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Abstract Chitosan (CS) and Chitosan nanoparticles (CNPs) have multifaceted
applications in medicine, agriculture, pharmaceutics, tissue engineering, waste
water treatment and food industries. CS is recognized as a less or non-toxic,
biocompatible polymer by US Food and Drug Administration (FDA) for wound
dressing as well as in dietary application. The properties of CS have upgraded by
making their nanoparticles. Due to their exceptional properties including nanosize
with large surface area to volume ratio, presence of reactive groups (�NH2 and
�OH), cationic nature (NH3

+), bioadhesivity, biocompatibility, bioavailability and
biodegradable nature; CNPs are explored in many ways in biomedical filed as an
antimicrobial agent, wound healing agent, scaffolds for tissue engineering, anti-
tumour agent in cancer therapy, carriers for gene and drug delivery, etc. In this
chapter we highlight on CNPs preparation, characterization and certain important
biomedical applications.
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Abbreviations

AFM Atomic force microscopy
CNPs Chitosan nanoparticles
CS Chitosan
DA Degree of acetylation
DD Degree of deacetylation
DLS Dynamic light scattering
ELS Electrophoretic light scattering
FTIR Fourier-transform infrared spectroscopy
HMW High molecular weight
IBV Infectious bronchitis virus
LMW Low molecular weight
MMW Medium molecular weight
nAg Silver nanoparticles
nCu Copper nanoparticles
NDV New castle disease virus
NPs Nanoparticles
nTiO2 Titanium dioxide nanoparticles
nZnO Zinc oxide nanoparticles
PDI Polydispersity index
PEC Polyelectrolyte complex
SEM Scanning electron microscopy
TEM Transmission electron microscopy
TPP Tripolyphosphate
XRD X-ray diffraction

17.1 Introduction

Marine products have been in the forefront of natural materials used in the thera-
peutic applications against several human diseases (Venugopal 2008). Majority of
marine products are derived from exoskeletons of crustaceans such as crabs,
shrimps, krills and lobsters. Chitin (polysaccharide) is one of the biopolymers
majorly extracts from shells of crustaceans, cell walls of fungi and certain insects.
Since chitin is insoluble in many common solvents, it is not widely used for
fabrication of products or a food commodity (Tsigos et al. 2000; Crini 2006). The
deacetylated chitin, i.e., chitosan has remarkable properties including biocompati-
bility, biodegradability, mucoadhesive, non-antigenic, non-toxic, solubility in weak
acids, cationic nature, and hence, used in many biomedical applications (Gupta et al.
2019; Onsosyen and Skaugrud 1990; Felt et al. 1998; Han et al. 1999; Zhang and
Zhang 2002; Kmiec et al. 2017; Guo and DiPietro 2010). The United States Food
and Drug Administration (USFDA) has recognized chitosan as a GRAS (Generally
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Recognized as Safe) material, and approved to use in food, agriculture and biomed-
icine (Kumar et al. 2019). For the last two decades, extensive studies have been
conducted on fabrication and application of chitosan based nanocomposites in
various fields including medicine, pharmaceutics and agriculture. Most of the
research studies revealed that chitosan nanoparticles have superior physiochemical
and biocompatible properties over CS, and have significant attraction in tissue
engineering, biomedicine, drug delivery and cancer therapy. Due to small size,
CNPs possess larger surface area to volume ratio, and hence, used as delivery
vehicles for anti-cancer drugs, anti-inflammatory drugs, vaccines, antibiotics, pep-
tides (arginine-glycine-aspartate; RGD), aptamers, folate, glycoproteins, polysac-
charides, genes, growth factors, etc. (Jayasuriya 2017). However, due to the larger
surface area and charge, CNPs can be readily absorb impurities from the medium,
and hence, to overcome this limitation, selection of appropriate method for their
fabrication and further characterization is an important key parameter. This chapter
describes various methods and their principles for fabrication and characterization of
CNPs for biomedical applications.

17.1.1 Chitin

Chitin is the most abundant linear biopolymer and structural polysaccharide widely
occurring in the nature after cellulose. It is found in the exoskeletons of crustaceans,
cell walls of fungi and in certain invertebrates. Various crystalline allomorphs of
chitin are α, β and γ, which differ in orientation of microfibrils. The α-forms are more
abundant and stable than β and γ forms. The α-forms are mainly present in cell walls
of fungi, shells of crustaceans and arthropods, whereas β and γ forms are found in in
squid pens, Ptinus beetles and Loligo squids (Jang et al. 2004; Carlstrom 1957).
Insolubility of chitin in solvents such as water, organic solvents and basic solutions
is due to the generation of intra- and intermolecular hydrogen bonds with acetyl,
amino and hydroxyl groups of its polysaccharide chain. Insolubility of chitin affects
the production of chitin based products. Crustacean’s wastes from fish processing
industries are the main source of chitin.

17.1.2 Chitosan

Chitosan is a natural linear polysaccharide synthesized by deacetylation of chitin. It
is composed of D-glucosamine and N- acetyl D-glucosamine sub-units. The
polycationic nature of chitosan is remarkable as most of the polysaccharides in the
acidic solutions are either neutral (or) negatively charged. Because of this specific
property, it forms electrostatic complexes with negatively charged polymers, lipids,
proteins and DNA (Venkatesan and Kim 2010; Pavinatto et al. 2010; Madihally and
Matthew 1999; Takahashi et al. 1990; Kim et al. 2007). CS has exceptional
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properties such as non-toxicity, low allergenicity, biocompatibility, hydrophilicity,
antimicrobial activity, bioactivity (Kumar et al. 2004; Gällstedt and Hedenqvist
2006; Pillai et al. 2009), and hence, it is widely used in various applications include,
among other, wound healing (Chandy and Sharma 1990), waste water treatment
(Onsosyen and Skaugrud 1990; Kumar et al. 2019), drug carrier (Felt et al. 1998),
treatment for obesity (Han et al. 1999), and as a scaffolds for tissue engineering
(Zhang and Zhang 2002).

CS is insoluble in aqueous solutions, however, it is soluble in dilute aqueous
acidic solutions such as acetic acid (pH < 6.3). CS solubility decreases as pH
increases. At lower pHs, CS becomes protonated and shows stronger antimicrobial
activity. Solubility of CS in aqueous solutions can be improved by chemical
modifications, such as quaternization of nitrogen atoms of the amino groups (Goy
et al. 2009).

17.2 Chitin to Chitosan Nanoparticles

Fabrication of CNPs from exoskeletons of crustaceans or composite chitin involves
many methodologies including, extraction of pure chitin, chitin deacetylation for
chitosan, preparation and characterization of CNPs. Further, these CNPs can be used
for various biomedical applications and drug delivery. Overall strategies for CNPs
fabrication are represented in the pictorial diagram (Fig. 17.1)

Marine bio-wastes such as shells of crustaceans used as a principal raw material
for industrial production of chitin. The exoskeleton of crustaceans is composed of
chitin (15–40%), proteins (20–40%), calcium carbonate (20–50%), pigments and
lipids (Yan and Chen 2015). This composite chitin is much harder than the pure
chitin. Two main extraction methods including conventional chemical extraction
and biological extraction were followed to extract the pure chitin from composite
chitin in industrial processing. Further, the chitin is converted to chitosan by
deacetylation (chemical or enzymatic deacetylation). Chemical extraction of chitin
is suitable for large scale production, however, it has many disadvantages like high
energy consumption, high environmental pollution and difficulty in recovering
waste products (pigments and proteins) (Gortari and Hours 2013; Cheung et al.
2015; Manni et al. 2010). Proper washing, drying, grinding and sieving up to 1 mm
size of shells of crustaceans are the common initial steps in both extraction methods.

17.2.1 Chemical Extraction

In this extraction method, the composite chitin under goes demineralization,
deproteinization and decoloration/bleaching to produce pure chitin. Demineraliza-
tion majorly involves separation of minerals such as calcium carbonate and calcium
phosphate by concentrated/diluted acid (HCl, HNO3, H2SO4 and CH3COOH)
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Fig. 17.1 Diagram representing overall fabrication methodologies of CNPs from chitin and their
applications
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treatment at room temperature. Then the alkaline (NaOH/KOH) treatment at high
temperature (100

�
C to 120

�
C) separates proteins (deproteinization). Order of these

two methods is interchangeable based on the source and proposed use of chitin. The
third phase involves separation of pigments such as carotenoids (mainly astaxanthin
and its esters) by NaOCl, H2O2 or KMnO4 treatment. The fine white powder of pure
chitin is subsequently deacetylates and converts into chitosan by alkaline treatment
(25–50% NaOH) at high temperature (80

�
–140

�
).

17.2.2 Biological Extraction

In this method, demineralization and subsequent deproteinization are carried out by
means of microbial (bacteria: Lactobacillus sp. Pseudomonas sp. Bacillus sp./Fungi,
Aspergillus sp.) fermentation and proteolytic enzymes (chymotrypsin, trypsin
alcalase, pepsin, papain, devolvase and pancreatin) treatment, respectively. Demin-
eralization must be the prior step to deproteinization, since the minerals can inhibit
the activity of proteases. The resultant pure chitin is then deacetylated by chemical
(NaOH)/enzyme (chitin deacetylase) treatment to convert into chitosan.

17.3 Preparation of Chitosan Nanoparticles

Nanoparticles (NPs) are small solid colloidal particles ranging from 10 to 1000 nm,
provide large surface area to volume ratio and unique physiochemical properties that
allows them in enormous applications (Du et al. 2009; Prasad et al. 2016, 2017). NPs
shows more specialized characteristics compared to their bulk materials, because, as
the size decreases, the percentage of surface atoms increases (Gupta et al. 2007).
Studies have revealed that CNPs can be acquired unique physiochemical and
biological properties than to their bulk CS form. Therefore, CNPs are widely used
in drug delivery, tissue engineering and other biomedical fields.

CNPs were first synthesized in 1994 by Ohya and co-workers through emulsifi-
cation and cross-linking method for intravenous delivery of anti-cancer drug
5-fluorouracil (Grenha 2012). Since then, many methods have been employed for
synthesis of CNPs, these include, Ionotropic gelation, microemulsion, emulsification
solvent diffusion, polyelectrolyte complex and reverse micellar method
(Tiyaboonchai 2003). All these methods comprise bottom-up fabrication processes,
which involves the assembly of molecules in solution to form defined structures
(Chan and kwok 2011).
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17.3.1 Ionotropic Gelation Method

This method is relatively simple and mild, and conducted at aqueous conditions
without the use of any organic solvent (Fig. 17.2). It was first reported by Calvo et al.
(1997). The main strategy of this method is to establish electrostatic interactions
between the cationic chitosan polymer and polyanion like tripolyphosphate (TPP) or
sodium sulphate with or without stabilizing agent such as poloxamer. In this method,
firstly, chitosan is dissolved in acetic acid aqueous solution to become cationic
polymer and further the solution is allowed to react with polyanions. It leads to the
formation of CNPs under constant stirring at room temperature. Physiochemical
properties of nanoparticles (size and surface charge) could be modulated by chang-
ing the ratio of chitosan and TPP, and the pH value of the solution (Calvo et al.
1997).

17.3.2 Microemulsion Method

In this method, Chitosan nanoparticles are prepared using surfactant, for example,
AOT (sodium bis (2-ethylhexyl) sulfosuccinate) and a cross linker, glutaraldehyde.
Initially, surfactant/hexane mixture is prepared by dissolving surfactant into
n-hexane, thereafter, the chitosan solution and glutaraldehyde are added into the
above mixture by continuous stirring at room temperature. Overnight stirring allows
establishing cross link between free amine group of chitosan and glutaraldehyde.

Fig. 17.2 Schematic diagram representation of Ionotropic gelation method
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Further, the organic solvent and excess surfactant are removed by evaporation under
low pressure and precipitation with CaCl2 followed by centrifugation, respectively.
The resultant nanoparticle suspension is then dialyzed and lyophilized (Maitra et al.
1997). In this method less than 100 nm sized nanoparticles can be produced, and
further the size could be altered by varying the concentration of glutaraldehyde
(Sailaja et al. 2011).Usage of glutaraldehyde (toxic agent) and cumbersome process
could be the disadvantages of this method (Fig. 17.3).

17.3.3 Reverse Micellar Method

This method was reported by Brunel et al. (2008), it is an adoption of microemulsion
method. The method is free from addition of cross linker and toxic organic solvents.
In brief, the surfactant is dissolved in organic solvent, to which added chitosan
aqueous solution under constant stirring to obtain reverse micelles. By this method
extremely thin nanoparticles can be formed (Fig. 17.4).

Fig. 17.3 Schematic diagram representation of microemulsion method
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17.3.4 Emulsification Solvent Diffusion Method

This method was first discovered for the fabrication of poly D, L-lactide/glycolide
(PLGA) nanoparticles (Niwa et al. 1993), and later it was adapted to prepare chitosan
nanoparticles by El-Shabouri (El-Shabouri 2002). In this method, an organic phase
(e.g., methylene chloride and acetone) was injected into chitosan solution containing
stabilizing agent (e.g., poloxamer and lecithin) under high shearing force, followed
by high-pressure homogenization (Fig. 17.5). The resultant emulsion is then diluted
with more water to overcome the organic solvent miscibility in water. Polymer
precipitation occurs upon the diffusion of organic solvent into water, which subse-
quently leads to the formation of NPs. High percentage of hydrophobic drug
entrapment could be achieved by this approach, however, use of organic solvents
and high shearing forces are again the major drawbacks of this method (Mohammed
et al. 2017).

Fig. 17.4 Schematic diagram representation of reverse micellar method
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17.3.5 Polyelectrolyte Complex Method (PEC)

It is quite simple and not requires any catalysts/ initiators or toxic organic solvents
for preparation of nanoparticles. PECs are self-assembled NPs, resulted from elec-
trostatic interactions between cationic polymer and polyanions. The cationic
chitosan polymer (pH < 6.0) is spontaneously associated with polyanions of chon-
droitin sulphate and hyaluronate (Denuzier et al. 1998), dextran sulphate (Chen et al.
2003; Chen et al. 2007), carboxymethyl cellulose (Ichikawa et al. 2005), heparin
(Liu et al. 2001; Tan Tang et al. 2011), and DNA (Erbacher et al. 1998) in solutions
to form PECs (Fig. 17.6).

17.4 Characterization of Chitosan Nanoparticles

Characterization of NPs tells about their physiochemical properties include, among
others, particle size and size distribution, surface morphology and surface charge,
etc. Particle morphology and surface characteristics can be studied by Scanning

Fig. 17.5 Schematic diagram representation of emulsification solvent diffusion method
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electron microscopy (SEM), Transmission electron microscopy (TEM) and Atomic
force microscopy (AFM). Under these microscopic studies, most often spherical
shaped CNPs are observed, however, some authors also reported a mixture of
globular, toroids, rod-like particles (Danielsen et al. 2004; MacLaughlin et al.
1998; Köping-Höggård et al. 2001; Huang et al. 2005). The instrument, Zetasizer
provides other particle characteristics using Dynamic light scattering (DLS), poly-
dispersity index (PDI) and zeta potential (ζ).

17.4.1 Scanning Electron Microscopy (SEM)

SEM is one of the microscopic techniques to study the surface morphology and size
of the nanoparticles. In principle, a high energy beam of electrons scan over the
surface of nanoparticles and emit signals such as low-energy secondary electrons,
backscattered electrons and X-rays, etc., that are detected by a detector and generates
their three dimensional image. Samples to be studied under SEM are mounted on a
metal stub and coated with a thin film of gold or other conducting material under
vacuum. In our laboratory we have prepared chitosan nanoparticles by ionic gelation
method found to have spherical shape with 141 nm in size Fig. 17.7 (Unpublished
data). Spherical chitosan nanoparticles with an average size of 200 nm have
observed under SEM (Jingou et al. 2011).

17.4.2 Transmission Electron Microscopy (TEM)

The size and surface morphology of nanoparticles can be studied by using TEM. It
has much higher spatial resolution over SEM and it provides 2-dimensional image of
the sample. The working principle of TEM is, when a high-energy electron beam
pass through the sample, generates transmitted and diffracted electron beams. The

Fig. 17.6 Schematic diagram representation of formation of PEC
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interference between the two beams forms an image on the fluorescent screen which
is coupled with a charge-coupled device (CCD) detector. Samples are to be exam-
ined under TEM, dispersed on carbon coated copper grid and allowed to dry at room
temperature. TEM images of chitosan nanoparticles showed an average size distri-
bution of 25–30 nm (Phan et al. 2019). Deng et al. (2006) observed, lysosome loaded
CNPs as spherical structures with 50–280 nm in diameter. In a study, polymeric
CNPs are resulted from reverse micellar method, which are spherical in shape with
smooth surface and narrow size distribution of about 90 nm (Manchanda and
Nimesh 2010).

17.4.3 Zetasizer

The instrument Zetasizer can be used to study the particle characteristics such as
particle size, size distribution, surface charge, etc., using Dynamic light scattering
(DLS), polydispersed index (PDI) and zeta potential (ζ).

17.4.3.1 Dynamic Light Scattering

Dynamic light scattering (DLS), also known as Photon correlation spectroscopy or
Quasi-Elastic light scattering is one of the popular light scattering analytical

Fig. 17.7 SEM image of CNPs prepared by Ionotropic gelation method
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techniques used to study size distribution of nanoparticles or submicron particles
include, among others, micelles, polymers, emulsions and proteins. The basic
principle is simple: particles (in solution) to be studied are illuminated with mono-
chromatic light beam, which in turn generates fluctuations in scattered light intensity
are subsequently detected at a known scattered angle (θ) by a photo detector
(Fig. 17.8). When a particle sample is dispersed in a solution, particles move
randomly (Brownian motion) due to the collision of the solvent molecules around
them (Choudhary et al. 2017a). Smaller particles move with greater velocity than the
larger particles, hence, the distance between the particles is constantly varying.
When moving particles in solution are exposed to a single frequency laser beam
over a period of time, generates time dependent fluctuations in scattered light
intensity depending on their sizes. These time dependent fluctuations can be related
to particle speed by autocorrelation function. The autocorrelation function is used to
determine the diffusion coefficient. The Stokes–Einstein equation can be used to
convert the diffusion coefficient to the hydrodynamic diameter (Barth 1984). The
size of CNPs in water measured using DLS ranges from 40 to 374 nm with an
average size of ~ 250 nm (Saharan et al. 2013, 2015; Choudhary et al. 2017a, b). The
CNPs obtained from ionotropic gelation method have shown size ranges from
68–75 nm by DLS (Fig. 17.9) (unpublished data).

17.4.3.2 Polydispersity Index Value (PDI)

The polydispersity index value (PDI) is a measure of the heterogeneity of a sample
based on size. It means, the particles exhibit either monodispersed or polydispersed
distribution in solutions, which can be studied by the instrument that use dynamic
light scattering (DLS). According to the International standards organizations
(ISOs), the PDI value < 0.05 represents that the particles are monodispersed in
nature, whereas the value > 0.7 indicates larger polydispersed particle distribution.

Fig. 17.8 Diagram representing dynamic light scattering principle
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The PDI value of chitosan nanoparticles varies from 0.1 to 0.4 which indicates
uniformity and stability of particles in suspension. Othman et al. (2018) reported that
Chitosan nanoparticles loaded with L-Ascorbic Acid and Thymoquinone
(CNP-LAA-TQs) had PDI values of 0.207 � 0.013. PDI values of Methotrexate-
chitosan–polyanion NPs, i.e. MTX-DCH-PAM-18Na NPs and MTX-DCH-PAM-
18K NPs ranging from 0.238 to 0.485 and 0.247 to 0.339, respectively (Ciro et al.
2020).

17.4.3.3 Zeta Potential (ζ)

Zeta potential is an important parameter which tells about degree of electrostatic
repulsion between charged groups present on particle surface (Saharan et al. 2013,
2015). It is an indicator of the stability of colloidal dispersion, which can be detected
by electrophoretic light scattering (ELS). Formation of aggregation is not observed
when the particles in the suspension have either high negative or positive zeta
potentials as they tend to repel each other, whereas aggregation is observed at low
zeta potentials due to less repulsion forces of particles. In general, nanoparticles with
zeta potentials of > +30 to < �30 have high stability (Kumar et al. 2017). The zeta
potential value of nanoparticles is affected by surface chemistry, particle concentra-
tion, size of particle, pH of the medium, temperature, solvent, and ionic strength
(Mudalige et al. 2019). The optimised zeta potential values for stability of colloidal
dispersion were given in the Table 17.1 (Kumar et al. 2017). In different studies, the
zeta potential values of CNPs ranged between +21 mV and +50 mV, indicating
CNPs are highly stable (Rampino et al. 2013; Li et al. 2018; Kheiri et al. 2017; Ali
et al. 2011).
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17.4.4 Fourier-Transform Infrared (FTIR) Spectroscopy

FTIR is one of the absorption spectroscopic techniques widely used in nanoparticles
characterization. It measures all of the infrared frequencies simultaneously, rather
than individually, and provides sufficient information about the functional groups of
a compound. When a sample is illuminated with infrared radiation, it absorbs and
transmits certain amount of radiation, from which a detector generates interpretable
spectrum that provide structural insights of the sample. The spectrum consists
stretching (symmetric and asymmetric stretching) and bending (scissoring, rocking,
wagging and twisting) vibrations. Stretching vibrations changes the bond length,
whereas bending vibrations change the angle between two bonds of the molecules.
In FTIR spectra of chitosan nanoparticles, the peak at 3447 cm�1 is attributed to –

NH2 and –OH groups stretching vibration. These peaks shift hypsochromically to
1639 and 1557 cm�1 in the FTIR spectra of CN which is caused by the interaction
between NH3

+ groups of chitosan and phosphate groups of TPP. The peaks at
1657 cm�1 and 1598 cm�1 are attributed to the CONH2 and NH2 groups, respec-
tively (Lustriane et al. 2018; Qi and Xu 2004; Bhumkar and Pokharkar 2006; Sarkar
et al. 2013). Similar FTIR spectra have been obtained for CNPs in our laboratory
(Fig. 17.10).

17.5 Biomedical Applications

17.5.1 Antimicrobial Activity

Chitosan is a versatile biopolymer has many biomedical applications. Its effective
role on microbes majorly depends on its molecular weight, pH and degree of
deacetylation (DD). Many studies have revealed antimicrobial activity of chitosan
against bacteria, fungi and yeasts; however, exact mode of action is still not fully
understood. As of now, the following possible theories have somehow made an
attempt to explain the mode of antimicrobial action of chitosan.

Table 17.1 The optimized zeta potential values for stability of colloidal dispersion (Kumar et al.
2017)

Zeta potential (mV) Stability behaviour of colloidal Dispersion

0 to �5 Rapid coagulation or flocculation

�10 to �30
Incipient instability

�30 to �40
Moderate stability

�40 to �60
Good stability

>61 Excellent stability
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17.5.1.1 Polycationic Nature of Chitosan

As per this hypothesis antimicrobial activity presumably depends on the alteration of
membrane permeability of microbes such as bacteria, fungi and viruses. The cell
walls of Gram-positive bacteria is largely composed of peptidoglycan layer with
certain composition of teichoic acids (wall teichoic acid and lipoteichoic acid),
which gives negative charge to the bacterial surface, while the Gram-negative
bacteria cell wall outer membrane possess lipopolysacharides (LPS), which provides
surface negative charge. In acidic aqueous solutions, the NH2 groups at C2 position
of chitosan protonates to yield NH3

+, which in turn forms electrostatic interactions
with negatively charged groups (mostly phosphate groups of teichoic acids and LPS)
located on the bacterial cell surfaces, leads to enhance the cell wall/ cell membrane
permeability followed by leakage of intracellular constituents and death of the cell
(Fig. 17.11) (Tsai and Su 1999; Aziz et al. 2014, 2015, 2016; Inamuddin et al. 2021).

In a study, in vitro assays, killing kinetics, cellular leakage measurements,
membrane potential estimation, electron microscopy and transcriptional response
analysis have given a speculation that antimicrobial activity of chitosan (LMW) is
due to electrostatic binding of protonated amine groups with negatively charged
teichoic acids (predominantly with lipoteichoic acids) of bacterial cell wall of Gram-
positive bacteria Staphylococcus aureus (Raafat et al. 2008).

In several studies, CS shown more bactericidal effect in Gram +ve bacteria
(Listeria monocytogenes, Bacillus megaterium, B. cereus, S. aureus, Lactobacillus

Fig. 17.10 FTIR spectrum of CNPs, shown specific peak at 3420 cm�1 due to the overlap of O-H
and N-H stretching, similarly, peaks at 1645 cm�1, 1548 cm�1 and 1383 cm�1 are attributed to the
CO-NH2, NH2, C-H groups, respectively (unpublished data)
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plantarum, L. brevis, L. bulgaricus) than in Gram –ve bacteria (E. coli, Psedomonas
fluorescens, Salmonella typhimurium, Vibrio parahaemolyticus) (No et al. 2002).

Similar mechanisms might also be applicable to fungal pathogens due to presence
of phospholipids in their membrane. At low pH, the protonated amine groups of
chitosan interact with the negatively charged phosphate groups of carbohydrate side
chains of fungal cell wall proteins and decrease the negative charge that leads to
alteration of important metabolic pathways (Ing et al. 2012; Pena et al. 2013). In a
study, LMW CS showed antifungal activity against the pathogenic yeast Candida
albicans by decreasing the cell surface negative charge. Sialic acid, a constituent of
cell wall glycoprotein of C. albicans, which provides negative charge to the cell wall
(Soares et al. 2000; Tronchin et al. 2008). Positively charged groups of chitosan
increase E.coli membrane permeability and lysis of membranes (Li et al. 2015).

Fig. 17.11 Antimicrobial effect of CS by Polycationic nature
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17.5.1.2 Chitosan Interaction with Nucleic Acid

Low molecular weight (LMW), micro and nano size chitosan particles can able to
penetrate into the cytoplasm of microorganisms and bind to the negatively charged
biomolecules such as DNA and RNA by electrostatic interactions and subse-
quently effect on the downstream mechanisms such as transcription and translation
(Fig. 17.12) (Jarmila and Vavrikova 2011; Sudarshan et al. 1992).

17.5.1.3 Chelating Nature of Chitosan

Divalent metal ions are prerequisite for microbial growth, enzymatic functions,
membrane integrity and other (Varma et al. 2004; Hosseinnejad and Jafari 2016;
Rabea et al. 2003; Chien et al. 2016; Matica et al. 2019; Kong et al. 2008). Chitosan
acts as chelating agent for metal ions, at lower pH (below 6.0) its amine groups
(NH2) become protonated (�NH3

+) and compete with divalent ions for electrostatic
binding to phosphate groups of teichoic acid and lipopolysaccharide (LPS) of Gram
+ve and Gram �ve bacteria, respectively (Fig. 17.13). On other hand, chitosan at
higher pH value (above pKa 6.3) also chelates many metal ions. Less availability of
essential metal ions leads to enhancement of cell wall permeability and sensitive to
several chemicals or antibiotics (Clifton et al. 2015).

17.5.1.4 Cell Surface Blocking Nature

High molecular weight (HMW) chitosan molecules deposit as dense polymer layer
on cell surface of microbes and became a barrier to uptake of essential nutrients,
minerals and oxygen (aerobic microbes) as well as excretion of their metabolic
products, leads to death of cells (Fig. 17.14) (Yuan et al. 2016; Devlieghere et al.
2004).

17.5.2 Factors Affecting the Antimicrobial Activity
of Chitosan

The main factors that affect antimicrobial activity of chitosan and its derivatives are
pH, temperature, molecular weight and degree of acetylation.

Higher antimicrobial activity is observed at low pH, i.e.<6.3 while the inhibitory
efficiency is decreased with increased pH (Muzzarelli 1996; Helander et al. 2001).

Temperature may affect the chitosan viscosity, molecular weight and antimicro-
bial activity during storage (No et al. 2006). In a study, it was observed that CS was
remain stable and showed antimicrobial activity against Listeria monocytogenes,

410 A. Mesa et al.



Fig. 17.12 Antimicrobial effect of CS and CNPs by polycationic nature
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Salmonella enteritidis, Staphylococcus aureus and E.coli even after 15 weeks stor-
age at 4

�
C than 25

�
C (No et al. 2006).

Molecular weight and degree of acetylation will affect the chitosan antimicrobial
activity. Based on the molecular weight, CS is often classified as high molecular
weight (HMW, 64.8 kDa to 375 kDa), medium molecular weight (MMW, 250 kDa
to 310 kDa), low molecular weight (LMW, 10 kDa to 150 kDa) (Matica et al. 2019).
Relation between antimicrobial activity and molecular weight depends on the type of
microorganisms. High molecular weight (HMW) chitosan accumulate on the surface
of bacterial membrane and inhibit the nutrient transport, resulting in cell death
(Li et al. 2010), whereas low molecular weight (LMW) chitosan could pierce into
the bacterial surface membranes and bind with DNA, thus blocking mRNA and
protein synthesis. (Kulikov et al. 2015). When chitosan molecular weight is

Fig. 17.13 Antimicrobial effect of CS by chelating nature
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decreased bactericidal effect of Gram-negative bacteria was enhanced (Younes et al.
2014).

In the same way the degree of acetylation also influence the chitosan antimicro-
bial activity. Chitosan antimicrobial activity was increased with the decrease in the
degree of acetylation (Goy et al. 2009). More positively charged cations of chitosan
are associated with the degree of acetylation (Kong et al. 2008). Highest antibacterial
activity against S. aureus and E. coli was observed at 30–40% of degree of
acetylation (Takahashi et al. 2008). Chitosan with a higher degree of deacetylation
have more cationic positive amino free groups which influence the antimicrobial
activity.

17.5.3 Wound Healing Activity of Chitosan Nanoparticles

Chitosan plays vital role in wound healing because of its antimicrobial, haemostatic,
film forming and analgesic and anti-inflammatory properties (Gupta et al. 2019).
Chitosans have the similar structure of glycosaminoglycans (GAGs) which are
constituents of extra cellular matrix (ECM), hence, used in skin tissue engineering
(Chen et al. 2008). Chitosan is biocompatible and non-toxic to living cells and
tissues and has been proved in vitro with different types of cells like fibroblasts,
keratinocytes, hepatocytes, myocardial and endothelial cells (Dash et al. 2011).
Wound healing is a natural response to injury, patients with non-healing disorders

Fig. 17.14 Antimicrobial effect of CS by cell surface blocking nature
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due to factors like age, sex hormones, stress diabetes, obesity, alcoholism, smoking
and nutrition makes them stressed and inconvenient or discomfort (Guo and DiPietro
2010).

General programmed phases for wound healing are haemostasis, inflammation,
proliferation and remodelling. Many factors include age, sex hormones, infection,
oxygenation, medication, nutrition, alcoholism, smoking, diabetes, stress and obe-
sity involved in wound healing by disturbing the programmed phases leads to delay
in wound healing (Guo and DiPietro 2010). Impaired healing of wounds enters in to
pathological inflammation which leads to chronic wounds like ulcers, diabetes
mellitus and venous stasis disease. Non-healing wounds result in immense
healthcare expenditures. Thus many studies lead to therapeutics that promote tissue
repair, improve impaired wound healing and at the same time inexpensive easily
available to sufferers. Chitosan is a natural therapeutic that is easily available and
promote tissue repair and improve wound healing. Chitosan reduce the inflammatory
phase and accelerates proliferate phase for wound healing fastly (Liu et al. 2018).
Chitosan can easily mould into desired hydrogels (Ahmadi et al. 2015), sponges
(Huang et al. 2015), membranes (Mi et al. 2001) and films without hazardous
chemicals. Hydrogels moistens the infected area by storing high capacity of water
(Hoffman 2012). Sponges give prefect matrixes to most wound healing areas due to
its open porosity and swelling properties (Mori et al. 2016). Membranes fabricate the
three-dimensional matrices with high surface-volume ratio for nutrient supply and
cell proliferation. Films should be resistant to pathogenic bacteria in biomedical
applications (Zhang et al. 2015).

Chitosan based antimicrobial wound dressing can be incorporated with antibi-
otics (ciprofloxacin, gentamicin, sulfadiazine or tetracycline), metallic antimicrobial
nanoparticles (e.g. nAg, nCu, nZnO and nTiO2) and natural compounds and extracts
(honey, Aloe vera, Juglena regia, etc.) or fabricated alone with native molecules
(Simões et al. 2018; Yang et al. 2016; Ahmadi et al. 2015; Huang et al. 2015; Mi
et al. 2001; Coma et al. 2002).

Chitosan is associated with antibiotics to evoke the antimicrobial effect by
interfering with bacterial metabolic pathways (Bermingham and Derrick 2002)
bacterial structure, cell wall biosynthesis (Patrick 2003), protein synthesis (Hong
et al. 2014). Genotoxic, oxidative and cytotoxic effects with metallic nanoparticles
can be reduced by using chitosan based biomaterials as carriers (Travan et al. 2009).

In recent studies silver nanoparticles (nAg) owed much interest as a potent
antimicrobial agent and in clinical studies in wound dressing to nAg coated medical
equipment (Madhumathi et al. 2010). nAg is the metallic nanoparticle showed broad
inhibitory activity against many antibiotic resistant bacteria (Zewde et al. 2016).

CNPs are used as stabilizing materials as they are having more permeability
towards aqueous solution and its mechanical strength, biofilm formation, liable to
chemical modifications and cost-effectiveness (Javid et al. 2013). CNPs and its
derivatives make it possible for versatile applications in the medical fields in blood
clotting, wounds healing and skin tissue engineering, skin burns, blood lipid cho-
lesterol control, membrane and scaffolds, surgical sutures, etc. (Baghdan et al. 2018;
Li et al. 2018; Mohebbi et al. 2019; Gupta et al. 2019).
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In the recent studies CS-polyvinyl alcohol (PVA)-silver nanoparticles were used
to provoke the wound healing process as it is involved in the wound healing dressing
(Hajji et al. 2019).

In another in vivo study on albino rats CS-nanosilver dressings showed enormous
and best wound healing activities when compared with intra dermal injection of
mesenchymal stem cells injections (Ghannam et al. 2018).

Chitosan-entrapped metallic nanoparticles are safe to use to living cells and have
the properties of anti-bacterial effects; interacts with cell wall composition and
inhibits the membrane of mitochondrial organelle; enhance the mechanical support
and provoke the regrowth of granulation tissue. Chitosan/sodium alginate-Cu
(hydrogel), Chitosan-nAu(film), Quaternized chitosan-nAg (film), Chitosan/algetic
acid-nZnO (sponge), Chitosan/ECM/n-TiO2, Chitosan/gelatine-nFe3O4

(composite)are the chitosan based nanoparticles used in the recent studies against
the microbial activity of Staphylococcus aureus, Escherichia coli, Pseudomonas
aeruginosa,Candida albicans (Wichai et al. 2019; Rahimi et al. 2019; Regiel-Futyra
et al. 2015; Bal-Ozturk et al. 2019; Cai et al. 2016; Woo et al. 2015).

17.5.4 Chitosan Based Nanoparticles in Vaccine Delivery

As the nanoparticles size is small they are easily incorporated into antigen presenting
cells and are used as adjuvant in vaccines (Kreuter 1995). Properties of chitosan like
polycationic, non-reactivity and high affinity for metals make it to be used as carrier
molecule. As the size of pathogens met during proliferation of immune system is
almost same that of nanoparticle carrier it is easily taken up by the antigen presenting
cells (Xiang et al. 2006). Nanoparticle carriers provoke the mucosal uptake of
vaccines and stimulate the mucosal immune response (IgA). Chitosan nanoparticle
enhance the mucosal administration because of its tight binding with mucin, small
size and the opening ability of tight junctions between epithelial cells.

Intra nasal administration of chitosan nanoparticle encapsulated mucosal vaccines
against influenza, diphtheria, pertussis and hepatitis B virus (Illum et al. 2001; Pawar
and Jaganathan 2014) stimulate the production of significant IgG and IgA responses
in mice. Delated clearance time is also observed in the nasal mucosa with this
vaccine and provokes both mucosal and humoral immune response (Pawar and
Jaganathan 2014). Oral chitosan nanoparticles vaccine loaded with tetanus toxoid
have also activated mucosal and humoral immunity (Barhate et al. 2014; Harde et al.
2014).

Mucoadhesive and osmotic properties of chitosan helps in adsorption and passage
of protein peptides through the nasal epithelium (Dodane et al. 1992) and passage of
macro molecules across the mucosal barrier (Huang et al. 2016). In recent studies
glucomannan modified chitosan nanoparticles maintained biological activity of
mediator molecules and blocked antigens. Glucuronidation based chitosan
nanoparticles effectively induced systemic serum IgG, mucosal secretary IgA, cell
mediated immune responses of IL-2 and IFN- γ (Harde et al. 2014).
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N-2HACC and N,O-Carboxy methyl chitosan (CMC) is a vaccine adjuvant for
New castle disease virus (NDV) and Infectious bronchitis virus (IBV). Nanoparticles
containing NDV/IBV can enhance the proliferation of lymphocytes (Zhao et al.
2017) and induce intranasal inoculation of IgG and IgA antibodies. Chitosan
nanoparticles along with plasmid DNA enhance antigen specific immune response
(TaO et al. 2013). Some research studies have done on intranasal DNA vaccination
(Torrieridramard et al. 2011).

Chitosan’s immune stimulatory, mucoadhesive, negative zeta potential, poly
cationic, non-reactive properties made it to use as adjuvant carrier for vaccines in
the nanoparticle plat form.

17.5.5 CNPs in Drug Delivery

Chitosan is used as one of the important natural polymers with vast applications in
drug delivery because of its solubility in the aqueous medium and its cationic amino
groups function (Bellich et al. 2016). CNPs in the drug delivery are used to
overcome the side effects of drugs, to maintain control rate of drug delivery and to
ensure correctly the only targeted area is treated (Teare et al. 1995; Ewart et al.
2019).

The nanoparticles can pierce in to the infected cell (or) tissue due to the presence
of larger junctions of epithelial cells. This piercing is of two types—passive targeting
and active targeting. In actively targeting drug carrier system is conjugated to a tissue
(or) specific cell ligand, whereas in passive targeting due to leaky junctions a
nanoparticle reaches the target organ site (Varshosaz and Farzan 2015).

Desirable nanoparticles drug delivery system should reach, identify, bind and
deliver its load to specific tissues and avoid drug induced harm to healthy tissues.
Targeting ligands on the surface of nanoparticles should be in the form of peptides,
antibodies, designed proteins, small molecules and nucleic acids (Liu et al. 2009;
Friedman et al. 2013). Drugs which are encapsulated with chitosan nanoparticles can
improve their absorption and bio-availability and allowing themselves to deliver
gene and protein drugs and are effectively protected from enzyme degradation
in vivo (Senapati et al. 2018). Cationic charges of chitosan when interact with
anionic charges of nucleic acid molecules form poly electrolyte complex (PEC),
this complex protects the nucleic acids from nuclease degradation (MacLaughlin
et al. 1998). Bio distribution of chitosan can differ depending on the surface charge,
size, molecular weight and hydrophobic nature of chitosan and its derivatives
(He et al. 2010). Elimination of chitosan after the drug delivery is through renal
clearance because of its solubility and low molecular size.

Mucosal membrane surfaces are common and easy routes for delivering drugs
into the body system. Macromolecular drugs such as peptides and proteins are
unable to cross the mucosal barriers as they are degraded by enzymes before
reaching blood flow. To solve this problem, nanostructures based mucoadhesive
polysaccharide chitosan is used (Amidi et al. 2010). Biotin (Vitamin H) has high
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affinity for streptavidin and is used for conjugation with nanoparticles (Pramanik
et al. 2016). It was reported certain tumor cells overexpress folate receptors than to
normal cells, hence, folic acid (vitamin B9) used for targeting in several cancers
treatments due to its immense affinity for folate receptors (Zhao et al. 2008).
Similarly, the smart targeting of nanoparticles with specific carbohydrates, short
peptides, antibodies and small molecules have been designed and studied (Friedman
et al. 2013). Some of the recent studies on various cancers have revealed that CNPs
have exceptional role in targeted drug delivery (Table 17.2).

Table 17.2 Drug fabricated Chitosan nanoparticles for cancer therapy

S. No Compound incorporated with CNPs Treatment References

1 5-fluorouracil (5-FU) encapsulated chitosan
nanoparticles

Cancer
therapy

Tıglı Aydın
and Pulat
(2012)

2 Photosensitizer tetraphenylchlorin Chitosan
nanoparticles (TPC�CS NPs) loaded with
mertansine (MRT) or cabazitaxel (CBZ)

Breast cancer
cell lines

Pandya et al.
(2020)

3 Copper-loaded chitosan nanoparticles (Cu-CNPs) Osteosarcoma
cancer

Jw and Liao
(2017)

4 α-santalol functionalized chitosan nanoparticles
(Sn-CNPs)

Breast cancer Zhang et al.
(2020)

5 Chitosan-PLGA based catechin hydrate
nanoparticles (CS-CTH-PLGA-NPs)

Lung cancer Ahmad et al.
(2020)

6 Quercetin Loaded Chitosan Nanoparticles (Qu-CS
NPs)

Colorectal
cancer

Rashedi et al.
(2019)

7 Curcumin-loaded Chitosan nanoparticles (Cu-CNPs) Cancer
therapy

Le et al. (2013)

8 Arg-Gly-Asp (RGD) peptide-labelled chitosan
nanoparticles loaded with SiRNA (RGD-CH-NPs)

Ovarian
cancer

Han et al.
(2010)

9 Biotinylated chitosan nanoparticles (bio-CNPs) Liver cancer Cheng et al.
(2017)

10 Alginic acid-coated chitosan nanoparticles (A.C.
NPs)

Breast cancer Liu et al.
(2013)

11 Hyaluronic acid (HA)-decorated glycol chitosan
(GC) nanoparticle conjugated to doxorubicin (DOX)
and co-loaded celecoxib (CXB) (HA-GC-DOX/
CXB)

Lung cancer Lee et al.
(2020)

12 Folate-Chitosan Nanoparticles Loaded with Ursolic
Acid (FA-CS-UA-NPs)

Breast cancer Jin et al.
(2016)

13 Folic acid-conjugated temozolomide (TMZ)-loaded
chitosan nanoparticles (CSTMZ-FLA-NP)

Lung cancer Li et al. (2017)

14 Niclosamide loaded chitosan nanoparticles (Nic-Chi
Np’s)

Breast cancer
Lung cancer

Naqvi et al.
(2017)

15 Ketorolac-loaded chitosan nanoparticles Cancer
therapy

Venu et al.
(2018)

16 Gemcitabine loaded fucoidan/chitosan nanoparticles Breast cancer Oliveira et al.
(2018)
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17.6 Conclusion

Chitosan is an inexpensive biopolymer extracted from chitin, shows remarkable
properties such as biocompatibility, biodegradability, non-antigenic, mucoadhesive,
biological activity, cationic nature and low toxicity. A stupendous research has been
done on chitosan and its functionalised derivatives to intend in wound healing, tissue
engineering, drug delivery, antimicrobial and anti-tumour activity, anti-diabetic and
a cholesterol reducing activity. Nanoparticles bio-fabrication transmits desirable
functional characteristics to chitosan. Several effective methods are used for fabri-
cation and characterization of CNPs. CNPs provide larger surface area volume to
ratio, and their size ranges easily penetrate in to the cells and hence, used as a
potential vehicle for delivery of several molecules including drugs, antibiotics,
vaccines, genes, peptides, etc., and scaffolds for tissue engineering. However, all
these CNPs based therapeutics are in preclinical stages and further extensive studies
are required to reveal the safety and effectiveness for their applications.
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