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Abstract Ground motions always create great interest for seismologists and engi-
neers worldwide. For these signal, an accurate and precise analysis of non-stationary
spectral variation are a longstanding problem aiming at some characteristics of signal
like any underlying periodicity. Fourier transform is a conventional tool, used to study
the seismic signals. In the last few years, researchers have become attentive to the
limitations of the Fourier transform. It decomposes the signal into its constituent
frequency components, but does not reveal, where changes in the frequency contents
occur. To overcome, it joint time—frequency representations have been introduced
which is a representation of both time and frequency. Some conventional method to
obtain the desired time—frequency information contained in these signals are short-
time Fourier transform (STFT) and Wavelet Transform. These methods show limita-
tion in terms of resolution. The S-transform (ST) proposed by Stockwell et al. [10] is
fusion of short-time Fourier transform (STFT), and Wavelet Transform. S-transform
is based on a moving and scalable localizing Gaussian window. It provides frequency-
dependent resolution while maintaining a direct relationship with the Fourier spec-
trum. In this paper, Stockwell transform (ST), STFT, and CWT-based technique for
joint time—frequency representation of seismic signal has been used. Effectiveness of
ST is evaluated by comparing the result of developed non-stationary synthetic signal
and real-time ground motion signal of Uttarkashi earthquake (M, = 6.8, 20 October
1991). Stockwell transform is capable for improving the resolution of non-stationary
signals as well as clearly identified the spots of concentration in energy.
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1 Introduction

Earthquake ground motions are inherently non-stationary in nature. For better under-
standing about the characterization of local site effects subject to earthquake, reliable
earthquake signal processing is essential. A time history is a most widely used method
for explaining the ground motion. The strong motion duration of an earthquake is the
time interval during which most of the energy is contained. Because seismic waves are
scattered during propagation, it shows a time evolving frequency composition. The
records of these seismic waves exhibit non-stationary characteristics. Seismic signal
shows non-stationary characteristics due to attenuation and absorption of seismic
energy [1].

Damage of structures depends on earthquake’s time duration, their amplitude
and frequency content of waves. Fourier-based analysis neglects the time duration
information of dominant frequency of strong ground motion signal. Fourier transform
can identify the frequencies which are present in signal but it does not reveal, where
changes occur in the frequency contents [2].

To overcome this type of problem, joint time—frequency representations have
been introduced which is a representation of both time and frequency. For the proper
interpretation of seismic data in terms of varying frequency content, there is a need of
time—frequency representation techniques jointly [2—4]. A proper analysis of ground
motions is very necessary, if building design is to be constructed in seismically active
areas, predicting earthquakes, quantification of damage from the recorded motions.
To overcome this type of problem, joint time—frequency representations have been
introduced which is a representation of both time and frequency. For the proper
interpretation of seismic data in terms of varying frequency content, there is a need
of time—frequency representation techniques jointly [2].

2 Time-Frequency Distributions: Fundamental Ideas

Time—frequency representation unfolds temporal information and maps a time series
into 2D quantity of time and frequency with effective characterization of the time—
frequency image. It describes how the spectral content of the signal changes with
time. Through the view of mathematical point, this joint distribution will provide
fractional energy of signal’s total energy at frequency (w) and time () [5].

If the ground motion signal is represented by x(¢), then the energy density of signal
is represented by |x (¢) |2.

The total energy E, is

Ex =/|x(t)|2dt

The frequency domain representation x(f) for the signal x(z) is
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x(t) and x(f) are uniquely related.

The energy or intensity per unit frequency at frequency f is |x(f)|*.
The total energy
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This should be equal the total energy of the signal calculated directly from the
time waveform
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Jointly distribution of energy of x(¢) over both the time and frequency variables
amounts to looking for an energy distribution P, (¢, f) such that

E. = //Px(t, frdedf

—00 —00

For analysis of non-stationary signal, TFD is an appropriate tool. Various time—
frequency representation method has been developed in last two decades for analysis
of non-stationary signals. Some early form of JTF representation is STFT and CWT.
The S transform is also one of JTF representation method [6]. It has some unique
advantage as it gives frequency-dependent resolution and also maintain a direct
relationship with Fourier spectrum [7].

3 Method

3.1 Stockwell Transform

It is an extension of the ideas of the short-time Fourier transform and is based on a
moving and scalable localizing Gaussian window [7] so before to define the Stockwell
transform, a general idea about STFT and CWT has been described here.
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3.2 Short-Time Fourier Transform

Fourier transform, when made the function of time gives this STFT, i.e. this technique
involves the division of signal into narrow time slots using the window template such
that the segmented signal is considered to be stationary [8]. The FT of the segmented
signal is then taken to get the frequency spectrum of that particular segment. So it
can be defined as Fourier transform of the product of the signal and shifted version
of window function [9, 10].

The mathematical relation that gives the STFT of a signal p() is

+00

S(t, w) = / p(Ow(t — v)e /de

—00

where

p(t) is the signal to be transformed.

w(t) is the analysis window.

S(t, w) is the STFT of the signal.

7 is the centre position of the window.

The width of the window length is fixed, which leads to the disadvantage of fixed
time—frequency resolution. Because of fixed window length, there is a difference in
number of cycles in that window along frequencies and that makes it inconvenient of
having good time resolution comparatively frequency resolution at higher frequency
[11].

One another problem through which STFT suffer is leakage due to window effect.
Fourier transform of rectangular window used in this transform is a ’Sinc’ function
that has narrow main lope width and larger side lopes, which result spectral leakage.

Continuous wavelet transform: The basic and main principles of wavelet are review
here briefly to understand its application in seismic signal. The continuous wavelet
transform is the cross-correlation function, which is calculated using the signal corre-
lated with wavelets. These wavelets are generated through the original mother wavelet
by its scaled and translated versions [12—14]. Mother wavelet is termed as the main
function, and the modified functions are called wavelets.

Mathematical formulation of the CWT is given by [15]

+00

1 t—1
Ws(a,f)=/P(f)—1ﬂ*(T>df

lal
—00

where p(t) is the signal.
Ws(a, t) are the CWT coefficients.
¥ (¢) is the mother wavelet, dilated by scale a and shifted in time 7.
ﬁ is known as the multiplication factor, and it ensures the normalization of

energy, means the wavelet which has unit energy at all scales.
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Like STFT, the wavelet transforms also suffer from uncertainty principle [16].
Both a good time and frequency resolution cannot be achieved simultaneously.

3.3 Stockwell Transform

The Stockwell transform is a mid way between STFT and CWT. This time—frequency
representation method has quite similarity to STFT while because of the use of
multiresolution tactics, it makes somewhere closer to wavelet transform [11]. A big
advantage of S-transform is that because of its simple concept, it gives a simple
understanding of multiresolution approach as have been introduced in wavelets and
hardly require any additional knowledge excepting STFT [11]. In Stockwell trans-
form for window function, Gaussian window is used, which can be time shifted
by t and is inversely proportional to the linear frequency f [10]. The S-transform
may comparable to the CWT as the Gaussian template is comparable to the mother
wavelet with a phase shift.
The mathematical expression for the Gaussian taper is given as

2
w(t) =ew?,

where ¢ is taper width and inversely proportional to the frequency o = ‘kﬂ The
parameter k can be tuned to obtain better frequency localization at the cost of reduced
time localization by controlling the width of Gaussian taper [15] here the parameter
k is considered 1. Gaussian taper function is normalized to achieve the Gaussian
template.

The S transform can be derived from STFT by replacing the window function

w(t) with the Gaussian function shown as

_272
fI e

w(t) = ——e

V2
As STFT defined as

+00

S(t, f):/p(r)w(r—r)e*ﬂ”ff.

—00

Then, the S transform is defined as

—-0)2f? ;
St(r. ) = 4L ppye ™ i

V2

where St (7, f) represents the S-transform of signal.
p(t) is continuous time signal.
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T parameter controls the position of the Gaussian window on #-axis.

The advantage of S-transform is that it may give multiresolution analysis beside
keeping the absolute phase of each frequency [17]. The Gaussian window which
localization is inversely proportional to the frequency is an improvement over STFT
as fixed width window used in this.

S-transform’s phase referenced to time origin which gives useful and accompa-
nying information about the spectra, and this is not obtainable from locally referenced
phase information in continuous wavelet transform [10].

4 Result

To demonstrate the performance of ST, one non-stationary synthetic signal and one
real-time earthquake signal record are considered.

A. Synthetic Signal

A synthetic signal quite similar to synthetic example [18] is generated with three
sinusoidal components to illustrate the features of ST. The synthetic signal is
a sum of three components which consists of sinusoidal waves. The sampling
frequency of the signal is 500 Hz, and the signal-to-noise ratio (SNR) is 10 db.
The length of signal is 10 s. Here, 7(t) is the Gaussian noise. The details of
synthetic signal are given by the following equation and are shown in Fig. 1
with its three components.

S(@t) = Si1(1) + $2(r) + S3(2) + (1)

Si(t) = [2 4 0.2sin(1)] - sin[27 (3¢ + 0.6 sin(t))]

S (1) = 0.6|:1 + 0.3 sin(2¢) - exp(—;—()) . cos[2n (St +0.6:'% +0.3 cos(t))]i|

S5(t) = 0.4sin[27 (91)]

The frequency of S (¢) is the lowest among all the three components but the ampli-
tude of which is highest. The frequency of S,(¢) increases with time, and amplitude
becomes smaller when frequency becomes higher. The frequency of S3(#) is constant,
and its amplitude is smallest. The specially designed signal components are so that
the higher is the amplitude of a component, the lower the frequency of the component.

Figure 1a shows the synthetic signal and its components considered for the anal-
ysis. The TF representations of synthetic signal using STFT, CWT, ST are shown in
Fig. 2a—c, respectively. Hanning window with window length (196 in sample) used
for STFT and Morse wavelet has been used for CWT; the width factor (K) is 1 for



Time-Frequency Characteristics of Seismic Signal Using Stockwell Transform 183

! T T T T T T T T T
: °WW\WWWWNWVWW
0 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
5 T T T T T T T T T
S VAVAVAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
5 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
1 T T T T T T T T T
c 0 i
4 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
05 T T 7 ] T T T 7 ]
d 0 '
05 1 1 1 1 | 1 1 1 1
"o 1 2 3 4 5 6 7 8 9 10

Fig. 1 Developed synthetic signal in (a). b—d represents the three components S;(¢), S»(¢) and
S3(t), respectively,

ST Result

Froguency (Hz)

©

Fig. 2 Time—frequency representations of synthetic signal a STFT b CWT ¢ ST

ST. All three components of S(¢), namely S;(¢), S»(#), S3(¢) are visible in the result
of TF spectra of ST while in the result of CWT only one frequency component S ()
is clearly visible.
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(a) Acceleration record of N-S (b) Frequency Spectrum of Acceleration record
component of Uttarkashiearthquake recorded
at Badkot station

Fig.3 a Acceleration record of N-S component of Uttarkashi earthquake recorded at Badkot station,
b frequency spectrum of acceleration record

B. Real-Time Earthquake Record

The real-time earthquake record is of Uttarkashi earthquake occurred in October
1991. This earthquake was recorded at 13 stations of a strong motion network
installed by Department of Earthquake Engineering, Indian Institute of Tech-
nology, Roorkee in Garhwal Himalaya under the research scheme funded by
Department of Science and Technology, Govt. of India.

The acceleration record of Uttarkashi earthquake recorded at Barkot station at 20
October 1991 at 02:53 IST with a moment magnitude of 6.8. Signal was recorded
through a three channel (North—South, Vertical, East—West) accelerograph. The
frequency sampling rate of accelerogram’s recording is 50 sps. N-S component
of this accelerogram, which duration is 31.74 s used for analysis.

The acceleration time history of the signal and corresponding FT of the signal are
shown in Fig. 3a, b. T-F representation of seismic signal using STFT, CWT and ST
is shown in Fig. 4a—c, respectively. The parameter used for analysis through different
methods is given in Table 1.

Figure 4a—c shows at least 3—4 frequency components. These components are
difficult to find only frequency domain based analysis. These are marked as f1, f2,
f3 and f4. The time localization of f1, f2, f3, f4 is very good in the result of ST
comparatively STFT and CWT. In the result of ST, the frequencies are annotated
at different time as f1 = 7.5 Hzat 5.6 s, f2=25Hz at6.5s,f3=9Hzat7.2s
and f4 = 8.5 Hz at 8.5 s. It may visualized from the results that resolution of time—
frequency representation obtained using ST is better as compared to the STFT and
CWT representation.
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Fig. 4 Time—frequency representations of Uttarkashi station record (a) STFT (b) CWT (c¢) ST

Table 1 Paramaters used in various T-F Representations

Signal STFT CWT ST

Ground motion Hanning window with | Morse wavelet, cwt | The width factor (k) =
acceleration record of | window length (196 in | uses 10 voices per | 1

Uttarkashi earthquake | sample) octave

at Barkot station

5 Conclusion

The Stockwell transform-based joint time—frequency technique is introduced for
seismic signals and is validated for real-time ground motion signal. The time—
frequency representations of synthetic signal using STFT, CWT, ST are compared.
All three components of S(7), namely S1(¢), S»(¢), S3(¢) are visible in the result of
time frequency spectra of Stockwell transform while in the result of CWT only one
frequency component S;(¢) is clearly visible. The time—frequency representations
of real-time signal using STFT, CWT, ST are also compared. These components
are difficult to find only frequency domain-based analysis. These are marked as f1,
f2, f3 and f4. The time localization of f1, f2, f3, f4 is very good in the result of
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ST comparatively STFT and CWT. It may visualized from the results that resolu-
tion of time—frequency representation obtained using ST is better as compared to
the STFT and CWT representation. Stockwell transform is capable for improving
the resolution of non-stationary signals as well as clearly identified the spots of
concentration in energy. For seismic signals, the S-transform provides good time
localization. Frequency localization is not so good; it shows frequency smearing.
Frequency smearing problem may be minimized through synchrosqueezing of
Stockwell transform.
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