal basis {e1, . . . , en, en+1, . . . , e2m} at p such that en+1 is parallel
to the mean curvature vector H and e1, . . . , en diagonalize the shape operator An+1.

Then we have

An+1 =

⎛

⎜⎜⎜⎝

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...

0 0 . . . an

⎞

⎟⎟⎟⎠ , (2.3.2)
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Ar = (hri j ), i, j = 1, . . . , n, r = n + 2, . . . , 2m,

trace Ar =
n∑

i=1

hrii = 0. (2.3.3)

For i �= j , we denote by ui j = aia j .
From Gauss equation for X = Z = ei ,Y = W = e j , we get

ui j ≥ b − c

4
− 3

c

4
g2(ei , Je j ) −

2m∑

r=n+2

[hrii hrj j − (hri j )
2]. (2.3.4)

We will prove that ui j have the following properties:
1. For any fixed i ∈ {1, . . . , n}, one has

∑

i �= j

ui j ≥ (n − 1)(b − c

4
) − 3

c

4
cos2 θ.

2. ui j �= 0, for i �= j .

3. For distinct i, j, k ∈ {1, . . . , n}, a2i = ui j uik
u jk

.

4. We denote by Sk = {B ⊂ {1, . . . , n}; |B| = k} and for any B ∈ Sk we denote
by B = {1, . . . , n} \ B. Then, for a fixed k, 1 ≤ k ≤ [ n2

]
and each B ∈ Sk , we have

∑

j∈B

∑

t∈B
u jt > 0.

5. For distinct i, j ∈ {1, . . . , n}, ui j > 0.

1. Indeed, (2.3.4) implies:

∑

j �=i

ui j ≥ (n − 1)(b − c

4
) − 3

c

4
‖Pei‖2 −

2m∑

r=n+2

[hrii (
∑

j �=i

hrj j ) −
∑

j �=i

(hri j )
2] =

= (n − 1)(b − c

4
) − 3

c

4
cos2 θ −

2m∑

r=n+2

[hrii (−hrii ) −
∑

j �=i

(hri j )
2] =

= (n − 1)(b − c

4
) − 3

c

4
cos2 θ +

2m∑

r=n+2

n∑

j=1

(hri j )
2 ≥

≥ (n − 1)(b − c

4
) − 3

c

4
cos2 θ > 0.
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2. If ui j = 0, for i �= j , then ai = 0 or a j = 0.Assume ai = 0; then uit = aiat =
0, for any t ∈ {1, . . . , n}, t �= i. It follows that

∑

j �=i

ui j = 0,

in contradiction with 1.

3.
ui j uik
u jk

= aia jaiak
a jak

= a2i .

4. Let B = {1, . . . , k} and B = {k + 1, . . . , n}. Then

∑

j∈B

∑

t∈B
u jt ≥ k(n − k)(b − c

4
) − 3

c

4

k∑

j=1

n∑

t=k+1

g2(Jei , e j )−

−
2m∑

r=n+2

{
k∑

j=1

n∑

t=k+1

[hrj j hrtt − (hrjt )
2]}.

We choose {e1, . . . , en} an adapted slant basis. Then we distinguish 2 cases:
(i) If k is odd,

∑

j∈B

∑

t∈B̄
u j t ≥ k(n − k)(b − c

4
) − 3

c

4
cos2 θ +

2m∑

r=n+2

[
k∑

j=1

n∑

t=k+1

(hrjt )
2 +

k∑

j=1

(hrj j )
2] ≥

≥ k(n − k)(b − c

4
) − 3

c

4
cos2 θ > 0.

(ii) If k is even, ∑

j∈B

∑

t∈B̄
u jt ≥ k(n − k)(b − c

4
) > 0.

5. Assume u1n < 0. From 3, we get u1i uin < 0, for 1 < i < n.

Without loss of generality, we may assume

{
u12, . . . , u1l , u(l+1)n, . . . , u(n−1)n > 0,

u1(l+1), . . . , u1n, u2n, . . . , uln < 0,

for some
[
n+1
2

] ≤ l ≤ n − 1.
If l = n − 1, then u1n + u2n + · · · + u(n−1)n < 0, which contradicts to 1. Thus,

l < n − 1.
From 3, we get

a2n = uinutn
uit

> 0,
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where 2 ≤ i ≤ l, l + 1 ≤ t ≤ n − 1. From the last two relations we obtain uit < 0,
which implies

l∑

i=1

n∑

t=l+1

uit =
l∑

i=2

n−1∑

t=l+1

uit +
l∑

i=1

uin +
n∑

t=l+1

u1t < 0.

This contradicts to 4.

Now, we return to the proof of the theorem.
From 5, it follows that a1, . . . , an have the same sign. Assume a j > 0,∀ j ∈

{1, . . . , n}. Then
∑

j �=i

ui j = ai (a1 + . . . an) − a2i ≥ (n − 1)(b − c

4
) − 3

c

4
cos2 θ.

From the above relation, we have

ain ‖H‖ ≥ (n − 1)(b − c

4
) − 3

c

4
cos2 θ + a2i > (n − 1)(b − c

4
) − 3

c

4
cos2 θ.

This equation implies that

ai ‖H‖ >
n − 1

n
(b − c

4
− 3

c

4(n − 1)
cos2 θ),

and consequently the inequality (2.3.1).

Similarly, we can prove the following

Theorem 2.3.2 ([31]) Let x : M → M̃(c) be an isometric immersion of an n-
dimensional θ-slant submanifold into an m-dimensional complex space form M̃(c)
of constant holomorphic sectional curvature c < 0. If there exists a point p ∈ M and
a number b > c

4 such that K ≥ b at p, then the shape operator at the mean curvature
vector satisfies

AH >
n − 1

n

[
b − c

4
− 3

c

4(n − 1)
cos2 θ

]
In.

In particular, for totally real submanifolds, one has

Corollary 2.3.3 Let M be an n-dimensional totally real submanifold of a complex
space form M̃(c) and p ∈ M. If there exists a number b > c

4 such that K ≥ b at p,
then

AH >
n − 1

n
(b − c

4
)In.
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Let (M, g) be an n-dimensional Riemannian manifold, k an integer, 2 ≤ k ≤ n,
p ∈ M and L ⊂ TpM a k-plane section. The k-Ricci curvature of a unit vector X ∈ L
is given by

RicL(X) =
k∑

i=2

K (X ∧ ei ),

where {e1 = X, e2, . . . , ek} is an orthonormal basis of L .
The Riemannian invariant �k is defined by

�k(p) = 1

k − 1
inf
L ,X

RicL(X), p ∈ M,

where L runs over all k-plane sections in TpM and X runs over all unit vectors in L .

B.-Y. Chen established a relationship between the k-Ricci curvature and the shape
operator for a submanifold with arbitrary codimension (see also [10]).

We proved a corresponding inequality for a slant submanifold M of an m-
dimensional complex space form M̃(c) of constant holomorphic sectional curva-
ture c.

Theorem 2.3.4 ([31]) Let x : M → M̃(c) be an isometric immersion of an n-
dimensional θ-slant submanifold M into a complex space form M̃(c) of constant
holomorphic sectional curvature c. Then, for any integer k, 2 ≤ k ≤ n, and any
point p ∈ M, we have:

(i) If �k(p) �= c
4 (1 + 3

n−1 cos
2 θ), then the shape operator at the mean curvature

satisfies

AH >
n − 1

n

[
�k(p) − c

4
− 3c

4(n − 1)
cos2 θ

]
In. (2.3.5)

(ii) If �k(p) = c
4 (1 + 3

n−1 cos
2 θ), then AH ≥ 0 at p.

(iii) A unit vector X ∈ TpM satisfies

AH X = n − 1

n

[
�k(p) − c

4
− 3c

4(n − 1)
cos2 θ

]
X

if and only if �k(p) = c
4 (1 + 3

n−1 cos
2 θ) and X ∈ ker h p.

(iv) AH = n−1
n [�k(p) − c

4 − 3c
4(n−1) cos

2 θ]In at p if and only if p is a totally
geodesic point.

Proof (i) Let {e1, . . . en} be an orthonormal basis of TpM . Denote by Li1...ik the
k-plane section spanned by ei1 , . . . , eik . It is easily seen by the definitions that
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τ (Li1...ik ) = 1

2

∑

i∈{i1,...,ik }
RicLi1 ...ik

(ei ),

τ (p) = 1

Ck−2
n−2

∑

1≤i1<···<ik≤n

τ (Li1...ik ).

Combining the above equations, we find

τ (p) ≥ n(n − 1)

2
�k(p). (2.3.6)

From the equation of Gauss for X = Z = ei ,Y = W = e j , by summing, we
obtain

n2 ‖H‖2 = 2τ + ‖h‖2 − c

4
[n(n − 1) + 3 ‖P‖2].

We choose an orthonormal basis {e1, . . . , en, en+1, . . . , e2m} at p such that en+1

is parallel to the mean curvature vector H(p) and e1, . . . , en diagonalize the shape
operator An+1. Then the shape operators have the forms (2.3.2) and (2.3.3).

It follows that

n2 ‖H‖2 = 2τ +
n∑

i=1

a2i +
2m∑

r=n+2

n∑

i, j=1

(hri j )
2 − c

4
[n(n − 1) + 3 ‖P‖2].

On the other hand, the Cauchy–Schwarz inequality implies

n∑

i=1

a2i ≥ n ‖H‖2 .

Consequently, we have

n2 ‖H‖2 ≥ 2τ + n ‖H‖2 − c

4
[n(n − 1) + 3 ‖P‖2],

or, equivalently,

‖H‖2 ≥ 2τ

n(n − 1)
− c

4
− 3c ‖P‖2

4n(n − 1)
.

By using (2.3.6), we obtain

‖H‖2 (p) ≥ �k(p) − c

4
− 3c ‖P‖2

4n(n − 1)
= �k(p) − c

4
− 3c

4(n − 1)
cos2 θ.
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This shows that H(p) = 0 may occurs only when �k(p) ≤ c
4 (1 + 3

n−1 cos
2 θ).

Consequently, if H(p) = 0, statements i) and ii) hold automatically. Therefore, with-
out loss of generality, we may assume H(p) �= 0.

From the equation of Gauss, we get

aia j = Ki j − c

4
[1 + 3g2(ei , Je j )] −

2m∑

r=n+2

[hrii hrj j − (hri j )
2],

which implies

a1(ai2 + · · · + aik ) = RicL1i2 ...ik
(e1) − (k − 1)

c

4
− 3

c

4

k∑

j=2

g2(e1, Jei j )− (2.3.7)

−
2m∑

r=n+2

k∑

j=2

[hr11hri j i j − (hr1i j )
2]

and consequently

a1(a2 + · · · + an) = 1

Ck−2
n−2

∑

2≤i2<···<ik≤n

RicL1i2 ...ik
(e1) − (n − 1)

c

4
−

−3c
n∑

j=2

g2(e1, Je j)+ +
2m∑

r=n+2

n∑

j=1

(hr1 j )
2.

We find

a1(a2 + · · · + an) ≥ (n − 1)[�k(p) − c

4
− 3c

4(n − 1)
cos2 θ].

Then
a1(a1 + a2 + · · · + an) = a21 + a1(a2 + · · · + an) ≥ (2.3.8)

≥ a21 + (n − 1)[�k(p) − c

4
− 3c

4(n − 1)
cos2 θ] ≥

≥ (n − 1)[�k(p) − c

4
− 3c

4(n − 1)
cos2 θ].

Since n ‖H‖ = a1 + · · · + an , (2.3.8) implies

AH ≥ n − 1

n
[�k(p) − c

4
− 3c

4(n − 1)
cos2 θ]In.
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The equality does not hold because in our case H(p) �= 0.
The assertion (ii) is obvious.
(iii) Let X ∈ TpM be a unit vector satisfying the equality case. Then one has

a1 = 0 and hr1 j = 0,∀ j ∈ {1, . . . , n}, r ∈ {n + 2, . . . , 2m}, respectively. The above
conditions imply �k(p) = c

4 (1 + 3
n−1 cos

2 θ) and X ∈ ker h p.
The converse is clear.
(iv) The equality holds for any X ∈ TpM if and only if ker h p = TpM (p is a

totally geodesic point).

Corollary 2.3.5 ([31]) Let x : M → M̃(c) be an isometric immersion of an n-
dimensional totally real submanifold M into a complex space form M̃(c) of constant
holomorphic sectional curvature c. Then, for any integer k, 2 ≤ k ≤ n, and any point
p ∈ M, we have:

(i) If �k(p) �= c
4 , then the shape operator at the mean curvature vector satisfies

AH >
n − 1

n
[�k(p) − c

4
]In at p.

(ii) If �k(p) = c
4 , then AH ≥ 0 at p.

(iii) A unit vector X ∈ TpM satisfies

AH X = n − 1

n

(
�k(p) − c

4

)
X

if and only if �k(p) = c
4 and X ∈ ker h p.

(iv) AH = n−1
n

(
�k(p) − c

4

)
In at p if and only if p is a totally geodesic point.

2.4 Chen First Inequality

In [9], B.-Y. Chen established a basic inequality involving the sectional curvature,
the scalar curvature and the mean curvature of a submanifold M in a real space form
M̃(c). Later, this inequality was called the Chen first inequality. The author studied
the equality case. Recall Chen’s first inequality.

Theorem 2.4.1 Let M̃(c) be a real space form of constant sectional curvature c and
M an n-dimensional submanifold. Then, one has:

inf K ≥ τ − n − 2

2

[
n2

n − 1
‖H‖2 + (n + 1)c

]
. (2.4.1)

The Chen first invariant is defined by δM = τ − inf K .
The present authors obtained in [45] a Chen first inequality for slant submanifolds

in complex space forms. We considered the Riemannian invariant
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δ′
M(p) = τ − inf{K (π)| π ⊂ TpM 2-plane section invariant by P}.

Theorem 2.4.2 ([45]) Let M̃(4c) be an m-dimensional complex space form M̃(4c)
and M an n-dimensional θ-slant submanifold (n ≥ 3). Then, we have:

δ′
M ≤ n − 2

2

{
n2

n − 1
‖H‖2 + (n + 1 + 3 cos2 θ)c

}
. (2.4.2)

The equality case of the inequality holds at a point p ∈ M if and only if there
exist an orthonormal basis {e1, e2, . . . , en} of TpM and an orthonormal basis
{en+1, . . . , e2m} of T⊥

p M such that the shape operators of M in M̃(4c) at p have
the following forms:

An+1 =

⎛

⎜⎜⎜⎜⎜⎝

a 0 0 . . . 0
0 b 0 . . . 0
0 0 μ . . . 0
...

...
...

. . .
...

0 0 0 . . . μ

⎞

⎟⎟⎟⎟⎟⎠
, a + b = μ, (2.4.3)

Ar =

⎛

⎜⎜⎜⎜⎜⎝

hr11 h
r
12 0 . . . 0

hr12 −hr11 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎠
, r ∈ {n + 2, . . . , 2m}, (2.4.4)

where one denotes by Ar = Aer , r = n + 1, . . . , 2m, and hri j = g(h(ei , e j ), er ),
i, j = 1, . . . , n, r = n + 1, . . . , 2m.

Theorem 2.4.3 ([38]) Let M be an n-dimensional Kählerian slant submanifold of
an n-dimensional complex space form satisfying identically the equality in Chen first
inequality. Then M is a minimal submanifold.

Proof Let M be an n-dimensional Kählerian slant submanifold of an n-dimensional
complex space form satisfying identically the equality in Chen first inequality. Then
the shape operators take the forms (2.4.3) and (2.4.4). Obviously, trace Ar = 0, for
any r ∈ {n + 2, . . . , 2n}.

On the other hand,
μ = h133 = h313 = 0.

Then trace An+1 = 0. Therefore M is a minimal submanifold.

In [33] the first author extended the above inequality to purely real submanifolds
M in complex space forms M̃(4c).

For a 2-plane section π ⊂ TpM, p ∈ M, denote by
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�(π) = g2(Je1, e2),

where {e1, e2} is an orthonormal basis of π (see [6]). Then �(π) is a real number in
[0, 1], which is independent of the choice of the orthonormal basis {e1, e2} of π.

The following optimal inequality was proved by the first author. In the proof the
well-known Chen’s Lemma was used.

Lemma 3 ([9]) Let n ≥ 3 be an integer and a1, . . . , an, b real numbers satisfying

(
n∑

i=1

ai

)2

= (n − 1)

(
n∑

i=1

a2i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3 = · · · = an.

Theorem 2.4.4 ([33]) Let M be an n-dimensional (n ≥ 3) purely real submanifold
of an m-dimensional complex space form M̃(4c), p ∈ M and π ⊂ TpM a 2-plane
section. Then

τ (p) − K (π) ≤ n2(n − 2)

2(n − 1)
‖H‖2 + [(n + 1)(n − 2) + 3 ‖P‖2 − 6�(π)] c

2
.

(2.4.5)
Moreover, the equality case of the inequality holds at a point p ∈ M if and only if
there exist an orthonormal basis {e1, e2, . . . , en} of TpM and an orthonormal basis
{en+1, . . . , e2m} of T⊥

p M such that the shape operators takes the following forms:

An+1 =

⎛

⎜⎜⎜⎜⎜⎝

a 0 0 . . . 0
0 b 0 . . . 0
0 0 μ . . . 0
...

...
...

. . .
...

0 0 0 . . . μ

⎞

⎟⎟⎟⎟⎟⎠
, a + b = μ,

Ar =

⎛

⎜⎜⎜⎜⎜⎝

hr11 hr12 0 . . . 0
hr12 −hr11 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎠
, r ∈ {n + 2, . . . , 2m}.

Proof Let p ∈ M , π ⊂ TpM a 2-plane section and {e1, e2} an orthonormal basis of
π. We construct {e1, e2, e3, . . . , en} an orthonormal basis of TpM .

The Gauss equation implies

2τ = n2 ‖H‖2 − ‖h‖2 + [n(n − 1) + 3 ‖P‖2]c.

We put
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ε = 2τ − n2(n − 2)

n − 1
‖H‖2 − [n(n − 1) + 3 ‖P‖2]c.

From the above two equations, we get

n2 ‖H‖2 = (n − 1)(ε + ‖h‖2). (2.4.6)

We take en+1 parallel with H and construct {en+1, . . . , e2m} an orthonormal basis
of T⊥

p M . The equation (2.4.6) becomes

(
n∑

i=1

hn+1
i i

)2

= (n − 1)[
2m∑

r=n+1

n∑

i, j=1

(hri j )
2 + ε],

or equivalently,

(

n∑

i=1

hn+1
i i )2 = (n − 1)

⎡

⎣
n∑

i=1

(hn+1
i i )2 +

∑

i �= j

(hn+1
i j )2 +

2m∑

r=n+2

n∑

i, j=1

(hri j )
2 + ε

⎤

⎦ .

By applying Chen’s Lemma, we obtain

2hn+1
11 hn+1

22 ≥
∑

i �= j

(hn+1
i j )2 +

2m∑

r=n+2

n∑

i, j=1

(hri j )
2 + ε.

The Gauss equation gives

K (π) = [1 + 3�(π)]c +
2m∑

r=n+1

[hr11hr22 − (hr12)
2] ≥

≥ [1 + 3�(π)]c + 1

2

∑

i �= j

(hn+1
i j )2 + 1

2

2m∑

r=n+2

n∑

i, j=1

(hri j )
2 + ε

2
+

2m∑

r=n+2

hr11h
r
22 −

2m∑

r=n+1

(hr12)
2 =

= [1 + 3�(π)]c + 1

2

∑

i �= j>2

(hn+1
i j )2 + 1

2

2m∑

r=n+2

∑

3≤i< j≤n

(hri j )
2+

+1

2

2m∑

r=n+2

(hr11 + hr22)
2 +

2m∑

r=n+1

n∑

j=3

[(hr1 j )2 + (hr2 j )
2] + ε

2
≥

≥ [1 + 3�(π)]c + ε

2
,

which implies the inequality (2.4.5).
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We have equality at a point p ∈ M if and only if all the above inequalities become
equalities and the equality case of Chen’s Lemma holds. Thus, the shape operators
take the desired forms.

For n-dimensional Kählerian slant submanifolds in n-dimensional complex space
form M̃(4c) an improved Chen first inequality was obtained.

Theorem 2.4.5 ([33])Let M beann-dimensional (n ≥ 3)Kaehlerian slant subman-
ifold in the complex space form M̃(4c), dimC M̃(4c) = n, and p ∈ M, π ⊂ TpM a
2-plane section. Then

τ (p) − K (π) ≤ n2(2n − 3)

2(2n + 3)
‖H‖2 + [(n + 1)(n − 2) + 3n cos2 θ − 6�(π)] c

2
.

(2.4.7)
Moreover, the equality case of the inequality (2.4.7) holds at a point p ∈ M if and
only if there exists an orthonormal basis {e1, e2, . . . , en} at p such that with respect
to this basis the second fundamental form takes the following form:

h(e1, e1) = ae∗
1 + 3be∗

3 , h(e1, e3) = 3be∗
1 , h(e3, e j ) = 4be∗

j ,
h(e2, e2) = −ae∗

1 + 3be∗
3 , h(e2, e3) = 3be∗

2 , h(e j , ek) = 4be∗
3δ jk ,

h(e1, e2) = −ae∗
2 , h(e3, e3) = 12be∗

3 , h(e1, e j ) = h(e2, e j ) = 0,
for some numbers a, b and j, k = 4, . . . , n, where e∗

i = Fei
sin θ

, i = 1, . . . , n.

Proof Let p ∈ M , π ⊂ TpM a 2-plane section and {e1, e2, . . . , en} an orthonor-
mal basis of the tangent space TpM such that e1, e2 ∈ π. An orthonormal basis
{e∗

1, e
∗
2, . . . , e

∗
n} of the normal space T⊥

p M is defined by e∗
i = Fei

sin θ
, i = 1, n. We

denote by hki j = g(h(ei , e j ), e∗
k ).

The Gauss equation implies

τ (p) =
n∑

r=1

∑

1≤i< j≤n

[hrii hrj j − (hri j )
2] + [(n(n − 1) + 3n cos2 θ] c

2
, (2.4.8)

and

K (π) =
n∑

r=1

[hr11hr22 − (hr12)
2] + [1 + 3�(π)]c, (2.4.9)

respectively. Since M is a Kählerian slant submanifold, we have hki j = hijk = h j
ki .

From formulas (2.4.8) and (2.4.9), we obtain

τ (p) − K (π) =
n∑

r=1

⎧
⎨

⎩

n∑

j=3

(hr11 + hr22)h
r
j j +

∑

3≤i< j≤n

hrii h
r
j j −

n∑

j=3

[(hr1 j )2 + (hr2 j )
2]
⎫
⎬

⎭+

(2.4.10)

+[(n + 1)(n − 2) + 3n cos2 θ − 6�(π)] c
2
.
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It follows that
τ (p) − K (π) ≤

≤
n∑

r=1

[
n∑

j=3

(hr11 + hr22)h
r
j j +

∑

3≤i< j≤n

hrii h
r
j j ] −

n∑

j=3

(h j
11)

2 −
n∑

j=3

(h1j j )
2 −

∑

2≤i �= j≤n

(hij j )
2+

+[(n + 1)(n − 2) + 3n cos2 θ − 6�(π)] c
2
.

In order to achieve the proof, we will use some ideas and results from [4].
We point-out the following inequalities (see [4]):

n∑

j=3

(hr11 + hr22)
2hrj j +

∑

3≤i< j≤n

hrii h
r
j j −

n∑

j=3

(hrj j )
2 ≤ (2.4.11)

≤ n − 2

2(n + 1)
(hr11 + · · · + hrnn)

2 ≤ 2n − 3

2(2n + 3)
(hr11 + · · · + hrnn)

2,

for r = 1, 2. The first inequality is equivalent to

n∑

j=3

(hr11 + hr22 − 3hrj j )
2 + 3

∑

3≤i< j≤n

(hrii − hrj j )
2 ≥ 0,

with equality holding if and only if 3hrj j = hr11 + hr22, ∀ j = 3, . . . , n.

The equality holds in the second inequality if and only if hr11 + hr22 + · · · + hrnn =
0.

Also, we have

n∑

j=3

(hr11 + hr22)
2hrj j +

∑

3≤i< j≤n

hrii h
r
j j −

n∑

j=3

(hrj j )
2 ≤ 2n − 3

2(2n + 3)
(hr11 + · · · + hrnn)

2,

for r = 3, . . . , n, which is equivalent to (see [4])

∑

3≤ j≤n, j �=r

[2(hr11 + hr22) − 3hrj j ]2 + (2n + 3)(hr11 − hr22)
2+ (2.4.12)

+6
∑

3≤ j≤n, j �=r

(hrii − hrj j )
2 + 2

n∑

j=3

(hrrr − hrj j )
2 + 3[hrrr − 2(hr11 + hr22)]2 ≥ 0.
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The equality holds in (2.4.12) if and only if

⎧
⎨

⎩

hr11 = hr22 = 3λr ,

hrj j = 4λr , ∀ j = 3, . . . , n, j �= r, λr ∈ R.

hrrr = 12λr ,

By summing the inequalities (2.4.11) and (2.4.12), we obtain the inequality
(2.4.7).

Combining the above equality cases, we get the desired forms of the second
fundamental form.

In particular, we derive the following:

Theorem 2.4.6 ([33]) Let M be an n-dimensional (n ≥ 3)Kählerian slant subman-
ifold in the complex space form M̃(4c), dimC M̃(4c) = n, p ∈ M. Then

δ′
M(p) ≤ n2(2n − 3)

2(2n + 3)
‖H‖2 + (n − 2)[n + 1 + 3 cos2 θ] c

2
.

The equality case of the inequality holds at a point p ∈ M if and only if, with respect
to a suitable orthonormal basis {e1, e2, . . . , en} of TpM, the second fundamental
form h takes the same form as in Theorem 2.4.4.

Proof If M is Kählerian slant and π ⊂ TpM is a 2-plane section invariant by P , one
has �(π) = cos2 θ.

In contrast with the standard Chen’s first inequality, the equality case of the
improved Chen first inequality does not imply the minimality of the submanifold.
However, we stated the following result.

Theorem 2.4.7 ([33]) Let M be an n-dimensional Kählerian slant submanifold in
the complex space form M̃(4c), dimC M̃(4c) = n and n ≥ 4. If the equality case
holds identically in (2.4.7), then M is a minimal submanifold.

The proof follows the same steps as that of Theorem 3 from [4].

In the case n = 3, there is an example of non-minimal Lagrangian submanifold
in CP3 satisfying the equality case of (2.4.7) (see [3]).

2.5 Generalized Wintgen Inequality

P.Wintgen [48] proved that the Gauss curvatureG, the squaredmean curvature ‖H‖2
and the normal curvature G⊥ of any surface M in E4 always satisfy the inequality

G ≤ ‖H‖2 − |G⊥|
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and, moreover, the equality holds if and only if the ellipse of curvature of M in E
4

is a circle.
Example. The Whitney 2-sphere satisfies the equality case identically.

In 1999, P.J. De Smet, F. Dillen, L. Verstraelen, and L. Vrancken [24] formulated
the conjecture on generalized Wintgen inequality which is also known as the DDVV
conjecture.

Conjecture. Let f : M → M̃(c) be an isometric immersion of an n-dimensional
submanifold M in an (n + m)-dimensional real space form M̃(c) of constant sec-
tional curvature c. Then

ρ ≤ ‖H‖2 − ρ⊥ + c,

where ρ is the normalized scalar curvature (intrinsic invariant) and ρ⊥ is the nor-
malized normal scalar curvature (extrinsic invariant).

One denotes by K and R⊥ the sectional curvature function and the normal curva-
ture tensor on M , respectively. Then the normalized scalar curvature is given by

ρ = 2τ

n(n − 1)
= 2

n(n − 1)

∑

1≤i< j≤n

K (ei ∧ e j ),

where τ is the scalar curvature, and the normalized normal scalar curvature by

ρ⊥ = 2τ⊥

n(n − 1)
= 2

n(n − 1)

√ ∑

1≤i< j≤n

∑

1≤α<β≤m

(R⊥(ei , e j , ξα, ξβ))2.

This conjecture was settled for the general case by Z. Lu [30] and independently
by J. Ge and Z. Tang [26].

Theorem 2.5.1 The Wintgen inequality

ρ ≤ ‖H‖2 − ρ⊥ + c

holds for every submanifold M in any real space form M̃(c) (n ≥ 2, m ≥ 2).
The equality case holds identically if and only if, with respect to suitable orthonor-

mal frames {ei |i = 1, . . . , n} and {ξα|α = 1, . . . ,m}, the shape operators of M in
M̃(c) take the forms

Aξ1 =

⎛

⎜⎜⎜⎜⎜⎝

λ1 μ 0 · · · 0
μ λ1 0 · · · 0
0 0 λ1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ1

⎞

⎟⎟⎟⎟⎟⎠
,
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Aξ2 =

⎛

⎜⎜⎜⎜⎜⎝

λ2 + μ 0 0 · · · 0
0 λ2 − μ 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ2

⎞

⎟⎟⎟⎟⎟⎠
, Aξ3 =

⎛

⎜⎜⎜⎜⎜⎝

λ3 0 0 · · · 0
0 λ3 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ3

⎞

⎟⎟⎟⎟⎟⎠
,

where λ1,λ2,λ3 and μ are real functions on M, and

Aξ4 = · · · = Aξm = 0.

The second author [39] proved the generalizedWintgen inequality for Lagrangian
submanifolds and slant submanifolds, respectively, in complex space forms.

Let (M, g) be an n-dimensional submanifold of anm-dimensional complex space
form M̃(4c). Following [49], we put

KN = 1

4

2m−n∑

r,s=1

Trace[Ar , As]2

and call it the scalar normal curvature ofM . The normalized scalar normal curvature
is given by ρN = 2

n(n−1)

√
KN .

For submanifolds in real space forms, one has ρ⊥ = ρN .
Obviously,

KN = 1

2

∑

1≤r<s≤2m−n

Trace[Ar , As]2 =
∑

1≤r<s≤2m−n

∑

1≤i< j≤n

(g([Ar , As]ei , e j ))2.

Generalized Wintgen inequality for slant submanifolds in complex space forms
has the following form.

Theorem 2.5.1 ([39]) Let M be an n-dimensional θ-slant submanifold of an m-
dimensional complex space form M̃(4c). Then

||H ||2 ≥ ρ + ρN − c − 3c

n − 1
cos2 θ. (2.5.1)

Proof Let M be a θ-slant submanifold of a complex space form M̃(4c), {e1, . . . , en}
an orthonormal frame on M and {ξ1, . . . , ξ2m−n} an orthonormal frame in the normal
bundle T⊥M .

The Gauss and Ricci equations are
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R(X,Y, Z ,W ) = c[g(X, Z)g(Y,W ) − g(Y, Z)g(X,W )+

+g(J X, Z)g(JY,W ) − g(J X,W )g(JY, Z) + 2g(J X,Y )g(J Z ,W )]+

+g(h(X, Z), h(Y,W )) − g(h(X,W ), h(Y, Z)),

for any vector fields X,Y, Z ,W ∈ �(T M),

R⊥(X, Y, ξ, η) = c[g(J X, ξ)g(JY, η) − g(J X, η)g(JY, ξ) + 2g(J X, Y )g(Jξ, η)]−

−g([Aξ, Aη]X, Y ),

for any vector fields X,Y ∈ �(T M) and ξ, η ∈ �(T⊥M).

Similarly, as in the proof of Lemma 2.4 from [39], we get

n2||H ||2 − n2ρN ≥ 2n

n − 1

2m−n∑

r=1

∑

1≤i< j≤n

[hrii hrj j − (hri j )
2]. (2.5.2)

The Gauss equation implies

τ =
∑

1≤i< j≤n

R(ei , e j , ei , e j ) =
[
n(n − 1)

2
+ 3

2
n cos2 θ

]
c+ (2.5.3)

+
2m−n∑

r=1

∑

1≤i< j≤n

[hrii hrj j − (hri j )
2].

Substituting (2.5.3) in (2.5.2), we obtain

||H ||2 − ρN ≥ ρ − c − 3c

n − 1
cos2 θ.

Corollary 2.5.2 Let M be an n-dimensional θ-slant submanifold of Cm. Then

||H ||2 ≥ ρ + ρ⊥.

2.6 Quasi-minimal Slant Surfaces in C
2
1

B.-Y. Chen and the second author [20] classified quasi-minimal slant surfaces in the
Lorentzian complex plane C2

1. More precisely, they proved that there exist five large
families of quasi-minimal proper slant surfaces in C

2
1. Conversely, quasi-minimal

slant surfaces in C
2
1 are either Lagrangian or locally obtained from one of the five
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families. Moreover, quasi-minimal slant surfaces in a non-flat Lorentzian complex
space form are Lagrangian.

A Lorentzian complex space form (M̃n
1 (4c), 〈 , 〉, J ) is an indefinite Kähler man-

ifold of constant holomorphic sectional curvature 4c and with complex index one.
The curvature tensor R̃ of M̃n

1 (4c) is given by

R̃(X,Y )Z = c{〈Y, Z〉X−〈X, Z〉Y +〈JY, Z〉 J X
− 〈J X, Z〉JY +2 〈X, JY 〉J Z},

where J is the almost complex structure on M̃n
1 (4c). The simplest Lorentzian com-

plex form is the Lorentzian complex n-planeCn
1 with complex coordinates z1, . . . , zn

endowed with the flat complex Lorentzian metric:

g = −dz1dz̄1 +
n∑

j=2

dz jd z̄ j .

For a Lorentzian surface M in a Lorentzian complex space form M̃2
1 (4c), let g be

the induced metric on M and 〈 , 〉 the inner product associated with g̃.
The notion of slant surfaces in Lorentzian Kähler surfaces can be defined as in

Kähler surfaces (see [20]). Quasi-minimal Lagrangian surfaces in Lorentzian com-
plex space forms have been classified in [19].

Recall that a submanifold M in a Lorentzian manifold M̃ is said to be quasi-
minimal [47] if its mean curvature vector is a null (or light-like) vector field.

Quasi-minimal surfaces are also known asmarginally trapped surfaces in general
relativity.

Theorem 2.6.1 ([20]) There do not exist quasi-minimal proper slant surfaces in any
Lorentzian complex space form M̃2

1 (4c) with c �= 0.

Therefore, we classify the quasi-minimal slant surfaces in the Lorentzian complex
plane C2

1.

Theorem 2.6.2 Let θ be a nonzero real number. Then we have:

(I) If z(s) is a null curve in the light cone LC satisfying 〈z′, i z〉 = 2 sinh θ, then

L(s, t) = z(s)t
1
2 (1−i cschθ)

defines a flat quasi-minimal θ-slant surface in the Lorentzian complex plane C2
1.

(II) If z(s) is a null curve lying in LC which satisfies 〈z, i z′〉 = 1, then

L(s, y) = z(s)e(i−sinh θ)y
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defines a flat quasi-minimal θ-slant surface in C2
1.

(III) For any given function ϕ(t) defined on an open interval I � 1,

L(s, t) = 2 sinh θ

t
1
2 (i cschθ−1)

(∫ t

1
tϕ(t)dt + t

1
2 (i cschθ−1)

∫ t

1
ϕ(t)t

1
2 (3−i cschθ)dt−

− i

2
− s

2
cschθ,

∫ t

1
tϕ(t)dt+t

1
2 (i cschθ−1)

∫ t

1
ϕ(t)t

1
2 (3−i cschθ)dt+

+ i

2
− s

2
cschθ

)

defines a flat quasi-minimal θ-slant surface in C2
1.

(IV) Let μ(t) and ϕ(t) be two functions defined on an open interval I � 0. Put
F(t) = ∫ t

0 μ(t)dt and �(t) = ϕ(t)e−2F(t) sinh θ. Then

L(s, t) =
(
se(i−sinh θ)F(t) + (sinh θ − i)

∫ t

0
�(t)

(∫ t

0
e(i+sinh θ)F(u)du

)
dt+

+ (1 + i sinh θ)

(∫ t

0
e(i+sinh θ)F(t)dt

)(
1

2
+ i
∫ t

0
�(t)dt

)
,

se(i−sinh θ)F(t) + (sinh θ − i)
∫ t

0
�(t)

(∫ t

0
e(i+sinh θ)F(u)du

)
dt+

+ (i − sinh θ)

(∫ t

0
e(i+sinh θ)F(t)dt

)(
i

2
+
∫ t

0
�(t)dt

))

defines a flat quasi-minimal θ-slant surface in C2
1.

(V) Let q(s) be a function defined on on open interval I � 0, φ(s, y) be a solution
of the second differential equation

φss − q(s)φ = cosh2 θe− 4
3 y sinh θ

and z be a null curve in C2
1 satisfying

〈
z′′, z′′〉 = 0 and

〈
z′, i z′′〉 = cosh2 θ. If φ is not

the product of two functions of single variable, then

L(s, y) =
∫ y

0

φz′′ − φs z′ + cosh2 θe− 4
3 y sinh θz

(sinh θ + i)e−y(i+ 1
3 sinh θ)

dy + z(s)ey(i−sinh θ)

defines a non-flat quasi-minimal θ-slant surface in C2
1.

Conversely, quasi-minimal slant surfaces in C
2
1 are either Lagrangian or, up to

dilations and rigid motions of C2
1, obtained locally from the five families of proper

slant surfaces.

Now, we provide some examples of quasi-minimal slant surfaces of type (V).
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Example 1 If we choose q(s) = 0, then

φ = u(y)s + v(y) + 1

2
s2e− 4

3 y sinh θ cosh2 θ,

z = c1s + c2s
2 + c3

for arbitrary functions u(y), v(y) and some vectors c1, c2, c3 ∈ C
2
1. It follows that

the immersion of the quasi-minimal slant surface is congruent to

L(s, y) = 1

i + sinh θ

(∫ y

0
(2c2v(y) − c1u(y))ey(i+

1
3 sinh θ)dy

)
+ c1s + c2s2

ey(sinh θ−i)
.

So, after choosing suitable initial conditions, we obtain the following example of
quasi-minimal proper slant surfaces of type (V):

L =
(
4s cosh2 θ + is2

4ey(sinh θ−i)
+
∫ y
0 (iv(y) − 2 cosh2 θu(y))ey(i+ 1

3 sinh θ)dy

2(i + sinh θ)
,

4s cosh2 θ − is2

4ey(sinh θ−i)
−
∫ y
0 (iv(y) + 2 cosh2 θu(y))ey(i+ 1

3 sinh θ)dy

2(i + sinh θ)

)
.

A direct computation shows that the Gauss curvature of the surface is given by

K = 6(u′v − uv′)e 4
3 y sinh θ − s cosh2 θ(3su′ + 6v′ + (4su + 8v) sinh θ)

6φ3e
2
3 y sinh θ

.

Example 2 If we choose q(s) to be a negative number −b2 (b > 0), then we have

φ = u(y) cos bs + v(y) sin bs + 1

b2
e− 4

3 y sinh θ cosh2 θ,

z = c1 cos bs + c2 sin bs + c3

for arbitrary functions u(y), v(y) and vectors c1, c2, c3 ∈ C
2
1. In this case, the quasi-

minimal slant surface is congruent to

L = b2(isech θ − tanh θ)

cosh θ

(∫ y

0
(c1u(y) + c2v(y))ey(i+

1
3 sinh θ)dy

)
+

+ c1 cos bs + c2 sin bs

ey(sinh θ−i)
.

After choosing suitable initial conditions, we obtain the following example:
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L = 1

2

(
2 cosh2 θ + ib3 tan bs

2b3ey(sinh θ−i) sec bs
−
∫ y
0 (2u(y) cosh2 θ + ib3v(y))ey(i+ 1

3 sinh θ)dy

2b(i + sinh θ)
,

2 cosh2 θ − ib3 tan bs

2b3ey(sinh θ−i) sec bs
−
∫ y
0 (2u(y) cosh2 θ − ib3v(y))ey(i+ 1

3 sinh θ)dy

2b(i + sinh θ)

)
.

A direct computation shows that the Gauss curvature of the surface is non-constant.

Example 3 If we choose q(s) to be a positive number b2 (b > 0), then we have

φ = u(y) cosh bs + v(y) sinh bs − 1

b2
e− 4

3 y sinh θ cosh2 θ,

z = c1 cosh bs + c2 sinh bs + c3

for arbitrary functions u(y), v(y) and vectors c1, c2, c3 ∈ C
2
1. It follows that

L = b2

i + sinh θ

(∫ y

0
(c1u(y) − c2v(y))ey(i+

1
3 sinh θ)dy

)
−

− c1 cosh bs + c2 sinh bs

ey(sinh θ−i)
.

Hence, after choosing suitable initial conditions, we obtain the following example:

L =
(∫ y

0 (2u(y) cosh2 θ − ib3v(y))ey(i+ 1
3 sinh θ)dy

2b(i + sinh θ)
− 2 cosh2 θ + ib3 tanh bs

2b3ey(sinh θ−i)sech bs
,

∫ y
0 (2u(y) cosh2 θ + ib3v(y))ey(i+ 1

3 sinh θ)dy

2b(i + sinh θ)
− 2 cosh2 θ − ib3 tanh bs

2b3ey(sinh θ−i)sech bs

)
.

Adirect computation shows that such a quasi-minimal slant surface has non-constant
Gauss curvature.

Remark.K.Kenmotsu andD. Zhou proved in [27] that every surface in a complex
space form M̃(4c) of complex dimension 2 is proper slant if it has constant curvature
and nonzero parallel mean curvature vector. The above examples show that this result
does not hold in Lorentzian settings.

3 Slant Submanifolds in Sasakian Space Forms

Roughly speaking, a Sasakian manifold is the odd-dimensional correspondent of a
Kähler manifold.

A (2m + 1)-dimensional Riemannian manifold (M̃, g) it said to be a Sasakian
manifold if it admits an endomorphism ϕ of its tangent bundle T M̃, a vector field ξ
and a 1-form η, satisfying
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⎧
⎪⎨

⎪⎩

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ ϕ = 0,

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ),

(∇̃Xϕ)Y = g(X,Y )ξ − η(Y )X, ∇̃Xξ = −ϕX,

for any vector fields X,Y on T M̃, where ∇̃ denotes the Levi-Civita connection with
respect to g.

A plane section π in T M̃ is called aϕ-section if it is spanned by X andϕX,where
X is a unit tangent vector orthogonal to ξ. The sectional curvature of a ϕ-section
is called a ϕ-sectional curvature. A Sasakian manifold with constant ϕ-sectional
curvature c is said to be a Sasakian space form and is denoted by M̃(c).

The curvature tensor R̃ of a Sasakian space form M̃ is given by

R̃(X,Y )Z = c + 3

4
[g(Y, Z)X − g(X, Z)Y ]+

+c − 1

4
[η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ+

+g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX,Y )ϕZ ],

for any tangent vector fields X,Y, Z to M̃(c).
As examples of Sasakian space forms wementionR2m+1 and S2m+1 with standard

Sasakian structures (see [1, 50]).
The class of slant submanifolds of almost contactmetricmanifoldswas introduced

by A. Lotta [29] and studied by many authors [5]. In [41] the authors defined special
contact slant submanifolds of Sasakian space forms and proved the minimality of
such submanifolds satisfying the equality case of aChen-Ricci inequality, identically.

A submanifold M tangent to ξ in a Sasakian manifold is called a contact θ-slant
submanifold [5] if for any p ∈ M and any X ∈ TpM linearly independent on ξp, the
angle between ϕX and TpM is a constant θ, called the slant angle of M.

A proper contact θ-slant submanifold is a contact slant submanifold which is
neither invariant nor anti-invariant, that is, θ �= 0 and θ �= π

2 .

A proper contact θ-slant submanifold is a special contact θ-slant submanifold
[41] if

(∇XT )Y = cos2 θ[g(X,Y )ξ − η(Y )ξ], ∀X,Y ∈ �T M,

where T X and N X are the tangential and normal components of ϕX , for any vector
field X tangent to M.

We denote by ‖T ‖2 =∑n
i, j=1 g2(T ei , e j ), where {e1, . . . , en} is an orthonormal

basis of TpM, p ∈ M.

We remark that any 3-dimensional proper contact slant submanifold of a Sasakian
manifold is a special contact slant submanifold [5].

Before giving some examples of special contact slant submanifolds, we remind
the following result from [5].
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Theorem. Suppose that

x(u, v) = ( f1(u, v), f2(u, v), f3(u, v), f4(u, v))

defines a slant surface S in the complex space C2 with its usual Kählerian structure,
such that ∂/∂u and ∂/∂v are nonzero and perpendicular. Then,

y(u, v, t) = 2( f1(u, v), f2(u, v), f3(u, v), f4(u, v), t)

defines a 3-dimensional slant submanifold M in (R5,ϕ0, η, g), such that if we put

e1 = ∂

∂u
+ (2 f3

∂ f1
∂u

+ 2 f4
∂ f2
∂v

)
∂

∂t

and

e2 = ∂

∂v
+ (2 f3

∂ f1
∂v

+ 2 f4
∂ f2
∂v

)
∂

∂t
,

then {e1, e2, ξ} is an orthogonal basis of the tangent bundle of the submanifold.

Example. For any constant k �= 0,

x(u, v, t) = 2(u, k cos v, v, k sin v, t)

defines a special contact slant submanifoldM with slant angle θ= cos−1(1/
√
1 + k2).

Proof Let consider on the manifold R
5 the standard Sasakian structure, as follows:

η = 1

2
(dz −

2∑

i=1

yidxi ),

g = η ⊗ η + 1

4
(

2∑

i=1

dxi ⊗ dxi + dyi ⊗ dyi ),

ϕ0(

2∑

i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂z
) =

2∑

i=1

(Yi
∂

∂xi
− Xi

∂

∂yi
) +

2∑

i=1

Yi y
i ∂

∂z
.

So, we have

∂x

∂u
= 2(1, 0, 0, 0, 0),

∂x

∂v
= (0,−2k sin v, 2, 2k cos v, 0),

∂x

∂t
= (0, 0, 0, 0, 1),

and
∂ f1
∂u

= 1,
∂ f2
∂u

= 0,
∂ f1
∂v

= 0,
∂ f2
∂v

= −k sin v.
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It follows that

e1 = (2, 0, 0, 0, 2v), e2 = (0,−2k sin v, 2, 2k cos v,−2k2 sin2 v).

By orthonormalisation, we find an orthonormal frame {e∗
1, e

∗
2, ξ}.

Since the dimension is 3, x is a special contact slant immersion.

Other examples can be found in [5].

3.1 Euler Inequality

In [36], the first author et al. established for special contact slant submanifolds of
Sasakian space forms a Chen inequality which involves the scalar curvature (also
known as Euler inequality) and a Chen-Ricci inequality, as the contact versions of
the inequalities obtained in [33, 35], respectively.

First, we state the corresponding result of Corollary 2.1.3 for proper contact slant
3-dimensional submanifolds in 5-dimensional Sasakian space forms.

Theorem 3.1.1 ([43]) Let M be a 3-dimensional proper contact slant submanifold
of a 5-dimensional Sasakian space form M̃(c). Then we have:

‖H‖2 ≥ 8

9
τ − 2

9
[c + 3 + (3c + 5) cos2 θ].

Moreover, the equality sign holds at a point p ∈ M if and only if with respect to
some suitable adapted slant orthonormal basis {e0 = ξ, e1, e2, e3, e4} at p, the shape
operators at p take the following forms:

A3 =
⎛

⎝
3λ 0 sin θ
0 λ 0

sin θ 0 0

⎞

⎠ , A4 =
⎛

⎝
0 λ 0
λ 0 sin θ
0 sin θ 0

⎞

⎠ .

B.-Y. Chen and Y. Tazawa [22] proved that there do not exist minimal proper
slant surfaces in a non-flat complex space form. In [43], the authors showed that
there do not exist minimal 3-dimensional proper contact slant submanifolds in a
5-dimensional Sasakian space form M̃(c), with c �= 1.

A Sasakian space form M̃(1) is locally isometric to a sphere S2n+1. Minimal
3-dimensional proper contact slant submanifolds in S5 are characterized in the fol-
lowing:

Proposition 3.1.2 ([43]) A 3-dimensional proper contact slant submanifold in the
5-dimensional sphere S5 is minimal if and only if with respect to some suitable local
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adapted slant orthonormal frame {e0 = ξ, e1, e2, e3, e4} the shape operators take the
following forms:

A3 =
⎛

⎝
−λ 0 sin θ
0 λ 0

sin θ 0 0

⎞

⎠ , A4 =
⎛

⎝
0 λ 0
λ 0 sin θ
0 sin θ 0

⎞

⎠ .

The next theorem generalizes Theorem 3.1.1 for special contact slant submani-
folds in Sasakian space forms of arbitrary dimensions, more precisely one has the
following Chen inequality for the scalar curvature.

Theorem 3.1.3 ([36]) Let M be an (n + 1)-dimensional special contact slant sub-
manifold of a (2n + 1)-dimensional Sasakian space form M̃(c). Then

‖H‖2 ≥ 2(n + 2)

(n − 1) (n + 1)
τ − n(n + 2)

(n − 1)(n + 1)
· c + 3

4
− (3.1.1)

− n(n + 2)

(n − 1) (n + 1)2
(
3 cos2 θ − 2

) c − 1

4
+ n

(n + 1)2
sin2 θ.

The equality holds at any point p ∈ M if and only if there exists a real function μ on
M such that the second fundamental form satisfies the relations

h(e1, e1) = 3μe∗
1, h(e2, e2) = · · · = h(en, en) = μe∗

1,

h(e1, e j ) = μe∗
j , h(e j , ek) = 0 (2 ≤ j �= k �= n),

with respect to a suitable orthonormal frame {e0 = ξ, e1, . . . , en} on M, where e∗
k =

1
sin θ

Nek, k ∈ {1, . . . , n}.
If the second fundamental formof a submanifoldM satisfies the previous relations,

then M is a H -umbilical submanifold.

Remark. In particular, for c = −3 and θ = π
2 (M is an anti-invariant submanifold

in R2n+1), we find a result from [2].

Corollary 3.1.4 ([2]) Let M be an (n + 1)-dimensional anti-invariant submanifold
of the Sasakian space form R

2n+1. Then, at any point p ∈ M, the squared mean
curvature and the scalar curvature satisfy the inequality

‖H‖2 ≥ 2(n + 2)

(n − 1) (n + 1)
τ .

Moreover, the equality holds at any point p ∈ M if and only if there exists a real
function μ on M such that the second fundamental form satisfies the relations
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h(e1, e1) = 3μϕe1, h(e2, e2) = · · · = h(en, en) = μϕe1,

h(e1, e j ) = μϕe j , h(e j , ek) = 0 (2 ≤ j �= k �= n),

with respect to a suitable orthonormal frame {e0 = ξ, e1, . . . , en} on M.

As a proper example of an anti-invariant submanifold in the Sasakian space form
R

2n+1 satisfying identically the equality case of the previous inequality, we consider
the Riemannian product of the Whitney n-sphere with the real line R.

3.2 Chen-Ricci Inequality

B.-Y. Chen [14] proved the Chen-Ricci inequality, more precisely he estimated the
mean curvature of a submanifold M in a real space form M̃(c) of constant sectional
curvature c, by using its Ricci curvature.

The same inequality was obtained for Lagrangian submanifolds in a complex
space form M̃(4c) (see [16]).

On the other hand, the second author [37] proved Chen-Ricci inequalities for
submanifolds in Sasakian space forms.

Theorem 3.2.1 ([37]) Let M be an n-dimensional C-totally real submanifold of a
(2m + 1)-dimensional Sasakian space form M̃(c). Then, for each unit vector X ∈
TpM, we have

Ric(X) ≤ 1

4
[(n − 1)(c + 3) + n2‖H‖2].

Theorem 3.2.2 ([37]) Let M̃(c) be a (2m + 1)-dimensional Sasakian space form
and M an n-dimensional submanifold tangent to ξ. Then, for each unit vector X ∈
TpM orthogonal to ξ, we have

Ric(X) ≤ 1

4
[(n − 1)(c + 3) + 3(||T X ||2 − 2)(c − 1) + n2‖H‖2].

In particular, for contact slant submanifolds in Sasakian space forms we derive
the following.

Corollary 3.2.3 ([37]) Let M̃(c) be a (2m + 1)-dimensional Sasakian space form
and M an n-dimensional contact θ-slant submanifold. Then, for each unit vector
X ∈ TpM orthogonal to ξ, we have

Ric(X) ≤ 1

4
[(n − 1)(c + 3) + 3(cos2 θ − 2)(c − 1) + n2‖H‖2].
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I. Mihai and I.N. Rădulescu [42] improved the inequality from Theorem 3.2.1 for
Legendrian submanifolds in Sasakian space forms.

Theorem 3.2.4 ([42]) Let M be an n-dimensional Legendrian submanifold in a
Sasakian space form M̃(c) of constant ϕ-sectional curvature c. Then, for any unit
tangent vector X to M, we have:

Ric(X) ≤ n − 1

4
(c + 3 + n||H ||2).

The equality sign holds identically if and only if either:
(i) M is totally geodesic, or
(ii) n = 2 and M is a H-umbilical Legendrian surface with λ = 3μ.

For special contact slant submanifolds in Sasakian space forms, the inequality
was improved in Theorem 3.2.5.

LetM be an (n + 1)-dimensional special contact slant submanifold of a (2n + 1)-
dimensional Sasakian space form M̃(c). We will take an orthonormal basis {e0 =
ξ, e1, . . . , en} of TpM , respectively, {e∗

1 = 1
sin θ

Ne1, . . . , e∗
n = 1

sin θ
Nen} of T⊥

p M . For
a contact θ-slant submanifold

∑n
j=2 g2(T e1, e j ) = cos2θ.

By considering X = Z = e1, Y = W = e j , j = 2, . . . , n, in the formula of the
curvature tensor R̃ of the Sasakian space form M̃(c), we obtain

R̃(e1, e j , e1, e j ) = c + 3

4

[
g(e1, e1)g(e j , e j ) − g(e j , e1)g(e1, e j )

]+ (3.2.1)

+c − 1

4

[−η(e1)η(e1)g(e j , e j ) + η(e j )η(e1)g(e1, e j )
]−

−g(e1, e1)η(e j )η(e j ) + g(e j , e1)η(e1)η(e j )−

−g(ϕe j , e1)g(ϕe1, e j ) + g(ϕe1, e1)g(ϕe j , e j ) + 2g(ϕe1, e j )g(ϕe1, e j ) =

= c + 3

4
+ 3

4
g2(ϕe1, e j )(c − 1).

Then
n∑

j=2

R̃
(
e1, e j , e1, e j

)+ R̃ (e1, e0, e1, e0) =

= n
c + 3

4
+ 3

4

n∑

j=2

g2(ϕe1, e j )(c − 1) + 1 = n
c + 3

4
+ 3

4
(c − 1) cos2 θ + 1.

We put e1 = X . The Gauss equation gives
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Ric(X) = n
c + 3

4
+ 3

4
(c − 1) cos2 θ + 1+

+
n∑

r=1

[hr11hr00 − (hr10)
2] +

n∑

j=2

[hr11hrj j − (hr1 j
)2].

But e0 = ξ and

hr00 = g
(
h (e0, e0) , e∗

r

) = g
(
h (ξ, ξ) , e∗

r

) = g
(
∇̃ξξ, e

∗
r

)
= 0,

because ∇̃ξξ = −ϕξ = 0.
Also

n∑

r=1

(
hr10
)2 =

n∑

r=1

g2
(
h (e1, e0) , e∗r

) =
n∑

r=1

g2
(
∇̃e1e0, e

∗
r

)
=

n∑

r=1

g2
(
φe1, e

∗
r
) = sin2 θ.

Then one has

Ric(X) = n
c + 3

4
+ 3

4
(c − 1) cos2 θ + 1 − sin2 θ+ (3.2.2)

+
n∑

r=1

n∑

j=1

[
hr11h

r
j j − (hr1 j )

2
]
.

Using the same arguments as in the proof of Theorem 3.3 from [35], we obtain
from (3.2.2)

Ric(X) − n
c + 3

4
− 3

4
(c − 1) cos2 θ − cos2 θ ≤ (n − 1)(n + 1)

4
‖H‖2 .

Therefore, we proved the following improved Chen-Ricci inequality.

Theorem 3.2.5 ([36]) Let M be an (n + 1)-dimensional special contact slant sub-
manifold of a (2n + 1)-dimensional Sasakian space form M̃(c). Then, for any unit
tangent vector X to M, we have

Ric(X) ≤ (n − 1)(n + 1)

4
‖H‖2 + n

c + 3

4
+ 3

4
(c − 1) cos2 θ + cos2 θ. (3.2.3)

The equality holds at every point p ∈ M if and only if either:
(i) M is a totally contact geodesic submanifold, i.e.,

h(X,Y ) = η(X)h(Y, ξ) + η(Y )h(X, ξ),
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for any X,Y ∈ �T M;
or

(ii) n = 2 and M is a 3-dimensional H-umbilical contact slant submanifold, i.e.,

h(e1, e1) = 3μe∗
1, h(e2, e2) = μe∗

1, h(e1, e2) = μe∗
2,

with respect to an orthonormal frame {e0 = ξ, e1, e2}.
Remark. The inequality (3.2.3) also holds for anti-invariant submanifolds in

Sasakian space forms.

3.3 Shape Operator AH

B.-Y. Chen [10] investigated relations between the shape operator AH in the direction
of the mean curvature vector and the sectional curvature and k-Ricci curvature,
respectively, for submanifolds in real space forms. Corresponding inequalities for
slant submanifolds in complex space forms were obtained by K. Matsumoto and the
present authors (see [31]).

Y.H. Kim, C.W. Lee, and D.W. Yoon [28] studied such inequalities for contact
slant submanifolds in Sasakian space forms.

We state some of these results. The proofs follow the same ideas as in [31].

Theorem 3.3.1 ([28]) Let x : M → M̃(c) be an isometric immersion of an (n + 1)-
dimensional contact θ-slant submanifold into an (2m + 1)-dimensional Sasakian
space form M̃(c) of constant ϕ-sectional curvature c. If there exists a point p ∈ M
and a number b > c+3

4 + 3(c−1)
4(n−1) cos

2 θ such that infD K (p) = K ≥ b at p, then the
shape operator at the mean curvature vector satisfies

AH >
n − 1

n

(
b − c + 3

4
− 3(c − 1)

4(n − 1)
cos2 θ

)
In, at p,

where Dp = {ξp}⊥ and In is the identity map of Dp.

In particular, for anti-invariant and invariant submanifolds, one has.

Corollary 3.3.2 ([28])Let M be an (n + 1)-dimensional anti-invariant submanifold
of a Sasakian space form M̃(c) tangent to the Reeb vector field and p ∈ M. If there
exists a number b > c+3

4 such that infD K (p) = K ≥ b at p, then

AH >
n − 1

n

(
b − c + 3

4

)
In, at p.
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Corollary 3.3.3 ([28]) Let M be an (n + 1)-dimensional invariant submanifold into
an (2m + 1)-dimensional Sasakian space form M̃(c) tangent to the Reeb vector field.
If there exists a point p ∈ M and a number b > c+3

4 + 3(c−1)
4(n−1) such that infD K (p) =

K ≥ b at p, then the shape operator at the mean curvature vector satisfies

AH >
n − 1

n

[
b − c + 3

4
− 3(c − 1)

4(n − 1)

]
In, at p.

Moreover, the authors estimated the shape operator AH in terms of the k-Ricci
curvature for contact slant submanifolds in Sasakian space forms. They considered
the Riemannian invariant �D

k defined by

�D
k (p) = 1

k − 1
inf
L ,X

RicL(X), p ∈ M,

where L runs over all k-plane sections in Dp and X runs over all unit vectors in L .

Theorem 3.3.4 ([28]) Let x : M → M̃(c) be an isometric immersion of an (n + 1)-
dimensional contact θ-slant submanifold M into a Sasakian space form M̃(c) of
constant ϕ-sectional curvature c. Then, for any integer k, 2 ≤ k ≤ n, and any point
p ∈ M, we have:

(i) If�D
k (p) �= c+3

4 + 3(c−1)
4(n−1) cos

2 θ, then the shape operator at themean curvature
satisfies

AH >
n − 1

n

[
�D

k (p) − c + 3

4
− 3(c − 1)

4(n − 1)
cos2 θ

]
In, at p.

(ii) If �D
k (p) = c+3

4 + 3(c−1)
4(n−1) cos

2 θ, then AH ≥ 0 at p.

(iii) A unit vector X ∈ Dp satisfies

AH X = n − 1

n

[
�D

k (p) − c + 3

4
− 3(c − 1)

4(n − 1)
cos2 θ

]
X

if and only if �D
k (p) = c+3

4 + 3(c−1)
4(n−1) cos

2 θ and X ∈ Dp ∩ ker h p.

In particular, similar inequalities hold for invariant and anti-invariant submani-
folds tangent to ξ in Sasakian space forms.

3.4 Chen Inequalities

In [23], the first author and D. Cioroboiu established Chen inequalities for contact
slant submanifolds in Sasakian space forms, by using subspaces orthogonal to the
Reeb vector field ξ.
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We state Chen’s first inequality for contact slant submanifolds in a Sasakian space
form.We give thewhole proof for illustrating the techniques and the particular choice
of the orthonormal basis of the tangent space. We pointed out that we considered
2-plane sections π orthogonal to ξ and invariant by T . It is known that the sectional
curvature of a plane section tangent to ξ is 1.

Theorem 3.4.1 ([23]) Let M be an (n = 2k + 1)-dimensional contact θ-slant sub-
manifold in a (2m + 1)-dimensional Sasakian space form M̃(c). Then we have:

δ′
M ≤ n − 2

2

[
n2

n − 1
‖H‖2 + (c + 3)(n + 1)

4

]
+ c − 1

8
[3(n − 3) cos2 θ − 2(n − 1)].

(3.4.1)
The equality case of the inequality (3.4.1) holds at a point p ∈ M if and only if there
exists an orthonormal basis {e1, . . . , en = ξ} of TpM and an orthonormal basis
{en+1, . . . , e2m, e2m+1} of T⊥

p M such that the shape operators of M in M̃(c) at p
have the following forms:

An+1 =
⎛

⎝
a 0 0 . . . 0
0 b 0 . . . 0
0 0 μIn−2

⎞

⎠ , a + b = μ, (3.4.2)

Ar =
⎛

⎝
hr11 h

r
12 0 . . . 0

hr12 −hr11 0 . . . 0
0 0 0n−2

⎞

⎠ , r ∈ {n + 2, . . . , 2m + 1}. (3.4.3)

Proof Since M̃(c) is a Sasakian space form, then we have

R̃(X,Y, Z ,W ) = c + 3

4
{−g(Y, Z)g(X,W ) + g(X, Z)g(Y,W )}+ (3.4.4)

+c − 1

4
{−η(X)η(Z)g(Y,W ) + η(Y )η(Z)g(X,W ) − g(X, Z)η(Y )g(ξ,W )+

+g(Y, Z)η(X)g(ξ,W ) − g(ϕY, Z)g(ϕX,W ) + g(ϕX, Z)g(ϕY,W )+

+2g(ϕX,Y )g(ϕZ ,W )}, X,Y, Z ,W ∈ �(T M).

Let p ∈ M and {e1, . . . , en = ξ} an orthonormal basis of TpM and {en+1, . . . ,

e2m, e2m+1} an orthonormal basis of T⊥
p M. For X = Z = ei ,Y = W = e j , i, j ∈

{1, . . . , n}. From the relation (3.4.4), it follows that

R̃(ei , e j , ei , e j ) = c + 3

4
(−n + n2)+ (3.4.5)

+c − 1

4
{−2(n − 1) + 3

n∑

i, j=1

g2(ϕei , e j )}.
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Let M ⊂ M̃(c) be a contact θ-slant submanifold, dim M = n = 2k + 1.
For X ∈ �(T M), we put

ϕX = T X + N X, T X ∈ �(T M), N X ∈ �(T⊥M).

Let p ∈ M and {e1, . . . , en = ξ} an orthonormal basis of TpM , with

e1, e2 = 1

cos θ
T e1, . . . , e2k = 1

cos θ
T e2k−1, e2k+1 = ξ.

We have

g(ϕe1, e2) = g(ϕe1,
1

cos θ
T e1) = 1

cos θ
g(ϕe1, T e1) = 1

cos θ
g(T e1, T e1) = cos θ

and, in the same way,
g2(ϕei , ei+1) = cos2 θ;

then
n∑

i, j=1

g2(ϕei , e j ) = (n − 1) cos2 θ.

By using the relation (3.4.5), we get

R̃(ei , e j , ei , e j ) = c + 3

4
(n2 − n) + c − 1

4
[3(n − 1) cos2 θ − 2(n − 1)]. (3.4.6)

Denoting by

‖h‖2 =
n∑

i, j=1

g(h(ei , e j ), h(ei , e j )), (3.4.7)

the relation (3.4.6) implies that

c + 3

4
n(n − 1) + c − 1

4
[3(n − 1) cos2 θ − 2n + 2] = 2τ − n2‖H‖2 + ‖h‖2,

(3.4.8)
or equivalently,

2τ = n2‖H‖2 − ‖h‖2 + c + 3

4
n(n − 1) + c − 1

4
[3(n − 1) cos2 θ − 2n + 2].

(3.4.9)
If we put

ε = 2τ − n2

n − 1
(n − 2)‖H‖2 − c + 3

4
n(n − 1) − c − 1

4
[3(n − 1) cos2 θ − 2n + 2],

(3.4.10)
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we obtain
n2‖H‖2 = (n − 1)(ε + ‖h‖2). (3.4.11)

Let p ∈ M , π ⊂ TpM a 2-plane section orthogonal to ξ and invariant by T , π =
sp{e1, e2}. We put en+1 = H

‖H‖ . The relation (3.4.11) becomes

(
n∑

i=1

hn+1
i i

)2

= (n − 1)

⎡

⎣
n∑

i, j=1

2m+1∑

r=n+1

(hri j )
2 + ε

⎤

⎦ ,

or equivalently,

(
n∑

i=1

hn+1
i i

)2

= (n − 1)

⎡

⎣
n∑

i=1

[(hn+1
i i )2 +

∑

i �= j

(hn+1
i j )2 +

2m+1∑

r=n+2

n∑

i, j=1

(hri j )
2 + ε

⎤

⎦ .

By using the algebraic Chen’s Lemma (see Lemma 3 from subsection 1.4), we
derive

2hn+1
11 hn+1

22 ≥
∑

i �= j

(hn+1
i j )2 +

n∑

i, j=1

2m+1∑

r=n+2

(hri j )
2 + ε. (3.4.12)

From the Gauss equation for X = Z = e1,Y = W = e2, we obtain

K (π) = c + 3

4
+ 3 cos2 θ · c − 1

4
+

2m+1∑

r=n+1

[hr11hr22 − (hr12)
2] ≥

≥ c + 3

4
+ 3 cos2 θ · c − 1

4
+1

2

∑

i �= j

(hn+1
i j )2 + 1

2

n∑

i, j=1

2m+1∑

r=n+2

(hri j )
2 + ε

2
+

+
2m+1∑

r=n+2

hr11h
r
22 −

2m+1∑

r=n+1

(hr12)
2 =

= c + 3

4
+ 3 cos2 θ · c − 1

4
+1

2

∑

i �= j

(hn+1
i j )2 + 1

2

2m+1∑

r=n+2

∑

i, j>2

(hri j )
2+

+1

2

2m+1∑

r=n+2

(hr11 + hr22)
2 +

∑

j>2

[(hn+1
1 j )2 + (hn+1

2 j )2] + ε

2
≥

≥ c + 3

4
+ 3 cos2 θ · c − 1

4
+ε

2
,
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or equivalently,

K (π) ≥ c + 3

4
+ 3 cos2 θ · c − 1

4
+ε

2
.

Then

inf K ≥ c + 3

4
+ 3 cos2 θ · c − 1

4
+ τ−

−c + 3

8
(n2 − n) + c − 1

8
[3(n − 1) cos2 θ − 2n + 2]} − n2(n − 2)

2(n − 1)
‖H‖2 .

The last inequality implies

τ − inf K (π) ≤ n − 2

2

[
n2

n − 1
‖H‖2 + (c + 3)(n + 1)

4

]
+

+ (c − 1)

8
[3(n − 3) cos2 θ − 2(n − 1)].

This relation represents the inequality to prove.
The case of equality at a point p ∈ M holds if and only if it achieves the equality

in the previous inequality and we have the equality in the Chen’s Lemma, which
means ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

hn+1
i j = 0, ∀i �= j, i, j > 2,

hri j = 0, ∀i �= j, i, j > 2, r = n + 1, . . . , 2m + 1,

hr11 + hr22 = 0, ∀r = n + 2, . . . , 2m + 1,

hn+1
1 j = hn+1

2 j = 0, ∀ j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = · · · = hn+1

nn .

We may choose {e1, e2} such that hn+1
12 = 0 and we denote by a = hr11, b =

hr22,μ = hn+1
33 = · · · = hn+1

nn . It follows that the shape operators take the desired
forms.

A. Carriazo [6] has established another version of the first Chen inequality for
submanifolds tangent to the structure vector field ξ of a Sasakian space form. More
precisely, he has proved the following theorem for proper slant submanifolds in
Sasakian space forms.

Theorem 3.4.2 Let ϕ : M → M̃(c) be an isometric immersion from a Riemannian
(n + 1)-manifold into a Sasakian space form M̃(c), of dimension 2m + 1 such that
ξ ∈ T M. Then, for any point p ∈ M and any plane sections π ⊂ Dp, we have

τ − K (π) ≤ (n + 1)2(n − 1)

2n
‖H‖2 + 1

2
(n + 1)(n − 2)

c + 3

4
+

+n + 3

2
‖T ‖2 c − 1

4
− 3�(π)

c − 1

4
− ‖N‖2,
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where �(π) = g2(ϕe1, e2) is independent on the orthonormal basis {e1, e2} of π.
Corollary 3.4.3 ([23]) Let M be an (n = 2k + 1)-dimensional invariant submani-
fold in a (2m + 1)-dimensional Sasakian space form M̃(c). Then we have:

δ′
M ≤ (c + 3)(n − 2)(n + 1)

8
+ (c − 1)(n − 7)

8
,

where δ′
M(p) = τ (p) − inf{K (π)|π ⊂ Dp,φ(π) ⊂ π}.

Corollary 3.4.4 ([23]) Let M be an n-dimensional anti-invariant submanifold in a
(2m + 1)-dimensional Sasakian space form M̃(c). Then we have:

δM ≤ n − 2

2

[
n2

n − 1
‖H‖2 + (c + 3)(n + 1)

4

]
− (c − 1)(n − 1)

4
.

The inequality from Theorem 3.4.1 was improved in [46] for special contact slant
submanifolds in Sasakian space forms.

Theorem 3.4.5 Let M be an (n + 1)-dimensional special contact slant subman-
ifold into a Sasakian space form M̃(c) and p ∈ M, π ⊂ TpM a 2-plane section
orthogonal to ξ. Then

τ (p) − K (p) ≤ n2(2n − 3)

2(2n + 3)
‖H‖2 + (n + 1)(n − 2)

8
(c + 3)+

+ 3n cos2 θ
(c − 1)

8
− 3�(π)

4
(c − 1) + n cos2 θ.

Moreover, the equality case of the inequality holds for some plane section π at a
point p ∈ M if and only if there exists an orthonormal basis {e0 = ξ, e1, e2, · · · , en}
at p such that π = span{e1, e2} and with respect to this basis the second fundamental
form takes the following form

h(e1, e1) = aNe1 + 3bNe3, h(e1, e3) = 3bNe1, h(e3, e j ) = 4bNe j ,

h(e2, e2) = −aNe1 + 3bNe3, h(e2, e3) = 3bNe2, h(e j , ek) = 4bNe3δ jk,

h(e1, e2) = −aNe2, h(e3, e3) = 12bNe3, h(e1, e j ) = h(e2, e j ) = 0,

for some numbers a, b and j, k = 4, . . . , n.

The proof follows the ideas from the proof of Theorem 2.4.5.

Let k ∈ N
∗ and n1, . . . , nk integers ≥ 2 such that n1 < n and n1 + · · · + nk ≤ n.

The Chen invariant δ(n1, . . . , nk) at p ∈ M is defined by [12]

δ(n1, . . . , nk)(p) = τ (p) − inf{τ (L1) + · · · + τ (Lk)},
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where L1, . . . , Lk are mutually orthogonal subspaces of TpM , dim L j = n j , for all
j = 1, . . . , k.

Theorem 3.4.1 was generalized for the Chen invariants δ(n1, . . . , nk). We notice
that we consider only subspaces orthogonal to ξ.

Theorem 3.4.6 ([23]) Let M be an (n = 2k + 1)-dimensional contact θ-slant sub-
manifold in a (2m + 1)-dimensional Sasakian space form M̃(c). Then we have

δ(n1, . . . , nk) ≤ d(n1, . . . , nk) ‖H‖2 + b(n1, . . . , nk)
c + 3

8
+

+c − 1

8

⎡

⎣3(n − 1) cos2 θ − 6
k∑

j=1

n j cos
2 θ

⎤

⎦ ,

where

d(n1, . . . , nk) = n2(n + k − 1 −∑k
j=1 n j )

2(n + k −∑k
j=1)

, b(n1, . . . , nk) = 1

2
[n(n − 1) −

k∑

j=1

n j (n j − 1)].

The proof is based on the following

Lemma 3.4.7 ([23]) Let M be an (n = 2k + 1)-dimensional contact θ-slant sub-
manifold in a (2m + 1)-dimensional Sasakian space form M̃(c). Let n1, . . . , nk be
integers ≥ 2 satisfying n1 < n and n1 + · · · + nk ≤ n. For p ∈ M, let L j ⊂ TpM
be mutually orthogonal subspaces of TpM, dim L j = n j , ∀ j ∈ {1, . . . , k}. Then we
have

τ −
k∑

j=1

τ (L j ) ≤ d(n1, . . . , nk) ‖H‖2 +
[
c + 3

8
n(n − 1) + c − 1

8
(3 ‖P‖2 − 2n + 2)

]
−

−
k∑

j=1

[
c + 3

8
n j (n j − 1) + c − 1

4
3�(L j )

]
,

where �(L) =∑1≤i< j≤r g2(Tui , u j ) and {u1, . . . , ur } is an orthonormal basis of
the r-dimensional subspace L of TpM.

This Lemma is a contact version of a Lemma from [15].

Corollary 3.4.8 ([23]) Let M be an (n = 2k + 1)-dimensional invariant submani-
fold in a (2m + 1)-dimensional Sasakian space form M̃(c). Then we have:
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δ(n1, . . . , nk) ≤ b(n1, . . . , nk)
c + 3

8
+ c − 1

8

⎡

⎣3(n − 1) − 6
k∑

j=1

n j

⎤

⎦ .

Corollary 3.4.9 ([23]) Let M be an (n = 2k + 1)-dimensional anti-invariant sub-
manifold in a (2m + 1)-dimensional Sasakian space form M̃(c). Then we have:

δ(n1, . . . , nk) ≤ d(n1, . . . , nk) ‖H‖2 + b(n1, . . . , nk)
c + 3

8
.

3.5 Generalized Wintgen Inequality

A Wintgen inequality for 3-dimensional contact slant submanifolds M in a 5-
dimensional Sasakian space form M̃(c) was obtained by the second author and Y.
Tazawa.

Let p ∈ M and {e0 = ξ, e1, e2, e3, e4} an adapted slant orthonormal basis of
Tp M̃(c) such that e0, e1, e2 ∈ TpM . We define the scalar normal curvature τ⊥ at
p by τ⊥ = g(R⊥(e1, e2)e4, e3).

Theorem 3.5.1 ([43]) Let M be a 3-dimensional proper contact slant submanifold
of a 5-dimensional Sasakian space form M̃(c). Then we have

‖H‖2 ≥ 4

9
(τ + τ⊥) − 2

9
(c + 1) − 8

9
cos2 θ.

Moreover, the equality sign holds at a point p ∈ M if and only if with respect to
some suitable adapted slant orthonormal basis {e0 = ξ, e1, e2, e3, e4} at p, the shape
operators at p take the following forms:

A3 =
⎛

⎝
−λ μ sin θ
μ λ 0

sin θ 0 0

⎞

⎠ , A4 =
⎛

⎝
μ λ 0
λ −μ sin θ
0 sin θ 0

⎞

⎠ .

Corollary 3.5.2 ([43]) Each 3-dimensional proper contact slant submanifold M of
a 5-dimensional Sasakian space form M̃(c) which satisfies the equality case of the
above inequality at every point p ∈ M is a minimal submanifold.

We state a generalized Wintgen inequality for slant submanifolds in Sasakian
space forms.

Theorem 3.5.3 ([40]) Let M be an n-dimensional contact θ-slant submanifold of a
(2m + 1)-dimensional Sasakian space form M̃(c). Then

||H ||2 ≥ ρ + ρN − c + 3

4
− (3 cos2 θ − 2)(c − 1)

4n
.
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In particular, we derive:

Corollary 3.5.4 ([40]) Let M be an n-dimensional contact θ-slant submanifold of
S2m+1. Then

||H ||2 ≥ ρ + ρ⊥ − 1.
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Geometry of Warped Product Semi-Slant
Submanifolds in Almost Contact Metric
Manifolds

Akram Ali, Wan Ainun Mior Othman, Ali H. Alkhaldi,
and Aliya Naaz Siddiqui

1 Introduction

The concept of a warped product is important in general relativity theory, and it is
a useful tool since general relativity theory provides us with the best mathematical
model for our universe. In order to construct basic cosmological models for the cos-
mos, the warped product method was successfully employed in general relativity
and semi-Riemannian geometry. The Robertson-Walker space–time, Friedman cos-
mological models, and standard static space–time, for example, are all represented
as warped product manifolds [30]. Warped product manifolds are a good setting
for modeling space–time near black holes or entities with large gravitational forces
in more cosmological applications. The relativistic model of Schwarzschild space–
time, which describes the outer space around a big star or a black hole, for example,
enables a warped product construction. Bishop and O’Neill [11] proposed the con-
cept of warped product manifolds with negative curvature manifolds. The study of
warped product submanifolds in nearly Hermitian and almost contact metric man-
ifolds has long been a research topic, particularly since Chen [18, 19] introduced
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the concept of CR-warped products in a Kaehler manifold. Furthermore, we refer to
a survey of warped product submanifolds and associated geometric obstructions in
various configurations [21, 22].

It iswell known from literature that a (2m + 1)-dimensionalmanifold ˜M endowed
with almost contact structure (ϕ, ξ, η, g) is called an almost contact metric manifold
when it satisfies the following properties:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕ(ξ) = 0, η ◦ ϕ = 0, (1.1)

g(ϕU,ϕV ) = g(U, V ) − η(U )η(V ), and η(U ) = g(U, ξ), (1.2)

for anyU, V ∈ �(T ˜M), whereϕ, g, ξ, and η are called (1, 1)-tensor fields, a structure
vector field, and dual 1-form, respectively, and the symbol �(T ˜M) denotes Lie
algebra of vector fields on a manifold ˜M .

Furthermore, an almost contact metric manifold is known to be a Sasakian man-
ifold (cf. [10]) if

(˜∇Uϕ)V = g(U, V )ξ − η(V )U, ˜∇Uξ = −ϕU, (1.3)

for any U, V ∈ �(T ˜M), where ˜∇ denotes the Riemannian connection with respect
to g. An almost contact metric structure (ϕ, η, ξ) is said to be nearly trans-Sasakian
manifold (cf. [28]) that is, if

(˜∇Uϕ)V + (˜∇Vϕ)U =α

(

2g(U, V )ξ − η(U )V − η(V )U

)

− β

(

η(V )ϕU + η(U )ϕV

)

, (1.4)

for anyU, V ∈ �(T ˜M), where˜∇ is the Riemannian connection metric g on ˜M . Here
α and β are some smooth functions on ˜M . If we replace U = ξ, V = ξ in (1.4),
we find that (˜∇ξϕ)ξ = 0, which implies that ϕ˜∇ξξ = 0. Now applying ϕ and using
(1.1), we get ˜∇ξξ = 0. For more classification, see [25, 26].

Remark 1.1 (i) If α = 0 β = 0 in (1.4), then nearly trans-Sasakian becomes
nearly cosymplectic manifold, if α = 1 and β = 0 in (1.4). Thus it is called
nearly Sasakian manifold.

(˜∇Uϕ)V + (˜∇Vϕ)U = 2g(U, V )ξ − η(V )U − η(U )V . (1.5)

(ii) If α = 0 and β = 1 in (1.4), then nearly trans-Sasakian turns into nearly Ken-
motsu manifold.

(iii) Similarly, nearly α-Sasakian manifold and nearly β−Kenmotsu manifold can
be defined from nearly trans-Sasakianmanifold by substitutingβ = 0 and α =
0 in (1.4), respectively.
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Let M be an n-dimensional submanifold of a (2m + 1)-dimensional almost con-
tact metric manifold ˜M with the induced metric g, if ∇ and ∇⊥ are the induced
connections on the tangent bundle T M and the normal bundle T⊥M of M , respec-
tively. Then Gauss and Weingarten formulas are given by

(i) ˜∇UV = ∇UV + h(U, V ), (i i) ˜∇U N = −ANU + ∇⊥
U N , (1.6)

for any U, V ∈ �(T M) and N ∈ �(T⊥M), where h and AN are the second funda-
mental form and the shape operator (corresponding to the normal vector field N ),
respectively, for the immersion of M into ˜M and they are related as

g(h(U, V ), N ) = g(ANU, V ), (1.7)

where g denotes the Riemannian metric on ˜M as well as the metric induced on M .
Now, for any U ∈ �(T M) and N ∈ �(T⊥M), we put

(i) ϕU = PU + FU, (i i) ϕN = t N + f N , (1.8)

where PU (respectively t N ) and FU (respectively f N ) are tangential and normal
components of ϕU (respectively ϕN ). From (1.1) and (1.8) (i), it is easy to observe
that for each U, V ∈ �(T M), we have

(i) g(PU, V ) = −g(U, PV ), (i i) ||P||2 =
n

∑

i, j=1

g2(Pei , e j ). (1.9)

Further, the covariant derivative of the endomorphism ϕ is defined as

(˜∇Uϕ)V = ˜∇UϕV − ϕ˜∇UV, (1.10)

for any U, V ∈ �(T ˜M).
For a submanifold M , the Gauss equation is defined as

˜R(U, V, Z ,W ) = R(U, V, Z ,W ) + g(h(U, Z), h(V,W )) − g(h(U,W ), h(V, Z)),

(1.11)

for any U, V, Z ,W ∈ �(T M), where ˜R and R are the curvature tensors on ˜M and
M , respectively.

A Sasakian manifold is said to be Sasakian space form with constant ϕ-sectional
curvature c if and only if the Riemannian curvature tensor ˜R is given by (see [10])
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˜R(X,Y, Z ,W ) = c + 3

4

{

g(Y, Z)g(X,W ) − g(X, Z)g(Y,W )

}

+c − 1

4

{

η(X)η(Z)g(Y,W ) + η(W )η(Y )g(X, Z)

− η(Y )η(Z)g(X,W ) − η(X)g(Y, Z)η(W )

+ g(ϕY, Z)g(ϕX,W )

− g(ϕX, Z)g(ϕY,W ) + 2g(X,ϕY )g(ϕZ ,W )

}

. (1.12)

The mean curvature vector H for an orthonormal frame {e1, e2, . . . en} of tangent
space T M on M is defined by

H = 1

n
trace(h) = 1

n

n
∑

i=1

h(ei , ei ), and ||H ||2 = 1

n2

(
n

∑

i=1

h(ei , ei )
)2

, (1.13)

where n = dim(M). Also, we set

hri j = g(h(ei , e j ), er ), and ||h||2 =
n

∑

i, j=1

g(h(ei , e j ), h(ei , e j )). (1.14)

The scalar curvature τ for a submanifold M of almost Hermitian manifolds ˜M is
given by

τ (T M) =
∑

1≤i �= j≤n

K (ei ∧ e j ), (1.15)

where K (ei ∧ e j ) is the sectional curvature of plane section spanned by ei and e j .
Let Gr be a r -plane section on T M and {e1, e2, . . . , er } any orthonormal basis of
Gr . Then, the scalar curvature τ (Gr ) of Gr is given by

τ (Gr ) =
∑

1≤i �= j≤r

K (ei ∧ e j ). (1.16)

A submanifold M of an almost contact metric manifold ˜M is said to be totally
umbilical and totally geodesic if h(U, V ) = g(U, V )H and h(U, V ) = 0, respec-
tively, for all U, V ∈ �(T M), where H is the mean curvature vector of M . Further-
more, if H = 0, then M is minimal submanifold in ˜M . The covariant derivative of
the endomorphism ϕ is defined as

(˜∇Uϕ)V = ˜∇UϕV − ϕ˜∇UV, U, V ∈ �(T ˜M). (1.17)
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In [32], A. Lotta introduced the notion of slant immersion in almost contact metric
manifolds.

Definition 1.2 ([12]) Let ˜M be a Sasakianmanifold with an almost contact structure
(ϕ, ξ, η) and M be a submanifold tangent to the structure vector field ξ isometrically
immersed in ˜M . Then M is called invariant if ϕ(TxM) ⊆ TxM and M is called anti-
invariant ifϕ(TxM) ⊂ T⊥

x M for every x ∈ M where TxM denotes the tangent bundle
of M at the point x . Moreover, M is called slant submanifold if for all nonzero vector
U tangent to M at a point x , the angle of θ(U ) between ϕU and TxM is constant,
that is, it does not depend on the choice of x ∈ M andU ∈ TxM− < ξ(x) >, where
< ξ(x) > is a one-dimensional distribution spanned by ξ(x) for each point x ∈ M .

Chen and Gray [23] derived some classifications of pointwise slant submanifolds
in almost Hermitian manifolds. It has been studied in almost contact manifolds by
Park in [40], Balgeshir [31], and Mihai [38]. They defined these submanifolds as
follows.

Definition 1.3 An odd-dimensional submanifold M of an almost contact metric
manifold ˜M is called pointwise slant submanifold if any nonzero vector X tangent
to M at x ∈ M such that X is not proportional to ξx , and the Wirtinger angle θ(X)

between ϕX and T ∗M = T M − {0} is independent of the choice of nonzero vector
X ∈ T ∗M . The Wirtinger angle becomes a real-valued function defined on T ∗M
such that θ : T ∗M → R, which is said to be a Wirtinger function (slant function).

Lemma 1.4 ([40]) Let M be a submanifold of an almost contact metric manifold
˜M. Then M is pointwise slant if and only if there exists a constant δ ∈ [0, 1] such
that

P2 = δ
( − I + η ⊗ ξ

)

. (1.18)

Furthermore, in such a case, θ is real-valued function defined on the tangent
bundle T ∗M = ⋃

x∈M Mx = ⋃

x∈M {X ∈ TxM : g(X, ξ(x)) = 0}, then it satisfies
that δ = cos2 θ.

Hence, for a pointwise slant submanifold M of an almost contact metric manifold
˜M , the following relations are consequences of Lemma 1.4.

g(PU, PV ) = cos2 θ

(

g(U, V ) − η(U )η(V )

)

, (1.19)

g(FU, FV ) = sin2 θ

(

g(U, V ) − η(U )η(V )

)

, (1.20)

for any U, V ∈ �(T ∗M).
The study of slant and semi-slant submanifolds in almost Hermitian manifolds

startedwith theworks of Chen [17] and Papaghiuc [39], where the slant submanifolds
act as a natural generalization of complex (holomorphic) and totally real submani-
folds. The notion of pointwise slant submanifolds in almost Hermitianmanifolds was
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initiated by Etayo [27] under the name of quasi-slant submanifolds as a generaliza-
tion of slant and semi-slant submanifolds. Further, Sahin [42] studied the pointwise
semi-slant submanifold as a natural generalization of CR-submanifolds of almost
Hermitian manifolds in terms of slant function, and his results were extended to
the settings of contact manifolds by Park [40]. These submanifolds are defined as
follows:

Definition 1.5 ([27]) A submanifold M of an almost contact metric manifold ˜M is
said to be a pointwise semi-slant submanifold if there exists two orthogonal distri-
butions D and Dθ such that

(i) T M = D ⊕ Dθ⊕ < ξ >,
(ii) D is invariant, that is, ϕ(D) ⊆ D,
(iii) Dθ is pointwise slant distribution with slant function θ : M → R.

Let us denote p and q are the dimensions of the invariant distribution D and the
pointwise slant distribution Dθ of a pointwise semi-slant submanifold in an almost
contact metric manifold ˜M . Then, we can make the following remarks.

Remark 1.6 (i) M is invariant if p = 0, and pointwise slant if q = 0.
(ii) If the slant function θ : M → R is globally constant on M and θ = π

2 , then M
is called a contact CR-submanifold.

(iii) If the slant function θ : M → (0, π
2 ) and p = q �= 0, then M is called proper

pointwise semi-slant submanifold.
(iv) Let μ is an invariant subspace under ϕ of normal bundle T⊥M , then in case

of a semi-slant submanifold, the normal bundle T⊥M can be decomposed as
T⊥M = FDθ ⊕ μ.

For the involute conditions of distributions involved in the definition of the point-
wise semi-slant submanifold, we refer to [35, 40]. Now, we provide an example
which supports our result as follows.

Example 1 ([38]) Assume that (R7,ϕ, η, ξ, g) be an almost contact manifold
with cartesian coordinates (x1, y1, x2, y2, x3, y3, z) and almost contact structure

ϕ
(

∂
∂xi

)

= − ∂
∂yi

, ϕ
(

∂
∂x j

)

= ∂
∂y j

, ϕ
(

∂
∂z

) = 0, 1 ≤ i, j ≤ 3, where ξ = ∂
∂z , η = dz,

and g is the standard Euclidean metric on R
7. Let us consider the submanifold M5

of R7, that is �(u, v, w, t, z) = (u + v,−u + v, t cosw, t sinw,w cos t, w sin t, z)
such that t �= w are nonvanishing real-valued functions on M5. Thus the tangent
space T M is spanned as follows.

X1 = ∂

∂x1
− ∂

∂y1

X2 = ∂

∂x1
+ ∂

∂y1

X3 = − t sinw
∂

∂x2
+ t cosw

∂

∂y2
+ cos t

∂

∂x3
+ sin t

∂

∂y3
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X4 = cosw
∂

∂x2
+ sinw

∂

∂y2
− w sin t

∂

∂x3
+ w cos t

∂

∂y3

X5 = ξ = ∂

∂z
.

From the abovevector fields, it can be easily shown that the invariant distributionD
is spanned by X1, X2, that is,D = {X1, X2}. Moreover, pointwise slant distribution
Dθ is spannedby X3, X4, that is,Dθ = {X3, X4}with pointwise slant functiondefined
by

θ = cos−1

(

t − w
√

(t2 + 1)(w2 + 1)

)

.

Therefore,M5 is a pointwise semi-slant submanifold ofR7 such that ξ = ∂
∂z is tangent

to M5.

Definition 1.7 ([13]) A submanifold M of an almost contact metric manifold
( ˜M,ϕ, ξ, η, g) is said to be a bi-slant submanifold if there exists a pair of orthogonal
distributions Dθ1 and Dθ2 on M such that

(i) The tangent space T M admits the orthogonal direct decomposition T M =
Dθ1 ⊕ Dθ2⊕ < ξ >;

(ii) PDθ1 ⊥ Dθ2 and PDθ2 ⊥ Dθ1 ;
(iii) Each distribution Dθi is slant with slant angle θi for i = 1, 2.

Remark 1.8 A bi-slant submanifold M of almost contact metric manifolds is called
proper if its bi-slant angles θi �= 0, π

2 , for i = 1, 2. Otherwise,

(i) when θ1 = 0 and θ2 = π
2 , then M is a contact CR-submanifold [46],

(ii) when θ1 = 0 and θ2 �= 0, π
2 , then M is a semi-slant submanifold (defined and

studied in [13]),
(iii) when θ1 = π

2 and θ2 �= 0, π
2 , then M is a pseudo-slant submanifold (defined in

[15, 16] under the name anti-slant submanifold).

For a bi-slant submanifoldM of an almost contactmetricmanifold ( ˜M,ϕ, ξ, η, g),
the normal bundle T⊥M is decomposed as

T⊥M = FDθ1 ⊕ FDθ2 ⊕ μ, (1.21)

where μ is a ϕ-invariant normal subbundle of M .
Now, let f be a differential function defined on M . Thus, the gradient∇ f is given

as

(i) g(∇ f, X) = X f, and (i i) ∇ f =
n

∑

i=1

ei ( f )ei . (1.22)
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Thus, from the above equation, the Hamiltonian in a local orthonormal frame is
defined by

H(d f, x) = 1

2

n
∑

j=1

d f (e j )
2 = 1

2

n
∑

j=1

e j ( f )
2 = 1

2
||∇ f ||2. (1.23)

Moreover, the Laplacian � f of f is also given by

� f =
n

∑

i=1

{(∇ei ei ) f − ei (ei ( f ))} = −
n

∑

i=1

g(∇ei grad f, ei ). (1.24)

Similarly, the Hessian tensor of the function f is given by

� f = −TraceH f = −
n

∑

i=1

H f (ei , ei ), (1.25)

where H f is Hessian of function f .
The compactmanifoldM will be considered aswithout boundary, that is,∂M = ∅.

Thus, for a compact-oriented Riemannian manifold M without boundary, we have
the following formula:

∫

M
� f dV = 0, (1.26)

such that dV denotes the volume of M (see [45]).

2 Characterization of Warped Product Semi-Slant
Submanifolds

In [11], Bishop and O’Neill introduced the notion of warped product manifolds
to construct examples of Riemannian manifolds with negative curvature. They are
defined as follows.

Definition 2.1 ([11]) Let (M1, g1) and (M2, g2) be two Riemannian manifolds and
f : M1 → (0,∞), a positive differentiable function on M1. Consider the product
manifold M1 × M2 with its canonical projections γ1 : M1 × M2 → M1, γ2 : M1 ×
M2 → M2 and the projection maps given by γ1(t, s) = t , and γ2(t, s) = s, for every
l = (t, s) ∈ M1 × M2. Thus, the warped product M = M1 × f M2 is the product
manifold M1 × M2 equipped with the Riemannian structure such that

||X ||2 = ||γ1∗(U )||2 + f 2(γ1(t))||π2∗(X)||2, (2.1)
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for any tangent vector U ∈ �(TlM), where ∗ is the symbol of tangent maps and we
have the metric g = g1 + f 2g2. Here the function f is called the warping function
on M .

The following lemma can be viewed as a direct consequence of warped product
manifolds.

Lemma 2.2 ([11]) Let M = M1 × f M2 be a warped product manifold. If for any
X,Y ∈ �(T M1) and Z ,W ∈ �(T M2), then

(i) ∇XY ∈ �(T M1),

(ii) ∇Z X = ∇X Z = (X ln f )Z ,

(iii) ∇ZW = ∇′
ZW − g(Z ,W )∇ ln f,

where ∇ and ∇′
denote the Levi-Civita connections on M and M2, and ∇ ln f is the

gradient of ln f which is defined as g(∇ ln f,U ) = U ln f .

Remark 2.3 ([11])

(i) A warped product manifold M = M1 × f M2 is said to be trivial or a simply
Riemannian product if the warping function f is constant .

(ii) If M = M1 × f M2 is a warped product manifold, then M1 is totally geodesic
and M2 is totally umbilical submanifold of M , respectively.

Assume that � : M = M1 × f M2 → ˜M be an isometric immersion from awarped
product M1 × f M2 into a Riemannian manifold ˜M of constant sectional curvature c.
Let p, q, and n be the dimensions of M1, M2, and M1 × f M2, respectively. Then,
for any unit vector fields X and Z tangent to M1 and M2, respectively, we get

K (X ∧ Z) = g(∇Z∇X X − ∇X∇Z X, Z)

= 1

f
{(∇X X) f − X2 f }. (2.2)

If we consider the local orthonormal frame {e1, e2, . . . en} such that {e1, e2, . . . ep}
are tangent to M1 and {ep+1, . . . en} are tangent to M2, we have

� f

f
=

p
∑

i=1

K (ei ∧ e j )

or
p

∑

i=1

q
∑

j=1

K (ei ∧ e j ) = q� f

f
= q

(

�(ln f ) − ||∇(ln f )||2
)

, (2.3)

for each j = p + 1, . . . , n. Now, we would prove the general characterizations of
two types of warped product pointwise semi-slant submanifolds as follows.
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(i) Mθ × f MT

(ii) MT × f Mθ.

Moreover, the geometry of warped product semi-slant submanifolds in a Sasakian
manifold does not exist (see [8]), while in the case of warped product pointwise
semi-slant submanifolds exist as in the form M = MT × f Mθ, where MT and Mθ

are invariant and pointwise slant submanifolds, respectively. We recall the following
results given by Park for the classification of above-mentioned cases.

Theorem 2.4 ([40])There does not exist any properwarped product pointwise semi-
slant submanifolds M = Mθ × f MT in a Sasakian manifold M such that Mθ is a
proper pointwise slant submanifold tangent to the structure vector filed ξ and MT is
an invariant submanifold of M.

Lemma 2.5 ([40]) Let M = MT × f Mθ be a warped product pointwise semi-slant
submanifold of a Sasakian manifold ˜M such that ξ is tangent to MT . Then

(i) g(h(X, Z), FPW ) = − (ϕX ln f )g(Z , PW ) − cos2 θ(X ln f )g(Z ,W )

+ η(X)g(W, PZ),

(i i) g(h(Z ,ϕX), FW ) =(X ln f )g(Z ,W ) − (ϕX ln f )g(Z , PW ),

for any X ∈ �(T MT ) and Z ,W ∈ �(T Mθ).

Recently, Akram [4] studied characterization theorems on warped product semi-
slant submanifolds in Kenmotsu manifolds. Now, here we study warped product
semi-slant submanifolds and their characterization of type M = MT × f Mθ. For the
first case, we recall the following result which was obtained by Mustafa for warped
product semi-slant submanifolds of nearly trans-Sasakian manifolds.

Theorem 2.6 ([36]) There do not exist warped product semi-slant submanifolds
M = Mθ × f MT in a nearly trans-Sasakian manifold ˜M, where Mθ and MT are
proper slant and invariant submanifolds of ˜M, respectively.

3 Geometric Inequalities for Warped Product
Submanifolds with a Slant Factor

Munteanu used the Coddazi equation in [34] to obtain a good inequality in terms
of the Laplacian of a warping function for the second fundamental form of contact
CR-warped product in a Sasakian space form, which was motivated by Chen’s inves-
tigation. Several research and classifications have been published that link contact
CR-warped product to various ambientmanifolds (see [9, 10, 29, 33, 37]). Themajor
goal is to use the Gauss equation instead of the Codazzi equation to derive such an
inequality for a warped product pointwise semi-slant submanifold that is isometri-
cally immersed in a Sasakian space form. We first explore certain geometric features
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of the mean curvature for warped product pointwise semi-slant submanifolds in this
section, and then we construct a general inequality from these results.

Assume that M = MT × f Mθ be an n = (p + q)-dimensional warped prod-
uct pointwise semi-slant submanifold of (2m + 1)-dimensional Sasakian man-
ifold ˜M with MT of dimension p = 2p + 1 and Mθ of dimension q = 2q,
where Mθ and MT are integral manifolds of Dθ and D ⊕ ξ, respectively.
Then we consider that {e1, e2, . . . , ep, ep+1 = ϕe1, . . . , e2α = ϕep, e2p+1 = ξ, }
and {e2p+2 = e∗

1, . . . , e2p+1+q = e∗
q , e2p+q+2 = e∗

q+1 = sec θPe∗
1, . . . , ep+q = e∗

q =
sec θPe∗

q} are orthonormal frames of T MT and T Mθ, respectively. Thus,
the orthonormal frames of the normal subbundles, FDθ and μ, respec-
tively are {en+1 = ē1 = csc θFe∗

1, . . . , en+q = ēq = csc θFe∗
1, en+q+1 = ēq+1 =

csc θ sec θFPe∗
1, . . . . . . . . . ,

en+2q = ē2q = csc θ sec θFPe∗
q} and {en+2q+1, . . . , e2m+1}.

Proposition 3.1 ([2]) Let us consider a warped product pointwise semi-slant sub-
manifold M in a Sasakian manifold ˜M. Then

g(h(X, X), FZ) =g(h(X, X), FPZ) = 0, (3.1)

g(h(ϕX,ϕX), FZ) =g(h(ϕX,ϕX), FPZ) = 0, (3.2)

g(h(X, X), ρ) = − g(h(ϕX,ϕX), ρ), (3.3)

for any X ∈ �(T MT ), Z ∈ �(T Mθ) and ρ ∈ �(μ).

Proposition 3.2 ([2])Let � : M = MT × f Mθ → ˜M be an isometrically immersion
of a warped product pointwise semi-slant submanifold MT × f Mθ into a Sasakian
manifold ˜M such that MT is invariant submanifold tangent to ξ of ˜M and Mθ is a
pointwise slant submanifold of ˜M. Then the squared norm of mean curvature of M
is given by

||H ||2 = 1

n2
∑

r=n+1

(

hrp+1p+1+, · · · + hrnn

)2

,

where H is the mean curvature vector and p, q, n, and 2m + 1 are dimensions
of MT , Mθ, MT × f Mθ, and ˜M, respectively. Moreover, MT is called �-minimal
submanifold in ˜M.

Proof We skip the proof of the above proposition due to similarity to the proof of
Lemma 5.2 in [5] for warped product pointwise semi-slant submanifolds in a Kaehler
manifold. ��
Theorem 3.3 ([2]) Let � : M = MT × f Mθ → ˜M be an isometrically immersion
from awarped product pointwise semi-slant submanifold MT × f Mθ into a Sasakian
manifold ˜M. Then

(i) The squared norm of the second fundamental form of M is given by



102 A. Ali et al.

||h||2 ≥ 2

{

q||∇ ln f ||2 + τ̃ (T M) − τ̃ (T MT ) − τ̃ (T Mθ) − q� ln f

}

, (3.4)

where q is the dimension of a pointwise slant submanifold Mθ.

(ii) The equality holds in (3.4) if and only if MT is totally geodesic and Mθ is totally
umbilical submanifolds in ˜M. Moreover, M is minimal submanifold in ˜M.

Proof The proof is similar to the proof of Theorem 5.1 in [5] for warped product
pointwise semi-slant submanifolds of Kaehler manifolds and for contact version in
[35]. ��
Remark 3.4 The Chen second inequality for the second fundamental form and its
application to warping functions, which includes the slant immersions obtained in
[20], is rather difficult to produce. As a result, Theorem 3.3 comes in handy when
constructing Chen’s type inequality in terms of slant functions.

We deduce certain obstructions to a warped product pointwise semi-slant submani-
fold of Sasakian space forms as a direct application of Theorem 3.3.

Theorem 3.5 ([2]) Assume that � : M = MT × f Mθ → ˜M(c) be an isometric
immersion from an n-dimensional warped product pointwise semi-slant submani-
fold MT × f Mθ into a Sasakian space form ˜M(c). Then

(i) The squared norm of the second fundamental form of M is defined as

||h||2 ≥ 2q

(

||∇ ln f ||2 + c + 3

4
p − c − 1

4
− � ln f

)

, (3.5)

where p and q are the dimensions of the invariant MT and the pointwise slant
submanifold Mθ, respectively.

(ii) The equality sign holds in (3.5) if and only if MT is totally geodesic and Mθ is
totally umbilical submanifolds in ˜M(c). Moreover, M is minimal submanifold
in ˜M(c).

Proof Putting X = W = ei , Y = Z = e j in equation (1.12), we derive

˜R(ei , e j , e j , ei ) = c − 3

4

{

g(ei , ei )g(e j , e j ) − g(ei , e j )g(e j , ei )

}

+c − 1

4

{

η(ei )η(e j )g(ei , e j ) − η(e j )η(e j )g(ei , ei )

+ η(ei )η(e j )g(ei , e j ) − η(ei )η(ei )g(e j , e j )

+ g(ϕe j , e j )g(ϕei , ei ) − g(ϕei , e j )g(ϕe j , ei )

+ 2g2(ei ,ϕe j )

}

.
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Summing up over the vector fields on T MT in the above equation, one can show
that

2τ̃ (T MT ) =
(

c + 3

4

)

p(p − 1) +
(

c − 1

4

){

3||P||2 − 2(p − 1)

}

.

As ξ(x) is tangent to T MT for p-dimensional invariant submanifold, we have
||P||2 = p − 1, then we get

2τ̃ (T MT ) =
(

c + 3

4

)

p(p − 1) +
(

c − 1

4

)

(p − 1). (3.6)

Similarly, for pointwise slant submanifold T Mθ, we put ||P||2 = q cos2 θ, from
Lemma 1.4 and (1.9) (ii), then

τ̃ (T Mθ) =
(

c + 3

4

)

q(q − 1) +
(

c − 1

4

)

3q cos2 θ. (3.7)

Summing up over basis vectors of T M such that 1 ≤ i �= j ≤ n, it is easy to
obtain that

2τ̃ (T M) =
(

c + 3

4

)

n(n − 1) +
(

c − 1

4

)

{

3
∑

1≤i �= j≤n

g2(ϕei , e j ) − 2(n − 1)
}

.

(3.8)

Hence, M be a proper pointwise semi-slant submanifold of a Sasakian space form
˜M(c). Thus, we set the following frame according to [24]
e1, e2 = ϕe1, . . . , e2d1−1, e2d1 = ϕe2d1−1, e2d1+1, e2d1+2 = sec θPe2d1+1, . . . ,

e2d1−1, e2d1 = sec θPe2d1−1, . . . , e2d1+2d2−1, e2d1+2d2 = sec θPe2d1−1, e2d1+2d2 ,

e2d1+2d2+1 = ξ.
Obviously, we derive

g2(ϕei , ei+1) =
{

1, f or each, i ∈ {1, . . . , 2p − 1}
cos2 θ, f or each i ∈ {2p + 1, . . . , 2p + 2q − 1}.

It is easy to obtain that

n
∑

i, j=1

g2(Pei , e j ) = 2
(

p + q cos2 θ
)

. (3.9)

From (3.8) and (3.9), it follows that

2τ̃ (T M) = c + 3

4
n(n − 1) + c − 1

4

(

6(p + q cos2 θ) − 2(n − 1)

)

. (3.10)



104 A. Ali et al.

Therefore, using the above relations (3.6), (3.7), and (3.10) in Theorem 3.3, we
derive the required result (3.5). Moreover, the equality case holds according to the
second statement of Theorem 3.3. This completes the proof of the theorem. ��
Corollary 3.6 ([2]) Let ˜M(c) be Sasakian space forms with c ≤ −3. Then there
does not exist a warped product pointwise semi-slant MT × f Mθ into ˜M(c) such
that ln f is a eigenfunction of Laplacian on MT with respect to eigenvalue γ > 0.

Corollary 3.7 ([2]) Assume that ˜M(c) be Sasakian space forms with c ≤ −3. Then
there does not exist a warped product pointwise semi-slant MT × f Mθ into ˜M(c)
such that ln f is harmonic function on invariant submanifold MT .

Based on the minimal principle property of positive differentiable function, the
results can be found in [2].

Corollary 3.8 ([2]) Assume that � : M = MT × f M⊥ → ˜M be an isometrically
immersion from a contact CR-warped product MT × f M⊥ into a Sasakian space
form ˜M(c). Then

(i) The squared norm of the second fundamental form of M is given by

||h||2 ≥ 2q

(

||∇ ln f ||2 + c + 3

4
p − c − 1

4
− � ln f

)

, (3.11)

where q is the dimension of anti-invariant submanifold M⊥.

(ii) The equality sign holds in (3.11) if and only if MT is totally geodesic and M⊥ is
totally umbilical submanifolds in ˜M(c). Moreover, M is minimal in ˜M(c).

Remark 3.9 Assume that S be a (2m + 1)-sphere, we put J z = ξ, for any point
z ∈ S and J is an almost complex structure of complex n + 1-spaceC. Let us consider
the orthogonal projection map π : TzC → TzS such that ϕ = π ◦ J . It can be easily
seen that (ϕ, η, ξ, g) is a Sasakian structure in S, where η is a one-form dual to ξ
and g is standard metric tensor field on S. Therefore, S can be considered a Sasakian
manifold of constant ϕ-sectional curvature one.

Therefore, the sphere S is a Sasakian manifold of constant sectional curvature one
(see [34, 37]), then Theorem 3.5 can be written as follows.

Theorem 3.10 ([2]) Assume that � : M = MT × f Mθ → S be an isometric immer-
sion from an n-dimensional warped product pointwise semi-slant submanifold
MT × f Mθ into a sphere S. Then

(i) The squared norm of the second fundamental form of M is defined as

||h||2 ≥ 2q

(

||∇ ln f ||2 + p − � ln f

)

, (3.12)
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where p and q are the dimensions of the invariant MT and the pointwise slant
submanifold Mθ, respectively.

(ii) The equality sign holds in (3.5) if and only if MT is totally geodesic and Mθ is
totally umbilical submanifolds in ˜M(c). Moreover, M is minimal submanifold
in ˜M(c).

Remark 3.11 It should be noted that the necessary and sufficient conditions for slant
submanifold [12] is same as pointwise slant submanifolds [40] in (1.18) with slant
function must be constant. Now, for further computations, we will use (1.18), (1.19),
and (1.20) for slant submanifold with subject to constant pointwise slant function.

Many geometers have obtained the various inequalities in [3, 7, 36, 43, 44] for
different warped product submanifolds, which is intriguing. We expand our work
to a warped product pseudo-slant submanifold in a nearly Sasakian manifold in
this chapter. We start with non-trivial warped product submanifolds of the form
M = Mθ × f M⊥, often known as warped product pseudo-slant submanifolds, where
Mθ and M⊥ are slant and anti-invariant submanifolds. The following lemma is
obtained by studyingwarped product pseudo-slant submanifolds of a nearly Sasakian
manifold.

Lemma 3.12 ([6]) Let M = Mθ × f M⊥ be a non-trivial warped product pseudo-
slant submanifold of a nearly Sasakian manifold M̄. Then we have

(i) g(h(Z , Z), FX) = g(h(Z , X),ϕZ) + {2η(X) + (PX ln f )}||Z ||2,
(ii) g(h(Z , Z), FPX) = g(h(Z , X),ϕZ) − (X ln f ) cos2 θ||Z ||2,
for any X ∈ �(T Mθ) and Z ∈ �(T M⊥), where the structure vector field ξ is tangent
to Mθ.

In terms of the second fundamental form and warping functions, we now have a
geometric inequality for the warped product pseudo-slant submanifolds.

Theorem 3.13 ([6]) Let M = Mθ × f M⊥ be an n + 1-dimensional mixed totally
geodesic warped product pseudo-slant submanifold of a 2m + 1-dimensional nearly
Sasakian manifold ˜M such that q is dimension of M⊥ and 2p + 1 is dimension of
Mθ. Then we have the following results:

(i) The squared norm of the second fundamental form of M satisfies

||h||2 ≥ q cot2 θ||∇θ ln f ||2. (3.13)

(ii) If the equality holds identically in (3.13), then Mθ is a totally geodesic subman-
ifold and M⊥ is a totally umbilical submanifold of ˜M.

Proof First, we define an orthogonal frame. Let M = Mθ × f M⊥ be an n + 1-
dimensional warped product pseudo-slant submanifold of a 2m + 1-dimensional
nearly Sasakian manifold ˜M with Mθ of dimension 2p + 1 and M⊥ of dimension
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q, where Mθ and M⊥ are the integral manifolds of Dθ and D⊥, respectively, such
that n + 1 = 2p + q + 1. Assuming that {e1, e2 · · · eq} and {eq+1 = e∗

1, . . . , eq+p =
e∗
p, eq+p+1 = e∗

p+1 = sec θPe∗
1, . . . , eq+2p = e∗

2p = sec θPe∗
p, eq+2p+1 = e∗

2p+1 =
ξ} be orthonormal frames of D⊥ and Dθ, respectively. Thus the orthonormal frames
of the normal subbundles ϕD⊥, FDθ, and μ, respectively, are {ē1 = ϕe1, . . . , ēq =
ϕeq}, {ēq+1 = ẽ1 = csc θFe∗

1, . . . , ēq+p = ẽp = csc θFe∗
p, ēq+p+1 = ẽp+1 = csc θ

sec θFPe∗
1, . . . , ēq+2p = ẽ2p = csc θ sec θFPe∗

p} and {ē2p+q+1, . . . , ē2m−n}. From
the definition of the second fundamental form, we have

||h||2 = ||h(Dθ,Dθ)||2 + ||h(D⊥,D⊥)||2 + 2||h(Dθ,D⊥)||2.

By using the property of a mixed totally geodesic submanifold, we have

||h||2 = ||h(D⊥,D⊥)||2 + ||h(Dθ,Dθ)||2. (3.14)

Leaving the second term and the relations (1.14) in the first term, we obtain by
using the components of ϕD⊥, FDθ, and μ,

||h||2 ≥
q

∑

l,r,k=1

g(h(er , ek), ēl)
2 +

2p+q
∑

l=q+1

q
∑

r,k=1

g(h(er , ek), ēl)
2

+
2m−n
∑

l=2p+q+1

q
∑

r,k=1

g(h(er , ek), ēl)
2. (3.15)

Now, leaving all terms except the second term, then we get

||h||2 ≥
2p
∑

l=1

q
∑

r,k=1

g(h(er , ek), ẽl)
2. (3.16)

By following the adapted frame for FDθ, we derive

||h||2 ≥ csc2 θ

p
∑

j=1

q
∑

r=1

g(h(er , er ), Fe
∗
j )
2

+ csc2 θ sec2 θ

p
∑

j=1

q
∑

r=1

g(h(er , er ), FPe∗
j )
2. (3.17)

Using Lemma 3.12, for a mixed totally geodesic submanifold, we get
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||h||2 ≥ csc2 θ

p
∑

j=1

q
∑

r=1

{2η(e∗
j ) + Pe∗

j ln f )}2g(er , er )
2

+ cot2 θ

2p
∑

j=p+1

q
∑

r=1

(e∗
j ln f )2g(er , er )

2.

The above expression can be written as

||h||2 ≥ csc2 θ

p
∑

j=1

q
∑

r=1

(Pe∗
j ln f )2g(er , er )

2 + 4 csc2 θ

p
∑

j=1

q
∑

r=1

η(e∗
j )
2g(er , er )

2

+ 4 csc2 θ

p
∑

j=1

q
∑

r=1

(Pe∗
j ln f )η(e∗

j )g(er , er )
2

+ cot2 θ

2p
∑

j=pA+1

q
∑

r=1

(e∗
j ln f )2g(er , er )

2. (3.18)

The second and third terms in (3.18) are identically zero by the given frames.
Thus, the above relations give the following inequality:

||h||2 ≥ csc2 θ

p
∑

j=1

q
∑

r=1

(Pe∗
j ln f )2g(er , er )

2 + cot2 θ

p
∑

j=1

q
∑

r=1

(e∗
j ln f )2g(er , er )

2.

Add and subtract the same terms, we derive

||h||2 ≥q csc2 θ

2p+1
∑

j=1

(Pe∗
j ln f )2 − q csc2 θ

2p
∑

j=p+1

(Pe∗
j ln f )2

− q csc2 θ(ξ ln f )2 + q cot2 θ

p
∑

j=1

q
∑

r=1

(e∗
j ln f )2.

Since ξ ln f = 0, we obtain

||h||2 ≥q csc2 θ||P∇θ ln f ||2 + q cot2 θ

p
∑

j=1

(e∗
j ln f )2

− q cscθ

p
∑

j=1

(e∗
j+p P∇θ ln f )2,

by some simplifications. Apply the property (1.19) in the above equation, we get
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||h||2 ≥q cot2 θ||∇θ ln f ||2 − q cot2 θ(ξ ln f )2 + q cot2 θ

p
∑

j=1

(e∗
j ln f )2

− q csc2 θ sec2 θ

p
∑

j=1

g(Pe∗
j , P∇θ ln f )2.

From (1.19), it can be easily seen that

||h||2 ≥ q cot2 θ||∇θ ln f ||2 + q cot2 θ

p
∑

j=1

(e∗
j ln f )2 − q cot2 θ

p
∑

j=1

(e∗
j ln f )2,

which implies that

||h||2 ≥ q cot2 θ||∇θ ln f ||2.

This is the inequality (3.13). If the equality holds in (3.13), then leaving the terms
in (3.14) and (3.15), we obtain the following condition:

||h(D,D)||2 = 0, g(h(D⊥,D⊥),ϕD⊥) = 0,

and

g(h(D⊥,D⊥),μ) = 0,

where D = Dθ ⊕ ξ. It means that Mθ is totally geodesic in ˜M and h(D⊥,D⊥) ⊂
FDθ. Now from Lemma (3.12), for a mixed totally geodesic, we have

g(h(Z ,W ), FX) = (PX ln f )g(Z ,W ),

for Z ,W ∈ �(T M⊥) and X ∈ �(T Mθ). The above equations imply thatM⊥ is totally
umbilical in ˜M . So the equality cases hold too. It completes the proof of the theorem.

��
The notion of warped product bi-slant submanifolds of a nearly trans-Sasakian

manifold is defined as

Definition 3.14 A warped product Mθ1 × f Mθ2 of two slant submanifolds Mθ1 and
Mθ2 with slant angles θ1 and θ2, respectively, of a nearly trans-Sasakian manifold
( ˜M,ϕ, ξ, η, g) is called a warped product bi-slant submanifold.

For a differentiable function f on a Riemannian manifold M of dimension n, the
gradient of f , ∇ f , is defined by

g(∇ f, X) = X f, (3.19)
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for any X ∈ �(T M). As a consequence, we have ||∇ f ||2 = ∑n
i=1(ei ( f ))

2 for a local
orthonormal frame {e1, . . . , en} on M .

We consider the warped product bi-slant submanifold M = Mθ1 × f Mθ2 of a
nearly trans-Sasakian manifold ( ˜M,ϕ, ξ, η, g) such that the structure vector field ξ
is tangent to Mθ1 . The following lemma plays an crucial role in the next result.

Lemma 3.15 ([41]) Let M = Mθ1 × f Mθ2 be a warped product bi-slant submani-
fold of a nearly trans-Sasakian manifold ( ˜M,ϕ, ξ, η, g). Then

(i) (ξ ln f ) = β,
(ii) g(h(X, Z), FZ) = g(h(Z , Z), FX) − [

αη(X) + (PX ln f )
]||Z ||2,

(iii) g(h(X, PZ), FPZ) = g(h(PZ , PZ), FX) − [

αη(X) + (PX ln f )
]

cos2 θ2
||Z ||2,

(iv) g(h(PX, Z), FZ) = g(h(Z , Z), FPX) + [

(X ln f ) cos2 θ1 − βη(X) cos2 θ1
]

||Z ||2,
(v) g(h(PX, PZ), FPZ) = g(h(PZ , PZ), FPX) + [

(X ln f ) cos2 θ1 − βη(X)

cos2 θ1
]

cos2 θ2||Z ||2,
(vi) g(h(X, PZ), FZ) = −g(h(X, Z), FPZ) = 1

3

[ − (X ln f ) + βη(X)
]

cos2 θ2
||Z ||2,

for X ∈ �(T Mθ1) and Z ∈ �(T Mθ2).

Let M = Mθ1 × f Mθ2 be a warped product bi-slant submanifold of a nearly trans-
Sasakianmanifold ( ˜M,ϕ, ξ, η, g), whereMθ1 andMθ2 are proper slant submanifolds
with slant angles θ1 and θ2, respectively. Further, we assume that dim( ˜M) = 2m + 1,
dim(Mθ1) = 2p + 1, dim(Mθ2) = 2q and dim(M) = n = 2p + 2q + 1. LetDθ1 and
Dθ2 be the tangent bundles on Mθ1 and Mθ2 , respectively. We assume that [41]

(i) {e1, . . . , ep, ep+1 = sec θ1Pe1, . . . , e2p = sec θ1Pep, e2p+1 = ξ} is a local
orthonormal frame of Dθ1 .

(ii) {e2p+2 = e∗
1, . . . , e2p+q+1 = e∗

q , e2p+q+2 = e∗
q+1 = sec θ2Pe∗

1, . . . , en =
e2p+2q+1 = e∗

2q = sec θ2Pe∗
q} is a local orthonormal frame of Dθ2 .

(iii) {en+1 = ẽ1 = csc θ1Fe1, . . . , en+p = ẽp = csc θ1Fep, en+p+1 = ẽp+1 =
csc θ1 sec θ1FPe1, . . . , en+2p = ẽ2p = csc θ1 sec θ1FPep} is a local orthonor-
mal frame of FDθ1 .

(iv) {en+2p+1 = ẽ2p+1 = csc θ2Fe∗
1, . . . , en+2p+1 = ẽ2p+q = csc θ2Fe∗

q , . . . ,

en+2p+q+1 = ẽ2p+q+1 = csc θ2 sec θ2FPe∗
1, . . . , e2n−1 = ẽ2p+2q = csc θ2

sec θ2FPe∗
q} is a local orthonormal frame of FDθ2 .

(v) {e2n, . . . , e2m+1} is a local orthonormal frame of μ.

We now show that the squared norm of the second fundamental form for bi-
slant submanifolds with any codimension of nearly trans-Sasakian manifolds is con-
strained below by the gradient of a warping function and that the equivalence holds
under certain conditions.

Theorem 3.16 ([41]) Let M = Mθ1 × f Mθ2 be a warped product bi-slant subman-
ifold of a nearly trans-Sasakian manifold ( ˜M,ϕ, ξ, η, g) such that Mθ1 and Mθ2 are
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proper slant submanifoldswith slant angles θ1 and θ2, respectively. If M isDθ2 -totally
geodesic, then we have the following:

(i) The squared norm of the second fundamental form h of M satisfies

||h||2 ≥ 4q csc2 θ2
[

(cos2 θ1 + 1

9
cos2 θ2)(||∇ ln f ||2 − β2) + α2

]

. (3.20)

Furthermore,

(a) For a nearly Sasakian manifold ( ˜M,ϕ, ξ, η, g), h of M satisfies

||h||2 ≥ 4q csc2 θ2
[

(cos2 θ1 + 1

9
cos2 θ2)(||∇ ln f ||2) + 1

]

. (3.21)

(b) For a nearly Kenmotsu manifold ( ˜M,ϕ, ξ, η, g), h of M satisfies

||h||2 ≥ 4q csc2 θ2(cos
2 θ1 + 1

9
cos2 θ2)(||∇ ln f ||2 − 1). (3.22)

(c) For a nearly cosymplectic manifold ( ˜M,ϕ, ξ, η, g), h of M satisfies

||h||2 ≥ 4q csc2 θ2(cos
2 θ1 + 1

9
cos2 θ2)(||∇ ln f ||2). (3.23)

(ii) If the equality sign holds in all four cases, then Mθ1 is totally geodesic subman-
ifold of ˜M and Mθ2 is totally umbilical submanifold of ˜M. In other words, M is
a minimal submanifold of ˜M.

Acknowledgements The authors thank the referee for many valuable suggestions to improve the
presentation of this survey article.
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Slant and Semi-slant Submanifolds
of Some Almost Contact and Paracontact
Metric Manifolds

Viqar Azam Khan and Meraj Ali Khan

1 Introduction

In an almost Hermitian manifold (M̄, J, g), the almost complex structure J turns a
vector field to another vector field perpendicular to it. The impact of this property
onto a submanifold M of M̄ yields invariant (complex or holomorphic) and anti
invariant (totally real) distributions on M , where a distribution D on M is holomor-
phic if J Dx = Dx for each x ∈ M and totally real if J Dx ⊂ T⊥

x M for each x ∈ M .
A submanifold M in M̄ is holomorphic (resp. totally real) if the tangent bundle
T (M) of M is holomorphic (resp. totally real). Initially, holomorphic and totally real
submanifolds of an almost Hermitian manifold were explored by many differential
geometers [1–3] until Bejacu [4, 5] provided a single setting to study these subman-
ifolds by introducing the notion of CR-submanifolds of Kaehler manifolds. Infact, a
submanifold M of an almost Hermitian manifold is called a CR-submanifold if there
is a holomorphic distribution D on M such that its complementary distribution D⊥
is totally real. With regard to the applications, the study of CR-submanifold helps to
understand various phenomenon in Relativity and Mechanics [6–8].

It is easy to notice that a submanifold M of an almost Hermitian manifold
(M̄, J, g) is holomorphic if for every non zero vector X ∈ Tx (M) at any point x ∈ M ,
the angle between J X and Tx (M) is equal to zero and a submanifold is totally real
if the angle between J X and Tx (M) is π/2. This leads to the generalization of holo-
morphic and totally real submanifolds [9]. In 1990 Chen [10] introduced a more
general class of submanifolds namely the class of slant submanifolds, which natu-
rally includes the class of holomorphic and totally real submanifolds.
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As far as contact geometry is concerned, several results can be found in literature
on invariant and anti-invariant submanifolds of Sasakianmanifold. The anti-invariant
submanifolds of a Sasakian manifold turn out to be slant submanifolds with slant
angle equal to π/2. Lotta [11], further showed that slant submanifolds of a Sasakian
manifold with slant angle equal to zero are the invariant submanifolds, Cabrerizo
et al. [12] worked out a characterization for the existence of a slant submanifold in
almost contact metric manifolds.

In [13] N. Papaghiuc introduced a class of submanifolds in an almost Hermitian
manifold, called semi-slant submanifolds. This class includes the class of proper
CR-submanifolds and Slant submanifolds. Cabrerizo et al. [14] initiated the study of
contact version of semi-slant submanifolds. Naturally, both semi-invariant and con-
tact slant submanifolds are particular cases of the introduced notion. They obtained
examples of semi-slant submanifolds in Sasakian manifolds and as a step forward
they also introduced the idea of Bi-slant submanifolds which include semi-slant
submanifold as a particular case. Moreover, Khan and Khan [15] studied a special
case of bi-slant submanifolds namely Pseudo-slant submanifolds. They described
a general method of constructing a pseudo-slant submanifold in an almost contact
metric manifold. Moreover, they also worked out the integrability conditions for the
distributions involved in the setting of pseudo-slant submanifold Sasakianmanifolds.

The present chapter is divided in five sections, Sect. 1 is introductory which con-
tains the brief history of theory of submanifolds. In Sect. 2 we discuss slant subman-
ifolds of almost contact metric manifolds. In Sect. 3, we collect some results related
to semi-slant submanifolds of almost contact metric manifolds. Section4 deals with
the study of pseudo-slant submanifolds of almost contact metric manifolds, more
precisely we compile some results related to pseudo-slant submanifolds of Sasakian
and trans-Sasakian manifolds. The last section is based on the study of Atceken
[16], which covers slant and semi-slant submanifolds of almost paracontact metric
manifold.

2 Slant Submanifolds of Almost Contact Metric Manifolds

Let M̄ be a manifold of dimension 2n + 1. An almost contact metric structure
(φ, ξ, η, g) on M̄ consists of a tensor field φ of type (1, 1), a vector field ξ (known
as structure vector field), a 1− form, η and a metric tensor field g on M̄, such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1,

g(φX,φY ) = g(X,Y ) − η(X)η(Y ),

for any vector field X,Y ∈ T M̄ . These conditions also imply that

φ(ξ) = 0, η ◦ φ = 0, η(X) = g(X, ξ).
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A submanifold M of an almost contact metric manifold M̄(φ, ξ, η, g) is said to be
invariant submanifold ifφTxM ⊆ TxM for all x ∈ M . A submanifoldM of an almost
contact metric manifold is said to be anti-invariant submanifold if φTxM ⊆ T⊥

x M
∀x ∈ M.

The study of differential geometry of semi-invariant or contact CR- submanifolds
as a generalization of invariant and anti-invariant submanifolds of an almost contact
metricmanifoldwas initiated byBejancu and Papaghiuc [17] and followed by several
geometers [16, 18, 19] etc.).

Throughout this chapter, for a submanifold M of an almost contact metric mani-
fold M̄(φ, ξ, η, g), we assume that the structure vector field ξ is tangential to subman-
ifold M and therefore the tangent bundle T M admits the following decomposition

T M = D ⊕ 〈ξ〉, (1)

where 〈ξ〉 is the one dimensional distribution on M spanned by the structure vector
field ξ.

A submanifold M of an almost contact metric manifold M̄ is said to be a semi-
invariant submanifold if there exits a pair of orthogonal distributions (D, D⊥) satis-
fying the following conditions:

1. T M = D ⊕ D⊥ ⊕ 〈ξ〉,
2. D is invariant distribution with respect to φ i.e., φD = D,

3. The distribution D⊥ is anti-invariant i.e., φD⊥ ⊆ T⊥M,

where T M and T⊥M denote the tangent and normal bundle to M respectively. On a
semi-invariant submanifold of an almost contact metric manifold, it follows that the
normal bundle splits as

T⊥M = φD⊥ ⊕ μ.

The notion of slant submanifolds is extended to the setting of almost contact
metric manifolds by Lotta [11]. Later, Cabrerizo et al. [12] and Carriazo et al. [20]
studied these submanifolds in a more specialized setting of Sasakian, K-contact and
S-manifolds.

Let M̄ be an almost contact metric manifold with structure tensors (φ, ξ, η, g) and
M be an immersed submanifold of M̄ . For any x ∈ M and X ∈ TxM, if the vectors
X and ξ are linearly independent, the angle θ(X) ∈ [0, 1] between φX and TxM is
well defined. If θ(X) does not depend on the choice of x ∈ M and X ∈ TxM , then
M is said to be slant submanifold in M̄ . The constant angle θ(X) is then called the
slant angle of M in M̄ .

In particular anti-invariant submanifolds of an almost contact metric manifold are
slant with a slant angle π/2. Lotta [11] proved that slant submanifolds of an almost
contact metric manifold with slant angle zero are invariant submanifolds. This fact
is not trivial, since by definition an invariant submanifold must have odd dimension
and the characteristic vector field ξ of the ambient manifold is required to be tangent
to the submanifold. More generally, Lotta showed that these properties are always
satisfied by any non-anti-invariant slant submanifold of a contact metric manifold.
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On a submanifold M of an almost contact metric manifold M̄(φ, ξ, η, g) for any
X ∈ T M, we denote the tangential and normal components of φX by T X and N X
respectively. Whereas the tangential and normal components of φV , for V ∈ T⊥M
are denoted by tV and nV respectively i.e.,

φX = T X + N X (2)

and
φV = tV + f V . (3)

The normal bundle of M can be decomposed as follows:

T⊥M = ND ⊕ μ, (4)

where μ is the invariant sub bundle of T⊥M and D is the distribution orthogonal
complement of 〈ξ〉.

It is easy to observe the following:

NT + f N = 0. (5)

With the help of tensorial equation of almost contact manifold and (2), we have

g(T X,Y ) = −g(X, TY ), (6)

which implies that
g(T 2X,Y ) = g(X, T 2Y ), (7)

for all X,Y ∈ T M that is T 2(= Q) is a self-adjoint endomorphism on T M. It is
also easy to observe that the eigen values of Q belong to [−1, 0] and that each non
vanishing eigen value of Q has even multiplicity.

The covariant derivative of endomorphism Q is defined as

(∇̄Q)Y = ∇X QY − Q∇XY, (8)

for all X,Y ∈ T M.

Now, we have the following characterization

Lemma 2.1 [11] Let M be a slant submanifold of an almost contact metric manifold
M̄ . Denote by θ the slant angle of M. Then, at each point x ∈ M, Q|D has only one
eigen value λ1 = − cos2 θ.

Lotta [11] also provided the following method to construct example of slant sub-
manifolds in the setting of almost contact metric manifold
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Example 1 [11] If M is a slant submanifold in an almost Hermitian manifold M̄,

then M × R is a slant submanifold in the almost contact metric manifold M̄ × R
with usual product structure.

FurtherCabrerizo et al. [12] studied slant submanifolds of an almost contactmetric
manifold. They obtained some new results on slant submanifolds of almost contact
metric manifolds and established some characterizations for slant submanifolds of
K-contact and Sasakian manifolds.

Let M̄(φ, ξ, η, g) be an almost contact metric manifold and � denotes the funda-
mental 2-formon M̄ given by�(X,Y ) = g(X,φY ) for all X,Y ∈ T M̄ . If ξ isKilling
vector fieldwith respect to g, the contactmetric structure is called a K−contact struc-
ture. It is known that a contactmetricmanifold isK-contact if andonly if ∇̄Xξ = −φX
for any X ∈ T M̄, where ∇̄ denotes the Levi-Civita connection of M̄ .

The almost contact structure of M̄ is said to be normal if [φ,φ] + 2dη ⊗ ξ = 0,
where [φ,φ] is the Nijenhuis tensor of φ. A Sasakian manifold is a normal contact
metric manifold. The tensorial equation characterizing a Sasakian manifold is given
by

(∇̄Xφ)Y = g(X,Y )ξ − η(Y )X, (9)

for any X,Y ∈ T M̄ .

Moreover, on a Sasakian manifold

∇̄Xξ = −φX (10)

for any X ∈ T M̄ .

We will denote by (R2n+1,φ, ξ, η, g) the manifold R2n+1 with its usual Sasakian
structure given by,

η = 1

2
(dz −

n∑

i=1

yidxi ), ξ = 2
∂

∂z

g = η ⊗ η + 1

4

n∑

i=1

(dxi ⊗ dxi + dyi ⊗ dyi )

φ(

n∑

i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂z
) =

n∑

i=1

(Yi
∂

∂xi
− Xi

∂

∂yi
) +

n∑

i=1

Yi y
i ∂

∂z
,

where (xi , yi , z), i = 1, . . . , n are the Cartesian coordinates.
Let M be a submanifold of a Sasakian manifold and λ be a function on M such

that
(∇XT )Y = λ(g(X,Y )ξ − η(Y )X), (11)
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for any X,Y ∈ T M, then

(∇X Q)Y = λ(g(X, TY )ξ − η(Y )T X), (12)

for any X,Y ∈ T M.

Now, we have the following characterization for slant immersion

Theorem 2.2 ([12]) Let M be a submanifold of an almost contact metric manifold
M̄ such that ξ ∈ T M. Then, M is slant if and only if there exists a constant λ ∈ [0, 1]
such that

Q = −λ(I − η ⊗ ξ). (13)

Furthermore, in such case if θ is the slant angle of M, it satisfies that λ = cos2 θ.

Corollary 2.3 ([12]) Let M be a slant submanifold of an almost contact metric
manifold M̄, with slant angle θ. Then for any X,Y ∈ T M, we have

g(T X, TY ) = cos2 θ(g(X,Y ) − η(X)η(Y )), (14)

g(N X, NY ) = sin2 θ(g(X,Y ) − η(X)η(Y )). (15)

Example 1 provides a method to construct slant submanifolds of almost contract
metric manifold. Making use of this construction, Cabrerizo et al. [12] found many
examples of slant submanifolds of Sasakianmanifolds. Now,we have some examples
of slant submanifolds in R5 with its usual Sasakian structure.

Example 2 ([12]) For any θ ∈ [0,π/2]

x(u, v, t) = 2(u cos θ, u sin θ, v, 0, t)

defines a slant submanifold of dimension 3 with slant angle θ.

Example 3 ([12]) For any constant k,

x(u, v, t) = 2(eku cos u cos v, eku sin u cos v, eku cos u sin v, eku sin u sin v, t)

defines a slant submanifold of dimension 3 with slant angle θ = cos−1(
|k|√
1+k2

).

Cabrerizo et al. [12] studied the impact of parallelism of Q on slant submanifolds
and obtained the following characterization:

Proposition 2.4 ([12]) Let M be a slant submanifold of a K-contact manifold M̄ .

Then ∇Q = 0 if and only if M is an anti-invariant submanifold.

Proof Let θ be the slant angle of M , then for any X,Y ∈ T M by (13) we have

Q∇XY = − cos2 θ∇XY + cos2 θη(∇XY )ξ. (16)
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On the other hand, by taking the covariant derivative with respect to X in both sides
of (13), we have

∇X QY = − cos2 θ∇XY + cos2 θη(∇XY )ξ + cos2 θg(Y,∇Xξ)ξ + cos2 θη(Y )∇Xξ).
(17)

Hence, ∇Q = 0 if and only if the right hand sides of (16) and (17) are the same
which leads to ∇Xξ = 0. Since M̄ is a K−contact manifold, we have ∇Xξ = −T X
and thus the result holds.

Infact, by using (16), (17) and the formula ∇Xξ = −T X, we can see that if M is
a slant submanifold of K−contact manifold M̄, then

(∇X Q)Y = cos2 θ(g(X, TY )ξ − η(Y )T X), (18)

for any X,Y ∈ T M, where θ denotes the slant angle of M .
Now, we have another characterization for slant submanifold

Theorem 2.5 ([12]) Let M be a submanifold of a K−contact manifold M̄ such that
ξ ∈ T M. Then, M is slant if and only if

1. The endomorphism Q|D has only one eigen value at each point of M,

2. There exists a function λ : M → [0, 1] such that

(∇X Q)Y = λ(g(X, TY )ξ − η(Y )T X),

for any X,Y ∈ T M. Moreover, in this case if θ is the slant angle of M, we have
λ = cos2 θ.

Proof Statements 1 and 2 follow directly from Lemma 1 and formula (2.1) respec-
tively. Conversely, let λ1(x) be the only eigen value of Q|D at each point x ∈ M. Let
Y ∈ D be an unit eigen vector associated with λ1 i.e., QY = λ1Y. Then by virtue of
statement 2, we have

X (λ1)Y + λ1∇XY = ∇X (QY ) = Q(∇XY ) + λg(X, TY )ξ,

for any X ∈ T M, since Y ∈ D, and both ∇XY and Q(∇XY ) are perpendicular to Y
we conclude that λ1 is constant on M.

To prove thatM is slant, in view of (13), it is enough to show that there is a constant
μ such that Q = −μI + μη ⊗ ξ. Let X be in T M , then X = X̄ + η(X)ξ where
X̄ = X − η(X)ξ ∈ D.Hence QX = QX̄ . Since Q|D = −λ1 I,we have QX̄ = λ1 X̄
and so QX = λ1 X̄ = λ1X − λ1η(X)ξ. By taking μ = −λ1, we obtain the result.
Moreover, if M is slant, by virtue of (18), it must be λ = −λ1 = μ = cos2 θ, where
θ denotes the slant angle of M .

Now, we have the following corollary, which can be verified by Theorem 2.5.
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Corollary 2.6 ([12])Let M be a submanifold of dimension 3 of aK-contactmanifold
M̄ such that ξ ∈ T M. Then, M is slant if and only if there exists a function λ : M →
[0, 1] such that

(∇X Q)Y = λ(g(X, TY )ξ − η(Y )T X),

for any X,Y ∈ T M. Moreover, in this case if θ is the slant angle of M, we have
λ = cos2 θ.

Gherghe [21] introduced the notion of the nearly trans-Sasakian structure, which
generalizes trans-Sasakian structure in the same sense as nearly Sasakian structure
generalizes Sasakian structure. An almost contact metric structure (φ, ξ, η, g) on M̄
is a nearly trans-Sasakian structure if

(∇̄Xφ)Y + (∇̄Yφ)X = α[2g(X,Y )ξ − η(Y )X − η(X)Y ]
− β[η(Y )φX + η(X)φY ], (19)

for any X,Y ∈ T M.

A trans-Sasakian structure is always a nearly trans-Sasakian structure. Moreover, a
nearly trans-Sasakian structure of type (α,β) is nearly Sasakian or nearly Kenmotsu
or nearly cosymplectic accordingly as α = 1,β = 0 or α = 0,β = 1 or α = 0,
β = 0.

Now denoting by PXY and QXY the tangential and normal parts of (∇̄Xφ)Y and
making use of (2), (3) and Gauss-Weingarten formulae, on a submanifold M of M̄
we derive

PXY = (∇̄XT )Y − ANY X − th(X,Y ), (20)

QXY = (∇̄X N )Y + h(X, TY ) − f h(X,Y ). (21)

Recently, Al-Solamy and Khan [22] extended the study of slant submanifolds to
the setting of nearly trans-Sasakian manifold. This study generalizes all the previ-
ously discussed results. Basically, they have obtained the following result.

Theorem 2.7 ([22]) Let M be a slant submanifold of an almost contact metric
manifold M̄ . Then Q is parallel if and only if at least one of the following is true

1. M is anti-invariant,
2. dimM ≥ 3,
3. M is trivial.

Proof Let θ be the slant angle of M in M̄, then for any X,Y ∈ T M, by Eq. (18)

(∇X Q)Y = cos2 θ(g(Y,∇Xξ)ξ + η(Y )∇Xξ). (22)
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Now, if Q is parallel, then from (22), it follows that either cos θ = 0 i.e., M is anti-
invariant which accounts for case 1 or else we have

g(Y,∇Xξ)ξ + η(Y )∇Xξ = 0.

The above equation has a solution if and only if∇Xξ = 0 and therefore either D = {0}
or we can pick at least two linearly independent vectors X and T X (belonging to
uniquenon zero eigenvalue ofQ) to span D. In this case, the eigenvalue is necessarily
non zero as θ = π/2 has already been taken care off. Hence, the dim(M) ≥ 3.

Now, we will see the implications of the formulae (13) and (19) in order to study
the parallelism of Q on a slant submanifold of a nearly trans-Sasakian manifold M̄ .

In view of decomposition (4), we may write

h(X, ξ) = hND(X, ξ) + hμ(X, ξ),

for any X ∈ T M, where hND(X, ξ) ∈ ND and hμ(X, ξ) ∈ μ.

Further, by Eqs. (19), (20) and (21)

PXY + PY X = α(2g(X,Y )ξ − η(Y )X − η(X)Y ) − β(η(Y )T X + η(X)TY )

(23)
and

QXY + QY X = −β(η(Y )N X + η(X)NY ). (24)

In particular, for Y = ξ, the above equations yield

PXξ + PξX = α(η(X)ξ − X) − βT X, (25)

QXξ + QξX = −βN X. (26)

Lemma 2.8 ([22]) Let M be a proper slant submanifold of a nearly trans-Sasakian
manifold M̄ with ξ ∈ T M. Then for any X ∈ D

hND(X, ξ) = −α csc2 θN X, (27)

where θ is the slant angle of M in M̄ .

Proof By Eqs. (20) and (23), we obtain

(∇̄XT )ξ + (∇̄ξT )X − ANXξ − 2th(X, ξ) = −(αX + βT X),
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which on further simplification yields

− T∇Xξ + ∇ξT X − T∇ξX − ANXξ − 2th(X, ξ) = −(αX + βT X). (28)

As M is proper slant, by Theorem 2.7, we have

∇Xξ = 0. (29)

Making use of this fact while taking product with X in (28), we get

g(h(X, ξ), N X) = −αg(X, X)

or
g(h(X, ξ), NY ) = −αg(X,Y ),

for each X,Y ∈ D. This relation in view of the formulae (28) and (29) proves the
assertion.

Theorem 2.9 ([22]) Let M be a slant submanifold of a nearly trans-Sasakian man-
ifold M̄ with structure vector field ξ tangential to M, then Q is parallel on M if and
only if M is either anti-invariant or a trivial submanifold of M̄ .

Proof Let θ be the slant angle of M. Then from (22) it follows that either M is
anti-invariant or

g(Y,∇Xξ)ξ + η(Y )∇Xξ = 0, (30)

(30) holds if and only if ∇Xξ = 0.

Now taking X ∈ D and writing QXξ + QξX by formula (21), we obtain

QXξ + QξX = (∇̄X N )ξ + (∇̄ξN )X + h(T X, ξ) − 2 f h(X, ξ).

Substituting the value of QXξ + QξX from (26) into the above equation and taking
product with FX , it is deduced that

g(N∇Xξ, N X) − g(∇⊥
ξ N X, N X) + g(N∇ξX, N X) − g(h(T X, ξ), N X)

+2g( f h(X, ξ), FX) = βg(FX, FX).

Making use of Eqs. (29), (15), and (5) the above equation yields,

g(h(T X, ξ), FX) + 2g(h(X, ξ), FT X) = β sin2 θg(X, X).

In view of Lemma 2.8, we get θ = 0 or D = {0}.
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On the other hand, differentiating the identity g(φX, ξ) = 0 covariantly with
respect to X ∈ D, we get

g(∇̄XφX, ξ) + g(φX, ∇̄Xξ) = 0,

or

g((∇̄Xφ)X + φ∇̄X X, ξ) + g(φX, ∇̄Xξ) = 0. (31)

If θ = 0, then φX = T X. Making use of this fact and Eqs. (19) and (29), it can be
deduced from (31) that

α‖X‖2 = 0,

which means if θ = 0, then either α = 0 on M or D = {0}. This rules out the possi-
bility of slant angle being zero as long as M is a non trivial slant submanifold of M̄
with ∇Q = 0. In other words, M cannot be invariant. Hence if ∇Xξ = 0 then M is
anti-invariant.

Further, Khan et al. [23] studied totally umbilical slant submanifolds of a nearly
trans-Sasakian manifold and obtained the following results

Theorem 2.10 ([23]) Let M be a totally umbilical proper slant submanifold of a
nearly trans-Sasakian manifold M̄, then

1. H ∈ μ,

2. α = g(∇T X ξ,X)

2(‖X‖2−η2(X))
,

for any X ∈ T M.

Theorem 2.11 ([23]) Let M be a totally umbilical slant submanifold of a nearly
trans-Sasakian manifold M̄ such that α = 0 on M then one of the following state-
ments is true

1. H ∈ μ,

2. M is an anti-invariant submanifold,
3. If M is a proper slant submanifold then dim M ≥ 3,
4. M is trivial,
5. ξ is Killing vector field on M.

3 Semi-slant Submanifolds of Almost Contact Metric
Manifolds

The notion of Semi-slant submanifolds of an almost Hermitian manifolds was intro-
duced by Papaghiuc [13]. The Semi-slant submanifolds are generalized version of
CR-submanifolds. Cabrerizo et al. [14] studied this class of submanifolds in almost
contact metric manifolds.
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LetM be a submanifold, isometrically immersed in an almost Hermitianmanifold
(M̄, J, g). A differentiable distribution D on M is said to be a slant distribution if
for any x ∈ M, and a nonzero vector X ∈ Dx , the angle between J X and vector
space Dx is constant i.e., it is independent of the choice of x ∈ M and X ∈ Dx . This
constant angle is called the wirtinger angle or slant angle of the slant distribution D.

A submanifold M is said to be a Semi-slant submanifold if there exist on M
two differentiable distributions D and Dθ such that T M = D ⊕ Dθ, where D is a
holomorphic distribution i.e., J D = D and Dθ is a slant distribution with slant angle
θ �= 0.

Remark Given a point x ∈ M, if ξx ∈ TxM, then it can be observed that ξx /∈ (Dθ)x ,

where Dθ is a slant distribution on M with slant angle θ ∈ (0,π/2].
The following theorem provides a useful characterization for the existence of a

slant distribution on a contact metric manifold

Theorem 3.1 ([14]) Let D be a distribution on M, orthogonal to ξ. Then D is slant
if and only if there exits a constant λ ∈ [0, 1] such that (PT )2X = −λX, for any
X ∈ D, where P denotes the orthogonal projection on D. Furthermore, λ = cos2 θ.

If M̄ is an almost contactmetricmanifoldwith contactmetric structure (φ, ξ, η, g),

then a submanifold M of M̄ is said to be semi-slant submnaifold if there exist two
orthogonal distributions D and Dθ such that T M = D ⊕ Dθ ⊕ 〈ξ〉 such that the
distribution D is invariant under φ and Dθ is slant with slant angle θ.

Cabrerizo et al. [14] provide the following example of semi-slant submanifold of
a Sasakian manifold

Example 4 ([14]) For any θ ∈ (0,π/2], the immersion

x(u, v, w, s, t) = 2(u, 0, w, 0, v, 0, s cos θ, s sin θ, z)

defines a 5-dimensional semi-slant submanifold M, with slant angle θ in R9 with its
usual Sasakian structure (φ0, ξ, η, g) [12]. In fact, it is easy to see that

e1 = 2(
∂

∂x1
+ y1

∂

∂z
), e2 = 2(

∂

∂y1
), e3 = 2(

∂

∂x3
+ y3

∂

∂z
),

e4 = 2(cos θ
∂

∂y3
+ sin θ

∂

∂y4
), e5 = 2

∂

∂z
= ξ,

form a local orthonormal frame T M. Then the distribution D = span{e1, e2} and
Dθ = span{e3, e4} are the invariant and slant distribution.

For a semi-slant submanifold M, we denote by P1 and P2 the projections on to
D and Dθ respectively. Then for any X ∈ T M

X = P1X + P2X + η(X)ξ, (32)
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where P1X , P2X denote the components of X in D and Dθ respectively. If we denote
T1 = P1 ◦ T and T2 = P2 ◦ T , then we have

φX = T1X + T2X + N X, (33)

for any X ∈ T M.

Applying φ on both side, Eq. (32) takes the form:

φX = φP1X + T P2X + N P2X, (34)

for any X ∈ T M.

Now, we have the following initial result

Lemma 3.2 [14] If M is a semi-slant submanifold of an almost contact metric
manifold, then for any X ∈ T M

1. φP1X = T P1X and N P1X = 0,
2. T P2X ∈ Dθ.

Lemma 3.3 ([14]) Let M be a semi-slant submanifold, with slant angle θ, of a
K-contact manifold M̄ . Then, for any X,Y ∈ T M

g(T X, T P2Y ) = cos2 θg(X, P2Y ), g(N X, N P2Y ) = sin2 θ(X, P2Y ). (35)

Lemma 3.4 ([14]) Let M be a semi-slant submanifold of a Sasakian manifold M̄ .

Then for any X,Y ∈ T M, we have

P1(∇XφP1Y ) + P1(∇XT P2Y ) = φP1(∇XY ) + P1ANP2Y X − η(Y )P1X, (36)

P2(∇XφP1Y ) + P2(∇XT P2Y ) = T P2(∇XY ) + P2ANP2Y X

+ th(X,Y ) − η(Y )P2X, (37)

η(∇XφP1Y ) + η(∇XT P2Y ) = η(ANP2Y X) + g(φX,φY ), (38)

h(φP1Y, X) + h(T P2Y, X) + ∇⊥
X N P2Y = N P2(∇XY ) + f h(X,Y ). (39)

Proposition 3.5 ([14]) Let M be a semi-slant submanifold, with slant angle θ, of a
K-contact manifold M̄ . Then, for any X,Y ∈ T M, we have

η(∇XφP1Y ) = g(X, P1Y ), (40)

η(∇XT P2Y ) = cos2 θg(X, P2Y ), η(ANP2Y X) = − sin2 θg(X, P2Y ). (41)

In the following results, we study the integrability conditions of the distributions
D and Dθ
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Proposition 3.6 ([14]) Let M be a semi-slant submanifold of a Sasakian manifold
M̄. Then, the invariant distribution D is not integrable.

Proposition 3.7 ([14]) Let M be a semi-slant submanifold of a Sasakian manifold
M̄ . Then the slant distribution Dθ is integrable if and only if M is a semi-invariant
submanifold.

Proof It is easy to see that g([X,Y ], ξ) = 2g(Y, T2X), for any X,Y ∈ Dθ. If Dθ is
integrable, then T2 = 0 and so, θ = π/2. Then M is a semi-invariant submanifold.

However D ⊕ 〈ξ〉 and Dθ ⊕ 〈ξ〉 are involutive under some constraints

Proposition 3.8 ([14]) Let M be a semi-slant submanifold of a Sasakian manifold
M̄ . Then, we have

1. The distribution D ⊕ 〈ξ〉 is integrable if and only if

h(X,φY ) = h(Y,φX),

for any X,Y ∈ D.
2. The distribution Dθ ⊕ 〈ξ〉 is integrable if and only if

P1(∇XTY − ∇Y T X) = P1(ANY X − ANXY ),

for any X,Y ∈ Dθ ⊕ 〈ξ〉.
For a slant submanifolds of Sasakian manifolds, from Eq. (18), we have

(∇XT )Y = cos2 θ(g(X,Y )ξ − η(Y )X), (42)

for any X,Y ∈ T M. In fact they generalize the above equation for the semi-slant
submanifolds of Sasakian manifolds. From Example 4, one can conclude

(∇XT )Y = g(P1X,Y )ξ − η(Y )P1X + cos2 θ(g(P2X,Y )ξ − η(Y )P2X), (43)

for any X,Y ∈ T M. If we put X = P2X + η(X)ξ, Y = P2Y + η(Y )ξ ∈ Dθ ⊕ 〈ξ〉,
and formula (43) implies that

(∇XT )Y = cos2 θ(g(X,Y )ξ − η(Y )X).

If ξ is tangential to a slant submanifold M of a Sasakian manifold M̄, then T M =
Dθ ⊕ 〈ξ〉 where Dθ is the slant distribution on M with slant angle θ, and on M,

(∇XT )Y = cos2 θ(g(X,Y )ξ − η(Y )X).

In particular, on an invariant submanifold, the above condition reduces to

(∇XT )Y = g(X,Y )ξ − η(Y )X. (44)
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Lemma 3.9 ([14]) Let M be a proper semi-slant submanifold, with slant angle θ,
of a Sasakian manifold M̄ . For any X,Y ∈ T M, we have

(∇XTY ) = ANP2Y X + th(X,Y ) + g(X,Y )ξ − η(Y )X. (45)

Hence, M satisfies (43) if and only if

AN P2Y X = ANP2XY − sin2 θ(η(X)P2Y − η(Y )P2X), (46)

for any X,Y ∈ T M.

Proof Equation (45) can be obtained by using (32), (34) and (36)–(38). Now, sup-
pose that M is a proper slant submanifold satisfying (43). Then by applying (32),
(46) follows directly from (43) and (45).

Conversely, suppose that we have (46) for any X,Y ∈ T M. Then, it is easy to see
that

g(ANP2Y Z , X) = −g(th(Y, Z), X) − sin2 θg(g(P2Y, Z)ξ − η(Y )P2Z , X),

for any X,Y, Z ∈ T M. Now, by applying (45), we obtain

(∇Z T )Y = g(Z ,Y )ξ − η(Y )Z − sin2 θ(g(P2Y, Z)ξ − η(Y )P2Z)

= g(P1Z ,Y )ξ − η(Y )P1Z + cos2 θ(g(P2Z ,Y )ξ − η(Y )P2Z),

for any Y, Z ∈ T M and the proof concludes.

The following theorem shows that formula (43) provides a generalization of (18).

Theorem 3.10 ([14]) Let M be a proper semi-slant submanifold with slant angle θ
of a Sasakian manifold M̄ . Then the following statements are equivalent:

1. M satisfies (43),
2. (∇XT P2)Y = cos2 θ(g(P2X,Y )ξ − η(Y )P2X), f or any X,Y ∈ T M.

Proof Suppose that M satisfies (43). Then, by Lemma 3.9, we have

th(X,Y ) + ANP2Y X + sin2 θ(g(P2X,Y )ξ − η(Y )P2X) = 0, (47)

for any X,Y ∈ T M. By operating P1 in (47), it is easy to see that

P1ANP2Y X = 0, (48)

for any X,Y ∈ T M.

Writing (47) with Y ∈ D ⊕ 〈ξ〉, we find that
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th(X,Y ) = sin2 θη(Y )P2X, (49)

for any X ∈ T M and Y ∈ D ⊕ 〈ξ〉. On the other hand by (39)

h(φY, X) = N P2∇XY + f h(X,Y ), (50)

for any X ∈ T M and Y ∈ D ⊕ 〈ξ〉. It follows from (49) and (50) that

h(φY, X) = N P2∇XY + φh(X,Y ) − sin2 θη(Y )P2X. (51)

Now, for X ∈ T M and Y ∈ D ⊕ 〈ξ〉,on making use of the fact that φY ∈ D and
P1ANP2∇XY X = 0, we find that

g(N P2∇XY, h(φY, X)) = g(ANP2∇XY X,φY ) = 0. (52)

Moreover, for Y ∈ D by using (48) and Lemma 3.2, it is easy to see that

g(N P2∇XY,φh(X,Y )) = g(ANP2T P2∇XY X,Y ) = 0. (53)

Therefore, by (51)–(53), it follows that N P2∇XY = 0, for any X ∈ T M and Y ∈ D.
SinceM is a proper semi-slant submanifold, it follows from this equation that P2∇XY
must vanish. Hence,

∇XY ∈ D ⊕ 〈ξ〉, (54)

for any X ∈ T M and Y ∈ D. In particular, this implies ∇X Z ∈ Dθ ⊕ 〈ξ〉, for any
X ∈ T M and Z ∈ Dθ. Then by applying Lemma 3.2

P1(∇XT P2Y ) = 0, (55)

for any X,Y ∈ T M. From (36), (46), (54), and (55), we have

(∇XφP1)Y = g(P1X,Y )ξ − η(Y )P1X. (56)

We also have
(∇XT P2)Y = (∇XT )Y − (∇XφP1)Y, (57)

for any X,Y ∈ T M, so by virtue of (43) and (56), statement 2 holds.
Conversely, suppose that M satisfies 2.Then by virtue of (13) and Lemma 3.2, it

is easy to see that
P1(∇X Z) = −η(Z)T1X, (58)

for any X ∈ T M and Z ∈ Dθ ⊕ 〈ξ〉. Hence

∇X Z ∈ Dθ ⊕ 〈ξ〉, (59)
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for any X ∈ T M and Z ∈ Dθ. Thus, we can deduce from (59) that ∇XY ∈ D ⊕ 〈ξ〉,
for any X ∈ T M and Y ∈ D. Therefore, by applying Lemmas 3.2, (36) and (58), we
compute

(∇XφP1)Y = P1ANP2Y X + g(P1X,Y ) − η(Y )P1X, (60)

for any X,Y ∈ T M. On the other hand, condition 2, (37), (41), and (59) imply that

P1ANP2Y X = 0, (61)

for any X,Y ∈ T M. Finally, Eq. (43) follows from Lemmas 3.2, (60), (61), and
condition 2.

From the above result, one can conclude the following

Corollary 3.11 ([14]) If M is a proper semi-slant submanifold of a Sasakian man-
ifold M̄ satisfying (43), then

∇XY ∈ D ⊕ 〈ξ〉, ∇X Z ∈ Dθ ⊕ 〈ξ〉, (62)

for any X ∈ T M,Y ∈ D and Z ∈ Dθ. In particular, distribution D ⊕ 〈ξ〉 and Dθ ⊕
〈ξ〉 are integrable.

4 Pseudo Slant Submanifolds of Almost Contact Metric
Manifolds

In this section we consider pseudo-slant submanifolds of a Sasakian manifold and
some integrability conditions for the distributions on the submanifolds. The study
leads to characterization under which a submanifold of Sasakian manifold is pseudo-
slant.

Let M̄ be an almost contact metric manifold with an almost contact structure
(φ, ξ, η, g) and M be a submanifold isometrically immersed into M̄ with structure
vector field ξ tangent to M . Now, we define the Pseudo-slant submanifold of M̄ .

Definition A submanifold M of an almost contact metric manifold M̄ is said to be a
pseudo-slant submanifold if there exist two distributions D⊥ and Dθ on M such that

1. T M admits the orthogonal direct decomposition T M = D⊥ ⊕ Dθ ⊕ 〈ξ〉,
2. The distribution D⊥ is anti-invariant i.e., φD⊥ ⊆ T⊥M,

3. The distribution Dθ is slant with slant angle θ �= π/2.

Example 5 ([15]) Consider R9, a 9-dimensional Sasakian manifold with its usual
contact structures and consider the following submanifoldM isometrically immersed
in R9 as

M = 2(u, 0, w, 0, 0, v, s cos θ, s sin θ, t).
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Then M is a pseudo-slant submanifold of R9. In this case, the vectors

e1 = 2(
∂

∂x1
+ y1

∂

∂z)
, e2 = 2

∂

∂y2
, e3 = 2(

∂

∂x3
+ y3

∂

∂z
)

e4 = 2(cos θ
∂

∂y3
+ sin θ

∂

∂y4
), e5 = 2

∂

∂z
= ξ,

form a local orthonormal frame on T M . The distributions D⊥ and Dθ are defined as
D⊥ = span{e1, e2} and Dθ = span{e3, e4} are the anti-invariant and the slant dis-
tributions with slant angle θ respectively on M and T M = D⊥ ⊕ Dθ ⊕ 〈ξ〉.

Suppose that M s a pseudo-slant submanifold of an almost contact metric mani-
fold. Then for any X ∈ T M , put

X = P1X + P2X + η(X)ξ, (63)

where P1 and P2 are projection maps on the distributions D⊥ and Dθ respectively.
Operating φ on both sides of the above equation and using Eq. (2), we find that

T X = T P2X, N X = N P1X + N P2X, (64)

φP1X = N P1X, T P1X = 0, (65)

T P2X ∈ Dθ, (66)

for any X ∈ Dθ.

Now, we have the following characterization for a submanifold M to be a pseudo-
slant submanifold in an almost contact metric manifold

Theorem 4.1 ([15]) Let M be a submanifold of an almost contact metric manifold
M̄, such that ξ ∈ T M. Then M is a pseudo-slant submanifold if and only if there
exists a constant λ ∈ (0, 1] such that

1. D = {X ∈ D|T 2X = −λX} is a distribution on M.
2. For any X ∈ T M orthogonal to D, T X = 0.

In this case λ = cos2 θ, where θ denotes the slant angle of the distribution D.

Proof Suppose that M is a pseudo slant submanifold of a contact metric manifold.
Set λ = cos2 θ, then it follows from (13) that the distribution D is slant i.e., D =
Dθ for some θ ∈ [0, π

2 ]. Conversely, consider the orthogonal direct decomposition
T M = D ⊕ D⊥ ⊕ 〈ξ〉. It is evident that T D ⊂ D. Hence by statement 2 it is clear
that D⊥ is an anti-invariant distribution. Moreover, Theorem 3.1 and the statement
1 imply that D is a slant distribution, with the slant angle θ satisfying λ = cos2 θ.



Slant Geometry of Warped Products in Kaehler … 131

Now, we investigate the integrability conditions for the canonical distributions on
a pseudo-slant submanifold of a Sasakian manifold.

Ifμ is the invariant sub bundle of the normal bundle T⊥M then for the pseudo-slant
submanifold M, the normal bundle T⊥M can be decomposed as

T⊥M = μ ⊕ φD⊥ ⊕ NDθ. (67)

Now for any X ∈ Dθ and Z ∈ D⊥ it is easy to observe that g(φZ , N X) = 0. That
means the decomposition (67) is an orthogonal direct decomposition.

For a pseudo-slant submanifold of a Sasakian manifold, we have the following
relations that can be obtained by using formula (2), Gauss and Weingarten formulae

(∇̄XT )Y = ANY X − th(X,Y ) − η(Y )X + g(X,Y )ξ (68)

and
(∇̄X N )Y = f h(X,Y ) − h(X, TY ), (69)

for any X,Y ∈ T M.

The following initial results play an important role in working out the integrability
conditions for the distributions on a pseudo slant submanifold.

Lemma 4.2 ([15]) Let M be a pseudo-slant submanifold of a Sasakian manifold M̄ .

Then
AφY X = AφXY,

for all X,Y ∈ D⊥.

Lemma 4.3 ([15]) Let M be a pseudo-slant submanifold of a Sasakian manifold
M̄, then

[X, ξ] ∈ D⊥,

for all X ∈ D⊥.

Lemma 4.4 ([15]) Let M be a pseudo-slant submanifold of a Sasakian manifold M̄.
Then for any X,Y ∈ D⊥ ⊕ Dθ

g([X,Y ], ξ) = 2g(X, TY ).

Proposition 4.5 ([15]) Let M be a pseudo-slant submanifold of a Sasakianmanifold
M̄ . Then, the anti-invariant distribution D⊥ is always integrable

Proof For any X,Y ∈ D⊥ and Z ∈ Dθ

g([X,Y ], T P2Z) = −g(φ[X,Y ], P2Z),
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which on using (9) and Weingarten formula, gives

g([X,Y ], T P2Z) = g(AφY X − AφXY, P2Z).

Now, the assertion follows on taking account of Lemmas 4.2 and 4.4.

Corollary 4.6 ([15]) On a pseudo-slant submanifold M of a Sasakian manifold M̄,

the distribution D⊥ ⊕ 〈ξ〉 is also integrable.
The corollary follows from Proposition 4.5 and Lemma 4.4.

Lemma 4.7 ([15]) Let M be a pseudo-slant submanifold of a Sasakian manifold M̄ .

Then the slant distribution is not integrable

The proof of the lemma is straight forward in view of Lemma 4.4 and the definition
of pseudo-slant submanifold.

Proposition 4.8 ([15]) Let M be a pseudo-slant submanifold of a Sasakianmanifold
M̄ then the distribution Dθ ⊕ 〈ξ〉 is integrable if and only if

h(Z , TW ) − h(W, T Z) + ∇⊥
Z NW − ∇⊥

W N Z

lies in N Dθ for each Z ,W ∈ Dθ ⊕ 〈ξ〉.

To study the condition (18) on a pseudo-slant submanifold, we first observe that for
the pseudo-slant submanifold of R9 given in example 5

(∇̄XT )Y = cos2 θ(g(P2X,Y )ξ − η(Y )P2X), (70)

for any X,Y ∈ T M. If we take X,Y ∈ Dθ ⊕ 〈ξ〉, then (70) implies that

(∇̄XT )Y = cos2 θ(g(X,Y )ξ − η(Y )X). (71)

Thus the condition (70) is satisfied on Dθ ⊕ 〈ξ〉. On the other hand if X,Y ∈ D⊥ ⊕
〈ξ〉 then it follows from (70) that

(∇̄XT )Y = 0. (72)

This indicates that anti-invariant submanifolds satisfies Eq. (70). Moreover, the con-
dition (70) is natural condition for pseudo-slant submanifolds of a Sasakian mani-
fold analogous to the conditions (18) and (43) for slant and semi-slant submanifolds
respectively.

Now, we have the following theorem
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Theorem 4.9 ([15]) Let M be a proper pseudo-slant submanifold with angle θ of a
Sasakian manifold M̄ . Then M satisfies (70) if and only if

ANY = ANXY + η(Y )P1X − η(X)P1Y − sin2 θ(η(X)P2Y − η(Y )P2X) (73)

for any X,Y ∈ T M, where N X = N P1X + N P2X.

Proof Suppose M is a proper pseudo-slant submanifold satisfying (70). Then by
(63) and (68)

cos2 θ(g(P2X,Y )ξ − η(Y )P2X) = ANP1Y X + ANP1XY + th(X,Y ) + g(P1X,Y )ξ

+g(P2X,Y )ξ − η(Y )P1X − η(Y )P2X,

or

ANY X = −th(X,Y ) − g(P1X,Y )ξ + η(Y )P1X

− sin2 θ(g(P2X,Y )ξ − η(Y )P2X). (74)

Similarly

ANXY = −th(X,Y ) − g(P1Y, X)ξ + η(X)P1Y

− sin2 θ(g(P2Y, X)ξ − η(X)P2Y ). (75)

From the above relations, on using the fact g(P1X,Y ) = g(X, P1Y ), it follows that

ANY X = ANXY + η(Y )P1X − η(X)P1Y − sin2 θ(η(X)P2Y − η(Y )P2X).

Conversely, suppose (70) holds, then for any Z ∈ T M,

g(ANY X, Z) = −g(th(Y, Z), X) + η(Y )g(P1X, Z) − η(X)g(P1Y, Z)−

− sin2 θ(g(P2Y, Z)η(X) − η(Y )g(P2X, Z)).

Interchanging X and Z and making use of the fact that g(P1X,Y ) = g(X, P1Y ), for
each X,Y ∈ T M, we get

g(ANY X, Z) = −g(th(X,Y ), Z) + η(Y )g(P1X, Z) − η(Z)g(P1X,Y )

− sin2 θ(g(P2X,Y )η(Z) − η(Y )g(P2X, Z)).
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Taking account of Eq. (63) the above equation yields

g(ANY X, Z) = −g(th(X,Y ), Z) + η(Y )g(X, Z) − η(Z)g(X,Y )−

− cos2 θ(η(Z)g(P2X,Y ) − η(Y )g(P2X, Z)).

Now, by using (68) we obtain

(∇XT )Y = cos2 θ(g(P2X,Y )ξ − η(Y )P2X),

which proves the assertion.

Theorem 4.10 ([15]) Let M be a proper pseudo-slant submanifold of a Sasakian
manifold M̄, with slant angle θ, then

1. M satisfies (70) if and only if

(∇XT P2)Y = cos2 θ(g(P2X,Y )ξ − η(Y )P2X),

2. If M satisfies (70), then the distributions D⊥ ⊕ 〈ξ〉 and Dθ ⊕ 〈ξ〉 are parallel on
M.

Proof On a pseudo-slant submanifold of a Sasakian manifold M̄, T = T P2 and
therefore statement 1 follows from (70) and (64). Suppose that M satisfies (70), then
by the statement 1

(∇XT P2)Y = cos2 θ(g(P2X,Y )ξ − η(Y )P2X).

From the above equation it is evident that

P1∇XT P2Y = 0, (76)

i.e.,
∇XT P2Y ∈ Dθ ⊕ 〈ξ〉, (77)

or equivalently
∇XW ∈ Dθ ⊕ 〈ξ〉, (78)

for any X ∈ T M andW ∈ Dθ. Which implies that ∇X Z ∈ D⊥ ⊕ 〈ξ〉 for Z ∈ D⊥ ⊕
〈ξ〉, this proves statement 2.

As a consequence, we have

Corollary 4.11 ([15]) Let M be a pseudo-slant submanifold of a Sasakian manifold
M̄ such that M satisfies (3.14). Then D⊥ ⊕ 〈ξ〉 and Dθ ⊕ 〈ξ〉 are integrable and
their leaves are totally geodesic in M.
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In [24], Umit Yildirim studied the geometry of the pseudo-slant submanifold with
the name of contact pseudo-slant submanifolds of a Sasakian manifold. He studied
some properties of the component tensor acting on the underlying submanifold and
worked out the necessary and sufficient conditions for them to be parallel. In this
section we will quote some results of Umit Yildrim

Theorem 4.12 ([24]) Let M be a contact pseudo-slant submanifold in Sasakian
manifold M̄ such that ξ ∈ Dθ. Then we have

g(AND⊥ Dθ − T∇Dθ
D⊥ − th(Dθ, D

⊥), Dθ) = 0.

Theorem 4.13 ([24]) Let M be a proper contact pseudo slant submanifold of a
Sasakian manifold M̄ . Then the tensor N is parallel if and only if t is parallel.

Theorem 4.14 ([24]) Let M be a proper contact pseudo slant submanifold of a
Sasakian manifold M̄ . Then the covariant derivation of f is skew-symmetric.

Theorem 4.15 ([24]) Let M be a proper contact pseudo slant submanifold of a
Sasakian manifold M̄ . If t is parallel, then either M is a mixed geodesic or an
anti-invariant submanifold.

Theorem 4.16 ([24]) Let M be a proper contact pseudo slant submanifold of a
Sasakian manifold M̄ . If t is parallel, then either M is a D⊥- geodesic or an anti-
invariant submanifold of M̄.

In the next theorem, we observe the impact of parallelism of the tensor N on the
submanifold

Theorem 4.17 ([24]) Let M be a proper contact pseudo slant submanifold of a
Sasakian manifold M̄ . If N is parallel, then either M is a mixed geodesic or an
anti-invariant submanifold.

Theorem 4.18 ([24]) Let M be a proper contact pseudo slant submanifold of
a Sasakian manifold M̄ . Then the anti-invariant distribution D⊥ defines totally
geodesic foliation in M if and only if

−ANZT X + AFT X Z ∈ Dθ

for any X ∈ Dθ and Z ∈ D⊥.

Theorem 4.19 ([24]) Let M be a proper contact pseudo slant submanifold of a
Sasakian manifold M̄ . Then the slant distribution Dθ defines a totally geodesic foli-
ation on M if and only if

AφZ T X + AFT X Z ∈ D⊥

for any X ∈ Dθ and Z ∈ D⊥.



136 V. A. Khan and M. A. Khan

In 2011, De and Sarkar [25] studied pseudo-slant submanifolds of trans-Sasakian
manifolds. They obtained some basic results and integrability conditions of the dis-
tributions. Moreover, they also construct the example of pseudo-slant submanifold.
Now, we have the following results related to the integrability of the distributions.

Theorem 4.20 [25] Let M be a pseudo-slant submanifold of a trans-Sasakian man-
ifold M̄. Then the distribution D⊥ ⊕ 〈ξ〉 is integrable.
Remark [25] In particular the above result holds forα−Sasakian,β−Kenmotsu and
Cosymplectic manifolds. For the Sasakian case the above result is already discussed
in this section.

Theorem 4.21 [25] Let M be a pseudo-slant submanifold of a trans-Sasakian man-
ifold M̄ . Then the anti-invariant distribution D⊥ is always integrable.

Corollary 4.22 [25] Let M be a pseudo-slant submanifold of a trans-Sasakian man-
ifold M̄ . Then the anti-invariant distribution D⊥ ⊕ 〈ξ〉 is integrable.
Theorem 4.23 [25] Let M be a pseudo-slant submanifold of a trans-Sasakian man-
ifold M̄ . Then the slant distribution Dθ is not integrable.

Now, we have the following main result

Theorem 4.24 [25] Let M be a submanifold of a trans-Sasakian manifold M̄ with
T M = D ⊕ Dθ ⊕ 〈ξ〉. Then M is pseudo-slant submanifold if and only if

1. The endomorphism Q|Dθ
has only one eigenvalue at each point of M,

2. there exist a function λ : M → [0, 1] such that

(∇X Q)Y = λ{α(g(X, TY )ξ − η(Y )T X) + β(g(X,Y )ξ

− 2η(X)η(Y )ξ + η(Y )X)},

for any X,Y ∈ Dθ ⊕ 〈ξ〉. Moreover, if θ is the slant angle of M, then λ = cos2 θ.

For an α-Sasakian manifold the above theorem yields the following

Corollary 4.25 [25] Let M be a submanifold of a α-Sasakian manifold M̄ with
T M = D ⊕ Dθ ⊕ 〈ξ〉. Then M is pseudo-slant submanifold if and only if

1. The endomorphism Q|Dθ
has only one eigenvalue at each point of M,

2. there exist a function λ : M → [0, 1] such that

(∇X Q)Y = λ{α(g(X, TY )ξ − η(Y )T X)

for any X,Y ∈ Dθ ⊕ 〈ξ〉. Moreover, if θ is the slant angle of M, then λ = cos2 θ.

For the β−Kenmotsu manifold, it is easy to conclude the following

Corollary 4.26 [25] Let M be a submanifold of a β−Kenmotsu manifold M̄ with
T M = D ⊕ Dθ ⊕ 〈ξ〉. Then M is pseudo-slant submanifold if and only if
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1. The endomorphism Q|Dθ
has only one eigenvalue at each point of M,

2. there exist a function λ : M → [0, 1] such that

(∇X Q)Y = λ{β(g(X,Y )ξ − 2η(X)η(Y )ξ + η(Y )X)},

for any X,Y ∈ Dθ ⊕ 〈ξ〉. Moreover, if θ is the slant angle of M, then λ = cos2 θ.

5 Slant and Semi-slant Submanifolds of Almost
Paracontact Metric Manifolds

In the previous sections we study slant and generalized slant submanifolds of almost
contact metric manifolds. In this section our aim is to give a brief introduction
of slant and semi-slant submanifolds in the setting of almost paracontact metric
manifolds. In [16] M. Atceken introduced the notion of slant submanifolds and
semi-slant submanifolds.

First, we define the almost paracontact metric manifolds.
Let M̄ be a (n + 1- dimensional differentiable manifold. If there exist on M̄ a

(1, 1) type tensor field F, a vector field ξ and 1-form η satisfying

F2 = I − η ⊗ ξ, η(ξ) = 1, (79)

then M̄ is said to be an almost paracontact manifold. In the almost paracontact
manifold, the following relations hold

Fξ = 0, η ◦ F = 0, rank(F) = n. (80)

An almost paracontact manifold M̄ is said to be an almost paracontact metric
manifold if there exists a Riemannian metric g on M̄ satisfying the following:

g(FX, FY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ), (81)

for all X,Y ∈ T M.

From (80) and (81), one can easily deduce the following relation

g(FX,Y ) = g(X, FY ). (82)

Let M be a submanifold isometrically immersed in M̄ . We denote by∇ and ∇̄ the
Levi-civita connections on M and M̄ respectively. We also denote the Riemannian
metric g on M̄ as well as on M .

For any vector field X ∈ T M, we put

FX = f X + ωX, (83)
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where f X andωX denote the tangential and normal components of FX, respectively.
Similarly, for any vector field V normal to M, we put

FV = BV + CV, (84)

where BV andCV denote the tangential andnormal components of FV, respectively.
The submanifoldM is said to be invariant ifω is identically zero onM i.e., FX = f X
for any X ∈ T M. On the other hand, M is said to be an anti-invariant submanifold
if f is identically zero on M i.e. FX = ωX for any X ∈ T M. Suppose that the
vector field ξ is tangent to M. If we denote by D the orthogonal complementary
distribution to 〈ξ〉 in T M, then T M = D ⊕ 〈ξ〉, where 〈ξ〉 is the distribution spaned
by the structure vector field ξ.

For each nonzero vector field X tangent to M at any point x such that X is not
proportional to ξx , we denote by θ(X) the angle between FX and TxM. Since,
Fξ = 0, so the θ is well define angle between FX and Dθ. The submanifold M is
said to be slant submanifold if the angle θ(X) is constant, which is independent of
the choice of x ∈ M and X ∈ TxM − 〈ξ〉. Invariant and anti-invariant submanifolds
are the slant submanifolds with slant angles θ = 0 and θ = π/2, respectively. A
slant immersion that is neither invariant nor anti-invariant is called a proper slant
submanifold.

Recently, Atceken [16] constructed the following example of slant submanifold
in an almost paracontact metric manifold.

Example 6 ([16]) Let R7 be the Euclidean space endowed with the usual Euclidean
metric and with coordinates (x1, x2, y1, y2, y3, y4, t). Define an almost paracontact
metric structure on R7 by

F(
∂

∂xi
) = ∂

∂xi
, F(

∂

∂y j
) = − ∂

∂y j
, j = 1, 2, 3, 4, F(

∂

∂t
) = 0,

ξ = ∂

∂t
, η = dt.

Then the following immersion

φ(u, v) = (u, v,−k sin u,−k sin v, k cos u, k cos v)

defines a slant submanifold in R7 with slant angle θ = cos−1( 1−k2

1+k2 ).

Now, we have the following characterization for slant submanifolds of an almost
paracontact metric manifold.

Theorem 5.1 ([16]) Let M be an immersed submanifold of an almost paracontact
metric manifold M̄ .

1. Let ξ be tangent to M. Then M is slant if and only if there exist a constant
λ ∈ [0, 1] such that f 2 = λ(I − η ⊗ ξ).
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2. Let ξ be normal to M. Then M is slant if only if there exist a constant λ ∈ [0, 1]
such that f 2 = λI.

Further, if θ is the slant angle of M, it satisfies λ = cos2 θ.

Proof (i) suppose M is slant submanifold and ξ is tangent to M . Also, we assume
cos θ(X) = ‖ f X‖

‖FX‖ , where θ(X) is the slant angle. From (82) and (83) we have

g( f 2X, X) = cos2 θ(X)g(FX, FX) = cos2 θ(X)g(X − η(X)ξ, X)

for all X ∈ T M. Since g is a Riemannian metric, we have

f 2X = cos2 θ(X − η(X)ξ).

Let λ = cos2 θ. Then λ ∈ [0, 1] and f 2 = λ(I − η ⊗ ξ).

Conversely, suppose that there exists a constant λ ∈ [0, 1] such that f 2 = λ(I −
η ⊗ ξ), then by using (81) and (82) we have

cos θ(X) = λ
‖FX‖
‖ f X‖ ,

for any X ∈ T M. On the other hand, since cos θ(X) = ‖ f X‖
‖FX‖ , we conclude that

cos2 θ(X) = λ, that is θ(X) is constant and so M is slant.

(ii) If ξ is the normal vector field to M , then we conclude that η(X) = 0. Thus
from part (i), it mean that M is slant submanifold if and only if there exists a constant
λ ∈ [0, 1] such that f 2 = λI. Moreover, if θ is the slant angle of M , it satisfies
λ = cos2 θ.

Following are the immediate corollaries

Corollary 5.2 ([16]) Let M be a slant submanifold of an almost paracontact metric
manifold M̄ with slant angle θ such that ξ is tangent to M . Then we have

g( f X, f Y ) = cos2 θ{g(X,Y ) − η(X)η(Y )}

g(ωX,ωY ) = sin2 θ{g(X,Y ) − η(X)η(Y )}

for any X,Y ∈ T M.

Corollary 5.3 ([16]) Let M be an immersed submanifold of an almost paracontact
metric manifold M̄ .

1. Let ξ be tangent to M. Then M is slant submanifold of M̄ if and only if there
exists a constant μ ∈ [0, 1] such that Bω = μ(I − η ⊗ ξ).
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2. Let ξ be normal to M̄ . Then M is slant submanifold of M̄ if and only if there
exists a constant μ ∈ [0, 1] such that Bω = μI.

Furthermore, if θ is the slant angle of M, it satisfies μ = sin2 θ

Let M be a submanifold isometrically immersed in an almost paracontact metric
manifold M̄ and D be a distribution on M̄ . Suppose D be an orthogonal comple-
mentary distribution to D. Then for any X ∈ T M, we can write

FX = P1 f X + P2 f X + ωX,

where P1 and P2 are the orthogonal projections on to D and D, respectively. Thus,
we have the following characterization for slant distribution.

Theorem 5.4 ([16])Let D be a differentiable distribution on M such that ξ is tangent
to D. Then D is a slant distribution if and only if there exists a constant λ ∈ [0, 1]
such that

(P1 f )
2 = λ(I − η ⊗ ξ).

Further, in such case, if θ is the slant angle of D, then λ = cos2 θ.

Lemma 5.5 ([16])Let M bea submanifold of analmost paracontactmetricmanifold
M̄ and D is a distribution on M. Then M is a slant submanifold if and only if D is
slant distribution with the same slant angle.

Proof If M is slant submanifold, then it is easy to see that D is a slant distribution
with the same slant angle because θ(X) = θD(X) for any X ∈ D.

Conversely, for X ∈ T M − 〈ξ〉, we have

cos θ(X) = g( f X, FX)

‖ f X‖‖FX‖ = ‖ f X‖√‖X‖2 − η2(X)
.

On the other hand, taking into account X − η(X)ξ ∈ D, we derive

cos θD = ‖P(X − η(X)ξ‖
‖X − η(X)‖ ,

where P denotes the orthogonal projection of F on D. But in almost paracontactman-
ifolds, we have

√‖X‖2 − η2(X) = ‖X − η(X)‖ and f X = P(X − η(X)ξ), hence
cos θ(X) = cos θD, which proves the theorem.

Suppose M is a proper semi-slant submanifold of an almost paracontact manifold
M̄ with slant distribution Dθ and invariant distribution D. Then for any X ∈ T M,

we have

X = P1X + P2X + η(X)ξ and FX = f P1X + f P2X + ωP2X (85)
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and

g( f X, f P2Y ) = cos2 θg(X, P2Y ) and g(ωX,ωP2Y ) = sin2 θg(X, P2Y ), (86)

for any X,Y ∈ T M.

Now, we have the following characterizing theorem for semi-slant submanifolds
in almost paracontact metric manifold.

Theorem 5.6 ([16]) Let M be a submanifold immersed in an almost paracontact
metric manifold M̄ . Then M is a semi-slant submanifold if and only if there exist a
constant λ ∈ [0, 1) such that

1. D′ = {X : f 2X = λX} is a distribution on M,
2. For any X ∈ T M orthogonal to D′, ωX = 0.

Moreover, if θ is the slant angle of M then λ = cos2 θ.

Proof Let M be a semi-slant submanifold of T M = D ⊕ Dθ ⊕ 〈ξ〉, where D is
invariant and Dθ is the slant distribution. We put λ = cos2 θ. For any X ∈ D′, if
X ∈ D, then

X = F2X − η(X)ξ = F2X = ( f P1)
2X = λX.

It follows that λ = 1, but this is a contradiction to λ ∈ [0, 1), that is D′ ⊆ Dθ. On
the other hand, since D is a slant distribution, we have f 2X = ( f P2)2X = λX it
implies that Dθ ⊆ D′. Thus Dθ = D′.

The following theorem deals with the integrability of the distribution D and Dθ

Theorem 5.7 ([16])Let M bea semi-slant submanifold of almost paracontactmetric
manifold M̄ . Then we have

1. The distribution D is integrable if and only if

h(X, f Y ) = h( f X,Y ),

for any X,Y ∈ D.

2. The distribution Dθ is integrable if and only if

P1(∇X f Y − ∇Y f X) = P1(AωP2Y X − AωP2XY ),

for any X,Y ∈ Dθ.

Theorem 5.8 ([16]) Let M be a semi-slant submanifold of an almost paracontact
metric manifold M̄ . If ∇ f = 0, then the distribution D and Dθ are integrable and
their leaves are totally geodesic in M̄ .
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Theorem 5.9 ([16]) Let M be a semi-slant submanifold of an almost paracontact
metricmanifold M̄ .Then M is a semi-slant product if and only its second fundamental
form satisfies

Bh(U, X) = 0 and h(U, f X) = Ch(U, X)

for any U ∈ T M and X ∈ D.
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1 Introduction

In this survey paper, we present a brief summary concerning the slant geometry for
submanifolds in metric f -manifolds, together with some applications. The notion of
f -structure was introduced by Yano [11] as a tensor field f of type (1,1) satisfying
f 3 + f = 0, and it generalizes both almost complex and almost contact structures.
It can be proved that always exists a Riemannian metric compatible with the f -
structure. A manifold endowed with an f -structure and a compatible Riemannian
metric is called a metric f -manifold. In this context, it is possible to study invariant
(resp., anti-invariant) submanifolds of metric f -manifolds as those ones such that
any tangent vector field to the submanifold is sent by f to a tangent (resp., normal)
vector field and introduce slant submanifolds generalizing them.

We organize this chapter as follows. In Sect. 2 we present definitions and some
basic properties concerning metric f -manifolds and their submanifolds. In Sects. 3
and 4 we devote to the main aspects of the slant geometry in metric f -manifolds and
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in S-manifolds, respectively. In the last section, we present some results on Casorati
inequalities for bi-slant immersions in a T -space form.

Due to this chapter which is a survey one, we do not provide most of the proofs.

2 Preliminaries

A Riemannian manifold ˜M with Riemannian metric g on ˜M is said to be a metric
f -manifold ( ˜M, g) if it is associated with an f -structure f [11] and global vector
fields {ξi }s1 (referred to as structural vector fields) such that

(i)

⎧

⎨

⎩

f ξα = 0; ηα ◦ f = 0;
f 2 = −I + ∑s

α=1 ηα ⊗ ξα;
g(X,Y) = g( fX, fY) + ∑s

α=1 ηα(X)ηα(Y), α = 1, . . . , s,
(2.1)

∀ X,Y ∈ χ( ˜M), where dual 1-forms of {ξi }s1 are {ηi }s1.
(ii) f -structure satisfies normality condition, i.e.

[ f, f ] + 2
s

∑

i=1

ξi ⊗ dηi = 0

where [ f, f ] is the Nijenhuis tensor of f .
(iii) η1 ∧ · · · ∧ ηs ∧ (dηi ) �= 0 and for each i , dηi = 0.

Given the aforementioned circumstances

g(X, fY) = −g( fX,Y). (2.2)

A 2-form � , given by �(X,Y) = g(X, fY), ∀ X,Y ∈ χ( ˜M), can be considered.
If � = dηα, ∀ α = 1, . . . , s, ˜M is said to be a metric f -contact manifold associated
with metric f-contact structure. In a particular case, if we take s = 1, then metric
f -contact manifolds becomes metric contact manifold.
The structure f is normal if

[ f, f ] + 2
s

∑

α=1

ξα ⊗ dηα = 0, (2.3)

Metric f -manifold ˜M is called K manifold if it is normal and d� = 0 (see [3]). It
is known that the structure vector fields {ξi }si=1 in a K -manifold are killing vector
fields. Furthermore, if � = dηα for every α = 1, . . . , s, a K-manifold is called an
S-manifold. Note that a K -manifold is a Kaehlerian manifold for s = 0, a quasi-
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Sasakian manifold for s = 1, and an S-manifold is a Sasakian manifold for s = 1.
When s ≥ 2, there are some non-trivial examples in [3, 9].

In an S-manifold,

η1 ∧ · · · ∧ ηs ∧ (dηα)n �= 0, (2.4)

for any α = 1, . . . , s. S-manifolds are obviously metric f -contact manifolds.
We notice that the following relations are satisfied for the Riemannian connection

˜∇ of S-manifold ˜M [5]

(˜∇X f )Y =
s

∑

α=1

(g( fX, fY)ξα + ηα(Y) f 2X) (2.5)

and

˜∇Xξα = − fX, (2.6)

∀X,Y ∈ χ( ˜M).
An S-manifolds ˜M is called S-space form if its f -sectional curvature c is constant

′c′ and is denoted by ˜M(c). The curvature tensor ˜R of S-space form is given by [4]

˜R(X,Y)Z = c + 3s

4

[

g( fX, fZ) f 2Y − g( fY, fZ) f 2X
]

+ c − s

4

[

g(X, fZ) fY − g(Y, fZ) fX + 2g(X, fY) fZ
]

+
∑

α,β

[

ηα(X)ηβ(Z) f 2Y − ηα(Y)ηβ(Z) f 2X

− g( fX, fZ)ηα(Y)ξβ + g( fY, fZ)ηα(X)ξβ

]

. (2.7)

and the curvature tensor of T -space form is given by

˜R(X,Y)Z) = c

4

{

g(X,Z)Y − g(Y,Z)X − g(X,Z)
∑

ηα(Y)ξα

− Y
∑

ηα(Z)ηα(X) + X
∑

ηα(Y)ηα(Z)

+ g(Y,Z)
∑

ηα(X)ξα +
(

∑

ηα(Z)ηα(X)

)(

∑

ηα(Y
)

ξα

)

−
(

∑

ξαηα(X)

)(

∑

ηα(Y
)

ηα(Z
)

+ g(Y, φZ)φX

− g(X, φZ)φY − 2g(X, φY)φZ
}

(2.8)
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Let T M (resp., T⊥M) be the tangent (resp. normal) space on ˜M .
Next, write

fX = TX + NX, (2.9)

for every X ∈ T M , where TX (resp. NX) denotes the tangential (resp. normal)
components of fX. Similarly,

f V = TV + NV, (2.10)

for any V ∈ T⊥M whereTV (resp.NV ) is the tangential (resp. normal) components
of f V .

In [10] Lotta introduced slant submanifold in almost contact manifold.
If X is not proportional to ξ , then the angle between f X & T M is denoted by

θ(X).

Definition 2.1 The submanifold M is called a slant submanifold if the angle θ(X) is
constant ∀ X ∈ T M − {ξ}. The submanifold M is an invariant submanifold if θ = 0,
anti-invariant submanifold if θ = π

2 .

It is noticed that T = f on T M for invariant submanifolds and hence

T 2 = −I +
s

∑

α=1

ηα ⊗ ξα, (2.11)

for anti-invariant submanifolds, whereas T 2 = 0 for anti-invariant submanifolds.
A submanifold M of ˜M is called a bi-slant submanifold if it has a couple of

orthogonal distributions �1 and �2 of M such that

(i) T M = �1 ⊕ �2 ⊕ {ξα},
(ii) f �i ⊥ � j , for i �= j = 1, 2,
(iii) Each distribution �i (for i = 1, 2) is slant with slant angle θi .

3 Slant Submanifolds in Metric f -Manifolds

Fernández and Hans-Uber [8] developed some general results concerning slant sub-
manifolds in metric f -manifolds. A submanifold M of a metric f -manifold ˜M is
slant with tangent structure vector fields if

T 2 = −λI + λ

s
∑

α=1

ηα ⊗ ξα = λ f 2, (3.1)
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Additionally, for slant angle θ of M , it follows λ = cos2 θ . From f -metric manifold
condition together with (2.9) and (3.1), we have

g(TX, TY) = cos2 θ [g(X,Y) −
s

∑

α=1

ηα(X)ηα(Y)], (3.2)

g(NX, NY) = sin2 θ [g(X,Y) −
s

∑

α=1

ηα(X)ηα(Y)], (3.3)

for X,Y ∈ T M .
Moreover, if Mm+s is a non-invariant slant submanifold of a metric f -manifold

˜M2m+s associated with slant angle θ and an orthonormal frame {E1, . . . , Em, ξ1, . . . ,

ξs} of T M , then it directly implies {(csc θ)NEi }m1 is a normal orthonormal frame M .
Consequently, we have the following proposition [5].

Proposition 3.1 Let M2+s be a proper slant submanifold of a metric f -manifold
˜M4+s associated with slant angle θ . Let E1 is a unit vector field tangent to M and
normal to the structural vector fields and

E2 = (sec θ)T E1, E3 = (csc θ)NE1andE4 = (csc θ)NE2.

Then, E1 = −(sec θ)T E2 and {E1, E2, E3, E4, ξ1, . . . , ξs} is an orthonormal frame
of χ( ˜M) where E1, E2, ξ1, . . . , ξs are tangent and E3, E4 are normal to M. In addi-
tion,

T E3 = − sin θE1,NE3 = − cos θE4,T E4 = − sin θE2,NE4 = cos θE3.

More details can be found in the papers [5, 6].
Next, let f̄ = (sec θ)T . Then, from (3.1) and (3.2), we have [8]

f̄ 2X = sec2 θT 2X = −X +
∑

α

ηα(X)ξα,

and
g( f̄X, f̄Y) = sec2 θg(TX, TY) = g(X,Y) −

∑

α

ηα(X)ξα,

whereX,Y ∈ T M , where f̄ is an f -structure onM .M together with f̄ and structure
vector fields ξ1, . . . , ξs become a metric f -manifold. Accordingly, a slant submani-
fold of a metric f -contact manifold with the above induced structure becomes metric
f -contact manifold when it is an invariant submanifold and vice-versa.
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4 Slant Submanifolds of S-Manifolds

4.1 Examples

Thus, in the light of Examples 2.1, 2.3, and 2.4 given in [6], we have

Example 4.1 Consider

x(u, v, γ1, . . . , γs) = 2(u cos θ, u sin θ, v, 0, γ1, . . . , γs), (4.1)

where θ ∈ [0, π
2 ]. Then, (4.1) with slant angle θ defines aminimal 2 + s-dimensional

slant submanifold M .
Actually, for α = 1, . . . , s we assume a basis of T M built as

E1 = ∂

∂u
+

s
∑

α=1

2v cos θ
∂

∂γα

= cos θ
(

2
( ∂

∂x1
+

s
∑

α=1

y1
∂

∂zα

))

+ sin θ
(

2
( ∂

∂x2
+

s
∑

α=1

y2
∂

∂zα

))

,

E2 = ∂

∂v
= 2

∂

∂y1
, E2+α = ∂

∂γα

= 2
∂

∂zα

= ξα.

Further proceeding in same direction, we get the normal basis on M as

E3+s = − sin θ
(

2
( ∂

∂x1
+

s
∑

α=1

y1
∂

∂zα

))

+ cos θ
(

2
( ∂

∂x2
+

s
∑

α=1

y2
∂

∂zα

))

,

E4+s = 2
∂

∂y2
.

Both bases can be proved to be orthonormal bases. Then, it yields

[E1, E2] = −2 cos θ

s
∑

α=1

E2+α, [E1, E4+s] = −2 sin θ

s
∑

α=1

E2+α,

[E2, E3+s] = −2 sin θ

s
∑

α=1

E2+α, [E3+s, E4+s] = −2 cos θ

s
∑

α=1

E2+α,

whereby ˜∇ Ei
Ei

= 0, for any i = 1, . . . , 2 + s. Furthermore

σ(E1, E1) = 0, σ (E1, E2) = 0, σ (E1, ξα) = sin θE4+s,

σ (E2, E2) = 0, σ (E2, ξα) = sin θE3+s, σ (ξα, ξβ) = 0,
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and, consequently M is minimal.

Example 4.2 Consider

x(u, v, γ1, . . . , γs)

= 2(eku cos u cos v, eku sin u cos v, eku cos u, sin v, eku sin u sin v, γ1, . . . , γs),

(4.2)

where k is any constant. Then, (4.2) with slant angle

θ = arccos
( |k|√

1 + k2

)

defines a (2 + s)-dimensional slant submanifold M and mean curvature is given by

|H | = 2e−ku

(2 + s)
√
1 + k2

.

Hence, the submanifold is not minimal.
Under this consideration, the orthonormal basis {E1, E2, . . . , E2+s} of T M is

given by

E1 = e−ku

√
1 + k2

( ∂

∂u
+

s
∑

α=1

ke2ku sin(2v)θ
∂

∂γα

)

,

E2 = e−ku
( ∂

∂v
− 2

s
∑

α=1

ke2ku sin2 vθ
∂

∂γα

)

, E2+α = ∂

∂γα

= 2
∂

∂zα
= ξα.

Keeping in mind, at the points of the submanifold

4e2ku = (x1)2 + (x2)2 + (y1)2 + (y2)2,

the value of |H | is obtained with few steps of computations.

Example 4.3 For any constant k,

x(u, v, γ1, . . . , γs) = 2(u, k cos v, v, k sin v, γ1, . . . , γs)

defines a (2 + s)-dimensional slant submanifold M with slant angle

θ = cos−1
( 1√

1 + k2

)

and mean curvature

|H | = |k|
(2 + s)(1 + k2)

.
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Further, following statements are equivalent:

(a) k = 0,
(b) M is invariant,
(c) M is minimal.

Here, orthonormal frame {E1, E2, ξ1, . . . , ξs} of X(M) is given by

E1 = ∂

∂u
+

s
∑

α=1

2v
∂

∂γα

= 2
∂

∂x1
2y1

s
∑

α=1

∂

∂zα
,

E2 = 1√
1 + k2

(

∂

∂v
+

s
∑

α=1

(−2k2 sin2 v)
∂

∂γα

)

=

= 1√
1 + k2

(

−y2
∂

∂x2
+ 2

∂

∂y1
+ x2

∂

∂y2
− (y2)2

s
∑

α=1

∂

∂zα

)

,

E2+α = ∂

∂γα

= 2
∂

∂zα
= ξα.

Keeping inmind, for submanifoldwith x2 = 2k cos v and y2 = 2k sin v, we obtain

˜∇E1E1 = 0

and

˜∇E2E2 = 1

1 + k2

(

−x2
∂

∂x2
− y2

∂

∂y2
− x2y2

s
∑

α=1

∂

∂zα

)

.

Furthermore, it is easily seen

σ(E1, E1) = 0, σ (E2, E2) = ˜∇E2E2

and

H = − 1

(2 + s)(1 + k2)

(

x2
∂

∂x2
+ y2

∂

∂y2
+ x2y2

s
∑

α=1

∂

∂zα

)

.

Example 4.4 Consider E8+s equipped with the usual S structure given in Example
4.2 from [1]. For any constant k,

x(u, v, w,m, t1, . . . , ts) = 2(eku cos u cos v, eku sin u cos v, eku cos u sin v, eku sin u

sin v, eku cosw cosm, eku sinw cosm, eku cosw sinm, eku sinw sinm, t1, . . . , ts)
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defines a bi-slant submanifold M4+s with the bi-slant angles (θ1, θ2) where

θ1 = cos−1

(

k√
2k2 + 1

)

and θ2 = cos−1

( −k√
k2 + 1

)

.

4.2 Ricci Curvature of Slant and Bi-slant Submanifolds of
S-Space Forms

Consider an orthonormal frame

{E1, . . . , En, En+1, . . . , E2m, E2m+1 = ξ1, . . . , E2m+s = ξs}, (4.3)

Given a unit vector field U ∈ � and taking into account an orthonormal frame as
given in (4.3) with E1 = U , one has |TU |2 = cos2 θ , we have the following:

Theorem 4.5 ([7]) Let Mn+s be θ -slant submanifold of an S-space form ˜M(c). Then

(i) 4Ric(U) ≤ (n + s)2|H |2 + (n − 1)(c + 3s) + cos2 θ(3c + s) for every U ∈ �.
(ii) The equality holds in (i) if andonly if either M is a totally f -geodesic submanifold

or M2+s is a totally f –umbilical submanifold.

For X ∈ T M , let X = P1X + P2X + ∑3
α=1 ηα(X)ξα , where Pi are the projections.

Now, we state some results obtained in [1] as follows.

Lemma 4.6 For bi-slant submanifold of S manifold, we have

g(T Pi X, T PiY ) = cos2 θi
(

g(Pi X, PiY ) −
3

∑

α=1

ηαT Pi XηαT PiY
)

whereby X,Y ∈ T M.

Theorem 4.7 Let M2n+2m+s be �i -geodesic (θ1, θ2) bi-slant submanifold of an S
manifold. Then, we have

(i) N Xi = 0, whereby Xi ∈ �i .
(ii) Pi T Pj = sin2 θi I , for any i �= j ∈ 1, 2.

Theorem 4.8 If the submanifold M is both �1 and �2-geodesic (θ1, θ2) bi-slant
submanifold, then θ1 + θ2 = π

2 .

Theorem 4.9 For (θ1, θ2) bi-slant submanifold M of an S manifold, we have

(i) M is an invariant submanifold if it is totally umbilical submanifold.
(ii) For M to be �1 and �2 totally umbilical, θ1 + θ2 = π

2 .

As a direct application of above result, it implies
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Corollary 4.10 There does not exists semi-slant and hemi-slant submanifolds of an
S manifold, if either �1 and �2 geodesic or �1 and �2-totally umbilical

Theorem 4.11 For bi-slant submanifold M (2n+2m+s) of an S-space-form ˜M(c), the
following inequality holds:

(i)

Ric(X) ≤ 1

4
n2||H ||2 + c

4

{

(2n + 2m − 1) + 3 cos2 θ1 + ||P2T X ||2}, (4.4)

for X ∈ �1. equality holds if and only if M is �1 totally geodesic.
(ii)

Ric(X) ≤ 1

4
n2||H ||2 + c

4

{

(2n + 2m − 1) + 3 cos2 θ2 + ||P1T X ||2}, (4.5)

for X ∈ �2. Further, equality holds if and only if M is �2 totally geodesic.
(iii) Moreover, equality condition of (4.4) and (4.5) holds, then θ1 + θ2 = 0.

Thus, as a consequence, we have the following result for semi-slant submanifold i.e,
θ1 = 0.

Corollary 4.12 Let ˜M(c) be an S-space form and M (2n+2m+s) submanifolds of
˜M(c), then for semi-slant submanifolds the following inequality holds:

(i)

Ric(X) ≤ 1

4
n2||H ||2 + c

4

{

(2n + 2m + 2), (4.6)

for X ∈ �1. Further, equality holds if and only if M is �1 totally geodesic.
(ii)

Ric(X) ≤ 1

4
n2||H ||2 + c

4

{

(2n + 2m − 1) + 3 cos2 θ2, (4.7)

for X ∈ �2. Further, equality holds if and only if M is �2 totally geodesic.
(iii) Moreover, equality condition of both (4.6) and (4.7) does not satisfy.

Corollary 4.13 Let ˜M(c) be an S-space form and M (2n+2m+s) submanifolds of
˜M(c), then for hemi-slant submanifolds the following inequality holds:

(i)

Ric(X) ≤ 1

4
n2||H ||2 + c

4

{

(2n + 2m + 2) + 3cos2θ1, (4.8)

for X ∈ �1. Further, equality holds if and only if M is �1 totally geodesic.
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(ii)

Ric(X) ≤ 1

4
n2||H ||2 + c

4

{

(2n + 2m − 1)}, (4.9)

for X ∈ �2. Further, equality holds if and only if M is �2 totally geodesic.
(iii) Moreover, equality condition of both (4.8) and (4.9) does not satisfy.

5 Casorati Inequalities for Bi-slant Immersions in
T -Space-Form

For an immersion of a manifold Mn into a Riemannian manifold ˜Mm , let

{E1, . . . , En, En+1, . . . , Em}

be an orthonormal frame to ˜M such that {E1, . . . , En} and {En+1, . . . , Em} are
orthonormal frame of T M and T⊥M , respectively.

Now, we first recall some basic terminologies concerning intrinsic curvatures
given below. The normalized scalar curvature ρ of the immersion is given by

ρ = 2τ

n(n − 1)
, (5.1)

for scalar curvature τ .
The Casorati curvature of the submanifold is stated as

C = 1

n

m
∑

α=n+1

n
∑

i, j=1

(

σα
i j

)2
. (5.2)

The scalar curvature of the r -plane section L is given by

τ(L) =
∑

1≤i< j≤r

K (Ei ∧ E j )

which gives formula for the Casorati curvature of the subspace L as

C(L) = 1

r

m
∑

α=n+1

n
∑

i, j=1

(

σα
i j

)2
.

Next, we have formula for δc(n − 1) and̂δc(n − 1) called normalized δ-Casorati
curvatures given by
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[δc(n − 1)]x = 1

2
C(x) + n + 1

2n
inf{C(L) : L is a hyperplane of TxM} (5.3)

and

[̂δc(n − 1)]x = 2C(x) + 2n − 1

2n
sup{C(L) : L is a hyperplane of TxM}. (5.4)

Also, for t �= n(n − 1) ∈ R
+ and taking

A(t) = 1

nt
(n − 1)(n + t)(n2 − n − t), (5.5)

we have formula for the generalized normalized δ-Casorati curvatures δc(t; n − 1)
and̂δc(t; n − 1) stated as

[δc(t; n − 1)]x = tC(x) + A(t) inf{C(L) : L is a hyperplane of TxM}, (5.6)

if 0 < t < n2 − n, and

[̂δc(t; n − 1)]x = tC(x) + A(t) sup{C(L) : L is a hyperplane of TxM}, (5.7)

if t > n2 − n.

Now, we have [2].

Theorem 5.1 For bi-slant submanifold Mn+s of a T -space-form ˜M2m+s(c), we have

(i) δc(t; n + s − 1) for 0 < t < (n + s)(n + s − 1) satisfies

ρ ≤ δc(t; n + s − 1)

(n + s)(n + s − 1)
+ c

4(n + s)(n + s − 1)

{

(n(n − 1)

+3(d1 cos
2 θ1 + d2 cos

2 θ2 + s(1 − s))
}

. (5.8)

(ii) ̂δc(t; n + s − 1) for t > (n + s)(n + s − 1) satisfies

ρ ≤ + ̂δc(t; n + s − 1)

(n + s)(n + s − 1)
+ c

4(n + s)(n + s − 1)

{

(n(n − 1)

+3(d1 cos
2 θ1 + d2 cos

2 θ2 + s(1 − s))
}

. (5.9)

Moreover, the equality holds in (5.8) and (5.9) if and only if the shape operators Aα =
AEα

, α ∈ {n + s + 1, . . . , 2m + s} take the following form of matrix for tangent
(resp. normal ) orthonormal frame {E1, . . . , En+s} (resp. {En+s+1, . . . , E2m+s}) as
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An+s+1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . a 0
0 0 0 . . . 0 (n+s)(n+s−1)

t a

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, An+s+2 = · · · = A2m+s = 0. (5.10)

Remark 5.2 Similar result for δc(n − 1) and̂δc(n − 1) can also be easily obtained.

Finally, we have the following result obtained in [2]:

Theorem 5.3 Let M be a (n + s)-dimensional submanifold in a T -space-form ˜M(c)
of dimension 2m + s. Then, inequalities for generalized normalized δ-Casorati
curvatures δc(t; n + s − 1) and ̂δc(t; n + s − 1) are given in the following table
(Table1):

Table 1 Result in a glance for different submanifolds

Mn+s Inequalities

Semi-slant ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {n(n − 1) + 3(d1 + d2cos2θ2 + s(1 − s))}
ρ ≤ ̂δc(t;n+s−1)

(n+s)(n+s−1) + c
4(n+s)(n+s−1) {n(n − 1) + 3(d1 + d2cos2θ2 + s(1 − s))}

Hemi-slant ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {n(n − 1) + 3(d1cos2θ1 + s(1 − s))}
ρ ≤ ̂δc(t;n+s−1)

(n+s)(n+s−1) + c
4(n+s)(n+s−1) {n(n − 1) + 3(d1cos2θ1 + s(1 − s))}

Slant ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 1) + 3((n + s)cos2θ + s(1 − s))}
ρ ≤ ̂δc(t;n+s−1)

(n+s)(n+s−1) + c
4(n+s)(n+s−1) {(n(n − 1) + 3((n + s)cos2θ + s(1 − s))}

CR ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 1) + 3(d1 + s(1 − s))}
ρ ≤ ̂δc(t;n+s−1)

(n+s)(n+s−1) + c
4(n+s)(n+s−1) {(n(n − 1) + 3(d1 + s(1 − s))}

Invariant ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 2) + 3s(2 − s))}
ρ ≤ ̂δc(t;n+s−1)

(n+s)(n+s−1) + c
4(n+s)(n+s−1) {(n(n − 2) + 3s(2 − s))}

Anti-
invariant

ρ ≤ δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 1) + 3s(1 − s))}

ρ ≤ ̂δc(t;n+s−1)
(n+s)(n+s−1) + c

4(n+s)(n+s−1) {(n(n − 1) + 3s(1 − s))}
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Slant, Semi-slant and Pointwise Slant
Submanifolds of 3-Structure Manifolds

Mohammad Bagher Kazemi Balgeshir
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1 Introduction

The study of geometric properties of submanifolds in different ambient Riemannian
manifolds is a very interesting area of research. In 1990 [8, 9], B.-Y. Chen introduced
the notion of slant submanifolds in complex geometry as an umbrella of invariant
and anti-invariant (totally real) submanifolds. Since then, the theory of slant subman-
ifolds became one of the interesting areas of research. Later, Lotta [18] extended this
notion in the framework of contact geometry. Recently, Sahin [25] defined slant and
quaternion slant submanifolds of quaternion Kaehler manifolds. As a natural gen-
eralization of slant and CR-submanifolds, Papaghiuc [24] introduced the notion of
semi-slant submanifolds which was further generalized by Carriazo [7] introducing
bi-slant submanifolds. Further in [5], the authors investigated bi-slant and semi-slant
submanifolds of Sasakian manifolds. Since then, many authors have studied these
types of submanifolds in various ambient spaces endowed with other structures such
as trans-Sasakian and Kenmotsu (see [6, 25, 26]). Furthermore, slant submanifolds
have been extended to semi-slant, bi-slant, hemi-slant, pseudo-slant, pointwise slant,
pointwise h-semi-slant submanifolds of different manifolds (like Kaehlerian, quater-
nionic Kaehlerian, almost contact and almost contact 3 structures) [5, 22, 28].

On the other hand, Etayo [11] extended this theory of submanifolds by defining
quasi-slant submanifolds. In such submanifolds, at any given point the slant angle is
independent of the choice of any non-zero vector field of submanifold. Later, Chen
and Garay [10] studied and characterized these submanifolds as pointwise slant
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submanifolds. Next, pointwise h-semi slant and bi-slant submanifolds of quaternion
manifolds were studied by Park in [21]. Later, B. Sahin together with Lee [17]
investigated pointwise slant submersion from almost Hermitian manifolds.

In 1970, Kuo [16] and Udriste [27] were first independently defined almost con-
tact 3-structure manifolds. 3-Sasakian and 3-cosymplectic manifolds are two classes
of almost contact 3-structure manifolds which are equipped with three Killing vec-
tor fields (see [2, 3, 12]). Moreover, 3-Sasakian and 3-cosymplectic manifolds are
closely related to quaternionic Kaehlerian and hyper-Kaehlerian manifolds [4, 29]
and are Einstein andRicci flat, respectively [13, 23]. In 2013, the author of the present
chapter withMalek [19] introduced the notion of 3-slant submanifolds in almost con-
tact 3-structure manifolds, focusing on the study of Sasakian slant submanifolds in
which particularly established a sharp inequality involving the squared mean cur-
vature and Ricci curvature for such submanifolds. Later, in [20] the same authors
introduced 3-semi-slant and 3-bi-slant submanifolds in almost contact 3-structure
manifolds. Some years later, in [15] S. Uddin and the author of the present chapter
introduced pointwise hemi 3-slant submanifolds of almost contact metric 3 struc-
tures and characterized such submanifolds. They also investigated the integrability
conditions for some canonical distributions.

The purpose of this chapter is to summarize the contributions of present author
to the geometry of various kinds of slant submanifolds in almost contact metric
3-structure manifolds.

2 Almost Contact 3-Structure Manifolds

Let M be an odd-dimensional Riemannian manifold admitting a (1, 1)-tensor field
φ, a vector field ξ and a 1-form η and satisfying

φ2(X) = −X + η(X)ξ, η(ξ) = 1, (1)

for any vector field X ∈ T M , where T M is the Lie algebra of vector fields in M .
Then (φ, ξ, η) is called an almost contact structure on M .

Also, let g be a Riemannian metric on M satisfying

g(φX, φY ) = g(X,Y ) − η(X)η(Y ), (2)

for all X,Y ∈ T M . Then (M, ξ, η, φ, g) is called an almost contact metric manifold.
Moreover, in an almost contact metric manifold φξ = 0 and ηoφ = 0 holds [1].

Next, we recall two important types of almost contact metric manifolds (namely,
Sasakian and cosymplectic manifolds) which are defined as follows:

Let ∇ be the Levi-Civita connection of almost contact metric manifold
(M, ξ, η, φ, g). Then, M is called Sasakian manifold if

(∇Xφ)Y = g(X,Y )ξ − η(Y )X and ∇Xξ = −φX, (3)
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for all X,Y ∈ T M .
On the other hand, an almost contact metric manifold (M, ξ, η, φ, g) is called

cosymplectic manifold if it satisfies

(∇Xφ)Y = 0 and ∇Xξ = 0, (4)

for all X,Y ∈ T M .
Next, suppose M admits three almost contact metric structures (ξi , ηi , φi , g), for

i = 1, 2, 3 satisfying

ηi (ξ j ) = 0, φiξ j = −φ jξi = ξk, ηi oφ j = −η j oφi = ηk, (5)

φi oφ j − η j ⊗ ξi = −φ j oφi + ηi ⊗ ξ j = φk, (6)

g(φi X, φi Y ) = g(X,Y ) − ηi (X)ηi (Y ), (7)

for all X,Y ∈ T M and for cyclic permutation (i, j, k) to be (1, 2, 3). Then,
(M, ξi , ηi , φi , g)i∈{1,2,3} is called an almost contact metric 3-structure manifold
[16] which in this work shortly called as metric 3-structure manifold.

Using relation (7), one can easily have

g(φi X,Y ) = −g(X, φi Y ). (8)

Moreover, (M, ξi , ηi , φi , g)i∈{1,2,3} is called 3-Sasakian manifold if it holds

(∇Xφi )Y = g(X,Y )ξi − ηi (Y )X and ∇Xξi = −φi X, (9)

for all X,Y ∈ T M .
Next, (M, ξi , ηi , φi , g)i∈{1,2,3} is called 3-cosymplectic manifold if it satisfies

(∇Xφi )Y = 0 and ∇Xξi = 0, (10)

for all X,Y ∈ T M .
It is well known that 3-Sasakian and 3-cosymplectic manifolds are (4n + 3)-

dimensional Einstein and Ricci flat manifolds, respectively [13, 23].
Let M be an isometrically immersed submanifold in metric 3-structure manifold

(M, ξi , ηi , φi , g)i∈{1,2,3}. Then the Gauss and theWeingarten formulas can be written
as

∇XY = ∇XY + B(X,Y ) and ∇XV = DXV − AV X, (11)

for any X,Y ∈ T M and V ∈ (T M)⊥ where T M (resp. T (M)⊥) are the set of all
vector fields tangent (resp. normal) toM . Also,∇ is the Levi-Civita connection onM ,
DXV is the normal connection of the immersion, B(X,Y ) is the second fundamental
form and AV X is the shape operator. Moreover, B and A are related together by the
following relation
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g(AV X,Y ) = g(B(X,Y ), V ). (12)

In addition, let R and R be the curvature tensors of M and M , respectively. Then the
Gauss equation is given by

R(X, Y, Z ,W ) = R(X, Y, Z ,W ) + g(B(X,W ), B(Y, Z)) − g(B(X, Z), B(Y,W )), (13)

for all X,Y, Z ,W ∈ T M .
Moreover, for any X ∈ T M and V ∈ (T M)⊥ one can decompose φi X and φi V

as follows.
φi X = Ti X + Ni X and φi V = ti V + ni V, (14)

where Ti X (resp. Ni X) in the tangential (resp. normal) component of φi X and ti V
(resp. ni V ) in the tangential (resp. normal) component of φi V .

3 Slant Submanifolds of 3-Structure Manifolds

3.1 The Concept of 3-Slant Submanifolds and Examples

This section is devoted to a review some basic definitions. Later, we discuss 3-slant
submanifolds of a 3-structure manifold and give some examples and characterization
theorems of 3-slant submanifolds.

A submanifold M of (M, ξi , ηi , φi )i∈{1,2,3} is called an invariant submanifold if
φi Tp(M) ⊂ TpM and is called an anti-invariant submanifold if φi Tp(M) ⊂ Tp(M)⊥
for all p ∈ M and i = 1, 2, 3.

Let M be a submanifold of an almost contact metric manifold (M, ξ, η, φ). Then,
M is said to be a slant submanifold if the angle between φX and TpM is constant at
any point p ∈ M and for any X linearly independent of ξ .

As a generalization of invariant and anti-invariant submanifolds, 3-slant subman-
ifolds of 3-structure manifolds are defined as follows:

Definition 1 ([19]) Let M be a submanifold of a metric 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3}. Then, M is said to be a 3-slant submanifold if for all
i ∈ {1, 2, 3}, the angle between φi X and TpM is constant θ ∈ [0, π

2 ], for each p ∈ M
and each non-zero vector X ∈ TpM linearly independent of ξi .

It is noted that the slant angle does not depend on choice of p ∈ M , X ∈ TpM and
φi , for all i, j ∈ {1, 2, 3} the angle between φi X and Tj X is θ . Here, one can easily
see that a 3-slant submanifold with slant angle θ = 0 (respectively θ = π

2 ) turns
out to an invariant (respectively anti-invariant) submanifold. Also for θ ∈ (0, π

2 ), the
submanifold is called a proper 3-slant submanifold.

Now as generalizations of examples of [19], we first give non-trivial examples of
3-slant submanifolds of 3-structure manifolds.
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Example 1 Consider M = R
4n+3 with Euclidian metric g = ∑4n+3

i=1 dx2i and φi ’s
are given by

φ1((xi )i=1,4n+3) = (−x3, x4, x1,−x2, . . . , 0,−x4n+3, x4n+2),

φ2((xi )i=1,4n+3) = (−x4,−x3, x2, x1, . . . , x4n+3, 0,−x4n+1),

φ3((xi )i=1,4n+3) = (−x2, x1,−x4, x3, . . . ,−x4n+2, x4n+1, 0).

Suppose that ξ1 = ∂x4n+1, ξ2 = ∂x4n+2, ξ3 = ∂x4n+3 andηi (.) = g(ξi , .), i = 1, 2, 3,
then (M, ξi , ηi , φi , g)i∈{1,2,3} is a metric 3-structure manifold.

For α ∈ (0, π
2 ), let

M(u, v) = (u sin α, 0, 0, 0, u cosα, v cosα, v cosα, v cosα, 0, . . . , 0)

be a submanifold of M . Then

{X1 = sin α∂x1 + cosα∂x5, X2 = cosα(∂x6 + ∂x7 + ∂x8)}

is a frame for T M . By direct computations we find the slant angle θ as follows

cos θ = g(φi X, Tj X)

|φi X ||Tj X | = cosα√
3

, i, j ∈ {1, 2, 3}.

So, M is a proper 3-slant submanifold of M .

Example 2 Let M = R
15, g = ∑15

i=1 dx
2
i , ξ1 = ∂x13, ξ2 = ∂x14, ξ3 = ∂x15 and ηi ’s

be the dual of ξi ’s. Also, φi ’s are defined as follows

φ1((xi )i=1,15) = (−x3, x4, x1,−x2, . . . ,−x11, x12, x9,−x10, 0,−x15, x14),

φ2((xi )i=1,15) = (−x4,−x3, x2, x1, . . . ,−x12,−x11, x10, x9, x15, 0,−x13),

φ3((xi )i=1,15) = (−x2, x1,−x4, x3, . . . ,−x10, x9,−x12, x11,−x14, x13, 0).

It is easy to show that (M, ξi , ηi , φi , g)i∈{1,2,3} is a metric 3-structure manifold.
By taking M(t, s) = (t, s, s, s, t, 0, 0, 0, t, 0, 0, 0, t + s, t + s, t + s), at any

point p ∈ M , TpM is spanned by

X1 = ∂x1 + ∂x5 + ∂x9 + ∂x13 + ∂x14 + ∂x15,

and

X2 = ∂x2 + ∂x3 + ∂x4 + ∂x13 + ∂x14 + ∂x15.
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So, the slant angle θ is obtained by the following equations

cosθ = g(φi X1, X2)

|φi X1||X2| = g(φi X2, X1)

|φi X2||X1| = 1√
30

, i ∈ {1, 2, 3}.

Therefore M is a proper 3-slant submanifold of (M, ξi , ηi , φi , g)i∈{1,2,3}.

3.2 Characterization Theorems for 3-Slant Submanifolds

The following theorem characterizes 3-slant submanifolds in which structure vector
fields are normal to the submanifold.

Theorem 1 ([19]) Let M be a submanifold of an almost contact metric 3-structure
manifold (M, ξi , ηi , φi , g)i∈{1,2,3} and all the structure vector fields are normal to M.
Then, M is a 3-slant submanifold if and only if there exists a constant λ ∈ [−1, 0]
such that

Ti Tj X = λX, for all X ∈ T M and i, j ∈ {1, 2, 3}. (15)

Moreover, in that case λ = −cos2θ where θ is the slant angle.

Proof For any X ∈ T M , by using (6), (7) and (8), we compute β and θ the angle
between φi , Tj and φ j , Tj , respectively, as

cosβ = g(φi X, Tj X)

|φi X ||Tj X | = −g(X, φi Tj X)

|X ||Tj X | = −g(X, Ti Tj X)

|X ||Tj X | , (16)

cosθ = g(φ j X, Tj X)

|φ j X ||Tj X | = −g(X, Tj Tj X)

|X ||Tj X | . (17)

So if TiTj X = λX , then the angles are equal. On the other hand,

cosθ = g(φ j X, Tj X)

|φ j X ||Tj X | = g(Tj X, Tj X)

|φ j X ||Tj X | = |Tj X |
|X | . (18)

Hence, (17) and (18) implies that

cos2θ = −g(X, Tj Tj X)

|X |2 . (19)

Now, we see that (15) yields λ = −cos2θ and thus θ is constant. Conversely, let M
be a 3-slant submanifold then the angles are equal and constant. So, the right side of
(19) is constant and therefore TiTj X = λX , where λ = −cos2θ . �

Next from Eq. (19) for any X ∈ T M orthogonal to ξi ’s, we have the following
corollary.
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Corollary 1 ([19]) Let M be a 3-slant submanifold of a metric 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3}. Then Ti Tj X = −cos2θX, for X ∈ T M\ < ξ1, ξ2, ξ3 >.

Also if the structure vector fields are tangent to M , the following theorem gener-
alizes Theorem 2.2 of [6] for 3-structure case.

Theorem 2 ([19]) Let M be a 3-slant submanifold of a metric 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3}, then for any X ∈ T M linearly independent of ξ1, ξ2, ξ3,

Ti Tj X = λZ + ηi (X)ξ j , (20)

T 2
i X = λZ − η j (X)ξ j − ηk(X)ξk, (21)

where for the slant angle θ , λ = −cos2θ , Z = X − �3
m=1ηm(X)ξm and (i, j, k) is

permutation of (1, 2, 3).

Proof First we suppose all the structure vector fields are tangent to M . Let
T M = D ⊕ ξ , where ξ =< ξ1, ξ2, ξ3 > and D is a vector space spanned by
{e1, . . . , es} such that {e1, . . . , es, ξ1, ξ2, ξ3} is a local orthonormal basis for
T M . For each X ∈ T M , we put X = Z + ∑3

m=1 ηm(X)ξm , where Z ∈ D. From
Corollary1, we have TiTj Z = λZ . Since ξm ∈ T M , by (2), Tiξ j = ξk . So, (8) and
(14) imply TiTj (ηi (X)ξi + η j (X)ξ j + ηk(X)ξk) = −ηi (X)Tiξk = ηi (X)ξ j . There-
fore, we have TiTj X = λZ − ηi (X)Tiξk = λZ + ηi (X)ξ j .

If at least one of the structure vector fields does not belong to T M , say ξk /∈ T M ,
then ηk(X) = 0, ∀X ∈ T M . So, X = Z + ηi (X)ξi + η j (X)ξ j and as above, (20)
will be satisfied too. Specially, when all the structure vector fields are normal to T M ,
(20) coincides with (15).

A computation like the one above for Eq. (21) completes the proof. �

The next corollary immediately follows from Eqs. (6), (7) and Theorem2.

Corollary 2 ([19]) Let M be a 3-slant submanifold of an almost contact metric
3-structure manifold (M, ξi , ηi , φi , g)i∈{1,2,3}, then for all X,Y ∈ T M

g(Ti X, TiY ) = cos2θg(Z ,Y ) − η j (X)η j (Y ) − ηk(X)ηk(Y )

= cos2θg(X,W ) − η j (X)η j (Y ) − ηk(X)ηk(Y ),

g(Ti X, TjY ) = cos2θg(Z ,Y ) + ηi (X)η j (Y )

= cos2θg(X,W ) + η j (X)ηi (Y ),

g(Ni X, N jY ) = −cos2θg(X,W ) − g(X, φkY ) + η j (X)ηi (Y ) − ηi (X)η j (Y )

= −cos2θg(Z ,Y ) − g(φk X,Y ) − η j (X)ηi (Y ) + ηi (X)η j (Y ),

where Z = X − ∑3
m=1 ηm(X)ξm and W = Y − ∑3

m=1 ηm(Y )ξm.

Proof The first and second equations follow easily from (20) and (21). For
the third equation, we have g(Ni X, N jY ) = g(φi X, N jY ) = g(φi X, φ j Y ) −
g(φi X, TjY ) = −g(X, φiφ j Y ) + g(X, Ti TjY ).Applying (6) and (20) in the previous
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equalities imply g(Ni X, N jY ) = −g(X, φkY ) − ηi (X)η j (Y ) − cos2(θ)g(X,W ) +
η j (X)ηi (Y ). �

It is known that [16] if almost contact structures (ξ1, η1, φ1) and (ξ2, η2, φ2) sat-
isfy in the conditions (5) and (6) on manifold M , then there is an almost contact
structure (ξ3, η3, φ3) such that (M, ξi , ηi , φi )i∈{2,3} is an almost contact 3-structure
manifold. The following example shows that even though almost contact struc-
tures (ξi , ηi , φi )i∈{2,3} are slant structure on a submanifold but the third structure
(ξ1, η1, φ1) is not necessarily a slant structure.

Example 3 Let (M, ξi , ηi , φi , g)i∈{1,2,3} be the metric 3-structure manifold in
Example2. We put

M(r, s, v, u) =
(√

2

2
r, s,

√
2

2
v, u,

√
2

2
r, 0,

√
2

2
v, 0, 0, 0, 0, 0, 0, 0, 0

)

,

which is a 4-dimensional submanifold of M . By direct computation we see that
(M, ξ2, η2, φ2, g) and (M, ξ3, η3, φ3, g) are slant submanifoldwith slant angle θ = π

4
but (M, ξ1, η1, φ1, g) is not slant submanifold. So, M is not a 3-slant submanifold of
M .

4 Semi-slant and Bi-slant Submanifolds of 3-Structure
Manifolds

4.1 3-Semi-slant and 3-Bi-slant Submanifolds

F. Malek and the author of this chapter have generalized the notions of invariant,
anti-invariant, semi-invariant and slant submanifolds of metric 3-structure manifolds
by defining the following submanifolds.

Definition 2 ([20]) Let M be a submanifold of a metric 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3}. ThenM is said to be a 3-semi-slant submanifold ofM , if it
admits 3 orthogonal distributions D1, D2, and D3, where D3 = span < ξ1, ξ2, ξ3 >

and the following conditions are satisfied:

(a) T M = D1 ⊕ D2 ⊕ D3,
(b) The distributionD1 is an invariant distribution, i.e., φi (D1) = D1, ∀i ∈ {1, 2, 3},
(c) The distribution D2 is a 3-slant distribution with slant angle θ 
= 0, i.e., for

each non-zero vector X ∈ D2 at any point p ∈ M , the angle between φi (X),
i = 1, 2, 3 andD2 is constant and it is independent of the choice of X ∈ D2 and
p ∈ M .

Definition 3 ([20]) Let M be a submanifold of a metric 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3}. M is called a 3-bi-slant submanifold of M , if there exist
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three orthogonal distributionsD1,D2, andD3 onM , such that T M = D1 ⊕ D2 ⊕ D3

and for i = 1, 2, Di is a 3-slant distribution with slant angle θi and D3 = span <

ξ1, ξ2, ξ3 >.

Remark 1 From Definitions2 and 3, we conclude that on a 3-bi-slant submanifold
M , if θ1 = 0 then is M a 3-semi-slant submanifold. Moreover, if dim(D1) = 0, then
both of these submanifolds become 3-slant submanifold.

Since T M can be decomposed toD1 ⊕ D2 ⊕ D3, therefore, for any X ∈ T M , we
put X = P1X + P2X + ∑3

i=1 ηi (X)ξi , such that PαX is the projection of X on Dα ,
α = 1, 2.

On the other hand, let Tαi X (respectively tαi V ) be the tangential part of φi X
(respectively φi V ) on Dα and Ni X (respectively ni V ) be the normal part of φi X
(respectively φi V ), for i ∈ {1, 2, 3} and α = 1, 2. Then we put

φi X = T1i X + T2i X + Ni X and φi V = t1i V + t2i V + ni V, (22)

for all X ∈ T M and V ∈ (T M)⊥. By using (14), one can verify that Tαi X = Pα ◦
Ti X and tαi V = Pα ◦ ti V .

The following theorem is a generalization of Theorem1 for 3-bi-slant submani-
folds.

Theorem 3 ([20]) Let M be a submanifold of a metric 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3} such that T M can be decomposed to three orthogonal dis-
tributionsD1 ⊕ D2⊕ < ξ1, ξ2, ξ3 >. Then M is a 3-bi-slant submanifold if and only
if for α = 1, 2, there exists a constant λα ∈ [−1, 0] such that

Ti Tj X = λαX, ∀X ∈ Dα and i, j ∈ {1, 2, 3}. (23)

Moreover, in that case λα = −cos2θα , where θα is the slant angle of distributionDα .

Proof Let X ∈ Dα and βα and θα be the angles ̂(φi X, Tj X) and ̂(φ j X, Tj X), respec-
tively. Using (6), (7) and (8) implies

cosβα = g(φi X, Tj X)

|φi X ||Tj X | = −g(X, φi Tj X)

|X ||Tj X | = −g(X, Ti Tj X)

|X ||Tj X | , (24)

cosθα = g(φ j X, Tj X)

|φ j X ||Tj X | = −g(X, Tj Tj X)

|X ||Tj X | . (25)

Therefore, if (23) is satisfied then the angles are equal. On the other hand, we have

cosθα = g(φ j X, Tj X)

|φ j X ||Tj X | = g(Tj X, Tj X)

|X ||Tj X | = |Tj X |
|X | , (26)

and then from (25) and (26) it follows that
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cos2θα = −g(X, Tj Tj X)

|X |2 . (27)

Thus, if Ti Tj X = λαX then λα = −cos2θα and θα is constant. Conversely, if M is a
3-bi-slant submanifold then βα and θα are equal and constant. Thus, (27) is satisfied
and it implies TiTj X = −cos2θαX . �

From Remark1, it is obvious that 3-semi-slant submanifolds are satisfied in The-
orem3 too. As a generalization of Theorem 5.1 of [5], the next theorem is a charac-
terization of 3-semi-slant submanifolds of 3-structure manifolds.

Theorem 4 ([20]) Let M be a submanifold of a metric 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3} such that all the structure vector fields are tangent to M.
Then M is a 3-semi-slant submanifold if and only if ∃λ ∈ [−1, 0) such that for
i, j ∈ {1, 2, 3}:
(a) D = {X ∈ T M\ < ξ1, ξ2, ξ3 > | TiTj X = λX} is a distribution.
(b) ∀X ∈ T M, orthogonal to D, Ni X = 0.

Moreover, in that case λ = −cos2θ , in which θ is the slant angle of M.

Proof If M is 3-semi-slant submanifold, then by taking λ = −cos2θ and using
Theorem3, we getD = D2. On the other hand, sinceD1 is invariant, for all X ∈ T M ,
orthogonal to D, Ni X = 0. Conversely, if we take T M = D⊥ ⊕ D⊕ < ξ1, ξ2, ξ3 >

then (b) implies that D⊥ is invariant. Using (a) and by the same way in the proof
of Theorem3, it can be proved that D is a 3-slant distribution with slant angle θ

satisfying λ = −cos2θ . Thus, M is a 3-semi-slant submanifold. �
Corollary 3 ([20]) Let M be a 3-semi-slant submanifold of metric 3-structure man-
ifold (M, ξi , ηi , φi , g)i∈{1,2,3} with slant angle θ . Then for all X,Y ∈ T M we have

g(Ti X, Tj P2Y ) = cos2θg(X, P2Y ), (28)

g(Ni X, N j P2Y ) = −g(X, φk P2Y ) − cos2θg(X, P2Y ), (29)

g(Ni X, Ni P2Y ) = sin2θg(X, P2Y ). (30)

Proof Using (8) and statement (a) of Theorem4, implies

g(Ti X, Tj P2Y ) = −g(X, Ti Tj P2Y ) = cos2θg(X, P2Y ),

since D2 is orthogonal to the structure vector fields. From (6), (8), (14) and (28) we
have

−g(X, φk P2Y ) = g(φi X, φ j P2Y ) = g(Ti X + Ni X, Tj P2Y + N j P2Y )

= cos2θg(X, P2Y ) + g(Ni X, N j P2Y ).

By using (7), (14) and (28), Eq. (30) can be easily proved. �
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Theorem 5 ([20]) Let M be a submanifold of a metric 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3} and ξ1, ξ2, ξ3 ∈ T M. Then M is a 3-semi-slant submani-
fold if and only if ∃λ ∈ [−1, 0) such that for i, j ∈ {1, 2, 3}
(a) D = {X ∈ T M\ < ξ1, ξ2, ξ3 > | t j Ni X = −Tk X − λX} is a distribution.
(b) ∀X ∈ T M, orthogonal to D, Ni X = 0.

Proof Let X ∈ T M\ < ξ1, ξ2, ξ3 >. Applying φ j to (14) implies

− φk X = Tj Ti X + t j Ni X + N jTi X + n j Ni X. (31)

By taking tangential and normal parts of (31), we get

− Tk X = Tj Ti X + t j Ni X, − Nk X = N jTi X + n j Ni X. (32)

If M is a 3-semi-slant submanifold then by putting D = D2 and using (32) and
statement (a) of Theorem4, we obtain t j Ni X = −Tk X + cos2θX and also for all
X ∈ D⊥, Ni X = 0. Conversely, by virtue of (32) and (a), we have

Tj Ti X = −Tk X − t j Ni X = λX.

Thus by Theorem4, M is a 3-semi-slant submanifold. �

Now, we give some examples of 3-semi-slant and 3-bi-slant submanifolds of 3-
structure manifolds.

Example 4 ([20]) Suppose M = R
15, g((xi )i=1,15, (yi )i=1,15) = ∑15

i=1 xi yi , ξ1 =
∂x13, ξ2 = ∂x14, ξ3 = ∂x15, ηi be the dual of ξi and

φ1((xi )i=1,15) = (−x3, x4, x1,−x2, . . . ,−x11, x12, x9,−x10, 0,−x15, x14),

φ2((xi )i=1,15) = (−x4,−x3, x2, x1, . . . ,−x12,−x11, x10, x9, x15, 0,−x13),

φ3((xi )i=1,15) = (−x2, x1,−x4, x3, . . . ,−x10, x9,−x12, x11,−x14, x13, 0).

Then (M, ξi , ηi , φi , g)i∈{1,2,3} is a 3-structure manifold.
Let M = (−u1 − u4, u1 − u4,−u2 + u3,−u2 − u3, v1sinθ, v2sinθ, v2sinθ,

v2sinθ, v1cosθ, 0, 0, 0, t1, t2, t3) for θ ∈ (0, π
2 ). Then M is a 9-dimensional

submanifold of M and T M is spanned by

X1 = −∂x1 + ∂x2, X2 = −∂x3 − ∂x4, X3 = ∂x3 − ∂x4, X4 = −∂x1 − ∂x2,

X5 = sinθ∂x5 + cosθ∂x9, X6 = sinθ(∂x6 + ∂x7 + ∂x8)

X7 = ∂x13, X8 = ∂x14, X9 = ∂x15.



170 M. B. Kazemi Balgeshir

Set D1 =< X1, X2, X3, X4 >, D2 =< X5, X6 > and D3 =< X7, X8, X9 >. It is
easy to see that D1 is invariant with respect to φ1, φ2, and φ3. Moreover,

φ1(X5) = 1

3
[X6 + sinθ(2∂x7 − ∂x6 − ∂x8)] + cosθ∂x11

⇒ T21(X5) = 1

3
X6,

φ1(X6) = −sin2θX5 − cos2θsinθ∂x5 + sin2θcosθ∂x9 + sinθ(−∂x8 + ∂x6)

⇒ T21(X6) = −sin2θX5,

φ2(X5) = 1

3
[X6 + sinθ(2∂x8 − ∂x6 − ∂x7)] + cosθ∂x12

⇒ T22(X5) = 1

3
X6,

φ2(X6) = −sin2θX5 − cos2θsinθ∂x5 + sin2θcosθ∂x9 + sinθ(−∂x6 + ∂x7)

⇒ T22(X6) = −sin2θX5,

where T2 j is the tangent projection of φ j on D2. Thus we have

cosβ = g(φi X, T2 j X)

|φi X ||T2 j X | = sinθ√
3

, ∀X ∈ D2 and i, j ∈ {1, 2, 3}.

Therefore, D2 is a 3-slant distribution with slant angle β = cos−1( sinθ√
3
). Hence, M

is a 3-semi-slant submanifold of M .

Example 5 ([20]) Let M = R
11 be endowed with the following almost contact met-

ric 3-structure:

φ1((xi )i=1,11) = (−x3, x4, x1,−x2,−x7, x8, x5,−x6, 0,−x11, x10),

φ2((xi )i=1,11) = (−x4,−x3, x2, x1,−x8,−x7, x6, x5, x11, 0,−x9),

φ3((xi )i=1,11) = (−x2, x1,−x4, x3,−x6, x5,−x8, x7,−x10, x9, 0),

g((xi )i=1,11, (yi )i=1,11) = ∑11
i=1 xi yi , ξ1 = ∂x9, ξ2 = ∂x10, ξ3 = ∂x11 and ηi ’s be the

dual of ξi ’s.
Let M=(v1cosθ, v1cosθ, v1cosθ, v2sinθ+u1cosθ, v2cosθ − u1sinθ, u2sinθ,

u2sinθ, u2sinθ, t1, t2, t3). By taking
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D1 =< cosθ(∂x1 + ∂x2 + ∂x3), sinθ∂x4 + cosθ∂x5) >,

D2 =< sinθ(∂x6 + ∂x7 + ∂x8), cosθ∂x4 − sinθ∂x5) >,

D3 =< ∂x9, ∂x10, ∂x11 >,

we have T M = D1 ⊕ D2 ⊕ D3. By direct computations it can be verified thatD1 and
D2 are 3-slant with slant angle cos−1( sinθ√

3
) and cos−1( cosθ√

3
), respectively. Therefore,

M is a 3-bi-slant submanifold of M .

4.2 Submanifolds of 3-Sasakian and 3-Cosymplectic
Manifolds

Let X ∈ T M\ < ξ1, ξ2, ξ3 >. Now, if M is a 3-cosymplectic manifold then using
(10) follows that g([ξi , ξ j ], X) = g(∇ξ j ξi − ∇ξi ξ j , X) = 0. Also, if M is a 3-
Sasakian manifold then from (9) we get g([ξi , ξ j ], X) = g(−φiξ j + φ jξi , X) =
−2g(ξk, X) = 0. Therefore, the distributionD3 =< ξ1, ξ2, ξ3 > is integrable in both
cases.

On the other hand, if M is a 3-cosymplectic manifold, then we have 0 = ∇ξ j ξi =
∇ξ j ξi + B(ξi , ξ j ). Thus B(ξi , ξ j ) = 0. Furthermore, if M is a 3-Sasakian manifold,
∇ξ j ξi + B(ξi , ξ j ) = ∇ξ j ξi = −φiξ j = −ξk . Thus B(ξi , ξ j ) = 0 and so the distribu-
tion D3 =< ξ1, ξ2, ξ3 > is totally geodesic in the both cases.

Therefore, we can state the following theorem.

Theorem 6 ([20]) Let M be a 3-semi-slant submanifold of a 3-cosymplectic
or a 3-Sasakian manifold (M, ξi , ηi , φi , g)i∈{1,2,3}. Then the distribution D3 =<

ξ1, ξ2, ξ3 > is integrable and totally geodesic.

Theorem 7 ([20]) Let M be a 3-semi-slant submanifold of a 3-cosymplectic mani-
fold (M, ξi , ηi , φi , g)i∈{1,2,3}, then the distribution D1 ⊕ D2 is integrable.

Proof For all X,Y ∈ D1 ⊕ D2 and i ∈ {1, 2, 3}, (10) implies

g([X,Y ], ξi ) = g(∇Y X − ∇XY, ξi ) = −g(X,∇Y ξi ) + g(Y,∇Xξi ) = 0.

Thus D1 ⊕ D2 is integrable. �

Remark 2 It should be noted that ifM is a 3-Sasakianmanifold, then the distribution
D1 ⊕ D2 is not integrable in general, because

g([X,Y ], ξi ) = −g(X,∇Y ξi ) + g(Y,∇Xξi ) = −2g(X, TiY ) (33)

which shows that [X,Y ] is not in D1 ⊕ D2.
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Note that if X,Y ∈ D1 or X,Y ∈ D2, then (33) is also satisfied. So if M is a
3-semi-slant submanifold of a 3-Sasakian manifold, then the distributions D1 and
D2 are not integrable in general. Moreover, from the same equation it follows that if
D2 is integrable then the slant angle of this distribution is θ = π

2 .

Proposition 1 ([20]) Let M be a 3-semi-slant submanifold of a 3-cosymplectic or a
3-Sasakian manifold M. Then for all X,Y ∈ D1, we have

P1(∇Xφi )Y = 0, f or all i ∈ {1, 2, 3}. (34)

Proof First we show that if M is a 3-semi-slant submanifold, then φi (D⊥
1 ) ⊂ D⊥

1 .
Let Z ∈ D⊥

1 and X ∈ D1. Since D1 is invariant, using (8) implies

g(φi Z , X) = −g(Z , φi X) = 0.

Now let M be a 3-cosymplectic manifold. Then by Gauss formula, we obtain

(∇Xφi )Y = (∇Xφi )Y + B(X, φi Y ) − φi B(X,Y ) = 0, (35)

for all X,Y ∈ D1. Since we have

B(X, φi Y ) − φi B(X,Y ) ∈ D⊥
1 .

Applying P1 on (35), it follows that

P1(∇Xφi )Y = 0.

If M is a 3-Sasakian manifold, then by (9) we have

(∇Xφi )Y = (∇Xφi )Y + B(X, φi Y ) − φi B(X,Y ) = g(X,Y )ξi , (36)

for all X,Y ∈ D1, since ηi (Y ) = 0. Applying P1 to (36) completes the proof of the
proposition. �

In the next theorem,we can see an important geometric property of the distribution
D1.

Theorem 8 ([20]) On 3-semi-slant submanifolds of 3-cosymplectic and 3-Sasakian
manifolds, the distribution D1 is integrable if and only if D1 is totally geodesic.

Proof By taking the normal parts of Eqs. (35) and (36), we find

Ni P2∇XY = −B(X, φi Y ) + Ni B(X,Y ),∀X,Y ∈ D1. (37)

By interchanging the role of X and Y in (37) and using B(X,Y ) = B(Y, X), we
obtain
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Ni P2[X,Y ] = B(X, φi Y ) − B(φi X,Y ),∀X,Y ∈ D1. (38)

Equation (38) shows that D1 is integrable if and only if

B(X, φi Y ) = B(φi X,Y ). (39)

On the other hand, from (6) and (39) we get

B(φi X,Y ) = B(X, φi Y ) = B(X, φ jφkY )

= B(φ j X, φkY ) = B(φkφ j X,Y )

= −B(φi X,Y ).

It follows that B(X,Y ) = 0, for all X,Y ∈ D1 and thus D1 is totally geodesic.
Conversely if D1 is totally geodesic, (38) implies [X,Y ] ∈ D1. �

5 Pointwise Slant Submanifolds of 3-Structure Manifolds

5.1 Pointwise 3-Slant Submanifolds

In this section, we discuss the results of the author of this chapter about pointwise
slant submanifolds of almost contact and almost contact 3-structure manifolds. Then
we characterize them and give some examples. Later, we study some properties of
pointwise slant submanifolds of Sasakian and 3-Sasakian manifolds and obtain the
necessary and sufficient condition for a pointwise slant submanifold of a 3-Sasakian
manifold to be a slant submanifold. Moreover, we show the non-existence of proper
Sasakian pointwise 3-slant submanifolds.

Definition 4 ([14]) Let M be a submanifold of an almost contact metric manifold
M . Then M is said to be a pointwise slant submanifold with slant function �p(X)

if at any point p ∈ M , theWirtinger angle between φX and TpM is constant for each
non-zero X ∈ TpM linearly independent of ξ . It means that the function�p(X) does
not depend on choosing of X .

Definition 5 ([14]) Let M be a submanifold of a metric 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3}. Then M is said to be a pointwise 3-slant submanifold
if at any point p ∈ M and for each non-zero X ∈ TpM linearly independent of ξi ,
the Wirtinger angle between φi X and TpM is constant for all i ∈ {1, 2, 3}. In fact,
the slant function �p(X) between φi X and Tj X only depends on the choice of p
and it is independent of choosing of X and i, j .

On these submanifolds �(X) is considered as a function known as slant function. If
for each p ∈ M ,�p = 0 (respectively�p = π

2 ), then M is an invariant (respectively
anti-invariant) submanifold. Otherwise,M is a proper pointwise 3-slant submanifold.
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In special case, slant and 3-slant submanifolds are pointwise 3-slant submanifolds
in which the slant angles are constant at any point.

The following theorems extend the results of Sect. 3 (mainly Theorem1 and
Corollary1) to the pointwise slant submanifolds (cf. [14]).

Theorem 9 Let M be a submanifold of 3-structure manifold (M, ξi , ηi , φi , g) such
that ξi ’s are normal to M for i = 1, 2, 3. Then, M is a pointwise 3-slant submanifold
if and only if there exists a real function � on M such that

Ti Tj X = −cos2�X, ∀X ∈ T M, ∀i, j ∈ {1, 2, 3}. (40)

Proof Let M be a pointwise 3-slant submanifold and � be the angle between φi X
and TpM . Then, (7) and (8) imply

cos� = g(φi X, Tj X)

|φi X ||Tj X | = −g(X, φi Tj X)

|X ||Tj X | = −g(X, Ti Tj X)

|X ||Tj X | . (41)

Also we know

cos� = |Tj X |
|X | , (42)

thus from (41) yields

cos2� = −g(X, Ti Tj X)

|X |2 , (43)

and this implies (40). Conversely, we suppose that α and β are the angles ̂φi X, Ti X
and ̂φi X, Tj X , respectively, in the point p ∈ M . Thus, cosα = |Ti X |

|X | and cosβ =
|Tj X |
|X | . Moreover,

cosα = g(φi X, Ti X)

|φi X ||Ti X | = −g(X, Ti Ti X)

|X ||Ti X | = −g(X, Ti Ti X)

|X |2cosα , (44)

cosβ = g(φi X, Tj X)

|φi X ||Tj X | = −g(X, Ti Tj X)

|X ||Tj X | = −g(X, Ti Tj X)

|X |2cosβ . (45)

In account of (40), (44) and (45), we obtain that the angles are equal and does not
depend on choice of X . Thus, M is a pointwise 3-slant submanifold. �

Next, we have the following result.

Theorem 10 Let M be a pointwise 3-slant submanifold of 3-structure manifold
(M, ξi , ηi , φi , g) with slant function �. Then, for all X ∈ T M\ < ξi >

TiTj X = −cos2�X, ∀i, j ∈ {1, 2, 3}. (46)

Proof The proof of this theorem is the same as proof of Theorem9. �
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In virtue of Eq. (8) and Theorem10, we have the following Corollary.

Corollary 4 ([14])Let M beapointwise 3-slant submanifold of 3-structuremanifold
(M, ξi , ηi , φi , g) with slant function �. Then, ∀X,Y ∈ T M\ < ξi > and ∀i, j ∈
{1, 2, 3}

g(TiY, Tj X) = cos2�g(Y, X), (47)

g(NiY, N j X) = sin2�g(Y, X). (48)

Also when the structure of M is almost contact metric, Theorem10 can be stated as
follows.

Corollary 5 ([14]) Let M be a pointwise slant submanifold of almost contact metric
manifold (M, ξ, η, φ, g) with slant function �. Then,

T 2X = −cos2�X, ∀X ∈ T M\ < ξ > . (49)

5.2 Pointwise 3-Slant Submanifolds of 3-Sasakian Manifolds

Here, we assume that the ambient manifold be a 3-Sasakian manifold and investigate
its pointwise 3-slant submanifolds.

Lemma 1 ([14]) Let M be a pointwise 3-slant submanifold of 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3} with slant function �. Then, for any unit vector field X ∈
T M\ < ξ1, ξ2, ξ3 > we have

Ti X = cos�Z , (50)

where Z is a unit vector field in T M and orthogonal to X.

Proof For any unit vector field X ∈ T M\ < ξ1, ξ2, ξ3 >, we have |Ti X | =
cos�|φi X | = cos�|X | = cos�. Now, let Z = Ti X

|Ti X | be the unit vector field in
the direction of Ti X . Then, Ti X = cos�Z . Moreover since g(φi X, X) = 0 and
g(φi X, X) = g(Ti X + Ni X, X) = g(Ti X, X), we conclude that Z is orthogonal to
X . �

The following theorem provides a necessary and sufficient condition for a point-
wise 3-slant submanifold of a 3-Sasakian manifold to be a 3-slant submanifold.

Theorem 11 ([14]) Let M be a pointwise 3-slant submanifold of a 3-Sasakian man-
ifold (M, ξi , ηi , φi , g)i∈{1,2,3}. Then, the slant function � is constant if and only if
ANi X Ti X = ANi Ti X X.

Proof Let M be a 3-Sasakian manifold. Then from (9) and Gauss formula, we have

g(X,Y )ξi = (∇Yφi )X = ∇Y Ti X + B(Ti X,Y ) + DY Ni X − ANi XY −
Ti∇Y X − ti B(X,Y ) − Ni∇Y X − ni B(X,Y ). (51)
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for X ∈ T M\ < ξ1, ξ2, ξ3 > and Y ∈ T M .
By taking the tangential part of (51), we get

g(X,Y )ξi = ∇Y Ti X − ANi XY − Ti∇Y X − ti B(X,Y ). (52)

By using (50), Eq. (52) implies

g(X,Y )ξi = Y cos�Z + cos�∇Y Z − ANi XY − Ti∇Y X − ti B(X,Y ) =
− sin�Y (�)Z + cos�∇Y Z − ANi XY − Ti∇Y X − ti B(X,Y ). (53)

We apply g(Z , .) on (53). Since

g(Z ,∇Y Z) = 1

2
∇Y g(Z , Z) = 0,

g(Z , Ti∇Y X) = −g(Ti Z ,∇Y X) = cos2 �
1

2
∇Y g(X, X) = 0.

We get
0 = − sin�Y (�) − g(Z , ANi XY ) − g(Z , ti B(X,Y )). (54)

So, � is constant if and only if

g(Y, ANi X Z) = g(Ni Z , B(X,Y )) = g(Y, ANi Z X).

Therefore, the slant function � is constant if and only if ANi X Z = ANi Z X . �

Using the same approach of the proof of the above theorem for pointwise slant
submanifold of a Sasakian manifold, we have the following result.

Theorem 12 ([14]) Let M be a pointwise slant submanifold of a Sasakian manifold
(M, ξ, η, φ, g). Then, the slant function� is constant if and only if AN X Z = ANZ X.

Next, let M be a pointwise 3-slant submanifold of a 3-structure manifold
(M, ξi , ηi , φi , g)i∈{1,2,3} tangent to structure vector fields. Then, M is called a
Sasakian pointwise 3-slant submanifold if

(∇XTi )Y = g(X,Y )ξi − ηi (Y )X, ∀X,Y ∈ T M. (55)

The following theorem implies that there exist no proper Sasakian pointwise 3-
slant submanifolds.

Theorem 13 ([14]) Any Sasakian pointwise 3-slant submanifolds are 3-slant sub-
manifolds.

Proof LetM be a Sasakian pointwise 3-slant submanifold of (M, ξi , ηi , φi , g). Then
from (50) and (55), we have
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g(X,Y )ξi = (∇Y Ti )X = ∇Y Ti X − Ti (∇Y X)

= ∇Y cos�Z − Ti (∇Y X)

= Y (cos�)Z + cos�∇Y Z − Ti (∇Y X)

= sin�Y (�)Z + cos�∇Y Z − Ti (∇Y X). (56)

for any X as unit vector field in T M\ < ξi > and Y ∈ T M .
Since Z is orthogonal to X and ξi . By applying g(Z , .) on (56), we obtain

0 = sin�Y (�), (57)

which means � is constant. �

Now,wegive somenon-trivial examples of pointwise slant submanifolds of almost
contact and almost contact 3-structure manifolds (cf. [14]).

Example 6 Suppose M = R
5 is endowed by the following almost contact metric

structure.

η = dt, ξ = ∂t, g =
2∑

i=1

(dxi ⊗ dxi + dyi ⊗ dyi ) + dt ⊗ dt,

φ(x1, x2, y1, y2, t) = (−y1,−y2, x1, x2, 0).

LetM(u, v) = (u, u, v cos f, v sin f, t), where f is a real value function onM . Then,
M is a pointwise slant submanifold with slant function � = cos−1(

cos f +sin f√
2

).

Example 7 We set M = R
11 and g = ∑11

i=1 dxi ⊗ dxi . We define

φ1((xi )i=1,11) = (−x3, x4, x1,−x2,−x7, x8, x5,−x6, 0,−x11, x10),

φ2((xi )i=1,11) = (−x4,−x3, x2, x1,−x8,−x7, x6, x5, x11, 0,−x9),

φ3((xi )i=1,11) = (−x2, x1,−x4, x3,−x6, x5,−x8, x7,−x10, x9, 0),

ξ1 = ∂x9, ξ2 = ∂x10, ξ3 = ∂x11 and η1 = dx9, η2 = dx10, η3 = dx11.

It is easy to show that (M, ξi , ηi , φi , g)i∈{1,2,3} is a metric 3-structure manifold. By
taking

M(u, v) = (v sin f, 0, 0, 0, ku sin f, ku sin f, ku sin f, v cos f, 0, 0, 0),

for k ∈ R
+ and f : R

11 → R, M is a submanifold of (M, ξi , ηi , φi , g)i∈{1,2,3}.
Direct computations show that M is a pointwise 3-slant submanifold of M with

slant function � = cos−1(
cos f
k
√
3
).
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5.3 Pointwise Hemi 3-Slant Submanifolds of 3-Structure
Manifolds

Let M be a submanifold of a 3-structure manifold (M, ξi , ηi , φi , g)i∈{1,2,3}. Then
M is called a pointwise hemi 3-slant submanifold (cf. [15]) if there exist three
orthogonal distributions Dθ ,D⊥ and  on M such that

(a) T M = Dθ ⊕ D⊥ ⊕ , where  = Span{ξ1, ξ2, ξ3};
(b) D⊥ is anti-invariant with respect to φi ,∀i = 1, 2, 3, i.e., φi (D⊥) ⊂ T⊥M ;
(c) Dθ is a pointwise 3-slant distribution. That means for any Y ∈ Dθ the angle

between φi (Y ) and Dθ is independent of the choice of Y.

It is obvious that if dim(D⊥) = 0 (respectively dim(Dθ ⊕ ) = 0), then M is a
pointwise 3-slant (respectively an anti-invariant) submanifold. In the current paper
all distributions have non-zero dimension and in this case the submanifold is said to
be a proper pointwise hemi 3-slant submanifold.

Here we give some examples of proper pointwise hemi 3-slant submanifolds (cf.
[15]).

Example 8 On Riemannian manifold M = R
15 and g = �15

i=1dx
i ⊗ dxi , we define

φ1(∂4k+1) = ∂4k+2, φ1(∂4k+2) = −∂4k+1, φ1(∂4k+3) = ∂4k+4, φ1(∂4k+4) = −∂4k+3,

φ1(∂13) = ∂14, φ1(∂14) = −∂13, φ1(∂15) = 0,

φ2(∂4k+1) = ∂4k+3, φ2(∂4k+2) = −∂4k+4, φ2(∂4k+3) = −∂4k+1, φ2(∂4k+4) = ∂4k+2,

φ2(∂13) = ∂15, φ2(∂15) = −∂13, φ2(∂14) = 0,

for k = 0, 1, 2. In addition, ξ1 = ∂15, ξ2 = ∂14, ξ3 = ∂13 and ηi ’s be the dual of ξi ’s
for r = 1, 2, 3 and φ3 = φ1oφ2 − η2 ⊗ ξ1. (M, g, ξi , ηi , φi )i∈{1,2,3} is a metric 3-
structure manifold.

Now, let f, h ∈ C∞(R15). Then we define a 6-dimensional submanifold M given
by the immersion

ψ(t1, t2, t3, t4, t5, t6) = (t1 f, t2h, t2h, t2h, t3, 0, 0, 0, t1h, 0, 0, 0, t4, t5, t6).

By taking Dθ = Span{X1 = f∂1 + h∂9,X2 = h(∂2 + ∂3 + ∂4)}, D⊥ = Span{X3 =
∂5} and = Span{X4 = ∂13,X5 = ∂14,X6 = ∂15}, it is clear thatDθ is a pointwise 3-
slant distribution by slant function� = cos−1( h√

3
√

h2+ f 2
) andD⊥ is an anti-invariant

distribution. Therefore, M is a pointwise hemi 3-slant submanifold of R
15.

Example 9 Let M be a pointwise 3-slant submanifold of a metric 3-structure
manifold (M, g, ξi , ηi , φi )i∈{1,2,3} which is given in Example7, i.e., (M, g) =
(R11, �11

i=1dx
i ⊗ dxi ) and
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M = (v sin f, 0, 0, 0, ku sin f, ku sin f, ku sin f, v cos f, 0, 0, 0).

Now let N ′ = (y, 0, . . . , 0) be a submanifold of a 4m-dimensional hyperKahler
manifold (M ′ = R

4m, g′, I, J, K ) which is introduced in the example of [21]. It is
obvious that I (T N ′) ⊂ T⊥N ′, J (T N ′) ⊂ T⊥N ′, K (T N ′) ⊂ T⊥N ′.

By using the above notations, we suppose that (M̃, g̃) = (M × M ′, g ⊗ g′)
and Ñ = M × N ′. Therefore, M̃ is a (4m + 11)-dimensional almost contact 3-
structure manifold. We take Dθ ⊗  = T M and D⊥ = T N ′. Thus Ñ is a point-
wise hemi 3-slant submanifold of M̃ . The slant function of slant distribution Dθ is
� = cos−1(

cos f̃
k
√
3
), where k ∈ R

+ and f̃ ∈ C∞(M̃) is the smooth extension of the
function f .

In virtue of Theorem9, we have the following lemma.

Lemma 2 ([15]) Let D be a distribution on a submanifold of a metric 3-structure
manifold (M, ξi , ηi , φi , g)i∈{1,2,3} such that D is orthogonal to the distribution
< ξ1, ξ2, ξ3 >. ThenD is a pointwise 3-slant distribution if and only if there exists a
function ρ ∈ [−1, 0) such that for all Y ∈ D, Ti TjY = ρY, ∀ i, j ∈ {1, 2, 3}. Fur-
thermore, if � is the slant function, then ρ = − cos2 �.

The next theorem gives a characterization of pointwise hemi 3-slant submanifolds
(cf. [15])

Theorem 14 Let M be a submanifold of an almost contact metric 3-structure man-
ifold (M, ξi , ηi , φi , g) which ξi ’s are tangent to M for i = 1, 2, 3. Then M is a
pointwise hemi 3-slant submanifold if and only if there exists a real-valued function
ρ ∈ [−1, 0) such that for all i, j ∈ {1, 2, 3}, the following conditions hold:

(a) D = {Y ∈ T M\ < ξ1, ξ2, ξ3 > |TiTjY = ρY } is a distribution on M;
(b) ∀Y ∈ T M orthogonal to distribution D⊕ < ξ1, ξ2, ξ3 >, TiY = 0.

Moreover, in that case if � is the slant function, then ρ = − cos2 �.

Proof Let M be a pointwise hemi 3-slant submanifold and T M = Dθ ⊕ D⊥ ⊕ .
From Lemma2 we have TiTjY = ρY , for all Y ∈ Dθ . By taking D = Dθ it yields
Ti Z = 0, ∀Z ∈ D⊥ since D⊥ is anti-invariant.

Conversely, from (a) and Lemma2, we get D is a pointwise 3-slant distribution.
On the other hand, (b) implies that there exists an anti-invariant distribution onM and
since  ⊂ T M and does not satisfy in both of the conditions. Hence, we conclude
that M is a pointwise hemi 3-slant submanifold. �

5.4 Pointwise Hemi 3-Slant Submanifolds of 3-Cosymplectic
Manifolds

Here we first recall that a 3-structure manifold (M, ξi , ηi , φi , g)i∈{1,2,3} is a 3-
cosymplectic manifold if
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(∇Xφi )W = 0, ∇W ξi = 0, ∀ X,W ∈ T M. (58)

We can define the covariant derivative of the projection maps Ti and Ni as follows

(∇WTi )X = ∇WTi X − Ti∇W X, (59)

(DW Ni )X = DW Ni X − Ni∇W X. (60)

Now, we study geometric properties of distributions of pointwise hemi 3-slant sub-
manifold of a 3-cosymplectic manifold.

Theorem 15 ([15]) Let M be a pointwise hemi 3-slant submanifold of a 3-
cosymplectic manifold (M, ξi , ηi , φi , g)i∈{1,2,3}. Then the distribution is integrable
and totally geodesic.

Proof Since M is a 3-cosymplectic manifold and the connection ∇ is symmetric,
we have

[ξi , ξ j ] = ∇ξ j ξi − ∇ξi ξ j ,

and (58) implies that [ξi , ξ j ] = 0 ∈ . Hence,  is an integrable distribution.
Moreover, from Gauss and Weingarten formulas, we get 0 = ∇ξ j ξi = ∇ξ j ξi +

B(ξ j , ξi ). This means that B(ξ j , ξi ) = 0 and therefore  is totally geodesic. �

Theorem 16 ([15]) The distributionDθ ⊕ D⊥ of a pointwise hemi 3-slant subman-
ifold of a 3-cosymplectic manifold (M, ξi , ηi , φi , g)i∈{1,2,3} is integrable.

Proof Since ∇ is symmetric and compatible with respect to g. Then for all Y, Z ∈
Dθ ⊕ D⊥ and i = 1, 2, 3, we have

g(ξi , [Y, Z ]) = g(ξi ,∇ ZY − ∇Y Z) = −g(Y,∇ Zξi ) + g(Z ,∇Y ξi ). (61)

Using (58) and (61), we find that g(ξi , [Y, Z ]) = 0. Thus [Y, Z ] ∈ Dθ ⊕ D⊥, which
means that the distribution Dθ ⊕ D⊥ is integrable. �

Since D⊥ is an anti-invariant distribution, by some computation it can be proved
that φi [Y, Z ] = Ni [Y, Z ]. Consequently, we have the following theorem.

Theorem 17 ([15]) Let M be a pointwise hemi 3-slant submanifold of a 3-
cosymplectic manifold (M, ξi , ηi , φi , g)i∈{1,2,3}. Then the anti-invariant distribution
D⊥ is an integrable distribution.
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1 Introduction

Semi-invariant [4] or contact CR submanifolds [25], as a generalization of invari-
ant and anti-invariant submanifolds, of almost contact metric manifolds have been
studied by a number of geometers. The concept of semi-invariant submanifold was
further generalized under name of almost semi-invariant [19]. Several authors studied
semi-invariant or contact CR submanifolds, and almost semi-invariant submanifolds
of different classes of almost contact metric manifolds. Many such references are
included in [4, 19, 25], and references cited therein. Since the inception of the theory
of slant submanifolds inKaehlermanifolds created byChen [9], this theory has shown
an increasing development. As contact-geometric analogue, there is the concept of
slant submanifolds of almost contact metric manifolds [7]. Further, generalizations
of slant submanifolds of an almost contact metric manifold are given as a pointwise
slant submanifold [15], a semi-slant submanifold [6], a pointwise semi-slant sub-
manifold [15], an anti-slant submanifold [8] (or a pseudo-slant submanifold [3], or
a hemi-slant submanifold [12]), a bi-slant submanifold [8], and a quasi hemi-slant
submanifold [16]. However, these generalizations turn out to be particular cases of
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almost semi-invariant submanifolds in the sense of [19], which is contact-geometric
analogue of generic submanifold [18] of an almost Hermitian manifold. For different
kinds of submanifolds of almost Hermitian manifolds, we refer to [23]. Finally, the
authors observe that in all these cases either whole or some part of submanifolds of
almost contact metric manifolds is always (pointwise) slant.

The celebrated theory of J. F. Nash of isometric immersion of a Riemannian
manifold into a Euclidean space of sufficiently high dimension gives very important
and effective motivation to view each Riemannian manifold as a submanifold in a
Euclidean space. According to B.-Y. Chen, to establish simple relationship between
the main intrinsic invariants and the main extrinsic invariants of a Riemannian sub-
manifold is one of the fundamental problems in the submanifold theory. For a Rie-
mannian submanifold of a Riemannian manifold, the main extrinsic invariant is the
squared mean curvature and the main intrinsic invariants include the classical curva-
ture invariants: the Ricci curvature and the scalar curvature. The basic relationships
discovered so far are (sharp) inequalities involving intrinsic and extrinsic invariants,
and the study of this topic has attracted a lot of attention since the last decade of twen-
tieth century. In 1999, Chen [10, Theorem 4] obtained a basic inequality involving
the Ricci curvature and the squared mean curvature of submanifolds in a real space
form. This inequality drew attention of several authors and they established similar
inequalities for different kinds of submanifolds in ambient manifolds possessing dif-
ferent kinds of structures. Motivated by the result of Chen [10, Theorem 4], in [11],
the authors presented a general theory for a submanifold of Riemannian manifolds
by proving a basic inequality (see [11, Theorem 3.1]), called Chen-Ricci inequality
[21], involving the Ricci curvature and the squared mean curvature of the subman-
ifold. Also, in [22], an improved Chen-Ricci inequality was obtained under certain
conditions.

The chapter is organized as follows. In Sect. 2, a brief introduction to Sasakian
manifolds, Sasakian space forms, conformal Sasakian manifolds, and conformal
Sasakian space forms are presented. In Sect. 3, the concepts of invariant, anti-
invariant, semi-invariant, and almost semi-invariant submanifolds of an almost con-
tactmetricmanifold are presented. It is observed that different kinds of submanifolds,
like invariant, anti-invariant, semi-invariant, θ -slant, pointwise θ -slant, semi-slant,
pointwise semi-slant, anti-slant, pseudo-slant, hemi-slant, bi-slant, and quasi hemi-
slant submanifolds are particular cases of an almost semi-invariant submanifold of
an almost contact metric manifold. In Sect. 4, Chen-Ricci inequality involving Ricci
curvature and the squared mean curvature of different kinds of slant submanifolds of
a conformal Sasakian space form tangent to the structure vector field are presented.
Equality cases are also discussed.

2 Conformal Sasakian Space Form

An almost contact structure (ϕ, ξ, η) in a (2n + 1)-dimensional smooth manifold ˜M
consists of a tensor field ϕ of type (1, 1), a vector field ξ , and a 1-form η satisfying
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ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0. (2.1)

The first relation and one of the remaining three relations of (2.1) imply the remain-
ing two relations. An almost contact structure (ϕ, ξ, η) on ˜M is said to be nor-
mal, if the induced almost complex structure J on ˜M × R defined by J

(

X, a d
dt

) =
(

ϕX − aξ, η (X) d
dt

)

is integrable. There exists on ˜M a Riemannian metric g̃ com-
patible with the structure (ϕ, ξ, η) such that

g̃ (ϕX, ϕY ) = g̃ (X,Y ) − η(X)η (Y ) (2.2)

for all vector fields X,Y on ˜M , and ˜M is called an almost contact metric manifold
equipped with an almost contact metric structure (ϕ, ξ, η, g̃). The condition (2.2) is
equivalent to

g̃ (X, ϕY ) = − g̃ (ϕX,Y ) along with g̃ (X, ξ) = η(X) (2.3)

for all vector fields X,Y on ˜M . It follows that g̃ (ξ, ξ) = 1. The Sasaki form is
defined by �(X,Y ) = g̃ (X, ϕY ) for all vector fields X , Y in ˜M . An almost con-
tact metric structure (ϕ, ξ, η, g̃) is called a contact metric structure if � = dη. A
manifold equipped with a contact metric structure is called a contact metric man-
ifold. A contact metric structure (ϕ, ξ, η, g̃) is called K-contact if ξ is a Killing
vector field of g̃, and a manifold with such a structure is called a K-contact mani-
fold. A contact metric structure is K -contact if and only if the operator h defined by
h = 1

2£ξϕ vanishes. An almost contact metric structure is K -contact if and only if
˜∇ξ = −ϕ. A normal contact metric structure is called a Sasakian structure, and a
manifold equipped with a Sasakian structure is called a Sasakian manifold [5]. An
almost contact metric manifold ( ˜M, ϕ, ξ, η, g̃) is a Sasakian manifold if and only if
(˜∇Xϕ)Y = g̃ (X,Y ) ξ − η (Y ) X for all vector fields X,Y on ˜M .

It is well known that the sectional curvatures of a Riemannian manifold deter-
mine the curvature. Similarly, it is also well known that the holomorphic sectional
curvatures of a Kaehler manifold determine the curvature completely. Finally, it is
known that theϕ-sectional curvatures of a Sasakianmanifold determine the curvature
completely. A Sasakian manifold ˜M of constant ϕ-sectional curvature c, denoted by
˜M(c), is called a Sasakian space form and its Riemann curvature tensor satisfies

˜R (X, Y ) Z = c + 3

4
{̃g (Y, Z) X − g̃ (X, Z) Y }

+ c − 1

4
{η (X) η (Z) Y − η (Y ) η (Z) X + g̃ (X, Z) η (Y ) ξ − g̃ (Y, Z) η (X) ξ

+g̃ (ϕY, Z) ϕX − g̃ (ϕX, Z) ϕY − 2̃g (ϕX, Y ) ϕZ} . (2.4)

For details of Sasakian geometry onemay refer to [5] and the references cited therein.
Let ( ˜M, g̃) be a Riemannian manifold. Let g be a conformal change of metric

given by g = e2κ g̃, where κ : ˜M → R is a smooth function. For the function κ,
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the gradient ˜∇κ is given by X (κ) = dκ (X) = g̃(˜∇κ, X). Let � be a symmetric
(0, 2)-tensor field defined by

� = ˜∇dκ − dκ ⊗ dκ + 1

2
‖˜∇κ‖2g̃ = �κ + 1

2
‖˜∇κ‖2g̃, (2.5)

where
�κ = ˜∇dκ − dκ ⊗ dκ. (2.6)

The Levi-Civita connections ∇ of g and ˜∇ of g̃ are related by

∇XY = ˜∇XY + dκ (X) Y + dκ (Y ) X − g̃ (X,Y ) ˜∇κ. (2.7)

Consequently, theRiemann-Christoffel curvature tensors R of g and ˜R of g̃ are related
by

˜R (X, Y, Z ,W ) = e−2κR (X, Y, Z ,W ) + g̃ (Y, Z) �κ (X,W ) − g̃ (X, Z) �κ (Y,W )

+�κ (Y, Z) g̃ (X,W ) − �κ (X, Z) g̃ (Y,W )

+‖˜∇κ‖2 {̃g (Y, Z) g̃ (X,W ) − g̃ (X, Z) g̃ (Y,W )} . (2.8)

In 1980, Vaisman [24] introduced the concept of conformal changes (or defor-
mations) of almost contact metric structures as follows. Let ˜M be a (2n + 1)-
dimensional manifold endowed with an almost contact metric structure (ϕ, ξ, η, g̃).
Suppose that

ϕ = ϕ, ξ = e−κξ, η = eκη, g = e2κ g̃, (2.9)

for some smooth function κ : ˜M → R, then the structure (ϕ, ξ, η, g̃) is said to be
conformally related to the almost contact metric structure

(

ϕ, ξ, η, g
)

. Suppose � is
the Sasaki form of the structure

(

ϕ, ξ, η, g
)

given by �(X,Y ) = g (X, ϕY ). Then
� = e2κ�.

Lemma 2.1 Let ( ˜M, ϕ, ξ, η) be an almost contact manifold. Let (ϕ, ξ, η) be an
almost contact structure satisfying (2.9). Then,

eκh = h + 1

2
(dκ ◦ ϕ) ⊗ ξ, (2.10)

where 2h = £ξϕ and 2h = £ξϕ.

Proof Omitted. �

Lemma 2.2 Let ( ˜M, ϕ, ξ, η) be an almost contact manifold. Let (ϕ, ξ, η) be an
almost contact structure on ˜M given by (2.9). Then,

e−κdη = dη + dκ ∧ η, (2.11)
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[ϕ, ϕ] + 2dη ⊗ ξ = [ϕ, ϕ] + 2 (dη + dκ ∧ η) ⊗ ξ, (2.12)

e−2κd� = d� + 2dκ ∧ η. (2.13)

Proof We have dη = d(eκη) = eκ (dη + dκ ∧ η), which gives (2.11). Next, from

[ϕ, ϕ] + 2dη ⊗ ξ = [ϕ, ϕ] + 2eκ (dη + dκ ∧ η) ⊗ (

e−κξ
)

,

we have (2.12). Finally, we have d� = d(e2κ�) = e2κ (d� + 2dκ ∧ η), which
gives (2.13). �

Lemma 2.3 Let ( ˜M, ϕ, ξ, η, g̃) be an almost contact metric manifold. Let (ϕ, ξ,

η, g) be an almost contact metric structure on ˜M obtained from (2.9). Then

(˜∇Xϕ)Y = (∇Xϕ)Y − {dκ (ϕY ) X − dκ (Y ) ϕX − g̃ (X, ϕY ) ˜∇κ + g̃ (X, Y ) ϕ(˜∇κ)},
(2.14)

˜∇Xξ = eκ∇Xξ − {

dκ (ξ) X − η (X) ˜∇κ
}

, (2.15)

(˜∇Xη)Y = e−κ(∇Xη)Y − {dκ (ξ) g̃(X,Y ) − η (X) dκ(Y )} (2.16)

for all vector fields X,Y on ˜M.

Proof In view of (2.7), we have

(∇Xϕ)Y = ˜∇XϕY + dκ (ϕY ) X − g̃ (X, ϕY ) ˜∇κ − ϕ˜∇XY − dκ (Y ) ϕX + g̃ (X, Y ) ϕ(˜∇κ),

which gives (2.14). Next, using (2.7), we get

∇Xξ = e−κ

{

˜∇Xξ + dκ (ξ) X − η (X) ˜∇κ
}

.

From the above relation we get (2.15). Finally, we have

(∇Xη)Y = eκ g̃(˜∇Xξ,Y ) + eκdκ (ξ) g̃(X,Y ) − eκη (X) g̃(˜∇κ,Y ),

which gives (2.16). �

A (2n + 1)-dimensional almost contact metric manifold ( ˜M, ϕ, ξ, η, g̃) is called
a conformal contact metric manifold if the structure (ϕ, ξ, η, g̃) is conformally
related to a contact metric structure

(

ϕ, ξ, η, g
)

by the relation (2.9). Similarly,
( ˜M, ϕ, ξ, η, g̃) is said to be a conformal K -contact manifold (resp. a conformal
Sasakian manifold) if ( ˜M, ϕ, ξ, η, g) is a K -contact manifold (resp. a Sasakian man-
ifold) (see [1, 24]). Moreover, ( ˜M, ϕ, ξ, η, g̃) is called a conformal Sasakian space
form [1] if ( ˜M, ϕ, ξ, η, g) is a Sasakian space form.
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Proposition 2.4 Let ( ˜M, ϕ, ξ, η, g̃) be a conformal K -contact manifold. Then,

˜∇ξ = −eκϕ − {dκ (ξ) I − η ⊗ ˜∇κ}, (2.17)

˜∇η = eκ� − {dκ (ξ) g̃ − η ⊗ dκ} . (2.18)

Proof From the assumption, we see that (ϕ, ξ, η, g) is a K -contact metric structure
satisfying (2.9). Since (ϕ, ξ, η, g) is a K -contact structure, using∇ ξ = −ϕ in (2.15),
we get (2.17). Next, from (2.16) we get

(˜∇Xη)Y = e−κg(∇Xξ,Y ) − {dκ (ξ) g̃(X,Y ) − η (X) dκ(Y )} ,

which, in view of ∇ ξ = −ϕ, gives (2.18). �

Remark 2.5 There is another notion of a conformal K -contact manifold given in
[14]. Accordingly, a (2n + 1)-dimensional conformal K -contact manifold ( ˜M, ϕ, η,

ξ, g̃) is a contact metric manifold in which the associated vector field ξ is a confor-
mal Killing vector field, that is, £ξ g̃ = αg̃ for some smooth function α : ˜M → R.
Contracting the conformal equation gives 2divξ = (2n + 1)α. But it is known that
divξ = 0 for a contact metric manifold. So, £ξ g̃ = 0, that is, ξ is Killing, and hence
a conformal K -contact manifold in sense of [14] reduces to a K -contact manifold.
This fact was presented to the first author by R. Sharma (on 2020.07.10, Friday,
10:58 PM).

Example 2.6 ([1, Example 3.1]) Let R
2n+1 be endowed with an almost contact

metric structure (ϕ, ξ, η, g̃) given by

ϕ

(

n
∑

i=1

(

Xi ∂

∂xi
+ Y i ∂

∂yi

)

+ Z
∂

∂z

)

=
n

∑

i=1

(

Y i ∂

∂xi
− Xi

)

∂

∂yi
+

n
∑

i=1

Y i yi
∂

∂z
,

ξ = eκ

{

2
∂

∂z

}

, η = e−κ

{

1

2

(

dz −
n

∑

i=1

yidxi
)}

,

g̃ = e−2κ

{

η ⊗ η + 1

4

n
∑

i=1

{

(

dxi
)2 + (

dyi
)2

}

}

,

where

κ = 1

2

{

n
∑

i=1

(

(

xi
)2 + (

yi
)2

)

+ z2
}

.

Then (R2n+1, ϕ, ξ, η, g̃) is not a Sasakian manifold, but (R2n+1, ϕ, ξ , η, g) is a
Sasakian space form with the constant ϕ-sectional curvature equal to −3, where
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ϕ = ϕ, ξ = 2
∂

∂z
, η = 1

2

(

dz −
n

∑

i=1

yidxi
)

,

g = η ⊗ η + 1

4

n
∑

i=1

{

(

dxi
)2 + (

dyi
)2

}

.

Proposition 2.7 Let ( ˜M, ϕ, ξ, η, g̃) be a conformal Sasakian manifold. Then,

(˜∇Xϕ)Y = eκ {̃g (X, Y ) ξ − η (Y ) X}
−{dκ (ϕY ) X − dκ (Y ) ϕX − g̃ (X, ϕY ) ˜∇κ + g̃ (X, Y ) ϕ(˜∇κ)} (2.19)

for all vector fields X,Y on ˜M.

Proof From the assumption, we see that (ϕ, ξ, η, g) is a Sasakian structure satisfying
(2.9). Since (ϕ, ξ, η, g) is a Sasakian structure, we have

(∇Xϕ)Y = g (X,Y ) ξ − η (Y ) X (2.20)

for all vector fields X,Y on ˜M . In view of (2.9), the above relation becomes

(∇Xϕ)Y = eκ {̃g (X,Y ) ξ − η (Y ) X} .

Using the above relation is (2.14), we get (2.19). �
Now suppose that ( ˜M, ϕ, ξ, η, g̃) is a conformal Sasakian space form, so that

( ˜M, ϕ, ξ , η, g) is a Sasakian space form of constant ϕ-sectional curvature c. Then,
the Riemann-Christoffel curvature tensor R of g satisfies

R (X, Y, Z ,W ) = c + 3

4
{g (Y, Z) g (X,W ) − g (X, Z) g (Y,W )}

+ c − 1

4
{η (X) η (Z) g (Y,W ) − η (Y ) η (Z) g (X,W )

+g (X, Z) η (Y ) η (W ) − g (Y, Z) η (X) η (W ) + g (Y, ϕZ) g (X, ϕW )

−g (X, ϕZ) g (Y, ϕW ) − 2g (ϕX, Y ) g (ϕZ ,W )} ,

which, in view of (2.9), gives

R (X, Y, Z ,W ) = c + 3

4
e4κ {̃g (Y, Z) g̃ (X,W ) − g̃ (X, Z) g̃ (Y,W )}

+ c − 1

4
e4κ {η (X) η (Z) g̃ (Y,W ) − η (Y ) η (Z) g̃ (X,W )

+g̃ (X, Z) η (Y ) η (W ) − g̃ (Y, Z) η (X) η (W ) + g̃ (Y, ϕZ) g̃ (X, ϕW )

−g̃ (X, ϕZ) g̃ (Y, ϕW ) − 2̃g (X, ϕY ) g̃ (Z , ϕW )} . (2.21)

Consequently, in view of (2.21), from (2.8), theRiemann-Christoffel curvature tensor
˜R of a conformal Sasakian space form ( ˜M, ϕ, ξ, η, g̃) satisfies
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˜R (X, Y, Z ,W ) = g̃ (Y, Z) �κ (X,W ) − g̃ (X, Z)�κ (Y,W ) + �κ (Y, Z) g̃ (X,W ) − �κ (X, Z) g̃ (Y,W )

+
(

c + 3

4
e2κ + ‖˜∇κ‖2

)

(̃g (Y, Z) g̃ (X,W ) − g̃ (X, Z) g̃ (Y,W ))

+ c − 1

4
e2κ {η (X) η (Z) g̃ (Y,W ) − η (Y ) η (Z) g̃ (X,W )

+g̃ (X, Z) η (Y ) η (W ) − g̃ (Y, Z) η (X) η (W ) + g̃ (Y, ϕZ) g̃ (X, ϕW )

−g̃ (X, ϕZ) g̃ (Y, ϕW ) − 2̃g (X, ϕY ) g̃ (Z , ϕW )} . (2.22)

Because of the presence of first four expressions in the first line on the right hand side
of (2.22), a conformal Sasakian space form is not a particular case of a generalized
Sasakian space form introduced in [2].

3 Slant Submanifolds of an Almost Contact Metric
Manifold

Let (M, g) be a Riemannian submanifold of a Riemannianmanifold ( ˜M, g̃) equipped
with a compatible almost contact structure (ϕ, ξ, η). For X ∈ T M and N ∈ T⊥M
we put

ϕX = PX + FX, ϕN = t N + f N ,

where PX, t N ∈ T M and FX, f N ∈ T⊥M . Moreover, if ξ ∈ T M then we write
T M = {ξ} ⊕ {ξ}⊥, where {ξ} is the distribution spanned by ξ and {ξ}⊥ is the com-
plementary orthogonal distribution of {ξ} in M . Now, we recall the definition of an
almost semi-invariant submanifold given by the first author in 1996 as follows (cf.
[19]).

Definition 3.1 ARiemannian submanifold (M, g) of an almost contact metric man-
ifold ( ˜M, ϕ, ξ, η, g̃)with ξ ∈ T M is said to be an almost semi-invariant submanifold
of ˜M if there are k distinct functions λ1, . . . , λk defined on M with values in the open
interval (0, 1) such that T M is decomposed as P-invariant mutually orthogonal dif-
ferentiable distributions given by

T M = D1 ⊕ D0 ⊕ Dλ1 ⊕ · · · ⊕ Dλk ⊕ {ξ},

whereD1
p = ker(F |{ξ}⊥)p,D0

p = ker(P|{ξ}⊥)p, andDλi
p = ker

(

P2|{ξ}⊥ + λ2
i (p)I

)

p,
i ∈ {1, . . . , k}. If in addition, each λi is constant, then M is called an almost semi-
invariant∗ submanifold.
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An almost semi-invariant submanifold reduces to

(1) an invariant submanifold [4, 25] if k = 0 andD0 = 0, so that T M = D1 ⊕ {ξ};
(2) an anti-invariant submanifold [4, 25] if k = 0 and D1 = 0, so that T M =

D0 ⊕ {ξ};
(3) a semi-invariant submanifold [4] (see also contact CR-submanifold [25]) if

k = 0, so that T M = D1 ⊕ D0 ⊕ {ξ};
(4) a θ -slant submanifold [7] if D1 = 0 = D0, k = 1 and λ1 is constant, so that

T M = Dλ1 ⊕ {ξ};
(5) a pointwise slant submanifold [15] ifD1 = 0 = D0, k = 1, so that T M = D1 ⊕

Dλ1 ⊕ {ξ};
(6) a semi-slant submanifold [6] ifD0 = 0, k = 1 and λ1 is constant, so that T M =

D1 ⊕ Dλ1 ⊕ {ξ};
(7) a pointwise semi-slant submanifold [15] ifD0 = 0, k = 1, so that T M = D1 ⊕

Dλ1 ⊕ {ξ};
(8) an anti-slant submanifold [8] (or a pseudo-slant submanifold [3], or a hemi-

slant submanifold [12]) if D1 = 0, k = 1 and λ1 is constant, so that T M =
D0 ⊕ Dλ1 ⊕ {ξ};

(9) a proper bi-slant submanifold [8] if D1 = 0 = D0, k = 2 and λ1, λ2 are con-
stant, so that T M = Dλ1 ⊕ Dλ2 ⊕ {ξ};

(10) a quasi hemi-slant submanifold [16] if k = 1 and λ1 is constant, so that T M =
D1 ⊕ D0 ⊕ Dλ1 ⊕ {ξ}.

The submanifold M is invariant (resp. anti-invariant) if ϕX ∈ T M (resp. ϕX ∈
T⊥M) for every X ∈ T M . In case of a θ -slant submanifold, the slant angle θ is given
by λ1 = cos θ . A slant submanifold which is neither invariant nor anti-invariant is
called a proper θ -slant submanifold. It is known that proper θ -slant submanifolds
of almost contact metric manifolds are always odd dimensional. The definitions of
pointwise bi-slant and pointwise quasi hemi-slant submanifolds are also possible as
particular cases an almost semi-invariant submanifold. For an almost semi-invariant
submanifold, for X ∈ T M , we may write

X = U 1X +U 0X +Uλ1X + · · · +Uλk X + η(X)ξ,

where U 1,U 0,Uλ1 , . . . ,Uλk are orthogonal projection operators of T M on
D1,D0,Dλ1 , . . . ,Dλk , respectively. Then, it follows that

‖X‖2 = ‖U 1X‖2 + ‖U 0X‖2 + ‖Uλ1X‖2 + · · · + ‖Uλk X‖2 + η(X)2. (3.1)

We also have P2X = −U 1X − λ2
1(U

λ1X) − · · · − λ2
1(U

λk X), which implies that

‖PX‖2 = g̃(PX, PX) = −g̃(P2X, X) =
∑

λ∈{1,λ1,...,λk }
λ2‖UλX‖2. (3.2)

In particular, if M is an m-dimensional θ -slant submanifold, then λ2
1 = cos2 θ and

we have
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‖PX‖2 = cos2 θ‖Uλ1X‖2 = cos2 θ
(‖X‖2 − η(X)2

)

. (3.3)

In fact, each distribution Dλi has the slant function θi for i ∈ {1, . . . , k}. Since for
any unit vector Zi ∈ Dλi , g(PZi , J Zi ) = g(PZi , PZi ) = θ2

i it is known that−λ2
i =

− cos2θi , therefore the distributions Dλi can be denoted by Dθi for i ∈ {1, . . . , k},
and the decomposition of T M can be written as

T M = D1 ⊕ D0 ⊕ Dθ1 ⊕ Dθ2 ⊕ · · · ⊕ Dθk ⊕ {ξ} ,

where D1 is invariant, D0 is anti-invariant, Dθi is pointwise slant distribution with
slant function θi for i ∈ {1, . . . , k}.
Remark 3.2 In [17], Ronsse developed the notion of almostCR submanifolds of an
almost contact metric manifold with weaker conditions (see also [4] for almost semi-
invariant submanifold and [13] for almostCR submanifolds). In case, a submanifold
of an almost contact metric manifold is orthogonal to the structure vector field ξ , an
analogous concept of ξ⊥-almost semi-invariant submanifold was introduced by the
first author [20].

4 Chen-Ricci Inequality for Slant Submanifolds

Let (M, g) be an m-dimensional Riemannian manifold. Let {e1, . . . , em} be any
orthonormal basis for TpM . The sectional curvature of a plane section spanned
by orthonormal unit vectors ei and e j at p ∈ M , denoted Ki j , is given by Ki j =
R(ei , e j , e j , ei ), where R is the Riemann-Christoffel curvature tensor. TheRicci con-
traction of Riemann-Christoffel curvature tensor is called the Ricci tensor denoted by
Ric. For a fixed i ∈ {1, . . . ,m}, the Ricci curvature of ei , denoted Ric(ei ), is given by
Ric(ei ) = ∑m

j �=i,i< j Ki j . The scalar curvature τ is given by τ(p) = ∑

1≤i< j≤m Ki j =
1
2

∑m
i=1 Ric(ei ). Consequently, we have

Ric(e1) = τ(p) −
∑

2≤i< j≤m

Ki j = τ(p) − 1

2

∑

2≤i �= j≤m

Ki j . (4.1)

Let L be a k-plane section of TpM and X a unit vector in L .We choose an orthonormal
basis {e1, . . . , ek} of L such that e1 = X . The k-Ricci curvature RicL(X) is defined
by [10]

RicL(X) = K12 + K13 + · · · + K1k .

Thus for each fixed ei , i ∈ {1, . . . , k} we get RicL(ei ) = ∑k
j �=i,i< j Ki j .

Let (M, g) be an m-dimensional Riemannian submanifold of a (2n + 1)-
dimensional Riemannian manifold ( ˜M, g̃), and σ the second fundamental form. The
equation of Gauss is given by
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R(X,Y, Z ,W ) = ˜R(X,Y, Z ,W ) + g̃(σ (X,W ), σ (Y, Z)) − g̃(σ (X, Z), σ (Y,W ))

(4.2)
for all X,Y, Z ,W ∈ T M , where ˜R and R are the Riemann-Christoffel curvature
tensors of ˜M and M , respectively. The mean curvature vector H is given by H =
trace(σ )/dim(M). The submanifold M is totally geodesic in ˜M if σ = 0, minimal
if H = 0, and totally umbilical if σ(X,Y ) = g(X,Y )H for all vectors X,Y tangent
to M . The relative null space of M at p [10] is defined by

Np = {X ∈ TpM : σ(X,Y ) = 0 for all Y ∈ TpM}.

Let {e1, . . . , em} and {em+1, . . . , e2n+1} be the orthonormal bases of the tangent space
TpM and the normal space T⊥

p M , respectively. We put

σ r
i j = g̃(σ (ei , e j ), er ), ||σ ||2 =

m
∑

i, j=1

g̃(σ (ei , e j ), σ (ei , e j )),

where i, j ∈ {1, . . . ,m}, r ∈ {m + 1, . . . , 2n + 1}. Let Ki j and ˜Ki j denote the sec-
tional curvature of the plane section spanned by ei and e j at p in the submanifold M
and in the ambient manifold ˜M , respectively. Then, from the Gauss equation (4.2),
we have [11]

Ki j = ˜Ki j +
2n+1
∑

r=m+1

(σ r
iiσ

r
j j − (σ r

i j )
2). (4.3)

From (4.3) it follows that

2τ(p) = 2τ̃ (TpM) + m2||H ||2 − ||σ ||2, (4.4)

where τ̃ (TpM) = ∑

1≤i< j≤m
˜Ki j denotes the scalar curvature of them-plane section

TpM in ˜M .

Theorem 4.1 ([1, Theorem3.2, Corollary 3.3])Let M be aRiemannian submanifold
of a conformal Sasakian space form ( ˜M, ϕ, ξ, η, g̃), denoted by ˜M(c), such that
˜∇κ, ξ ∈ T M. If p ∈ M is a totally umbilical point, then p is a totally geodesic point
and hence ϕ(TpM) ⊆ TpM. Consequently, a totally umbilical submanifold M of a
conformal Sasakian space form ˜M(c) such that ˜∇κ, ξ ∈ T M, is a totally geodesic
invariant submanifold.

Theorem 4.2 ([1, Lemma 4.6]) Let M be an m-dimensional invariant submanifold
of a Conformal Sasakian manifold M, tangent to the structure vector field ξ . Then
M is minimal if and only if ˜∇κ is tangent to M.

Lemma 4.3 Let M be an m-dimensional Riemannian submanifold of a conformal
Sasakian space form ( ˜M(c), ϕ, ξ, η, g̃) such that ξ ∈ T M. Let {e1, . . . , em} be an
orthonormal basis of the tangent space TpM. Then
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˜Ki j = 1

4
e2κ

{

(c + 3) + 3 (c − 1) g
(

Pei , e j
)2 − (c − 1) {η (ei )

2 + η
(

e j
)2}

}

+‖˜∇κ‖2 + �κ (ei , ei ) + �κ

(

e j , e j
)

, (4.5)

˜Ric(TpM)(X) = 1

4
e2κ

{

(c + 3) (m − 1) + (c − 1) {3 ‖PX‖2 − (m − 2) η (X)2 − 1}
}

+ (m − 1) ‖˜∇κ‖2 + (m − 2) {(˜∇Xdκ) (X) − dκ (X)2} + trace(�κ |M ), (4.6)

τ̃
(

TpM
) = 1

8
e2κ

{

m (m − 1) (c + 3) + (c − 1) {3 ‖P‖2 − 2m + 2}}

+1

2
m (m − 1) ‖˜∇κ‖2 + (m − 1) trace(�κ|M). (4.7)

Proof From (2.22) it follows (4.5). Using ˜Ric(TpM) (ei ) = ∑m
j=1, j �=i

˜Ki j in (4.5),
we get (4.6). Next, using 2τ̃

(

TpM
) = ∑m

i=1
˜Ric(TpM) (ei ) from (4.6), we obtain

(4.7). �

Theorem 4.4 (cf. [1, Theorem 4.1]) Let M be an m-dimensional (m ≥ 2) Rieman-
nian submanifold of a conformal Sasakian space form ( ˜M(c), ϕ, ξ, η, g̃) such that
ξ ∈ T M. Then,

Ric(X) ≤ 1

4

{

m2‖H‖2 + e2κ
{

(c + 3) (m − 1) + (c − 1) {3 ‖PX‖2 − (m − 2) η (X)2 − 1}}}

+ (m − 1) ‖˜∇κ‖2 + (m − 2) (˜∇Xdκ) (X) + trace(�κ |M ) (4.8)

for any unit vector X ∈ TpM.

Proof From (4.3), we get

1

4
m2‖H‖2 = τ(p) − τ̃ (TpM) + 1

4

2n+1
∑

r=m+1

(σ r
11 − σ r

22 − · · · − σ r
mm )2 +

2n+1
∑

r=m+1

m
∑

j=2

(σ r
1 j )

2 −
∑

2≤i< j≤m

(Ki j − ˜Ki j ).

(4.9)
From (4.1), (4.9) yields to

1

4
m2‖H‖2 = Ric(e1) − ˜Ric(e1) + 1

4

2n+1
∑

r=m+1

(σ r
11 − σ r

22 − · · · − σ r
mm)2 +

2n+1
∑

r=m+1

m
∑

j=2

(σ r
1 j )

2.

(4.10)
Now by substituting (4.6) in (4.10), we obtain
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1

4
m2‖H‖2 = Ric(e1) − 1

4
e2κ

{

(c + 3) (m − 1) + (c − 1) {3 ‖Pe1‖2 − (m − 2) η (e1)
2 − 1}}

− (m − 1) ‖˜∇κ‖2 − (m − 2) (˜∇e1dκ) (e1) + (m − 2) dκ (e1)
2 − trace(�κ |M )

+1

4

2n+1
∑

r=m+1

(σ r
11 − σ r

22 − · · · − σ r
mm)2 +

2n+1
∑

r=m+1

m
∑

j=2

(σ r
1 j )

2. (4.11)

Choosing e1 = X , the above equation implies (4.8). �

Theorem 4.5 (cf. [1, Theorem 4.2]) Let M be an m-dimensional (m ≥ 2) Rieman-
nian submanifold of a conformal Sasakian space form ( ˜M(c), ϕ, ξ, η, g̃) such that
ξ ∈ T M. Then,

(i) A unit vector X ∈ TpM satisfies the equality case of (4.8) if and only if either
(a)m = 2 or (b)˜∇κ is orthogonal to X, 2σ(X, X) = mH(p), and σ(X,Y ) = 0
for all Y ∈ {X}⊥.

(ii) If M is minimal at p, then a unit vector X ∈ TpM satisfies the equality case of
(4.8) if and only if X lies in the relative null space of M and either m = 2 or
˜∇κ be orthogonal to X.

Proof Assuming X = e1, from (4.11) the equality case of (4.8) becomes valid if and
only if the following three relations are satisfied:

σ r
1 j = 0, ∀ j ∈ {2, . . . ,m}, r ∈ {m + 1, . . . , 2n + 1}, (4.12)

σ r
11 =

m
∑

i=2

σ r
ii , ∀ r ∈ {m + 1, . . . , 2n + 1}, (4.13)

(m − 2)dκ(X)2 = 0. (4.14)

Satisfying (4.12), (4.13), and (4.14) is equivalent to the statement (i). For proving the
statement (ii) we note that minimality at p means H(p) = 0. So, in view of (4.12),
(4.13) and (4.14), we conclude that X lies in the relative null space of M and either
m = 2 or ˜∇κ be orthogonal to X . �

Corollary 4.6 (cf. [1, Corollary 4.3]) Let M be an m-dimensional (m ≥ 2) Rieman-
nian submanifold of a conformal Sasakian space form ( ˜M(c), ϕ, ξ, η, g̃) such that
ξ ∈ T M. For a unit vector X ∈ TpM, any three of the following four statements
imply the remaining one.

(i) dκ(X) = 0.
(ii) The mean curvature vector H(p) vanishes.
(iii) The unit vector X belongs to the relative null space Np.
(iv) The unit vector X satisfies the following equality case

Ric(X) = 1

4

{

m2‖H‖2 + e2κ
{

(c + 3) (m − 1) + (c − 1) {3 ‖PX‖2 − (m − 2) η (X)2 − 1}}}

+ (m − 1) ‖˜∇κ‖2 + (m − 2) (˜∇Xdκ) (X) + trace(�κ |M ).
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Theorem 4.7 Let M be an m-dimensional (m > 2) Riemannian submanifold of
a conformal Sasakian space form ( ˜M(c), ϕ, ξ, η, g̃) such that ξ ∈ T M. Then, the
equality case of (4.8) is true for every unit vector X ∈ TpM if and only if p is a
totally geodesic point and ˜∇κ ∈ T⊥

p M.

Corollary 4.8 Let M be anm-dimensional (m ≥ 2) semi-invariant submanifold of a
conformal Sasakian space form ( ˜M(c), ϕ, ξ, η, g̃) such that TpM = D1

p ⊕ D0
p ⊕ {ξ}.

Then

(i) For every unit vector X ∈ D1
p,

Ric(X) ≤ 1

4

{

m2‖H‖2 + e2κ {(c + 3) (m − 1) + 2 (c − 1)}
}

+ (m − 1) ‖˜∇κ‖2 + (m − 2) (˜∇Xdκ) (X) + trace(�κ |M ). (4.15)

(ii) For every unit vector X ∈ D0
p,

Ric(X) ≤ 1

4

{

m2‖H‖2 + e2κ {(c + 3) (m − 1) − (c − 1)}}
}

+ (m − 1) ‖˜∇κ‖2 + (m − 2) (˜∇Xdκ) (X) + trace(�κ |M ). (4.16)

Proof If M is a semi-invariant submanifold, then ϕ(D1
p) ⊆ D1

p and ϕ(D0
p) ⊆ T⊥

p M .
If X ∈ D1

p, then η(X) = 0 and ‖PX‖2 = 1. Now using these values in (4.8) we get
(i). To prove (ii), we note that in this case P = 0, rest of the proof is similar to (i). �

Theorem 4.9 Let M be an m-dimensional (m ≥ 2) almost semi-invariant subman-
ifold of a conformal Sasakian space form ( ˜M(c), ϕ, ξ, η, g̃). Then, for each unit
vector X ∈ TpM,

Ric(X) ≤ 1

4

{

m2‖H‖2 + e2κ {(c + 3) (m − 1) +

(c − 1) {3
∑

λ∈{1,λ1,...,λk }
λ2‖Uλ

p X‖2 − (m − 2) η (X)2 − 1}
⎫

⎬

⎭

⎫

⎬

⎭

+ (m − 1) ‖˜∇κ‖2 + (m − 2) (˜∇Xdκ) (X) + trace(�κ|M), (4.17)

where U 1
p,U

λ1
p , . . . ,Uλk

p are orthogonal projection operators of TpM on D1
p,Dλ1

p ,

. . . ,Dλk
p , respectively.

Proof Using (3.2) in (4.8), we get (4.17). �

Corollary 4.10 Let M be an m-dimensional (m ≥ 2) θ -slant submanifold of a con-
formal Sasakian space form ( ˜M(c), ϕ, ξ, η, g̃). Then, for each unit vector X ∈ TpM,
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Ric(X) ≤ 1

4

{

m2‖H‖2 + e2κ {(c + 3) (m − 1) +
(c − 1) {3 cos2 θ

(

1 − η(X)2
) − (m − 2) η (X)2 − 1}}}

+ (m − 1) ‖˜∇κ‖2 + (m − 2) (˜∇Xdκ) (X) + trace(�κ|M). (4.18)

Proof Using (3.3) in (4.8), we get (4.18). �

Corollary 4.11 Let M be an m-dimensional (m ≥ 2) anti-invariant submanifold
of a conformal Sasakian space form ( ˜M(c), ϕ, ξ, η, g̃). Then, for each unit vector
X ∈ TpM,

Ric(X) ≤ 1

4

{

m2‖H‖2 + e2κ

{

(c + 3) (m − 1) − (c − 1) {(m − 2) η (X)2 + 1}}}

+ (m − 1) ‖˜∇κ‖2 + (m − 2) (˜∇Xdκ) (X) + trace(�κ|M). (4.19)

Proof Put θ = π/2 in (4.18) to get (4.19). �

Corollary 4.12 Let M be an m-dimensional (m ≥ 2) (θ1, θ2) bi-slant submanifold
of a conformal Sasakian space form ( ˜M(c), ϕ, ξ, η, g̃). Then, for each unit vector
X ∈ TpM,

Ric(X) ≤ 1

4

{

m2‖H‖2 + e2κ {(c + 3) (m − 1) +
(c − 1) {3 (

cos2 θ1 + cos2 θ2
) (

1 − η(X)2
) − (m − 2) η (X)2 − 1}}}

+ (m − 1) ‖˜∇κ‖2 + (m − 2) (˜∇Xdκ) (X) + trace(�κ|M). (4.20)

Proof In this case, we get

‖PX‖2 = (

cos2 θ1 + cos2 θ2
) (

1 − η(X)2
)

. (4.21)

Using (4.21) in (4.8), we get (4.20). �

Remark 4.13 For many other results, one may refer to [1]. Many new results can be
obtained for other different classes of submanifolds discussed in Sect. 3. As far as the
authors know, inequalities for Chen’s δ-invariants and different Casorati curvatures
of a conformal Sasakian space form have not been obtained so far. Different kinds of
inequalities for C-totally real and Legendrian submanifolds of a conformal Sasakian
space form are also not obtained so far. Like statistical Sasakian space form, the
concept of conformal statistical Sasakian space form can also be developed. Then
Chen-Ricci, B.Y. Chen, Casorati, and Wingten inequalities can be obtained/studied
for different kinds of submanifolds of conformal statistical Sasakian space forms.
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Slant Curves and Magnetic Curves

Jun-ichi Inoguchi and Marian Ioan Munteanu
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1 Introduction

In 1990, Chen introduced the notion of slant submanifold in almost Hermitian
manifolds [21] (see also [22]). To extend the notion of slant submanifold in odd-
dimensional ambient spaces, in 1996, Lotta introduced a notion of slant submanifold
in almost contact metric manifolds [74] (see also [12]).

Let M = (M, ϕ, ξ, η, g) be an almost contact metric manifold. An immersed
submanifold N of M is said to be slant if for any x ∈ N and X ∈ Tx N linearly inde-
pendent of ξx , the angle between ϕX and TxM is a constant θ ∈ [0, π/2], called the
slant angle of N in M . Invariant and anti-invariant submanifolds are slant submani-
folds with slant angle θ = 0 and θ = π/2, respectively. A slant submanifold which
is neither invariant nor anti-invariant is called a proper slant submanifold.

One can see that Lotta’s definition excludes 1-dimensional submanifolds, that is
slant curves. Thus, if one wishes to study curves in almost contact metric manifolds
with slant property, one needs manipulation of Lotta’s definition. For this purpose,
we return to the original motivation of slant submanifold geometry. One of the moti-
vations of Chen’s work is to prove a new class of submanifolds in almost Hermitian
manifolds which contains both holomorphic submanifolds and totally real subman-
ifolds as extremal cases.

In the case of 1-dimensional submanifolds in almost contact metric manifold M ,
“invariant 1-dimensional submanifolds” are nothing but characteristic flows. More
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precisely, an arc length parametrized curve in M is a 1-dimensional invariant sub-
manifold if and only if it is an integral curve of the characteristic vector field ±ξ .
It should be remarked that any regular curve in M is regarded as a 1-dimensional
anti-invariant submanifold.

On the other hand, in almost contactmetric geometry,C-totally real submanifolds,
that is submanifolds orthogonal to ξ , have been studied as an analogue of totally real
submanifolds. In particular, 1-dimensional C-totally real submanifolds are called
almost contact curves (also called almost Legendre curves). In 3-dimensional contact
geometry and contact topology, almost contact curves are traditionally called the
Legendre curves. The Legendre curves play a central role in 3-dimensional contact
geometry and topology [96].

If we think back to Chen’s original approach, we need to look for a class of curves
in almost contact metric manifolds which contains characteristic flows and almost
contact curves as extremal cases.

To extend slant submanifold geometry to curves in almost contact metric man-
ifolds, an alternative notion of “slant curve” was introduced by Cho, Inoguchi and
Lee [29]. Since then, slant curves in almost contact metric manifolds have been paid
much attention of differential geometers and investigated intensively; see [55].

The notion of slant curve introduced in [29] has another motivation derived from
classical differential geometry.

A spatial curve is said to be a curve of constant slope (also called a cylindrical
helix) if its tangent vector field has a constant angle θ with a fixed direction called
the axis. The second name is derived from the fact that there exists a cylinder in
Euclidean 3-space on which the curve moves in such a way that it cuts each ruling
at a constant angle (see [89, pp. 72–73]).

These curves are characterized by the followingBertrand-Lancret-de Saint Venant
Theorem (see [71, 89, 97]):

Theorem 1.1 An arc length parametrized curve in Euclidean 3-space E
3 with

nonzero curvature is of constant slope if and only if the ratio of the torsion τ and the
curvature κ is constant.

For a curve of constant slope with nonzero curvature, the ratio τ/κ is sometimes
called the Lancret invariant of the curve of constant slope. Barros [3] generalized
the above characterization due to Bertrand-Lancret-de Saint Venant to curves in
3-dimensional space forms. Motivated by the Bertrand-Lancret-de Saint Venant the-
orem, slant curves in almost contact metric manifolds are defined as follows:

Definition 1.1 An arc length parametrized curve γ in an almost contact metric
manifold (M, ϕ, ξ, η, g) is said to be slant if its tangent vector field makes constant
contact angle θ with ξ , i.e., cos θ := η(γ ′) is constant along γ .

Here we would like to point out that in 1995, Blair, Dillen, Verstraelen and Vrancken
gave a variational characterization of slant curves in K -contact manifolds [11]. Slant
curves are a critical point of the length functional under characteristic variations
(Sect. 4.2).
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Moreover, in 1963, Tashiro and Tachibana have studied special kinds of slant
curves called C-loxodromes in Sasakian manifold [102]. For the precise definition
ofC-loxodrome, seeDefinition4.2. It should be remarked that the class of slant curves
is larger than the class of C-loxodromes in Sasakian manifolds. The C-loxodrome
equation has unexpected relations to static magnetism in contact geometry. Based on
these observations, in this chapter, we also study magnetic curves in almost contact
metric manifolds (with Killing characteristic vector fields).

On a Riemannian manifold (M, g) equipped with a closed 2-form F , the 2-form
F is regarded as a static magnetic field. Now let us temporarily assume that F has
a potential 1-form A, i.e., F = d A. Then the critical points of the Landau-Hall
functional:

LH(γ ) = E(γ )+ q
∫ L

0
A(γ ′(s)) ds (1.1)

are called magnetic curves. Here E(γ ) denotes the kinetic energy

E(γ ) =
∫ L

0

1

2
g(γ ′(s), γ ′(s)) ds (1.2)

of γ and q is a real constant called the charge. It should be remarked that every
contact metric manifold (M, ϕ, ξ, η, g) has a static magnetic field (called the contact
magnetic field, see Theorem 7.1). We will see later that contact magnetic curves
in Sasakian manifolds are slant curves. It will be turned out that contact magnetic
curves in Sasakian space forms lie in 3-dimensional subspaces. We will study the
periodicity of those magnetic curves in Sect. 12.

Slant curves in 3-dimensional Sasakian space forms appear also in another vari-
ational problem. In fact, biharmonic curves in 3-dimensional Sasakian space forms
are slant.

An arc length parametrized curve γ in a Riemannian manifold (M, g) is said to
be biharmonic if it is a critical point of the bienergy functional:

E2(γ ) =
∫ L

0

1

2
|∇γ ′γ ′|2 ds.

We will see that biharmonic curves in 3-dimensional Sasakian space forms are slant
[30].

Throughout this chapter, we denote by Γ (E) the space of all smooth sections of
a vector bundle E .
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Part I Slant Curves in Almost Contact Metric Manifolds

2 Preliminaries

2.1 Frenet Frame

Let (M, g) be an m-dimensional Riemannian manifold with Levi-Civita connection
∇. We denote by O(M) the orthonormal frame bundle of M .

An arc length parametrized curve γ in M is said to be a Frenet curve of osculating
order r ≥ 1 if there exists an orthonormal frame field E = (T = γ ′, E1, . . . , Er−1)

of rank r along γ such that

∇γ ′T =κ1E1, (2.1)

∇γ ′ E1 = − κ1T + κ2E2, (2.2)

∇γ ′ E j = − κ j E j−1 + κ j+1E j+1, 2 ≤ j ≤ r − 2, (2.3)

∇γ ′ Er−1 = − κr−1Er−2 (2.4)

for some non-negative functions κ1, κ2, . . . κr−1. Each κ j is called the j-th curvature.
For example, a geodesic in (M, g) is a Frenet curve of osculating order 1, and a

circle is a Frenet curve of osculating order 2 with constant first curvature κ1. A helix
of order r is defined as a Frenet curve of osculating order r , such that all curvatures
κ1, κ2, . . . κr−1 are constant.

For more information on Frenet curves, we refer to [98, Chap. 7, B.].

2.2 Vector Fields along Curves

Here we recall some vector bundle calculus of curves for our later use.
Let γ (s) be an arc length parametrized curve in a Riemannian manifold (M, g)

defined on an interval I . Then the vector bundle γ ∗T M is defined by

γ ∗T M =
⋃
s∈I

Tγ (s)M.

A section X ∈ Γ (γ ∗T M) is called a vector field along γ . The Levi-Civita connection
∇ induces a connection ∇γ on γ ∗T M by

∇γ
d
ds
X = ∇γ ′ X.

The covariant derivative ∇γ ′ X is often denoted as
D

ds
X (s).
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One can see that (γ ∗T M, γ ∗g,∇γ ) is a Riemannian vector bundle over I , i.e.,
∇γ (γ ∗g) = 0.

The mean curvature vector field H of γ is a section of γ ∗T M defined by H =
∇γ ′γ ′. By definition, geodesics are arc length parametrized curves with vanishing
mean curvature vector field.

The Laplace-Beltrami operator � of (γ ∗T M,∇γ ) is defined by

� = −∇γ
d
ds

∇γ
d
ds

= −∇γ ′∇γ ′ .

Thus, for any X ∈ Γ (γ ∗T M), we have

�X = −∇γ ′∇γ ′ X.

A vector field X along γ is said to be proper if it satisfies �X = λX for some
function λ. In particular, X is said to be harmonic if �X = 0.

2.3 Normal Connection

The normal bundle T⊥γ of the curve γ is given by

T⊥γ =
⋃
s∈I

T⊥
s γ, T⊥

s γ = (RT (s))⊥.

The normal connection ∇⊥ is the connection in T⊥γ defined by

∇⊥
γ ′ X = ∇γ ′ X − g(∇γ ′ X, T )T

for any section X ∈ Γ (T⊥γ ).
The Laplace-Beltrami operator �⊥ = −∇⊥

γ ′∇⊥
γ ′ of the vector bundle (T⊥γ,∇⊥)

is called the normal Laplacian.

3 Almost Contact Manifolds

3.1 Compatible Metrics

Let M be a manifold of odd dimension m = 2n + 1. Then M is said to be an almost
contact manifold if its structure group GLmR of the linear frame bundle is reducible
to U(n)× {1}. This is equivalent to existence of a tensor field ϕ of type (1, 1), a
vector field ξ and a 1-form η satisfying
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ϕ2 = −I + η ⊗ ξ, η(ξ) = 1.

Here I is the identity transformation. From these conditions, one can deduce that

ϕξ = 0, η ◦ ϕ = 0.

Moreover, since U(n)× {1} ⊂ SO(2n + 1), M admits a Riemannian metric g satis-
fying

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for all X , Y ∈ X(M). Here X(M) = Γ (T M) denotes the Lie algebra of all smooth
vector fields on M . Such a metric is called an associated metric of the almost contact
manifold M = (M, ϕ, ξ, η). With respect to the associated metric g, η is metrically
dual to ξ , that is

g(X, ξ) = η(X)

for all X ∈ X(M). A structure (ϕ, ξ, η, g) on M is called an almost contact metric
structure, and a manifold M equipped with an almost contact metric structure is said
to be an almost contact metric manifold.

The fundamental 2-form  of (M, ϕ, ξ, η, g) is defined by

(X,Y ) = g(X, ϕY ), X,Y ∈ X(M).

An almost contact metric manifold M is said to be of rank r = 2s > 0 if (dη)s �= 0
and η ∧ (dη)s = 0, and of rank r = 2s + 1 if η ∧ (dη)s �= 0 and (dη)s+1 = 0.

A plane section� at a point x of an almost contact metric manifold M is said to
be holomorphic if it is invariant under ϕx . The sectional curvature function H of a
holomorphic plane section is called the holomorphic sectional curvature (also called
ϕ-sectional curvature).

3.2 Contact Metric Manifolds

On the other hand, a 1-form η on (2n + 1)-dimensional manifold M is said to be a
contact form if (dη)n ∧ η �= 0 on M . A manifold M together with a contact form is
called a contact manifold. On a contact manifold (M, η), there exists a unique vector
field ξ such that

η(ξ) = 1, ιξdη = 0.

Here ιξ denotes the interior product by ξ . The vector field ξ is called the Reeb vector
field. Moreover, there exists a Riemannian metric g and an endomorphism field ϕ
such that (ϕ, ξ, η, g) is almost contact metric structure and  = dη. The structure
(ϕ, ξ, η, g) is called an almost contact metric structure associated to the contact form
η.
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Conversely, let (M, ϕ, ξ, η, g) be an almost contact metric manifold satisfying
 = dη. Then one can see that η is a contact form. Such an almost contact metric
manifold is called a contact metric manifold.

Every contact metric manifold is orientable. Here we recall the following funda-
mental fact ([10, Theorem 4.6]).

Proposition 3.1 On a (2n + 1)-dimensional contact metric manifold (M, ϕ, ξ,
η, g), the volume element dvg induced from the associated metric g is related to
the contact form η by

dvg = (−1)n

2nn! η ∧ (dη)n.

Note that contact metric manifolds are of rank 2n + 1.

Remark 1 Let (M, g) be an oriented m-dimensional Riemannian manifold, then
we can take a positively oriented local orthonormal frame field {e1, e2, . . . , em} and
its dual coframe field {ϑ1, ϑ2, . . . , ϑm}. Then dvg = ϑ1 ∧ ϑ2 ∧ · · · ∧ ϑm defines a
volume element compatible to the orientation. By definition, {e1, e2, . . . , em} satisfies

dvg(e1, e2, . . . , em) = 1

m! .

For every positively oriented local coordinate system (x1, x2, . . . , xm), dvg is
expressed as

dvg = √
det(gi j ) dx1 ∧ dx2 ∧ · · · ∧ dxm, gi j = g(∂/∂xi , ∂/∂x j ).

3.3 Normality Tensor

On the direct product manifold M × R of an almost contact metric manifold and
the real line R, any tangent vector field can be represented as the form (X, λd/dt),
where X ∈ X(M) and λ is a function on M × R and t is the Cartesian coordinate on
the real line R.

Define an almost complex structure J on M × R by

J (X, λd/dt) = (ϕX − λξ, η(X)d/dt).

If J is integrable, then M is said to be normal. Equivalently, M is normal if and only
if

[ϕ, ϕ](X,Y )+ 2dη(X,Y )ξ = 0,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ defined by

[ϕ, ϕ](X,Y ) = [ϕX, ϕY ] + ϕ2[X,Y ] − ϕ[ϕX,Y ] − ϕ[X, ϕY ]
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for any X,Y ∈ X(M).
For more details on almost contact metric manifolds, we refer to Blair’s mono-

graph [10].

3.4 Examples of Almost Contact Metric Manifolds

From the viewpoint of slant curves, we need to look for almost contact metric mani-
folds with Killing characteristic vector field. On the other hand from magnetic curve
theory, we need to search almost contact metric manifolds with closed fundamental
2-form.

Example 3.1 (Almost cosymplectic manifold) An almost contact metric manifold
M is said to be an almost cosymplectic manifold if dη = 0 and d = 0 [84]. An
almost cosymplectic manifold M is called a cosymplectic manifold if it is normal.

Proposition 3.2 An almost contact metric manifold M is cosymplectic if and only
if ∇ϕ = 0.

One can see that the characteristic vector field of a cosymplectic manifold is Killing.
Complete connected cosymplectic manifolds of constant ϕ-sectional curvature are
called cosymplectic space forms.

Example 3.2 (Cosymplectic space forms) Let M = (M, ḡ, J ) be an almost Kähler
manifold. Consider the Riemannian product M = (M × R, g) with g = ḡ + dt2.
Then we can equip an almost cosymplectic structure of M by

ξ = d

dt
, η = dt, ϕ

(
X, f

d

dt

)
= (J X, 0), X ∈ X(M).

The almost cosymplectic manifold M is cosymplectic if and only if M is Kähler. In
particular, when M is a complex space form, that is, a Kähler manifold of constant
holomorphic sectional curvature, thenM is a cosymplecticmanifold of constant holo-
morphic sectional curvature. Now letCPn(c),Cn andCHn(c) be complex projective
n-space of constant holomorphic sectional curvature c > 0, complex Euclidean n-
space and complex hyperbolic n-space of constant holomorphic sectional curvature
c < 0, respectively. Then the cosymplectic manifolds

CPn(c)× R, E
2n+1 = C

n × R, CHn(c)× R

are cosymplectic space forms.

The Riemannian curvature of a cosymplectic space form (of constant ϕ-sectional
curvature c) has the explicit representation
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R(X, Y )Z = c

4
(X ∧ Y )Z + c

4
{(ϕX ∧ ϕY )Z + 2(X, Y )ϕZ} + c

4
{ξ ∧ (X ∧ Y )ξ}Z .

Here the curvaturelike tensor field (X ∧ Y )Z is defined by

(X ∧ Y )Z = g(Y, Z)X − g(Z , X)Y. (3.1)

Example 3.3 (K -contact manifolds) Let M be a contact metric manifold, then its
fundamental 2-form  is exact (and hence closed). In fact, η is a potential of .
However, ξ is not necessarily Killing. A contact metric manifold M is said to be a
K -contact manifold if its Reeb vector field is Killing.

Proposition 3.3 An almost contact metric manifold M is a K -contact manifold if
and only if ∇ξ = −ϕ.
Example 3.4 (Sasakian manifold) A normal contact metric manifold is called a
Sasakian manifold. One can see that Sasakian manifolds are K -contact.

Proposition 3.4 An almost contact metric manifold M is a Sasakian manifold if and
only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X

holds.

Remark 2 If dim M = 3, then K -contact manifold M is Sasakian.

Proposition 3.5 If a Sasakian manifold M has constant ϕ-sectional curvature H,
then its Riemannian curvature tensor has the following form:

R(X,Y )Z = c + 3

4
(X ∧ Y )Z + c − 1

4
{(ϕX ∧ ϕY )Z + 2(X,Y )ϕZ}

+ c − 1

4
{ξ ∧ (X ∧ Y )ξ}Z .

Complete and connected Sasakian manifolds of constant ϕ-sectional curvature
are called Sasakian space forms. The odd-dimensional unit sphere S2n+1 = S

2n+1(1)
is a typical example of simply connected Sasakian space form.

Example 3.5 (The unit sphere) Let C
n+1 be the (n + 1)-dimensional complex

Euclidean spacewith complex structure J . IdentifyingCn+1 with 2n + 2-dimensional
Euclidean space E2n+2 with metric 〈·, ·〉 via the isomorphism

(z1, z2, . . . , zn+1) �−→ (x1, y1, x2, y2, . . . , xn+1, yn+1), zk = xk + √−1yk , k = 1, 2, . . . , n + 1.

Then J corresponds to the linear transformation:

(x1, y1, x2, y2, . . . , xn+1, yn+1) �−→ (−y1, x1,−y2, x2, . . . ,−yn+1, xn+1).
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On the unit sphere S2n+1 ⊂ C
n+1, we take the unit normal vector field n by n = x,

where x is the position vector field. Then the Levi-Civita connection D of Cn+1 and
∇ of S2n+1 is related by the Gauss formula:

DXY = ∇XY − 〈X,Y 〉n. (3.2)

Define the vector field ξ on S
2n+1 by ξ = −Jn and set η = g(ξ, ·), where g is the

metric of S2n+1 induced from 〈·, ·〉. Then η is a contact form on S
2n+1 and ξ is the

Reeb vector field of η. The associated endomorphism field ϕ is the restriction of J to
S
2n+1. It is well known that S2n+1 equipped with this structure is a Sasakian manifold

of constant curvature 1. The Hopf fibering π : S2n+1 → CPn(4) is a Riemannian
submersion with totally geodesic fibres. The fibering coincides with the Boothby-
Wang fibering.

Example 3.6 (Elliptic Sasakian space forms) Let (ϕ, ξ, η, g) be the Sasakian struc-
ture of the unit sphere S2n+1. For any positive constant a, we deform the structure in
the following way:

ϕ̂ := ϕ, η̂ := aη, ξ̂ := 1

a
ξ, ĝ := ag + a(a − 1)η ⊗ η.

Then the new structure is Sasakian and of constant ϕ-sectional curvature c = 4/a −
3. We denote by M2n+1(c) the resulting Sasakian space form (S2n+1, ϕ̂, ξ̂ , η̂, ĝ)
and call it the elliptic Sasakian space form. The deformation above is called a
D-homothetic deformation. Under the deformation, the Hopf fibering becomes a
Riemannian submersion π : M2n+1(c) → CPn(c + 3) onto the complex projective
space of constant holomorphic sectional curvature c + 3. The Levi-Civita connection
∇̂ of M2n+1(c) is related to the original Levi-Civita connection ∇ by

∇̂XY = ∇XY + (a − 1)(η(X)ϕY + η(Y )ϕX). (3.3)

Example 3.7 (Heisenberg group) On the Cartesian spaceR2n+1 with natural coordi-
nates (x1, x2, . . . , xn, y1, y2, . . . , yn, z), we define a contact formη and aRiemannian
metric g by

η = dz +
n∑

i=1

(yidxi − xidyi ), g =
n∑

i=1

(dx2i + dy2i )+ η ⊗ η.

The Reeb vector field is ξ = ∂z . Define the endomorphism field ϕ by dη(X,Y ) =
g(X, ϕY ). Then the resulting contact Riemannian manifold (R2n+1, ϕ, ξ, η, g) is a
Sasakian space form of constant ϕ-sectional curvature −3. This Sasakian manifold
admits a nilpotent Lie group structure (Heisenberg group Nil2n+1). The Sasakian
structure is left invariant with respect to the Lie group structure.

Example 3.8 (Hyperbolic Sasakian space forms) Let us identify the 1-dimensional
complex hyperbolic space CH1(−c2) of constant holomorphic sectional curvature
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−c2 (c > 0) with the upper half-plane {(x, y) ∈ R
2 | y > 0} equipped with the

Poincaré metric (dx2 + dy2)/(c2y2) of constant curvature−c2. On the product man-
ifold CH1(−c2)× R, we define a 1-form ην and a Riemannian metric gν by

ην = dt + 2ν dx

c2y
, gν = dx2 + dy2

c2y2
+ ην ⊗ ην, ν ∈ R, ν ≥ 0.

Define an endomorphism field ϕ and a vector field ξ by

ϕ
∂

∂x
= ∂

∂y
, ϕ

∂

∂y
= − ∂

∂x
+ 1

2y

∂

∂t
, ϕ

∂

∂t
= 0, ξ = ∂

∂t
.

Then M = (CH1(−c2)× R, ϕ, ξ, ην, gν) is an almost contact metric manifold. In
particular, when ν = 1, M is a Sasakian space form of constant ϕ-sectional curvature
−c2 − 3 < −3. On the other hand, for ν = 0, we obtain the cosymplectic space form
CH1(−c2)× R. Moreover, when ν = c2/2, we obtain the Sasaki-lift metric of the
universal covering of the unit tangent sphere bundle UH

2(−c2) of the hyperbolic
plane H2(−c2) of curvature −c2 (cf. Sect. 5.7).

The simply connected Sasakian space forms of constant ϕ-sectional curvature c are
classified as follows:

• The D-homothetic deformation M2n+1(c) of S2n+1 (S2n+1, ϕ̂, ξ̂ , η̂, ĝ) if c > −3
and c �= 1.

• The unit sphere S2n+1 if c = 1.
• The Heisenberg group Nil2n+1 if c = −3.
• The product manifold CHn(c + 3)× R equipped with a Sasakian structure if c <

−3.

Blair introduced the notion of quasi-Sasakian manifold. The class of quasi-Sasakian
manifold includes both Sasakian manifolds and cosymplectic manifolds.

Definition 3.1 An almost contact metric manifold M is said to be a quasi-Sasakian
manifold if it is normal and d = 0.

The characteristic vector field of quasi-Sasakian manifolds is Killing. Sasakian man-
ifolds are quasi-Sasakian manifolds of rank 2n + 1. Cosymplectic manifolds are
quasi-Sasakian manifolds of rank 0.

Remark 3 An almost contact metric manifold M is said to be [10]

• nearly Sasakian if (∇Xϕ)Y + (∇Yϕ)X = 2g(X,Y )ξ − η(X)Y − η(Y )X for all
X , Y ∈ X(M);

• nearly cosymplectic if (∇Xϕ)X = 0 for all X ∈ X(M).

The characteristic vector fields of nearly Sasakianmanifolds and nearly cosymplectic
manifolds are Killing. In case dim M = 3, nearly Sasakian manifolds are automat-
ically Sasakian. Analogously, every nearly cosymplectic 3-manifold is cosymplec-
tic (see [67]). In [28], Chinea and González-Dávila displayed a Gray-Hervella-type
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classification for almost contact metric structures. Their classification is based on the
decomposition of the space possible intrinsic torsions into irreducible U(n)-modules.
There are potentially 212 classes. Martín Cabrera [75] showed the non-existence of
132 classes in the Chinea-González-Dávila classification in case dim M > 3. On the
other hand, De Nicola, Dileo and Yudin showed that nearly Sasakian manifolds of
dimension greater than 5 are Sasakian [82]. In addition, they showed that non-normal
nearly cosymplectic manifolds of dimension greater than 5 are locally isomorphic to
a product

N 2n × R, M5 × N 2n−4

where N 2n is a non-Kähler nearly Kähler manifold, N 2n−4 is a nearly Kähler man-
ifold, and M5 is a non-cosymplectic nearly cosymplectic manifold. If one makes
the further assumption that the manifold is complete and simply connected, then the
isometry becomes global.

To end this section, we mention also Kenmotsu manifolds.

Definition 3.2 An almost contact metric manifold (M, ϕ, ξ, η, g) is said to be an
almost Kenmotsu manifold if it satisfies dη = 0 and d = 2η ∧.

An almost Kenmotsu manifold M is called a Kenmotsu manifold if it is normal.
On a Kenmotsu manifold, we have

(∇Xϕ)Y = −(X,Y )ξ − η(Y )ϕX, ∇Xξ = X − η(X)ξ.

The fundamental 2-formon aKenmotsumanifold is non-closed and the characteristic
vector field is non-Killing.

The odd-dimensional hyperbolic space H
2n+1 = H

2n+1(−1) of constant curva-
ture −1 is a typical example of Kenmotsu manifold. Kenmotsu showed that every
Kenmotsu manifold of constant ϕ-sectional curvature is of constant curvature −1.

4 Curves in Almost Contact Metric Manifolds

4.1 ϕ-Torsions

A Frenet curve of order r ≥ 3 in an almost contact metric manifold M is called a
ϕ-curve if the space spanned by T , E1, . . . , Er−1 is ϕ-invariant. A Frenet curve of
order 2 is called a ϕ-curve if {T, E1, ξ} is a ϕ-invariant space. Furthermore, a ϕ-helix
of order r is defined as a ϕ-curve of osculating order r , such that all the curvatures are
constant. The ϕ-torsions of γ are defined by τi j = g(Ei , ϕE j ), (0 ≤ i < j ≤ r − 1).
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4.2 Slant Curves

Let γ (s) be an arc length parametrized curve of length L in an almost contact metric
manifold M . Then we consider a variation γt through γ of the form:

γt (s) = expγ (s)(t f (s)ξγ (s)) (4.1)

for some function f (s) satisfying f (0) = f (L) = 0. Such a variation is called a
characteristic variation (or ξ -deformation [11]). The first variation of the length
functional

L(γ ) =
∫ L

0

√
g(γ ′(s), γ ′(s)) ds

through the characteristic variations was obtained by [11]:

d

dt

∣∣∣∣
t=0

L(γt ) = −
∫ L

0
f (s) g(ξ,∇γ ′γ ′) ds.

Now let us assume that the characteristic vector field ξ is a Killing vector field, then
the first variation formula becomes

d

dt

∣∣∣∣
t=0

L(γt ) =
∫ L

0
f (s)

(
d

ds
cos θ(s)

)
ds.

Here θ is the contact angle as before. Slant curves in almost contact metric manifolds
have the following variational characterization:

Theorem 4.1 ([11]) Let M be an almost contact metric manifold with Killing char-
acteristic vector field ξ . Then an arc length parametrized curve γ is a critical point
of the length function through characteristic variations if and only if γ is a slant
curve.

Now we look for examples of slant curves.

Example 4.1 (Geodesics) Assume that ξ is aKilling vector field. Then any geodesic
γ (s) in M satisfies

cos θ(s) = g(ξ, γ ′(s)) = constant

because of the so-called conservation lemma below [90, p. 252].

Lemma 4.1 Let (M, g) be a Riemannian manifold and ξ a Killing vector field. Then
for any geodesic γ , the restriction ξ |γ is a Jacobi field and g(γ ′, ξ) is constant along
γ .

This observation motivates us to look for slant curves among curves which are
generalizations of geodesics. In [102], Tashiro and Tachibana introduced the notion
of C-loxodrome.
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Example 4.2 An arc length parametrized curve γ in an almost contact metric man-
ifold M with Killing characteristic vector field ξ is said to be a C-loxodrome if it
satisfies

∇γ ′γ ′ = rη(γ ′)ϕγ ′. (4.2)

Here r is a constant. One can see that every C-loxodrome is a slant curve.

It should be remarked that the notion of C-loxodrome is not identical to that of slant
curve. In fact, if a C-loxodrome γ has constant contact angle π/2, namely, γ is a
Legendre curve, then γ should be a Legendre geodesic. Thus, the class of slant curves
is strictly larger than that of C-loxodromes on almost contact metric manifolds with
Killing characteristic vector field.

Yanamoto [109] investigatedC-loxodromes in the unit 3-sphere S3 equipped with
canonical Sasakian structure.

Remark 4 A diffeomorphism f on a K -contact manifold is said to be a CL-trans-
formation if it carries C-loxodromes to C-loxodromes [102]. Takamatsu and Mizu-
sawa studied infinitesimalCL-transformations on compact Sasakian manifolds [99].
As an analogue of Weyl’s conformal curvature tensor field, Koto and Nagao intro-
duced CL-curvature tensor field for Sasakian manifolds. The CL-curvature tensor
field is invariant under CL-transformations. Koto and Nagao showed that Sasakian
space forms are characterized as Sasakian manifolds with vanishing CL-curvature
tensor fields [70].

Next, we point out that C-loxodromes may be regarded as generalizations of
geodesics. In fact, geodesics are C-loxodromes with r = 0. The characteristic flows
are C-loxodromes with θ = 0. Examples 4.1 and 4.2 suggest us to look for slant
curves which are generalizations of geodesics. TheC-loxodrome equation has unex-
pected relations to static magnetism in contact geometry. In the next section, we
discuss static magnetism of almost contact manifolds.

Remark 5 (Stability) Any slant curve in a K -contact manifold is l-stable for some
l in the sense of [26]. In particular, every Legendre curve is 0-stable (see [11]).

5 Magnetic Curves

5.1 Lorentz Equation

Magnetic curves represent, in physics, the trajectories of the charged particlesmoving
on a Riemannian manifold under the action of magnetic fields. Amagnetic field F on
a Riemannian manifold (M, g) is a closed 2-form and the Lorentz force associated
to F is an endomorphism field L defined by

g(LX,Y ) = F(X,Y ), X,Y ∈ Γ (T M).
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The magnetic trajectories of F are curves γ satisfying the Lorentz equation:

∇γ ′γ ′ = qLγ ′. (5.1)

Here q is a constant (called the charge or the strength). One can see that every
magnetic trajectory has constant speed. Unit speedmagnetic curves are called normal
magnetic curves. Amagnetic field F is said to be uniform if it is parallel. The study of
magnetic curves in arbitrary Riemannian manifolds was further developed mostly in
the early 1990s, even though related pioneer works were published much earlier. We
can refer to Arnold’s problems concerning charges in magnetic fields on Riemannian
manifolds of arbitrary dimension, commented by Ginzburg in [46], and references
therein. For more information onmagnetic curves in Riemannianmanifolds, we refer
to [4–6].

5.2 Landau-Hall Functional

As we have mentioned in “Introduction”, magnetic curves have variational charac-
terization. Assume that a magnetic field F has a potential A, that is F = 2d A. Then
the Landau-Hall functional LH is defined by

LH(γ ) = E(γ )+ q
∫ L

0
A(γ ′(s)) ds,

where E(γ ) is the kinetic energy (1.2).
The Euler-Lagrange equation of the Landau-Hall functional is nothing but the

Lorentz equation. It should be remarked that Lorentz equation (5.1) itself does not
require the exactness of a magnetic field F .

Remark 6 (Magnetic maps) The Landau-Hall functional can be generalized to
smooth maps between Riemannian manifolds. Let f : N → M be a smooth map
between two Riemannian manifolds (N , h) and (M, g), ξ a divergence free vector
field on N and F a magnetic field on M with potential A. Then the Landau-Hall
functional LH is defined by

LH( f ) =
∫
N

1

2
|d f |2dvh + q

∫
N
A(d f (ξ)) dvh .

A critical point of this functional is called a magnetic map with charge q [57].
Magnetic maps appear in many branches of differential geometry; see [57, 58, 60].
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5.3 Contact Magnetic Curves

Now let us consider magnetic curves in an almost contact metric manifold M with
closed fundamental 2-form . Then we choose − as a magnetic field on M . We
call − the contact magnetic field of M . The Lorentz force L associated to − is
ϕ. Hence, the Lorentz equation becomes

∇γ ′γ ′ = qϕγ ′. (5.2)

As we have seen before, there exist several classes of almost contact manifolds
with Killing characteristic vector fields and closed fundamental 2-form, e.g., quasi-
Sasakianmanifolds, K -contact manifolds, etc. Although the following fact is a direct
consequence of the conservation lemma, it plays a fundamental role in slant curve
geometry.

Proposition 5.1 Let γ be a normal contact magnetic curve in an almost contact
metric manifold M with Killing characteristic vector field. Then γ is a slant curve.

Remark 7 (C-loxodromes) From Eq. (4.2), one can see that every C-loxodrome in
a K -contact manifold is a contact magnetic curve with charge q = r cos θ .

In the next two subsections, we study contact magnetic curves in cosymplectic man-
ifolds and Sasakian manifolds.

5.4 Magnetic Curves in Cosymplectic Manifolds

Let M be a cosymplectic manifold. Then its contact magnetic field F = − is a
uniform magnetic field. Contact magnetic curves in a cosymplectic manifold are
classified as follows:

Theorem 5.1 ([38]) Let M be a cosymplectic manifold and γ be a normal magnetic
curve with charge q under the uniform magnetic field −. Then γ is a slant curve
given by one of the following cases:

(1) geodesics, obtained as integral curves of ξ ;
(2) Legendre ϕ-circles of first curvature κ1 = |q|;
(3) ϕ-helices of order 3 with first curvature κ1 = |q| sin θ and second curvature

κ2 = |q cos θ | and such that sgn(τ01) = −sgn(q) and θ �= π/2.

Proof In case (1), when the magnetic curve γ is a geodesic, from the Lorentz equa-
tion, it follows that ϕγ ′ = 0, thus γ ′ is parallel to ξ . Using the fact that both of them
are unit vector fields, it follows that γ ′ = ±ξ , yielding that γ is an integral curve of
ξ . In the sequel, we consider the non-geodesic magnetic curves, which are Frenet
curves of order r > 1. Combining the first Frenet formula and the Lorentz equation,
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we have κ1E1 = qϕT and it follows that the first curvature is κ1 = |q| sin θ . Differ-
entiating κ1E1 = qϕT along γ , we have sin θ ∇γ ′ E1 = |q|(−T + cos θξ) because
of ∇ϕ = 0. Thus, ∇γ ′ E1 is collinear to T if and only if θ = π/2, case when γ is a
Legendre circle of first curvature κ1 = |q|. Hence, (2) is proved.

Next we suppose that θ �= π/2. Using sin θ ∇γ ′ E1 = |q|(−T + cos θξ) together
with the Frenet formula, we get

|q| cos θ(ξ − cos θ T ) = κ2 sin θ E2

and hence κ2 = |q cos θ |. The characteristic vector field ξ is expressed as ξ =
cos θ T + ε sin θ E2, where ε = sgn(cos θ). Subsequently,

ϕE2 = −sgn(q)ε cos θ E1, η(E2) = ε sin θ.

From these results, we obtain

ϕE1 = sgn(q)(− sin θ T + ε cos θ E2).

Computing theϕ-torsion τ01 = g(T, ϕE1) = −sgn(q) sin θ , we immediately get that
sgn(τ01) = −sgn(q). Finally, from equationϕE1 = sgn(q)(− sin θ T + ε cos θ E2),

wededuce that∇γ ′ E2 = −κ2E1. Thus κ3 = 0.We conclude that the normalmagnetic
curves are Frenet curves of osculating order 3, with constant curvatures κ1 = |q| sin θ
and κ2 = |q cos θ |. Hence item (3) is shown. �

Now let us investigate contact magnetic curves in cosymplectic space forms. Let
Mn(c) be a complex space form of constant holomorphic sectional curvature c.
Then the Riemannian product M = Mn(c)× R admits a cosymplectic structure.

Theorem 5.2 (Codimension reduction theorem [38]) Let γ be a normal contact
magnetic curve on the cosymplectic space form M = Mn(c)× R. Then γ is a normal
contact magnetic curve on a subspace M1(c)× R ⊂ M, where M1(c) is a complex
1-dimensional complex space form of constant holomorphic sectional curvature c
which is a totally geodesic complex submanifold of Mn(c).

We will study contact magnetic curves in M1(c)× R in Sects. 10.3 and 10.4.

5.5 Magnetic Curves in Sasakian Manifolds

Now let M be a Sasakian manifold. Then its contact magnetic field F = − is an
exact magnetic field with magnetic potential −η/2. Contact magnetic curves in a
Sasakian manifold are classified as follows:

Theorem 5.3 ([37]) Let M be a Sasakian manifold and γ be a normal magnetic
curve with charge q under the contact magnetic field F = −dη. Then γ is a slant
curve given by one of the following cases:
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(a) geodesics obtained as integral curves of ξ ;
(b) non-geodesic ϕ-circles of curvature κ1 = √

q2 − 1 for |q| > 1 and of constant
contact angle θ = arccos 1

q ;
(c) Legendre ϕ-curves in M with curvatures κ1 = |q| and κ2 = 1;
(d) ϕ-helices of order 3 with axis ξ , having curvatures κ1 = |q| sin θ and κ2 =

|q cos θ − 1|, where θ �= π
2 is the constant contact angle.

Remark 8 For an arbitrary ϕ-helix of order 3 in a Sasakian manifold, not all ϕ-
torsions are constant, hence a ϕ-helix is not necessary a magnetic curve. Yet, if
the contact angle is constant, or equivalently τ02 = 0, then the three ϕ-torsions are
constant. Consequently,

κ1τ12 − κ2τ01 + g(ν2, ξ) = 0 and τ 201 + τ 212 = 1.

It follows that the ϕ-helix is a magnetic curve with the strength q = − κ1
τ01

and the
contact angle is given by cos θ = τ01τ12

κ2τ01−κ1τ12 . In particular, if τ12 vanishes, then the
magnetic curve becomes the Legendre ϕ-curve stated at item (c) of Theorem 5.3.

From the proof of Theorem 5.3, given in [37], we may infer an interesting result.

Proposition 5.2 Let γ be a non-geodesic Legendre ϕ-curve of order 3 in a Sasakian
manifold. Then κ2 = 1 and E2 = ±ξ .
This statement generalizes [10, Proposition 8.2, p. 133].

Let us start our investigation of contact magnetic curves in Sasakian space forms
of constant ϕ-sectional curvature c > −3.We show now that the study of trajectories
associated to contact magnetic fields on Sasakian space forms with c > −3 reduces
to their study on S

2n+1.
Let M2n+1(c) be an elliptic Sasakian space form given in Example 3.6, then

the Levi-Civita connection ∇̂ of M2n+1(c) is given by (3.3). The corresponding
fundamental 2-form ̂ is given by ̂ = a.

Let γ (s) be a magnetic trajectory parametrized by arc length in S
2n+1:

∇γ ′γ ′ = qϕγ ′.

We study theD-homothetic image of γ . We know that γ has constant contact angle
θ . To distinguish arc length parameter of γ and that of D-homothetic image, we
denote the derivative with respect to s by dot. Since

ĝ(γ̇ , γ̇ ) = a + a(a − 1)η(γ̇ )2 = a(sin2 θ + a cos2 θ),

the arc length parameter ŝ of γ with respect to ĝ is

ŝ = ms, when m =
√
a(sin2 θ + a cos2 θ),
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and hence ∇̂γ ′γ ′ = 1
m2 ∇̂γ̇ γ̇ , where γ ′ denotes the derivative of γ with respect to ŝ.

It follows that

∇̂γ ′γ ′ = q̂ϕγ ′, where q̂ = 1

m

(
q + 2(a − 1) cos θ

)
.

This formula shows that γ (ŝ) is a magnetic trajectory for the contact magnetic field
−̂ with charge q̂ inM2n+1(c) = (S2n+1, ϕ, ξ̂ , η̂, ĝ). The contact angle θ̂ of γ (ŝ) in
M2n+1(c) is given by cos θ̂ = a

m cos θ .
Conversely, let γ (ŝ) be a normal magnetic trajectory inM2n+1(c) with respect to

the contact magnetic field ̂ with charge q̂ , namely, γ (ŝ) satisfies

∇̂γ ′γ ′ = q̂ ϕγ ′.

Thenwe have∇γ̇ γ̇ = q ϕγ̇ ,with arc length parameter s = m̂ŝ and strength q, where

m̂ = 1

a

√
a sin2 θ̂ + cos2 θ̂ , q = 1

m̂

(
q̂ − 2(a − 1)

a
cos θ̂

)
.

As like in the case of cosymplectic space forms, the following codimension reduction
theorem holds for S2n+1.

Theorem 5.4 (Codimension reduction theorem [37, 80]) Let γ be a normal mag-
netic curve on the Sasakian sphere S2n+1 with respect to the contact magnetic field
−. Then γ is a normalmagnetic curve on a 3-dimensional unit sphereS3, embedded
as a Sasakian totally geodesic submanifold in S2n+1.

Theorem 5.5 (Codimension reduction theorem [37]) Let γ be a normal magnetic
curve on the Heisenberg group Nil2n+1 with respect to the contact magnetic field
−. Then γ is a normal magnetic curve on a 3-dimensional Heisenberg groupNil3,
embedded as a Sasakian totally geodesic submanifold in Nil2n+1.

Theorem 5.6 (Codimension reduction theorem [37]) Let γ be a normal magnetic
curve on theCHn(c + 3)× Rwith respect to the contactmagnetic field−. Thenγ is
a normal magnetic curve on a 3-dimensional Sasakian space formCH1(c + 3)× R,
embedded as a Sasakian totally geodesic submanifold in CHn(c + 3)× R.

Note that CH1(c + 3)× R is isomorphic to the universal covering group S̃L2R of
the special linear group SL2R equipped with a left invariant Sasakian structure (see
Sect. 12.2).

5.6 Magnetic Curves in Quasi-Sasakian Manifolds

In [66, 79] Jleli, Munteanu andNistor investigated contact magnetic curves in certain
quasi-Sasakian manifolds.
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On the Cartesian 2(n + p)+ 1-space R
2(n+p)+1 with global coordinates

(xi , yi , z, u j , v j ), (1 ≤ i ≤ n, 1 ≤ j ≤ p), we equip a Riemannian metric

g =
n∑

i=1

(dx2i + dy2i )+
p∑

j=1

(du2j + dv2j )+ η ⊗ η, η = dz − 2
n∑

i=1

yidxi

and an endomorphism field ϕ by

ϕ
∂

∂xi
= − ∂

∂yi
, ϕ

∂

∂yi
= ∂

∂xi
+ 2yi

∂

∂z
, ϕ

∂

∂z
= 0, ϕ

∂

∂u j
= ∂

∂v j
, ϕ

∂

∂v j
= − ∂

∂u j
.

Then the structure (ϕ, ξ, η, g) is a quasi-Sasakian manifold with closed fundamental
2-form

 = 2

⎛
⎝ n∑

i=1

dxi ∧ dyi +
p∑

j=1

du j ∧ dv j

⎞
⎠ .

In particular, M = (R2(n+p)+1, ϕ, ξ, η, g) is Sasakian when p = 0 and cosymplectic
when n = 0.

Theorem 5.7 Every normal magnetic curve is a slant helix of maximum order 5.

Example 5.1 The curve parametrized by

γ (s) =
(
sin

s

2
, cos

s

2
,
1

2
sin s,

√
2 sin

s

2
,
√
2 cos

s

2

)

is a magnetic helix of order 3 in the quasi-Sasakian R
5 with θ = π/3 and charge

q = 1/2.

5.7 Magnetic Curves in the Unit Tangent Sphere Bundles

Let (M, g) be a Riemannian manifold, then, as is well known, its unit tangent sphere
bundleUM inherits an almost contact Riemannian structure from the almost Kähler
structure of the tangent bundle T M . Denote by ḡ the Riemannian metric on UM
induced from the Sasaki-lift metric of T M . Then the 1-form η dual to the geodesic
spray ξ of UM is a contact form. These structure tensor fields together with the
restriction ϕ of the almost complex structure of T M toUM define an almost contact
metric structure (ϕ, ξ, η, ḡ) on UM . The fundamental 2-form  satisfies 2dη = .
Thus, − gives a magnetic field on UM . It should be remarked that ξ is Killing if
and only if M is of constant curvature 1 [10, p. 136].

Represent an arc length parametrized curve γ (s) inUM as γ (s) = (γ (s); V (s)).
Here γ (s) is a curve in M and V (s) is a unit vector field along γ (s). For simplicity,
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we restrict our attention to the case M is of constant curvature c. Then the Lorentz
equation for γ has the following form:

∇γ ′γ ′ + c g(γ ′,∇γ ′V )+ (q − c cos θ)∇γ ′V = 0,

∇γ ′∇γ ′V + (|∇γ ′V |2 + q cos θ)V = qγ ′.

The contact angle θ(s) is computed as

cos θ(s) = η(γ ′(s)) = gγ (s)(γ
′(s), V (s)).

The derivative of the contact angle is given by

d

ds
cos θ = (1 − c)g(γ ′,∇γ ′V ).

Thus, we obtain the following:

Proposition 5.3 ([62]) Every arc length parametrized contact magnetic curve in
US

m (m ≥ 2) is a slant curve.

For more information on magnetic curves in unit tangent sphere bundles, we refer to
[62].

Part II Slant Curves in 3-Dimensional Spaces

6 Curve Theory in 3-Dimensional Oriented Riemannian
Manifolds

6.1 Vector Product

Let us concentrate on 3-dimensional oriented Riemannian manifold (M, g, dvg).
The volume element dvg defines the vector product operation (also called the cross
product) × on each tangent space TxM by the rule

g(X × Y, Z) = 3! dvg(X,Y, Z), X,Y, Z ∈ TxM.

For any positively oriented local orthonormal frame field {e1, e2, e3}, we have

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2.

By elementary linear algebra, we have

(X ∧ Y )Z = g(Y, Z)X − g(Z , X)Y = Z × (X × Y ).
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6.2 Curves in 3-Manifolds

Now let γ (s) be a unit curve in the oriented Riemannian 3-manifold (M3, g, dv)
with non-vanishing acceleration ∇γ ′γ ′. Then we put κ := |∇γ ′γ ′|. We can take a
unit normal vector field N by the formula ∇γ ′γ ′ = κN . Next define a unit vector
field B by B = T × N . Here T = γ ′. In this way, we obtain an orthonormal frame
field F = (T, N , B) along γ which is positively oriented, that is, dvg(T, N , B) > 0.
The orthonormal frame field F is called the Frenet frame field and satisfies

∇γ ′F = F

⎛
⎝ 0 −κ 0
κ 0 −τ
0 τ 0

⎞
⎠ (6.1)

for some function τ . The functions κ and τ are called the curvature and torsion of
γ , respectively. By definition F is a section of γ ∗SO(M). Here SO(M) is a positive
orthonormal frame bundle of M and γ ∗SO(M) is the principal SO(3) bundle over γ
obtained by pulling back SO(M) by γ .

The ordinary differential equation (6.1) is called the Frenet-Serret formula of γ .
The unit vector fields T , N and B are called the unit tangent vector field, principal
normal vector field and binormal vector field of γ , respectively.

Put E1 = N and κ1 = κ . Then we obtain an orthonormal frame field E =
(T, E1, E2) as in Sect. 2.1. The Frenet frame field F is related to E by E2 = εB and
κ2 = ετ with ε = ±1. Here ε is determined by the formula ε = 3!dvg(T, E1, E2).
It represents the sign of τ .

Fundamental theorems of curve theory in (M3, g, dvg) are formulated as follows.

Theorem 6.1 (uniqueness theorem) Let γ1, γ2 : I → M be arc length parametrized
curves in an oriented Riemannian 3-manifold (M3, g, dvg) with curvatures and tor-
sions (κ1, τ1), (κ2, τ2), respectively. Then γ1 is congruent to γ2 under orientation
preserving isometries if and only if (κ1, τ1) = (κ2, τ2).

Theorem 6.2 (existence theorem) Let κ(s) > 0 and τ(s) be smooth functions
defined on an interval I . Then there exists an arc length parametrized curve
γ : I → M in an oriented Riemannian 3-manifold (M, g, dvg) with curvature κ
and torsion τ .

Based on these fundamental theorems, it is natural to take positive orthonormal frame
fields along arc length parametrized curves in oriented Riemannian 3-manifolds.

Throughout this chapter, we take positive orthonormal frame field for arc length
parametrized curves in oriented Riemannian 3-manifolds.

Lemma 6.1 Let (M, g)beanorientedRiemannian3-manifold andγ anon-geodesic
arc length parametrized curve. Then we have

∇γ ′ H = −κ2T + κ ′N + κτ B,
∇γ ′∇γ ′ H = −3κκ ′T + (κ ′′ − κ3 − κτ 2)N + (2κ ′τ + κτ ′)B.
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Thus, Lemma 6.1 implies the following fundamental result.

Proposition 6.1 Let γ be an arc length parametrized curve in an oriented Rieman-
nian 3-manifold (M, g). Then γ has proper mean curvature vector field (�H = λH)
if and only if γ is a geodesic (λ = 0) or a helix satisfying κ2 + τ 2 = λ.

With respect to the normal Laplacian, we have the following fact.

Proposition 6.2 ([43, 50]) Let γ be a non-geodesic arc length parametrized curve
in an oriented Riemannian 3-manifold (M, g). Then γ satisfies �⊥H = λH if and
only if γ is a geodesic (λ = 0) or

κ ′′ + κ(λ− τ 2) = 0, 2τκ ′ + τ ′κ = 0.

7 Magnetic Curves in 3-Manifolds

The relation between geometry and magnetic fields has a long history. As is well
known, the notion of linking number can be traced back to Gauss’ work on terrestrial
magnetism (see [92]). The linking number connects topology and Ampère’s law in
magnetism. De Turck and Gluck studied magnetic curves and linking numbers in
the 3-sphere S3 and hyperbolic 3-space H3 [34, 35]. In this section, we concentrate
on magnetic curves in 3-dimensional Riemannian manifolds, especially on almost
contact Riemannian manifolds with Killing characteristic vector field.

7.1 Magnetic Fields in Dimension 3

The dimension 3 is rather special in magnetic curve geometry, since it allows us
to identify 2-forms with vector fields via the Hodge star operator and the volume
element dvg of the 3-dimensional oriented Riemannian manifold. More precisely, let
us denote by � : T ∗M → T M and � : T M → T ∗M the musical isomorphisms with
respect to the metric g. In addition, let ∗ be the Hodge star operator of M with respect
to g and dvg . Then any vector field V on M is identified with a 2-form F = FV given
by

FV = 2ιV dvg = 2 ∗ (�V ).

Here ιV is the interior product by V . Conversely, any 2-form F is identified with
a vector field V = VF given by VF = �(∗F)/2. In particular, closed 2-forms are
identified with divergence free vector fields.

Now let V be a divergence free vector field on a 3-dimensional oriented Rieman-
nian manifold (M, g, dvg). Then F = FV = 2ιV dvg is a magnetic field on M . The
Lorentz force L corresponding to FV is computed as
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g(LX,Y ) = FV (X,Y ) = 3!dvg(V, X,Y ) = g(V × X,Y ).

Hence, the Lorentz equation becomes

∇γ ′γ ′ = qV × γ ′. (7.1)

Magnetic fields corresponding to Killing vector fields are usually known as Killing
magnetic fields. Their trajectories, calledKilling magnetic curves, are of great impor-
tance since they are related to the Kirchhoff elastic rods.

7.2 An Equivalence

Now, we point out a close relationship between magnetic fields and almost contact
structures. Let F be a magnetic field on a 3-dimensional oriented Riemannian man-
ifold (M, g). Then the divergence free vector field V corresponding to F and the
Lorentz force L associated to F satisfy

L2 = −g(V, V )I + (�V )⊗ V, LV = 0,

g(LX, LY ) = g(V, V )g(X,Y )− g(V, X)g(V,Y ).

Thus, if V is a unit vector field, then (L , V, �V, g) is an almost contact metric
structure with closed fundamental 2-form −F .

On the other hand, we know the following fundamental existence theorem:

Theorem 7.1 ([13]) Let (M, g, dvg) be a 3-dimensional oriented Riemannian man-
ifold. Then there exists a unit vector field ξ and an endomorphism field ϕ such that
(ϕ, ξ, η = �ξ, g) is an almost contact metric structure.

These facts suggest us to study contact magnetic curves in almost contact manifolds
with closed fundamental 2-form. In addition, as we have seen before, codimension
reduction theorems hold for contact magnetic curves in cosymplectic space forms
and Sasakian space forms. The study of contact magnetic curves in 3-dimensional
Sasakian manifolds are initiated by [14] (see also [33]).

Remark 9 (Magnetic aesthetic curve) In Euclidean 3-space, (static) magnetic field
is regarded as a divergence free vector field B. When the charge q is constant, B is
uniform and no other forces are involved, the particle describes a helical trajectory
with constant step whose axis is parallel to B (see [77]). However, in case of a
variable charge or field, the particle moves along a curve with variable curvature.
This strategy was proposed by Xu and Mould in [108] for plotting aesthetic planar
curves using simulations of charged particles in a magnetic field. Interestingly, in
the design and the production of cartoons, as well as in the description of decay
processes, the solutions of the problem describing the movement of the charged
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particle in a magnetic field are used, even for the un-physical time dependence of
the charge. Further applications of magnetic curves in CAD systems are described
in [107].

8 3-Dimensional Almost Contact Metric Manifolds

8.1 The Vector Product of Almost Contact Riemannian
Structure

Let (M, ϕ, ξ, η, g) be a 3-dimensional contact metric manifold. Then as we have
seen before, the volume element dvg derived from the associated metric g is related
to the contact form η by

dvg = −1

2
η ∧. (8.1)

Even if M is non-contact, M is orientable by the 3-form −η ∧/2 and the volume
element dvg coincides with this 3-form. Thus, hereafter, we orient 3-dimensional
almost contact metric manifolds by dvg = −η ∧/2 given in (8.1). With respect to
this orientation, the vector product × is computed as

X × Y = −(X,Y )ξ + η(X)ϕY − η(Y )ϕX. (8.2)

Note that for a unit vector field X orthogonal to ξ , the local frame field {X, ϕX, ξ}
is positively oriented and

ξ × X = ϕX.

Camcı [19] called the vector product operation × given in (8.2) the new extended
cross product. However, the operation × in nothing but the vector product induced
by dvg and hence not a new operation.

8.2 Normal Almost Contact Metric Manifolds

For an arbitrary almost contact metric 3-manifold M , we have the following Olszak
formula [86]:

(∇Xϕ)Y = g(ϕ∇Xξ,Y )ξ − η(Y )ϕ∇Xξ, (8.3)

where ∇ is the Levi-Civita connection on M . Moreover, we have

dη = η ∧ ∇ξ η + α, d = 2βη ∧,
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where α and β are the functions defined by

α = 1

2
tr (ϕ∇ξ), β = 1

2
tr (∇ξ) = 1

2
div ξ. (8.4)

Remark 10 (Contact metric manifolds) When M is a 3-dimensional contact metric
manifold, then we have

∇Xξ = −ϕ(I + h)X, X ∈ X(M),

where h = £ξϕ/2. Here £ξ is the Lie differentiation by ξ . Hence, the covariant
derivative ϕ is given by

(∇Xϕ)Y = g((I + h)X,Y )ξ − η(Y )(I + h)X.

Olszak [86] showed that a 3-dimensional almost contact metric manifold M is
normal if and only if ∇ξ ◦ ϕ = ϕ ◦ ∇ξ or, equivalently,

∇Xξ = −αϕX + β(X − η(X)ξ), X ∈ X(M). (8.5)

We call the pair (α, β) the type of a normal almost contact metric 3-manifold M .
Using (8.3) and (8.5), we note that the covariant derivative∇ϕ of a 3-dimensional

normal almost contact metric manifold is given by

(∇Xϕ)Y = α(g(X,Y )ξ − η(Y )X)+ β(g(ϕX,Y )ξ − η(Y )ϕX). (8.6)

Moreover, M satisfies
2αβ + ξ(α) = 0.

Thus, if α is a nonzero constant, then β = 0. In particular, a 3-dimensional normal
almost contact metric manifold is

• cosymplectic if α = β = 0;
• quasi-Sasakian if β = 0 and ξ(α) = 0;
• Kenmotsu if α = 1 and β = 1.

Remark 11 ( f -Kenmotsu manifolds) Olszak and Roşca [88] showed that an almost
contact metric manifold M of dimension 2n + 1 > 3 satisfying (8.6) with α = 0
automatically satisfies the equation dβ ∧ η = 0. But this does not hold in general
when dim M = 3. Clearly, when β is a constant, this condition holds. Based on these
observations, in a 3-dimensional case, Olszak and Roşca introduced the notion of
f -Kenmotsu manifold as follows:

Definition 8.1 ([88]) An almost contact metric manifold M is said to be an f -
Kenmotsu manifold if it satisfies

(∇Xϕ)Y = f (g(ϕX,Y )ξ − η(Y )ϕX),
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where f is a function satisfying d f ∧ η = 0.

8.3 Bianchi-Cartan-Vranceanu Spaces

Here we give explicit models of Sasakian space forms. Let μ be a real number and
set

D = {
(x, y, z) ∈ R

3(x, y, z) | 1 + μ(x2 + y2) > 0
}
.

Note that D is the whole R
3(x, y, z) for μ ≥ 0. On the region D, we define the

following Riemannian metric:

gλ,μ = dx2 + dy2

{1 + μ(x2 + y2)}2 +
(
dz + λ

2

ydx − xdy

1 + μ(x2 + y2)

)2

, (8.7)

where λ ∈ R.
The 2-parameter family {(D, gλ,μ) | λ,μ ∈ R} of 3-dimensional Riemannian

manifolds is classically known by Bianchi [9], Cartan [20] and Vranceanu [105] (See
also Kobayashi [69]). The Riemannian manifolds (D, gλ,μ) are called the Bianchi-
Cartan-Vranceanu models [8]. This 2-parameter family includes all the Riemannian
metric with 4 or 6-dimensional isometry group other than constant negative curva-
ture metrics. More precisely, (D, gλ,μ) is (locally) isometric to one of the following
spaces:

• μ = λ = 0: Euclidean 3-space R3;
• μ = 0, λ �= 0: The Heisenberg group Nil3 (see Example 3.7);
• μ > 0, λ �= 0: The special unitary group SU(2);
• μ < 0, λ �= 0: The universal covering S̃L2R of SL2R;
• μ > 0, λ = 0: Product space S2(4μ)× R;
• μ < 0, λ = 0: Product space H2(4μ)× R;
• 4μ = λ2: The 3-sphere S3(μ) of curvature μ.

Now let us introduce almost contact structure (ϕ, ξ, η) onD compatible to the metric
gλ,μ. Take the following orthonormal frame field on (D, gλ,μ):

e1 = {1 + μ(x2 + y2)} ∂
∂x

− λy

2

∂

∂z
, e2 = {1 + μ(x2 + y2)} ∂

∂y
+ λx

2

∂

∂z
, e3 = ∂

∂z
:= ξ.

Define the endomorphism field ϕ by

ϕe1 = e2, ϕe2 = −e1, ϕe3 = 0.

The dual 1-form η of the vector field ξ satisfies

dη(X,Y ) = λ

2
gλ,μ(X, ϕY ), X,Y ∈ X(D).
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Moreover, the structure (ϕ, ξ, η, gλ,μ) is a normal almost contact metric structure of
type (λ/2, 0). We denote by M3(λ, μ) the resulting normal almost contact metric
manifold. In this way, we obtain a 2-parameter family {M3(λ, μ) |λ,μ ∈ R} of 3-
dimensional normal almost contact metric manifolds. One can see that M3(λ, μ) is
of constant ϕ-sectional curvatureH = 4μ− 3λ2/4. (cf. [8, 100]). In particular, if we
chooseλ = 2, thenM3(2, μ) is a Sasakianmanifold of constantϕ-sectional curvature
H = 4μ− 3. In addition, if λ = 0, then M3(0, μ) is a cosymplectic manifold of
constant ϕ-sectional curvature H = 4μ.

Remark 12 (Thurston geometry) According to Thurston [104], there are eight sim-
ply connected model spaces in 3-dimensional geometries:

• The Euclidean 3-space E3, the 3-sphere S3, the hyperbolic 3-space H3;
• the product spaces S2 × R, H2 × R;
• the Heisenberg group Nil3, the universal covering S̃L2R of SL2R (see Sect. 12.2);
• the space Sol3.

These eight model spaces admit invariant almost contact structure compatible to
the metric. The resulting almost contact metric manifolds are homogeneous almost
contact metric manifolds. Moreover, they are normal except Sol3. In particular, S3,
Nil3 and S̃L2R are (homothetic to) Sasakian space forms. Euclidean 3-space, S2 × R

andH2 × R are cosymplectic. The hyperbolic 3-space is the onlyKenmotsumanifold
in Thurston’s list.

8.4 3-Dimensional Non-Sasakian Quasi-Sasakian Manifolds

Here we give an example of 3-dimensional non-Sasakian quasi-Sasakian manifold.
To this end, we recall the following fact:

Proposition 8.1 ([85, 101]) Let M = (M, ϕ, ξ, η, g) be a 3-dimensional quasi-
Sasakian manifold and σ a positive smooth function on M satisfying dσ(ξ) = 0.
Then the structure (ϕ̃, ξ̃ , η̃, g̃) defined by

ϕ̃ := ϕ, ξ̃ := ε ξ, η̃ := εη, g̃ = σg + (1 − σ)η ⊗ η, ε = ±1, or (8.8)

ϕ̃ := ε ϕ, ξ̃ := ξ, η̃ := η, g̃ = σg + (1 − σ)η ⊗ η, ε = ±1 (8.9)

is a quasi-Sasakian structure. The resulting structure is called the pseudo-conformal
deformation of the original structure.

Let M be a 3-dimensional quasi-Sasakian manifold satisfying ∇ξ = −αϕ. Then the
Levi-Civita connection ∇̃ of the pseudo-conformally deformed metric g̃ is related to
the Levi-Civita connection ∇ of the original metric g by
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∇̃XY = ∇XY + 1

2σ
{dσ(X)(Y − η(Y )ξ)+ dσ(Y )(X − η(X)ξ)}} (8.10)

− 1

2σ
{g(X,Y )− η(X)η(Y )} grad σ − α(1 − σ)

σ
{η(X)ϕY + η(Y )ϕX} .

This formula implies that the newquasi-Sasakian structure satisfies ∇̃ ξ̃ = −(εα/σ)ϕ̃.
In particular, if M is Sasakian, then the new structure is quasi-Sasakian and of rank
3.

Corollary 8.1 Let M be a 3-dimensional quasi-Sasakian manifold satisfying ∇ξ =
−αϕ for some function. Assume that M is of rank 3 and α has constant sign ε =
±1. Then the pseudo-conformal deformation of M with respect to σ = εα > 0 is
Sasakian.

Example 8.1 (non-Sasakian example [101]) Let Nil3 = R
3(x1, y1, z) be the 3-

dimensional Heisenberg group equipped with Sasakian structure described in Exam-
ple 3.7. Via the coordinate change x := −x1, y := y1, t := z + x1y1, we obtain
Sasakian manifoldR3(x, y, t)with metric g = dx2 + dy2 + (dt + 2xdy)2 and con-
tact form η = dt + 2xdy.

Take the half-space M = {(x, y, t) ∈ R
3 | x > 0} of R3(x, y, t) and consider a

pseudo-conformal deformation (8.9) of the Sasakian structure on M with respect to
σ , then we obtain a quasi-Sasakian manifold (see Tanno [101]). The fundamental
2-form of the resulting quasi-Sasakian manifold is 2εσ dx ∧ dy.

For example, Wełyczko chose σ = x2 and ε = −1 in [106]. Under this choice,
the deformed structure satisfies α̃ = −1/x2 < 0. The deformed metric is

g̃ = x2(dx2 + dy2)+ η ⊗ η, η̃ = η = dt + 2xdy.

One can see that g̃ is scalar flat. The endomorphism field ϕ̃ = −ϕ is described as

ϕ̃e1 = e2, ϕ̃e2 = −e1, ϕ̃e3 = 0,

where

e1 = 1

x

∂

∂x
, e2 = 1

x

∂

∂y
− 2

∂

∂z
, e3 = ∂

∂t
= ξ̃ .

For more examples of non-Sasakian quasi-Sasakian 3-manifolds, see [87]. Olszak
constructed explicit examples of conformally flat quasi-Sasakian 3-manifolds in [87].
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9 Curve Theory in Almost Contact Metric 3-Manifolds

9.1 Slant Curves in 3-Dimensional Quasi-Sasakian
Manifolds

Let γ be an arc length parametrized curve in a 3-dimensional almost contact metric
manifold M . Then the Frenet frame field (T, N , B) satisfies

ξ × T = ϕT, ξ × N = ϕN , ξ × B = ϕB

and T × N = B. Since ξ is expressed as

ξ = η(T )T + η(N )N + η(B)B

along γ , we have

ϕT = −η(N )B + η(B)N , ϕN = −η(B)T + η(T )B, ϕB = −η(T )N + η(N )T .

Now let us compute the derivatives of η(T ), η(N ) and η(B) along γ . We consider
two particular cases.

Now let us assume that M is a quasi-Sasakian manifold with ∇ξ = −αϕ. Then
we have

η(T )′ = κη(N ), (9.1)

η(N )′ = −κη(T )+ (τ − α)η(B), (9.2)

η(B)′ = −(τ − α)η(N ). (9.3)

Proposition 9.1 Anon-geodesic arc length parametrized curveγ in a3-dimensional
quasi-Sasakian 3-manifold satisfying ∇ξ = −αϕ is a slant curve if and only if
η(N ) = 0.

Moreover, Eq. (9.2) shows that on anon-geodesic slant curve,κη(T ) = (τ − α)η(B).
Equation (9.3) implies that η(B) is constant along γ . Hence we obtain the following:

Proposition 9.2 In a 3-dimensional quasi-Sasakian manifold, the ratio of κ and
τ − α is constant along a non-geodesic slant curve.

Conversely, we have the following result.

Proposition 9.3 ([31, 73]) Let γ (s) be a non-geodesic arc length parametrized
curve in a 3-dimensional quasi-Sasakian manifold with ∇ξ = −αϕ. If η(N ) and the
ratio of κ and τ − α are constant along γ . Then γ is a slant curve.
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Proof By the assumption, there exists a constant c such that τ − α = cκ . Then the
equation (9.2) implies that η(T ) = cη(B). Then by using (9.1) and (9.3), we get
(1 + c2)κη(N ) = 0. Hence γ is a slant curve. �

We arrive at the following Bertrand-Lancret-de Saint Venant-type theorem for slant
curves:

Theorem 9.1 Let M be a 3-dimensional quasi-Sasakian manifold satisfying ∇ξ =
−αϕ. Then a non-geodesic arc length parametrized curve γ in M is a slant curve if
and only if η(N ) and the ratio of κ and τ − α are constant along γ .

Remark 13 In case M is a contact metric manifold, we have

η(T )′ = κη(N )− g(T, ϕhT ),

η(N )′ = −κη(T )+ (τ − 1)η(B)− g(N , ϕhT ),

η(B)′ = −(τ − 1)η(N )− g(B, ϕhT ).

Example 9.1 We perform a coordinate change x̄ = x , ȳ = y, z̄ = z + xy/2 to the
Bianchi-Cartan-Vranceanu model M3(0,−1) exhibited in Sect. 8.3. Then the Rie-
mannian metric g0,−1 and the 1-form η are rewritten as g0,−1 = dx̄2 + d ȳ2 + η ⊗ η
and η = dz̄ − ȳd x̄ , respectively. Next we perform a homothetical change ḡ :=
g0,−1/4 and η̄ := η/2. Then R

3(x̄, ȳ, z̄) together with a Riemannian metric ḡ and
a contact form η̄ becomes a contact metric manifold, especially a Sasakian space
form of constant ϕ-sectional curvature −3. We denote this Sasakian space form by
R

3(−3). In [19], Camcı exhibited the following example. Define a function σ(s) by
σ(s) = (1 − cos(2

√
2s))/2 and ψ(s) be a solution to the ODE

ψ ′(s) = −2σ(s)+ 2

1 + σ(s) ,

and define a curve γ (s) in the Sasakian space form R
3(−3) with metric (dx2 +

dy2)/4 + η ⊗ η and contact form η = (dz − ydx)/2 by

x̄ ′(s) = −2
√
1 − σ(s)2 sinψ(s), ȳ′(s) = 2

√
1 − σ(s)2 cosψ(s), z̄′(s) = 2σ(s)+ ȳ(s)x̄ ′(s).

Then the contact angle θ(s) is a non-constant function

cos θ(s) = σ(s) = 1

2
(1 − cos(2

√
2s)).

This curve has curvature 2 and torsion −1 (Note that the function ψ is denoted by θ
in [19]). Hence, the ratio of τ − 1 and κ is constant. Thus, the curve is a non-slant
helix in R

3(−3). However, Camcı’s example is not a counterexample to Theorem
9.1. In fact,
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η(N )′ = 1

2
σ ′(s) = −√

2 sin(2
√
2s).

Thus, γ does not satisfy η(N )′ = 0. We conclude that Camcı’s example is not a
counterexample to [31].

Example 9.2 (Almost contact curves) Let γ be a non-geodesic almost contact curve
in a 3-dimensional quasi-Sasakian manifold, that is, γ ′ is orthogonal to ξ . Then we
have η(N ) = 0. Since N is orthogonal to both T and ξ , N is expressed as N = εϕT
with ε = ±1. Then

∇γ ′ N = ε{(∇γ ′ϕ)T + ϕ(∇γ ′T )}
= ε{αg(γ ′, γ ′)ξ + ϕ(κN )} = ε(ξ + κϕN )
= −κT + εαξ.

Since (T, N , B) is positively oriented, we have B = εT × ϕT . On the other hand,
B is computed as

B = T × N = −(T, N )ξ + η(T )ϕN − η(N )ϕT
= −g(T, ϕN )ξ = −g(T, ϕ(εϕT ))ξ = εξ.

Hence, we obtain
∇γ ′ N = −κT + αB.

This formula should coincide with

∇γ ′ N = −κT + τ B.

Hence, we have τ = α.

Proposition 9.4 ([106]) Every almost contact curve in a 3-dimensional quasi-
Sasakian manifold has torsion α(γ (s)).

In case when M is Sasakian, we retrieve the following result due to Bikoussis and
Blair (compare with [19]):

Corollary 9.1 ([7]) Every Legendre curve in a Sasakian 3-manifold has constant
torsion 1.

From Proposition 6.2, we obtain the following result.

Corollary 9.2 An arc length parametrized Legendre curve γ in a 3-dimensional
Sasakianmanifold satisfies�⊥H = λH for some λ ∈ R if and only if γ is a Legendre
geodesic (λ = 0) or Legendre helix with λ = 1.

Let us compute the curvature and torsion of a slant curve γ in a 3-dimensional
quasi-Sasakian manifold M with ∇ξ = −αϕ.
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We suppose that if γ is non-geodesic, then γ cannot be an integral curve of ξ . We
find an orthonormal frame field {E1, E2, E3} along γ :

E1 = T = γ ′, E2 = ϕγ ′

sin θ
, E3 = ξ − cos θγ ′

sin θ
. (9.4)

Hence, the characteristic vector field ξ decomposes as ξ = cos θ E1 + sin θ E3.
Then for a non-geodesic slant curve γ , we have

⎧⎪⎨
⎪⎩

∇γ ′ E1 = δ sin θ E2,

∇γ ′ E2 = − δ sin θ E1 + (α + δ cos θ) E3,

∇γ ′ E3 = − (α + δ cos θ) E2,

(9.5)

where δ = g(∇γ ′γ ′, ϕγ ′)/ sin2 θ . Moreover, we also deduce that

∇γ ′ξ = −α sin θ E2, κ = |δ| sin θ, τ = α + δ cos θ.

9.2 Slant Curves: Fundamental Examples

In this subsection, we exhibit some fundamental examples of slant curves in 3-
dimensional space forms.

Example 9.3 (Euclidean helices) Let E3(x, y, z) = E
2 × R be the Euclidean 3-

space with metric 〈·, ·〉 = dx2 + dy2 + dz2. Then the standard cosymplectic struc-
ture associated to g is defined by

η = dz, ξ = ∂

∂z
, ϕ

∂

∂x
= ∂

∂y
, ϕ

∂

∂y
= − ∂

∂x
.

Now let γ (s) be a slant helix with constant contact angle θ . Then γ is congruent to
the following model helix:

γ (s) = (a cos(s/c), a sin(s/c), bs/c),

where a > 0, b �= 0 and c = √
a2 + b2 > 0 are constants. The Frenet frame of γ is

given by

F = (T, N , B) =
⎛
⎝−(a/c) sin(s/c) − cos(s/c) (b/c) sin(s/c)
(a/c) cos(s/c) − sin(s/c) −(b/c) cos(s/c)

b/c 0 a/c

⎞
⎠ .

One can see that det F = 1. The curvature and torsion of γ are κ = a/c2 > 0
and τ = b/c2 �= 0. One can see that γ has constant contact angle θ with cos θ =
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b/c. In particular, every almost Legendre helix is congruent to the circle γ (s) =
(c cos(s/c), c sin(s/c), 0) of curvature 1/c > 0 and torsion 0.

Example 9.4 (Slant helices in S
3) Let S3 ⊂ C

2 be a 3-dimensional unit sphere
equipped with a Sasakian structure of constant curvature 1 (see Example 3.5). The
vector product operation (8.2) derived from the Sasakian structure of S3 is related to
the determinant form det of C2 = E

4 by

det(X,Y, Z , x) = g(X × Y, Z), X,Y, Z ∈ TxS
3.

Now let a, b and φ be constants such that

a2 cos2 φ + b2 sin2 φ = 1. (9.6)

Then

γ (s) = (cosφ cos(as), cosφ sin(as), sin φ cos(bs), sin φ sin(bs)) (9.7)

is an arc length parametrized curve in S3(see [47]). One can see that γ lies in the flat
torusT2 of constantmean curvature cot(2φ) given by the equations x21 + y21 = cos2 φ
and x22 + y22 = sin2 φ. The tangent vector field T of γ is

T = (−a cosφ sin(as), a cosφ cos(as),−b sin φ sin(bs), b sin φ cos(bs)).

From this equation and the Gauss formula (3.2), we get

∇γ ′γ ′ = γ ′′ + γ =

⎛
⎜⎜⎝
(1 − a2) cosφ cos(as)
(1 − a2) cosφ sin(as)
(1 − b2) sin φ cos(bs)
(1 − b2) sin φ sin(bs)

⎞
⎟⎟⎠ .

Thus, the curvature κ is computed as

κ2 = |∇γ ′γ ′|2 = a2 + b2 − a2b2 − 1 = (a2 − 1)(1 − b2).

Hereafter, we assume that κ �= 0. Then the principal normal N is given by

N = 1√
(a2 − 1)(1 − b2)

⎛
⎜⎜⎝
(1 − a2) cosφ cos(as)
(1 − a2) cosφ sin(as)
(1 − b2) sin φ cos(bs)
(1 − b2) sin φ sin(bs)

⎞
⎟⎟⎠ .

On the other hand, the Reeb vector field along γ is given by
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ξγ = −Jγ =

⎛
⎜⎜⎝

cosφ sin(as)
− cosφ cos(as)

sin φ sin(bs)
− sin φ cos(bs)

⎞
⎟⎟⎠ .

Hence, the contact angle θ is computed as

cos θ = η(T ) = −(a cos2 φ + b sin2 φ). (9.8)

Hence, γ is a slant curve. In particular, γ is a Legendre curve if and only if a cos2 φ +
b sin2 φ = 0. For later use, we compute ϕT :

ϕT = JT − 〈JT, γ 〉γ = JT − cos θγ = −

⎛
⎜⎜⎝
(cos θ + a) cosφ cos(as)
(cos θ + a) cosφ sin(as)
(cos θ + b) sin φ cos(bs)
(cos θ + b) sin φ sin(bs)

⎞
⎟⎟⎠ . (9.9)

Note that
cos θ + a = (a − b) sin2 φ, cos+b = (b − a) cos2 φ.

Next we compute the torsion τ of γ . The square τ 2 of the torsion is given by τ 2 =
|∇γ ′N + κT |2. Since κ is constant, we have

∇γ ′N = 1

κ
(γ ′′ + γ )′ = 1√

(a2 − 1)(1 − b2)

⎛
⎜⎜⎝

−a(1 − a2) cosφ sin(as)
a(1 − a2) cosφ cos(as)
−b(1 − b2) sin φ sin(bs)
b(1 − b2) sin φ cos(bs)

⎞
⎟⎟⎠ .

It follows that

τ 2 =
(
(1 − a2)a

κ
+ aκ

)2

cos2 φ +
(
(1 − b2)b

κ
+ bκ

)2

sin2 φ = (ab)2.

Thus, B has the form

B = ε

ab
√
(a2 − 1)(1 − b2)

⎛
⎜⎜⎝

−a(1 − a2)b2 cosφ sin(as)
a(1 − a2)b2 cosφ cos(as)
−b(1 − b2)a2 sin φ sin(bs)
b(1 − b2)a2 sin φ cos(bs)

⎞
⎟⎟⎠ , ε = ±1.

Next we determine the sign ε. By definition, g(T × N , B) = 1. On the other hand, we
notice that g(T × N , B) = det(T, N , B, γ ) = −ε. Hence, we have ε = −1. Thus, we
get
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∇γ ′ B = −1

ab
√
(a2 − 1)(1 − b2)

⎛
⎜⎜⎝

−a2(1 − a2)b2 cosφ cos(as)
−a2(1 − a2)b2 cosφ sin(as)
−b2(1 − b2)a2 sin φ cos(bs)
−b2(1 − b2)a2 sin φ sin(bs)

⎞
⎟⎟⎠ = abN .

From the Frenet-Serret formula, we have τ = −ab.
Now we concentrate on the Legendre helices. Assume that γ is Legendre, then from

Eqs. (9.8) and (9.9), we get

N =

⎛
⎜⎜⎝
a cosφ cos(as)
a cosφ sin(as)
b sin φ cos(bs)
b sin φ sin(bs)

⎞
⎟⎟⎠ = −ϕT .

In this case, the binormal vector field is given by B = −ξγ .
From Eqs. (9.6), (9.8) and sin2 θ + cos2 θ = 1, we have ab = −1. Hence, F =

(T,−ϕT,−ξγ ) is a positive orthonormal frame field along γ . The torsion τ is com-
puted by τ = −ab = 1. This fact is confirmed also by the formula

−τN = ∇γ ′ B = −∇γ ′ξ = ϕT = −N .

Note that the Legendre curves cannot have τ = −1. In fact, under the hypothesis τ =
−ab = −1, the Legendre condition a cos2 φ + b sin2 φ = 0 contradicts to (9.6) (compare
with [19, Remark 4.1]).

Example 9.5 (Hyperbolic 3-space) Consider the warped product model of hyper-
bolic 3-space H3 of constant curvature −1:

H
3 = (R3(x, y, t), e2t (dx2 + dy2)+ dt2).

We can equip H
3 with a Kenmotsu structure by η = dt , ξ = ∂t , ϕ∂x = ∂y , ϕ∂y =

−∂x , ϕ∂t = 0. Slant curves in H3 are parametrized as follows [18]:

γ (s) =
(
sin θ

∫ s

0
e−u cos θ cosψ(u) du, sin θ

∫ s

0
e−u cos θ sinψ(u) du, s cos θ

)
.

The curvature and torsion are given by

κ(s) = sin θ
√
1 + ψ ′(s)2, τ = ±

(
cos θ ψ ′(s)+ ψ ′′(s)

ψ ′(s)2

)
,

where ψ is a smooth function.

Slant curves with proper mean curvature vector field in 3-dimensional f -Kenmotsu
manifolds are investigated in [18].
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10 Magnetic Curves in 3-Dimensional Almost Contact
Manifolds

10.1 Magnetic Curves and Pseudo-Conformal Deformations

The observations in Sects. 7.1 and 7.2 and codimension reduction theorems in
Sects. 5.4 and 5.5 show that contactmagnetic curves in 3-dimensional quasi-Sasakian
manifolds are of particular interest [64].

Let γ be a normal magnetic trajectory in a 3-dimensional quasi-Sasakian M
satisfying ∇ξ = −αϕ with respect to the Lorentz force ϕ with charge q. Namely, γ
satisfies

∇γ ′γ ′ = q ϕγ ′. (10.1)

Since the characteristic vector field ξ is Killing, the conservation lemma (4.1) and
the Lorentz equation (10.1) imply the following fact.

Proposition 10.1 Every contact magnetic curve on a 3-dimensional quasi-Sasakian
manifold is a slant curve.

Take the Frenet frame field (T, N , B) along γ . By definition, T = γ ′. Hence, the
magnetic equation is written as

∇γ ′γ ′ = qξ × γ ′ = κN . (10.2)

Hence, we get

κ2 = q2g(ξ × γ ′, ξ × γ ′) = q2
[
g(ξ, ξ)g(γ ′, γ ′)− g(γ ′, ξ)2

] = q2 sin2 θ.

Thus, γ has constant curvature κ = |q| sin θ . Assume that γ is a non-geodesic normal
magnetic curve, then from (10.2), we have

N = q

κ
ϕγ ′. (10.3)

Next, the binormal vector field B is defined by B = T × N :

B = γ ′ × N = γ ′ ×
{q
κ
(ξ × γ ′)

}
= q

κ
(ξ − cos θγ ′). (10.4)

Hence, we obtain

∇γ ′ B = q

κ
∇γ ′(ξ − cos θγ ′) = −q

κ
(α + q cos θ)ϕγ ′.

Comparing this with

∇γ ′ B = −τN = −τq
κ
ϕγ ′,
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we obtain the torsion
τ = α + q cos θ.

Next, we consider pseudo-conformal deformations of contact magnetic curves.
Take an arc length parametrized curve γ (s) in a 3-dimensional quasi-Sasakian

manifold M satisfying ∇ξ = −αϕ. We perform a pseudo-conformal deformation
(8.8) of M by a smooth function σ . Then the velocity vector field γ ′(s) satisfies

g̃(γ ′(s), γ ′(s)) = cos2 θ(s)+ σ(γ (s)) sin2 θ(s).

Clearly, the property “arc length parametrized” is not preserved under pseudo-
conformal deformations.

On the other hand, the property “Legendre” is preserved under the pseudo-
conformal deformations since the distributionD is invariant under pseudo-conformal
deformations. Now we study behaviour of magnetic curves under pseudo-conformal
deformation.

Now let us assume that γ (s) is a contact magnetic curve in M satisfying ∇γ ′γ ′ =
qϕγ ′. Then we have

∇̃γ ′γ ′ = qϕγ ′ + σ ′

σ
(γ ′ − cos θξ)− sin2 θ

2σ
grad σ − 2α(1 − σ)

σ
cos θ ϕγ ′. (10.5)

Here σ ′ denotes the derivative {σ(γ (s))}′. Thus, the property “contact magnetic” is not
preserved. Even if every quasi-Sasakian 3-manifold of rank 3 is locally pseudo-conformal
to Sasakian 3-manifolds, contactmagnetic curves are not invariant under the deformation.
Because the study of contact magnetic curves in 3-dimensional quasi-Sasakianmanifolds
does not reduce to that of 3-dimensional Sasakian manifolds, it is interesting in its own
right.

Assume that γ is non-geodesic, i.e., κ �= 0 and q �= 0, then from (10.3) and (10.4),
the unit normal N and binormal B are related to ϕγ ′ and ξ by

ϕγ ′ = κ

q
N , ξ = κ

q
B + cos θT .

Then the formula (10.5) is rewritten as

∇̃γ ′γ ′ = −cos2 θσ ′

σ
T +

{
q − 2α(1 − σ)

σ

}
ϕγ ′ − cos θκσ ′

qσ
B − sin2 θ

2σ
grad σ.

The following relations hold true

g(grad σ, T ) = σ ′,
κg(grad σ, B) = qg(grad σ, ξ − cos θγ ′) = −q cos θσ ′.

Therefore, if both the σ and α are constant along γ , then γ is magnetic with respect to
the new metric g̃.
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For a Legendre magnetic curve γ (s), we have

∇̃γ ′γ ′ = qϕγ ′ + σ ′

σ
γ ′ − 1

2σ
grad σ.

Thus, under the assumption “σ ′ = α′ = 0”, γ is also a Legendre magnetic curve with
respect to g̃.

For example, let us consider the pseudo-conformal deformation of Wełyczko’s exam-
ple given in Example 8.1 with σ = 1/x2 and ε = −1. The resulting Sasakian manifold
is the Sasakian space form R

3(−3) with metric dx2 + dy2 + (dt + 2xdy)2. Thus, the
Legendre magnetic helix in Wełyczko’s example corresponds to the Legendre magnetic
helix in the Sasakian space form (Heisenberg group) Nil3 under this pseudo-conformal
deformation. For the Legendre magnetic curves in the Heisenberg group Nil3, we refer
to [37].

10.2 Non-helical Magnetic Curves

Let us observe that a magnetic curve on a non-Sasakian quasi-Sasakian 3-manifold is
not, in general, a helix. Let us classify magnetic curves in Wełyczko’s space. The mag-
netic equation (10.1) of Wełyczko’s space is a system of three second-order differential
equations, that is [64]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(x ′)2

x
− 5(y′)2

x
− 2y′z′

x2
+ x ′′ = −qy′

6x ′y′

x
+ 2x ′z′

x2
+ y′′ = qx ′

−10x ′y′ − 4x ′z′

x
+ x ′′ = −2qxx ′.

(10.6)

From Proposition 10.1, we know that η(γ̇ ) = cos θ is constant along γ . Hence, we have

z′ + 2xy′ = cos θ. (10.7)

As the curve γ is parametrized by arc length, we also have x2((x ′)2 + (y′)2) = sin2 θ .
Therefore, there exists a (smooth) function u (depending on s) such that

xx ′ = sin θ cos u(s), xy′ = sin θ sin u(s).

Hence, when u is known, the x-coordinate may be found from the equation

x(s)2 = c0 + 2 sin θ
∫ s

0
cos u(t)dt, (10.8)

where c0 is a positive constant. Then, using (10.7), we get
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z(s) = z0 + s cos θ − 2 sin θ
∫ s

0
sin u(t)dt, z0 ∈ R. (10.9)

Finally, we compute y:

y(s) = y0 + sin θ
∫ s

0

sin u(t)

x(t)
dt, y0 ∈ R. (10.10)

The key point is how to obtain u.
From (10.6), when sin θ �= 0, we have

sin u(s)
[
2 cos θ + sin θ sin u(s)+ x2(s)

( − q + u′(s)
)] = 0,

cos u(s)
[
2 cos θ + sin θ sin u(s)+ x2(s)

( − q + u′(s)
)] = 0.

Combiningwith (10.8), we deduce that u is a solution of the following integro-differential
equation:

2 cos θ + sin θ sin u(s)+ ( − q + u′(s)
)[
c0 + 2 sin θ

∫ s

0
cos u(t)dt

] = 0.

Thus, in general, normal magnetic curves in Wełyczko’s example of non-Sasakian quasi-
Sasakian manifold are not helices. In fact, the torsion τ = −1/x(s)2 + q cos θ is non-
constant.

10.3 Magnetic Curves in S
2 × R

Let us realize the cosymplectic manifold S
2 × R as a hypersurface {(x, y, z, t) ∈

E
4 | x2 + y2 + z2 = 1} of 4-dimensional Euclidean space E4. Contact magnetic curves

in S
2 × R are classified as follows:

Theorem 10.1 ([78]) Let γ (s) = (x(s), y(s), z(s), t (s)) be a contact magnetic curve
in S

2 × R with charge 1, defined by the vector field ξ = ∂
∂t and satisfying the initial

condition:
γ (0) = (x0, y0, z0, t0), γ

′(0) = (u0, v0, w0, ζ0).

Then γ is one of the following slant curves:

• The vertical geodesic γ (s) = (x0, y0, z0, t0 ± s).
• The circle S1(2)× {t0} of radius 1/

√
2 parametrized as

γ (s) =

⎛
⎜⎜⎜⎝

u0√
2
sin(

√
2s)− a0

2 cos(
√
2s)+ a0

2 + x0
v0√
2
sin(

√
2s)− b0

2 cos(
√
2s)+ b0

2 + y0
w0√
2
sin(

√
2s)− c0

2 cos(
√
2s)+ c0

2 + z0
t0

⎞
⎟⎟⎟⎠ .



Slant Curves and Magnetic Curves 239

• Anon-geodesic cylindrical helix onS1(r)× Rwith radiusr =
√
μ2
0 − 1/μ0 parametrized

as

γ (s) =

⎛
⎜⎜⎜⎜⎝

u0
μ0

sin(μ0s)− a0
μ20

cos(μ0s)+ a0
μ20

+ x0
v0
μ0

sin(μ0s)− b0
μ20

cos(μ0s)+ b0
μ20

+ y0
w0
μ0

sin(μ0s)− c0
μ20

cos(μ0s)+ c0
μ20

+ z0

t0 + ζ0 s

⎞
⎟⎟⎟⎟⎠ ,

where μ0 =
√
2 − ζ 20 , and μ0 ≥ 1 is a constant. In each case, a0, b0 and c0 take

certain values.

The Lie algebra of Killing vector fields on the Riemannian symmetric space S
2 × R

is generated by {−y∂x + x∂y, z∂x − x∂z, z∂y − y∂z, ∂t }. These Killing vector fields are
called basic Killing vector fields. Magnetic curves derived from basic Killing vector fields
on S2 × R other than ξ = ∂t are also classified in [78].

10.4 Magnetic Curves in H
2 × R

Let us realize the cosymplectic manifold H
2 × R as a region {(x, y, t) ∈ R

3 | y > 0} of
3-dimensional Cartesian space R3 equipped with the metric

dx2 + dy2

y2
+ dt2.

Contact magnetic curves in H2 × R are classified by Nistor as follows:

Theorem 10.2 ([83]) Let γ (s) = (x(s), y(s), z(s), t (s)) be a contact magnetic curve
in S

2 × R with charge 1, defined by the vector field ξ = ∂
∂t and satisfying the initial

condition:
γ (0) = (x0, y0, z0, t0), γ

′(0) = (u0, v0, w0, ζ0).

Then γ is one of the following slant curves:

• The vertical geodesic γ (s) = (x0, y0, t0 ± s).
• The Riemannian circle (x0 ± s y0, y0, t0).
• A helix

(
x0 + y0(1 + sin θ) tan θ sin(s cos θ)

1 + sin θ cos(s cos θ)
,

y0(1 + sin θ)

1 + sin θ cos(s cos θ)
, s cos θ + t0

)
.

• A Riemannian circle (
x0 − sy0

s2 + 1
,

y0
s2 + 1

, t0

)
.

The Lie algebra of Killing vector fields on the Riemannian symmetric space H2 × R is
generated by
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{
∂x ,

x2 − y2 + 1

2
∂x + xy∂y, x∂x + y∂y, ∂t

}
.

These Killing vector fields are called basic Killing vector fields. Magnetic curves derived
from basic Killing vector fields on H2 × R other than ξ = ∂t are also classified in [83].

11 Magnetic Curves in Contact Metric Manifolds

In this section, we study contact magnetic curves in 3-dimensional contact metric mani-
folds.

11.1 Magnetic Curves in 3-Dimensional Tori

We consider a flat torus T
3 = E

3/Γ with Γ = πZ3. Then the contact form η̃ =
cos(2z)dx + sin(2z)dy andEuclideanmetric g̃ = dx2 + dy2 + dz2 onE3(x, y, z) induce
a contact Riemannian structure on M . We denote by η and g the induced contact form
and induced metric, respectively. It should be remarked that the Reeb vector field is
divergence free, but non-Killing. Hence, it is non-Sasakian.

Munteanu and Nistor classified closed trajectories of contact magnetic field on T3.

Theorem 11.1 ([81]) On the flat torus T
3 = E

3/πZ3, the closed contact magnetic
curves with charge q �= 0 are described as the projection images of the following curves
in E

3:

• the horizontal line

(x0 ± s cos(2z0), y0 ± s sin(2z0), z0), x0, y0 ∈ R

if tan(2z0) ∈ Q, which is a Reeb flow;
• any parallel to the y-axis of the form:

(
x0, y0 ± s,

(2l + 1)π

4

)
, l ∈ Z, x0, y0 ∈ R,

which is a Reeb flow;
• the slant helix

(
a ± q

4
√
ζ
sin 2(z0 ± s

√
ζ ), b ∓ q

4
√
ζ
cos 2(z0 ± s

√
ζ ), z0 ± s

√
ζ

)
,

where a, b, z0 ∈ R, ζ = 1 − q2

4 and −2 < q < 2 and cos θ = q/2;
• the special curve
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( (
λ+ q

2
− q

B2

)
s + E(As + c, B),− q

AB2 dn(As + c, B), am(As + c, B)
)
,

where A and B are certain positive constants, c ∈ R. E(u) is a particular function
involving elliptic integrals and Jacobi elliptic functions. Moreover, dn and am are
Jacobi’s dn-function and amplitude function, respectively. Those constants satisfy the
closing condition:

K
π A

(
λ+ q

2
− q

B2

)
∈ Q.

Here 2K is the real fundamental period of the dn-function.

Remark 14 The contact Riemannian structure on flat tori can be induced from those of
the universal covering group S̃E(2) of the Euclidean plane E2; see [61].

11.2 Magnetic Curves in Sol3

Themodel space Sol3 of the solve geometry isR3(x, y, z)with homogenous Riemannian
metric

g = e2zdx2 + e−2zdy2 + dz2.

The 1-form η = (ezdx + e−zdy)/
√
2 is a contact form on Sol3. The Lorentz force ϕ

corresponding to the magnetic field F = 2dη is described as

ϕ∂x = ez√
2
∂z, ϕ∂y = −e−z

√
2
∂z, ϕ∂z = 1√

2
(e−z∂x − ez∂y).

Then (ϕ, ξ, η, g) with ξ = (e−z∂x + ez∂y)/
√
2 is a homogenous almost contact metric

structure on Sol3 satisfying 2dη = −. Note that ξ is non-Killing. The magnetic curve
equation is the system

ezx ′′ − e−z y′′ + 2z′(ezx ′ + e−z y′) = √
2qz′,

ezx ′′ + e−z y′′ + 2z′(ezx ′ − e−z y′) = 0,

z′′ + e−2z(y′)2 − e2z(x ′)2 = − q√
2
(ezx ′ − e−z y′).

The contact angle computed as cos θ = (ezx ′ + e−z y′)/
√
2 is non-constant, in general.

Some particular solutions are obtained in [40].Magnetic curves in Sol3 derived frombasic
Killing vector fields are investigated in [41]. In addition, (η = dz, ξ = ∂z, g) defines an
almost cosymplectic structure on Sol3. Contact magnetic curves in Sol3 equipped with
this almost cosymplectic structure are investigated in [42].
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11.3 Magnetic Curves in Unit Tangent Sphere Bundles

As we have seen in Sect. 5.7, every contact magnetic curve inUS
m is slant. Here we give

an application ofmagnetic curve theory to curve theory inS2. Note thatUS
2 is homothetic

to a 3-dimensional real projective space RP3 equipped with Sasakian structure.

Theorem 11.2 ([62])Letγ (t)be an arc length parametrized curve inS2 with unit normal
vector field n(t). Then its Gauss map γ (t) = (γ (t); n(t)) is a contact magnetic curve in
US

2 with charge q �= 0 if and only if γ (t) satisfies the natural equation

κ(t) = − q(t − t0)√
1 − q2(t − t0)2

for certain constant t0.

Note that the Gauss map is automatically a Legendre curve.
Next we study contact magnetic curves in UE

2 under the slant assumption.

Theorem 11.3 ([61]) Let γ (s) = (x(s), y(s); u(s), v(s)) be an arc length
parametrized contact magnetic curve in UE2 = E

2 × S
1 ⊂ E

2 × E
2 with charge q and

initial condition (0, q/
√
1 − q2; 1, 0). Assume that γ is slant and non-geodesic, then γ

is parametrized as

(
−q sin(s

√
1 − q2)√

1 − q2
,
q cos(s

√
1 − q2)√

1 − q2
; cos(s

√
1 − q2), sin(s

√
1 − q2)

)
,

where 0 < |q| < 1.

12 Periodicity of Contact Magnetic Curves

In 2007, Taubes [103] proved the generalized Weinstein conjecture in dimension 3,
namely, on a compact, orientable, 3-dimensional contactmanifold, the Reeb vector field ξ
has at least one closed integral curve. Linked to this problem, it is important to investigate
the existence of periodic magnetic trajectories of the contact magnetic field defined by
ξ in 3-dimensional Sasakian manifolds, in particular in Sasakian space forms. In 2009,
Cabrerizo et al. [14] have been looked for periodic orbits of the contact magnetic field on
the unit sphere S3. See also [49]. In this section, we investigate the periodicity of contact
magnetic curves in elliptic Sasakian space formM3(c) and SL2R.

12.1 Berger Spheres

Let M3(c) be a 3-dimensional elliptic Sasakian space form of constant ϕ-sectional cur-
vature c > −3. Recall that M3(c) is obtained from S

3 by D-homothetic deformation.
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The Riemannian metric ĝ = ag + a(a − 1)η ⊗ η is a homothetical change of the Berger
sphere metric g + (a − 1)η ⊗ η.

Then the Hopf fibering (Boothby-Wang fibering) π : M3(c)→ S
2(c + 3) onto a 2-

dimensional sphere of curvature c + 3 is a Riemannian submersion. Take a curve β in
S
2(c + 3), then its inverse imageΣβ := π−1{β} is a flat surface inM3(c) called theHopf

tube over β.

Proposition 12.1 If β is a curve of length L on S
2(c + 3) of length L, then the cor-

responding Hopf tube Σβ is isometric to S
1(a)× [0, L], where S1(a) is the unit circle

endowed with the metric a2dt2 with a = 4/(c + 3). Moreover, its mean curvature H in
M3(c) is H = (κβ ◦ π)/2, where κβ is the signed geodesic curvature of β in S2(c + 3).

If β is a closed curve, i.e., β(u + L) = β(u) for all u ∈ R, the Hopf tube Σβ is an
immersed flat torus (called a Hopf torus). One can easily see that, if β is a great circle in
S
2(c + 3), then the Hopf torus Σβ is minimal in M3(c).

Proposition 12.2 Let β be a closed curve on S2(c + 3) of length L enclosing an oriented
area A. Then, the corresponding Hopf torus Σβ is isometric to R

2/�, where the lattice
� is generated by the vectors (2πa, 0) and (A(c + 3)/2, L).

The contact magnetic curves in M3(c) with c > −3 are geometrically characterized
as follows:

Proposition 12.3 ([59]) Let γ (s) be a normal magnetic curve in the elliptic Sasakian
space form M3(c). Then γ is a geodesic in the Hopf tube Σβ over a circle β = π(γ ).
Moreover, the geodesic curvature κβ of the projected curve β is given by κβ = (κ2 +
τ 2 − 1)/κ , where κ and τ are the curvature and the torsion of γ , respectively.

If β is the projection of a periodic contact magnetic curve γ in M3(c), then it is a circle
on S2(c + 3). Denote by R its radius, R ≤ r := √

a/2 = 1/
√
c + 3. We have

κβ =
√
r2 − R2

r R
, L = 2πR, A = 2πr(r −

√
r2 − R2).

Since γ is a periodic (closed) geodesic on the Hopf torusΣβ , it corresponds to a segment
in R

2 (with identified ends). This segment is in fact the diagonal of a parallelogram
constructed by taking m vectors in the fibre, hence m times (2πa, 0) and n vectors in
the horizontal direction, i.e., n times ( A

2r2
, L), n ∈ N. Thus, the direction of the magnetic

trajectory γ is given by

⎛
⎝2πma + nπ

(
1 −

√
1 − R2

r2

)
, 2πnR

⎞
⎠ .

If we put σ = cot θ (here θ is the contact angle of the curve γ ) and call this quantity the
slope of γ , we have

σ =
2ma + n

(
1 −

√
1 − R2

r2

)

2nR
.
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Hence, we get

Rσ + 1

2

√
1 − R2

r2
= m

n
a + 1

2
.

We can state the following result.

Theorem 12.1 ([59]) The set of all periodic magnetic curves of arbitrary charge on the
elliptic Sasakian space formM3(c) can be quantized in the set of rational numbers.

Finally, we apply our results to the unit sphereM3(1) = S
3. In S3, every normal contact

magnetic curve is a slant helix. One can see that the model helix (9.7) is periodic if and
only if

a = 1/
√
p2 sin2 φ + cos2 φ, b = pa,

where p is a rational number.
In the case of S3, we obtain the following periodicity criterion [14, 49]:

Theorem 12.2 Let γ be a normal magnetic curve on the unit sphere S
3. Then γ is

periodic if and only if
q√

q2 − 4q cos θ + 4
∈ Q.

In the following, we take θ = arccos 29
37 . Consider the stereographic projection of the

sphere from its North pole. Then the image of γ is drawn in Fig. 1.
We know that γ lies on a Hopf tube in S

3. In Fig. 2, we plot the image of this tube
under the stereographic projection we have mentioned before.

Remark 15 During the study of area minimization problem among Lagrangian surfaces
in Kähler surfaces, Schoen and Wolfson completely classified admissible singularities
of area minimizing Lagrangian surfaces. These singularities are locally modelled by
Hamilton-minimal Lagrangian cones in complex Euclidean plane C

2 [95]. In particu-
lar, Schoen and Wolfson classified Hamilton-minimal Lagrangian cones in C

2. Those
Lagrangian cones are realized as cones over L-minimal Legendre curves in S

3. As a
result, closed L-minimal Legendre curves in S3 are classified (see Theorem 12.3 below).
Here a Legendre curve in a 3-dimensional Sasakian manifold is said to be L-minimal
if it is a critical point of the length functional under Legendre variations (compare with
ξ -variation in Sect. 4.2). One can see that every closed L-minimal Legendre curve in
S
3 is a contact magnetic curve. Conversely, every closed contact magnetic curve in S

3

which is Legendre with respect to the canonical Sasakian structure is L-minimal and
hence induces a Hamiltonian-minimal Lagrangian cone in C2.

Theorem 12.3 ([65, 95])All of closed L-minimalLegendre curves inS3 areparametrized
as

γ (s) =
(√

n exp
(√−1

√
m/n s

)
,
√−1

√
m exp

(√−1
√
n/m s

) )
, 0 ≤ s ≤ 2π

√
mn,

where (m, n) is a pair of relatively prime positive integers. These are so-called torus
knots of type (m, n).
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Fig. 1 cos θ = 29/37

Fig. 2 The curve and the tube after stereographic projection; two different viewpoints
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One can see that these Legendre knots are contact magnetic curves satisfying |q| =
|n − m|/√mn. These Legendre knots are L-unstable [68].

12.2 The Special Linear Group

In this section, we consider the periodicity of contact magnetic curves in a 3-dimensional
Sasakian space formof constantϕ-sectional curvature c < −3.Without loss of generality,
wemay assume that c = −7.Moreover, we use SL2R-model. Let SL2R be the real special
linear group of degree 2:

SL2R =
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ R, ad − bc = 1

}
.

By using the Iwasawa decomposition SL2R = N AK of SL2R,

N =
{(

1 x
0 1

) ∣∣∣∣ x ∈ R

}
, (Nilpotent part)

A =
{(√

y 0
0 1/

√
y

) ∣∣∣∣ y > 0

}
, (Abelian part)

K =
{(

cos t sin t
− sin t cos t

) ∣∣∣∣ 0 ≤ t < 2π

}
= SO(2), (Maximal torus)

we can introduce the following global coordinate system (x, y, t) of SL2R:

(x, y, t) �−→
(
1 x
0 1

)(√
y 0
0 1/

√
y

)(
cos t sin t

− sin t cos t

)
. (12.1)

The mapping

H
2(−4)× S

1 → SL2R; ψ(x, y, t) :=
(
1 x
0 1

)(√
y 0
0 1/

√
y

)(
cos t sin t

− sin t cos t

)

is a diffeomorphism onto SL2R. We refer (x, y, t) as a global coordinate system of SL2R.
Hence SL2R is diffeomorphic toR × R

+ × S
1 and hence diffeomorphic toR3 \ R. Since

R × R
+ is diffeomorphic to open unit disc D, SL2R is diffeomorphic to open solid torus

D × S
1.

The Sasakian space form SL2R is a principal circle bundle over the hyperbolic plan
H

2(−4) equipped with the Poincaré metric (dx2 + dy2)/(4y2) (see Example 3.8). The
projection is given by π(x, y, t) = (x, y) and called the hyperbolic Hopf fibering.

Consider an arc length parametrized curve β : R −→ H
2(−4) then its inverse image

Σβ = π−1{β} is a flat surface in SL2R tangent to the Reeb vector field ξ . It is called the
Hopf tube over β.
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Proposition 12.4 ([63]) If β is a curve on H
2(−4) of length L, then the corresponding

Hopf tubeΣβ is isometric to S1(1)× [0, L], where S1(1) is the unit circle endowed with
the metric dt2. Moreover, its mean curvature in SL2R is (κβ ◦ π)/2, where κβ is the
signed geodesic curvature of β in H

2(−4).

Analogous to Berger spheres, we have the following geometric characterization of
contact magnetic curves:

Proposition 12.5 ([63]) The contact magnetic curve γ in SL2R is a geodesic of the Hopf
tube Σβ over β = π ◦ γ .
For the periodicity arguments on contact magnetic curves, the following result is useful.

Proposition 12.6 The projection image β(u) = π(γ (u)) of a contact magnetic curve is
a Riemannian circle in H

2(−4). Hence, γ (u) is a geodesic in a Hopf tube Σβ over a
Riemannian circle β.

Now let us take a contact magnetic curve γ (s) = (x(s), y(s), t (s)) in SL2R. The Lorentz
equation of magnetic trajectory becomes

x ′′y − x ′y′

2y2
− x ′y′

2y2
− (cos θ) y

′

y
= −qy′

2y
,

y′′y − (y′)2

2y2
+ (x ′)2

2y2
+ (cos θ) x

′

y
= qx ′

2y
,

t ′ + x ′

2y
= cos θ,

where θ is a constant contact angle.

Example 12.1 (Reeb flows) According to item (a) of Theorem 5.3, characteristic flows
are magnetic curves. Choose t = 0 or π in the magnetic equations, we have x(s) =
constant and y(s) = constant. The coordinate t is determined by t ′ = ±1. Hence, t is an
affine function of s.

Next, we observe Legendre magnetic curves. According to item (c) of Theorem 5.3,
Legendre ϕ-curves with κ1 = |q| and κ2 = 1 are magnetic curves. The magnetic curve
γ (s) is a horizontal lift of a Riemannian circle β(s) = (x(s), y(s)) with |κβ | = |q|. The
third coordinate t (s) is determined by the horizontal lift condition (Legendre condition):

t ′(s) = − x ′(s)
2y(s)

under the prescribed initial condition.
To look for periodic trajectories, we restrict our attention to horizontal lifts of closed

Riemannian circles.
For |κβ | > 2, β(s) is a closed circle and parametrized as (see [63, Appendix]):

(x(s), y(s)) =
(
r sinμ(s)+ x0, r

( |q|
2

− cosμ(s)

))
,
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where r is a positive constant and μ(s) is a solution to

μ′(s) = |q| − 2 cosμ(s).

Under the initial condition μ(0) = 0, μ(s) is given explicitly by

tan
μ(s)

2
=
√

|q| − 2

|q| + 2
tan

(√
q2 − 4

2
s

)
.

From this formula, one can deduce that β(s) has period 2π/
√
q2 − 4. The t-coordinate

is given by

t (s) = 1

2
μ(s)− |q|

2
s

under the initial condition t (0) = 0.
The horizontal lift is closed if and only if there exists a positive integer m such that

t

(
s + 2mπ√

q2 − 4

)
≡ t (s) mod 2π.

Hence, the periodicity condition is equivalent to

|q| = 2√
1 − (m/k)2

for some relatively prime positive integersm and k satisfyingm/k < 1 (see also Kajigaya
[68]). Thus, there exist countably many closed Legendre magnetic curves in SL2R.

From the previous computations, we have

μ(s) = arctan

(√
|q| − 2

|q| + 2
tan

√
q2 − 4

2
s

)
+ 2hπ,

if s ∈ (−T
2 ,

T
2 ), where h ∈ Z. Fix the integers m and k as in the periodicity condition.

We are looking now for a positive integer h such that t (T2 + hT) ≡ t (−T
2 ) mod 2π .

This means that γ has (h + 1) “branches” to be periodic. The condition is equivalent to
(h + 1)(1 − k

m ) which is an even number.
In the following,we give some examples and draw the corresponding pictures on SL2R

thought as a solid torus S1 × D. The pictures are drawn up to a homothetic deformation
of the circle S

1. Here, D is obtained from the Poincaré half plane H
2 via the Cayley

transformation

f : H2 → D
2, f (z) = z − √−1

z + √−1
, where z ∈ C, �m z > 0.
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Fig. 3 Legendre magnetic curves m = 1, k = 3, h = 0

Fig. 4 Legendre magnetic curves m = 3, k = 5, h = 2

Fig. 5 Legendre magnetic curves m = 2, k = 7, h = 3

Every figure in the next three examples (Figs. 3, 4 and 5) is composed of four images:

• the first one represents the curve β represented in the upper half-plane;
• the second one represents the same curve β in the unit disc D;
• the last two pictures represent the same curve γ on the solid torusS1 × D from different
viewpoints.
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The case γ (s) that is neither Reeb nor Legendre is much involved. Here, we give a sketch
of a classification of periodic trajectories (For detailed discussions, we refer to [63]).
Let γ (s) = (x(s), y(s), t (s)) be a periodic contact magnetic curve which is neither Reeb
nor Legendre. Put X = x ′/(2y) and Y = y′/(2y). Then we have X2 + Y 2 + cos2 θ = 1,
which implies that X2 + Y 2 = sin2 θ . Moreover, we represent X and Y as

X (s) = sin θ cosU (s), Y (s) = sin θ sinU (s),

for a certain function U (s). To look for closed trajectories, we need to demand that
|q − 2 cos σ | > 2. Let us denote by T the fundamental period of γ . Under the initial
condition U (0) = 0, the periodicity x(s + T) = x(s) and y(s + T) = y(s) implies that
U (s + T) ≡ U (s) mod 2π for integer k. From this formula, one can deduce that

T
√
(q − 2 cos θ)2 − 4 sin2 θ

2
= mπ

for some integer m. Next, the periodicity of t (s) implies

t (s + T)− t (s) =
(
cos θ − q − 2 cos θ

2

)
T + U (s + T)−U (s)

2
≡ 0 mod 2π.

(12.2)
Finally, we obtain the

q = 2a cos θ ± √
2(1 − a cos(2θ))
1+a
2

, a = 1 − 2
(m
k

)2
. (12.3)

We now state the following result.

Theorem 12.4 The set of all periodic magnetic curves on SL2R equipped with Sasakian
structure can be quantized in the set of rational numbers.

In the following, we draw a picture of periodic non-Reeb and non-Legendre magnetic
curves in SL2R.

For all four images in Fig. 6 we keep the same convention as before.

Fig. 6 m = 1, k = 3, θ = 2π
5
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13 Biharmonic Curves

13.1 Bienergy

Let (M, g) be a Riemannian manifold. An arc length parametrized curve γ (s) in M is
said to be biharmonic if it is biharmonic with respect to the Levi-Civita connection ∇.
The biharmonicity of γ is characterized as a geometric variational problem as follows:

Definition 13.1 Let us denote by  (M; L) the space of all smooth maps from a closed
interval [0, L] to a Riemannian manifold M . The bienergy functional E2 on (M; L) is
defined by

E2(γ ) =
∫ L

0

1

2
|∇γ ′γ ′|2 ds.

An arc length parametrized curve γ ∈  (M; L) is said to be a biharmonic curve if it is
a critical point of E2.

The Euler-Lagrange equation of this variational problem is given as follows:

Theorem 13.1 Let γ (s) be an arc length parametrized curve in a Riemannian manifold
M defined on a closed interval [0, L]. Then γ is biharmonic if and only if it satisfies the
biharmonic equation:

∇γ ′∇γ ′∇γ ′γ ′ + R(∇γ ′γ ′, γ ′)γ ′ = 0.

Obviously, harmonic curves, i.e., geodesics are biharmonic. Non-geodesic biharmonic
curves are often called proper biharmonic curves. Differential geometry of biharmonic
submanifolds has two origins. One is derived from differential geometry of submanifolds
with harmonic mean curvature vector field [24, 36]. Another one is derived from the
theory of harmonic maps [39]. For more information on biharmonic submanifolds, we
refer to Chen’s book [24] and a survey [76] due to Montaldo and Oniciuc.

13.2 Biharmonic Curves in Dimension 3

Hereafter, we restrict our attention to biharmonic curves in oriented 3-dimensional Rie-
mannian manifolds. By using the Frenet frame field (T, N , B), the biharmonic equation
is given explicitly as follows:

− 3κκ ′T + (κ ′′ − κ3 − κτ 2)N + (2τκ ′ + κτ ′)B + R(κN , T )T = 0. (13.1)

When M is of constant curvature c, then we have

R(X, Y )Z = c(X ∧ Y )Z .

Thus, the biharmonic equation (13.1) reduces to
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κ ′ = τ ′ = 0, κ2 + τ 2 = c.

This implies that there are no proper biharmonic curves in Euclidean 3-space E3 (cf. [27,
36]) or in hyperbolic 3-space H3 (cf. [15]).

Caddeo, Montaldo and Oniciuc classified proper biharmonic curves in the unit 3-
sphere S3:

Theorem 13.2 ([15]) Let γ be an arc length parametrized proper biharmonic curve in
S
3. Then κ ≤ 1 and we have two cases:

(1) κ = 1 and γ is a circle of radius 1/
√
2.

(2) 0 < κ < 1 and γ is a helix, which is a geodesic in the Clifford minimal torus.

In case (1), γ is congruent to

1√
2

(
cos(

√
2s), sin(

√
2s), c1, c2

)
, c21 + c22 = 1.

In case (2), γ is congruent to

1√
2
(cos(as), sin(as), cos(bs), sin(bs)) .

The proper biharmonic curves in S
3 are helices satisfying κ2 + τ 2 = 1, hence those are

curves with proper mean curvature vector field with eigenvalue λ = 1 (see Proposition
6.1).

Since S3 is a typical example of Sasakian manifold, these classifications motivate us
to classify proper biharmonic curves in 3-dimensional Sasakian space forms.

We rephrase the above classification in terms of Sasakian structure of S3:

Corollary 13.1 Let γ be an arc length parametrized proper biharmonic curve in S
3.

Then κ ≤ 1 and we have two cases:

(1) γ is a small circle with κ = 1, τ = 0 and contact angle π/4. This curve is congruent
to a model helix (9.7) with a + b = 0 and ab = 0.

(2) γ is congruent to a model helix (9.7) satisfying 0 < κ = √
(a2 − 1)(1 − b2) < 1

and τ = −ab �= 0 and cos θ �= 0.

In both cases, γ is a geodesic in the Clifford minimal torus. In particular, there are no
proper biharmonic Legendre curves in S3.

This corollary motivates us to study biharmonic curves in 3-dimensional Sasakian space
forms as well as cosymplectic space forms. For this purpose, we use the Bianchi-Cartan-
Vranceanu model given in Sect. 8.3.

The biharmonicity equation (13.1) for arc length parametrized curve γ in the Bianchi-
Cartan-Vranceanu modelM3(λ, μ) is obtained as follows(cf. [16, 17, 30]):

κ ′ = 0, τ ′ = (λ2 − 4μ)η(N )η(B), η(B)η(N ) = 0, κ2 + τ2 = λ2

4
− (λ2 − 4μ)η(B)2.

Under the assumption γ is non-geodesic, we have the following:
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Theorem 13.3 ([16, 17, 30]) Let γ be an arc length parametrized curve in a Bianchi-
Cartan-Vranceanu model M3(λ, μ) . Then γ is proper biharmonic if and only if γ
satisfies

κ = constant �= 0, τ = constant, η(N ) = 0, κ2 + τ 2 = λ2

4
− (λ2 − 4μ)η(B)2.

Since η(N ) = 0, γ is a slant curve. In addition, by using the constant contact angle θ ,
η(B) is expressed as η(B) = sin θ .

Now let us apply this theorem to Sasakian space forms:

Corollary 13.2 An arc length parametrized curve γ (s) in a 3-dimensional Sasakian
space form of ϕ-sectional curvature c is proper biharmonic if it a slant helix satisfying
κ2 + τ 2 = 1 + (c − 1) sin2 θ . These helices have propermean curvature vector fieldwith
eigenvalue 1 + (c − 1) sin2 θ .

If we choose c = 1, thenwe retrieve Theorem 13.2. It should be emphasized that Sasakian
space formswith constantϕ-sectional curvature c > 1 admit proper biharmonic Legendre
curves. Proper biharmonic Legendre curves are helices with κ = √

c − 1 and torsion τ =
1. This existence was discovered in [50]. The existence of proper biharmonic Legendre
curves in elliptic Sasakian space form of ϕ-sectional curvature greater than 1 implies that
the study of biharmonic submanifolds in elliptic Sasakian space forms does not reduce
to that of the unit sphere. Although the Legendre property for submanifolds in Sasakian
manifolds is invariant under D-homothetic deformations, biharmonicity is not.

On the other hand, in cosymplectic space forms, we obtain the following:

Proposition 13.1 A non-geodesic arc length parametrized curve γ (s) in Riemannian
products S2(4μ)× R andH2(4μ)× R is biharmonic if it is a slant helix satisfying κ2 +
τ 2 = 4μ sin2 θ . These helices have a proper mean curvature vector field with eigenvalue
4μ sin2 θ . In particular, the only biharmonic curves in H2(4μ)× R are geodesics.

One can obtain explicit parametrizations of biharmonic curves in M3(λ, μ). See [2, 16,
17, 30].

The existence of proper biharmonic Legendre curves (as well as Hopf tubes) in 3-
dimensional elliptic Sasakian space forms [50] and that of proper biharmonic Legendre
surfaces in S

5 [93] opened up a research area “biharmonic submanifolds in Sasakian
manifolds”; see [1, 94]. For biharmonic submanifolds in higher dimensional Sasakian
manifolds, we refer to [44, 45].

Remark 16 The notion of biharmonic curve can be generalized to curves in manifolds
equipped with linear connection. Let (M, D) be a manifold with a linear connection
D. For a curve γ : I → M , we define the affine mean curvature H(γ ; D) of γ with
respect to D (also called the D-mean curvature) by H(γ ; D) = Dγ ′γ ′. A curve γ is
said to be affine harmonic with respect to D (or D-harmonic in short) if H(γ ; D) = 0.
Obviously, D-harmonic curves are geodesics with respect to D. In case when D is the
Levi-Civita connection ∇ of (M, g), the ∇-mean curvature H(γ ; ∇) coincides with the
mean curvature vector field H as we introduced before.
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In [31], D-biharmonicity of curves was introduced. Denote by T D and RD the tor-
sion and curvature tensor field of D. Then a curve γ : I → (M, D) is said to be affine
biharmonic with respect to D (or D-biharmonic in short) if it satisfies

Dγ ′ Dγ ′ H(γ ; D)− T D(γ ′, Dγ ′ H(γ ; D))− (Dγ ′T D)(γ ′, H(γ ; D))+ RD(H(γ ; D), γ ′)γ ′ = 0. (13.2)

Short calculation shows that (13.2) is rewritten as

Dγ ′ Dγ ′ H(γ ; D)+ Dγ ′T D(H(γ ; D), γ ′)+ RD(H(γ ; D), γ ′)γ ′ = 0.

Note that when γ is D-harmonic, then its Jacobi field X satisfies

Dγ ′ Dγ ′ X + Dγ ′T D(X, γ ′)+ RD(X, γ ′)γ ′ = 0.

Affine biharmonic curves and slant curves in 3-dimensional almost contact Riemannian
manifolds (equipped with a generalized Tanaka-Webster-Okumura connection) are stud-
ied in [31, 32, 48, 51–56, 72, 91].

14 Concluding Remarks

Recall that a slant curve γ in a 3-dimensional Sasakian manifold satisfies η(N ) = 0.
Let h be the second fundamental form of γ in M . Then the second fundamental form
h(γ ′, γ ′) of γ in M coincides with ∇γ ′γ ′. When γ in non-geodesic curve, we notice that

κη(N ) = η(h(γ ′, γ ′)) = g(h(γ ′, γ ′), ξ).

This formula implies that a non-geodesic curve is slant if and only if g(h(γ ′, γ ′), ξ) = 0.
This observation motivates us to introduce the following notion:

Definition 14.1 A submanifold N of a Sasakian manifold M is said to be a Lancret
submanifold if its second fundamental form h satisfies g(h(X, Y ), ξ) = 0 for all vector
fields X and Y tangent to N .

This notion is closely related to the notion of rectifying submanifold introduced by Chen
[23, 25].

Definition 14.2 Let M be a Riemannian manifold and V a non-vanishing vector field.
A submanifold N of M is said to be a rectifying submanifold with respect to V if the
normal component of V is nowhere zero and

g(Vx , Im hx ) = 0

holds for all point x ∈ N . Here, Im hx is the image of the second fundamental form h at
x .
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version of almost Hermitian submersion and anti-invariant submersion by exploring
slant submersions from almost Hermitian manifolds onto Riemannian manifolds
[7]. In case of almost contact metric manifolds, Kupeli Erken and Murathan [11]
introduced the notion of slant submersion from Sasakianmanifolds onto Riemannian
manifolds and obtained some basic results. Further, Sushil Kumar et al. [26] extended
the study of Kupeli Erken and C. Murathan and defined pointwise slant submersions
from Kenmotsu manifolds onto Riemannian manifolds. Riemannian submersions
have been widely studied for various almost Hermitian and almost contact structures
(see [6, 10, 14, 15, 18]). TheRiemannian submersions can be defined in the following
steps.

Let (M, gM) and (N , gN ) be two Riemannian manifolds of dimensions m and n,
respectively (m > n),wheregM and gN are the theirRiemannianmetrics respectively.
Let f : M → N be a smooth map. The Kernel space of f∗ is denoted by ker f∗
and suppose H = (ker f∗)⊥ be orthogonal complementary space of ker f∗. Then the
tangent bundle of M has the following decomposition

T M = (ker f∗) ⊕ (ker f∗)⊥. (1.1)

The range of f∗ is denoted by range f∗ and let (range f∗)⊥ be the orthogonal com-
plementary space of range f∗ in the tangent bundle T N of N . Thus, T N can be
decomposed as follows

T N = (range f∗) ⊕ (range f∗)⊥. (1.2)

A Riemannian submersion f is a C∞-map from Riemannian manifold (M, gM)

onto (N , gN ) satisfying the following conditions

1. f has maximal rank,
2. The differential f∗ preserves the lengths of horizontal vectors.

For each x ∈ N , f −1(x) is fiber that is (m − n)-dimensional submanifold of M.

If a vector field on M is always tangent (respectively orthogonal) to fibers, then it
is called vertical (respectively horizontal). A vector field X on M is said to be basic
if it is horizontal and f -related to a vector field X∗ on N , that is, f∗X p = X f (p) for
all p ∈ M. The projection morphisms on the distributions ker f∗ and (ker f∗)⊥ are
denoted by ν and H respectively.

A smooth map f : M → N is said to be a Riemannian submersion if and only if

gM(U, V ) = gN ( f∗U, f∗V ),

for any U, V ∈ (ker f∗)⊥.
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The O. Neill’s tensor T and A is defined by

TE F = H∇νEνF + ν∇νEHF (1.3)

AE F = ν∇HEHF + H∇HEνF, (1.4)

for any vector field E and F on M , where∇ is the Riemannian connection on M [5].

Lemma 1.1 ([5]) Let f be a Riemannian submersion between Riemannian mani-
folds (M, gM) and (N , gN ). If X and Y are basic vector fields on M, then

1. gM(X,Y ) = gN ( f∗X, f∗Y ),
2. The horizontal part [X,Y ]H of [X,Y ] is a basic vector field and corresponds to

[X∗,Y∗] that is, f∗([X,Y ]H) = [X∗,Y∗],
3. [V, X ] is vertical for any vector field V of ker f∗,
4. (∇M

X Y )H is vertical for any vector field corresponding to (∇N
X∗Y∗)where∇M and

∇N are the Riemannian connections on M and N, respectively.

Now, from Eqs. (1.3) and (1.4), we get

∇XY = TXY + ∇̂XY, (1.5)

∇XV = H∇XV + TXV, (1.6)

∇V X = AV X + ν∇V X, (1.7)

∇VW = H∇VW + AVW, (1.8)

for any X,Y ∈ ker f∗ and V,W ∈ (ker f∗)⊥.

On the other hand, for any E ∈ T M, it is seen that T is vertical, TE = TνE and
A is horizontal, AE = AHE .

The tensor fields T and A satisfy the equations

TXY = TY X (1.9)

AVW = −AWV = 1

2
ν[V,W ], (1.10)

for any X,Y ∈ �(ker f∗) and V,W ∈ �(ker f∗)⊥.

Moreover, if the horizontal distributionH is integrable if and only ifA = 0. Then
it is straightforward to observe the following

g(TDE,G) + g(TDG, E) = 0, (1.11)

g(ADE,G) + g(ADG, E) = 0, (1.12)

for any D, E,G ∈ T M.
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Another aspect of the present chapter is warped product submanifolds of almost
contact metric manifolds, so we provide a brief history of warped product submani-
folds in the following steps.

Bishop andNeill [21] explored the geometry of Riemannianmanifolds of negative
curvature and introduced the notion of warped product for these manifolds (see the
definition in Sect. 5). The warped product manifolds are the natural generalization
of Riemannian product manifolds. Some natural properties of warped products were
investigated in [21].

In the early twentieth century, B.-Y. Chen first used the idea of warped products
for CR-submanifolds of Kaehler manifolds [3]. Infact, he proved the existence of
CR-warped product submanifolds of the type NT × f N⊥ in the setting of Kaehler
manifold, where NT and N⊥ are the holomorphic and totally real submanifolds. Since
then,many authors have studiedwarpedproduct submanifolds in the different settings
of Riemannian manifolds, and numerous existence results have been explored (see
the survey article [4]).

The study of Bishop andNeill [21] has enlightened a few intrinsic properties of the
warped product manifolds. Initial extrinsic studies of warped product manifold in the
almost complex setting were performed by Chen [3] while obtaining some results
of existence for CR-submanifold as CR-warped product submanifold in Kaehler
manifolds. Furthermore, contact CR-warped product submanifolds were studied by
Hasegawa et al. [13] in the almost contact settings. Warped product manifolds are
also investigated in the contact setting by many other geometers and which have
attained various existence results [13, 17, 28].

Warped product pointwise semi-slant submanifolds are another generalized class
of warped product semi-slant submanifolds and contact CR-warped product subman-
ifolds. In [16], Park studied suchwarpedproduct submanifolds.After that,Mihai et al.
[12] extended this study in Sasakian manifolds and acquired some optimal inequali-
ties related towarping function and second fundamental form.Warped product point-
wise semi-slant submanifolds for almost contact and almost complexmanifolds were
explored (see [19, 22]).

2 Slant Submersions from Sasakian Manifolds

In this section, we study the slant submersion from Sasakian manifolds onto Rie-
mannian manifolds. This section consists of some important results from the study
of Erken and Murathan [11].

Let M be an almost contact metric manifold. So there exist on M a (1, 1) tensor
field φ, a vector field ξ, a 1-form η and a Riemannian metric g such that

φ2 = −I + η ⊗ ξ, φ ◦ ξ = 0, η ◦ φ = 0 (2.1)
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and
g(φX, φY ) = g(X,Y ) − η(X)η(Y ), g(φX,Y ) = −g(X, φY ), (2.2)

for any X,Y on M.

A normal contact metric structure is called a Sasakian structure, which satisfies

(∇Xφ)Y = g(X,Y )ξ − η(Y )X, (2.3)

where ∇ denotes the Levi-civita connection of g. For a Sasakian manifold M, it is
known that

R(ξ, X)Y = g(X,Y )ξ − η(Y )X (2.4)

∇Xξ = −φX. (2.5)

Let M(φ, ξ, η, gM) be a Sasakian manifold and (N , gN ) be a Riemannian man-
ifold. A Riemannian submersion f : M → N is said to be slant if for any nonzero
vector X ∈ ker f∗ − 〈ξ 〉, the angle θ(X) between φX and the space ker( f∗) is con-
stant (which is independent of the choice of p ∈ M and X ∈ ker f∗ − 〈ξ 〉). The angle
θ is called the slant angle of the slant submersion. Invariant and anti-invariant sub-
mersions are slant submersions with slant angles θ = 0 and θ = π/2, respectively.
A slant submersion that is neither invariant nor anti-invariant is called proper slant
submersion.

Now we have the following nontrivial example of slant submersion.

Example ([11]) Let R5 be a Sasakian manifold and f : R5 → R2 be a map defined
by f (x1, x2, y1, y2, z) = (x1 − 2

√
2x2 + y1, 2x1 − 2

√
2x2 + y1). Then, it is easy to

see that

ker f∗ = span

{
V1 = 2E1 + 1√

2
E4, V2 = E2, V3 = ξ = E5

}

and

(ker f∗)⊥ = span

{
H1 = 2E1 − 1√

2
E4, H2 = E3

}
.

Then it is easy to see that f is a Riemannian submersion. In addition, φV1 = 2E3 −
1√
2
E2 and φV2 = E4 imply that g(φV1, V2) = 1√

2
. So f is a slant submersion with

slant angle θ = π/4.

In above example, it is evident that the characteristic vector field ξ is vertical vector
field. If ξ is orthogonal to ker f∗, then we have the following characterization.

Theorem 2.1 ([11]) Let f be a slant submersion from a Sasakian manifold
M(φ, ξ, η, gM) onto a Riemannian manifold (N , gN ). If ξ is orthogonal to ker f∗,
then f is anti-invariant submersion.
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Proof By (1.9), (1.6), (1.11) and (2.5), we have

g(φX,Y ) = −g(∇Xξ,Y ) = −g(TXξ,Y ) = g(TXY, ξ)

= g(TY X , ξ) = g(X, φY )

for any X,Y ∈ ker f∗. Using the skew symmetry property of φ, we get the required
result.

Remark ([11]) The above result is a submersion version of Lotta’s result [2] for
slant submanifold.

For a slant submersion f from an almost contact metric manifold M(φ, ξ, η, gM)

onto a Riemannian manifold (N , gN ). Then for any X ∈ ker f∗, we put

φX = ψX + ωX, (2.6)

where ψX and ωX are vertical and horizontal components of φX, respectively.
Similarly, for any Z ∈ (ker f∗)⊥, we have

φZ = BZ + CZ , (2.7)

where BZ (respectivelyCZ ) is the vertical part (respectively horizontal part ) of φZ .

From (2.1), (2.6) and (2.7), we obtain

gM(ψX,Y ) = −gM(X, ψY ) (2.8)

and
gM(ωX, Z) = −gM(X, BZ) (2.9)

for any X,Y ∈ ker f∗ and Z ∈ (ker f∗)⊥.

Using (1.5), (2.5) and (2.6), we obtain

TXξ = −ωX, ∇̂Xξ = −ψX,

for any X ∈ ker f∗.

For two-dimensional fibers, we have the following result.

Proposition 2.2 ([11]) Let f be a Riemannian submersion from an almost contact
metric manifold onto a Riemannian manifold. If dim (ker f∗) = 2 and ξ is a vertical
vector field, then the fibres are anti-invariant.

Proposition 2.3 ([11])Let f be aRiemannian submersion fromaSasakianmanifold
M(φ, ξ, η, gM) onto a Riemannian manifold (N , gN ) such that ξ ∈ ker f∗. Then f is
an anti-invariant submersion if and only if D is integrable, where D = ker f∗ − 〈ξ 〉.
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Theorem 2.4 ([11]) Let M(φ, ξ, η, gM) be a Sasakian manifold of dimension 2m +
1 and (N , gN ) is a Riemannian manifold of dimension n. Let f : M → N be a slant
Riemannian submersion. Then the fibers are not totally umbilical.

Proof Using (1.5) and (2.5), we obtain

TXξ = −ωX, (2.10)

for any X ∈ ker f∗. If thefibers are totally umbilical, thenwehaveTXY = gM(X,Y )H
for any vertical vector fields X,Y where H is the mean curvature vector field of any
fiber. Since Tξ ξ = 0, we have H = 0, which shows that fibers are minimal. Hence,
the fibers are totally geodesic, which is a contradiction to the fact TXξ = −ωX �= 0.

By (1.5), (1.6), (2.6) and (2.7), we have

(∇Xω)Y = CTXY − TXψY, (2.11)

(∇Xψ)Y = BTXY − TXωY + R(ξ, X)Y, (2.12)

where
(∇Xω)Y = H∇XωY − ω∇̂XY

and
(∇Xψ)Y = ∇̂XψY − ψ∇̂XY,

for any X,Y ∈ ker f∗.

Now, we have the following characterization theorem for slant submersion.

Theorem 2.5 ([11]) Let f be a Riemannian submersion from a Sasakian manifold
M(φ, ξ, η, gM) onto a Riemannian manifold (N , gN ) such that ξ ∈ ker f∗. Then f
is a slant submersion if and only if there exists a constant λ ∈ [0, 1] such that

ψ2 = −λ(I − η ⊗ ξ). (2.13)

Furthermore, in such a case, if θ is the slant angle of f , it satisfies λ = cos2 θ.

Now, we have the following lemma, which can be verified by above theorem.

Lemma 2.6 ([11]) Let f be a slant Riemannian submersion from a Sasakian man-
ifold M(φ, ξ, η, gM) onto a Riemannian manifold (N , gN ) with slant angle θ. Then
the following relations are valid for any X,Y ∈ ker f∗

gM(ψX, ψY ) = cos2 θ(gM(X,Y ) − η(X)η(Y )) (2.14)

gM(ωX, ωY ) = sin2 θ(gM(X,Y ) − η(X)η(Y ). (2.15)
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The orthogonal complementary distribution to ω(ker f∗) in (ker f∗)⊥ is denoted by
μ. Then we have

(ker f∗)⊥ = ω(ker f∗) ⊕ μ. (2.16)

Lemma 2.7 ([11]) Let f be a proper slant Riemannian submersion from a Sasakian
manifold M(φ, ξ, η, gM) onto a Riemannian manifold (N , gN ). Then μ is an invari-
ant distribution of (ker f∗)⊥ under the endomorphism φ.

From the formula (2.14), we have the following consequence.

Corollary 2.8 ([11]) Let f be a proper slant Riemannian submersion from a
Sasakian manifold M2m+1(φ, ξ, η, gM) onto a Riemannian manifold (Nn, gN ). Let
{e1, e2, . . . , e2m−n, ξ} be a local orthonormal frame of (ker f∗), then
{csc θωe1, csc θωe2, . . . , csc θωe2m−n} is a local orthonormal frame of ω(ker f∗).

By using (2.15) and above corollary, one can easily prove the following proposition.

Proposition 2.9 ([11]) Let f be a proper slant Riemannian submersion from a
Sasakian manifold M2m+1(φ, ξ, η, gM) onto a Riemannian manifold (Nn, gN ). Then
dim (μ) = 2(n − m). If μ = {0}, then n = m.

By (2.8) and (2.13), we have.

Lemma 2.10 ([11])Let f be a proper slant Riemannian submersion fromaSasakian
manifold M2m+1(φ, ξ, η, gM ) onto a Riemannianmanifold (Nn, gN ). If e1, e2, . . . ek,
ξ areorthogonal unit vector fields in (ker f∗), then {e1, sec θψe1, e2, sec θψe2, . . . ek,
sec θψek, ξ} is a local orthonormal frame of (ker f∗). Moreover dim (ker f∗) =
2m − n + 1 = 2k + 1 and dim N = n = 2(m − k).

Lemma 2.11 ([11]) Let f be a slant Riemannian submersion from a Sasakian man-
ifold M(φ, ξ, η, gM) onto a Riemannian manifold (N , gN ). If ω is parallel, then we
have

TψXψX = − cos2 θ(TX X + η(X)ωX) (2.17)

for any X ∈ ker f∗.

Proof if ω is parallel, from (2.11), we obtain CTXY = TXψY for X,Y ∈ ker f∗.
Using antisymmetry with respect to X,Y and using (1.9), we get

TXψY = TYψX.

Substituting Y by ψX in the above equation and using Theorem2.5, we get the
required result.

In the following theorem, we will see the extension of harmonicity of slant sub-
mersions for almost Hermitain manifolds to harmonicity of slant submersion for
setting of almost contact metric manifolds.
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Theorem 2.12 ([11]) Let f be a slant Riemannian submersion from a Sasakian
manifold M(φ, ξ, η, gM) onto a Riemannian manifold (N , gN ). If ω is parallel, then
f is harmonic map.

Proof We know that, f is harmonic if and only if
∑n1

i=1 T ei
ei = 0. Hence, using the

adapted frame for slant Riemannian submersion by Lemma 2.10, we can write

τ = −
m− n

2∑
i=1

f∗(Tei ei + Tsec θψei sec θψei − f∗(Tξ ξ ).

Since Tξ ξ = 0, we have

τ = −
m− n

2∑
i=1

f∗(Tei ei + sec2 θTψei ψei ).

Using (2.17) in the above equation, we obtain

τ = −
m− n

2∑
i=1

f∗(Tei ei + sec2 θ(− cos2 θ(Tei ei + η(ei )ωei ))) = 0.

Thus f is a harmonic function.

3 Slant Submersions from Kenmotsu Manifolds

The purpose of the present section is to study pointwise slant submersion from Ken-
motsu manifolds onto Riemannian manifolds with vertical and horizontal structure
vector fields. The results of this section are taken from the study of Sushil Kumar et
al. [26].

An almost contact metric manifold M is called a Kenmotsu manifold if

(∇Xφ)Y = g(φX,Y )ξ − η(Y )φX, (3.1)

for any vector fields X,Y on M, where ∇ is the Riemannian connection of the
Riemannian metric g. Moreover, on a Kenmotsu manifold, the following equation
holds

∇Xξ = X − η(X)ξ. (3.2)

Let f be a Riemmanian submersion from a Kenmotsu manifold M(φ, ξ, η, gM)

onto a Riemannian manifold (N , gN ). If for each x ∈ M, the angle θ(X) between
φx and the space ker f∗ is independent of the choice of the nonzero vector field
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X ∈ ker f∗ − 〈ξ 〉, then f is called a pointwise slant submersion and the angle θ is
said to be slant function of the pointwise slant submersion.

A pointwise slant submersion is called slant if its slant function θ is independent
of the choice of the point on M(φ, ξ, η, gM). Then the constant θ is called the slant
angle of the slant submersion [2].

Let f be a Riemannian submersion from a Kenmotsu manifold M(φ, ξ, η, gM)

onto a Riemannian manifold (N , gN ). Using Eqs. (3.2), (1.5), (1.7), (2.6) and (2.7),
we get

∇Xξ = X − η(X)ξ, TXξ = 0, (3.3)

We say that ω is parallel if
(∇Xω)Y = 0. (3.4)

We have following lemma that can be verified easily.

Lemma 3.1 ([26]) Let M(φ, ξ, η, gM) be a Kenmotsu manifold and (N , gN ) be a
Riemannian manifold. If f : M → N is a pointwise slant submersion, then

(∇Xψ)Y = BTXY − TXωY − g(ψX,Y )ξ + η(Y )ψX (3.5)

and
(∇Xω)Y = CTXY − TXψY + η(Y )ωX, (3.6)

for any X,Y ∈ ker f∗.

Remark Theorem2.5 and Lemma2.6 are also true for pointwise slant immersion
from Kenmotsu manifold with slant function θ .

Now, we state the following theorem.

Theorem 3.2 ([26]) If M(φ, ξ, η, gM) be a Kenmotsu manifold and (N , gN ) be a
Riemannianmanifold. If f : M → N is a pointwise slant submersion. Ifω is parallel,
then we have

TψXψX = cos2 θ(TX X − η(X)ωψX),

for any X ∈ ker f∗.

Theorem 3.3 ([26]) If M(φ, ξ, η, gM) be a Kenmotsu manifold and (N , gN ) be a
Riemannian manifold. If f : M → N is a pointwise slant submersion with nonzero
slant function θ , then the fibers are totally geodesic submanifolds of M if and only if

gN (∇N
V ′ f∗(ωX), f∗(ωY )) = −gM ([X, V ], Y ) sin2 θ + V (θ)gM (φX, φY ) sin 2θ

+gM (AVωψX, Y ) − gM (AVωX, ψY ) − η(Y )gM (BV, ψX) − η(∇V X)η(Y ) sin2 θ,

for any X,Y ∈ ker f∗ and V ∈ (ker f∗)⊥, where V and V ′ are f −related vector
fields and ∇N is the Riemannian connection on N .
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Proof For any X,Y ∈ ker f∗ and V ∈ (ker f∗)⊥, using Eqs. (2.1), (2.2), (1.5) and
(2.6), we get

gM(TXY, V ) = −gM([X,Y ],Y ) + gM(∇Vψ2X,Y ) + gM(∇VωψX,Y )

− gM(∇VωX, φY ) − η(∇V X)η(Y ).

From Theorem3.2 and using Eqs. (1.5), (1.8) and (2.7), we get

gM(TXY, V ) sin2 θ = −gM([X, V ],Y ) sin2 θ + V (θ)gM(φX, φY ) sin 2θ+

+gM(AVωψX,Y ) − gN (∇N
V ′ f∗(ωX), f∗(ωY )) − gM(AVωX, ψY )

−η(∇V X)η(Y ) sin2 θ − η(Y )gM(BV, ψX).

By considering the fibers as totally geodesic, we derive the formula in the above
theorem. Conversely, it can directly verified.

Theorem 3.4 ([26]) Let M(φ, ξ, η, gM) be a Kenmotsu manifold and (N , gN ) be a
Riemannian manifold. If f : M → N be a pointwise slant submersion with nonzero
slant function θ, then f is harmonic if and only if

trace∗ f∗((∇ f∗)((.)ωψ(.))) − traceT(.)ω(.) + traceC∗ f∗(∇ f∗)((.)ω(.)) = 0.

Proof For any X ∈ ker f∗ and V ∈ (ker f∗)⊥, using Eqs. (2.1), (2.2), (1.5), (2.6) and
(2.7), we get

gM(TX X, V ) = gM(∇X X, V ) cos2 θ − gM(∇XωψX, V ) + gM(∇XωX, φV ).

From Theorem3.2 and using Eqs. (2.2), (3.1) and (2.6), we get

gM(TX X, V ) = gM(∇X X, V ) cos2 θ − gM(∇XωψX, V ) + gM(∇XωX, φV ).

Using Eqs. (1.6), (2.7) and by definition of adjoint map ∗ f∗, we have

gM(TX X, V ) sin2 θ = gN ( f∗(∇ f∗)(X, ωψX), V ) − gM(ωTXωX, V )

−gN (C∗ f∗(∇ f∗)(X, ωX), V ).

Conversely, a direct computation gives the proof.

Now, we study pointwise slant submersion from Kenmotsu manifolds onto Rie-
mannian manifolds for ξ ∈ (ker f∗)⊥.

When ξ ∈ (ker f∗)⊥, then from Eqs. (2.1) and (2.2), we get

φ2X = −X (3.7)
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and
g(φX, φY ) = g(X,Y ), (3.8)

for any X,Y ∈ ker f∗. Moreover, from Eqs. (1.6), (1.8), (3.2), (2.6) and (2.7), we get

TXξ = X, (3.9)

AV ξ = 0, (3.10)

and
η(∇XY ) = −gM(X,Y ), (3.11)

for any X,Y ∈ ker f∗ and V ∈ (ker f∗)⊥.

Corollary 3.5 ([26]) If M(φ, ξ, η, gM) be a Kenmotsu manifold and (N , gN ) be a
Riemannian manifold. If f : M → N be a pointwise slant submersion, then

gM(ψX, ψY ) = cos2 θgM(X,Y ),

gM(ωX, ωY ) = sin2 θgM(X,Y ),

for any X,Y ∈ ker f∗.

Theorem 3.6 ([26]) Let M(φ, ξ, η, gM) be a Kenmotsu manifold and (N , gN ) be
a Riemannian manifold. Assume that f : M → N is a pointwise slant submersion
with slant function θ. If ω is parallel, then

TψXψX = cos2 θTX X,

for any X ∈ ker f∗.

Theorem 3.7 ([26]) Let M(φ, ξ, η, gM) be a Kenmotsu manifold and (N , gN ) be a
Riemannian manifold. If f : M → N is a pointwise slant submersion with nonzero
slant function θ, then the fibers are totally geodesic submanifolds of M if and only if

gN ((∇′N
V f∗(ωX), f∗(ωY )) = −gM([X, V ],Y ) sin2 θ + V (θ)gM(X,Y ) sin 2θ

+gM(AVωψX,Y ) − gM(AVωX, ψY ),

for any X,Y ∈ ker f∗ and V ∈ (ker f∗)⊥,where V and V ′ are f -related vector fields
and ∇N is the Riemannian connection on N.
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Proof For any X,Y ∈ ker f∗ and V ∈ (ker f∗)⊥, using Eqs. (2.1), (3.1), (1.5), (1.8),
(2.6), (2.7) and Theorem3.2, we get

gM (TXY, V ) sin2 θ = −gM ([X, V ], Y ) sin2 θ + V (θ)gM (X, Y ) sin 2θ + gM (AVωψX, Y )

−gN (∇N
V ′ f∗(ωX), f∗(ωY )) − gM (AVωX, ψY ).

By considering the fibers as totally geodesic, we derive the formula. Conversely, it
can be directly verified.

4 Slant Submersions from Almost Paracontact Metric
Manifolds

Recently, Yilmaz Gündüzalp [29] investigated slant submersions whose total space
is an almost paracontact metric manifold. In this section, we quote some results from
the study of Yilmaz Gündüzalp.

Let M be a (n + 1)-dimensional differentiable manifold. If there exist on M a
(1, 1) type tensor field φ, a vector field ξ and 1-form η satisfying

φ2 = I − η ⊗ ξ, η(ξ) = 1, (4.1)

then M̄ is said to be an almost paracontact manifold. In the almost paracontact
manifold, the following relations hold

φξ = 0, η ◦ φ = 0, rank(φ) = n. (4.2)

An almost paracontact manifold M̄ is said to be an almost paracontact metric
manifold [25], if there exists a pseudo-Riemannian metric gM on M satisfying the
following

gM(φX, φY ) = gM(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ), (4.3)

for all X,Y ∈ T M.

Further, we can determine an anti-symmetric two-form  by φ(X,Y ) =
gM(X, φY ), which is called the fundamental 2-form corresponding to the structure.

An almost paracontact metric structure (φ, ξ, η, gM) is said to be paracosym-
plectic, if ∇η = 0 and ∇ = 0 are closed [25] and the tensorial equation of a para-
cosymplectic manifold is given by

(∇Xφ)Y = 0, X,Y ∈ T M, (4.4)
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where ∇ denotes the Riemannian connection of the metric gM on M. Moreover, for
a paracosymplectic manifold, we know that

∇Xξ = 0. (4.5)

Let f be a semi-Riemannian submersion from an almost paracontact metricmanifold
M with the structure (φ, ξ, η, gM ) onto a semi-Riemannian manifold (N , gN ). Then
for X ∈ ker f∗ and Z ∈ (ker f∗)⊥ we consider the Eqs. (2.6) and (2.7), respectively.

If for any spacelike or timelike vertical vector field X ∈ ker f∗ − 〈ξ 〉, the quo-
tient gM (ψX,ψX)

gM (φX,φY )
is constant that is, it is independent of the choice of the point p ∈ M

and choice of the spacelike or timelike vertical vector field X ∈ ker f∗ − 〈ξ 〉, at that
time we call that f is a slant submersion. In this case, the angle θ is called the slant
angle of the slant submersion. We note that the vector field ξ is a spacelike vertical
vector field.

Let {e1, e2, ξ} be a local orthonormal frame of vertical vector fields with
gM(e1, e2) = 1 such that e1 is spacelike (if both e1 and e2 are timelike, the situa-
tion would be similar). From (4.3) and (2.6), we have

−1 = gM(φe1, φe1) = gM(ψe1, ψe1) + gM(ωe1, ωe1).

On the other hand, ψe1 = ρe2. Let ρ �= 0,±1, these conditions would correspond
to invariant and anti-invariant submersion [29]. Clearly, ψe1 and e2 have the same
character. Depending on it and the value of ρ, we can separate the following three
conditions:

1. If ψe1 is a timelike and ‖ρ‖ > 1, at this moment gM(ωe1, ωe1) = −1 + ρ2 and
ωe1 is spacelike.

2. If ψe1 is a timelike and ‖ρ‖ < 1, at this moment gM(ωe1, ωe1) = −1 + ρ2 and
ωe1 is timelike.

3. If ψe1 is a spacelike and gM(ωe1, ωe1) = −1 − ρ2 and ωe1 is a timelike vector
field.

These three conditions classify the proper slant submersion into three types submer-
sions, which are defined as

Let f be a proper slant submersion from an almost paracontact manifold
M(φ, ξ, η, gM) onto a semi-Riemannian manifold (N , gN ). we say that f is of

1. type 1 if for any spacelike(timelike) vertical vector field X ∈ ker f∗,ψX is timelike
(spacelike) and ‖ψX‖

‖φX‖ > 1,
2. type2 if for any spacelike(timelike) vertical vector field X ∈ ker f∗,ψX is timelike

(spacelike) and ‖ψX‖
‖φX‖ < 1,

3. type 3 if for any spacelike (timelike) vertical vector field X ∈ ker f∗, ψX is time-
like (spacelike).
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It is known that the distribution (ker f∗) is integrable for a semi-Riemannian
submersion between semi-Riemannian manifolds. Infact, its leaves are f −(b), b ∈
N , that is, fibers. Thus it follows from the above definition that the fibers of a slant
submersion are slant submanifold of M.

Theorem 4.1 ([29]) Let f be a proper slant submersion from an almost paracon-
tact manifold M with the structure (φ, ξ, η, gM) onto a semi-Riemannian manifold
(N , gN ). Then,

1. f is slant submersion of type 1 if and only if for any spacelike (timelike) vector field
X ∈ ker f∗, ψX is timelike (spacelike), and there exists a constant μ ∈ (1,∞)

such that
ψ2X = μ(X − η(X)ξ). (4.6)

If f is a proper slant submersion of type 1, then μ = cos h2θ, with θ > 0.
2. f is proper slant submersion of type 2 if and only if for any spacelike (timelike)

vector field X ∈ ker f∗, ψX is timelike (spacelike), and there exists a constant
μ ∈ (0, 1) such that

ψ2X = μ(X − η(X)ξ). (4.7)

If f is a proper slant submersion of type 2, then μ = cos h2θ, with 0 < θ < 2π.

3. f is slant submersion of type 3 if and only if for any spacelike (timelike) vector field
X ∈ ker f∗, ψX is timelike (spacelike), and there exists a constant μ ∈ (−∞, 0)
such that

ψ2X = μ(X − η(X)ξ). (4.8)

If f is a proper slant submersion of type 3, then μ = − sin h2θ, with θ > 0.

In every case, the angle θ is called the slant angle of slant submersion.

Proof Part 1, If f is slant submersion of type 1, for any spacelike vertical vector
field X ∈ ker f∗, ψX is timelike and by virtue of (4.3), φX is timelike. Furthermore,
they satisfy ‖ψX‖

‖φX‖ > 1. So, there exists θ > 0 such that

cos hθ = ‖ψX‖
‖φX‖ =

√−gM(ψX, ψX)√−gM(φX, φX)
. (4.9)

By using (4.1), (4.2), (2.6) and (4.9), we obtain

gM(ψ2X, X) = cos2 hθgM(X − η(X)ξ, X), (4.10)

for all X ∈ ker f∗. Since gM is a semi-Riemannian metric, from (4.10) we get

ψ2X = cos h2θ(X − η(X)ξ), X ∈ ker f∗. (4.11)
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Let μ = cos h2θ, then it is easy to see that μ ∈ (1,∞) and ψ2 = μ(I − η ⊗ ξ).

Now for timelike vector field Y ∈ ker f∗, but ψY and φY are spacelike and hence
(4.9) can be written as

cos hθ = ‖ψY‖
‖φY‖ =

√
gM(ψY, ψY )√
gM(φY, φY )

. (4.12)

Since ψ2Y = μ(Y − η(Y )ξ), for any spacelike or timelike Y we have that ψ2 =
μ(I − η ⊗ ξ). The converse is straightforward. Part 2 can be proved by using similar
steps.

Part 3, If f is proper slant submersion of type 3, for any spacelike vector field
X ∈ ker f∗, ψX is spacelike, hence there exists θ > 0 such that

sin hθ = ‖ψX‖
‖φX‖ =

√
gM(ψX, ψX)√−gM(φX, φX)

. (4.13)

Now, it is evident that gM(ψ2X, X) = − sin h2θgM(X − η(X)ξ, X). Let μ =
− sin h2θ , at this moment μ ∈ (−∞, 0) and ψ2 = μ(I − η ⊗ ξ). The converse can
be proved by using some easy computations.

Theorem 4.2 ([29]) Let f be a proper slant submersion from an almost paracon-
tact manifold M with the structure (φ, ξ, η, gM) onto a semi Riemannian manifold
(N , gN ). Then,

1. f is slant submersion of type 1 if and only if ψ2X = cos h2θ(X − η(X)ξ) for
every spacelike vector field X ∈ ker f∗.

2. f is slant submersion of type 2 if and only ifψ2X = cos2 θ(X − η(X)ξ) for every
spacelike vector field X ∈ ker f∗.

Proof (1) For every timelike vector field Y ∈ ker f∗, there exists a spacelike vector
field X ∈ ker f∗ such as ψX = Y. Then

ψ2Y = ψ2ψX = ψ3X = cos h2θ(ψX − η(ψX)ξ) = cos h2θ(Y − η(Y )ξ).

(4.14)
The same proof is valid for part 2, but ψ2X = cos2 θ(X − η(X)ξ).

Theorem 4.3 ([29]) Let f be a proper slant submersion from an almost paracon-
tact manifold M with the structure (φ, ξ, η, gM) onto a semi-Riemannian manifold
(N , gN ). Then we have following classifications

1. f is slant submersion of type 1 if and only if BωX = − sin h2θ(X − η(X)ξ) for
every spacelike (timelike) vertical vector field X ∈ ker f∗.

2. f is slant submersion of type 2 if and only if BωX = − sin2 θ(X − η(X)ξ) for
every spacelike (timelike) vertical vector field X ∈ ker f∗.

3. f is slant submersion of type 3 if and only if BωX = cos h2θ(X − η(X)ξ) for
every spacelike (timelike) vertical vector field X ∈ ker f∗.
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Theorem 4.4 ([29]) Let f be a semi-Riemannian submersion from an almost
paracontact metric manifold M4n+1

2n (φ, η, ξ, gM) onto a semi-Riemannian manifold
(N 2n

n , gN ). Then, we have

1. f is slant submersion of type 1 if and only if C2Y = cos h2θY for every spacelike
(timelike) horizontal vector field Y ∈ (ker f∗)⊥.

2. f is slant submersion of type 2 if and only if C2Y = cos2 θY for every spacelike
(timelike) horizontal vector field Y ∈ (ker f∗)⊥.

Now, we have following examples of proper slant submersions.

Example ([29]) Determine a map f : R5
2 → R2

1 by

f (x1, x2, x3, x4, z) =
(
x1 − x3√

2
, x2

)
.

By direct calculations, we obtain

ker f∗ = span

{
U1 = ∂

∂x1
+ ∂

∂x3
, U2 = ∂

∂x4
, U3 = ξ = ∂

∂z

}

and

(ker f∗)⊥ = span

{
X1 = ∂

∂x1
− ∂

∂x3
, X2 = ∂

∂x2

}
.

Thus, the map f is a slant submersion of type 2 with the slant angle θ = π/4.

Example ([29]) Define a map f : R5
2 → R2

1 by

f (x1, x2, x3, x4, z) = (x2 sin hx + x3 cos hx, x1 sin hy + x4 cos hy),

for any x, y ∈ R. Then, by direct calculation we get

ker f∗ = span

{
U1 = cos hx

∂

∂x2
− sin hx

∂

∂x3
, U2 = cos hy

∂

∂x1
− sin hy

∂

∂x4
,

U3 = ξ = ∂

∂z

}

and

(ker f∗)⊥ = span

{
X1 = − sin hx

∂

∂x2
+ cos hx

∂

∂x3
, X2 = sin hy

∂

∂x1
− cos hy

∂

∂x4

}
.

Thus, the map f is a slant submersion of type 1 with the slant angle cos θ =
cos h(x − y).
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Example ([29]) Define a map f : R5
2 → R2

1 by

f (x1, x2, x3, x4, z) = (x2 cos hx + x3 sin hx, x4),

for any x ∈ R+. The map f is a slant submersion of type 3 with the slant angle
θ = − sin h2x .

5 Warped Product Pointwise Slant and Semi-Slant
Submanifolds of Almost Contact Metric Manifolds

In the previous sections, we already discussed Sasakian and Kenmotsu manifold,
now we define the cosymplectic structure on an almost contact metric manifold.

The following tensorial equation characterizing a cosymplectic manifold

(∇̄Xφ)Y = 0, (5.1)

for any X,Y ∈ T M̄ .

Moreover, on a cosymplectic manifold M̄

∇̄Xξ = 0. (5.2)

On the similar line of pointwise slant submanifold of almost Hermitianmanifolds
introduced by Etayo [9], K.-S.Park defined and studied pointwise slant submanifolds
of almost contact metric manifolds. He defined as follows.

Definition ([16]) Let M̄(φ, ξ, η, g) be 2n + 1-dimensional almost contact metric
manifold and M be a submanifold of M̄ . The submanifold M is called a pointwise
slant submanifold if at each point p ∈ M the angle θ(X) between φX and the space
Mp is constant for nonzero X ∈ Mp, where Mp = {X ∈ TpM : g(X, ξ(p)) = 0}.
The angle θ is called slant function as a function on M.

Notice that the above definition does not depend on ξ .

Throughout this section, we consider Eqs. (2.6) and (2.7) for any X ∈ T M and
Z ∈ T⊥M , respectively. Where,ψX and ωX denote the tangential and normal com-
ponents of φX , respectively. Whereas the tangential and normal components of φZ
are denoted by BZ and CZ , respectively.

Let T 1M = ∪p∈MMp = ∪p∈M {X ∈ TpM : g(X, ξ(p)) = 0}. Now, we have
some initial results.

Lemma 5.1 ([16]) Let M be a submanifold of an almost contact metric manifold
M̄(φ, ξ, η, g). Then M is a pointwise slant submanifold of M̄ if and only if ψ2 =
− cos2 θ I , for some function θ : M → R.
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Remark ([16])Let M be a pointwise slant submanifold of an almost contact metric
manifold M̄ with the slant function θ. By using Lemma5.1, we easily get

g(ψX, ψY ) = cos2 θg(X,Y ), (5.3)

g(ωX, ωY ) = sin2 θg(X,Y ), (5.4)

for any X,Y ∈ T 1M . At each given point p ∈ M with 0 ≤ θ(p) < π/2. by using
(5.3) we can choose an orthonormal basis {X1, sec θψX1, . . . , Xk, sec θψXk} of
Mp.

Using Lemma5.1, we obtain.

Corollary 5.2 ([16]) Let M be a pointwise slant submanifold of an almost contact
metric manifold M̄ with the nonconstant slant function θ : M → R. Then M is even
dimensional.

Proposition 5.3 ([16]) Let M be a two-dimensional submanifold of an almost con-
tact metric manifold M̄ . Then M is a pointwise slant submanifold of M̄ .

Now, we have following characterization.

Theorem 5.4 ([16]) Let M be a pointwise slant connected totally geodesic subman-
ifold of a cosymplectic manifold M̄(φ, ξ, η, g). Then M is a slant submanifold of
M̄ .

Proof Given any two points p, q ∈ M , we choose a C∞-curve c : [0, 1] → M such
that c(0) = p and c(1)q. For nonzero X ∈ Mp, we take a parallel transport Z(t)
along the curve c in M such that Z(0) = X and Z(1) = Y. Then since M is totally
geodesic,

0 = ∇c′ Z(t) = ∇̄c′ Z(t), (5.5)

where ∇ and ∇̄ are the Levi-Civita connection on M and M̄, respectively. By the
uniqueness of parallel transports, Z(t) is also a parallel transport in M̄ . Since ξ is
parallel, we have

d

dt
g(Z(t), ξ) = g(∇̄c′ Z(t), ξ) + g(Z(t), ∇̄c′ξ) = 0, g(Z(0), ξ) = 0 (5.6)

so that
0 = g(Z(1), ξ) = g(Y, ξ),

which implies Y ∈ Mq . But by (5.1),

∇̄c′φZ(t) = (∇̄c′φ)Z(t) + φ∇̄c′ Z(t) = 0

so that φZ(t) becomes a parallel transport along c in M̄ such that φZ(0) = φX and
φZ(1) = φY.
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Define amap τ : Tp M̄ → Tq M̄ by τ(U ) = V forU ∈ TpN and V ∈ Tq N ,where
W (t) is the parallel transport along c in M̄ such thatW (0) = U andW (1) = V .Then
τ is surely isometry. It is easy to check that τ(TpM) = TpM and τ(T⊥

p M) = T⊥
p M

so that τ(φX) = φY means τ(ψX) = ψY. Hence, cos θ(p) = ‖ψX‖
‖X‖ = ‖ψY‖

‖Y‖ =
cos θ(q), where θ is the slant function on M. Therefore, the result follows.

Corollary 5.5 ([16]) Let M be a two-dimensional connected totally geodesic sub-
manifold of a cosymplectic manifold M̄. Then M is a slant submanifold M̄ .

Proposition 5.6 ([16])Let M be a submanifold of an almost contactmetricmanifold
M̄. Then M is a pointwise slant submanifold M̄ if and only if

g(ψX, ψY ) = 0 where g(X,Y ) = 0 f or X,Y ∈ Mp, p ∈ M. (5.7)

Now, we have a general result, which is true for Sasakian, Kenmotsu as well as
cosymplectic manifold.

Theorem 5.7 ([16]) Let M be slant submanifold of an almost contact metric mani-
fold M̄ with the slant angle θ. Assume that M̄ is one of the three manifolds cosym-
plectic, Sasakian and Kenmotsu. Then we have.

AωXψX = AωψX X, f or X ∈ T 1M. (5.8)

Now, we have examples of pointwise slant submanifolds.

Example ([16]) Define a map f : R3 → R5 by f (x1, x2, x3) = (y1, y2, y3, y4, t) =
(x1, sin x2, 0, cos x2, x3). Let M = {(x1, x2, x3) ∈ R3 : 0 < x2, π/2}. We define
(φ, ξ, η, g) on R5 as φ(a1

∂
∂y1

+ · · · + a4
∂

∂y4
+ a5

∂
∂t ) = −a2

∂
∂y1

+ a1
∂

∂y2
− a4

∂
∂y3

+
a3

∂
∂y4

, ξ = ∂
∂t , η = dt, g is the Euclidean metric on R5, then (φ, ξ, η, g) is an

almost contact metric structure. Then M is a pointwise slant submanifold of an
almost contact metric manifold R5(φ, ξ, η, g) with the slant function x2 such that ξ
is tangent to M.

Example ([16]) Define a map f : R2 → R5 by f (x1, x2) = (y1, y2, y3, y4, t) =
(0, cos x1, x2, sin x1, 0). Let M = {(x1, x2) ∈ R2 : 0 < x1 < π/2}. We also know
that R5(φ, ξ, η, g) is a cosymplectic manifold. Then M is a pointwise slant subman-
ifold of a cosymplectic manifold of R5(φ, ξ, η, g) with the slant function x1 such
that ξ is normal to M.

Now, we define the pointwise semi-slant submanifolds.

Definition ([16]) Let M̄(φ, ξ, η, g) be an almost contact metricmanifold andM be a
submanifold of M̄ . The submanifold M is called a pointwise semi-slant submanifold
if there is a distribution D ⊂ T M on M such that

T M = D ⊕ Dθ , φD ⊂ D
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and at each given point p ∈ M the angle θ = θ(X) between φX and the space (Dθ )p
is constant for nonzero X ∈ (Dθ )p, where Dθ is the orthogonal complement of D in
T M. The angle θ is called a semi-slant function as a function on M.

Note that the normal bundle T⊥M of a pointwise semi-slant submanifold M is
decomposed as

T⊥M = ωDθ ⊕ μ, ωDθ ⊥ μ,

where μ is an invariant normal subbundle of T⊥M under φ.
We have following characterizations for semi-slant submanifolds.

Proposition 5.8 ([16]) Let M be a pointwise semi-slant submanifold of an almost
contact metric manifold M̄(φ, ξ, η, g). Assume that either Dθ ⊂ ker η orμ ⊂ ker η.

Then μ is φ-invariant.

Lemma 5.9 ([16])Let M beapointwise semi-slant submanifold of analmost contact
metric manifold M̄(φ, ξ, η, g) with the semi-slant function θ. Then

g(ψ2 + cos2 θ(I − η ⊗ ξ))(X),Y ) = 0, f or X,Y ∈ Dθ . (5.9)

Proof Wewill prove this at each point of M . Let p ∈ M be a point such that p ∈ Dθ

at p is vanishing, then done. Given a nonzero X ∈ Dθ at p, we obtain cos θ(p) =
‖ψX‖
‖φX‖ , so that cos2 θ(p)g(φX, φX) = g(ψX, ψX) = −g(ψ2X, X). Substituting X
by X + Y , ∀ Y ∈ Dθ at the above equation, we have

g((ψ2 + cos2 θ(I − η ⊗ ξ))(X),Y ) = 0.

Lemma 5.10 ([16]) Let M be a pointwise semi-slant submanifold of an almost
contact metric manifold M̄(φ, ξ, η, g). We have

1. Suppose, ξ is tangent to M and M̄ is either cosymplectic or Sasakian orKenmotsu,
then the distribution D is integrable if and only if

g(h(X, φY ) − h(Y, φX), ωZ) = 0,

2. Suppose, ξ is normal to M and M̄ is either cosymplectic or Kenmotsu, then the
distribution D is integrable if and only if

g(h(X, φY ) − h(Y, φX), ωZ) = 0,

for any X,Y ∈ D and Z ∈ Dθ .

Lemma 5.11 ([16]) Let M be a pointwise semi-slant submanifold of an almost
contact metric manifold M̄(φ, ξ, η, g). We have
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1. Suppose, ξ is tangent to M and M̄ is either cosymplectic or Kenmotsu, then the
distribution Dθ is integrable if and only if

g(AωψW Z − AωψZW, X) = g(AωW Z − AωZW, φX),

2. Suppose, ξ is normal to M and M̄ is either cosymplectic or Kenmotsu, then the
distribution Dθ is integrable if and only if

g(AωψW Z − AωψZW, X) = g(AωW Z − AωZW, φX),

for any X ∈ D and Z ,W ∈ Dθ .

For the totally geodesicness of the leaves, we have.

Theorem 5.12 ([16]) Let M be a pointwise semi-slant submanifold of an almost
contact metric manifold M̄(φ, ξ, η, g). We have

1. Suppose, ξ is tangent to M and M̄ is either cosymplectic or Sasakian orKenmotsu,
then the distribution D defines a totally geodesic foliation if and only if

g(AωZφX − AωψZ X,Y ) = 0,

2. Suppose, ξ is normal to M and M̄ is either cosymplectic or Kenmotsu, then the
distribution D defines a totally geodesic foliation if and only if

g(AωZφX − AωψZ X,Y ) = 0

for any X,Y ∈ D and Z ∈ Dθ .

Theorem 5.13 ([16]) Let M be a pointwise semi-slant submanifold of an almost
contact metric manifold M̄(φ, ξ, η, g). Suppose, ξ is normal to M and M̄ is either
cosymplectic or Kenmotsu, then the distribution Dθ defines a totally geodesic folia-
tion if and only if

g(AωZφX − AωψZ X,W ) = 0

for any X ∈ D and Z ,W ∈ Dθ .

Theorem 5.14 ([16]) Let M be a pointwise semi-slant submanifold of an almost
contact metric manifold M̄(φ, ξ, η, g). Assume that ξ is tangent to M

1. If M̄ is either cosymplectic or Sasakian, then the distribution Dθ defines a totally
geodesic foliation if and only if

g(AωZφX − AωψZ X,W ) = 0,
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2. If M̄ is Kenmotsu, then the distribution Dθ defines a totally geodesic foliation if
and only if

g(AωZφX − AωψZ X,W ) + sin2 θη(X)g(W, Z) = 0,

for any X ∈ D and Z ,W ∈ Dθ .

Let (N1, g1) and (N2, g2) be twoRiemannianmanifolds with Riemannianmetrics
g1 and g2, respectively, and f be a positive differentiable function on N1. If a : N1 ×
N2 → N1 and b : N1 × N2 → N2 are the projection maps given by a(x, y) = x and
b(x, y) = y for every (x, y) ∈ N1 × N2, then the warped product manifold is the
product manifold M = N1 × N2 endowed with the Riemannian structure such that

g(X,Y ) = g1(x∗X, x∗Y ) + ( f ◦ x)2g2(y∗X, y∗Y ),

for all X,Y ∈ T M. The function f is called the warping function of the warped
product manifold. If the warping function is constant, then the warped product is
trivial that is, simply Riemannian product. Further, if X ∈ T N1 and Z ∈ T N2, then
from Lemma 7.3 of [21], we have the following well known result

∇X Z = ∇Z X =
(
X f

f

)
Z , (5.10)

where ∇ is the Levi-civita connection on M . For M = N1 × f N2, it can be seen that

∇X Z = ∇Z X = Xln f Z . (5.11)

The gradient of the function f is denoted by ∇ f and is defined as

g(∇ f, X) = X f (5.12)

for all X ∈ T M.

Let M be a Riemannian manifold M of dimension n with {e1, . . . , en} as an
orthogonal basis of T M and g a Riemannian metric of M. Then as a result of (5.12),
we set

‖∇ f ‖2 =
n∑

i=1

(ei ( f ))
2. (5.13)

Let NT and Nθ are the invariant and pointwise slant submanifolds of an almost
contact metric manifold M̄(φ, ξ, η, g). In [16], Park studied the warped product
submanifolds of the types Nθ × f NT and NT × f Nθ in the setting of almost con-
tact metric manifolds and obtained various existence and nonexistence conditions.
Basically, he proved the following results.

Theorem 5.15 ([16]) Let M̄(φ, ξ, η, g) be an almost contact metric manifold either
cosymplectic or Sasakian or Kenmotsu. Then there does not exist warped product
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submanifolds of the type Nθ × f NT with ξ tangential or normal to M, where Nθ and
NT are the pointwise slant and invariant submanifold of M̄, respectively.

Further, K. -S. Park considered the warped product of type NT × f Nθ and proved
the following lemma.

Lemma 5.16 ([16]) Let M̄(φ, ξ, η, g) be an almost contact metric manifold either
cosymplectic or Sasakian or Kenmotsu. Then there does not exist warped product
submanifolds of the type NT × f Nθ with ξ tangential or normal to M, where Nθ and
NT are the pointwise slant and invariant submanifold of M̄ respectively. Then

g(AωZW, X) = g(AωW Z , X), (5.14)

for any X ∈ T NT and Z ,W ∈ T Nθ .

Lemma 5.17 ([16]) Let NT × f Nθ be a nontrivial warped product proper pointwise
semi-slant submanifold of an an almost contact metric manifold M̄(φ, ξ, η, g)

1. If M̄ is cosymplectic, then

g(AωψZW, X) = −φXln f g(W, ψW ) − cos2 θXln f g(W, Z) and

g(AωZW, φX) = (X − η(X)ξ)(ln f )g(W, Z) − φX (ln f )g(ψW, Z).

2. If M̄ is Sasakian, then

g(AωψZW, X) = −η(X)g(W, ψW ) − φXln f g(W, ψW ) − cos2 θXln f g(W, Z)

and g(AωZW, φX) = (X − η(X)ξ)(ln f )g(W, Z) − φX (ln f )g(ψW, Z).

3. If M̄ is Kenmotsu, then

g(AωψZW, X) = cos2 θη(X)(g(Z ,W ) − η(Z)η(W )) − φXln f g(W, ψZ)

− cos2 θXln f g(W, Z)

and g(AωZW, φX) = (X − η(X)ξ)(ln f )g(W, Z) − φX (ln f )g(ψW, Z)

for X ∈ T NT and Z ,W ∈ T Nθ .

Proof We only give the proof when M̄ is a Kenmotsu manifold. For any X ∈ T NT

and Z ,W ∈ T Nθ , On using Lemmas5.16, 5.9 and some basic computations, we
have

g(AωψZW, X) = −g(g(φψW,W )ξ − η(W )φψW + φ∇̄ψWW, X) + g(∇̄ψZψW, X)

= + cos2 θη(X)(g(Z ,W ) − η(Z)η(W )) − φXln f g(W, ψZ)

− cos2 θXln f g(W, Z).
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Replacing ψZ and X by Z and φX , respectively, we obtain

g(AωZW, φX) = (X − η(X)ξ)ln f g(Z ,W ) − φXln f g(ψW, Z).

Now, we have some inequalities related to the squared norm of the second fun-
damental form and warping function.

Theorem 5.18 ([16]) Let NT × f Nθ be a m-dimensional nontrivial warped product
proper pointwise semi-slant submanifold of a (2n+1)-dimensional almost contact
metric manifold M̄(φ, ξ, η, g) with semi slant function θ such that ξ is tangential
to M.

1. If M̄ is Sasakian manifold, such that m = m1 + 2m2. Then we have

‖h‖2 ≥ 4m2(csc
2 θ + cot2 θ)‖φ∇ln f ‖2 + 4m2 sin

2 θ, (5.15)

the equality holds if and only if g(h(Z ,W ), V ) = 0, for Z ,W ∈ T Nθ and V ∈
T⊥M.

2. If M̄ is cosymplectic manifold, such that m = m1 + 2m2. Then we have

‖h‖2 ≥ 4m2(csc
2 θ + cot2 θ)‖φ∇ln f ‖2, (5.16)

the equality holds if and only if g(h(Z ,W ), V ) = 0, for Z ,W ∈ T Nθ and V ∈
T⊥M.

3. If M̄ is Kenmotsu manifold, such that m = m1 + 2m2. Then we have

‖h‖2 ≥ 4m2(csc
2 θ + cot2 θ)‖φ∇ln f ‖2, (5.17)

the equality holds if and only if g(h(Z ,W ), V ) = 0, for Z ,W ∈ T Nθ and V ∈
T⊥M.

In above theorem, the inequalities were computed when the vector field ξ is taken
tangent to M . Now, in next theorem, we will see the variations in the inequalities
when, ξ is taken normal to M.

Theorem 5.19 ([16]) Let NT × f Nθ be a m-dimensional nontrivial warped product
proper pointwise semi-slant submanifold of a (2n+1)-dimensional almost contact
metric manifold M̄(φ, ξ, η, g) with semi slant function θ such that ξ is normal to M
and ξ ∈ μ.

1. If M̄ is cosymplectic manifold, such that m = m1 + 2m2. Then we have

‖h‖2 ≥ 4m2(csc
2 θ + cot2 θ)‖φ∇ln f ‖2, (5.18)

the equality holds if and only if g(h(Z ,W ), V ) = 0, for Z ,W ∈ T Nθ and V ∈
T⊥M.
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2. If M̄ is Kenmotsu manifold, such that m = m1 + 2m2. Then we have

‖h‖2 ≥ 4m2(csc
2 θ + cot2 θ)‖φ∇ln f ‖2 + 2m1, (5.19)

the equality holds if and only if g(h(Z ,W ), V ) = 0, for Z ,W ∈ T Nθ and V ∈
T⊥M.

Now, we have a nontrivial example of pointwise warped product semi-slant sub-
manifolds of a cosymplectic manifold.

Example ([16]) Define (φ, ξ, η, g) on R11 as follows

φ

(
a1

∂

∂y1
+ · · · + a10

∂

∂y11
+ a11

∂

∂t

)
=

5∑
i=1

(
− a2i

∂

∂y2i−1
+ a2i−1

∂

∂y2i

)

ξ = ∂

∂t
, η = dt, ai ∈ R, 1 ≤ i ≤ 11,

g is the Euclideanmetric on R11. Thenwe know that R11(φ, ξ, η, g) is a cosymplectic
manifold. Let

M = {(x1, x2, u, v) : 0 < xi < 1, i = 1, 2, 0 < u , v < π/2}.

Taking two points P1 and P2 in the unit sphere S1 such that Pi = (a1i , a2i ), i = 1, 2
and a11a12 + a21a22 = 0, a11a22 + a21a12 = 0.Wedefine amap i : M ⊂ R4 → R11

by

i(x1, x2, u, v) = (x1 cos u, x2 cos u, x1 cos v, x2 cos v, x1 sin u, x2 sin u, x1 sin v,

x2 sin v, a11u + a12v, a21u + a22v, 2020).

Then the tangent bundle T M is spanned by X1, X2, Y1 and Y2, where

X1 = cos u
∂

∂y1
+ cos v

∂

∂y3
+ sin u

∂

∂y5
+ sin v

∂

∂y7

X2 = cos u
∂

∂y2
+ cos v

∂

∂y4
+ sin u

∂

∂y6
+ sin v

∂

∂y8
,

Y1 = −x1 sin u
∂

∂y1
− x2 sin u

∂

∂y2
+ x1cosu

∂

∂y5
+ x2 cos u

∂

∂y6
+ a11

∂

∂y9
+ a21

∂

∂y10

Y2 = −x1 sin v
∂

∂y3
− x2 sin v

∂

∂y4
+ x1 cos v

∂

∂y7
+ x2 cos v

∂

∂y8
+ a12

∂

∂y9
+ a22

∂

∂y10
.
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We can easily check that M is a proper pointwise semi-slant submanifold of a 11-
dimensional cosymplectic manifold R11(φ, ξ, η, g) such that D = 〈, X, X2〉, Dθ =
〈, X, X2〉 and the semi-slant function θ is given by

cos θ = |a11a22 + a21a12|
1 + x21 + x22

,

ξ is normal to M with ξ ∈ μ. We see that the distributions D and Dθ are integrable.
Denote by NT and Nθ the integral manifolds of D and Dθ , respectively. Then we see
that (M, g) is a warped product pointwise semi-slant submanifold of R11(φ, ξ, η, g)
such that

g = 2(dx21 + dx22 ) + (1 + x21 + x22 )(du
2 + dv2)

the warping function is f =
√

(1 + x21 + x22 ). By Eq. (5.18), we obtain

‖h‖2 ≥ 4
(1 + x21 + x22 )

2 + (−a11a22 + a21a12)2

(1 + x21 + x22 )
2 − (−a11a22 + a21a12)2

‖∇(
1

2
ln(1 + x21 + x22 ))‖2.

Further, Uddin and Khaldi [22] redefined the concept of pointwise slant subman-
ifolds, basically, they consider the structure vector field ξ tangent to submanifold M
and proved the following characterization.

Theorem 5.20 ([22]) Let M be a submanifold of an almost contact metric manifold
M̄ such that ξ ∈ T M. Then M is pointwise slant submanifold if and only if

ψ2 = cos2 θ(−I + η ⊗ ξ),

for some real valued function θ defined on the tangent bundle T M of M.

The following corollary is an immediate consequence of the above theorem.

Corollary 5.21 ([22]) Let M be pointwise slant submanifold of an almost contact
metric manifold M̄ . Then, we have

g(ψX, ψY ) = cos2 θ [g(X,Y ) − η(X)η(Y )]

g(ωX, ωY ) = sin2 θ [g(X,Y ) − η(X)η(Y )]

for any X,Y ∈ T M.

Analogues to the definition of pseudo-slant submanifold [27], we have the following
definition of point wise pseudo-slant submanifold.

Definition ([22]) A submanifold M of an almost contact metric manifold M̄ is
said to be pointwise pseudo-slant submanifold if there exists a pair of orthogonal
distributions D⊥ and Dθ on M such that
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1. The tangent bundle T M admits the orthogonal direct decomposition T M =
D⊥ ⊕ Dθ ⊕ 〈ξ 〉.

2. The distribution D⊥ is anti-invariant that is, φD⊥ ⊂ T⊥M.

3. The distribution Dθ is pointwise slant with slant function θ.

The pointwise pseudo slant submanifold is said to be proper if θ �= 0, π/2 and
D⊥ �= {0}.

In the following lemma, we will see the integrability conditions of the distribu-
tions.

Lemma 5.22 ([22]) Let M be a pointwise pseudo-slant submanifold of a Sasakian
manifold M̄ . Then the anti-invariant distribution D⊥ is always integrable.

Lemma 5.23 ([22]) Let M be a pointwise pseudo-slant submanifold of a Sasakian
manifold M̄ . Then we have

g(∇ZW, ψX) = g(h(X, Z), φW ) − g(h(Z ,W ), ωX), (5.20)

cos2 θg(∇XY, Z) = g(h(X, ψY ), φZ) − g(h(X, Z), ωψY ) − η(Z)g(X, ψY ),

(5.21)
for any X,Y ∈ Dθ and Z ,W ∈ D⊥ ⊕ 〈ξ 〉.

Uddin and Khaldi [22] studied warped product submanifolds of Sasakian mani-
folds by considering that one of the factors, a pointwise slant submanifold. Basically,
they studied warped product submanifolds of the type N⊥ × f Nθ in a Sasakian man-
ifold, where N⊥ and Nθ are the anti-invariant and pointwise slant submanifolds of a
Sasakian manifold, respectively. These warped products are called warped product
pointwise pseudo-slant submanifold. Now, we have some basic results.

Lemma 5.24 ([22]) Let M = N⊥ × f Nθ be a warped product pointwise pseudo-
slant submanifold of a Sasakian manifold M̄ such that ξ ∈ T N⊥, where N⊥ is an
anti-invariant submanifold and Nθ is a proper pointwise slant submanifolds of M̄ .

Then we have

g(h(Y, Z), ωψX) − g(h(ψX, Z), ωY ) = (sin 2θ)Z(θ)g(X,Y ), (5.22)

g(h(X,Y ), φZ) − g(h(X, Z), ωY ) = Zln f g(X, ψY ) + η(Z)g(X,Y ), (5.23)

for any X,Y ∈ T Nθ and Z ∈ T N⊥.

Lemma 5.25 ([22]) Let M = N⊥ × f Nθ be a warped product pointwise pseudo-
slant submanifold of a Sasakian manifold M̄ such that ξ ∈ T N⊥, where N⊥ is an
anti-invariant submanifold and Nθ is a proper pointwise slant submanifolds of M̄ .

Then we have

g(h(Y, Z), ωψX) − g(h(ψX, Z), ωY ) = (2 cos2 θ)Z(ln f )g(X,Y ), (5.24)

for any X,Y ∈ T Nθ and Z ∈ T N⊥.



Contact Slant Geometry of Submersions and Pointwise Slant … 289

The following corollary is an immediate consequence of the above lemma.

Corollary 5.26 ([22]) There does not exist any proper warped product mixed totally
geodesic submanifold of the form M = N⊥ × f Nθ of a Sasakian manifold M̄ such
that N⊥ is an anti-invariant submanifold and Nθ is a proper pointwise slant sub-
manifold of M̄ .

Proof From (5.24) and the mixed totally geodesic assumption, we have

(2 cos2 θ)Z(ln f )g(X,Y ) = 0.

Since g is Riemannian metric and M be a proper, then cos2 θ �= 0. Thus, the proof
follows from the above relation.

Now, from Lemmas5.24 and 5.25, we have following result.

Theorem 5.27 ([22]) Let M = N⊥ × f Nθ be a warped product pointwise pseudo-
slant submanifold of a Sasakian manifold M̄ such that ξ ∈ T N⊥, where N⊥ is an
anti-invariant submanifold and Nθ is a proper pointwise slant submanifolds of M̄ .

Then, one of the following statements holds

1. Either M is warped product of anti-invariant submanifolds, that is, θ = π/2,
2. or if θ �= π/2, then Zln f = tan θ Z(θ), for any Z ∈ T N⊥.

Proof From (5.22) and (5.24), we have

cos2 θ{Zln f − tan θ Z(θ)}g(X,Y ) = 0. (5.25)

Since g is Riemannianmetric, therefore from above equation, we conclude that either
cos2 θ = 0 or Zln f − tan θ Z(θ) = 0, which concludes the result.

Theorem 5.28 ([22]) Let M be a pointwise pseudo-slant submanifold of a Sasakian
manifold M̄ . Then M is locally a warped product submanifold of the form N⊥ × f Nθ

if and only if

AφZψX − AωψX Z = η(Z)ψX − cos2 θ Z(μ)X, ∀Z ∈ D⊥, X ∈ Dθ , (5.26)

for some smooth function μ on M satisfying Y (μ) = 0, for any Y ∈ Dθ .

Proof LetM = N⊥ × f Nθ be awarped product pointwise pseudo-slant submanifold
of a Sasakian manifold M̄ . Then for any X ∈ T Nθ and Z ,W ∈ T N⊥, we have

g(AφZ X,W ) = Wln f g(X, φZ) = 0,

which means that AφZ X has no component in T N⊥. Similarly, we can find that
g(AωX Z ,W ) = 0. Therefore, we conclude that AφZ X − AωX Z lies in T Nθ . Then
from Lemma5.24, we get (5.26).
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Conversely, if M is a pointwise pseudo-slant submanifold such that (5.26) holds,
then from (5.20), we have

g(AφZ X,W ) = Wln f g(X, φZ) = 0.

Then from the condition (5.26), we get

g(∇ZW, ψX) = g(AφW X − AωXW, Z) = (Zμ)g(X, Z) − sec2 θη(Z)g(ψX, Z) = 0,

which means that the leaves of the distribution D⊥ ⊕ 〈ξ 〉 are totally geodesic in M.

On the other hand, from (5.21) we also have

cos2 θg(∇XY, Z) = g(AφZ TY − AωψY Z , X) − η(Z)g(X, ψY )

and
cos2 θg(∇Y X, Z) = g(AφZψX − AωψX Z ,Y ) − η(Z)g(Y, ψX).

From above two equations, we get cos2 θg([X,Y ], Z) = 0. Since Dθ is a proper
pointwise slant distribution then one can conclude Dθ is integrable. If Nθ be a leaf
of Dθ and hθ is second fundamental form of Nθ in M , then we have

g(hθ (X,Y ), Z) = −Z(μ)g(X,Y ).

From last equation, we find hθ (X,Y ) = −∇̃μg(X,Y ).Hence, Nθ is a totally umbil-
ical submanifold of M with mean curvature vector −∇̃μ, where ∇̃μ is the gradient
vector of the function μ. Since, Y (μ) = 0, for any Y ∈ Dθ , then we show that
Hθ = −∇̃μ is parallel with respect to normal connection of Nθ . Thus Nθ is a totally
umbilical submanifold of M with a nonvanishing mean curvature vector Hθ = −∇̃μ

that mean Nθ is an extrinsic sphere in M. Then from a result of Heipko [24], M is a
warped product manifold of the form N⊥ ×μ Nθ .

Ion Mihai et al. [12] redefined the pointwise semi-slant submanifolds of contact
metric manifold by taking the structure vector field ξ tangential to the submanifold.
More precisely they defined these submanifolds as follows:

Definition ([12]) A submanifold M of an almost contact metric manifold M̄ is
said to be a pointwise semi-slant submanifold if there exists a pair of orthogonal
distributions D and Dθ on M such that

1. the tangent bundle T M admits the orthogonal direct decomposition T M = D ⊕
Dθ ⊕ 〈ξ 〉,

2. the distribution D is invariant under φ that is, φD = D,

3. the distribution Dθ is pointwise slant with slant function θ.

We have the following example of semi-slant submanifolds in an almost contact
metric manifold.
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Example ([12]) Let R7(φ, ξ, η, g) be an almost contact metric manifold with carte-
sian coordinates (x1, x2, x3, y1, y2, y3, z) and the almost contact structure

φ

(
∂

∂xi

)
= − ∂

∂yi
, φ

(
∂

∂y j

)
= ∂

∂x j
, φ

(
∂

∂z

)
= 0, 1 ≤ i, j ≤ 3

where ξ = ∂
∂z , η = dz and g is the standardEuclideanmetric on R7. Then (φ, ξ, η, g)

is an almost contact metric structure on R7. Consider the submanifold M of R7

defined by ψ(u, v, w, t, z) = (u + v,−u + v, t cosw, t sinw,w cos t, w sin t, z),
such that w, t (w �= t) are nonzero real numbers. Then the tangent space T M is
spanned by the following vector fields

X1 = ∂

∂x1
− ∂

∂y1
, X2 = ∂

∂x1
+ ∂

∂y1

X3 = −t sinw
∂

∂x2
+ t cosw

∂

∂y2
+ cos t

∂

∂x3
+ sin t

∂

∂y3
,

X4 = cosw
∂

∂x2
+ sinw

∂

∂y2
− w sin t

∂

∂x3
+ w cos t

∂

∂y3
, X5 = ∂

∂z
.

Thus, D = span{X1, X2} is an invariant distribution and Dθ = span{X3, X4} is a
pointwise slant distribution with pointwise slant function θ = cos−1 t−w√

(t2+1)(w2+1)
.

Hence, M is a pointwise slant submanifold of R7.

Lemma 5.29 ([12]) Let M be a pointwise semi-slant submanifold of a Sasakian
manifold M̄ . Then, we have

1. sin2 θg(∇XY, Z) = g(h(X, φY ), ωZ) − g(h(X,Y ), ωψZ),

2. sin2 θg(∇ZW, X) = g(h(X, Z), ωψZ) − g(h(φX,Y ), ωW ),

for any X,Y ∈ D ⊕ 〈ξ 〉 and Z ,W ∈ Dθ .

Further, Mihai et al. [12] studied warped product pointwise semi-slant subman-
ifolds of the form M = NT × Nθ such that ξ is tangential to NT in the setting of
Sasakian manifolds. Now we have some basic results.

Lemma 5.30 ([12]) Let M = NT × f Nθ be a warped product pointwise semi-slant
submanifold of a Sasakian manifold M̄ such that ξ ∈ T NT , where NT is an invariant
submanifold and Nθ is proper pointwise slant submanifold of M̄ . Then, we have

g(h(X,W ), ωψZ) − g(h(X, ψZ), ωZ) = sin 2θX (θ)g(Z ,W ), (5.27)

for any X ∈ T NT and Z ,W ∈ T Nθ .

Lemma 5.31 ([12]) Let M = NT × f Nθ be a warped product pointwise semi-slant
submanifold of a Sasakian manifold M̄ such that ξ ∈ T NT , where NT is an invariant
submanifold and Nθ is proper pointwise slant submanifold of M̄, respectively. Then
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1. g(ψZ ,W ) = −ξ ln f g(Z ,W ),

2. g(h(X,Y ), ωZ) = 0,
3. g(h(X, Z), ωW ) = Xln f g(ψZ ,W ) − φXln f g(Z ,W ) − η(X)g(Z ,W ),

for any X,Y ∈ T NT and Z ,W ∈ T Nθ .

Lemma 5.32 ([12]) Let M = NT × f Nθ be a warped product pointwise semi-slant
submanifold of a Sasakian manifold M̄ such that ξ ∈ T NT , where NT is an invariant
submanifold and Nθ is proper pointwise slant submanifold of M̄ . Then

g(h(φX, Z), ωW ) = Xln f g(Z ,W ) − η(X)g(Z , ψW ) − φXln f g(Z , ψW ),

(5.28)
for any X ∈ T NT and Z ,W ∈ T Nθ .

Proof Interchanging X by φX , for any X ∈ T NT in part 3 of Lemma5.31 and using
the first part of Lemma5.31, we get the required result.

Lemma 5.33 ([12]) Let M = NT × f Nθ be a warped product pointwise semi-slant
submanifold of a Sasakian manifold M̄ such that ξ ∈ T NT , where NT is an invariant
submanifold and Nθ is proper pointwise slant submanifold of M̄, respectively. Then,
we have

g(h(X, ψZ), ωW ) = φXln f g(Z , ψW ) − η(X)g(ψZ ,W ) − cos2 θXln f g(Z ,W ),

(5.29)
for any X ∈ T NT and Z ,W ∈ T Nθ .

Proof Interchanging Z by ψZ , for any Z ∈ T Nθ in part 3 of Lemma5.3 and after
using Corollary5.21, we get the required result.

Similarly, ifwe interchangeW byψW , for anyW ∈ T Nθ in part 3 ofLemma5.31,
then we can obtain the following lemma.

Lemma 5.34 ([12]) Let M = NT × f Nθ be a warped product pointwise semi-slant
submanifold of a Sasakian manifold M̄ such that ξ ∈ T NT , where NT is an invariant
submanifold and Nθ is proper pointwise slant submanifold of M̄ . Then, we have

g(h(X, Z), ωψW ) = cos2 θXln f g(Z ,W ) − φXln f g(Z , ψW ) − η(X)g(Z , ψW ),

(5.30)
for any X ∈ T NT and Z ,W ∈ T Nθ .

Lemma 5.35 ([12]) Let M = NT × f Nθ be a warped product pointwise semi-slant
submanifold of a Sasakian manifold M̄ such that ξ ∈ T NT , where NT is an invariant
submanifold and Nθ is proper pointwise slant submanifold of M̄ . Then, we have

g(AωWφX, Z) − g(AωψW X, Z) = sin2 θXln f g(Z ,W ), (5.31)

for any X ∈ T NT and Z ,W ∈ T Nθ .
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Proof Subtracting (5.30) from (5.28), we get (5.31).

A warped product submanifold M = N1 × f N2 of a Sasakain manifold M̄ is said to
be mixed totally geodesic if h(X, Z) = 0, for any X ∈ T N1 and Z ∈ T N2.

From Lemma5.35, we obtain the following result.

Theorem 5.36 ([12]) Let M = NT × f Nθ be a warped product pointwise semi-
slant submanifold of a Sasakian manifold M̄ such that ξ ∈ T NT , where NT is an
invariant submanifold and Nθ is proper pointwise slant submanifold of M̄ . If M is
mixed totally geodesic, then M is the warped product of invariant submanifolds or
warping function is constant on M.

Proof From (5.31) and the assumption that M is mixed totally geodesic we have

sin2 θXln f g(Z ,W ) = 0.

The result follows from the above equation.

Lemma 5.37 ([12]) Let M = NT × f Nθ be a warped product pointwise semi-slant
submanifold of a Sasakian manifold M̄ such that ξ ∈ T NT , where NT is an invariant
submanifold and Nθ is proper pointwise slant submanifold of M̄ respectively. Then,
we have

g(AωψZW, X) − g(AωWψZ , X) = 2 cos2 θXln f g(Z ,W ), (5.32)

for any X ∈ T NT and Z ,W ∈ T Nθ .

Theorem 5.38 ([12])Let M = NT × f Nθ be awarpedproduct pointwise semi-slant
submanifold of a Sasakian manifold M̄ such that ξ ∈ T NT , where NT is an invariant
submanifold and Nθ is proper pointwise slant submanifold of M̄ . If M ismixed totally
geodesic, then M is contact CR-warped product submanifold NT × f N⊥ or warping
function is constant on M.

Proof From (5.32) and the assumption that M is mixed totally geodesic we have

cos2 θXln f g(Z ,W ) = 0.

The result follows from the above equation.

From Theorems5.36 and 5.38, one can conclude.

Corollary 5.39 ([12])There does not exist anymixed totally geodesic properwarped
product pointwise semi-slant submanifold M = NT × f Nθ of a Sasakian manifold.

Now,we have the following characterization for pointwise semi-slantwarped product
submanifolds of a Sasakain manifold.
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Theorem 5.40 ([12]) Let M be a pointwise semi-slant submanifold of a Sasakian
manifold M̄ . Then M is locally a nontrivial warped product submanifold of the form
NT × f Nθ , where NT is an invariant submanifold and Nθ is a proper pointwise slant
submanifold of M̄ if and only if

AωWφX − AωψW X = sin2 θX (μ)W, ∀X ∈ D ⊕ 〈ξ 〉, W ∈ Dθ , (5.33)

for some smooth function μ on M satisfying Z(μ) = 0 for any Z ∈ Dθ .

Example ([12]) Let R7(φ, ξ, η, g) be an almost contact metric manifold with carte-
sian coordinates (x1, x2, x3, y1, y2, y3, z) and the almost contact structure

φ

(
∂

∂xi

)
= − ∂

∂yi
, φ

(
∂

∂y j

)
= ∂

∂x j
, φ

(
∂

∂z

)
= 0, 1 ≤ i, j ≤ 3.

Let M be a submanifold of R7 defined by the immersions

x(u1, u2, u3, u4, z) =
(
u1, u3cosu4,

u3
2

, u2, u3 sin u4, u4, z

)

for any nonzero function u3 on M . Then the tangent space T M of M is spanned by
X1, X2, X3, X4 and X5,, where

X1 = ∂

∂x1
, X2 = ∂

∂y1
, X3 = cos u4

∂

∂x2
+ u3

∂

∂x3
+ sin u4

∂

∂y2
,

X4 = −u3sinu4
∂

∂x2
+ u3 sin u4

∂

∂y2
+ ∂

∂y3
, X5 = ∂

∂z
.

Then M is a pointwise semi-slant submanifold with invariant distribution D =
span{X1, X2} and pointwise slant distribution Dθ = span{X3, X4} with the slant

function θ = cos−1(2u3/
√
1 + u23).

In this continuation, Nadia Al-luhaibi and Meraj Ali Khan [20] studied warped
product pointwise semi-slant submanifolds of Sasakian space form and obtained
some existence conditions for these submanifolds. Further, they also estimate the
squared norm of the second fundamental form in terms of slant function and warping
function.

A Sasakian manifold M̄ is said to be a Sasakian space form [9] if it has constant
φ-holomorphic sectional curvature c and is denoted by M̄(c). The curvature tensor
R̄ of Sasakian space form M̄(c) is given by
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R̄(X,Y )U = c − 3

4
{g(Y,U )X − g(X,U )Y } + c − 1

4
{g(X, φU )φY

−g(Y, φU )φX + 2g(X, φY )φU + η(X)η(U )Y

−η(Y )η(U )X + g(X,U )η(Y )ξ − g(Y,U )η(X)ξ},

for any vector fields X,Y,U on M̄ .
Now, we have some initial results.

Lemma 5.41 ([20]) Suppose that NT × f Nθ is a warped product pointwise semi-
slant submanifold of a Sasakian manifold M̄. Then, we have

(i) ξ ln f = 0,
(ii) g(h(φX, Z), ωZ) = Xln f ‖Z‖2,
(iii) g(h(φX, Z), φh(X, Z)) = ‖hμ(X, Z)‖2 + cos2 θ(Xln f )2‖Z‖2,
∀ X ∈ T NT and Z ∈ T Nθ , where hμ is the μ component of h.

Proof From (2.12), Gauss equation, and (5.10), it is easy to see that ξ ln f = 0.
Moreover, replacing X by φX in part 2 of Lemma 5.17, using (2.1) and part (i), we
get the part (ii). To prove part (iii), on making use of Gauss equation and (2.10), we
get

h(φX, Z) = −η(X)Z + φh(X, Z) + φ∇Z X − ∇ZφX.

By utilizing (5.10), the form of above equation can be changed to as follow

h(φX, Z) = −η(X)Z + φh(X, Z) + Xln f φZ − φXln f Z .

By comparing the normal parts, we get

h(φX, Z) = φhμ(X, Z) + Xln f ωZ ,

taking inner product with φh(X, Z), we obtain

g(h(φX, Z), φh(X, Z)) = ‖hμ(X, Z)‖2 + Xln f g(φh(X, Z), ωZ). (5.34)

Calculating the last term of above equation by using Gauss equation, (2.12), and
Corollary5.21 as follows

g(φh(X, Z), ωZ) = g(h(φX, Z), ωZ) − sin2 θXln f ‖Z‖2.

Utilizing part (ii), we get

g(φh(X, Z), ωZ) = cos2 θXln f ‖Z‖2,

using in (5.34), we obtain the required result.
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Lemma 5.42 ([20]) Suppose that NT × f Nθ is a warped product pointwise semi-
slant submanifold of a Sasakian manifold M̄. Then

g(h(X, ψW ), ωZ) = −g(h(X, Z), ωψZ) = − cos2 θXln f ‖Z‖2,

for all X ∈ T NT , Z ∈ T Nθ .

Proof From the part (ii) of Lemma5.41, the following is attained

g(h(ψX, Z), ωZ) + g(h(ψX, Z), ωW ) = 2Xln f g(W, Z)

∀ X ∈ T NT and W, Z ∈ T Nθ . Replacing Z by ψW ∈ Dθ and using the fact that W
and ψW are perpendicular, the following is obtained

g(h(X, ψW ), ωW ) = −g(h(X,W ), ωψW ). (5.35)

Further by some routine computations, we get

ψXln f W − Xln f ψW = th(X,W ) − η(X)W.

Now taking inner product with Z ∈ T Nθ in the above equation, we have

ψXln f g(Z ,W ) − Xln f g(ψW, Z) = −g(h(X,W ), ωZ) − η(X)g(Z ,W ).

(5.36)
Interchanging W and Z and subtracting the resultant from Eq. (5.36) leads to

−g(h(X,W ), ωZ) + g(h(X, Z), ωW ) = 2Xln f g(W, ψZ).

In particular, replacing Z by ψW ∈ Dθ , we get

g(h(X,W ), ωψW ) − g(h(X, ψW ), ωW ) = −2 cos2 θXln f ‖W‖2. (5.37)

Using (1.4) yields

g(h(X, ψW ), ωW ) = −g(h(X,W ), ωψW ) = − cos2 θXln f ‖W‖2. (5.38)

Lemma 5.43 ([20]) On a warped product pointwise semi-slant submanifold M =
NT × f Nθ of a Sasakian manifold M̄, we obtain

q∑
i=1

[ 2p∑
j,k=1

g(h(φei , e
k), ωe j )g(h(ei , ψek), ωe j )

− g(h(ei , e
k), ωe j )g(h(φei , ψek), ωe j )

] = −4p cos2 θ‖∇ln f ‖2,
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where {e0 = ξ, e1, e2, . . . , eq , φe1, φe2, . . . , φeq} and {e1, e2, . . . , ep, sec θψe1,
. . . , sec θψep} are the frames of the orthonormal vector fields on T NT and T Nθ

respectively.

Proof First, we expand the left-hand term in the following way

q∑
i=1

[ 2p∑
j,k=1

g(h(φei , e
k),ωe j )g(h(ei , ψek), ωe j )

]

=
q∑

i=1

[ 2p∑
j=1

g(h(φei , e
j ), ωe j )g(h(ei , ψe j ), ωe j )

+
2p∑

j �=k=1

g(h(φei , e
k), ωe j )g(h(ei , ψek), ωe j )

]

=
q∑

i=1

[ 2p∑
j=1

g(h(φei , e
j ), ωe j )g(h(ei , ψe j ), ωe j )

+
p∑

j=1

g(h(φei , e
j ), ωe j+p)g(h(ei , ψe j ), ωe j+p)

+
p∑

j=1

g(h(φei , e
j+p), ωe j )g(h(ei , ψe j+p), ωe j )

]

=
q∑

i=1

[ 2p∑
j=1

g(h(φei , e
j ), ωe j )g(h(ei , ψe j ), ωe j )

+ sec2 θ

p∑
j=1

g(h(φei , e
j ), ωψe j )g(σ (ei , ψe j ), ωψe j )

−
p∑

j=1

g(h(φei , ψe j ), ωe j )g(h(ei , e
j ), ωe j )

]
.

Using part (ii) of Lemmas5.41, 5.42 and utilizing (5.13), we get

q∑
i=1

[ 2p∑
j,k=1

g(h(φei , e
k), ωe j )g(σ (ei , ψek), ωe j )

]

=
q∑

i=1

[
− 2p cos2 θ(ei ln f )

2 − 2p cos2 θ(φei ln f )
2 − 2pφei ln f η(ei )

]

= −2p cos2 θ‖∇ln f ‖2.
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Replacing ei by φei in above equation, we get

q∑
i=1

[ 2p∑
j,k=1

g(h(ei , e
k), ωe j j)g(h(φei , ψek), ωe j j)

]
= 2p cos2 θ‖∇ln f ‖2.

By subtracting the above two findings, the required result gets attained.

Theorem 5.44 ([20]) Suppose that M = NT × f Nθ is a warped product pointwise
slant submanifolds of a Sasakian space form M̄(c) such that NT is a compact sub-
manifold. Then M is a Riemannian product submanifold if the following inequalities
hold

2q∑
i=1

[ 2p∑
j=1

‖hμ(ei , e
j )‖2 ≤ qp(c − 1) sin2 θ − 2p(cos2 θ + 2 cot2 θ)‖∇ln f ‖2

and
q∑

i=1

2p∑
j=1

g(hμ(φei , e
j ), hμ(ei , ψe j )) ≥ 0,

where hμ stands for the component of h inμ, and (2q + 1) and 2p are the dimensions
of NT , and Nθ , respectively.

The squared norm of h with reference to the warping function and slant function is
provided in the next theorem.

Theorem 5.45 ([20]) Let M̄(c) be a (2m + 1)-dimensional Sasakian space form
and M = NT × f Nθ be an n−dimensional warped product pointwise slant subman-
ifolds such that NT is a 2q + 1−dimensional invariant submanifold and Nθ be a
2p−dimensional proper pointwise slant submanifold of M̄(c). If

q∑
i=1

2p∑
j=1

g(h(φei , e
j ), h(ei , ψe j )) ≥ 0,

then

(i) ‖h‖2 ≥ qp(c − 1) sin2 θ + 2p csc2 θ + 2p sin2 θ‖∇ln f ‖2 − 2p�(ln f ).
(5.39)
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(ii) The necessary and sufficient conditions for the equality sign of (5.39) to be held
identically are
(a) NT is totally geodesic invariant in M̄(c). Furthermore, it is a Sasakian space
form.
(b) Nθ is totally umbilical in M̄(c).
(c)

∑q
i=1

∑2p
j=1 g(h(φei , e j ), h(ei , ψe j )) = 0.
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1 Introduction

A differentiable map π : (M, gM) −→ (N , gN ) between Riemannian manifolds
(M, gM) and (N , gN ) is called a Riemannian submersion if π∗ is onto and it sat-
isfies

gN (π∗X1, π∗X2) = gM(X1, X2) (1.1)

for X1, X2 vector fields tangent to M , where π∗ denotes the derivative map. The
study of Riemannian submersions were studied by O’Neill [1] and Gray [2] see also
[3]. Riemannian submersions have several applications in mathematical physics.
Indeed, Riemannian submersions have their applications in the Yang–Mills the-
ory [42, 43], Kaluza–Klein theory [44, 45], supergravity and superstring theories
[46, 47] and more. Later, such submersions according to the conditions on the
map π : (M, gM) −→ (N , gN ), we have the following submersions: Riemannian
submersions [4], almost Hermitian submersions [5], invariant submersions [6–8],
anti-invariant submersions [7–13], lagrangian submersions [14, 15], semi-invariant
submersions [16, 17], slant submersions [18–22], semi-slant submersions [23–26],
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quaternionic submersions [27, 28], hemi-slant submersions [29, 30], pointwise slant
submersions [31, 32], etc. In [33], Lee defined anti-invariant ξ⊥-Riemannian sub-
mersions from almost contact metric manifolds and studied the geometry of such
maps.

As a generalization of anti-invariant ξ⊥-Riemannian submersions, Akyol et al. in
[34] defined the notion of semi-invariant ξ⊥-Riemannian submersions from almost
contact metric manifolds and investigated the geometry of such maps. In 2017,
Mehmet et al. [35], as a generalization of anti-invariant ξ⊥-Riemannian submersions,
semi-invariant ξ⊥-Riemannian submersions and slant Riemannian submersions,
defined and studied semi-slant ξ⊥-Riemannian submersions from Sasakian mani-
folds onto Riemannian manifolds. Very recently Ramazan Sari and Mehmet Akif
Akyol [36] also introduced and studied Hemi-slant ξ⊥-submersions and obtained
interesting results. On the other hand, in 1996, using Chen’s notion on slant sub-
manifold, Lotta [37] introduced the notion of slant submanifold in almost contact
metric manifold which was further generalized as semi-slant, hemi-slant and bi-slant
submanifolds. Motivated from these studies, Rajendra Prasad et al. introduced and
studied quasi hemi-slant submanifolds of cosymplectic manifolds.

The aim of this chapter is to discuss briefly some results of semi-slant ξ⊥-
submersions [35], hemi-slant ξ⊥-submersions [36] and quasi hemi-slant subman-
ifolds [38].

2 Riemannian Submersions

Let (M, gM) and (N , gN ) be two Riemannian manifolds. A Riemannian submersion
π : M −→ N is a map of M onto N satisfying the following axioms:

(i) π has maximal rank, and
(ii) The differential π∗ preserves the lenghts of horizontal vectors, that is π∗ is a

linear isometry.

The geometry of Riemannian submersion is characterized by O’Neill’s tensors T
and A defined as follows:

T (E1, E2) = H∇M

VE1
VE2 + V∇M

VE1
HE2 (2.1)

and
A(E1, E2) = H∇M

HE1
VE2 + V∇M

HE1
HE2 (2.2)

for any E1, E2 ∈ �(M), where ∇M
is the Levi-Civita connection on gM . Note that

we denote the projection morphisms on the vertical distribution and the horizontal
distribution by V and H , respectively. One can easily see that T is vertical, TE1 =
TVE1 and A is horizontal, AE1 = AHE1 . We also note that

TUV = TVU and AXY = −AY X = 1

2
V[X,Y ],
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for X,Y ∈ �((kerπ∗)⊥) and U, V ∈ �(kerπ∗).
On the other hand, from (2.1) and (2.2), we obtain

∇M

V W = TVW + ∇̂VW ; (2.3)

∇M

V X = TV X + H(∇M

V X); (2.4)

∇M

X V = V(∇M

X V ) + AXV ; (2.5)

∇M

X Y = AXY + H(∇M

X Y ), (2.6)

for any X,Y ∈ �((kerπ∗)⊥) and V,W ∈ �(kerπ∗). Moreover, if X is basic, then
H(∇M

V X) = AXV . It is easy to see that for U, V ∈ �(kerπ∗), TUV coincides with
the fibres as the second fundamental form andAXY reflecting the complete integra-
bility of the horizontal distribution.
A vector field on M is called vertical if it is always tangent to fibres. A vector field
on M is called horizontal if it is always orthogonal to fibres. A vector field Z on
M is called basic if Z is horizontal and π -related to a vector field Z̄ on N , i.e.,
π∗Z p = Z̄π∗(p) for all p ∈ M .

Lemma 2.1 (see [1, 3]) Let π : M −→ N be a Riemannian submersion. If X and
Y basic vector fields on M, then we get:

(i) gM(X,Y ) = gN (X̄ , Ȳ ) ◦ π,

(ii) H[X,Y ] is a basic and π∗H[X,Y ] = [X̄ , Ȳ ] ◦ π;
(iii) H(∇M

X Y ) is a basic, π -related to (∇ N

X̄
Ȳ ), where∇M

and∇ N
are the Levi-Civita

connection on M and N ;
(iv) [X, V ] ∈ �(kerπ∗) is vertical, for any V ∈ �(kerπ∗).

Let (M, gM) and (N , gN ) be Riemannian manifolds and π : M −→ N is a dif-
ferentiable map. Then the second fundamental form of π is given by

(∇π∗)(X,Y ) = ∇π

Xπ∗Y − π∗(∇XY ) (2.7)

for X,Y ∈ �(T M), where ∇π

is the pull back connection and ∇ is the Levi-Civita
connections of the metrics gM and gN .

Finally, let (M, gM) be a (2m + 1)-dimensional Riemannian manifold and T M
denote the tangent bundle of M. Then M is called an almost contact metric manifold
if there exists a tensor ϕ of type (1, 1) and global vector field ξ and η is a 1-form of
ξ , then we have

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1 (2.8)

ϕξ = 0, ηoϕ = 0 and gM(ϕX, ϕY ) = gM(X,Y ) − η(X)η(Y ), (2.9)

where X,Y are any vector fields on M. In this case, (ϕ, ξ, η, gM ) is called the almost
contact metric structure of M. The almost contact metric manifold (M, ϕ, ξ, η, gM )
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is called a contact metric manifold if

�(X,Y ) = dη(X,Y )

for any X,Y ∈ �(T M),where� is a 2-form inM definedby�(X,Y ) = gM(X, ϕY ).

The 2-form � is called the fundamental 2-form of M. A contact metric structure of
M is said to be normal if

[ϕ, ϕ] + 2dη ⊗ ξ = 0,

where [ϕ, ϕ] is Nijenhuis tensor of ϕ. Any normal contact metric manifold is called
a Sasakian manifold. Moreover, if M is Sasakian [39, 40], then we have

(∇M

X ϕ)Y = gM(X,Y )ξ − η(Y )X and ∇M

X ξ = −ϕX, (2.10)

where ∇M
is the connection of Levi-Civita covariant differentiation.

3 Semi-slant ξ⊥-Riemannian Submersions

In 2017, Mehmet et al. [35], as a generalization of anti-invariant ξ⊥-Riemannian
submersions, semi-invariant ξ⊥-Riemannian submersions and slant Riemannian sub-
mersions, defined and studied semi-slant ξ⊥-Riemannian submersions fromSasakian
manifolds onto Riemannian manifolds. In this Sect. 3, we will discuss some results
of this paper briefly.

Definition 3.1 Let (M, ϕ, ξ, η, gM ) be a Sasakian manifold and (N , gN ) be a Rie-
mannianmanifold. Suppose that there exists aRiemannian submersionπ : M −→ N
such that ξ is normal to kerπ∗. Then π : M −→ N is called semi-slant ξ⊥-
Riemannian submersion if there is a distribution D1 ⊆ ker π∗ such that

kerπ∗ = D1 ⊕ D2, ϕ(D1) = D1, (3.1)

and the angle θ = θ(U ) between ϕU and the space (D2)p is constant for nonzero
U ∈ (D2)p and p ∈ M , where D2 is the orthogonal complement of D1 in kerπ∗. As
it is, the angle θ is called the semi-slant angle of the submersion.

Now, let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ). Then, forU ∈ �(ker π∗), we
put

U = PU + QU (3.2)

where PU ∈ �(D1) and QU ∈ �(D2). For Z ∈ �(T M), we have

Z = VZ + HZ (3.3)
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where VZ ∈ �(kerπ∗) and HZ ∈ �((kerπ∗)⊥). For V ∈ �(kerπ∗), we get

ϕV = φV + ωV (3.4)

where φV and ωV are vertical and horizontal components of ϕV, respectively.
Similarly, for any X ∈ �((kerπ∗)⊥), we have

ϕX = BX + CX (3.5)

where BX (resp. CX ) is the vertical part (resp. horizontal part) of ϕX. Then the
horizontal distribution (kerπ∗)⊥ is decomposed as

(ker π∗)⊥ = ωD2 ⊕ μ, (3.6)

here μ is the orthogonal complementary distribution of ωD2 and it is both invariant
distribution of (kerπ∗)⊥ with respect to ϕ and contains ξ. By (2.9), (3.4) and (3.5),
we have

gM(φU1, V1) = −gM(U1, φV1) (3.7)

and

gM(ωU1, X) = −gM(U1,BX) (3.8)

for U1, V1 ∈ �(ker π∗) and X ∈ �((ker π∗)⊥). From (3.4), (3.5) and (3.6), we have

Lemma 3.2 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ). Then we obtain:

(a) φD1 = D1, (b) ωD1 = 0,

(c) φD2 ⊂ D2, (d) B(kerπ∗)⊥ = D2,

(e) TU1ξ = φU1, ( f ) ∇̂U1ξ = −ωU1,

for U1 ∈ �(ker π∗) and ξ ∈ �((kerπ∗)⊥).

Using (3.4), (3.5) and the fact that ϕ2 = −I + η ⊗ ξ, we have

Lemma 3.3 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ). Then we get

(i) φ2 + Bω = −id, (i i) C2 + ωB = −id,

(i i i) ωφ + Cω = 0, (iv) BC + φB = 0,

where I is the identity operator on the space of π.
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Let (M, ϕ, ξ, η, gM ) be a Sasakian manifold and (N , gN ) be a Riemannian mani-
fold. Let π : (M, ϕ, ξ, η, gM ) −→ (N , gN ) be a semi-slant ξ⊥-Riemannian submer-
sion.Wenowexamine how the Sasakian structure onM effects the tensor fieldsT and
A of a semi-slant ξ⊥-Riemannian submersion π : (M, ϕ, ξ, η, gM ) −→ (N , gN ).

Lemma 3.4 Let (M, ϕ, ξ, η, gM ) be a Sasakian manifold and (N , gN ) a Rieman-
nianmanifold. Letπ : (M, ϕ, ξ, η, gM ) −→ (N , gN )bea semi-slant ξ⊥-Riemannian
submersion. Then we have

BTUV + φ∇̂UV = ∇̂UφV + TUωV, (3.9)

gM(U, V )ξ + CTUV + ω∇̂UV = TUφV + H∇M

UωV, (3.10)

φTU X + B∇M

U X − η(X)U = ∇̂UBX + TUCX, (3.11)

ωTU X + C∇M

U X = TUBX + H∇M

UCX, (3.12)

gM(X,Y )ξ − ωAXY + CH∇M

X Y = AXBY + ∇M

XCY + η(Y )X, (3.13)

φAXY + BH∇M

X Y = V∇M

XBY + AXCY, (3.14)

for all X,Y ∈ �((ker π∗)⊥) and U, V ∈ �(ker π∗).

Proof Given U, V ∈ �(kerπ∗), by virtue of (2.10) and (3.4), we have

gM(U, V )ξ − η(V )U = ∇M

UφV + ∇M

UωV − ϕ∇M

U V .

Making use of (2.3), (2.4), (3.4) and (3.5), we have

gM(U, V )ξ = TUφV + ∇̂UφV + TUωV + H∇M

UωV

− BTUV − CTUV − φ∇̂UV − ω∇̂UV . (3.15)

Comparing horizontal and vertical parts, we get (3.9) and (3.10). The other assertions
can be obtained in a similar method. �

Theorem 3.5 Letπ : (M, ϕ, ξ, η, gM ) −→ (N , gN )bea semi-slant ξ⊥-Riemannian
submersion from a Sasakian manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold
(N , gN ). Then we have

φ2W = − cos2 θW, W ∈ �(D2), (3.16)

where θ denotes the semi-slant angle of D2.

Lemma 3.6 Let π : (M, ϕ, ξ, η, gM ) −→ (N , gN ) be a semi-slant ξ⊥-Riemannian
submersion from a Sasakian manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold
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(N , gN ) with a semi-slant angle θ. Then we have

gM(φW1, φW2) = cos2 θgM(W1,W2), (3.17)

gM(ωW1, ωW2) = sin2 θgM(W1,W2), (3.18)

for any W1,W2 ∈ �(D2).

3.1 Integrable and Parallel Distributions

In this section, we will discuss integrability conditions of the distributions involved
in the definition of a semi-slant ξ⊥-Riemannian submersion. First, we have

Theorem 3.7 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then:

(i) D1 is integrable ⇔ (∇π∗)(U, ϕV ) − (∇π∗)(V, ϕU ) /∈ �(π∗μ)

(ii) D2 is integrable ⇔ gN (π∗ωW, (∇π∗)(Z , ϕU )) + gN (π∗ωZ , (∇π∗)(W, ϕU )) = gM (φW, ∇̂ZϕU )

+ gM (φZ , ∇̂WϕU )

for U, V ∈ �(D1) and Z ,W ∈ �(D2).

Proof ForU, V ∈ �(D1) and X ∈ �((kerπ∗)⊥), since [U, V ] ∈ �(kerπ∗), we have
gM([U, V ], X) = 0. Thus, D1 is integrable ⇔ gM([U, V ], Z) = 0 for Z ∈ �(D2).

Since M is a Sasakian manifold, by (2.9) and (2.10), we have

gM(∇M

U V, Z) = gM(∇M

UϕV − gM(U, V )ξ − η(V )U, ϕZ)

= gM(∇M

UϕV, ϕZ). (3.19)

Using (3.4) in (3.19), we get

gM ([U, V ], Z) = −gM (∇M

U V, ϕφZ) + gM (H∇M

U ϕV, wZ) − gM (∇M

V U, ϕφZ) − gM (H∇M

V ϕU, wZ).

Now, by using (2.7) and (3.16), we get

gM([U, V ], Z) = cos2 θgM(∇M

U V, Z) − gN ((∇π∗)(U, ϕV ) + ∇π
Uπ∗ϕV, π∗wZ)

− cos2 θgM(∇M

V U, Z) + gN ((∇π∗)(V, ϕU ) + ∇π
Vπ∗ϕU, π∗wZ).

Thus, we have

(sin2 θ)gM([U, V ], Z) = −gN ((∇π∗)(U, ϕV ) − (∇π∗)(V, ϕU ), π∗wZ),

�
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which completes the proof.
Now for the geometry of leaves of D1, we have

Theorem 3.8 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the distribution D1 is parallel if and only if

gN ((∇π∗)(U, ϕV ), π∗ωZ) = gM(TUωφZ , V ) (3.20)

and

−gN ((∇π∗)(U, ϕV ), π∗CX) = gM(V, ∇̂UφBX + TUωBX) + gM(V, ϕU )η(X)

(3.21)

for U, V ∈ �(D1), Z ∈ �(D2) and X ∈ �((ker π∗)⊥).

Proof Making use of (3.19), (3.4) and (2.3), forU, V ∈ �(D1) and Z ∈ �(D2), we
have

gM(∇M

U V, Z) = −gM(∇M

U V, φ2Z) − gM(∇M

U V, ωφZ) + gM(H∇M

UϕV, ωZ).

By virtue of (2.7) and (3.16), we get

gM (∇M

U V, Z) = cos2 θgM (∇M

U V, Z) − gM (TUV, wφZ) + gN ((∇π∗)(U, ϕV ), π∗(wZ))

or

sin2 θgM(∇M

U V, Z) = −gM(TUwφZ , V ) + gN ((∇π∗)(U, ϕV ), π∗(wZ)),

which gives (3.20). On the other hand, from (2.9) and (2.10), we have

gM(∇M

U V, X) = gM(∇M

UϕV, ϕX) + gM(V, ϕU )η(X)

for U, V ∈ �(D1) and X ∈ �((ker π∗)⊥). By using (3.5), we obtain

gM (∇M

U V, X) = gM (V, ∇M

U φBX) + gM (V, ∇M

U ωBX) + gM (CX,H∇M

U ϕV ) + gM (V, ϕU )η(X).

Taking into account of (2.3), we write

gM(∇M

U V, X) = gM(V,TUφBX + ∇̂UφBX) + gM(V,TUωBX + H∇M

UωBX)

− gN (π∗(CX), π∗(H∇M

UϕV )) + gM(V, ϕU )η(X)

hence,
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gM(∇M

U V, X) = gM(V, ∇̂UφBX) + gM(V,TUωBX) + gN ((∇π∗)(U, ϕV ), π∗CX)

+ gM(V, ϕU )η(X).

which gives (3.21). This completes the assertion. �

Similarly for D2, we have:

Theorem 3.9 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the distribution D2 is parallel if and only if

gN (π∗ωW, (∇π∗)(Z , ϕU )) = gM(φW, ∇̂ZϕU ) (3.22)

and

gN ((∇π∗)(Z , ωW ), π∗(X)) − gN ((∇π∗)(Z , ωφW ), π∗(X)) = gM (TZωW,BX) + gM (W, ϕZ)η(X)

(3.23)

for any Z ,W ∈ �(D2),U ∈ �(D1) and X ∈ �((kerπ∗)⊥).

Theorem 3.10 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the distribution (ker π∗)⊥ is integrable if and only if

gN ((∇π∗)(Y, φV ), π∗(X)) + gN ((∇π∗)(X, φV ), π∗(X)) = gM (φV,V(∇M

X BY + ∇M

Y BX))

(3.24)

and

gN ((∇π∗)(X,CY ) − (∇π∗)(Y,CX), π∗ωW ) = gM (AXBY + AYBX, ωW )

+ η(Y )gM (X, ωW ) − η(X)gM (Y, ωW )

(3.25)

for X,Y ∈ �((kerπ∗)⊥), V ∈ �(D1) and W ∈ �(D2).

Proof Using (3.19), (2.9) and (2.10), we have for X,Y ∈ �((ker π∗)⊥) and V ∈
�(D1).

gM([X,Y ], V ) = gM(∇M

X ϕY, ϕV ) − gM(∇M

Y ϕX, ϕV ).

Now, by using (3.5), we obtain

gM ([X, Y ], V ) = −gM (BY, ∇M

X ϕV ) − gM (CY,∇M

X ϕV ) + gM (BX, ∇M

Y ϕV ) + gM (CX,∇M

Y ϕV ).

By using (2.5) and taking into account of the property of the map, we have
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gM([X,Y ], V ) = gM(ϕV,AYBX + V∇M

XBY ) − gN (π∗(CY ), π∗(∇M

X ϕV ))

− gM(ϕV,AXBY + V∇M

Y BX) − gN (π∗(CX), π∗(∇M

Y ϕV )).

Thus, we have

gM([X,Y ], V ) = gM(ϕV,V(∇M

XBY − ∇M

Y BX)) + gN (π∗(CY ), (∇π∗)(X, ϕV ))

− gN (π∗(CX), (∇π∗)(Y, ϕV )),

which gives (3.24). In a similar way, by virtue of (3.19), (2.9) and (2.10), we have
for X,Y ∈ �((ker π∗)⊥) and W ∈ �(D2),

gM([X,Y ],W ) = gM(ϕ∇M

X Y, φW ) + gM(ϕ∇M

X Y, ωW ) + η(Y )gM(X, ωW )

− gM(ϕ∇M

Y X, φW ) − gM(ϕ∇M

Y X, ωW ) − η(X)gM(Y, ωW ).

By virtue of (3.5) and (3.6), we have

gM ([X, Y ],W ) = −gM (∇M

X Y, φ2W ) − gM (∇M

X Y, ωφW ) + gM (∇M

X BY, ωW ) + gM (∇M

X CY, ωW )

− gM (∇M

Y X, φ2W ) − gM (∇M

Y X, ωφW ) + gM (∇M

Y BX, ωW ) + gM (∇M

Y CX, ωW )

+ η(Y )gM (X, ωW ) − η(X)gM (Y, ωW ).

Now, by using (3.16) and the property of the map, we get

gM ([X, Y ],W ) = cos2 θgM ([X, Y ],W ) + gN ((∇π∗)(X, Y ), ωφW ) + gM (AXBY, ωW )

− gN ((∇π∗)(X,CY ), π∗ωW ) − gN ((∇π∗)(Y, X), ωφW ) + gM (AYBX, ωW )

+ gN ((∇π∗)(Y,CX), π∗ωW ) + η(Y )gM (X, ωW ) − η(X)gM (Y, ωW ).

Thus, we have

sin2 θgM ([X, Y ],W ) = gN ((∇π∗)(Y,CX) − (∇π∗)(X,CY ), π∗ωW ) + gM (AXBY + AYBX, ωW )

+ η(Y )gM (X, ωW ) − η(X)gM (Y, ωW ),

which gives (3.25). This completes the proof. �

For the geometry of leaves (ker π∗)⊥, we have

Theorem 3.11 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the distribution (ker π∗)⊥ is parallel if and only if

gM(V,V∇M

X φBY + AXωBY ) = gN (π∗(CY ), (∇π∗)(X, ϕV )) (3.26)

and
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gM(AXωW,BY ) + η(Y )gM(X, ωW ) = gN ((∇π∗)(X,Y ), π∗ωφW )

− gN ((∇π∗)(X,CY ), π∗ωW ), (3.27)

for X,Y ∈ �((ker π∗)⊥), V ∈ �(D1) and W ∈ �(D2).

Theorem 3.12 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the distribution (kerπ∗) is parallel if and only if

gM (ωV,TUBX) + gM (V, φU )η(X) = gN ((∇π∗)(U,CX), π∗ωV ) − gN ((∇π∗)(U, X), π∗ωφV )

(3.28)

for any U ∈ �(D1), V ∈ �(D2) and X ∈ �((kerπ∗)⊥).

By virtue of Theorems 3.8, 3.9 and 3.11, we have the following theorem;

Theorem 3.13 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then the total space M is a locally product manifold of the leaves of D1,
D2 and (kerπ∗)⊥, i.e., M = MD1 × MD2 × M (kerπ∗)⊥ , if and only if

gN ((∇π∗)(U, ϕV ), π∗ωZ) = gM(TUωφZ , V ),

−gN ((∇π∗)(U, ϕV ), π∗CX) = gM(V, ∇̂UφBX + TUωBX) + gM(V, ϕU )η(X),

gN (π∗ωW, (∇π∗)(Z , ϕU )) = gM(φW, ∇̂ZϕU ),

gN ((∇π∗)(Z , ωW ), π∗(X)) − gN ((∇π∗)(Z , ωφW ), π∗(X))

= gM(TZωW,BX)

+ gM(W, ϕZ)η(X)

and

gM(V,V∇M

X φBY + AXωBY ) = gN (π∗(CY ), (∇π∗)(X, ϕV )),

gM(AXωW,BY ) + η(Y )gM(X, ωW ) = gN ((∇π∗)(X,Y ), π∗ωφW )

− gN ((∇π∗)(X,CY ), π∗ωW )

for X,Y ∈ �((ker π∗)⊥), U, V ∈ �(D1) and Z ,W ∈ �(D2).

From Theorems 3.11 to 3.12, we have the following theorem;
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Theorem 3.14 Let π : (M, ϕ, ξ, η, gM ) −→ (N , gN ) be a semi-slant ξ⊥-
Riemannian submersion from a Sasakian manifold (M, ϕ, ξ, η, gM ) onto a Rie-
mannian manifold (N , gN ) with a semi-slant angle θ. Then the total space M
is a locally (usual) product manifold of the leaves of kerπ∗ and (kerπ∗)⊥, i.e.,
M = Mkerπ∗ × M (kerπ∗)⊥ , if and only if

gM(V,V∇M

X φBY + AXωBY ) = gN (π∗(CY ), (∇π∗)(X, ϕV )),

gM(AXωW,BY ) + η(Y )gM(X, ωW ) = gN ((∇π∗)(X,Y ), π∗ωφW )

− gN ((∇π∗)(X,CY ), π∗ωW )

and

gM(ωV,TUBX) + gM(V, φU )η(X) = gN ((∇π∗)(U,CX), π∗ωV )

− gN ((∇π∗)(U, X), π∗ωφV )

for X,Y ∈ �((ker π∗)⊥),U, V ∈ �(D1) and W ∈ �(D2).

3.2 Totally Geodesic Semi-Slant ξ⊥-Submersions

Recall that a differential map π between two Riemannian manifolds is called totally
geodesic if ∇π∗ = 0 [41]. Then we have

Theorem 3.15 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then π is a totally geodesic map if

−∇π
Xπ∗Z2 = π∗(C(H∇M

X ωZ1 − AXφZ1 + AXBZ2 + H∇M

XCZ2) (3.29)

+ ω(AXωZ1 − V∇M

X φZ1 + V∇M

XBZ2 + AXCZ2)

− η(Z2)CX − η(X)η(Z2) − gM(Y,CX)ξ)

for any X ∈ �((kerπ∗)⊥) and Z = Z1 + Z2 ∈ �(T M), where Z1 ∈ �(kerπ∗) and
Z2 ∈ �((kerπ∗)⊥).

Proof Making use of (2.5), (2.9) and (2.10), we have

∇M

X Z = ϕ(∇M

X ϕ)Z − ϕ∇M

X ϕZ + η(∇M

X Z)ξ

for any Z ∈ �((kerπ∗)⊥) and X ∈ �(T M). Now, from (2.7), we have
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(∇π∗)(X, Z) = ∇π
Xπ∗Z + π∗(ϕ∇M

X ϕZ − ϕ(∇M

X ϕ)Z − η(∇M

X Z)ξ)

= ∇π
Xπ∗Z + π∗(ϕ(∇M

X ϕZ1 + ∇M

X ϕZ2) − η(Z)ϕX − η(∇M

X Z)ξ).

Or,

(∇π∗)(X, Z) = ∇π
Xπ∗Z2 + π∗(BAXφZ1 + CAXφZ1 + φV∇M

X φZ1 + ωV∇M

X φZ1

+ φAXωZ1 + ωAXωZ1 + BH∇M

X ωZ1 + CH∇M

X ωZ1

+ BAXBZ2 + CAXBZ2 + φV∇M

XBZ2 + ωV∇M

XBZ2

+ φAXCZ2 + ωAXCZ2 + BH∇M

XCZ2 + CH∇M

XCZ2

− η(Z2)ϕX − η(X)η(Z2) − gM(Z2,CX)ξ)

for any Z = Z1 + Z2 ∈ �(T M), where Z1 ∈ �(kerπ∗) and Z2 ∈ �((kerπ∗)⊥).

(∇π∗)(X, Z) = ∇π
Xπ∗Z2 + π∗(C(AXφZ1 + H∇M

X ωZ1 + AXBZ2 + H∇M

XCZ2)

+ ω(V∇M

X φZ1 + AXωZ1 + V∇M

XBZ2 + AXCZ2)

− η(Z2)CX − η(X)η(Z2) − gM(Z2,CX)ξ),

which gives (3.29). This completes the assertion. �

Theorem 3.16 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then π is a totally geodesic map if and only if

(i) gM(∇̂U1ϕV1,BZ) = gM(TU1CZ , ϕV1) − gM(V1, φU1)η(Z),

(ii) (gN (∇π∗(U2, ωφV2)) + gN (∇π∗(U2, ωV2))), π∗Z = gM (TU2ωV2,BZ) + gM (V2, φU2)η(Z)

(iii) gN (∇π∗(U,CX), π∗CY ) − gN (∇π∗(U, ωBX), π∗Y ) = gM (TUφBX, Y ) − gM (TUCX,BY )

+η(X)gM (QU, ϕY )−η(Y )[Uη(X)+gM (X, ωU )]
for any U1, V1 ∈ �(D1), U2, V2 ∈ �(D2), U ∈ �(kerπ∗) and X,Y, Z ∈ �

((kerπ∗)⊥).

Theorem 3.17 Let π be a semi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ) with a semi-slant
angle θ. Then π is a totally geodesic map if and only if

(i) C(TUφV + ∇M

UωV ) + ω(∇̂UφV + TUωV ) + gM(PV, φU )ξ = 0.
(ii) C(AXφU + H∇M

X ωU ) + ω(AXωU + V∇M

X φU ) + gM(QU,BX)ξ = 0.
(iii) C(TU1φV1 + H∇M

U1
φV1) + ω(TU1ωV1 + V∇M

U1
φV1) = 0,

for U1 ∈ �(D1), V1 ∈ �(D2), U, V ∈ �(kerπ∗) and X ∈ �((kerπ∗)⊥).
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3.3 Some Examples

Example 3.18 Every invariant submersion from a Sasakian manifold to a Rieman-
nian manifold is a semi-slant ξ⊥-Riemannian submersion with D2 = {0} and θ = 0.

Example 3.19 Every slant Riemannian submersion from a Sasakian manifold to a
Riemannian manifold is a semi-slant ξ⊥-Riemannian submersion with D1 = {0}.

Now, we construct some non-trivial examples of semi-slant ξ⊥-Riemannian sub-
mersion from a Sasakianmanifold. Let (R2n+1, g, ϕ, ξ, η) denote themanifoldR2n+1

with its usual Sasakian structure given by

ϕ(

n∑

i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂z
) =

n∑

i=1

(Yi
∂

∂xi
− Xi

∂

∂yi
)

g = η ⊗ η + 1

4

n∑

i=1

(dxi ⊗ dxi + dyi ⊗ dyi ),

η = 1

2
(dz −

n∑

i=1

yidxi ), ξ = 2
∂

∂z
,

where (x1, ..., xn, y1, ..., yn, z) are the Cartesian coordinates. Throughout this
section, we will use this notation.

Example 3.20 Let F be a submersion defined by

F : R
9 −→ R

5

(x1, x2, x3, x4, y1, y2, y3, y4, z) ( x1+x2√
2

,
y1+y2√

2
, sinαx3 − cosαx4, y4, z)

with α ∈ (0, π
2 ). Then it follows that

ker F∗ = span{Z1 = ∂

∂x1
− ∂

∂x2
, Z2 = ∂

∂y1
− ∂

∂y2
,

Z3 = − cosα
∂

∂x3
− sin α

∂

∂x4
, Z4 = ∂

∂y3
}

and

(ker F∗)⊥ = span{H1 = ∂

∂x1
+ ∂

∂x2
, H2 = ∂

∂y1
+ ∂

∂y2
, H3 = sin α

∂

∂x3
− cosα

∂

∂x4
,

H4 = ∂

∂y4
, H5 = ∂

∂z
= ξ}.

Hence, we have ϕZ1 = −Z2, ϕZ2 = Z1. Thus, it follows that D1 = span{Z1, Z2}
and D2 = span{Z3, Z4} is a slant distribution with slant angle θ = α. Thus, F is
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a semi-slant submersion with semi-slant angle θ. Also, by direct computations, we
obtain

gN (F∗H1, F∗H1) = gM(H1, H1), gN (F∗H2, F∗H2) = gM(H2, H2),

gN (F∗H3, F∗H3) = gM (H3, H3), gN (F∗H4, F∗H4) = gM (H4, H4), gN (F∗ξ, F∗ξ) = gM (ξ, ξ)

where gM and gN denote the standard metrics (inner products) of R9 and R
5. Thus,

F is a semi-slant ξ⊥-Riemannian submersion.

Example 3.21 Let F be a submersion defined by

F : R
7 −→ R

3

(x1, x2, x3, y1, y2, y3, z) (
x2−y3√

2
, y2, z).

Then the submersion F is a semi-slant ξ⊥-Riemannian submersion such that D1 =
span( ∂

∂x1
, ∂

∂y1
) and D2 = span( ∂

∂x2
+ ∂

∂y3
, ∂

∂x3
) with semi-slant angle α = π

4 .

Example 3.22 Let F be a submersion defined by

F : R
9 −→ R

3

(x1, x2, x3, x4, y1, y2, y3, y4, z) (sinαx3 − cosαx4, y4, z)

with α ∈ (0, π
2 ). Then the submersion F is a semi-slant ξ⊥-Riemannian submersion

such that D1 = span( ∂
∂x1

, ∂
∂x2

, ∂
∂y1

, ∂
∂y2

) and D2 = span(− cosα ∂
∂x3

− sin α ∂
∂x4

, ∂
∂y3

)

with semi-slant angle θ = α.

Example 3.23 Let F be a submersion defined by

F : R
13 −→ R

7

(x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5, y6, z) ( x1−x2√
2

,
y1−y2√

2
, x3+x4√

2
,
y3+y4√

2
,
x5−x6√

2
, y5, z).

Then the submersion F is a semi-slant ξ⊥-Riemannian submersion such that D1 =
span( ∂

∂x1
+ ∂

∂x2
, ∂

∂y1
+ ∂

∂y2
, ∂

∂x3
− ∂

∂x2
, ∂

∂y3
− ∂

∂y4
) andD2 = span( ∂

∂x5
+ ∂

∂x6
, ∂

∂y6
)with

semi-slant angle α = π
4 .

4 Hemi-Slant ξ⊥-Riemannian Submersions

Very recently Ramazan SarıandMehmet Akif Akyol [36] also introduced and studied
hemi-slant ξ⊥-submersions and obtained interesting results. In this Sect. 4, our aim
is to discuss briefly some results of this paper.
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Definition 4.1 Let (M, ϕ, ξ, η, gM ) be a Sasakian manifold and (N , gN ) be a Rie-
mannianmanifold. Suppose that there exists aRiemannian submersionφ : M −→ N
such that ξ is normal to kerφ∗. Then φ is called a hemi-slant ξ⊥-Riemannian sub-
mersion if the vertical distribution kerφ∗ of φ admits two orthogonal complementary
distributionsD⊥ andDθ such thatD⊥ is anti-invariant andDθ is slant, i.e., we have

ker φ∗ = D⊥ ⊕ Dθ .

In this case, the angle θ is called the slant angle of the hemi-slant ξ⊥-Riemannian
submersion.

If θ �= 0, π
2 then we say that the submersion is proper hemi-slant ξ⊥-Riemannian

submersion. Now, we are going to give some proper examples in order to guaran-
tee the existence of hemi-slant ξ⊥-Riemannian submersions in Sasakian manifolds
and demonstrate that the method presented in this paper is effective. Note that,
(R2n+1, ϕ, η, ξ, gR2n+1) will denote the manifold R

2n+1 with its usual contact struc-
ture given by

η = 1

2
(dz −

n∑

i=1

yidxi ), ξ = 2
∂

∂z
,

g = η ⊗ η + 1

4

n∑

i=1

(dxi ⊗ dxi + dyi ⊗ dyi ),

ϕ(

n∑

i=1

(Xi∂x
i + Yi∂y

i ) + Z∂z) =
n∑

i=1

(Yi∂x
i − Xi∂y

i )

where (x1, .., xn, y1, ..., yn, z) denotes the Cartesian coordinates on R
2n+1.

Example 4.2 Every anti-invariant ξ⊥-Riemannian submersion from a Sasakian
manifold onto a Riemannian manifold is a hemi-slant ξ⊥-Riemannian submersion
withDθ = {0}.
Example 4.3 Every slant ξ⊥-Riemannian submersion from a Sasakian manifold
onto a Riemannian manifold is a hemi-slant ξ⊥-Riemannian submersion withD⊥ =
{0}.
Example 4.4 Let φ be a submersion defined by

φ : (R9, gR9) → (R5, gR5)

(x1, x2, x3, x4, y1, y2, y3, y4, z) (
x1+y2√

2
,
x2+y1√

2
, sin γ x3 − cos γ x4, y4, z)

with γ ∈ (0, π
2 ). Then it follows that

ker φ∗ = Sp{V1 = −∂x1 + ∂y2, V2 = −∂x2 + ∂y1, V3 = − cos γ ∂x3 − sin γ ∂x4,

V4 = ∂y3}
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and

(ker φ∗)⊥ = Sp{W1 = ∂x1 + ∂y2,W2 = ∂x2 + ∂y1,W3 = sin γ ∂x3 − cos γ ∂x4,

W4 = ∂y4,W5 = ∂z}

hence we have ϕV1 = W2, ϕV2 = W1. Thus, it follows that D⊥ = sp{V1, V2} and
Dθ = sp{V3, V4} is a slant distribution with slant angle θ = γ. Thus, φ is a slant
ξ⊥-submersion. Also by direct computations, we have

gR9(Wi ,Wi ) = gR5(ϕWi , ϕWi ), i = 1, ..., 5

which show that φ is a slant ξ⊥-Riemannian submersion.

Example 4.5 Let F be a submersion defined by

F : (R9, gR9) −→ (R5, gR5)

(x1, ..., y1, ..., z) (
x1+y2√

2
,
x2+y1√

2
, x3+x4√

2
,
y3+y4√

2
, z).

The submersion F is hemi-slant ξ⊥-Riemannian submersion such that D⊥ =
span{∂x1 − ∂y2, ∂x2 − ∂y1} andDθ = span{∂x3 + ∂x4, ∂y3 + ∂y4}withhemi-slant
angle θ = 0.

Example 4.6 Let π be a submersion defined by

π : (R7, gR7) −→ (R4, gR4)

(x1, ..., y1, ..., z) ( x1+x2√
2

, sin γ x3 − cos γ y4, cosβx4 − sin βy3, z).

The submersion π is a hemi-slant ξ⊥-Riemannian submersion such that D⊥ =
span{∂x1 − ∂x2} and Dθ = span{cos γ ∂x3 − sin γ ∂y4, sin β∂x4 − cosβ∂y3} with
hemi-slant angle θ = α + β.

Let φ be a hemi-slant ξ⊥-Riemannian submersion from a Sasakian manifold
(M, ϕ, ξ, η, gM ) onto a Riemannian manifold (N , gN ). Then, forU ∈ �(kerφ∗), we
put

U = PU + QU

where PU ∈ �(D⊥) and QU ∈ �(Dθ ). For Z ∈ �(T M), we have

Z = VZ + HZ

where VZ ∈ �(kerφ∗) and HZ ∈ �(kerφ∗)⊥.
We denote the complementary distribution to ϕD⊥ in (kerφ∗)⊥ by μ. Then we

have
(kerφ∗)⊥ = ϕD⊥ ⊕ μ,

where ϕ(μ) ⊂ μ. Hence μ contains ξ. For V ∈ �(kerφ∗), we write
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ϕV = ρV + ωV (4.1)

where ρV and ωV are vertical (resp. horizontal) components of ϕV , respectively.
Also, for X ∈ �((kerφ∗)⊥), we have

ϕX = BX + CX, (4.2)

where BX and CX are vertical (resp. horizontal) components of ϕX , respectively.
Then the horizontal distribution (kerφ∗)⊥ is decomposed as

(kerφ∗)⊥ = ϕD⊥ ⊕ μ,

here μ is the orthogonal complementary distribution of D⊥ and it is both invariant
distribution of (kerφ∗)⊥ with respect to ϕ and contains ξ. Then by using (2.3), (2.4),
(4.1) and (4.2), we get

(∇M

V ρ)W = BTVW − TVωW (4.3)

(∇M

V ω)W = CTVW − TVρW (4.4)

for V,W ∈ �(kerφ∗), where

(∇M

V ρ)W = ∇̂VρW − ρ∇̂VW

and
(∇M

V ω)W = H∇M

V ωW − ω∇̂VW.

Lemma 4.7 Let φ : M → N be a hemi-slant ξ⊥-Riemannian submersion from a
Sasakian manifold (M, ϕ, η, ξ, gM ) onto a Riemannian manifold (N , gN ). Then we
have

ρ2W = cos2 θW, W ∈ �(Dθ ), (4.5)

where θ denotes the hemi-slant angle of kerφ∗.

Lemma 4.8 Let φ : M → N be a hemi-slant ξ⊥-Riemannian submersion from a
Sasakian manifold (M, ϕ, η, ξ, gM ) onto a Riemannian manifold (N , gN ). Then we
have

gM(ρU, ρV ) = cos2 θgM(U, V ) (4.6)

gM(ωU, ωV ) = sin2 θgM(U, V ) (4.7)

for all U, V ∈ �(kerφ∗).
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4.1 Integrable and Parallel Distributions

Theorem 4.9 Let φ be a hemi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then the distributionD⊥ is integrable if and only if we have

gM(TUϕV − TVϕU, ρZ) = gN ((∇φ∗)(V, ϕU ) − (∇φ∗)(U, ϕV ), φ∗(ωZ))

for any U, V ∈ �(D⊥) and Z ∈ �(Dθ ).

Proof For U, V ∈ �(T M), by using (2.9) and (2.10), we have

gM(∇M
U V, Z) = gM(∇M

U ϕV, ϕZ). (4.8)

For U, V ∈ �(D⊥), Z ∈ �(Dθ ), using (2.9 ) and (4.8), we have

gM([U, V ], Z) = gM(∇M
U ϕV, ϕZ) − gM(∇M

V ϕU, ϕZ).

On the other hand, we get

gM([U, V ], Z) = gM(TUϕV − TVϕU, ρZ) + gM(H(∇M
U ϕV ) − H(∇M

V ϕU ), wZ).

Or,

gM([U, V ], Z) = gM(TUϕV − TVϕU, ρZ)

+ gN (φ∗(∇M
U ϕV ) − φ∗(∇M

V ϕU ), φ∗(ωZ))

which proves assertion. �

Theorem 4.10 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then the distributionDθ is integrable if and only if we have

gN ((∇φ∗)(Z , ωW ) − (∇φ∗)(W, ωZ), ϕU ) = gM(TZωρW − TWwρZ ,U )

for any Z ,W ∈ �(Dθ ) and U ∈ �(D⊥).

Proof For Z ,W ∈ �(Dθ ) and U ∈ �(D⊥), using (2.9) and (4.8) we have

gM([Z ,W ],U ) = gM(∇M
Z ϕW, ϕU ) − gM(∇M

W ϕZ , ϕU ).

Therefore, by using (4.1), we get
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gM([Z ,W ],U ) = −gM(∇M
Z ρ2W,U ) − gM(∇M

Z ωρW,U )

+gM(∇M
Z ωW, ϕU ) + gM(∇M

W ρ2Z ,U )

+gM(∇M
W ωρZ ,U ) − gM(∇M

W ωZ , ϕU ).

Now, by virtue of (3.16), we obtain

gM([Z ,W ],U ) = cos2 θgM([Z ,W ],U ) − gM(∇M
Z ωρW,U )

+gM(∇M
Z ωW, ϕU ) + gM(∇M

W ωρZ ,U )

−gM(∇M
W ωZ , ϕU ).

Then we have

sin2 θgM([Z ,W ],U ) = gM(∇M
W ωρZ − ∇M

Z ωρW,U )

+ gM(∇M
Z ωW − ∇M

W ωZ , ϕU ).

On the other hand, we have

sin2 θgM([Z ,W ],U ) = gM(TWωρZ − TZωρW,U )

+gM(H(∇M
Z ωW ) − H(∇M

W ωZ), ϕU )

= gM(TWωρZ − TZωρW,U )

+gN (φ∗(∇M
Z ωW ) − φ∗(∇M

W ωZ), ϕU )

which proves assertion. �

Theorem 4.11 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then the distribution D⊥ is parallel if and only if

gM(φ∗(∇UV ), φ∗(ωρZ)) = gM(ϕ∇UV, ωZ)

and
gM(∇̂UρV + TUωV, BX) = −gM(TUρV + H(∇UωV ),CX)

for any U, V ∈ �(D⊥), Z ∈ �(Dθ ), X ∈ �((ker φ∗)⊥).

Proof For U, V ∈ �(D⊥), Z ∈ �(Dθ ) using (2.9), we get

gM(∇UV, Z) = gM(ϕ∇UV, ϕZ) + η(∇UV )η(Z)

= gM(ϕ∇UV, ϕZ).

Or,
gM(∇UV, Z) = −gM(∇UV, ρ2Z + ωρZ + ϕωZ).
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Then one obtains

sin2 θgM(∇UV, Z) = −gM(H(∇UV ), ωρZ) + gM(ϕ∇UV, ωZ).

By property of φ, we get

sin2 θgM(∇UV, Z) = −gN (φ∗(∇UV ), φ∗(ωρZ)) + gM(ϕ∇UV, ωZ).

On the other hand, for U, V ∈ �(D⊥), X ∈ �((ker φ∗)⊥), we have

gM(∇UV, X) = gM(∇UϕV, ϕX).

Now, by virtue of (2.3) and (4.1), we obtain

gM(∇UV, X) = gM(TUρV,CX) + gM(∇̂ρV, BX)

+ gM(TUωV, BX) + gM(H(∇UωV ),CX)

which completes the proof. �

Theorem 4.12 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then the distribution Dθ is parallel if and only if

gN (φ∗(ωW ), (∇φ∗)(Z , ϕU )) = gM(ρW,TZϕU )

and

gN ((∇φ∗)(∇ZωρW ), φ∗(X)) − gN ((∇φ∗)(∇ZωW ), φ∗(CX))

= −gM(TZωW, BX) + gM(ωW, Z)η(X).

for all Z ,W ∈ �(Dθ ), U ∈ �(D⊥), X ∈ �((ker φ∗)⊥).

Theorem 4.13 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then D⊥ defines a totally geodesic foliation on M if and only if

gN ((∇φ∗)(U, ϕV ), φ∗(ωZ)) = −gM(TUV, ωρZ)

and
gM(TUϕV, BX) = gN ((∇φ∗)(U, ϕV ), φ∗(CX))

for any U, V ∈ �(D⊥), Z ∈ �(Dθ ), X ∈ �((ker φ∗)⊥).

Proof For U, V ∈ �(D⊥), Z ∈ �(Dθ ), from (2.9), (2.3), (2.4), (4.1) to (4.5), we
have
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gM(∇UV, Z) = cos2 θgM(∇UV, Z) − gM(TUV, ωρZ) + gM(H(∇UϕV ), wZ).

Or,

sin2 θgM(∇UV, Z) = −gM(TUV, wρZ) − gN (φ∗(∇UϕV ), φ∗(ωZ)).

On the other hand, for X ∈ �((ker φ∗)⊥), we have

gM(∇UV, X) = gM(TUϕV, BX) + gM(H(∇UϕV ),CX).

Or,

gM(∇UV, X) = gM(TUϕV, BX) − gN (φ∗(∇UϕV ), φ∗(CX)).

This completes the proof. �

Theorem 4.14 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then Dθ defines a totally geodesic foliation on M if and only if

gN ((∇φ∗)(Z , ωW ), φ∗(ϕU )) = −gM(TZωρW,U )

and

gN ((∇φ∗)(Z , ωρW ), φ∗(X)) + gN ((∇φ∗)(Z , ωW ), φ∗(CX)) = gM(TZωW, BX)

for any Z ,W ∈ �(Dθ ),U ∈ �(D⊥), X ∈ �((ker φ∗)⊥).

4.2 Hemi-Slant ξ⊥-Riemannian Submersions on Sasakian
Space Forms

Aplane section in the tangent spaceTpM at p ∈ M is called aϕ-section if it is spanned
by a vector X orthogonal to ξ and ϕX . The sectional curvature of ϕ-section is called
ϕ-sectional curvature. A Sasakian manifold with constant ϕ-sectional curvature c is
a Sasakian space form. The Riemannian curvature tensor of a Sasakian space form
is given by
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RM(X,Y, Z ,W ) = c + 3

4
{gM(Y, Z)gM (X,W ) − gM(X, Z)gM(Y,W )}

+ c − 1

4
{gM(Y,W )η(X)η(Z) − gM(X,W )η(Y )η(Z)

+ gM(X, Z)η(Y )η(W ) − gM(Y, Z)η(X)η(W )

+ gM(ϕY, Z)gM (ϕX,W ) − gM(ϕX, Z)gM (ϕY,W )

− 2gM(ϕX,Y )gM (ϕZ ,W )} (4.9)

for any X,Y, Z ,W ∈ �(T M) [39].

Theorem 4.15 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then we have

R̂(U, V,W, S) = c + 3

4
{gM(V, S)gM(U,W ) − gM(U, S)gM(V,W )} (4.10)

+ gM(TVW,TU S) − gN (TUW,TV S)

and

K̂ (U, V ) = c + 3

4
{gM(U, V )2 − 1} + gM(TVU,TUV ) − gM(TUU,TV V )

(4.11)
for all U, V, S,W ∈ �(D⊥).

Proof For anyU, V, S,W ∈ �(D⊥) by using (4.9),ϕU ∈ �((ker φ∗)⊥) andη(U ) =
0, then we have

RM(U, V, S,W ) = c + 3

4
{gM(V, S)gM(U,W ) − gM(U, S)gM(V,W )}. (4.12)

Hence, we have

R̂(U, V,W, S) = c + 3

4
{gM(V, S)gM (U,W ) − gM(U, S)gM(V,W )}

+ gM(TVW,TU S) − gM(TUW,TV S)

which completes the proof. �

Corollary 4.16 Let φ be a hemi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (Mm, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ and m ≥ 3. IfD⊥ is totally geodesic, then M is flat if and only if c = −3.

Theorem 4.17 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . IfD⊥ is totally geodesic, then
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τ̂⊥ = c + 3

2
q(1 − 2q)

where τ̂⊥ is the scaler curvature.

Proof We have

Ŝ⊥(U, V ) =
2q∑

i=1

R̂(Ei ,U, V, Ei )

where {E1, ..., E2q} is ortonormal basis on �(D⊥) and U, V ∈ �(D⊥). Thus, one
obtains

Ŝ⊥(U, V ) =
2q∑

i=1

{c + 3

4
{gM(U, Ei )gM(Ei , V ) − gM(Ei , Ei )gM(U, V )}}.

Or,

Ŝ⊥(U, V ) = c + 3

4
(1 − 2q)gM(U, V ). (4.13)

By taking U = V = Ek, k = 1, ..., 2q, we get the result. �

Corollary 4.18 Let φ be a hemi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . IfD⊥ is totally geodesic distribution, thenD⊥ is Einstein.

Theorem 4.19 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . Then we have

R̂(K , L , P,W ) = c + 3

4
{gM(L , P)gM(K ,W ) − gM(K , P)gM(L ,W )}

+ c − 1

4
{gM(ϕL , P)gM(ϕK ,W )

− gM(ϕK , P)gM(ϕL ,W ) − 2gM(ϕK , L)gM(ϕP,W )}
+ gM(TL P,TKW ) − gM(TK P,TLW ) (4.14)

and

K̂ (K , L) = c + 3

4
{gM(L , K )gM(K , L) − gM(K , K )gM(L , L)}

− 3
c − 1

4
gM(ϕK , L) + gM(TLK , TK L) − gM(TK K ,TL L) (4.15)

for all K , L , P, N ∈ �(Dθ ).
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Theorem 4.20 Let φ be a hemi-slant ξ⊥ Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . IfDθ is totally geodesic, then we have

k̂θ = p
(c + 3)(2p − 1) + 3(c − 1) cos2 θ

2
.

Proof For any K , L ∈ �(Dθ ), using (4.14), we derive

Ŝθ (K , L) = c + 3

4
(2p − 1)gM(K , L) + 3

c − 1

4
cos2 θgM(K , L) (4.16)

where {E1, ..., E2p} is orthonormal basis on �(Dθ ). From the above equation, we
obtain the proof. �

Corollary 4.21 Let φ be a hemi-slant ξ⊥-Riemannian submersion from a Sasakian
manifold (M, ϕ, η, ξ, gM ) onto Riemannian manifold (N , gN ) with a hemi-slant
angle θ . IfDθ is totally geodesic distribution, thenDθ is Einstein.

5 Quasi Hemi-slant Submanifolds of Cosymplectic
Manifolds

In this Sect. 5, we will finally discuss some results of quasi hemi-slant submanifolds
introduced and studied by Rajendra Prasad et al. [38]. First, we have

Definition 5.1 A submanifold M of an almost contact metric manifold M is called
a quasi hemi-slant submanifold if there exist distributions D, Dθ and D⊥ such that
(i) T M admits the orthogonal direct decomposition as

T M = D ⊕ Dθ ⊕ D⊥⊕ < ξ > .

(ii) The distribution D is φ invariant, i.e., φD = D.
(iii) For any nonzero vector field X ∈ (Dθ )p, p ∈ M, the angle θ between J X and
(Dθ )p is constant and independent of the choice of point p and X in (Dθ )p.

(iv) The distribution D⊥ is φ anti-invariant, i.e., φD⊥ ⊆ T⊥M .

In this case, we call θ the quasi hemi-slant angle of M . Suppose the dimension of
distributions D, Dθ and D⊥ are n1, n2 and n3, respectively. Then we can easily see
the following particular cases:
(i) If n1 = 0, then M is a hemi-slant submanifold.
(ii) If n2 = 0; then M is a semi-invariant submanifold.
(iii) If n3 = 0, then M is a semi-slant submanifold.
We say that a quasi hemi-slant submanifold M is proper if D �= {0}, D⊥ �= {0} and
θ �= 0, π

2 .
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This means that the notion of quasi hemi-slant submanifold is a generalization of
invariant, anti-invariant, semi-invariant, slant, hemi-slant, semi-slant submanifolds.
Let M be a quasi hemi-slant submanifold of an almost contact metric manifold M .
We denote the projections of X ∈ �(T M) on the distributions D, Dθ and D⊥ by P ,
Q and R, respectively. Then we can write for any X ∈ �(T M)

X = PX + QX + RX + η (X) ξ. (5.1)

Now we put
φX = T X + N X, (5.2)

where T X and N X are tangential and normal components of φX on M . Using (5.1)
and (5.2), we obtain

φX = T PX + N PX + T QX + NQX + T RX + N RX.

Since φD = D and φD⊥ ⊆ T⊥M , we have N PX = 0 and T RX = 0. Therefore,
we get

φX = T PX + T QX + NQX + N RX. (5.3)

Then for any X ∈ �(T M), it is easy to see that

T X = T PX + T QX

and
N X = NQX + N RX.

For any V ∈ �(T⊥M), we can put

φV = tV + nV

where tV and nV are the tangential and normal componenets of φV on M ,
respectively.

Analmost contactmetricmanifold is called a cosymplecticmanifold if (∇̂Xφ)Y =
0, ∇̂Xξ = 0 ∀ X, Y ∈ �(T M̂), where ∇̂ represents the Levi-Civita connection of
(M̂, g).
The covariant derivative of φ is defined as

(∇̂Xφ)Y = ∇̂XφY − φ∇̂XY.

If M̂ is a cosymplectic manifold, then we have

φ∇̂XY = ∇̂XφY.
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Let M be a Riemannian manifold isometrically immersed in M̂ and the induced
Riemannian metric on M is denoted by the same symbol g throughout this paper.
Let A and h denote the shape operator and second fundamental form, respectively,
of submanifolds of M into M̂ . The Gauss and Weingarten formulas are given by

∇̂XY = ∇XY + h(X,Y )

and
∇̂XV = −AV X + ∇⊥

X V

for any vector fields X, Y ∈ �(T M) and V on �(T⊥M), where ∇ is the induced
connection on M and ∇⊥ represents the connection on the normal bundle T⊥M of
M and AV is the shape operator of M with respect to normal vector V ∈ �(T⊥M).

Moreover, AV and the second fundamental form h : T M ⊗ T M −→ T⊥M of M
into M̂ are related by

g(h(X,Y ), V ) = g(AV X,Y ),

for any vector fields X,Y ∈ �(T M) and V on �(T⊥M).

5.1 Integrability of Distributions

Theorem 5.2 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M . Then the invariant distribution D is integrable if and only if

g(∇XTY − ∇Y T X, T QZ) = g(h(Y, T X) − h(X, TY ), NQZ + N RZ)

for any X, Y ∈ �(D) and Z ∈ �(Dθ ⊕ D⊥).

Proof For a cosymplectic manifold, we have

∇Xξ = 0 ∀ X ∈ �(D). (5.4)

If Y ∈ �(D), then g(Y, ξ) = 0. Thus, one gets

g(∇XY, ξ) + g(Y,∇Xξ) = 0. (5.5)

Now, g([X,Y ], ξ) = g(∇XY, ξ) − g(∇Y X, ξ) = 0.
Also, we have

g([X,Y ], Z) = g(∇XφY, φZ) − g(∇YφX, φZ) = g(∇XTY

−∇Y T X, T QZ) + g(h(X, TY ) − h(Y, T X), NQZ + N RZ)

which completes the proof. �
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Similarly, we have

Theorem 5.3 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold (M, g, φ). Then the slant distribution Dθ is integrable if and only if

g(ANW Z − ANZW, T PX) = g(ANTW Z − ANT ZW, X)

+g(∇⊥
Z NW − ∇⊥

W N Z , N RX)

for any Z , W ∈ �(Dθ ) and X ∈ �(D ⊕ D⊥).

Theorem 5.4 Let M be a quasi hemi-slant submanifold of a cosymplectic manifold
M . Then the anti-invariant distribution D⊥ is integrable if and only if

g(T ([Z ,W ]), T X) = g(∇⊥
W N Z − ∇⊥

Z NW, NQX)

for any Z ,W ∈ �(D⊥) and X ∈ �(D ⊕ Dθ ).

5.2 Totally Geodesic Foliations

Theorem 5.5 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M . Then M is totally geodesic if and only if

g(h(X, PY ) + cos2 θh(X, QY ),U ) = g(∇⊥
X NT QY,U )

+g(ANQY X + ANRY X, tU ) − g(∇⊥
X NY, nU )

for any X,Y ∈ �(T M) and U ∈ �(T⊥M).

Proof For any X, Y ∈ �(T M), U ∈ �
(
T⊥M

)
, we have

g(∇XY,U ) = g(∇X PY,U ) + g(∇X QY,U ) + g(∇X RY,U )

= g(∇XφPY, φU ) + g(∇XT QY, φU ) + g(∇X NQY, φU )

+g(∇XφRY, φU ).

g(∇XY,U ) = g(h(X, PY ) + cos2 θh(X, QY ),U ) − g(∇⊥
X NT QY,U )

−g(ANQY X + ANRY X, tU ) + g(∇⊥
X NY, nU )

which completes the proof. �

Similarly, we have

Theorem 5.6 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M . Then anti-invariant distribution D⊥ defines totally geodesic foliation
if and only if
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g(AφY X, T PZ + t QZ) = g(∇⊥
X φY , nQZ), g(AφY X, tV ) = g(∇⊥

X φY, nV )

for any X, Y ∈ �(D⊥), Z ∈ �(D ⊕ Dθ ) and V ∈ �
(
T⊥M

)
.

Theorem 5.7 Let M be a proper quasi hemi-slant submanifold of a cosymplectic
manifold M . Then the slant distribution Dθ defines a totally geodesic foliation on
M if and only if

g(∇⊥
X NY, N RZ) = g(ANY X, T PZ) − g(ANTY X, Z), and

g(ANY X, tV ) = g(∇⊥
X NY, nV ) − g(∇⊥

X NTY, V )

for any X,Y ∈ �(Dθ ), Z ∈ �(D ⊕ D⊥) and V ∈ �
(
T⊥M

)
.

5.3 Examples

Now we discuss few examples from [38]

Example 5.8 Let us consider a 15-dimensional differentiable manifold

M = {(xi , yi,z) = (x1, x2, ..., x7, y1, y2, ..., y7, z) ∈ R15}.

And choose the vector fields

Ei = ∂

∂yi
, E7+i = ∂

∂xi
, E15 = ξ = ∂

∂z
, for i = 1, 2, ..., 7.

Let g be a Riemannian metric defined by

g = (dx1)
2 + (dx2)

2 + · · · + (dx7)
2 + (dy1)

2 + (dy2)
2 + · · · + (dy7)

2 + (dz)2.

We define (1, 1)-tensor field φ as

φ

(
∂

∂xi

)
= ∂

∂yi
, φ

(
∂

∂y j

)
= − ∂

∂x j
, φ

(
∂

∂z

)
= 0 ∀ i, j = 1, 2, ..., 7.

Thus, (M, φ, ξ, η, g) is an almost contact metric manifold. Also, we can easily show
that (M, φ, ξ, η, g) is a cosymplectic manifold of dimension 15.

Let M be a submanifold of M defined by

f (u, v, w, r, s, t, q) =
(
u, w, 0,

s√
2
, 0,

t√
2
, 0, v, r cos θ, r sin θ, 0,

s√
2
, 0,

t√
2
, q

)
,

where 0 < θ < π
2 . Now the tangent bundle of M is spanned by the set {Z1, Z2, Z3,

Z4, Z5, Z6, Z7}, where
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Z1 = ∂

∂x1
, Z2 = ∂

∂y1
, Z3 = ∂

∂x2
,

Z4 = cos θ
∂

∂y2
+ sin θ

∂

∂y3
, Z5 = 1√

2

(
∂

∂x4
+ ∂

∂y5

)
,

Z6 = 1√
2

(
∂

∂x6
+ ∂

∂y7

)
, Z7 = ∂

∂z
.

Thus, we have

φZ1 = ∂

∂y1
, φZ2 = − ∂

∂x1
, φZ3 = ∂

∂y2
,

φZ4 = −
(
cos θ

∂

∂x2
+ sin θ

∂

∂x3

)
, φZ5 = 1√

2

(
∂

∂y4
− ∂

∂x5

)
,

φZ6 = 1√
2

(
∂

∂y6
− ∂

∂x7

)
, φZ7 = 0.

Now, let the distributions D = span{Z1, Z2}, Dθ = span{Z3, Z4}, D⊥ = span
{Z5, Z6}. And D is invariant, Dθ is slant with slant angle θ and D⊥ is anti-invariant.
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1 Introduction

The geometry of submanifolds with degenerate (lightlike) metric is difficult and
strikingly different from the geometry of submanifolds with non-degenerate metric
because of the fact that their (of degenerate submanifolds) normal vector bundle
intersects with the tangent bundle. This means that we cannot use the classical the-
ory of submanifolds to define induced objects on a lightlike submanifold. Since the
geometry of lightlike submanifolds is needed to fill a gap in the general theory of
submanifolds and have significant applications in general theory of relativity, particu-
larly in black hole theory, therefore, Duggal and Bejancu [9] introduced the geometry
of lightlike submanifolds of semi-Riemannian manifolds and further established by
many other geometers.
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Chen [7, 8] introduced the notion of slant submanifolds as a generalizing of
holomorphic and totally real submanifolds for complex geometry. Later, slant sub-
manifolds for contact geometry were introduced by Lotta [21]. Cabrerizo et al. [5, 6]
studied slant, semi-slant, and bi-slant submanifolds in contact geometry, and then
many interesting results on slant submanifolds of contactmanifoldswere explored by
many other geometers.Most of them studied the geometry of slant submanifoldswith
positive definite metric; therefore this geometry may not be applicable to the other
branches of mathematics and physics, where the metric is not necessarily definite.
Thus, the notion of slant lightlike submanifolds of indefinite Hermitian manifolds
was introduced by Sahin [30].

It is well known that there are significant uses of contact geometry in differential
equations, optics, and phase spaces of a dynamical system (cf. [1, 22, 23]). Hence,
the notion of screen slant lightlike submanifolds of indefinite Kenmotsu manifolds
and Cosymplectic manifolds was given by Gupta et al. in [12, 13], respectively.
Later, the geometry of slant lightlike submanifolds of indefinite Kenmotsu mani-
folds [14], of indefinite Cosymplectic manifolds [15], and of indefinite Sasakian
manifolds [20, 33] was introduced and obtained necessary and sufficient condi-
tions for their existence. Haider et al. studied screen slant lightlike submanifolds
of indefinite Sasakian manifolds and hemi-slant lightlike submanifolds of indefinite
Kenmotsu manifolds in [16] and [17], respectively. Shukla and Yadav studied radical
transversal screen semi-slant lightlike submanifolds, screen semi-slant lightlike sub-
manifolds, and semi-slant lightlike submanifolds of indefinite Sasakian manifolds
in [34], [37], and [36], respectively. Sachdeva et al. studied the geometry of totally
contact umbilical slant lightlike submanifolds of indefinite Cosymplectic manifolds,
Sasakian manifolds, and Kenmotsu manifolds in [24], [25], and [27], respectively.
Sachdeva et al. also studied warped product slant lightlike submanifolds and totally
contact umbilical hemi-slant lightlike submanifolds of indefinite Sasakian manifolds
in [26] and [28], respectively.

The major purpose of this chapter is to present a comprehensive geometry of slant
lightlike submanifolds of indefinite Sasakian manifolds.

2 Lightlike Submanifolds

Let (M̄, ḡ) be a real (m + n)-dimensional semi-Riemannian manifold of constant
index q such that m, n ≥ 1, 1 ≤ q ≤ m + n − 1 and (M, g) be an m-dimensional
submanifold of M̄ and g the induced metric of ḡ on M . If ḡ is degenerate on the
tangent bundle T M of M , then M is called a lightlike submanifold of M̄ , see [9].
For a degenerate metric g on M , T M⊥ is a degenerate n-dimensional subspace
of Tx M̄ . Thus, both TxM and TxM⊥ are degenerate orthogonal subspaces but no
longer complementary. In this case, there exists a subspace Rad(TxM) = TxM ∩
TxM⊥ which is known as the radical (null) subspace. If the mapping Rad(T M) :
x ∈ M −→ Rad(TxM) defines a smooth distribution on M of rank r > 0, then the
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submanifold M of M̄ is called an r -lightlike submanifold and Rad(T M) is called
the radical distribution on M .

Let S(T M) be a screen distribution which is a semi-Riemannian complementary
distribution of Rad(T M) in T M , that is, T M = Rad(T M)⊥S(T M), and S(T M⊥)

is a complementary vector subbundle to Rad(T M) in T M⊥. Since for any local
basis {ξi } of Rad(T M), there exists a local null frame {Ni } of sections with values
in the orthogonal complement of S(T M⊥) in (S(T M))⊥ such that ḡ(ξi , N j ) = δi j
and ḡ(Ni , N j ) = 0, it follows that there exists a lightlike transversal vector bundle
ltr(T M) locally spanned by {Ni }. Let tr(T M) = ltr(T M)⊥S(T M⊥), then tr(T M)

is a complementary (but not orthogonal) vector bundle to T M in T M̄|M and we have
T M̄ |M= T M ⊕ tr(T M) = (Rad(T M) ⊕ ltr(T M))⊥S(T M)⊥S(T M⊥).

Let ∇̄ be the Levi-Civita connection on M̄ , then for X,Y ∈ �(T M) and U ∈
�(tr(T M)), the Gauss and Weingarten formulae are given by

∇̄XY = ∇XY + h(X,Y ), ∇̄XU = −AU X + ∇⊥
XU, (1)

where {∇XY, AU X} and {h(X,Y ),∇⊥
XU } belong to�(T M) and�(tr(T M)), respec-

tively. Here, ∇ is a torsion-free linear connection on M , h is a symmetric bilinear
form on �(T M), called the second fundamental form, and AU is a linear operator
on M , known as the shape operator.

Let L and S be the projection morphisms of tr(T M) on ltr(T M) and S(T M⊥),
respectively, then (1) becomes

∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ), ∇̄XU = −AU X + Dl
XU + Ds

XU, (2)

where we put hl(X,Y ) = L(h(X,Y )), hs(X,Y ) = S(h(X,Y )), and Dl
XU = L

(∇⊥
XU ), Ds

XU = S(∇⊥
XU ). As hl and hs are �(ltr(T M))-valued and �(S(T M⊥))-

valued, they are called the lightlike second fundamental form and the screen second
fundamental form on M , respectively. In particular,

∇̄X N = −AN X + ∇l
X N + Ds(X, N ) (3)

∇̄XW = −AW X + ∇s
XW + Dl(X,W ), (4)

where X ∈ �(T M), N ∈ �(ltr(T M)), andW ∈ �(S(T M⊥)). Further, from (2), (3),
and (4), we obtain

ḡ(hs(X, Y ),W ) + ḡ(Y, Dl(X,W )) = g(AW X,Y ). (5)

Let P be a projection morphism of T M on S(T M), then we can write

∇X PY = ∇∗
X PY + h∗(X, PY ), ∇Xξ = −A∗

ξ X + ∇∗t
X ξ, (6)

for any X,Y ∈ �(T M) and ξ ∈ �(Rad(T M)), where {∇∗
X PY , A

∗
ξ X} and {h∗(X,

PY ),∇∗t
X ξ} belong to �(S(T M)) and �(Rad(T M)), respectively. Here,∇∗ and∇∗t

X
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are linear connections on S(T M) and Rad(T M), respectively. Using (3), (4), and
(6), we obtain

ḡ(hl(X, PY ), ξ) = g(A∗
ξ X, PY ). (7)

3 Totally Contact Umbilical Slant Lightlike Submanifolds

A semi-Riemannian manifold (M̄, ḡ) is called an ε-almost contact metric manifold
if there exists a (1, 1) tensor field φ, a vector field V , called a characteristic vector
field, and a 1-form η, satisfying

φ2X = −X + η(X)V, η(V ) = ε, η ◦ φ = 0, φV = 0, (8)

ḡ(φX, φY ) = ḡ(X, Y ) − εη(X)η(Y ), (9)

for all X, Y ∈ �(T M̄), where ε = 1 or −1. It follows that

ḡ(V, V ) = ε, ḡ(X, V ) = η(X), ḡ(X, φY ) = −ḡ(φX,Y ). (10)

Then (φ, V, η, ḡ) is called an ε-almost contact metric structure on M̄ [19]. An ε-
almost contact metric structure (φ, V, η, ḡ) is called an indefinite Sasakian structure
if and only if

(∇̄Xφ)Y = ḡ(X,Y )V − εη(Y )X, (11)

where ∇̄ is Levi-Civita connection with respect to ḡ. A semi-Riemannian mani-
fold endowed with an indefinite Sasakian structure is called an indefinite Sasakian
manifold. From (11), we have ∇̄XV = −φX. An indefinite almost contact met-
ric manifold M̄ is called an indefinite Kenmotsu manifold [18] if (∇̄Xφ)Y =
−ḡ(φX,Y )V + η(Y )φX and is called an indefinite Cosymplectic manifold [4] if
(∇̄Xφ)Y = 0.

Todefine the notionof slant submanifolds, one needs to consider the angle between
two vector fields. A lightlike submanifold has two distributions, namely, the radical
distribution and the screen distribution. The radical distribution is totally lightlike,
and therefore it is not possible to define an angle between two vector fields of the rad-
ical distribution. Therefore, Sahin and Yildirim [33] used two vector fields of screen
distribution (as screen distribution is non-degenerate) to introduce the notion of slant
lightlike submanifolds of an indefinite Sasakianmanifold. Toward this direction, they
proved the following important lemmas:

Lemma 3.1 Let (M, g, S(T M), S(T M⊥))beanr-lightlike submanifold in an indef-
inite Sasakian manifold of constant index 2q. Suppose φ(Rad(T M)) ⊂ S(T M) be
a distribution on M and V |M ∈ �(S(T M)). Then φltr(T M) is a subbundle of the
screen distribution S(T M) and φltr(T M) ∩ φ(Rad(T M)) = {0}.
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Lemma 3.2 ([33]) Under the hypothesis of Lemma3.1 and the spacelike charac-
teristic vector field, if r = q, then any complementary distribution to φltr(T M) ⊕
φ(Rad(T M)) in screen distribution S(T M) is Riemannian.

Using Lemmas3.1 and 3.2, Sahin and Yildirim [33] defined slant lightlike subman-
ifolds of indefinite Sasakian manifolds as below:

Definition 3.3 An q-lightlike submanifold M of an indefinite Sasakian manifold
M̄ of constant index 2q is said to be a slant lightlike submanifold if it satisfies the
following conditions:

(A) φ(Rad(T M)) ⊂ S(T M) be a distribution on M and V |M ∈ �(S(T M)) such
that V |M /∈ (φltr(T M) ⊕ φ(Rad(T M)).

(B) For each non-zero vector field X tangent to D̄ = D ⊥ {V } at x ∈ U ⊂ M , if
X and V are linearly independent, then the angle θ(X) between φX and the
vector space D̄x is constant, that is, it is independent of the choice of X ∈ D̄x and
x ∈ U , where D̄ is complementary distribution to φltr(T M) ⊕ φRad(T M) in
screen distribution S(T M).

The constant angle θ(X) is called the slant angle of the distribution D̄. The slant
lightlike submanifold is called proper if D̄ = {0} and θ = 0, π/2.

It should be noted that the notion of slant lightlike submanifolds is not intrinsic
and depends a priori on the selected screen data (S(T M), S(T M⊥)); therefore, we
consider here slant screen structure by integrating the structure (S(T M), S(T M⊥))

on lightlike submanifolds.
It is well known that a submanifold M is invariant or anti-invariant if φTxM ⊂

TxM or φTxM ⊂ TxM⊥, respectively, for any x ∈ M . Thus, from the definition
of slant submanifolds, M is invariant or anti-invariant, accordingly, if θ(X) = 0 or
θ(X) = π

2 , respectively.
From the above definition, it is clear that for a slant lightlike submanifold M of

an indefinite Sasakian manifold M̄ , the tangent bundle T M is decomposed into
T M = Rad(T M)⊥(φRad(T M) ⊕ φltr(T M))⊥D̄, where D̄ = D⊥{V }. There-
fore, for any X ∈ �(T M), we can write

φX = T X + FX, (12)

where T X is the tangential component of φX and FX is the transversal component
of φX . Similarly, for any U ∈ �(tr(T M)), we can write

φU = BU + CU, (13)

where BU is the tangential component of φU and CU is the transversal component
of φU . We denote P1, P2, Q1, Q2, and Q̄2, the projections on the distributions
Rad(T M), φRad(T M), φltr(T M), D, and D̄ = D⊥V , respectively. Then, for
any X ∈ �(T M), we can write X = P1X + P2X + Q1X + Q̄2X , where Q̄2X =
Q2X + η(X)V . On applying φ, we obtain
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φX = φP1X + φP2X + FQ1X + T Q2X + FQ2X. (14)

Then, it is easy to prove the following observation:

Lemma 3.4 Let M be a slant lightlike submanifold of an indefinite Sasakian mani-
fold M̄, then FQ2X ∈ �(S(T M⊥)), for any X ∈ �(T M).

Thus, from Lemma3.4, it follows that F(Dp) is a subspace of S(T M⊥). Hence,
there exists an invariant subspace μp of Tp M̄ such that S(TpM⊥) = F(Dp)⊥μp,
then Tp M̄ = S(TpM)⊥{Rad(TpM) ⊕ ltr(TpM)}⊥{F(Dp)⊥μp}. Now, differenti-
ating (14) and using (2)–(4), (12), and (13), we obtain

Ds(X, FQ1Y ) + Dl(X, FQ2Y ) = F∇XY − h(X, TY ) + Chs(X,Y )

−∇s
X FQ2Y − ∇l

X FQ1Y. (15)

Now, we recall important theorems for the existence of slant lightlike submani-
folds of indefinite Sasakian manifolds from [33].

Theorem 3.5 Let M be a lightlike submanifold of an indefinite Sasakian manifold
M̄. Then, M is a slant lightlike submanifold, if and only if

(i) φ(Rad(T M)) ⊂ S(T M) be a distribution on M and V |M ∈ �(S(T M)).
(ii) D̄ = {X ∈ �(D̄) : T 2X = −λ(X − η(X)V )} is a distribution such that it is

complementary to φltr(T M) ⊕ φRad(T M), where λ = −cos2θ .

Theorem 3.6 Let M be a lightlike submanifold of an indefinite Sasakian manifold
M̄. Then, M is a slant lightlike submanifold, if and only if

(i) φ(Rad(T M)) ⊂ S(T M) be a distribution on M and V |M ∈ �(S(T M)).
(ii) For any vector field X tangent to D̄, there exists a constant μ ∈ [−1, 0] such

that BFX = μ(X − η(X)V ), where D̄ is a complementary distribution to
φltr(T M) ⊕ φRad(T M) in T M and μ = −sin2θ .

For necessary and sufficient conditions that a lightlike submanifold of an indef-
inite Kenmotsu and of an indefinite Cosymplectic manifold to be a slant lightlike
submanifold, see [14] and [15], respectively.

From Theorem3.5, we have the following observations directly.

Corollary 3.7 Let M be a slant lightlike submanifold of an indefinite Sasakian
manifold M̄. Then

g(T Q̄2X, T Q̄2Y ) = cos2θ [g(Q̄2X, Q̄2Y ) − η(Q̄2X)η(Q̄2Y )], (16)

g(F Q̄2X, F Q̄2Y ) = sin2θ [g(Q̄2X, Q̄2Y ) − η(Q̄2X)η(Q̄2Y )], (17)

for any X,Y ∈ �(T M).
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Definition 3.8 ([39]) If the second fundamental form h of a submanifold, tangent
to characteristic vector field V , of a Sasakian manifold is of the form

h(X,Y ) = {g(X,Y ) − η(X)η(Y )}α + η(X)h(Y, V ) + η(Y )h(X, V ), (18)

where α is a vector field transversal to M , then M is called a totally contact umbil-
ical and totally contact geodesic if α = 0. This definition also holds for a lightlike
submanifold M . For a totally contact umbilical lightlike submanifold M , we have

hl(X, Y ) = {g(X, Y ) − η(X)η(Y )}αL + η(X)hl(Y, V ) + η(Y )hl(X, V ), (19)

hs(X, Y ) = {g(X,Y ) − η(X)η(Y )}αS + η(X)hs(Y, V ) + η(Y )hs(X, V ), (20)

where αL ∈ �(ltr(T M)) and αS ∈ �(S(T M⊥)).

Using the above definition, it is easy to prove the following lemma.

Lemma 3.9 ([25]) Let M be a totally contact umbilical slant lightlike submanifold
of an indefinite Sasakian manifold M̄ then g(∇X X, φξ) = 0, for any X ∈ �(D) and
ξ ∈ �(Rad(T M)).

An important classification property of slant lightlike submanifold is the following.

Theorem 3.10 ([25]) Let M be a totally contact umbilical slant lightlike submani-
fold of an indefinite Sasakian manifold M̄. Then, at least one of the following state-
ments is true:

(i) M is an anti-invariant submanifold.
(ii) D = {0}.
(iii) If M is a proper slant lightlike submanifold, then αS ∈ �(μ).

Proof Let M be a totally contact umbilical slant lightlike submanifold of an
indefinite Sasakian manifold M̄ , then for any X = Q2X ∈ �(D) with (18), we
get h(T Q2X, T Q2X) = g(T Q2X, T Q2X)α; therefore, from (1) and (16), we get
∇̄T Q2XT Q2X − ∇T Q2XT Q2X = cos2θ [g(Q2X, Q2X)]α. Using (12) and the fact
that M̄ is a Sasakian manifold, we obtain

φ∇̄T Q2X Q2X − g(T Q2X, T Q2X)V − ∇̄T Q2X FQ2X − ∇T Q2XT Q2X

= cos2θ [g(Q2X, Q2X)]α.

Then, using (2)–(4) and (16), we get

φ∇T Q2X Q2X + φhl(T Q2X, X) + φhs(T Q2X, X) + AFQ2XT Q2X

−∇s
T Q2X FQ2X − Dl(T Q2X , FQ2X) − ∇T Q2XT Q2X

= cos2θ [g(Q2X, Q2X)](α + V ).

Thus, using (12), (13), (19), and (20), we have
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T∇T Q2X Q2X + F∇T Q2X Q2X + g(T Q2X, X)φαl + g(T Q2X, X)Bαs

+g(T Q2X), X)Cαs + AFQ2XT Q2X − ∇s
T Q2X FQ2X − Dl(T Q2X , FQ2X)

−∇T Q2XT Q2X = cos2θ [g(Q2X, Q2X)](α + V ),

equating the transversal components, we get

F∇T Q2X Q2X + g(T Q2X, X)Cαs − ∇s
T Q2X FQ2X

−Dl(T Q2X , FQ2X) = cos2θ [g(Q2X, Q2X)]α. (21)

On the other hand, (17) holds for any X = Y ∈ �(D) and taking the covariant deriva-
tive with respect to T Q2X , we obtain

g(∇s
T Q2X FQ2X, FQ2X) = sin2θg(∇T Q2X Q2X, Q2X). (22)

Take inner product of (21) with FQ2X , we get g(F∇T Q2X Q2X, FQ2X) − g(∇s
T Q2X

FQ2X, FQ2X) = cos2θ [g(Q2X, Q2X)]g(αS, FQ2X). Then, using (17) and (22),
we get cos2θ [g(Q2X, Q2X)]g(αS, FQ2X) = 0; thus, it follows that either θ = π

2
or Q2X = 0 or αS ∈ �(μ). This completes the proof. �

In [32], Sahin proved that every totally umbilical proper slant submanifold of
a Kaehler manifold is totally geodesic and the following theorem is the lightlike
version of this result for indefinite Sasakian manifolds.

Theorem 3.11 ([25]) Every totally contact umbilical proper slant lightlike subman-
ifold of an indefinite Sasakian manifold is totally contact geodesic.

Proof Since M is a totally contact umbilical slant lightlike submanifold, there-
fore for any X = Q2X ∈ �(D), using (18), we have h(T Q2X, T Q2X) = g(T Q2X,

T Q2X)α, then using (16), we get

h(T Q2X, T Q2X) = cos2θ [g(Q2X, Q2X) − η(Q2X)η(Q2X)]α
= cos2θ [g(Q2X, Q2X)]α. (23)

Using (8) and (15) for any X ∈ �(D), we obtain

h(T Q2X, T Q2X) = F∇T Q2X X + Ch(T Q2X, X) − ∇s
T Q2X FQ2X

−Dl(T Q2X, FQ2X). (24)

Since M is a totally contact umbilical slant lightlike submanifold, therefore
Ch(T Q2X, X) = g(T Q2X, X)Cα = 0. Hence using (23) and (24), we get cos2θ
[g(Q2X, Q2X)]α = F∇T Q2X X − ∇s

T Q2X
FQ2X − Dl(T Q2X, FQ2X).Further, on

taking the scalar product of both sides with respect to FQ2X , we obtain that
cos2θ [g(Q2X, Q2X)]ḡ(αS, FQ2X) = ḡ(F∇T Q2X X, FQ2X) − ḡ(∇s

T Q2X
FQ2X,

FQ2X), then using (17), we get
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cos2θ [g(Q2X, Q2X)]ḡ(αS, FQ2X) = sin2θ [g(∇T Q2X X, Q2X)]
−ḡ(∇s

T Q2X FQ2X, FQ2X). (25)

Now, for any X = Q2X ∈ �(D), (17) implies that g(FQ2X, FQ2X) = sin2θ
[g(Q2X, Q2X)]. Taking covariant derivative of this equation with respect to ∇̄T Q2X ,
we get

ḡ(∇s
T Q2X FQ2X, FQ2X) = sin2θ [g(∇T Q2X Q2X, Q2X)]. (26)

Using (26) in (25), we obtain

cos2θ [g(Q2X, Q2X)]ḡ(αS, FQ2X) = 0. (27)

Since M is a proper slant lightlike submanifold and g is a Riemannian met-
ric on D, therefore we have ḡ(αs, FQ2X) = 0. Thus, using the Lemma3.4, we
obtain αS ∈ �(μ). Now, using the Sasakian property of M̄ , we have ∇̄XφY =
φ∇̄XY − g(X, Y )V , for any X, Y ∈ �(D), then using (18), we obtain∇XT Q2Y + g
(X, T Q2Y )α − AFQ2Y X + ∇s

X FQ2Y + Dl(X, FQ2Y )=T∇XY + F∇XY + g(X,

Y )φα − g(X,Y )V . Taking the scalar product of both sides with respect to φαS and
using the fact that μ is an invariant subbundle of T M̄ , we obtain

ḡ(∇s
X FQ2X, φαS) = g(Q2X, Q2Y )g(αS, αS). (28)

Again, using the Sasakian character of M̄ , we have ∇̄XφαS = φ∇̄XαS . This further
implies that−AφαS X + ∇s

XφαS + Dl(X, φαS) = −T AαS X − FAαS X + B∇s
XαS +

C∇s
XαS + φDl(X, αS). Taking the scalar product of both sides of above equation

with respect to FQ2Y and using invariant character of μ, that is, C∇s
XαS ∈ �(μ)

with (8) and (17), we get

ḡ(∇s
XφαS, FQ2Y ) = −g(FAαS X, FQ2Y ) = −sin2θ [g(AαS X, Q2Y )]. (29)

Since ∇̄ is a metric connection then (∇̄Xg)(FQ2Y, φαS) = 0. This further implies
that ḡ(∇s

X FQ2Y, φαS) = ḡ(∇s
XφαS, FQ2Y ); therefore using (29), we obtain

ḡ(∇s
X FQ2Y, φαS) = −sin2θ [g(AαS X, Q2Y )]. (30)

From (28) and (30), we get g(Q2X, Q2Y )g(αS, αS) = −sin2θg[(AαS X, Q2Y )];
using (5),wegetg(Q2X, Q2Y )g(αS, αS)= − sin2θ [ḡ(hs(Q2X, Q2Y ), αS)]=−sin2

θ [g(Q2X, Q2Y )]g(αS, αS),, which implies (1 + sin2θ)[g(Q2X, Q2Y )]g(αS, αS) =
0. Since M is a proper slant lightlike submanifold and g is a Riemannian metric on
D, therefore we obtain

αS = 0. (31)

Next, for any X ∈ �(D), using the Sasakian character of M̄ , we have ∇̄XφX =
φ∇̄X X . This implies that ∇XT Q2X + h(X, T Q2X) − AFQ2X X + ∇s

X FQ2X + Dl
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(X, FQ2X) = T∇X X + F∇X X + Bh(X, X) + Ch(X, X). Since M is a totally
contact umbilical slant lightlike submanifold, therefore using h(X, T Q2X) = 0
and then comparing the tangential components, we obtain ∇XT Q2X − AFQ2X X =
T∇X X + Bh(X, X). Taking scalar product of both sides with respect to φξ ∈
�(φRad(T M)) and then using Lemma3.9, we get

g(AFQ2X X, φξ) + ḡ(hl(Q2X, Q2X), ξ) = 0. (32)

Using (3), ḡ(hs(X, φξ), FQ2X) + ḡ(φξ, Dl(X, FQ2X)) = g(AFQ2X X, φξ). Since
M is a totally contact umbilical slant lightlike submanifold therefore using (20)
and (31), we obtain g(AFQ2X X, φξ) = 0. Using this fact in (32), we obtain that
ḡ(hl(Q2X, Q2X), ξ) = 0, then further using (19) this implies that g(Q2X, Q2X)ḡ
(αL , ξ) = 0. Since g is a Riemannian metric on D, therefore ḡ(αL , ξ) = 0, we obtain

αL = 0. (33)

Thus, from (31) and (33), the proof is complete. �

Analogously, we have the following results:

Theorem 3.12 ([24]) Every totally contact umbilical proper slant lightlike subman-
ifold of an indefinite Cosymplectic manifold is totally contact geodesic.

Theorem 3.13 ([27]) Every totally contact umbilical proper slant lightlike subman-
ifold of an indefinite Kenmotsu manifold is totally contact geodesic.

Denote by R̄ and R the curvature tensors of ∇̄ and∇, respectively, then using (2)–(4),
we have

R̄(X,Y )Z = R(X,Y )Z + Ahl (X,Z)Y − Ahl (Y,Z)X + Ahs (X,Z)Y

−Ahs (Y,Z)X + (∇Xh
l)(Y, Z) − (∇Y h

l)(X, Z)

+Dl(X, hs(Y, Z)) − Dl(Y, hs(X, Z))

+(∇Xh
s)(Y, Z) − (∇Y h

s)(X, Z)

+Ds(X, hl(Y, Z)) − Ds(Y, hl(X, Z)), (34)

where
(∇Xh

s)(Y, Z) = ∇s
Xh

s(Y, Z) − hs(∇XY, Z) − hs(Y,∇X Z), (35)

(∇Xh
l)(Y, Z) = ∇l

X h
l(Y, Z) − hl(∇XY, Z) − hl(Y,∇X Z). (36)

An indefinite Sasakian space form is a connected indefinite Sasakian manifold of
constant holomorphic sectional curvature c and denoted by M̄(c). Then the curvature
tensor R̄ of M̄(c) is given by (see [19])
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R̄(X,Y )Z = c + 3ε

4
{ḡ(Y, Z)X − ḡ(X, Z)Y } + c − ε

4
{η(X)η(Z)Y

−η(Y )η(Z)X + ḡ(X, Z)η(Y )V − ḡ(Y, Z)η(X)V

+ḡ(φY, Z)φX − ḡ(φX, Z)φY − 2ḡ(φX,Y )φZ}, (37)

for X,Y, Z vector fields on M̄ .

Theorem 3.14 ([25]) There do not exist totally contact umbilical proper slant light-
like submanifolds of an indefinite Sasakian space form M̄(c) such that c = ε.

Proof Suppose M be a totally contact umbilical proper lightlike submanifold of
M̄(c) such that c = ε. Then, using (37), for any X ∈ �(D), Z ∈ �(φltr(T M))

and ξ ∈ �(Rad(T M)), we obtain ḡ(R̄(X, φX)Z , ξ) = − c−ε
2 g(φX, φX)g(φZ , ξ).

Using (9), we get

ḡ(R̄(X, φX)Z , ξ) = −c − ε

2
g(Q2X, Q2X)g(φZ , ξ). (38)

On the other hand, using (18) and (34), we get

ḡ(R̄(X, φX)Z , ξ) = ḡ((∇Xh
l)(φX, Z), ξ) − ḡ((∇φh

l)(X, Z), ξ). (39)

Using (19) and (36), we have

(∇Xh
l)(φX, Z) = −g(∇XφX, Z)αL − g(T Q2X,∇X Z)αL . (40)

Similarly,
(∇φXh

l)(X, Z) = −g(∇φX X, Z)αL − g(X,∇φX Z)αL . (41)

Using (40) and (41) in (39), we obtain

ḡ(R̄(X, φX)Z , ξ) = −g(∇XφX, Z)ḡ(αL , ξ) − g(φX,∇X Z)ḡ(αL , ξ)

+g(∇φX X, Z)ḡ(αL , ξ) + g(X,∇φX Z)ḡ(αL , ξ). (42)

Now using (11), we have

g(φX,∇X Z) = −ḡ(∇̄XφX, Z) = −g(∇XφX, Z) (43)

and
g(X,∇φX Z) = −ḡ(∇̄φX X, Z) = −g(∇φX X, Z). (44)

Using (43) and (44) in (42), we obtain ḡ(R̄(X, φX)Z , ξ) = 0, and using this fact in
(38), we have c−ε

2 g(Q2X, Q2X)g(φZ , ξ) = 0. Since g is a Riemannian metric on
D and g(φZ , ξ) = 0, therefore c = ε. This contradiction completes the proof. �
The following two theorems provide analogous observation for indefinite Cosym-
plectic and Kenmotsu space forms.
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Theorem 3.15 ([24]) There does not exist a totally contact umbilical proper slant
lightlike submanifold of an indefinite Cosymplectic space form M̄(c) such that c = 0.

Theorem 3.16 ([27]) There does not exist a totally contact umbilical proper slant
lightlike submanifold of an indefinite Kenmotsu space form M̄(c) such that c = −1.

In [9], a minimal lightlike submanifold M was defined when M is a hypersurface
of a four-dimensional Minkowski space. Then in [2], a general notion of minimal
lightlike submanifold of a semi-Riemannian manifold M̄ was introduced as follows:

Definition 3.17 A lightlike submanifold (M, g, S(T M)) isometrically immersed
in a semi-Riemannian manifold (M̄, ḡ) is minimal if hs = 0 on Rad(T M) and
trace h = 0, where trace is written with respect to g restricted to S(T M).

Next, a couple of theorems provides characterizations for a slant lightlike submani-
fold of indefinite Sasakian manifolds to be minimal.

Theorem 3.18 ([20]) Let M be proper slant lightlike submanifold of an indefinite
Sasakian manifold M̄ with characteristic vector field tangent to M. Then M is mini-
mal if and only if trace AWk |S(T M) = 0, trace A∗

ξi
|S(T M) = 0 and ḡ(Dl(X,W ), Y ) =

0, for X,Y ∈ �(Rad(T M)), where {Wk}lk=1 is a basis of S(T M⊥) and {ξi }ri=1 is a
basis of �(Rad(T M)).

Theorem 3.19 ([20]) Let M be proper slant lightlike submanifold of an indefi-
nite Sasakian manifold M̄ with characteristic vector field tangent to M such that
dim(D) = dim(S(T M⊥)). Then M is minimal if and only if trace AFe j |S(T M) = 0,
trace A∗

ξi
|S(T M) = 0 and ḡ(Dl(X, Fe j ),Y ) = 0, for X, Y ∈ �(Rad(T M)), where

{e j } is a basis of D and {ξi }ri=1 is a basis of �(Rad(T M)).

Definition 3.20 ([10]) A lightlike submanifold is called irrotational if and only if
∇̄Xξ ∈ �(T M) for all X ∈ �(T M) and ξ ∈ �(Rad(T M)).

Rashmi et al. [25] derived conditions for an irrotational slant lightlike submanifold
to be a minimal submanifold as below.

Theorem 3.21 Let M be an irrotational slant lightlike submanifold of an indefinite
Sasakian manifold M̄. Then M is minimal if and only if trace AWk |S(T M) = 0 and
trace A∗

ξi
|S(T M) = 0, where {Wk}lk=1 is a basis of S(T M⊥) and {ξi }ri=1 is a basis of

Rad(T M).

Gupta et al. [14, 15] also derived some necessary and sufficient conditions for a slant
lightlike submanifold of an indefinite Kenmotsu and of an indefinite Cosymplectic
manifold to be a minimal lightlike submanifold.
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4 Warped Product Slant Lightlike Submanifolds

Let M1 and M2 be two Riemannian manifolds with Riemannian metrics gM1 and
gM2 , respectively, and f > 0 a differentiable function on M1. Assume the product
manifold M1 × M2 with its projection π : M1 × M2 → M1 and ψ : M1 × M2 →
M2. The warped product M = M1 × f M2 is the manifold M1 × M2 equipped with
theRiemannianmetricg,whereg = gM1 + f 2gM2 . If X is tangent toM = M1 × f M2

at (p, q) then we have ‖X‖2 = ‖π∗X‖2 + f 2(π(X))‖ψ∗X‖2. The function f is
called the warping function of the warped product. For differentiable function f on
M, the gradient ∇ f is defined by g(∇ f, X) = X f , for all X ∈ T (M).

Lemma 4.1 ([3]) Let M = M1 × f M2 be a warped product manifold. If X,Y ∈
T (M1) and U, Z ∈ T (M2) then

∇XU = ∇U X = X f

f
U = X (ln f )U. (45)

Corollary 4.2 On a warped product manifold M = M1 × f M2 M1 and M2 are
totally geodesic and totally umbilical in M, respectively.

Definition 4.3 ([11]) Let (M, g, S(T M), S(T M⊥)) be a lightlike submanifold, tan-
gent to characteristic vector field V , of an indefinite Sasakian manifold (M̄, ḡ).
Then M is said to be a contact Screen Cauchy Riemann (SCR) lightlike subman-
ifold of M̄ if there exist real non-null distributions D ⊂ S(T M) and D⊥ such that
S(T M) = D ⊕ D⊥⊥{V }, φD⊥ ⊂ (S(T M⊥)), D ∩ D⊥ = {0}, where D⊥ is orthog-
onal complementary to D⊥{V } in S(T M), and the distributions D and Rad(T M)

are invariant with respect to φ.

Theorem 4.4 A contact SCR-lightlike submanifold M, of an indefinite Sasakian
manifold M̄, is a holomorphic or complex (resp. screen real) lightlike submanifold,
if and only if D⊥ = {0} (resp. D = {0}).
Definition 4.5 ([29]) LetM be a lightlike submanifold of an indefiniteKaehlerman-
ifold M̄ . Then M is said to be a transversal lightlike submanifold if J̄ (Rad(T M)) =
ltr(T M) and J̄ (S(T M)) ⊆ S(T M⊥).

Next are some characterization theorems for the non-existence of warped product
slant lightlike submanifolds of indefinite Sasakian manifolds.

Theorem 4.6 ([26]) Let M̄ be an indefinite Sasakian manifold. Then there does not
exist warped product submanifold M = Mθ × f MT of M̄ such that Mθ is a proper
slant lightlike submanifold of M̄ and MT is a holomorphic Screen Cauchy-Riemann
(SCR) lightlike submanifold of M̄.

Proof Let X , linearly independent of V , be tangent to D ⊂ S(T M) of a holomorphic
SCR-lightlike submanifold MT and Z ∈ �(Dθ ) of a slant lightlike submanifold Mθ .
Then, using (45) g(∇φX Z , X) = Z(ln f )g(φX, X) = 0. Therefore, using (2), (8)–
(11), and (12), we get 0 = ḡ(∇̄φX Z , X) = −ḡ(φZ , ∇̄φXφX) = ḡ(∇φXT Z , φX) −
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ḡ(FZ , hs(φX, φX)). Further by virtue of (45), we obtain T Z(ln f )g(X, X) =
ḡ(hs(φX, φX), FZ). Thus, using polarization identity, we get

T Z(ln f )g(X, Y ) = ḡ(hs(φX, φY ), FZ), (46)

for any X,Y , linearly independent of V , tangent to D ⊂ S(T M) of a holomorphic
SCR-lightlike submanifold MT and Z ∈ �(Dθ ) of a slant lightlike submanifold Mθ .
On the other hand, using (4) and (45), we have

g(AFZφX, φY ) = −Z(ln f )g(φX,Y ) + T Z(ln f )g(X, Y ).

Now,using (5),wehave ḡ(hs(φX, φY ), FZ) = g(AFZφX, φY ); thereforeweobtain

ḡ(hs(φX, φY ), FZ) = −Z(ln f )g(φX,Y ) + T Z(ln f )g(X,Y ). (47)

Thus, (46) and (47) imply that Z(ln f )g(φX,Y ) = 0 for any X,Y , linearly indepen-
dent of V , tangent to D ⊂ S(T M) of a holomorphic SCR-lightlike submanifold MT

and Z ∈ �(Dθ ) of a slant lightlike submanifold Mθ . Since MT = {0} is a Rieman-
nian and invariant, therefore we obtain Zln f = 0. This shows that f is constant.
Hence, the proof is complete. �

Theorem 4.7 ([26]) Let M̄ be an indefinite Sasakian manifold. Then there does not
exist warped product submanifold M = MT × f Mθ in M̄ such that MT is a holo-
morphic SCR-lightlike submanifold and Mθ is a proper slant lightlike submanifold
of M̄.

Proof Let X , linearly independent of V , be tangent to D ⊂ S(T M) of a holomorphic
SCR-lightlike submanifold MT and Z ∈ �(Dθ ) of a slant lightlike submanifold Mθ .
Then, using (45) g(∇T Z X, Z) = X (ln f )g(T Z , Z) = 0. This, further using with
(4), (5), and (16) implies that φX (ln f ).cos2θg(Z , Z) + ḡ(hs(φX, T Z), FZ) = 0.
Replace X by φX , we get

X (ln f ).cos2θg(Z , Z) + ḡ(hs(X, T Z), FZ) = 0. (48)

After replacing Z by T Z and then using Theorem3.5 and (16), we obtain

ḡ(hs(X, Z), FT Z) = X (ln f ).cos2θg(Z , Z). (49)

Next, on the other hand, using (2), (12), (16), (45), and Theorem3.5, for any X ,
linearly independent of V , tangent to D ⊂ S(T M) of a holomorphic SCR-lightlike
submanifold MT and Y, Z ∈ �(Dθ ) of a slant lightlike submanifold Mθ , we have
ḡ(hs(T Z , X), FY ) = −cos2θX (ln f )g(Z ,Y ) + ḡ(FT Z , hs(X,Y )) + X (ln f )g
(T Z , TY ) = ḡ(FT Z , hs(X,Y )). Put Y = Z , we get

ḡ(hs(T Z , X), FZ) = ḡ(FT Z , hs(X, Z)). (50)
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Thus, from (48) to (50), we have X (ln f )cos2θg(Z , Z) = 0. Since Dθ is a proper
slant and Z is non-null, we obtain X (ln f ) = 0. This proves our assertion. �

Theorem 4.8 ([26]) Let M̄ be an indefinite Sasakian manifold. Then there does
not exist warped product submanifold M = M⊥ × f Mθ of M̄ such that M⊥ is a
transversal lightlike submanifold and Mθ is a proper slant lightlike submanifold of
M̄.

Proof Let Z ∈ �(Dθ ) of a slant lightlike submanifold Mθ and X independent of
V and tangent to S(T M) of a transversal lightlike submanifold M⊥, then using (4),
(8)–(11), (12), (16), and (45), we have g(AφXT Z , Z) = X (ln f )cos2θg(Z , Z) +
ḡ(hs(T Z , X), FZ), on using (5) in the left hand side, we obtain

ḡ(hs(T Z , Z), φX) = X (ln f )cos2θg(Z , Z) + ḡ(hs(T Z , X), FZ). (51)

Replace Z by T Z in (51) and then using Theorem3.5 and (16), we get

ḡ(hs(Z , T Z), φX) = −X (ln f )cos2θg(Z , Z) + ḡ(hs(Z , X), FT Z). (52)

Also, using (4), (8)–(11), (12), (17), and (45), we obtain that g(AFZ X, T Z) =
−cos2θX (ln f )g(Z , Z) + ḡ(hs(X, Z), FT Z) + X (ln f )cos2θg(Z , Z). This implies
g(AFZ X, T Z) = ḡ(hs(X, Z), FT Z). Hence using (5), we obtain

ḡ(hs(T Z , X), FZ) = ḡ(hs(X, Z), FT Z). (53)

Thus, using (51)–(53), we get 2X (ln f )cos2θg(Z , Z) = 0. Since Mθ is proper slant
lightlike submanifold and Dθ is Riemannian, therefore we obtain X (ln f ) = 0.
Hence, f is constant, which proves our assertion. �

Thus using Theorems4.6, 4.7, and 4.8, now onwards, we call M = Mθ × f M⊥ as
a warped product slant lightlike submanifold, where Mθ is a proper slant lightlike
submanifold and M⊥ is a transversal lightlike submanifold of an indefinite Sasakian
manifold M̄ .

Theorem 4.9 ([26]) Let M = Mθ × f M⊥ be a warped product slant lightlike sub-
manifold of an indefinite Sasakian manifold M̄ such that M⊥ is a transversal
lightlike submanifold and Mθ is a proper slant lightlike submanifold of M̄. Then
g(hs(X,Y ), J Z) = −T X (ln f )g(Y, Z), for any X ∈ �(Dθ ) of a slant lightlike
submanifold Mθ and Y, Z, independent of V and tangent to S(T M) of transver-
sal lightlike submanifold M⊥.

5 Hemi-slant Lightlike Submanifolds

Lemma 5.1 ([28]) Let M be an r-lightlike submanifold of an indefinite Sasakian
manifold M̄ of index q such that the characteristic vector field V is tangent
to M. Assume that φ(Rad(T M)) ⊂ S(T M) be a distribution on M such that
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φ(Rad(T M)) = ltr(T M). If r = q then the screen distribution S(T M) is Rieman-
nian.

Definition 5.2 Let M be a q-lightlike submanifold of an indefinite Sasakian mani-
fold M̄ of index q with characteristic vector field V tangent to M . Then, M is said to
be a hemi-slant lightlike submanifold of M̄ if the following conditions are satisfied:

(i) φ(Rad(T M)) ⊂ S(T M) be a distribution on M such that φ(Rad(T M)) =
ltr(T M).

(ii) For all x ∈ U ⊂ M and for each non-zero vector field X tangent to S(T M) =
Dθ⊥V , if X and V are linearly independent, then the angle θ(X) between φX
and the vector space S(TM) is constant, where Dθ is complementary distribution
to V in screen distribution S(T M).

A hemi-slant lightlike submanifold is said to be proper if Dθ = 0 and θ = 0, π/2.
Hence, using the definition of hemi-slant lightlike submanifolds, the tangent bundle
T M of M is decomposed as T M = S(T M)⊥Rad(T M) = Dθ⊥{V }⊥Rad(T M).

Example 1 ([28]) Let M be a lightlike submanifold of a semi-Euclidean space
(R9

2, ḡ) and defined by x1 = s, x2 = t , x3 = u sinv, x4 = sinu, y1 = t , y2 = s, y3 =
u cosv, y4 = cosu, where u, v ∈ (0, π/2) andR9

2 is of signature (−,+,+,+,−,+,

+,+,+) with respect to the canonical basis {∂x1, ∂x2, ∂x3, ∂x4, ∂y1, ∂y2, ∂y3, ∂y4,
∂z}. Then, the local frame of fields {ξ1, ξ2, Z1, Z2, V } of T M is given by ξ1 =
∂x1 + ∂y2, ξ2 = ∂x2 + ∂y1, Z1 = sinv∂x3 + cosu∂x4 + cosv∂y3 − sinu∂y4, Z2 =
u cosv∂x3 − u sinv∂y3, V = ∂z. Hence M is a 2-lightlike submanifold with
Rad(T M) = span{ξ1, ξ2} and S(T M) = span{Z1, Z2}⊥V , which is Riemannian.
It can be easily seen that S(T M) is a slant distribution with slant angle θ = π/4. Fur-
ther, the screen transversal bundle S(T M⊥) is spanned byW1 = sinu∂x4 + cosu∂y4,
W2 = sinv∂x3 − cosu∂x4 + cosv∂y3 + sinu∂y4. The transversal lightlike bundle
ltr(T M) is spanned by N1 = − 1

2 (−∂x1 − ∂y2), N2 = 1
2 (∂x2 − ∂y1). Clearly φξ1 =

2N2, φξ2 = −2N1. Hence, M is a hemi-slant lightlike submanifold of R9
2.

Denote the projection morphisms from T M on Dθ and Rad(T M) by P and Q,
respectively, then any X tangent to M can be written as X = PX + η(X)V + QX .
On applying φ to both sides and then using the definition of hemi-slant lightlike
submanifolds with φV = 0, we can write

φX = T PX + FPX + FQX, (54)

where T PX ∈ �(Dθ ), FPX ∈ �(tr(T M)), and FQX ∈ �(ltr(T M)). Similarly,
for any U ∈ �(tr(T M)), we can write φU = BU + CU , where BU and CU are
tangential and transversal components of φU , respectively.

Theorem 5.3 ([28]) Let M be a q-lightlike submanifold of an indefinite Sasakian
manifold M̄ of index q. Then M is a hemi-slant lightlike submanifold if and only if
φ(ltr(T M)) is a distribution on M and for any vector field X tangent to M, there
exists a constant λ ∈ [−1, 0] such that (T P)2X = λPX, where λ = − cos2 θ .
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Analogous to Theorem3.11, the following theorem is for hemi-slant lightlike sub-
manifolds of indefinite Sasakian manifolds from [28].

Theorem 5.4 Every totally contact umbilical proper hemi-slant lightlike submani-
fold M of an indefinite Sasakian manifold M̄ is totally contact geodesic.

Contrary to the classical theory of submanifolds, the induced connection ∇ on a
lightlike submanifold M of a semi-Riemannian manifold M̄ is not a metric connec-
tion. So as a consequence of the above theorem, we have the following important
result.

Corollary 5.5 Let M be a totally contact umbilical proper hemi-slant lightlike sub-
manifold of M̄. Then, the induced connection ∇ is a metric connection on M.

Theorem 5.6 ([28]) There do not exist totally contact umbilical proper hemi-slant
lightlike submanifolds of an indefinite contact space form M̄(c) such that c = 1.

Proof LetM be a totally contact umbilical hemi-slant lightlike submanifold of M̄(c)
such that c = 1. Then using (37), for X ∈ �(Dθ ) and ξ, ξ ′ ∈ �(Rad(T M)), we get

ḡ(R̄(X, φX)ξ ′, ξ) = −c − 1

2
g(X, X)g(φξ ′, ξ). (55)

On the other hand, using (34), we get

ḡ(R̄(X, φX)ξ ′, ξ) = ḡ((∇Xh
l)(φX, ξ ′), ξ) − ḡ((∇φXh

l)(X, ξ ′), ξ). (56)

On using (19), we get (∇Xhl)(φX, ξ ′) = −g(∇XφX, ξ ′)Hl − g(φX,∇Xξ ′)Hl =
ḡ(hl(X, T X), ξ ′)Hl = g(X, φX)ḡ(Hl , ξ ′) = 0 and similarly (∇φXhl)(X, ξ ′) = 0.
Thus, from (55) and (56), we obtain c−1

2 g(X, X)g(φξ ′, ξ) = 0. Since g is a Rie-
mannian metric on Dθ , therefore g(φξ ′, ξ) = 0, and hence c = 1. This contradiction
completes the proof. �

Haider et al. [17] presented the following result for hemi-slant lightlike submanifolds
of indefinite Kenmotsu manifolds.

Theorem 5.7 There does not exist any curvature-invariant proper hemi-slant light-
like submanifold of an indefinite Kenmotsu space form M̄(c) with c = −1.

Theorem 5.8 ([28]) Let M be a totally contact umbilical proper hemi-slant lightlike
submanifold of M̄. Then M is minimal.

Proof From Theorem5.4, we know Hl = 0 = Hs and η(ξ) = 0, for any ξ ∈
�(Rad(T M)) then using (20), we have hs(ξ, ξ) = 0, that is, hs = 0 on Rad(T M).
From (11), we have ∇̄V V = 0, implies that h(V, V ) = 0. Let {e1, . . . . . . , ek} be an
orthonormal basis of Dθ , then using the fact that η(ei ) = 0, i ∈ {1, 2, . . . , k} with
(19) and (20), we have h(ei , ei ) = 0; hence trace h|S(T M) = 0, and this completes
the proof. �
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Theorem 5.9 ([28]) Let M be an irrotational hemi-slant lightlike submanifold of
M̄. Then M is minimal, if and only if, trace AWq |S(T M) = 0, trace A∗

ξ j
|S(T M) = 0,

where {Wq}lq=1 is a basis of S(T M⊥) and {ξ j }rj=1 is a basis of Rad(T M).

Proof Let M be an irrotational lightlike submanifold, then hs(X, ξ) = 0 for X ∈
�(T M) and ξ ∈ �(Rad(T M)), which implies that hs vanishes on Rad(T M) and
∇̄V V = 0, and that h(V, V ) = 0. Hence M is minimal if and only if trace h = 0
on Dθ , that is, M is minimal if and only if

∑k
i=1 h(ei , ei ) = 0, where {ei }ki=1

be an orthonormal basis of Dθ . Using (5) and (7), we obtain
∑k

i=1 h(ei , ei ) =
∑k

i=1{ 1r
∑r

j=1 g(A
∗
ξ j
ei , ei )N j + 1

l

∑l
q=1 g(AWq ei , ei )Wq}, and the assertion follows.

�

The following assertions can be proved directly.

Theorem 5.10 ([28]) Let M be a proper hemi-slant lightlike submanifold of M̄.
Then M is minimal if and only if trace AWq |S(T M) = 0, trace A∗

ξ j
|S(T M) = 0, and

ḡ(Dl(X,W ),Y ) = 0, for any X, Y ∈ �(Rad(T M)), where {Wq}lq=1 is a basis of
S(T M⊥) and {ξ j }rj=1 is a basis of Rad(T M).

Lemma 5.11 ([28]) Let M be a proper hemi-slant lightlike submanifold of M̄ such
that dim(Dθ ) = dim(S(T M⊥)). If {ei }ki=1 is a local orthonormal basis of �(Dθ )

then {cscθFei }ki=1 is a orthonormal basis of S(T M⊥).

Theorem 5.12 ([28]) Let M be a proper hemi-slant lightlike submanifold of M̄
such that dim(Dθ ) = dim(S(T M⊥)). Then M isminimal if and only if traceAcscθFei
|S(T M) = 0, traceA∗

ξ j
|S(T M) = 0, and ḡ(Dl(X, Fei ),Y ) = 0, for any X,Y ∈ �(Rad

(T M)), where {ei }ki=1 is a basis of D
θ .

6 Screen Slant Lightlike Submanifolds

Definition 6.1 Let M be a 2q-lightlike submanifold of an indefinite Kenmotsu man-
ifold M̄ of index 2q with structure vector field tangent to M such that 2q < dim(M).
Then M is a screen slant lightlike submanifold of M̄ if the following conditions are
satisfied:

(i) Rad(T M) is invariant with respect to φ, i.e., Rad(T M) = φRad(T M)

(ii) For all x ∈ U ⊂ M and for each non-zero vector field X tangent to S(T M) =
D⊥{V }, if X and V are linearly independent, then the angle θ(X) between φX
and the vector space S(T M) is constant, where D is complementary distribution
to V in screen distribution S(T M).

Example 2 ([12]) Let M̄ = (R9
2, ḡ) be a semi-Euclidean space of signature (−,−,

+,+,+,+,+,+,+) with respect to the canonical basis {∂x1, ∂x2, ∂x3, ∂x4, ∂y1,
∂y2, ∂y3, ∂y4, ∂z}. Consider a submanifold M of R9

2, defined by
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X (u, v, θ1, θ2, t) = (u, v, sin θ1, cos θ1,−θ1 sin θ2,−θ1 cos θ2, u, v, t)

Then a local frame of T M is given by⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z1 = e−z(∂x1 + ∂y3),
Z2 = e−z(∂x2 + ∂y4),
Z3 = e−z(cos θ1∂x3 − sin θ1∂x4 − sin θ2∂y1 − cos θ2∂y2),
Z4 = e−z(−θ1 cos θ2∂y1 + θ1 sin θ2∂y2),
Z5 = V = ∂z

Hence, Rad(T M) = span{Z1, Z2}, which is invariant with respect to φ. Next,
S(T M) = D⊥{V } = {Z3, Z4}⊥{V } is slant distributionwith slant angle π

4 .Bydirect
calculations, we get

S(T M⊥) = span

{
W1 = e−z(cos θ1∂x3 − sin θ1∂x4 + sin θ2∂y1 + cos θ2∂y2),
W2 = e−z(sin θ1∂x3 + cos θ1∂x4)

and ltr(T M) = span{N1 = e−z

2 (−∂x1 + ∂y3), N2 = e−z

2 (−∂x2 + ∂y4)}. It is easy
to see that conditions (i) and (ii) of Definition6.1 hold. Hence, M is a proper screen
slant lightlike submanifold of R9

2.

Now, we know that for any X ∈ �(S(T M)), we can write

φX = T X + ωX, (57)

where T X ∈ �(T M) and ωX ∈ �(tr(T M)) are the tangential and transversal com-
ponents of φX , respectively. Moreover, for a screen slant lightlike submanifold,
we denote by Q, P , and P̄ the projections on the distributions Rad(T M), D,
and S(T M) = D⊥{V }, respectively. Then for any X ∈ �(T M), we can write
X = QX + P̄ X , where P̄ X = PX + η(X)V . Using (57) in the above equation,
we obtain φX = T QX + φPX = T QX + T PX + ωPX , for any X ∈ �(T M).
Thus, we conclude that φQX = T QX , ωQX = 0, and T PX ∈ �(S(T M)). On the
other hand, the screen transversal vector bundle S(T M⊥) has the following decom-
position S(T M⊥) = ωP(S(T M))⊥δ, then for W ∈ �(S(T M⊥)), we have φW =
BW + CW , where BW ∈ �(S(T M)) and CW ∈ �(δ). Thus, if X ∈ �(S(T M))

then ωX ∈ �(S(T M⊥)) and if X ∈ �(Rad(T M)), then ωX = 0.

Theorem 6.2 ([12]) Let M be a 2q-lightlike submanifold of an indefinite Kenmotsu
manifold M̄ of index 2q with structure vector field tangent to M such that 2q <

dim(M). Then M is screen slant lightlike submanifold if and only if the following
conditions are satisfied:

(a) φltr(T M) = ltr(T M), that is, ltr(T M) is invariant
(b) There exists a constant λ ∈ [−1, 0] such that

T 2 P̄ X = λ(P̄ X − η(P̄ X)V ) (58)

for all X ∈ �(S(T M)) linearly independent of structure vector field V . Moreover,
in such a case, λ = − cos2 θ |S(T M), where θ is the slant angle of M.
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Proof Let M be 2q-lightlike submanifold of an indefinite Kenmotsu manifold M̄ of
index 2q. Then S(T M) is a Riemannian vector bundle. IfM is a screen slant lightlike
submanifold of M̄ , then Rad(T M) is invariant distributionwith respect toφ.We have
that ωPX ∈ �(S(T M⊥)), for X ∈ S(T M). Thus, using (57), we get ḡ(φN , X) =
−ḡ(N , T PX) − ḡ(N , ωPX) = 0, for X ∈ S(T M) and N ∈ ltr(T M). Hence, we
conclude thatφN does not belong to S(T M). On the other hand,wefind ḡ(φN ,W ) =
−ḡ(N , BW ) − ḡ(N ,CW ) = 0, forW ∈ �(S(T M⊥)) and N ∈ �(ltr(T M)). Thus,
φN does not belong to S(T M⊥). Next, suppose that φN ∈ �(Rad(T M)). Then
φφN = −N + η(N )V = −N ∈ �(ltr(T M)), as Rad(T M) is invariant, and we
get a contradiction. Thus (a) is proved. For X ∈ �(S(T M)), PX ∈ S(T M) − {V },
we have

cos θ(PX) = ḡ(φPX, T PX)

|φPX ||T PX | = − ḡ(PX, φT PX)

|φPX ||T PX | = − ḡ(PX, T 2PX)

|PX ||T PX | . (59)

On the other hand, we get cos θ(PX) = |T PX |
|φPX | . Thus, using this fact in (59), we find

cos2 θ(PX) = − ḡ(PX,T 2PX)

|PX |2 . Since θ(PX) is constant on S(T M), we conclude that

T 2PX = λPX = λ(P̄ X − η(P̄ X)V ), λ ∈ (−1, 0). (60)

Moreover, in this case,λ = − cos2 θ . It is clear that Eq. (60) is valid for θ = 0 and θ =
π
2 . Hence, for P̄ X ∈ S(T M), we find T 2(P̄ X) = λ(P̄ X − η(P̄ X)V ), λ ∈ [−1, 0].
The converse can be obtained in a similar way. �

Analogous to the last Theorem6.2, existence theorems for a screen slant lightlike of
indefinite Sasakian manifolds and of indefinite Cosymplectic manifolds are derived
by Haider et al. [16] and by Gupta [13], respectively.

Corollary 6.3 Let M be a screen slant lightlike submanifold of an indefinite Ken-
motsu manifold M̄ with structure vector tangent to M. Then we have

g(T P̄ X, T P̄Y ) = cos2 θ |S(T M)[g(P̄ X, P̄Y ) − η(P̄ X)η(P̄Y )] (61)

g(F P̄X, F P̄Y ) = sin2 θ |S(T M)[g(P̄ X, P̄Y ) − η(P̄ X)η(P̄Y )] (62)

for X,Y ∈ �(T M).

From the above corollary, the following observation follows immediately.

Lemma 6.4 ([12]) Let M be a proper screen slant lightlike submanifold of an indef-
inite Kenmotsu manifold M̄ such that dim(D) = dim(S(T M⊥)). If {e1, . . . , em} is a
local orthonormal basis of �(D), then {csc θFe1, . . . , csc θFem} is an orthonormal
basis of S(T M⊥).

Then it is easy to derive the following important results.
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Theorem 6.5 ([12]) Let M be a proper screen slant lightlike submanifold of an
indefinite Kenmotsu manifold M̄ with structure vector field tangent to M. Then M is
minimal if and only if

traceAWj |S(T M) = 0, traceA∗
ξk |S(T M) = 0, ḡ(Dl(X,W ), Y ) = 0,

for X,Y ∈ �(Rad(T M)) and W ∈ �(S(T M⊥)), where {ξk}rk=1 is a basis of Rad
(T M) and {Wj }mj=1 is a basis of S(T M⊥).

Theorem 6.6 ([12]) Let M be a proper screen slant lightlike submanifold of an
indefinite Kenmotsu manifold M̄ with structure vector field tangent to M such that
dim(D) = dim(S(T M⊥)). Then M is minimal if and only if

traceAFe j |S(T M) = 0, traceA∗
ξk |S(T M) = 0, ḡ(Dl(X, Fe j ),Y ) = 0,

for X,Y ∈ �(Rad(T M)), where {ξk}rk=1 is a basis of Rad(T M) and {e j }mj=1 is a
basis of �(D).

7 Screen Semi-slant Lightlike Submanifolds

Definition 7.1 ([37]) Let M be a 2q-lightlike submanifold of an indefinite Sasakian
manifold M̄ of index 2q such that 2q < dim(M)with structure vector field tangent to
M . Then M is called a screen semi-slant lightlike submanifold of M̄ if the following
conditions are satisfied:

(i) Rad(T M) is invariant with respect to φ, that is, φ(Rad(T M)) = Rad(T M),
(ii) there exist non-degenerate orthogonal distributions D1 and D2 on M such that

S(T M) = D1 ⊕orth D2 ⊕orth {V },
(iii) the distribution D1 is an invariant distribution, that is, φD1 = D1,
(iv) the distribution D2 is slant with angle θ( = 0), that is, for each x ∈ M and each

non-zero vector X ∈ (D2)x , the angle θ between φX and the vector subspace
(D2)x is a non-zero constant, which is independent of the choice of x ∈ M and
X ∈ �(D2)x .

This constant angle θ is called the slant angle of the distribution D2. A screen semi-
slant lightlike submanifold is said to be proper if D1 = {0}, D2 = {0} and θ = π

2 .
From the above definition, we have T M = Rad(T M) ⊕orth D1 ⊕orth D2 ⊕orth {V }.

Example 3 ([37]) Let (R13
2 , ḡ) be an indefinite Sasakian manifold, where ḡ is of

signature (−,+,+,+,+,+,−,+,+,+,+,+,+) with respect to the canonical
basis {∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6, ∂z}. Suppose M is
a submanifold of R13

2 given by x1 = u1, y1 = u2, x2 = u1 cosα − u2 sin α, y2 =
u1 sin α + u2 cosα, x3 = −y4 = u3, x4 = y3 = u4, x5 = u5 sin u6, y5 = u5 cos u6,
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x6 = sin u5, y6 = cos u5, z = u7. Then, the local frame of T M is given by {Z1, Z2,

Z3, Z4, Z5, Z6, Z7}, where

Z1 = 2(∂x1 + cosα∂x2 + sin α∂y2 + y1∂z + cosαy2∂z),

Z2 = 2(∂y1 − sin α∂x2 + cosα∂y2 − sin αy2∂z),

Z3 = 2(∂x3 − ∂y4 + y3∂z), Z4 = 2(∂x4 + ∂y3 + y4∂z),

Z5 = 2(sin u6∂x5 + cos u6∂y5 + cos u5∂x6 − sin u5∂y6
+ sin u6y

5∂z + cos u5y
6∂z),

Z6 = 2(u5 cos u6∂x5 − u5 sin u6∂y5 + u5 cos u6y
5∂z),

Z7 = V = 2∂z.

Hence, Rad(T M) = span {Z1, Z2} and S(T M) = span{Z3, Z4, Z5, Z6, V }. Now,
ltr(T M) is spanned by N1 = −∂x1 + cosα∂x2 + sin α∂y2 − y1∂z + cosαy2∂z,
N2 = −∂y1 − sin α∂x2 + cosα∂y2 − sin αy2∂z, and S(T M⊥) is spanned by

W1 = 2(∂x3 + ∂y4 + y3∂z),W2 = 2(∂x4 − ∂y3 + y4∂z),

W3 = 2(sin u6∂x5 + cos u6∂y5 − cos u5∂x6 + sin u5∂y6
+ sin u6y

5∂z + cos u5y
6∂z),

W4 = 2(u5 sin u5∂x6 + u5 cos u5∂y6 + u5 sin u5y
6∂z).

It follows that φZ1 = −Z2 and φZ2 = Z1, which implies that Rad(T M) is invari-
ant, i.e., φRad(T M) = Rad(T M). On the other hand, we can see that D1 =
span{Z3, Z4} such that φZ3 = −Z4 and φZ4 = Z3, which implies that D1 is invari-
ant with respect to φ and D2 = span{Z5, Z6} is a slant distribution with slant angle
π/4. Hence, M is a screen semi-slant 2-lightlike submanifold of R13

2 .

Now, for any vector field X tangent toM , we putφX = PX + FX , where PX and
FX are tangential and transversal parts of φX , respectively. We denote the projec-
tions on Rad(T M), D1 and D2 in T M by P1, P2, and P3, respectively. Similarly, we
denote the projections of tr(T M) on ltr(T M) and S(T M⊥) by Q1 and Q2, respec-
tively. Then, for X ∈ �(T M), we can write X = P1X + P2X + P3X + η(X)V . On
applying φ, it follows that φX = φP1X + φP2X + φP3X , implies

φX = φP1X + φP2X + f P3X + FP3X, (63)

where f P3X (resp. FP3X ) denotes the tangential (resp. transversal) component of
φP3X . Thus, we get φP1X ∈ �(Rad(T M)), φP2X ∈ �(D1), f P3X ∈ �(D2) and
FP3X ∈ �(S(T M⊥)). Also, for any W ∈ �(tr(T M)), we can write W = Q1W +
Q2W and on applying φ, it follows that φW = φQ1W + φQ2W , which implies

φW = φQ1W + BQ2W + CQ2W, (64)
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where BQ2W (resp. CQ2W ) denotes the tangential (resp. transversal) component
of φQ2W . Thus, we get φQ1W ∈ �(ltr(T M)), BQ2W ∈ �(D2), and CQ2W ∈
�(S(T M⊥)).

Now, using (2)–(4), (11), (63), (64) and on identifying the components on
Rad(T M), D1, D2, and S(T M⊥), we derive

P1(∇XφP1Y ) + P1(∇XφP2Y ) + P1(∇X f P3Y ) = P1(AFP3Y X)

+ φP1∇XY − η(Y )P1X,
(65)

P2(∇XφP1Y ) + P2(∇XφP2Y ) + P2(∇X f P3Y ) = P2(AFP3Y X)

+ φP2∇XY − η(Y )P2X,
(66)

P3(∇XφP1Y ) + P3(∇XφP2Y ) + P3(∇X f P3Y ) = P3(AFP3Y X)

+ f P3∇XY + Bhs(X,Y ) − η(Y )P3X,
(67)

hs(X, φP1Y ) + hs(X, φP2Y ) = Chs(X,Y ) − hs(X, f P3Y )

− ∇s
X FP3Y + FP3∇XY,

(68)

Theorem 7.2 ([37]) Let M be a 2q-lightlike submanifold of an indefinite Sasakian
manifold M̄ with structure vector field tangent to M. Then, M is a screen semi-slant
lightlike submanifold of M̄ if and only if

(i) ltr(T M) and D1 are invariant with respect to φ,
(ii) there exists a constant λ ∈ [0, 1) such that P2X = −λX.

Moreover, there also exists a constant μ ∈ (0, 1] such that BFX = −μX, for all
X ∈ �(D2), where D1 and D2 are non-degenerate orthogonal distributions on M
such that S(T M) = D1 ⊕orth D2 ⊕orth {V } and λ = cos2 θ , θ is slant angle of D2.

Proof Let M be a screen semi-slant lightlike submanifold of an indefinite Sasakian
manifold M̄ . Then, distributions D1 and Rad(T M) are invariant with respect to
φ. Now, for any N ∈ �(ltr(T M)) and X ∈ �(S(T M) − {V }), using (10) and (63),
weobtain ḡ(φN , X) = −ḡ(N , φX) = −ḡ(N , φP2X + f P3X + FP3X) = 0.Thus,
φN does not belong to �(S(T M) − {V }). For any N ∈ �(ltr(T M)) and W ∈
�(S(T M⊥)), from (10) and (64), we have ḡ(φN ,W ) = −ḡ(N , φW ) = −ḡ(N , BW
+ CW ) = 0. Hence, we conclude that φN does not belong to
� (S(T M⊥)). Now, suppose that φN ∈ �(Rad(T M)). Then φ(φN ) = φ2N =
−N + η(N )V = −N ∈ �(ltrT M), which contradicts that Rad(T M) is invariant.
Thus, ltr(T M) is invariant with respect to φ. Now, for any X ∈ �(D2), we have
|PX | = |φX | cos θ , which implies

cos θ = |PX |
|φX | . (69)
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In view of (69), we get cos2 θ = |PX |2
|φX |2 = g(PX,PX)

g(φX,φX)
= g(X,P2X)

g(X,φ2X)
, this gives g(X, P2X)

= cos2 θ g(X, φ2X). Since M is a screen semi-slant lightlike submanifold, cos2 θ =
λ(constant) ∈ [0, 1), therefore, we get g(X, P2X) = λg(X, φ2X) = g(X, λφ2X),
this implies g(X, (P2 − λφ2)X) = 0. Since (P2 − λφ2)X ∈ �(D2) and the induced
metric g = g|D2×D2 is non-degenerate (positive definite); hence (P2 − λφ2)X = 0,
which implies

P2X = λφ2X = −λX. (70)

For any vector field X ∈ �(D2) , we have φX = PX + FX . Applying φ and on
taking the tangential component, we get

− X = P2X + BFX. (71)

Hence, from (70) and (71), we obtain

BFX = −μX, (72)

where 1 − λ = μ(constant) ∈ (0, 1]. This proves (ii).
Conversely, suppose that conditions (i) and (ii) are satisfied. We can show that

Rad(T M) is invariant in similar way that ltr(T M) is invariant. From (71), for any
X ∈ �(D2), we have −X = P2X − μX . This further implies P2X = −λX , where
1 − μ = λ(constant) ∈ [0, 1). Now

cos θ = g(φX, PX)

|φX ||PX | = −g(X, P2X)

|φX ||PX | = −λ
g(X, φ2X)

|φX ||PX | = λ
g(φX, φX)

|φX ||PX | ,

which further implies

cos θ = λ
|φX |
|PX | . (73)

Therefore, (69) and (73) imply cos2 θ = λ(constant). Hence, M is a screen semi-
slant lightlike submanifold. �

Theorem 7.3 ([37]) Let M be a screen semi-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ with structure vector field tangent to M. Then,
Rad(T M) is integrable if and only if hs(Y, φP1X) = hs(X, φP1Y ), P2(∇XφP1Y ) =
P2(∇YφP1X) and P3(∇XφP1Y ) = P3(∇YφP1X), for all X,Y ∈ �(Rad(T M)).

Proof Let X,Y ∈ �(Rad(T M)). Then from (68), we have hs(X, φP1Y ) = Chs(X,

Y ) + FP3∇XY . This gives hs(X, φP1Y ) − hs(Y, φP1X) = FP3[X,Y ]. From (66),
we get P2(∇XφP1Y ) = φP2∇XY . This implies P2(∇XφP1Y ) − P2(∇YφP1X) =
φP2[X,Y ]. Also from (67), we derive P3(∇XφP1Y ) = f P3∇XY + Bhs(X,Y ),
which gives P3(∇XφP1Y ) − P3(∇YφP1X) = f P3[X,Y ]. This completes the
proof. �
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Theorem 7.4 ([37]) Let M be a screen semi-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ with structure vector field tangent to M. Then
D1 ⊕ {V } is integrable if and only if hs(Y, φP2X) = hs(X, φP2Y ), P1(∇XφP2Y ) =
P1(∇YφP2X) and P3(∇XφP2Y ) = P3(∇YφP2X), for all X,Y ∈ �(D1 ⊕ {V }).
Proof Let X,Y ∈ �(D1 ⊕ {V }). Then from (68), we have hs(X, φP2Y ) = Chs(X,

Y ) + FP3∇XY , which gives hs(X, φP2Y ) − hs(Y, φP2X) = FP3[X,Y ]. In view
of (65), we get P1(∇XφP2Y ) = φP1∇XY , implies P1(∇XφP2Y ) − P1(∇YφP2X) =
φP1[X,Y ]. Also from (67), we obtain P3(∇XφP2Y ) = f P3∇XY + Bhs(X,Y ); this
gives P3(∇XφP2Y ) − P3(∇YφP2X) = f P3[X,Y ]. This concludes the theorem. �

Theorem 7.5 ([37]) Let M be a screen semi-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ with structure vector field tangent to M. Then
Rad(T M) defines a totally geodesic foliation if and only if ḡ(hl(X, PZ), φY ) =
−ḡ(Dl(X, FZ), φY ), for all X,Y ∈ �(Rad(T M)) and Z ∈ �(S(T M)).

Proof It is clear that Rad(T M) defines a totally geodesic foliation if and only if
∇XY ∈ �(Rad(T M)), for all X,Y ∈ �(Rad(T M)). Since ∇̄ is a metric connec-
tion, using (2) and (9), for any X,Y ∈ �(Rad(T M)) and Z ∈ �(S(T M)), we get
ḡ(∇XY, Z) = −ḡ(∇̄X PZ + ∇̄X F Z , φY ), which implies ḡ(∇XY, Z) = −ḡ(hl(X,

PZ) + Dl(X, FZ), φY ) and hence the proof is complete. �

Theorem 7.6 ([37]) Let M be a screen semi-slant lightlike submanifold of an indef-
inite Sasakian manifold M̄ with structure vector field tangent to M. Then D1 ⊕ {V }
defines a totally geodesic foliation if and only if ḡ(∇X f Z , φY ) = ḡ(AFZ X, φY ) and
AφN X has no component in D1 ⊕ {V }, for all X, Y ∈ �(D1 ⊕ {V }), Z ∈ �(D2) and
N ∈ �(ltr(T M)).

Proof To prove the distribution D1 ⊕ {V } defines a totally geodesic foliation, it is
sufficient to show that ∇XY ∈ �(D1 ⊕ {V }), for all X,Y ∈ �(D1 ⊕ {V }). Since ∇̄
is a metric connection, from (2), (9), and (11), for any X,Y ∈ �(D1 ⊕ {V }) and
Z ∈ �(D2), we obtain ḡ(∇XY, Z) = −ḡ(∇̄XφZ , φY ), which gives ḡ(∇XY, Z) =
ḡ(AFZ X − ∇X f Z , φY ). In view of (2), (9), and (11), for any X,Y ∈ �(D1 ⊕
{V }) and N ∈ �(ltr(T M)), we have ḡ(∇XY, N ) = −ḡ(φY, ∇̄XφN ), which implies
ḡ(∇XY, N ) = ḡ(φY, AφN X). This completes the proof. �

8 Radical Transversal Screen Semi-slant Lightlike
Submanifolds

Definition 8.1 ([34]) Let M be a 2q-lightlike submanifold of an indefinite Sasakian
manifold M̄ of index 2q such that 2q < dim(M) with structure vector field tangent
to M . Then M is a radical transversal screen semi-slant lightlike submanifold of M̄
if the following conditions are satisfied:

(i) φ(Rad(T M)) = ltr(T M),
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(ii) there exist non-degenerate orthogonal distributions D1 and D2 on M such that
S(T M) = D1 ⊕orth D2 ⊕orth {V },

(iii) the distribution D1 is invariant, that is, φD1 = D1,
(iv) the distribution D2 is slant with angle θ( = 0).

A radical transversal screen semi-slant lightlike submanifold is said to be proper
if D1 = {0}, D2 = {0}, and θ = π/2. From the above definition, we have T M =
Rad(T M) ⊕orth D1 ⊕orth D2 ⊕orth {V } and in particular

(i) if D2 = 0, then M is a radical transversal lightlike submanifold;
(ii) if D1 = 0 and θ = π/2, then M is a transversal lightlike submanifold;
(iii) if D1 = 0 and θ = π/2, then M is a generalized transversal lightlike subman-

ifold.

Thus, the class of radical transversal screen semi-slant lightlike submanifold of
an indefinite Sasakian manifold includes radical transversal, transversal, generalized
transversal lightlike submanifolds as its sub-cases and has been studied in [38, 40].

Example 4 ([34]) Let (R13
2 , ḡ) be an indefinite Sasakian manifold, where ḡ is of

signature (−,+,+,+,+,+,−,+,+,+,+,+,+) with respect to the canonical
basis {∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6, ∂z}. Suppose M is
a submanifold of R13

2 given by x1 = u1, y1 = −u2, x2 = u1 cosα − u2 sin α, y2 =
u1 sin α + u2 cosα, x3 = y4 = u3, x4 = −y3 = u4, x5 = u5 cos θ , y5 = u6 cos θ ,
x6 = u6 sin θ , y6 = u5 sin θ , z = u7. The local frame of T M is given by {Z1, Z2, Z3,

Z4, Z5, Z6, Z7}, where

Z1 = 2(∂x1 + cosα∂x2 + sin α∂y2 + y1∂z + cosαy2∂z),

Z2 = 2(−∂y1 − sin α∂x2 + cosα∂y2 − sin αy2∂z),

Z3 = 2(∂x3 + ∂y4 + y3∂z), Z4 = 2(∂x4 − ∂y3 + y4∂z),

Z5 = 2(cos θ∂x5 + sin θ∂y6 + y5 cos θ∂z),

Z6 = 2(sin θ∂x6 + cos θ∂y5 + y6 sin θ∂z),

Z7 = V = 2∂z.

Hence, Rad(T M) = span{Z1, Z2} and S(T M) = span{Z3, Z4, Z5, Z6, V }. Now,
ltr(T M) is spanned by N1 = −∂x1 + cosα∂x2 + sin α∂y2 − y1∂z + cosαy2∂z,
N2 = ∂y1 − sin α∂x2 + cosα∂y2 − sin αy2∂z and S(T M⊥) is spanned by

W1 = 2(∂x3 − ∂y4 + y3∂z),W2 = 2(∂x4 + ∂y3 + y4∂z),

W3 = 2(sin θ∂x5 − cos θ∂y6 + y5 sin θ∂z),

W4 = 2(cos θ∂x6 − sin θ∂y5 + y6 cos θ∂z).

It follows thatφZ1 = −2N2,φZ2 = 2N1,which implies thatφRad(T M)=ltr(T M).
On the other hand, we can see that D1 = span{Z3, Z4} such that φZ3 = Z4, φZ4 =
−Z3, which implies that D1 is invariant with respect to φ and D2 = span{Z5, Z6}
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is a slant distribution with slant angle 2θ . Hence, M is a radical transversal screen
semi-slant 2-lightlike submanifold of R13

2 .

From (63) and (64), it is clear that for a radical transversal screen semi-slant
lightlike submanifold, we have φP1X ∈ �(ltr(T M)) and φQ1W ∈ �(Rad(T M)).
Now, by using (2)–(4), (11), (63)–(64) and on identifying the components on D1,
D2, ltr(T M), and S(T M⊥), we obtain

P2(∇XφP2Y ) + P2(∇X f P3Y ) = P2(AFP3Y X) + P2(AφP1Y X)

+ φP2∇XY − η(Y )P2X,
(74)

P3(∇XφP2Y ) = P3(AFP3Y X) + P3(AφP1Y X) − P3(∇X f P3Y )

+ f P3∇XY + Bhs(X,Y ) − η(Y )P3X,
(75)

φP1∇XY = ∇l
XφP1Y + hl(X, φP2Y ) + hl(X, f P3Y )

+ Dl(X, FP3Y ),
(76)

FP3∇XY − ∇s
X FP3Y = Ds(X, φP1Y ) + hs(X, φP2Y )

+ hs(X, f P3Y ) − Chs(X,Y ).
(77)

Theorem 8.2 ([34]) Let M be a 2q-lightlike submanifold of an indefinite Sasakian
manifold M̄ with structure vector field tangent to M. Then, M is a radical transversal
screen semi-slant lightlike submanifold if and only if

(i) φltr(T M) is a distribution on M such that φltr(T M) = Rad(T M),
(ii) distribution D1 is invariant with respect to φ, that is, φD1 = D1,
(iii) there exists a constant λ ∈ [0, 1) such that P2X = −λX.

Moreover, there also exists a constant μ ∈ (0, 1] such that BFX = −μX, for all
X ∈ �(D2), where D1 and D2 are non-degenerate orthogonal distributions on M
such that S(T M) = D1 ⊕orth D2 ⊕orth {V } and λ = cos2 θ , θ is slant angle of D2.

Proof Let M be a radical transversal screen semi-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ . Then, distribution D1 is invariant with respect to φ

and φRad(T M) = ltr(T M). Thus, φX ∈ �(ltr(T M)), for all X ∈ �(Rad(T M)).
Hence φ(φX) ∈ �(φ(ltr(T M))), which implies −X ∈ �(φ(ltr(T M))), for all
X ∈ �(Rad(T M)), which proves (i) and (ii). Now, for any X ∈ �(D2), similar
to proof of Theorem7.2, we have (iii).

Conversely, suppose that conditions (i), (ii), and (iii) are satisfied. In view
of (i), we have φN ∈ �(Rad(T M)), for all N ∈ �(ltr(T M)). Hence, φ(φN ) ∈
�(φ(Rad(T M))),which implies−N ∈ �(φ(Rad(T M))), for all N ∈ �(ltr(T M)).
Thus, φRad(T M) = ltr(T M). As in Theorem7.2 for any X ∈ �(D2), we have our
result. Hence, M is a radical transversal screen semi-slant lightlike submanifold. �
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The conditions for integrability and totally geodesic foliations for the distributions of
a radical transversal screen semi-slant lightlike submanifold of an indefinite Sasakian
manifold are given below.

Theorem 8.3 ([34]) Let M be a radical transversal screen semi-slant lightlike sub-
manifold of an indefinite Sasakian manifold M̄ with structure vector field tangent to
M. Then, Rad(T M) ⊕ {V } is integrable if and only if P2(AφP1Y X) = P2(AφP1XY ),
P3(AφP1Y X) = P3(AφP1XY ), and Ds(Y, φP1X) = Ds(X, φP1Y ), for all X,Y ∈
�(Rad(T M) ⊕ {V }).
Theorem 8.4 ([34]) Let M be a radical transversal screen semi-slant lightlike sub-
manifold of an indefinite Sasakian manifold M̄ with structure vector field tangent
to M. Then, D1 ⊕ {V } is integrable if and only if hl(Y, φP2X) = hl(X, φP2Y ),
hs(Y, φP2X) = hs(X, φP2Y ), and P3(∇XφP2Y ) = P3(∇YφP2X), for all X,Y ∈
�(D1 ⊕ {V }).
Theorem 8.5 ([34]) Let M be a radical transversal screen semi-slant lightlike
submanifold of an indefinite Sasakian manifold M̄ with structure vector field tan-
gent to M. Then Rad(T M) ⊕ {V } defines a totally geodesic foliation if and only
if ḡ(∇XφP2Z + ∇X f P3Z , φY ) = ḡ(AFP3Z X, φY ), for all X, Y ∈ �(Rad(T M) ⊕
{V }) and Z ∈ �(D1 ⊕ D2).

Theorem 8.6 ([34]) Let M be a radical transversal screen semi-slant lightlike
submanifold of an indefinite Sasakian manifold M̄ with structure vector field tan-
gent to M. Then, D2 ⊕ {V } defines a totally geodesic foliation if and only if
ḡ( f Y,∇XφZ) = −ḡ(FY, hs(X, φZ)) and ḡ( f Y,∇XφN ) = −ḡ(FY, hs(X, φN )),
for all X,Y ∈ �(D2 ⊕ {V }), Z ∈ �(D1) and N ∈ �(ltr(T M)).

9 Screen Pseudo-slant Lightlike Submanifolds

Definition 9.1 ([35]) Let M be a 2q-lightlike submanifold of an indefinite Sasakian
manifold M̄ of index 2q such that 2q < dim(M) with structure vector field tangent
to M . Then M is a screen pseudo-slant lightlike submanifold of M̄ if the following
conditions are satisfied:

(i) Rad(T M) is invariant with respect to φ, that is, φ(Rad(T M)) = Rad(T M),
(ii) there exists non-degenerate orthogonal distributions D1 and D2 on M such that

S(T M) = D1 ⊕orth D2 ⊕orth {V },
(iii) the distribution D1 is anti-invariant, that is, φD1 ⊂ S(T M⊥),
(iv) the distribution D2 is slant with angle θ( = π/2).

A screen pseudo-slant lightlike submanifold is said to be proper if D1 = {0}, D2 =
{0}, and θ = 0. Moreover, we have

(i) if D1 = 0, then M is a screen slant lightlike submanifold,
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(ii) if D2 = 0, then M is a screen real lightlike submanifold,
(iii) if D1 = 0 and θ = 0, then M is an invariant lightlike submanifold,
(iv) if D1 = 0 and θ = 0, then M is a contact SCR-lightlike submanifold.

Thus, this new class of screen pseudo-slant lightlike submanifolds of an indefinite
Sasakian manifold includes invariant, screen slant, screen real, contact screen CR-
lightlike submanifolds as its sub-cases which have been studied in [11, 16, 31, 33].

Example 5 ([35]) Let (R13
2 , ḡ) be an indefinite Sasakian manifold, where ḡ is of

signature (−,+,+,+,+,+,−,+,+,+,+,+,+) with respect to the canonical
basis {∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6, ∂z}. Suppose M is
a submanifold ofR13

2 given by x1 = u1, y1 = −u2, x2 = −u1 cosα − u2 sin α, y2 =
−u1 sin α + u2 cosα, x3 = u3 cosβ, y3 = u3 sin β, x4 = u4 sin β, y4 = u4 cosβ,
x5 = u5, y5 = u6, x6 = k cos u6, y6 = k sin u6, z = u7, where k is any constant.
The local frame of T M is given by {Z1, Z2, Z3, Z4, Z5, Z6, Z7}, where

Z1 = 2(∂x1 − cosα∂x2 − sin α∂y2 + y1∂z − cosαy2∂z),

Z2 = 2(−∂y1 − sin α∂x2 + cosα∂y2 − sin αy2∂z),

Z3 = 2(cosβ∂x3 + sin β∂y3 + y3 cosβ∂z),

Z4 = 2(sin β∂x4 + cosβ∂y4 + y4 sin β∂z),

Z5 = 2(∂x5 + y5∂z),

Z6 = 2(∂y5 − k sin u6∂x6 + k cos u6∂y6 − k sin u6y
6∂z),

Z7 = V = 2∂z.

Hence, Rad(T M) = span{Z1, Z2} and S(T M) = span{Z3, Z4, Z5, Z6, V }. Now,
ltr(T M) is spannedby N1 = ∂x1 + cosα∂x2 + sin α∂y2 + y1∂z + cosαy2∂z, N2 =
−∂y1 + sin α∂x2 − cosα∂y2 + sin αy2∂z and S(T M⊥) is spanned by

W1 = 2(sin β∂x3 − cosβ∂y3 + y3 sin β∂z),

W2 = 2(cosβ∂x4 − sin β∂y4 + y4 cosβ∂z),

W3 = 2(k cos u6∂x6 + k sin u6∂y6 + k cos u6y
6∂z),

W4 = 2(k2∂y5 + k sin u6∂x6 − k cos u6∂y6 + k sin u6y
6∂z).

It follows that φZ1 = Z2 and φZ2 = −Z1, which implies that Rad(T M) is invari-
ant, i.e., φRad(T M) = Rad(T M). On the other hand, we can see that D1 =
span{Z3, Z4} such that φZ3 = W1 and φZ4 = W2, which implies that D1 is anti-
invariant with respect to φ and D2 = span {Z5, Z6} is a slant distribution with slant
angle θ = arccos(1/

√
1 + k2). Hence, M is a screen pseudo-slant 2-lightlike sub-

manifold of R13
2 .

We denote the projections of tr(T M) on ltr(T M), φ(D1) and D′ by Q1, Q2, and
Q3, respectively, where D′ is non-degenerate orthogonal complementary subbundle
of φ(D1) in S(T M⊥). Therefore, from (63), we get φP1X ∈ �(Rad(T M)),φP2X ∈
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�(φD1) ⊂ �(S(T M⊥)), f P3X ∈ �(D2), and FP3X ∈ �(D′). Also, for any W ∈
�(tr(T M)), we haveW = Q1W + Q2W + Q3W.On applying φ, we obtain φW =
φQ1W + φQ2W + φQ3W , this gives

φW = φQ1W + φQ2W + BQ3W + CQ3W, (78)

where BQ3W (resp. CQ3W ) denotes the tangential (resp. transversal) component
of φQ3W . Thus, we get φQ1W ∈ �(ltr(T M)), φQ2W ∈ �(D1), BQ3W ∈ �(D2),
and CQ3W ∈ �(D′). Now, using (2)–(4), (11), (63), (78) and on identifying the
components on Rad(T M), D2, φ(D1) and D′, we obtain

∇∗t
X φP1Y + P1(∇X f P3Y ) = P1(AFP3Y X) + P1(AφP2Y X)

+φP1∇XY − η(Y )P1X, (79)

P3(A∗
φP1Y

X) +P3(AφP2Y X) + P3(AFP3Y X) = P3(∇X f P3Y )

− f P3(∇XY ) − BQ3h
s(X,Y ) + η(Y )P3X, (80)

Q2∇s
XφP2Y + Q2∇s

X FP3Y = φP2∇XY − Q2h
s(X, φP1Y )

−Q2h
s(X, f P3Y ), (81)

Q3∇s
XφP2Y+Q3∇s

X FP3Y − FP3∇XY = CQ3h
s(X,Y )

− Q3h
s(X, f P3Y ) − Q3h

s(X, φP1Y ).
(82)

Theorem 9.2 ([35]) Let M be a 2q-lightlike submanifold of an indefinite Sasakian
manifold M̄ with structure vector field tangent to M. Then, M is a screen pseudo-slant
lightlike submanifold of M̄ if and only if

(i) ltr(T M) is invariant and D1 is anti-invariant with respect to φ,
(ii) there exists a constant λ ∈ (0, 1] such that P2X = −λX.

Moreover, there also exists a constant μ ∈ [0, 1) such that BFX = −μX, for all
X ∈ �(D2), where D1 and D2 are non-degenerate orthogonal distributions on M
such that S(T M) = D1 ⊕orth D2 ⊕orth {V } and λ = cos2 θ , θ is slant angle of D2.

Proof LetM be a screen pseudo-slant lightlike submanifold of an indefinite Sasakian
manifold M̄ . Then, D1 is anti-invariant and Rad(T M) is invariant with respect
to φ. For any N ∈ �(ltr(T M)) and X ∈ �(S(T M) − {V }), from (10) and (63),
weobtain ḡ(φN , X) = −ḡ(N , φX) = −ḡ(N , φP2X + f P3X + FP3X) = 0.Thus,
φN does not belong to �(S(T M) − {V }). Now, for any N ∈ �(ltr(T M)) and W ∈
�(S(T M⊥)), from (10) and (78),weget ḡ(φN ,W ) = −ḡ(N , φW ) = −ḡ(N , φQ2W
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+ BQ3W + CQ3W ) = 0. Hence, we conclude that φN does not belong to �

(S(T M⊥)).

Now suppose that φN ∈ �(Rad(T M)). Then, further the proof of this theorem
is analogous to Theorem7.2. �

Theorem 9.3 ([35]) Let M be a screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ with structure vector field tangent to M. Then,
Rad(T M) is integrable if andonly if Q2hs(Y, φP1X) = Q2hs(X, φP1Y ), Q3hs(Y, φ

P1X) = Q3hs(X, φP1Y ) and P3A∗
φP1X

Y=P3A∗
φP1Y

X, for all X,Y ∈ �(Rad(T M)).

Theorem 9.4 ([35]) Let M be a screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ with structure vector field tangent to M. Then
D2 ⊕ {V } is integrable if and only if P1(∇X f P3Y − ∇Y f P3X) = P1(AFP3Y X −
AFP3XY ) and Q2(∇s

X FP3Y − ∇s
Y FP3X) = Q2(hs(Y, f P3X) − hs(X, f P3Y )), for

all X,Y ∈ �(D2 ⊕ {V }).
Theorem 9.5 ([35]) Let M be a screen pseudo-slant lightlike submanifold of an
indefinite Sasakian manifold M̄ with structure vector field tangent to M. Then D1

defines a totally geodesic foliation if and only if ḡ(hs(X, f Z), φY )= − ḡ(∇s
X F Z ,

φY ) and Ds(X, φN ) has no component in φ(D1), for all X,Y ∈ �(D1), Z ∈ �(D2)

and N ∈ �(ltr(T M)).
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