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Abstract. As an important tool of multi-way/tensor data analysis tool, Tucker
decomposition has been applied widely in various fields. But traditional
sequential Tucker algorithms have been outdated because tensor data is growing
rapidly in term of size. To address this problem, in this paper, we focus on
parallel Tucker decomposition of dense tensors on distributed-memory systems.
The proposed method uses Hierarchical SVD to accelerate the SVD step in
traditional sequential algorithms, which usually takes up most computation time.
The data distribution strategy is designed to follow the implementation of
Hierarchical SVD. We also find that compared with the state-of-the-art method,
the proposed method has lower communication cost in large-scale parallel cases
under the assumption of the a–b model.
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1 Introduction

In computer science, tensors are N-way arrays. In early days, tensor data was dealt with
by vectorization, which broke construction information of original data. With the
development of higher order data processing, tensor analysis has drawn lots of attention
and shown advantage to vectorization methods. As the most important tool in tensor
analysis, tensor decomposition methods are widely applied in multi fields such as
computer vision [1, 2], machine learning [3, 4], neuroscience [5], data mining [6],
social network computing [7] and so on. There are several tensor decomposition
methods, among which Tucker decomposition [8] is one of most famous ones.

Tucker decomposition is traditionally solved by HOOI [9] with quite expensive
cost due to iteration progress and TTM (Tensor Times Matrix) chain computation.
Since Higher Order Singular Values Decomposition (HOSVD) [10] plays the role of
initial step in HOOI, its truncated version Truncated HOSVD (T-HOSVD) can be used
to approximate the output of HOOI, with only a little accuracy lost but great reduction
of computation cost. An even better approximation is Sequential Truncated HOSVD
(ST-HOSVD) [11], which applies greedy strategy to the truncation progress and
achieves improvements in both accuracy and speed.
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Although ST-HOSVD has reduced lots of computation cost compared to traditional
methods like HOOI, it’s still far from enough. With the development of our society and
techniques, data sizes are growing rapidly. Traditional sequential solution within one
computation node fails to handle Tucker decomposition of large tensor data today, due
to not only extremely long computation time but also memory limit of one single node.
To solve Tucker decomposition efficiently, recent years have seen multiple parallel
algorithms on this issue.

Based on Hadoop [12], HaTen2 [13] can handle sparse tensor data of billion scale.
This method divides complex tensor multiplications into large amount of unrelated
vector dot products. To cut the dependencies of original sequential steps, HaTen2 takes
additional operators which increases computation cost but improves parallelism a lot.
For sparse tensors, this method reduces execution time on clusters with few additional
tasks, while it costs much more for nonsparse cases. To deal with dense data, [14]
proposes the first distributed dense Tucker decomposition algorithm on CPU clusters. It
distributes tensor data across all modes. For example, let X be a tensor of size
I1 � I2 � I3, and p ¼ p1 � p2 � p3 be the number of available processors. X is divided
into tensor blocks of size I1

p1
� I2

p2
� I3

p3
, and each processor owns one block. This dis-

tribution strategy has been followed by several works as described below. [15] dis-
tributes tensor data using the same strategy and optimizes the TTM chain computation
for parallel HOOI. It constructs TTM-trees to present TTM schemes and searches the
best one with least computational load. GPUTensor [16] applies the same distribution
strategy of [14] to Tucker decomposition on GPU platforms.

This paper focus on Tucker decomposition of dense tensors, in which case, [14]
offers the current state-of-the-art method. Although there are some other methods
extends it, they all follow its data distribution strategy. But actually, it has not opti-
mized communication cost among different processors yet, which has a great influence
on computation efficiency for parallel algorithms. As the data size increases day by day,
large scale parallel techniques are in great need for data analysis. So in this paper, we
present a new parallel Tucker decomposition method with optimized communication
cost. Different from the methods mentioned above, we merge the gram matrix com-
putation and eigen decomposition into one SVD step, which is implemented in parallel
based on Hierarchical SVD [17] and leads to much less communication cost.

The rest of this paper is organized as follows. Section 2 is the preliminaries
including basic concepts of tensor operations and a simple instruction of ST-HOSVD.
Section 3 explains the details of the proposed method, focusing on implementation of
parallel SVD and communication cost analysis. Section 4 is the experiments.

2 Preliminaries

2.1 Tensor Notations

In this paper, we denote a tensor by calligraphic letters, like X . The dimension of a
tensor is called order (also called mode). The space of a real tensor of order N and size
I1 � . . .� IN is denoted as RI1�I2�...�IN .
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Definition 1 (Matricization). The mode-n matricization of tensor X 2 RIn�I2�...IN is the

matrix, denoted as XðnÞ 2 R
In�

Q
k 6¼nIk , whose columns are composed of all the vectors

obtained from X by fixing all indices but n-th.

Definition 2 (Folding Operator). Suppose X be a tensor. The mode-n folding operator
of a matrix M ¼ XðnÞ, denoted as foldnðMÞ, is the inverse operator of the unfolding
operator.

Definition 3 (Mode-n Product, TTM operator, Tensor Times Matrix). Mode-n product
of tensor X 2 RIn�I2�...IN and matrix A 2 RJ�In is denoted by X�nA, whose size is
I1 � . . .� In�1 � J � Inþ 1 � . . .� IN , and defined by X�nA ¼ foldnðMÞ.
Definition 4 (Gram Matrix). The Gram Matrix of a matrix M is MMT .

2.2 St-HOSVD

Tucker factorization is a method that decomposes a given tensor X 2 RI1�I2�...�IN into
N factor matrices U1;U2; . . .;UN and a core tensor C such that

ð1Þ

In this paper, we consider the optimization of ST-HOSVD [10] to solve Tucker
decomposition. The algorithm of ST-HOSVD is described as Algorithm 1 below.

Algorithm 1. ST-HOSVD[10]
Input: The tensor , ranks 
Output: The core tensor , and factor matrices 

For 
Calculate Gram matrix
Take the leading  eigen vectors of and form the factor matrix 

EndFor

3 The Proposed Method

In this section, we will describe the proposed method in detail. In ST-HOSVD
(Algorithm 1), to obtain the factor matrix of every mode, one needs to calculate the
gram matrix of X nð Þ and its eigen decomposition. But actually, one SVD step is
sufficient to obtain the factor matrix. What’s more, in parallel cases, using truncated
SVD can reduce communication cost, as is explained later. This is also a reason of why
we prefer SVD here.
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The implementation of parallel SVD in the proposed method can be divided into
3 steps:

• Distribute data to each processor.
• Compute SVD of the local data on each processor.
• Root processor gathers SVD results and merge them to get the factor matrix.

Step 2 and 3 are the key of the proposed method, and data distribution in step
1 should follow them. So Sect. 3.1 explains step 2 and 3 firstly, followed by Sect. 3.2
with accuracy analysis. Section 3.3 describes data distribution and analysis commu-
nication cost after that.

3.1 Hierarchical SVD

The matricization of a tensor is usually a highly rectangle matrix M 2 RI�D with
I � D. To compute the SVD of M efficiently, a natural way is to divide M into smaller
matrices such that M ¼ M1jM2 . . .j jMp

� �
with Mi 2 RI�Di , and compute SVD for each

Mi and then merge them. Actually, this is the exact idea of Hierarchical SVD [17],
which computes U and S parallelly while discarding V for the SVD of M : U � S � VT .
And we can see in Algorithm 1, in ST-HOSVD, to obtain the factor matrix of Tucker
decomposition for mode n, one only needs the left singular vectors U from the SVD of
X nð Þ ¼ U � S � VT .

The Hierarchical SVD algorithm calculates the SVD of each Mi by UiSiVT
i and

discards the right singular matrices VT
i . Then it calculates the SVD of

U1S1jU2S2 . . .j jUpSp
� �

and output the left singular matrix and singular values. Figure 1
illustrates the progress of Hierarchical SVD.

In the real world, most tensor data are of low-rank, which means truncated SVD
with only a few leading singular values may lose little information of the original data.

Fig. 1. The illustration of Hierarchical SVD [17].
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In this case, using SVD instead of gram matrix can reduce communication cost. The
reason runs as follows. Suppose every processor has a local matrix Mi 2 RI�Di . The
local gram matrix is of size I � I, which is the transferring data size per processor. But
if we use SVD and the truncated rank is d, then each processor only needs to transfer
UiSi 2 RI�d . As mentioned above, d is usually much smaller than I in real world data,
so the transferring data size I � d is also much smaller than that of local gram matrix
computation.

In extremely large-scale parallel cases with very large p, one can calculate SVD
with more levels to reduce communication cost further. See Fig. 2 as an example. But
one should also note that more levels come with larger error for truncated SVD. So we
suggest this strategy only serve to trade off accuracy for computation time, or cases of
non-truncated SVD.

3.2 Discussion on Error of Hierarchical SVD

Now let’s come to the accuracy of Hierarchical SVD. For normal SVD, the error
analysis is very clear. Let A be a matrix and si; ui; vi i ¼ 1; . . .nð Þ be its singular values
in descent order and the corresponding left singular vectors and right singular vectors.
Let Að Þd represents the recovered matrix of reduced SVD of A with rank d� n, that is,

Að Þd ¼
Xd

i¼1si � ui � v
T
i ð2Þ

Fig. 2. Example of two-level Hierarchical SVD.
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Then Að Þd is the best approximation of A such that the rank is at most d. And the

approximation error is kA� Að ÞdkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼dþ 1s
2
i

q
.

In [17], there is also a theorem to guarantee the error bound of Hierarchical SVD
with multiple layers. We presente it here as below.

Theorem 1 (from [17]). Let A be a matrix. Assume that U and S are the outputs of q-
level Hierarchical SVD algorithm with input A. Then there exists a unitary matrix
V such that US ¼ AV þW, where

kWkF � 1þ
ffiffiffi
2
p� �qþ 1

� 1
� �

kA� Að ÞdkF ð3Þ

From Theorem 1, USVT ¼ AþWVT , and kWVTkF ¼ kWkF , then we can know that
U from Hierarchical SVD is the normal left matrix of AþWVT , which is close to A.
This means that Hierarchical SVD may increase error of reduced SVD by at most

1þ ffiffiffi
2
p	 
qþ 1 � 1

h i
times.

For 1-layer Hierarchical SVD, there is a tighter bound guaranteed by another the-
orem from [17] as below. Here, we denote A :¼ US, where the SVD of A is A ¼ USVT .

Theorem 2. Let A ¼ A1jA2 . . .j jAp
� �

, B ¼ A1ð Þdj A2ð Þd . . .j j Ap
	 


d

h i
, and B

0 ¼ BþW,

then there exists a unitary matrix W such that

A� B0ð ÞdW
��� ���

F
� 3

ffiffiffi
2
p

A� Að Þd
�� ��

F þ 1þ
ffiffiffi
2
p� �

Wk kF ð4Þ

In Theorem 2, it is routine to see that Bð Þd ¼ US, where U and S are the outputs of
1-level Hierarchical SVD algorithm with input A. Setting W to zero matrix will lead to

A� Bð ÞdW
��� ���

F
� 3

ffiffiffi
2
p

A� Að Þd
�� ��

F ð5Þ

So for 1-layer Hierarchical SVD, Hierarchical SVD may increase error of reduced
SVD by at most 3

ffiffiffi
2
p

times, which is small than the bound in Theorem 1

1þ ffiffiffi
2
p	 
2 � 1

h i
¼ 2þ 2

ffiffiffi
2
p

.

3.3 Data Distribution and Communication Cost

Consider a tensor X 2 RIn�I2�...IN . Denote I ¼ I1 � I2 � . . .� IN be the number of
entries of the tensor, and Jk ¼ I

Ik
be the products of all Ii except for Ik .

In STHOSVD, data distribution occurs when implementing Hierarchical SVD
across processors. For every mode k, the proposed method applies Hierarchical SVD
on XðkÞ, the matricization of the tensor. We distribute data in a natural way. Divide
X kð Þ ¼ M1jM2j. . .jMp

� �
, where Mi 2 RIk�Di and

Pp
i¼1Di ¼ Jk, and every processor
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owns one matrix block Mi. To achieve maximum performance, the matrix blocks
should have sizes of almost the same.

Assume that M1;M2. . .Mp happen to have the same size of Ik � Jk
p . Using the a–b

model (the latency cost vs the per-word transfer cost), the communication cost of
distributing M1;M2. . .Mp from root processor to other processors is
p� 1ð Þaþ Ik

Jk
p b ¼ p� 1ð Þaþ I

p b. After every processor finishes calculating the

SVD of the assigned matrix block Mi, the root processor will gather UiSi from all
processors, and the communication cost is alog2 pð Þþ p� 1ð ÞIkrkb, where rk is the
reduced rank of mode k. So the total communication cost when calculating factor

matrix of mode k is p� 1ð Þaþ I
p bþ alog2 pð Þþ p�1ð Þ

p Ikrkb ¼ p� 1þ log2 pð Þð Þaþ
I
p þ p�1ð Þ

p Ikrk
h i

b.

Consider the state-of-the-art method from [14], with p processors organized in a
grid of size p1 � p2 � . . .� pN . Calculation of factor matrix of mode k includes an MPI
send-receive operator and reduce operator for gram matrix, see [14] for details. The

communication cost is pk � 1ð Þ aþ I
p b

� �
þ a log2 pkð Þþ pk�1ð Þ

p I2kb ¼ pk � 1þð
log2 pkð ÞÞaþ pk � 1ð Þ Ip þ pk�1ð Þ

p Ikrk
h i

b. For most cases, I
p is the dominant item. In

large-scale parallel cases, p is very large so that every pk is large too. Comparing the
proposed method with the state-of-the-art method from [14], it is easy to see that the
former one has lower communication cost.

TTM operator is simple here. We need only to send the factor matrix Uk from root
to all processors and the latter ones update the local assigned matrix block by
Mi  Mi�k Uk. Here we ignore the communication cost cause it needs little data to
transfer, and the case of the state-of-the-art method from [14] is the same.

The proposed distributed ST-HOSVD algorithm is summarized in Algorithm 2.

Algorithm 2. The proposed Distributed ST-HOSVD
Input: The tensor , ranks 
Output: The core tensor , and factor matrices 
FOR

Distribute data to all processors
Hierarchical SVD step:

Every processor calculates the reduced SVD (rank ) of the assigned ma-
trix block by

Root processor gathers from all processors
Root processor calculates the reduced SVD (rank ) of 

Update factor matrix 
Broadcast to each processor from root.
Every processor updates the assigned matrix block by 

ENDFOR
Gather all to root processor and fold them to form the tensor core tensor .
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4 Experiments

We conduct two kinds of experiments in this section. The first one focuses on the
merging results of Hierarchical SVD, and the second one focuses on the comparison of
the proposed method and the state-of-the-art method.

4.1 Experiments of SVD

In this part, we generate a random matrix A of size 128 � 1024. The matrix A is
divided into different number of blocks by columns (A ¼ A1jA2 . . .j jAp

� �
), and the 1-

layer Hierarchical SVD with reduced rank 64 is implemented on it. Reduced SVD is
used here as a comparison. In Hierarchical SVD, the right singular matrix V is dis-
carded, and the left singular matrix U is the key output. To evaluate the quality of U,
we estimate the projection error of A by

e ¼ A� UU0Ak kF
Ak kF

ð6Þ

For the normal reduced SVD, the error is 0.2962. For Hierarchical SVD, the results
runs is presented in Table 1. We can see that the projection errors of Hierarchical SVD
are very close to that of the normal reduced SVD. These results show Hierssarchi-
cal SVD has only little accuracy lost compared with normal reduced SVD.

4.2 Experiments of Tucker Decomposition

In this part, we present some experimental results to verify the performance of the
proposed method. The experiments are implemented on a cluster with 128 nodes. Each
node is equipped with 128 GB memory, a 32-core CPU of 2.0 GHz and a GPU of
13.3 TFLOPs peak single precision (FP32) Performance. We generate five tensor of
size 1024 � 1024 � 1024 randomly, and compare the performances of the proposed
method with the state-of-the-art method from [14]. The two methods are implemented
using different number of nodes, namely 16, 32, 64, 128, to test their scalabilities. For
each method, we apply it to the five tensors and set the reduced rank to be 512 for all
modes. For the proposed method, the number of layers is set to 1 in Hierarchical SVD.
The average executing time of each method is taken as its performance. The experi-
mental result is reported in Table 2 and Fig. 3. It is clear that the proposed method has
better performance with larger scale parallelism.

Table 1. Projection Errors with different p.

p 2 4 8 16

e 0.2986 0.2980 0.2969 0.2962
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5 Conclusion

In this paper, we focus on the problem of high-performance Tucker decomposition on
distributed-memory systems. We have proposed a method based on Hierarchical SVD
for the problem, which has lower communication cost in large-scale cases compared
with the state-of-the-art method. The experiments highlight the proposed method in
term of executing time although there is a little accuracy lost.

In the future, we are going to explore how to make full use of the idea of Hier-
archical SVD to improve parallel efficiency and reduce the error bound.

Acknowledgements. The work was supported by the National Key Research and Development
Project of China (Grant No. 2019YFB2102500).
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Fig. 3. The average executing time versus clusters of different number of nodes.

Table 2. The average executing time versus clusters of different number of nodes.

#nodes Time (s)
Proposed [14]

16 779.86 214.33
32 413.84 180.18
64 237.22 285.16
128 151.58 537.62
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