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Abstract Present work focus on research of tribological resistance of an inter-
metallic material (Fe–30Al–6Cr—at.%), seeking correlations between wear volume,
friction coefficient and temperature. Abrasive experiments were performed with
specimens of an iron aluminide alloy against AISI 52100 steel ball and abrasive
particles of silicon carbide in glycerin. An individual study was done with respect to
their characteristics in terms of SEM-EDS analysis. Different test conditions were
defined and the abrasive slurrywas, continuously, supplied between the specimen and
the ball. Values of tangential force and normal force were acquired simultaneously,
for “ball – abrasive particles – specimen” tribological system. Systematic studies of
the occurrences of themicro-abrasivewearmodes, friction andwear generated during
tests were done.Moderate temperature favored a larger degree of plastic deformation
than removal of material, reducing the wear rate and decreasing glycerin viscosity,
which facilitated the movement of the abrasive particles and, consequently, reduced
the friction coefficient. Wear volume presented a rising behavior with increase in
sliding distance at room and moderate temperatures. Present research explored the
potential of an intermetallic material as structural material subjected to moderate
temperatures.
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1 Introduction

In recent decades, advantages of use of intermetallic materials in mechanical and
metallurgical applications have been observed, mainly aluminide alloys of iron
have been researched, primarily due to the possibility of use as structural materials
subjected to elevated temperatures [1].

These intermetallic materials exhibit a high concentration of aluminum [1], which
form an adherent layer of alumina, protecting materials against corrosion and oxida-
tion under elevated temperatures [1–3]; it also exhibits greater thermodynamic
stability than other oxides, as chromium oxide (Cr2O3). The intermetallic materials
have smaller densities and exhibit excellent mechanical and metallurgical properties
[3–5].

The mechanical properties of intermetallic materials can be controlled by varying
aluminumpercentage, type of heat treatment and the grain size [6, 7], and as a function
of these parameters, they can be applied to specific mechanical and metallurgical
needs.

Generally, in carbon-steels, decreases in the yield strength stress and the ultimate
stress were observed as a function of the increasing temperature; this phenomenon
is reported with the maintenance of the value of the Longitudinal Elastic Modulus.
However, with the insertion of iron aluminides (Fe3Al), it is possible to reach a limit
of, approximately, 500 °C, while the magnitudes of yield strength stress and ultimate
stress either remain constant or increase [8–11].

Regarding wear tests, the tribological test by rotative ball is widely adopted in
researches focusing on micro-abrasive wear of various classifications of materials.
Figure 1 shows the principle of the tribological test by rotative ball, where a rotative
ball is forced against the tested material and an abrasive slurry is fed between the
sphere and the specimen during the tests.

“Wear craters” are generated on the tested material and Fig. 2 shows an image
of a wear crater, together with a technical indication of the crater diameter (b),
which is commonly measured using optical microscopy. The wear volume (V ) can

Test sphere 

Specimen 

Abrasive particles 

Fig. 1 Ball-cratering tribological test: Its operating principle
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Fig. 2 Wear crater from a
micro-abrasive wear test by
rotative ball: “b” is the
diameter of the wear crater

b

Wear crater of diameter “b”

be determined as a function of “b”, by Eq. (1) [12], being R the test sphere radius.

V ∼= πb4

64R
for b � R (1)

Generally, two micro-abrasive wear modes are reported on the surface of the
wear crater: “grooving abrasion” is observed when the abrasive particles slide on the
specimen surface (Fig. 3a [13]) and “rolling abrasion” is related when the abrasive
particles roll along the specimen surface (Fig. 3b).

As published in Reference [14], occurrence of abrasivewear deteriorates the prop-
erties and lifespan of engineering components, which are influenced by operational
conditions andmaterial properties. Then, the prospective applications of intermetallic
materials require characterization and quantification of their tribological properties.

Analyzing the scientific literature regarding to wear of intermetallic materials, is
possible to find many works [15–23]. However, researches on the micro-abrasive

Fig. 3 Micro-abrasive wear modes: a “grooving abrasion” [13] and b “rolling abrasion”
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wear behavior of intermetallic materials under room and moderate temperatures
are scarce. Then, considering the importance of intermetallic materials in many
industrial applications [24–31], the purpose of this work is to characterize the micro-
abrasive wear performance of an intermetallic material under room and moderate
temperatures, seeking correlations between wear volume, friction coefficient and
temperature.

2 Materials and Methods

2.1 Tribometer

Analyzing possible (micro-)abrasive wear test methods to conduct this research,
“ball-cratering” procedure provided a favorable technical condition to conduct
micro-abrasive wear study under room and moderate temperatures, due to its
mechanical set.

Thus, a ball-crateringwear test equipment of “free-ball”mechanical configuration
(Fig. 4) was used to conduct tribological tests at room and moderate temperatures.
To heat the intermetallic material and conduct experiments above room temperature,
a device consisting of an aluminum specimen-support block containing a 1.2 kW
electrical heating element was coupled to equipment. Additionally, two load cells
were used: one lead cell to control the “normal force—N” and one load cell to
measure the “tangential force—T”.

Fig. 4 Ball-cratering
equipment of “free-ball”
configuration

Test sphere 
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Fig. 5 AISI 52100 bearing
steel sphere quenched in oil
at 860 °C and stress-relieved
at 200 °C for 1 h: its
microstructure and chemical
composition [32–34]

Chemical Element % (in weight) 
C 1.04 

Mn 0.35 
Si 0.25 
Cr 1.45 
Fe Balance 

10 m

2.2 Tested Intermetallic Material

The tested material was an intermetallic material—Fe–30Al–6Cr (at.%), researched
in the “as cast” state.

The tested iron aluminide alloy was characterized by SEM and EDS.

2.3 Counter-Body

An AISI 52100 bearing steel ball was used as counter-body; its diameter was D =
1” (D = 25.4 mm—standard size).

Figure 5 [32–34] shows an imageof itsmicrostructurewith the respective chemical
composition.

2.4 Abrasive Slurries

The abrasive slurry was composed by abrasive particles of silicon carbide and
glycerin.
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Fig. 6 Abrasive particles of SiC [33, 34]: a image obtained by scanning electronmicroscopy (SEM)
and b its particle size distribution

Table 1 Hardness of the materials used in this research [7, 8, 32–34]

Material Hardness—H [HV]

Tested material Fe–30Al–6Cr (at.%) intermetallic material 381.6 [7, 8]

Test sphere AISI 52100 bearing steel 856 [32–34]

Abrasive material Black silicon carbide—SiC 1886–1937 [33, 34]

SiC material presented an average particle size of 3 µm and an angular shape.
Figure 6 [33, 34] shows a scanning electron micrograph of the abrasive material
(Fig. 6a) and its particle size distribution (Fig. 6b).

2.5 Hardness of the Materials

Table 1 presents the hardness (H) of the materials used in this research (intermetallic
material [7, 8], test ball [32–34] and abrasive particles [33, 34]).

2.6 Experiments

Table 2 presents the tribological parameters defined for the performed tribological
tests.

One value for normal force (N) was selected, N = 0.40 N, together with one
value of abrasive slurry concentration (C),C = 35%SiC+ 65%glycerin (volumetric
values) and two values for the test temperatures (Te), Te1 = 29 °C (room temperature)
and Te2 = 250 °C (moderate temperature).
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Table 2 Test parameters established for the tribological tests

Normal force [N] N 0.4

Abrasive slurry concentration (% vol) C 35% SiC + 65%
glycerin

Temperature of test [°C] Te1 29 (room)

Te2 250 (moderate)

Test sphere rotational speed [rpm] n 75

Tangential sliding velocity of the test sphere [m/s] v 0.1

Sliding distance [m] S1 6

S2 12

S3 24

Test time [min] t1 1

t2 2

t3 4

The test ball rotational speed was n = 75 rpm, previously selected by other
Researchers [35–37]. For n = 75 rpm and a ball of diameter D = 1”, its tangential
sliding velocity is v = 0.1 m/s.

Three values of sliding distance (S) were established: S1 = 6 m, S2 = 12 m and
S3 = 24 m, with the following corresponding test times (t): t1 = 1 min, t2 = 2 min
and t3 = 4 min. Three tribological tests were conducted for each value of sliding
distance, according to the following test sequence: 6–6–24–12–12–24–24–12 and
6 m. In total, 18 tribological tests were conducted: nine experiments at Te1 = 29 °C
(room temperature) and nine experiments at Te2 = 250 °C (moderate temperature).

All tribological experiments were conducted without interruption. Additionally,
the test temperature of Te2 = 250 °C was monitored using an infrared thermometer.

2.7 Results Analysis

With the aim of measuring the dimension “b” of each wear crater and reporting the
occurrences of the abrasive wear modes, subsequently at the end of wear tests, the
wear craters were analyzed by optical microscopy and scanning electronmicroscopy,
respectively.

Then, with the values of “b”, “T” and “N”, volume of wear (V ) and friction
coefficient (μ) were determined using Eqs. (1) and (2), respectively.

μ = T

N
(2)

Finally, graphs of V = f (S, Te) and μ = f (t, Te) were plotted to shows the results
obtained.
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3 Results and Discussion

3.1 Intermetallic Material Characterization

Figures 7a [7, 8] and 7b [8] are the micrographs (SEM) of the iron aluminide alloy
studied; its surface was etched using Villela’s reagent (composition of 95 ml of
ethanol, 5 ml of HCl and 1 g of picric acid). It consists of an aluminide matrix (D03
ordered) reinforced by a continuous network of eutectic chromium carbides at the
interdendritic regions, tentatively identified as M7C3 based on the chromium/iron
ratio measured by EDS, where Figs. 7c [8] and 7d [8] show the results obtained, for
the “as cast” state and region of carbides.

Chemical Element % (in weight) 
Al 14.14 
Cr 4.95 
Mo 0.75 
C 0.66 
Fe 78.57 

Chemical Element % (in weight) 
Al 0.65 
Cr 54.22 
Mo 2.18 
Si 0.37 
Fe 41.92 

0.90 1.80 2.70 3.60 4.50 5.40 6.30 7.20 8.10 9.00 

FeK

FeK

AlK

MnK

CrK
MnKCrK

MoL
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AlK

FeL
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(d) 

Fig. 7 Fe-30Al-6Cr (at.%) intermetallic material: a–b Its microstructure [7, 8] and EDS for the
c “as cast” state [8] and d region of carbides [8]
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3.2 Micro-Abrasive Wear Modes Analysis

Figure 8a shows a wear crater produced during the ball-cratering tribological exper-
iments by rotative ball. Figure 8b, c show images obtained by SEM, where the
occurrence of rolling abrasion is observed for the conditions of Te1 = 29 °C and Te2
= 250 °C, respectively.

Independent of the sliding distance and test temperature, in all experimental condi-
tions, the wear craters exhibited the occurrence of rolling abrasion. This tribological
behavior is in qualitative agreement with the results reported in the literature [35–
40], including reports that low values of normal forces and high values of abrasive
slurries concentrations favor the occurrence of rolling abrasion.

The greater propensity of rolling abrasion action in the tests conducted under
elevated temperature can be explained by the fact that upon increasing the tempera-
ture, the specimen material became more ductile, facilitating its indentation by the
SiC abrasive particles.

(a) 

(c)

(b)

Fig. 8 a Wear crater produced during the ball-cratering tribological experiments (Te1 = 29 °C)
and the action of rolling abrasion for the conditions of b Te1 = 29 °C and c Te2 = 250 °C
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3.3 Micro-Abrasive Wear Modes Analysis

The behaviors of the wear volume (V ) as a function of the sliding distance (S) and
temperature (Te) − V = f (S, Te) are presented in Fig. 9.

In both cases, the wear volume presented a rising behavior with the increase of
the sliding distance. In addition, the reproducibility obtained in the experiments of
this work was directly influenced by the action of rolling abrasion in the wear craters,
which, as reported by Bose and Wood [41], tends to produce results with relatively
reliable reproducibility.

By analyzing Fig. 9, it is possible to note that the wear volume decreased with
the increase of the test temperature—Te.

The rolling abrasion, which is the abrasive wear observed in all wear craters of
this work, can be related to the “cutting” and “micro-fatigue” [42] that occurs due to
repetitive rolling of the abrasive particles on the surface of the wear crater, e.g., the
wear that occurs due to plastic deformation [43].

With the increase in the temperature, the material of the specimen exhibits larger
ductility, consequently favoring a larger degree of plastic deformation than removal
of material. This high capacity of plastic deformation that the specimen material
acquires with the increase of the test temperature favors the occurrence of “micro-
fatigue” (due to the actions of the abrasive particles) which, in addition to being the
wear mechanism of smaller severity when compared with the “cutting”, is conse-
quently associated with smaller wear rates. To remove a certain quantity of material
under the occurrence of micro-fatigue (plastic deformation), a larger number of
abrasive particles must slide or to roll in the same region of wear.
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Fig. 9 Wear volume (V ) as a function of the sliding distance (S) and the temperature of test (Te) −
V = f (S, Te)
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3.4 Friction Coefficient Analysis

Figure 10 shows the graphics of the friction coefficient (μ) as a function of the test
time (t) and test temperature (Te) − μ = f (t, Te).

Independent of the test condition, the friction coefficient tended to a constant
behavior as a function of the test time and temperature.

The temperature significantly influenced the values of the friction coefficient, and
in a general overview, the coefficient of friction obtained under Te1 = 29 °C was
found to be greater than the values of μ obtained under Te2 = 250 °C. With the
increase in the temperature, the specimen material becomes more ductile; thus, a
greater amount of abrasive particles is required to rub on a wear region to remove
the same quantity of material. In addition, an abrasive particle is more likely to
cut at room temperature, while an abrasive particle just deforms plastically under
an elevated temperature. Finally, with the increase in the temperature, the viscosity
of the glycerin decreased, facilitating the movement of the abrasive particles and,
consequently, decreasing the friction coefficient.

Test time – t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 40 80 120 160 200 240 280

C
oe

ff
ic

ie
nt

 o
f f

ric
tio

n 
–

Te1 = 29°C  (room temperature) 

Te2 = 250°C (moderate temperature) 

µ

Fig. 10 Graphics of the friction coefficient (μ) as a function of the test time (t) and test temperature
(Te) − μ = f (t, Te)
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4 Conclusions

Present research explored the potential of an iron aluminide alloy as structural
materials subjected to moderate temperatures.

The following points can be highlighted in this research:

• The action of the “rolling abrasion” micro-abrasive wear mode was independent
of the temperature of test;

• The temperature significantly influences the tribological behavior of the Fe-30Al-
6Cr (at.%) intermetallic material studied: as the temperature increased, the wear
resistance of the alloy increased;

• Wear volume and friction coefficient: as the temperature increased, the wear
volume and the friction coefficient decreased due to the higher ductility acquired
by the material specimen and lower viscosity of the glycerin.
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